WO2022118363A1 - 変圧器制御システム - Google Patents

変圧器制御システム Download PDF

Info

Publication number
WO2022118363A1
WO2022118363A1 PCT/JP2020/044613 JP2020044613W WO2022118363A1 WO 2022118363 A1 WO2022118363 A1 WO 2022118363A1 JP 2020044613 W JP2020044613 W JP 2020044613W WO 2022118363 A1 WO2022118363 A1 WO 2022118363A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
network
control
control unit
tap
Prior art date
Application number
PCT/JP2020/044613
Other languages
English (en)
French (fr)
Inventor
渉 山守
浩一 浜松
啓一 金田
隆文 前田
Original Assignee
株式会社東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社東芝
Priority to PCT/JP2020/044613 priority Critical patent/WO2022118363A1/ja
Priority to JP2022566518A priority patent/JPWO2022118363A1/ja
Priority to KR1020237016759A priority patent/KR20230092973A/ko
Publication of WO2022118363A1 publication Critical patent/WO2022118363A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P13/00Arrangements for controlling transformers, reactors or choke coils, for the purpose of obtaining a desired output
    • H02P13/06Arrangements for controlling transformers, reactors or choke coils, for the purpose of obtaining a desired output by tap-changing; by rearranging interconnections of windings

Definitions

  • An embodiment of the present invention relates to a transformer control system.
  • a control device is arranged for each transformer arranged in the substation premises, and each control device is connected to each transformer by a metal cable. Then, each control device calculates the electric energy of the electric power system in the substation, and switches the tap of each transformer via the metal cable to stabilize the bus voltage.
  • the problem to be solved by the present invention is to provide a transformer control system capable of stabilizing the bus voltage in the power system by using a network.
  • the transformer control system of the embodiment has a detection unit, a control unit, and a switching unit.
  • the detector detects system information about the power system.
  • the control unit collects the system information from the detection unit via the network, measures the bus voltage which is the voltage of the bus in the power system based on the collected system information, and each transformer in the power system. Monitor the operational status of.
  • the switching unit switches the tap of the transformer connected to the bus.
  • the control unit instructs the switching unit to switch the tap via the network so that the measured bus voltage is within a predetermined range.
  • the block diagram of the transformer control system of 1st Embodiment The block diagram of the sensing terminal which makes the transformer of 1st Embodiment a sensing target.
  • the figure which shows the control method of the transformer control system of 1st Embodiment The figure which shows the control method of switching from the isolated operation to the parallel operation in 1st Embodiment.
  • the block diagram of the transformer control system of the 2nd Embodiment. The block diagram which shows the modification of the transformer control system of 1st Embodiment.
  • FIG. 1 is a diagram showing a configuration example of the transformer control system 1 of the first embodiment.
  • the transformer control system 1 stabilizes the power system E by controlling the switching of taps of each transformer 120 included in the power system E in the power facility such as a substation via the network NW1.
  • the power system E is equipped with various equipment such as a bus 110, a transformer 120, a switchgear 130, and a measuring device 140.
  • the switchgear 130 is a gas-insulated switchgear, a circuit breaker, a disconnector, or the like.
  • the transformer 120 includes a tap for switching the transformer ratio.
  • the measuring device 140 is, for example, an instrument transformer (Voltage Transformer) or an instrument transformer (Current Transformer).
  • the power system E often has two or more transformers 120.
  • the transformer control system 1 shown in FIG. 1 includes, for example, a plurality of sensing terminals 200, two IEDs (Intelligent Electronic Devices) 300, a TC (remote monitoring control device) 400, and an HMI (human machine interface) 500. , Equipped with.
  • the plurality of sensing terminals 200 are connected to the network NW1.
  • the plurality of sensing terminals 200 are arranged at the process level.
  • the network NW1 includes, for example, the Internet, a LAN (Local Area Network), a WAN (Wide Area Network), and the like.
  • network NW1 is a process bus defined by the international standard IEC61850.
  • the plurality of sensing terminals 200 detect the system information of the power system E via various facilities.
  • the plurality of sensing terminals 200 transmit the detected system information to each IED 300 via the network NW1.
  • the system information transmitted from the plurality of sensing terminals 200 to each IED 300 via the network NW1 is digital data.
  • the sensing terminal 200 has a function of a merging unit.
  • the system information includes information such as the amount of electricity in the power system E, the power supply / demand state of the power system E, the connection state of the power system E, and the operation state of the transformer 120 in the power system E.
  • the amount of electricity in the power system E is information regarding the voltage level, current level, phase angle, and the like of each bus 110 in the power system E.
  • the power supply / demand state includes information on the load of the power system E and information such as the amount of power generated by the generator connected to the power system E.
  • the connection state of the power system E includes connection information of a circuit breaker or a disconnector included in the power system E.
  • the operating state of the transformer 120 includes information indicating whether the transformer 120 is stopped or operating, the tap voltage of the transformer 120, and the information of the tap currently selected in the transformer 120 (hereinafter,). "Tap value”) etc. are included.
  • the tap value may be information indicating a transformation ratio, a winding ratio, or the like.
  • the sensing terminal 200 is installed corresponding to each facility in the power system E.
  • the sensing terminal 200 may receive information from the sensing target with the corresponding equipment as the sensing target.
  • the sensing terminal 200 controls the opening / closing of each switchgear 130, switches the taps of each transformer 120, starts or stops the operation of each transformer 120, etc., based on the command obtained from the IED 300 via the network NW1. Can be controlled.
  • the sensing terminal 200 whose sensing target is the transformer 120 is referred to as "sensing terminal 200LR”.
  • the sensing terminal 200 whose sensing target is the opening / closing device 130 is referred to as a "sensing terminal 200S”.
  • the sensing terminal 200 whose sensing target is the measuring device 140 is referred to as a "sensing terminal 200M”.
  • IED300-1 the working system IED300
  • IED300-2 the standby system IED300
  • the transformer control system 1 of the first embodiment may be provided with the working system IED300-1, and may not be provided with the standby system IED300-2.
  • IED300-1 and IED300-2 have the same configuration, and when they are not distinguished, they are simply referred to as IED300.
  • the IED300 is an example of a "control unit”. Each IED300 of the active system and the standby system collects system information via the network NW1.
  • the IED300 is connected to the network NW1.
  • the IED 300 is located at the bay level.
  • the IED 300 collects system information from a plurality of sensing terminals 200 via the network NW1.
  • the IED 300 executes processing related to protection and monitoring of the power system E based on the system information.
  • the IED 300 measures the bus voltage, which is the voltage of the bus 110 in the power system E, based on the collected system information. Further, the IED 300 controls all the transformers 120 in the power system E and monitors the operating state based on the system information.
  • the IED300 may control the tap change of the transformer in the power system E in the power system E via the network NW1 and the sensing terminal 200LR so that the measured bus voltage is within a predetermined range, or a plurality of transformers in parallel operation.
  • the first function of collectively controlling the switching of the taps of the transformer is executed.
  • the IED300 is connected to the TC400 via the network NW2.
  • the IED 300 may transmit system information to the TC 400 via the network NW2. Further, the IED 300 receives information from the TC 400 via the network NW2.
  • the network NW2 includes, for example, the Internet, LAN, WAN, and the like.
  • the network NW2 is a station bus defined by the international standard IEC61850.
  • TC400 is connected to network NW2. Further, the TC400 is connected to the HMI500. For example, the TC400 is located at the station level. The TC400 relays information between the HMI 500 and the IED 300. For redundancy, two TC400s, a working system and a standby system, may be connected to the network NW2. The HMI 500 may be connected to the IED 300 via the network NW2 without going through the TC 400.
  • the HMI500 is, for example, an information processing device such as a workstation or a personal computer.
  • the HMI 500 can receive an operation from an operator and transmit an operation signal corresponding to the operation to the IED 300 via the TC400 and the network NW2.
  • FIG. 2 is a diagram showing a configuration example of the sensing terminal 200LR of the first embodiment.
  • the sensing terminal 200LR includes, for example, a detection unit 210, a communication unit 211, and a switching unit 212.
  • the detection unit 210 detects analog data from the transformer 120 of the power system E.
  • the detection unit 210 converts the detected analog data into digital data.
  • the detection unit 210 detects analog data indicating transformer information such as the operating state of the transformer 120, the secondary voltage of the transformer 120, the bus voltage, and the tap value, and the analog data thereof. To digital data.
  • the communication unit 211 sends and receives information to and from the IED 300 via the network NW1.
  • the communication unit 211 transmits the digital data of the transformer information converted by the detection unit 210 to the IED 300 via the network NW1 at regular intervals or when the state changes. Further, when the communication unit 211 receives the tap control command from the IED 300 via the network NW1, the communication unit 211 transmits the control command to the switching unit 212.
  • the switching unit 212 switches the tap of the transformer 120. Specifically, the switching unit 212 changes the transformation ratio of the transformer 120 by switching the tap of the transformer 120 based on the control command.
  • FIG. 3 is a diagram showing a configuration example of the sensing terminal 200S of the first embodiment.
  • the sensing terminal 200S includes, for example, a detection unit 220, a communication unit 221 and an open / close control unit 222.
  • the detection unit 220 detects the open / closed state of the switchgear 130.
  • the detection unit 220 converts the detected open / closed state of the switchgear 130 into digital data.
  • the communication unit 221 sends and receives information to and from the IED 300 via the network NW1.
  • the communication unit 221 transmits the digital data converted by the detection unit 220 to the IED 300 via the network NW1 at regular intervals or when the state changes. Further, when the communication unit 221 receives an open / close (on / off) control command for turning the switchgear 130 into a conductive state (on state) from the IED 300 via the network NW1, the switchgear 130 is turned on. / Off) A control command is transmitted to the switchgear control unit 222.
  • the communication unit 221 receives a cutoff command from the IED 300 to put the switchgear 130 into a cutoff state (off state) via the network NW1, the communication unit 221 transmits the cutoff command to the switchgear control unit 222.
  • the switchgear control unit 222 When the switchgear control unit 222 receives an open / close (on / off) control command for making the switchgear 130 in a conductive state, the switchgear 130 to be sensed is switched to the conductive state. When the switchgear control unit 222 receives the shutoff command, the switchgear / switchgear 130 to be sensed is switched to the shutoff state.
  • FIG. 4 shows a configuration example of the sensing terminal 200M of the first embodiment.
  • the sensing terminal 200M includes, for example, a detection unit 230 and a communication unit 231.
  • the detection unit 230 detects analog data indicating the measured values of the instrument transformer and the measuring device 140, which is a measuring facility / device.
  • the detection unit 230 converts the detected analog data into digital data.
  • the communication unit 231 sends and receives information to and from the IED 300 via the network NW1.
  • the communication unit 231 transmits the digital data converted by the detection unit 230 to the IED 300 via the network NW1 at regular intervals or when the state changes.
  • FIG. 5 is a diagram showing a configuration example of the IED 300 according to the first embodiment.
  • the IED 300 includes a communication unit 310, a communication unit 320, and an information processing unit 330. These components are realized, for example, by a hardware processor such as a CPU (Central Processing Unit) executing a program (software). In addition, some or all of these components are hardware such as LSI (Large Scale Integrated circuit), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), and GPU (Graphics Processing Unit). It may be realized by the circuit part (including circuitry), or it may be realized by the cooperation of software and hardware.
  • a hardware processor such as a CPU (Central Processing Unit) executing a program (software).
  • LSI Large Scale Integrated circuit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • GPU Graphics Processing Unit
  • the program may be stored in advance in a storage device (a storage device including a non-transient storage medium) such as an HDD (Hard Disk Drive) or a flash memory, or a removable storage device such as a DVD or a CD-ROM. It is stored in a medium (non-transient storage medium), and may be installed in the storage device by mounting the storage medium in the drive device.
  • a storage device is composed of, for example, an HDD, a flash memory, an EEPROM (Electrically Erasable Programmable Read Only Memory), a ROM (Read Only Memory), a RAM (Random Access Memory), or the like.
  • the communication unit 310 is connected to the network NW1 and transmits / receives information to / from each sensing terminal 200 via the network NW1.
  • the communication unit 320 is connected to the network NW2 and transmits / receives information to / from the HMI 500 via the network NW2 and TC400.
  • the information processing unit 330 centrally controls a plurality of transformers 120 included in the power system E based on system information which is various digital signals obtained from the communication unit 310.
  • the information processing unit 330 measures the bus voltage based on the system information. Then, the information processing unit 330 controls the switching of taps via the network NW1 so that the bus voltage is within the range of the first set value and the second set value.
  • the second set value may be smaller than the first set value or may be the same as the first set value.
  • the information processing unit 330 transmits a control command for lowering the transformation ratio of the transformer 120 to the sensing terminal 200LR via the network NW1 when the measured bus voltage exceeds the first set value.
  • the sensing terminal 200LR is instructed to switch the tap of the transformer 120 to lower the secondary voltage or the bus voltage of the transformer 120. Further, when the measured bus voltage falls below the second set value, the information processing unit 330 senses by transmitting a control command for increasing the transformation ratio of the transformer 120 to the sensing terminal 200LR via the network NW1. Instruct the terminal 200LR to switch the tap of the transformer 120 to raise the tap voltage.
  • the information processing unit 330 centrally manages the operation of a plurality of transformers 120 in the power system E via the network NW1, and determines the open / closed state of the switchgear 130 and the operating state of each transformer 120 based on the system information. By confirming, it is determined whether the operation of the plurality of transformers 120 is parallel operation or independent operation. For example, the information processing unit 330 controls the open / closed state of the switchgear 130 to be a cutoff state or a conductive state via the network NW1, and controls the operation of the plurality of transformers 120 to control the operation of the plurality of transformers 120. Instructs to switch between parallel operation and independent operation.
  • the information processing unit 330 uses the plurality of transformers 120 via the network NW1. Switch to independent operation.
  • the information processing unit 330 may stop the operation of the transformer 120 having an abnormality after switching the plurality of transformers 120 to the independent operation.
  • the information processing unit 330 determines whether or not each transformer 120 is normal based on the operating state of each transformer 120 included in the system information collected via the network NW1. Further, for example, when a plurality of transformers 120 are operating independently and an abnormality occurs in any of the plurality of transformers 120, the information processing unit 330 causes an abnormality via the network NW1.
  • a load connected to the transformer 120 during independent operation can be transferred as a load of another healthy transformer 120 (hereinafter, referred to as “healthy transformer”).
  • the information processing unit 330 may stop the operation of the transformer 120 having an abnormality after switching the plurality of transformers 120 to the parallel operation.
  • the information processing unit 330 determines whether or not the transformer 120 in independent operation can be switched to parallel operation based on the system information, and if it is determined that switching to parallel operation is impossible, the information processing unit 330 is independent. Switching from operation to parallel operation is prohibited. For example, the case where switching to parallel operation is impossible is the case where an abnormality occurs in the IED300, the sensing terminal 200, the network NW1, or the like, or the case where the number of transformers 120 for parallel operation is limited.
  • the information processing unit 330 manages the number of parallel operations, which is the number of transformers 120 in parallel operation, based on the system information, and when the number of parallel operations reaches a preset predetermined value, the information processing unit 330 operates independently. The transition of the transformer 120 to the parallel operation may be prohibited. As a result, the information processing unit 330 can prevent the transformers 120 from being operated in parallel in excess of the preset number. If the information processing unit 330 determines that continuous operation of the transformer 120 is difficult based on the system information, the operation of the transformer 120 is stopped via the network NW1 and the transformer is transformed based on the system information.
  • the load for example, a transmission line sharing power
  • the transformer 120 is determined to be difficult to operate in parallel. Is separated from the transformer group in parallel operation and stopped.
  • the information processing unit 330 determines that the parallel operation of the transformer 120 is difficult based on the system information
  • the load is distributed and the parallel operation of the transformer 120 is changed to the independent (separate) operation. May be switched via the network NW1.
  • the case where continuous operation of the transformer 120 is difficult is, for example, a case where an abnormality occurs in the transformer 120.
  • the case where the parallel operation of the transformer 120 is difficult is the case where an abnormality occurs in the transformer 120 during the parallel operation.
  • the information processing unit 330 determines whether or not the transformer 120 can be operated in parallel based on the system information when the transformer 120 is operated independently, and when it is determined that the transformer 120 cannot be operated in parallel, the information processing unit 330 determines whether the transformer 120 can be operated in parallel. Switching from to parallel operation may be prohibited.
  • the information processing unit 330 manages the number of parallel operations, which is the number of transformers 120 operating in parallel based on the system information, and when the number of parallel operations exceeds a predetermined value, the transformers operating independently. The transition of the vessel 120 to the parallel operation may be prohibited.
  • the power system E shown in FIG. 4 includes, for example, two bus lines 110-1 and 110-2, two transformers 120-1 and 120-2, and 20 switchgear 130-1 to 130-20. It is equipped with four measuring devices 140-1 to 140-4.
  • Busbar 110-1 is a double busbar system including the busbar 110-1a and the busbar 110-1b.
  • the bus 110-2 is a double bus system bus including the bus 110-2a and the bus 110-2b.
  • the bus 110-1 is the bus of the 275 [kV] system
  • the bus 110-2 is the bus of the 500 [kV] system.
  • the transformer 120-1 and the transformer 120-2 are connected between the bus 110-1 and the bus 110-2 having different voltage classes.
  • the transformer 120-1 and the transformer 120-2 can be connected in parallel to each other.
  • the switchgear 130-1 is connected in series to the instep line 110-1a between the transformer 120-1 and the transformer 120-2.
  • the busbar 110-1a is separated into two busbars 111 and 112.
  • the switchgear 130-2 is connected in series to the busbar 110-1b between the transformer 120-1 and the transformer 120-2.
  • the busbar 110-1b is separated into two busbars 113 and 114.
  • both the switchgear 130-1 and the switchgear 130-2 are in a conductive state.
  • both the switchgear 130-1 and the switchgear 130-2 are in a cutoff state.
  • the switchgear 130-3 is connected in series to the instep line 110-2a between the transformer 120-1 and the transformer 120-2.
  • the switchgear 130-3 can separate the busbar 110-2a into two busbars 115 and 116.
  • the switchgear 130-4 is connected in series to the busbar 110-2b between the transformer 120-1 and the transformer 120-2.
  • the switchgear 130-4 can separate the busbar 110-2b into two busbars 117 and 118.
  • the switchgear 130-5 is connected between the busbar 111 and the busbar 113.
  • the switchgear 130-6 is connected between the busbar 112 and the busbar 114.
  • the switchgear 130-7 is connected between the busbar 115 and the busbar 117.
  • the switchgear 130-8 is connected between the busbar 116 and the busbar 118.
  • the switchgear 130-9 is connected between the transformer 120-1 and the busbar 111 and the busbar 113.
  • the switchgear 130-10 is connected between the transformer 120-1 and the busbar 115 and the busbar 117.
  • the switchgear 130-11 is connected between the transformer 120-2 and the busbar 112 and the busbar 114.
  • the switchgear 130-12 is connected between the transformer 120-2 and the busbar 116 and the busbar 118.
  • the switchgear 130-13 (for example, a disconnector) is connected between the switchgear 130-9 and the instep bus 111.
  • the switchgear 130-14 (for example, a disconnector) is connected between the switchgear 130-9 and the bus bar 113.
  • the switchgear 130-15 (for example, a disconnector) is connected between the switchgear 130-11 and the instep bus 112.
  • the switchgear 130-16 (for example, a disconnector) is connected between the switchgear 130-11 and the busbar 114.
  • the switchgear 130-17 (for example, a disconnector) is connected between the switchgear 130-10 and the instep bus 115.
  • the switchgear 130-18 (for example, a disconnector) is connected between the switchgear 130-10 and the bus bar 117.
  • the switchgear 130-19 (for example, a disconnector) is connected between the switchgear 130-12 and the instep bus 116.
  • the switchgear 130-20 (for example, a disconnector) is connected between the switchgear 130-12 and the bus bar 118.
  • the measuring device 140-1 is an instrument transformer that measures the voltage of the instep bus 111.
  • the measuring device 140-2 is an instrument transformer that measures the voltage of the bus 113.
  • the measuring device 140-3 is an instrument transformer that measures the voltage of the instep bus 112.
  • the measuring device 140-4 is an instrument transformer that measures the voltage of the bus 114.
  • the measuring device 140 is also connected to the bus 110-2, the description of the measuring device 140 connected to the bus 110-2 will be omitted for convenience of explanation.
  • the transformer control system 1 includes two sensing terminals 200LR-1, 200LR-2, two sensing terminals 200M-1 to 200M-12, and six sensing terminals 200S-1 to 200S-12. Be prepared.
  • the sensing terminal 200LR-1 targets the transformer 120-1 as a sensing target, switches taps, and detects the operating state of the transformer 120-1.
  • the sensing terminal 200LR-2 targets the transformer 120-2 as a sensing target, switches taps, and detects the operating state of the transformer 120-2.
  • the sensing terminal 200M-1 detects the measured values of the measuring device 140-1 and the measuring device 140-2 with the measuring device 140-1 and the measuring device 140-2 as sensing targets.
  • the sensing terminal 200M-2 detects the measured values of the measuring device 140-3 and the measuring device 140-4 with the measuring device 140-3 and the measuring device 140-4 as sensing targets.
  • FIG. 7 a case where the transformer 120-1 and the transformer 120-2 are operating in parallel will be described as an example.
  • the sensing terminal 200M-1 AD-converts the measured values of the measuring device 140-1 and the measuring device 140-2, and constantly transmits the AD-converted digital data to the IED 300 via the network NW1.
  • the IED300-1 operates as an active system, collects digital data obtained via the network NW1 (step S101), and constantly measures the bus voltage of the bus 110-1 based on the digital data (step S101). S102).
  • the IED300-1 determines whether or not the measured bus voltage is within a predetermined range between the preset first set value and the second set value. For example, IED300-1 determines whether or not the measured bus voltage exceeds the first set value (step S103). When the measured bus voltage does not exceed the first set value, the IED 300-1 determines whether the bus voltage is lower than the second set value (step S104).
  • the IED300-1 issues a control command for lowering the transformation ratio of the transformer 120 via the network NW1 to the sensing terminal 200LR-1. And transmission to the sensing terminal 200LR-2 (step S105).
  • the IED 300-1 instructs each sensing terminal 200LR to switch between the taps of the transformer 120-1 and the transformer 120-2, and controls to increase the tap value.
  • the sensing terminal 200LR-1 receives the control command transmitted in step S105, it switches the tap of the transformer 120-1 to lower the tap value.
  • the sensing terminal 200LR-2 receives the control command transmitted in step S105, it switches the tap of the transformer 120-2 to lower the tap value.
  • step S104 when the measured bus voltage falls below the second set value, the IED300-1 issues a control command to raise the transformer ratio of the transformer 120 via the network NW1 to the sensing terminal 200LR-1 and the sensing terminal. It is transmitted to 200LR-2 (step S106).
  • the IED 300-1 instructs each sensing terminal 200LR to switch between the taps of the transformer 120-1 and the transformer 120-2, and controls to increase the tap value.
  • the sensing terminal 200LR-1 receives the control command transmitted in step S106, it switches the tap of the transformer 120-1 to increase the tap value.
  • the sensing terminal 200LR-2 receives the control command transmitted in step S106, it switches the tap of the transformer 120-2 to increase the tap value.
  • the sensing terminal 200LR-1 After switching the tap of the transformer 120-1, the sensing terminal 200LR-1 takes in the tap value of the transformer 120-1 and transmits it to the IED 300 via the network MW1. Similarly, after switching the tap of the transformer 120-2, the sensing terminal 200LR-2 takes in the tap value of the transformer 120-2 and transmits it to the IED 300 via the network MW1.
  • the IED300-1 collects information on the tap values of the transformer 120-1 and the transformer 120-2 via the network MW1, and the transformer 120-1 and the transformer 120 are based on the collected tap value information. Confirm the switching of each tap of -2 (step S107). If the switching of the taps of the transformer 120 cannot be confirmed, the IED 300-1 may determine that an abnormality has occurred in the transformer 120.
  • the IED300-1 When both the transformer 120-1 and the transformer 120-2 are operating independently, the IED300-1 has a bus voltage of the bus 111 or the bus 113 based on the measured value from the sensing terminal 200M-1. A control command is transmitted to the sensing terminal 200LR-1 via the network NW1 so as to be within a predetermined range. Similarly, the IED300-1 controls the sensing terminal 200LR-2 via the network NW1 so that the bus voltage of the instep line 112 or the Otsumo line 114 is within a predetermined range based on the measured value from the sensing terminal 200M-2. Send a command. As a result, the IED 300-1 can independently control the tap values of the transformer 120-1 and the transformer 120-2 that are operating independently, and can stabilize the bus.
  • FIG. 8 is a diagram showing a control method for switching from single operation to parallel operation in the first embodiment.
  • IED300-1 collects information on each tap value of each transformer 120-1 and transformer 120-2 from the sensing terminal 200LR-1 and the sensing terminal 200LR-2 via the network NW1 (step S201).
  • the IED 300-1 communicates with the sensing terminal 200LR-1 and the sensing terminal 200LR-2 via the network NW1 to align the tap values (step S202). For example, when the tap value of the transformer 120-1 is higher, the IED 300-1 senses the tap value of the transformer 120-1 so as to be the same as the tap value of the transformer 120-2. A control command is transmitted to the terminal 200LR-1.
  • the IED300-1 opens and closes the switchgear 130 in a conductive state with respect to the sensing terminal 200S-1 and the sensing terminal 200S-2.
  • a control command is transmitted (step S203).
  • the sensing terminal 200S-1 switches the switchgear 130-1 from the cutoff state to the conductive state when it receives the open / close (on / off) control command for making the switchgear 130 in the conductive state.
  • the sensing terminal 200S-2 When the sensing terminal 200S-2 receives an open / close (on / off) control command for making the open / close device 130 in a conductive state, the sensing terminal 200S-2 switches the open / close device 130-2 from the cutoff state to the conductive state. Therefore, the operation of the transformer 120-1 and the transformer 120-2 is switched from the independent operation to the parallel operation.
  • the IED300-1 sets the network NW1 after step S203 when the switching from the independent operation to the parallel operation is triggered by an abnormality in either the transformer 120-1 or the transformer 120-2.
  • the transformer 120 in which the abnormality has occurred is stopped.
  • the stop means, for example, switching the switchgear 130-9 or the switchgear 130-11 to the cutoff state.
  • the IED 300 and the sensing terminal 200LR are connected via the network NW1. Then, the IED 300 uses the network NW1 to instruct the sensing terminal 200LR to switch the tap of the transformer 120 via the network NW1 so that the bus voltage is within a predetermined range, so that the bus voltage in the power system E is used. Can be stabilized. Further, since it is possible to control all the transformers 120 at once with one IED300, the hardware including the metal cable is reduced.
  • one of the IED300s has a measured bus voltage within a predetermined range.
  • the switching of the transformer 120 taps is controlled via the network NW1, and the other IED300 (for example, IED300-2) receives the operation signal from the upper level, and the transformer 120 is controlled via the network NW1 based on the operation signal.
  • the IED 300-1 automatically switches the tap of the transformer 120 based on the system information.
  • the IED 300-2 switches the tap of the transformer 120 when the operator performs a manual operation for switching the transformer 120.
  • the IED 300-2 when the IED 300-2 receives an operation signal for increasing the tap value from the HMI 500 via the network NW2, the IED 300-2 transmits a control command for increasing the tap value to the sensing terminal 200LR via the network NW1.
  • the IED 300-2 when the IED 300-2 receives an operation signal for lowering the tap value from the HMI 500 via the network NW2, the IED 300-2 transmits a control command for lowering the tap value to the sensing terminal 200LR via the network NW1.
  • the tap of the transformer 120 can be switched manually by the operator.
  • FIG. 9 is a diagram showing a configuration example of the transformer control system 1A of the second embodiment.
  • the transformer control system 1A is different from the transformer control system 1 of the first embodiment shown in FIG. 1 in that it includes an IED 600 that operates independently of the IED 300, rather than the standby system IED 300-2. ..
  • the IED 600 is mainly arranged to perform other control and monitoring separately from the IED 300 in the configuration of the transformer control system 1A.
  • the IED 300 performs the first function of collectively controlling all the transformers 120 in the power system E described in the first embodiment, and the IED 600 performs a second function different from the first function. Run.
  • the transformer control system 1A shown in FIG. 9 includes, for example, a plurality of sensing terminals 200, an IED300, a TC400, an HMI500, and an IED600.
  • the IED600 is an example of a "function sharing unit".
  • the IED600 is connected to the network NW1.
  • the IED 600 is located at the bay level.
  • the IED600 distributed separately from the IED300 collects system information from a plurality of sensing terminals 200 via the network NW1.
  • the IED 600 shares a first function and a second function with respect to the power system E with the IED 300, and operates independently of the IED 300.
  • the IED 600 has a function of controlling the open / closed state of the switchgear 130-5 to 130-8 as a second function.
  • the IED 600 has the first function, but when the IED 300 is operating normally, the second function is executed without executing the first function.
  • the IED300 When an abnormality occurs in the IED300, the IED300 notifies the IED600 of the occurrence of the abnormality via the network NW2. Upon receiving the notification of the occurrence of the abnormality from the IED 300, the IED 600 takes over the function of the IED 300 and executes the function. For example, when an abnormality occurs in the IED 300, the IED 600 executes a first function and a second function mainly executed by the IED 600 together with the first function (tap control). The IED300 and the IED600 may be mutually monitored.
  • the control method of the transformer 120 in the transformer control system 1A is the same processing as in FIG. 7, the description thereof will be omitted. Since the method of switching from the independent operation to the parallel operation in the transformer control system 1A is the same process as in FIG. 8, the description thereof will be omitted.
  • the IED 600 performs the converter control function shown in FIG. 7 and the switching from the isolated operation to the parallel operation shown in FIG. 8 in addition to the second function.
  • the transformer control system 1A of the second embodiment described above has the same effect as the transformer control system 1 of the first embodiment, and even if an abnormality occurs in the IED300, the standby system IED300 The first function can be continuously executed without using.
  • two sensing terminals 200 an active system and a standby system, may be provided.
  • transformer control system 1 of the first embodiment may further include the IED 600 described in the second embodiment. Further, a standby system of IED600 may be further provided.
  • FIG. 10 is an example of a transformer control system 1B provided with a power supply station 700.
  • the TC 400 is connected to the computer system located at the power supply station 700 (system operation) located outside the substation premises.
  • the IED300 notifies the power supply station 700 of the operating status of the system, equipment, and equipment arranged in the substation premises via the TC400, and controls the opening and closing of the equipment arranged in the substation premises and transforms by various commands from the power supply station 700.
  • the tap control of the vessel 120 is performed.
  • the "far control method” is a method that can be controlled from a computer system located far away from the power supply station 700 via the TC 400.
  • the "direct control method” is a method capable of controlling from the HMI 500 arranged in the substation premises. For example, one of the “distant control method” and the “direct control method” is given a control right, and various controls such as open / close control and tap control are carried out by the method to which the control right is given. For example, this control right can be switched between a "far control method” and a "direct control method” by a switch or the like.
  • the HMI 500 and the TC 400 may be integrally configured or may be arranged separately from each other.
  • the transformer communicates with the switching unit 212 via the network NW1 so that the bus voltage measured based on the system information collected via the network NW1 is within a predetermined range.
  • the switching of the taps of 120 it is possible to stabilize the bus voltage in the power system E by using the network NW1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

実施形態の変圧器制御システムは、検出部と、制御部と、切換部とを持つ。検出部は、電力系統に関する系統情報を検出する。制御部は、前記検出部からネットワークを介して前記系統情報を収集し、収集した前記系統情報に基づいて前記電力系統内の母線の電圧である母線電圧の計測と前記電力系統内の各変圧器の運用状態の監視を行う。切換部は、前記母線に接続される変圧器のタップの切り換えを行う。前記制御部は、計測した前記母線電圧が所定範囲内になるように、前記ネットワークを介して前記切換部に前記タップの切り換えを指示する。

Description

変圧器制御システム
 本発明の実施形態は、変圧器制御システムに関する。
 従来、変電所構内に配置される変圧器ごとに制御装置が配置されており、各制御装置は、各変圧器とメタルケーブルで接続されている。そして、各制御装置は、変電所内の電力系統の電気量演算を行い、各変圧器のタップの切り換えを、メタルケーブルを介して行うことで母線電圧の安定化を図っていた。
 近年の情報通信技術およびデジタル制御技術の進歩に伴って、各装置間のネットワーク化が進んでいる。例えば、変電所向けの変圧器制御システムでは、国際標準規格IEC61850の制定に伴い、各装置間の接続がメタルケーブルから通信ケーブルへの技術の転換が提案され、変電所構内のネットワーク化が進みつつある。
 しかしながら、ネットワークを用いた電力系統内の変圧器の制御に関しては未だ提案されていないのが現状であった。
特開2013-164731号公報
 本発明が解決しようとする課題は、ネットワークを用いて電力系統内の母線電圧の安定化を図ることができる変圧器制御システムを提供することである。
 実施形態の変圧器制御システムは、検出部と、制御部と、切換部とを持つ。検出部は、電力系統に関する系統情報を検出する。制御部は、前記検出部からネットワークを介して前記系統情報を収集し、収集した前記系統情報に基づいて前記電力系統内の母線の電圧である母線電圧の計測と前記電力系統内の各変圧器の運用状態の監視を行う。切換部は、前記母線に接続される変圧器のタップの切り換えを行う。前記制御部は、計測した前記母線電圧が所定範囲内になるように、前記ネットワークを介して前記切換部に前記タップの切り換えを指示する。
第1の実施形態の変圧器制御システムの構成図。 第1の実施形態の変圧器をセンシング対象とするセンシング端末の構成図。 第1の実施形態の開閉装置をセンシング対象とするセンシング端末の構成図。 第1の実施形態の計測装置をセンシング対象とするセンシング端末の構成図。 第1の実施形態のIEDの構成例を示す図。 第1の実施形態の電力系統の一例を示す図。 第1の実施形態の変圧器制御システムの制御方法を示す図。 第1の実施形態における単独運転から並列運転への切り替えの制御方法を示す図。 第2の実施形態の変圧器制御システムの構成図。 第1の実施形態の変圧器制御システムの変形例を示す構成図。
 以下、実施形態の変圧器制御システムを、図面を参照して説明する。
 (第1の実施形態)
 図1は、第1の実施形態の変圧器制御システム1の構成例を示す図である。変圧器制御システム1は、変電所などの電力設備内の電力系統Eに含まれる各変圧器120のタップの切り換えを、ネットワークNW1を介して制御することで電力系統Eを安定化させる。
 電力系統Eは、母線110、変圧器120、開閉装置130、計測装置140などの各種設備を備える。開閉装置130は、ガス絶縁開閉装置(Gas Insulated Switchgear)や遮断器、断路器などである。変圧器120は、変圧比を切り替えるタップを備える。計測装置140は、例えば、計器用変圧器(Voltage Transformer)や計器用変流器(Current Transformer)である。なお、電力系統Eでは、二つ以上の変圧器120を有している場合が多い。
 図1に示す変圧器制御システム1は、例えば、複数のセンシング端末200と、2台のIED(Intelligent Electronic Device)300と、TC(遠方監視制御装置)400と、HMI(human machine interface)500と、を備える。
 複数のセンシング端末200は、ネットワークNW1に接続される。例えば、複数のセンシング端末200は、プロセスレベルに配置される。例えば、ネットワークNW1は、例えば、インターネットやLAN(Local Area Network)、WAN(Wide Area Network)等を含む。例えば、ネットワークNW1は、国際標準規格IEC61850で規定されているプロセスバスである。複数のセンシング端末200は、各種設備を介して電力系統Eの系統情報を検出する。複数のセンシング端末200は、検出した系統情報をネットワークNW1を介して各IED300に送信する。例えば、複数のセンシング端末200から各IED300へネットワークNW1を介して送信される系統情報は、デジタルデータである。例えば、センシング端末200は、マージングユニット(Merging  Unit)の機能を備える。
 系統情報は、電力系統Eの電気量、電力系統Eの電力の需給状態、電力系統Eの接続状態、電力系統E内の変圧器120の運用状態などの情報を含む。電力系統Eの電気量は、電力系統Eにおける各母線110の電圧レベルや電流レベル、位相角などに関する情報である。電力の需給状態とは、電力系統Eの負荷の情報や電力系統Eに接続される発電機の発電量などの情報を含む。電力系統Eの接続状態とは、電力系統Eに含まれる遮断器や断路器の接続情報を含む。変圧器120の運用状態は、変圧器120が停止しているのか又は作動しているのかを示す情報や、変圧器120のタップ電圧、変圧器120において現在選択されているタップの情報(以下、「タップ値」という。)などを含む。なお、例えば、タップ値は、変圧比や巻線比などを示す情報であってもよい。
 例えば、センシング端末200は、電力系統E内の設備ごとに対応して設置される。センシング端末200は、対応する設備をセンシング対象として、そのセンシング対象から情報を受信してもよい。また、センシング端末200は、ネットワークNW1を介してIED300から得られる指令に基づいて、各開閉装置130の開閉制御、各変圧器120のタップの切り換え、各変圧器120の運用の開始や停止などを制御することができる。以下の説明において、センシング対象が変圧器120であるセンシング端末200を「センシング端末200LR」と称する。また、センシング対象が開閉装置130であるセンシング端末200を「センシング端末200S」と称する。また、センシング対象が計測装置140であるセンシング端末200を「センシング端末200M」と称する。
 2台のIED300のうち、一方のIED300が現用系であり、他方のIEDが待機系である。以下の説明では、現用系のIED300を「IED300-1」と称し、待機系のIED300を「IED300-2」と称する。ただし、第1の実施形態の変圧器制御システム1は、現用系のIED300-1を備えていればよく、待機系のIED300-2を備えなくてもよい。IED300-1とIED300-2とは、同一の構成を有しており、それぞれを区別しない場合には単にIED300を称する。なお、IED300は、「制御部」の一例である。現用系と待機系のそれぞれのIED300は、ネットワークNW1を介して系統情報を収集する。
 IED300は、ネットワークNW1に接続される。例えば、IED300は、ベイレベルに配置される。IED300は、複数のセンシング端末200からネットワークNW1を介して系統情報を収集する。IED300は、系統情報に基づいて電力系統Eの保護や監視に係る処理を実行する。IED300は、収集した系統情報に基づいて電力系統E内の母線110の電圧である母線電圧を計測する。また、IED300は、系統情報に基づいて電力系統E内の全ての変圧器120の制御及び運用状態の監視を行う。例えば、IED300は、計測した母線電圧が所定範囲内になるようにネットワークNW1及びセンシング端末200LRを介して電力系統E内の単独運転中の変圧器のタップの切換制御、あるいは、並列運転中の複数の変圧器のタップの切換を一括して制御する第1の機能を実行する。
 IED300は、ネットワークNW2を介してTC400に接続される。IED300は、ネットワークNW2を介して系統情報をTC400に送信してもよい。また、IED300は、ネットワークNW2を介してTC400から情報を受信する。ネットワークNW2は、例えば、インターネットやLAN、WAN等を含む。例えば、ネットワークNW2は、国際標準規格IEC61850で規定されているステーションバスである。
 TC400は、ネットワークNW2に接続される。また、TC400は、HMI500に接続される。例えば、TC400は、ステーションレベルに配置される。TC400は、HMI500とIED300との間の情報を中継する。なお、冗長化のために、現用系と待機系の2台のTC400がネットワークNW2に接続されてもよい。なお、HMI500は、TC400を介さずにネットワークNW2経由でIED300に接続されてもよい。
 HMI500は、例えば、ワークステーションやパーソナルコンピュータ等の情報処理装置である。HMI500は、例えば、操作者からの操作を受け付け、その操作に応じた操作信号をTC400及びネットワークNW2を介してIED300に送信することができる。
 次に、第1の実施形態のセンシング端末200LRの構成例について、図2を用いて説明する。図2は、第1の実施形態のセンシング端末200LRの構成例を示す図である。
 図2に示すように、センシング端末200LRは、例えば、検出部210と、通信部211と、切換部212と、を備える。
 検出部210は、電力系統Eの変圧器120からアナログデータを検出する。検出部210は、検出したアナログデータをデジタルデータに変換する。例えば、検出部210は、変圧器120の運用状態、変圧器120の2次側電圧、または、母線電圧、及びタップ値などの情報である変圧器情報を示すアナログデータを検出し、そのアナログデータをデジタルデータに変換する。
 通信部211は、ネットワークNW1を介してIED300と情報を送受する。通信部211は、検出部210で変換された変圧器情報のデジタルデータを、ネットワークNW1を介してIED300に一定周期ごとに、あるいは、状態変化時に送信する。また、通信部211は、IED300からネットワークNW1を介してタップの制御指令を受信すると、その制御指令を切換部212に送信する。
 切換部212は、変圧器120のタップを切り換える。具体的には、切換部212は、制御指令に基づいて変圧器120のタップを切り換えることで変圧器120の変圧比を変調整する。
 図3は、第1の実施形態のセンシング端末200Sの構成例を示す図である。図3に示すように、センシング端末200Sは、例えば、検出部220と、通信部221と、開閉制御部222と、を備える。
 検出部220は、開閉装置130の開閉状態を検出する。検出部220は、検出した開閉装置130の開閉状態をデジタルデータに変換する。
 通信部221は、ネットワークNW1を介してIED300と情報を送受する。通信部221は、検出部220で変換されたデジタルデータを、ネットワークNW1を介してIED300に一定周期ごとに、あるいは、状態変化時に送信する。また、通信部221は、IED300からネットワークNW1を介して開閉装置130を導通状態(オン状態)にする開閉(オン/オフ)制御指令を受信すると、その開閉装置130を導通状態にする開閉(オン/オフ)制御指令を開閉制御部222に送信する。通信部221は、IED300からネットワークNW1を介して開閉装置130を遮断状態(オフ状態)にする遮断指令を受信すると、その遮断指令を開閉制御部222に送信する。
 開閉制御部222は、開閉装置130を導通状態にする開閉(オン/オフ)制御指令を受信した場合には、センシング対象の開閉装置130を導通状態に切り替える。開閉制御部222は、遮断指令を受信した場合には、センシング対象の開閉装置130を遮断状態に切り替える。
 図4は、第1の実施形態のセンシング端末200Mの構成例を示すである。図4に示すように、センシング端末200Mは、例えば、検出部230と、通信部231と、を備える。
 検出部230は、計器用変成器や計測設備・装置である計測装置140の計測値を示すアナログデータを検出する。検出部230は、検出したアナログデータをデジタルデータに変換する。
 通信部231は、ネットワークNW1を介してIED300と情報を送受する。通信部231は、検出部230で変換されたデジタルデータを、ネットワークNW1を介してIED300に一定周期ごとに、あるいは、状態変化時に送信する。
 次に、第1の実施形態のIED300の構成例について、図5を用いて説明する。図5は、第1の実施形態のIED300の構成例を示す図である。
 図5に示すように、IED300は、通信部310と、通信部320と、情報処理部330と、を備える。これらの構成要素は、例えば、CPU(Central Processing Unit)等のハードウェアプロセッサがプログラム(ソフトウェア)を実行することにより実現される。また、これらの構成要素のうち一部または全部は、LSI(Large Scale Integrated circuit)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)等のハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。プログラムは、予めHDD(Hard Disk Drive)やフラッシュメモリ等の記憶装置(非一過性の記憶媒体を備える記憶装置)に格納されていてもよいし、DVDやCD-ROM等の着脱可能な記憶媒体(非一過性の記憶媒体)に格納されており、記憶媒体がドライブ装置に装着されることで記憶装置にインストールされてもよい。記憶装置は、例えば、HDD、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、ROM(Read Only Memory)、またはRAM(Random Access Memory)等により構成される。
 通信部310は、ネットワークNW1に接続されており、ネットワークNW1を介して各センシング端末200と情報を送受する。
 通信部320は、ネットワークNW2に接続されており、ネットワークNW2及びTC400を介してHMI500と情報を送受する。
 情報処理部330は、通信部310から得られた各種デジタル信号である系統情報に基づいて電力系統Eに含まれる複数の変圧器120を集中制御する。情報処理部330は、系統情報に基づいて母線電圧を計測する。そして、情報処理部330は、母線電圧が第1設定値と第2設定値との範囲内になるように、ネットワークNW1を介してタップの切り換えを制御する。なお、第2設定値は、第1設定値よりも小さい値であってもよいし第1設定値と同一の値であってもよい。例えば、情報処理部330は、計測した母線電圧が第1設定値を超えた場合には、変圧器120の変圧比を下げる制御指令を、ネットワークNW1を介してセンシング端末200LRに送信することで、センシング端末200LRに変圧器120のタップの切り換えを指示して変圧器120の2次電圧、または、母線電圧を下げる。また、情報処理部330は、計測した母線電圧が第2設定値を下回った場合には、変圧器120の変圧比を上げる制御指令を、ネットワークNW1を介してセンシング端末200LRに送信することでセンシング端末200LRに変圧器120のタップの切り換えを指示してタップ電圧を上げる。
 情報処理部330は、ネットワークNW1を介して電力系統E内の複数の変圧器120の運転を集中的に管理し、系統情報に基づいて開閉装置130の開閉状態や各変圧器120の運転状態を確認することで、複数の変圧器120の運転が並列運転か単独運転かを判定する。例えば、情報処理部330は、ネットワークNW1を介して開閉装置130の開閉状態を遮断状態又は導通状態に制御したり、複数の変圧器120の運転を制御したりすることで、複数の変圧器120の運転を並列運転と単独運転とのいずれかに切り替える指示を行う。
 例えば、複数の変圧器120が並列運転している場合において、複数の変圧器120のいずれかに異常が発生した場合には、情報処理部330は、ネットワークNW1を介して複数の変圧器120を単独運転に切り替えさせる。情報処理部330は、複数の変圧器120を単独運転に切り替えた後に、異常がある変圧器120の運転を停止させてもよい。なお、例えば、情報処理部330は、ネットワークNW1を介して収集した系統情報に含まれる各変圧器120の運転状態に基づいて、各変圧器120が正常か否かを判定する。また、例えば、複数の変圧器120が単独運転している場合において、複数の変圧器120のいずれかに異常が発生した場合には、情報処理部330は、ネットワークNW1を介して異常が発生した単独運転中の変圧器120に接続されている負荷(例えば電力を供給する送電線等)を健全な他の変圧器120(以下、「健全変圧器」という。)の負荷として移すことができる。そして、情報処理部330は、複数の変圧器120を並列運転に切り替えた後に、異常がある変圧器120の運転を停止させてもよい。
 情報処理部330は、系統情報に基づいて単独運転中の変圧器120を並列運転に切り替えることができるか否かを判定し、並列運転への切り替えが不可能であると判定した場合には単独運転から並列運転への切り替えを禁止する。例えば、並列運転への切り替えが不可能である場合とは、IED300、センシング端末200やネットワークNW1などに異常が発生した場合や並列運転を行う変圧器120の数に制限がある場合等である。
 情報処理部330は、系統情報に基づいて並列運転中の変圧器120の数である並列運転数を管理し、その並列運転数が予め設定された所定値に到達した場合には、単独運転している変圧器120の並列運転への移行を禁止してもよい。これにより、情報処理部330は、予め設定された台数を超えて変圧器120が並列運転されることを防止することができる。また、情報処理部330は、系統情報に基づいて変圧器120の継続運転が困難であると判定した場合には当該変圧器120の運転の停止をネットワークNW1経由で行い、系統情報に基づいて変圧器120の並列運転が困難であると判定した場合には、負荷(例えば電力を共有する送電線等)を残りの健全変圧器に移した上で、並列運転が困難と判定された変圧器120を並列運転中の変圧器群から切り離して停止させる。また、情報処理部330は、系統情報に基づいて変圧器120の並列運転が困難であると判定した場合には、負荷を分散させた上で変圧器120の並列運転から単独(分離)運転への切替をネットワークNW1経由で行ってもよい。
変圧器120の継続運転が困難である場合とは、例えば、変圧器120に異常が発生した場合である。変圧器120の並列運転が困難である場合とは、並列運転中の変圧器120に異常が発生した場合である。
 情報処理部330は、変圧器120の運転が単独運転である場合において系統情報に基づいて変圧器120の並列運転の可否を判定し、並列運転が不可能であると判定した場合には単独運転から並列運転への切り替えを禁止してもよい。情報処理部330は、系統情報に基づいて並列運転している変圧器120の数である並列運転数を管理し、その並列運転数が所定値を超えた場合には、単独運転している変圧器120の並列運転への移行を禁止してもよい。
 以下において、図6に示す変電所構内にある電力系統Eに適用される変圧器制御システム1の構成例を説明する。
 図4に示す電力系統Eは、例えば、2つの母線110-1,110-2と、2台の変圧器120-1,120-2と、20台の開閉装置130-1~130-20と、4台の計測装置140-1~140-4と、を備える。
 母線110-1は、甲母線110-1aと乙母線110-1bとを含む二重母線方式の母線である。母線110-2は、甲母線110-2aと乙母線110-2bとを含む二重母線方式の母線である。例えば、母線110-1が275[kV]系統の母線であり、母線110-2が500[kV]系統の母線である。
 変圧器120-1と変圧器120-2とは、電圧階級の異なる母線110-1と母線110-2との間に接続される。変圧器120-1と変圧器120-2とは、互いに並列に接続が可能である。
 開閉装置130-1は、変圧器120-1と変圧器120-2との間の甲母線110-1aに直列に接続されている。開閉装置130-1が遮断状態である場合には、甲母線110-1aは2つの甲母線111,112に分離される。開閉装置130-2は、変圧器120-1と変圧器120-2との間の乙母線110-1bに直列に接続されている。開閉装置130-2が遮断状態である場合には、乙母線110-1bは、2つの乙母線113,114に分離される。なお、変圧器120-1及び変圧器120-2が並列運転である場合には、開閉装置130-1と開閉装置130-2とはともに導通状態である。変圧器120-1及び変圧器120-2がともに単独運転である場合には、例えば開閉装置130-1と開閉装置130-2とはともに遮断状態である。
 開閉装置130-3は、変圧器120-1と変圧器120-2との間の甲母線110-2aに直列に接続されている。開閉装置130-3は、甲母線110-2aを2つの甲母線115,116に分離可能である。開閉装置130-4は、変圧器120-1と変圧器120-2との間の乙母線110-2bに直列に接続されている。開閉装置130-4は、乙母線110-2bを2つの乙母線117,118に分離可能である。
 開閉装置130-5は、甲母線111と乙母線113との間に接続されている。開閉装置130-6は、甲母線112と乙母線114との間に接続されている。
 開閉装置130-7は、甲母線115と乙母線117との間に接続されている。開閉装置130-8は、甲母線116と乙母線118との間に接続されている。
 開閉装置130-9は、変圧器120-1と甲母線111及び乙母線113との間に接続されている。開閉装置130-10は、変圧器120-1と甲母線115及び乙母線117との間に接続されている。
 開閉装置130-11は、変圧器120-2と甲母線112及び乙母線114との間に接続されている。開閉装置130-12は、変圧器120-2と甲母線116及び乙母線118との間に接続されている。
 開閉装置130-13(例えば、断路器)は、開閉装置130-9と甲母線111との間に接続される。開閉装置130-14(例えば、断路器)は、開閉装置130-9と乙母線113との間に接続される。
 開閉装置130-15(例えば、断路器)は、開閉装置130-11と甲母線112との間に接続される。開閉装置130-16(例えば、断路器)は、開閉装置130-11と乙母線114との間に接続される。
 開閉装置130-17(例えば、断路器)は、開閉装置130-10と甲母線115との間に接続される。開閉装置130-18(例えば、断路器)は、開閉装置130-10と乙母線117との間に接続される。
 開閉装置130-19(例えば、断路器)は、開閉装置130-12と甲母線116との間に接続される。開閉装置130-20(例えば、断路器)は、開閉装置130-12と乙母線118との間に接続される。
 計測装置140-1は、甲母線111の電圧を計測する計器用変圧器である。計測装置140-2は、乙母線113の電圧を計測する計器用変圧器である。計測装置140-3は、甲母線112の電圧を計測する計器用変圧器である。計測装置140-4は、乙母線114の電圧を計測する計器用変圧器である。なお、計測装置140は、母線110-2に対しても接続されているが、説明の便宜上、母線110-2に接続されている計測装置140の説明を省略する。
 変圧器制御システム1は、2台のセンシング端末200LR-1,200LR-2と、2台のセンシング端末200M-1~200M-12と、6台のセンシング端末200S-1~200S-12と、を備える。
 センシング端末200LR-1は、変圧器120-1をセンシング対象として、タップの切り換えや変圧器120-1の運用状態の検出を行う。センシング端末200LR-2は、変圧器120-2をセンシング対象として、タップの切り換えや変圧器120-2の運用状態の検出を行う。
 センシング端末200S-k(k=1、2、…12)は、開閉装置130-kをセンシング対象として開閉装置130-kの開閉状態の検出や開閉装置130-kの開閉を行う。
 センシング端末200M-1は、計測装置140-1及び計測装置140-2をセンシング対象として計測装置140-1及び計測装置140-2の計測値の検出を行う。センシング端末200M-2は、計測装置140-3及び計測装置140-4をセンシング対象として計測装置140-3及び計測装置140-4の計測値の検出を行う。
 以下に、図6の示す電力系統Eの各変圧器120を制御する変圧器制御システム1の制御方法の一例を、図7を用いて説明する。なお、図7では、変圧器120-1と変圧器120-2とが並列運転している場合を例として説明する。
 センシング端末200M-1は、計測装置140-1及び計測装置140-2の各計測値をAD変換し、AD変換したデジタルデータを、ネットワークNW1を介してIED300に常時送信している。IED300-1は、現用系として動作しており、ネットワークNW1を介して得られたデジタルデータを収集し(ステップS101)、そのデジタルデータに基づいて母線110-1の母線電圧を常時計測する(ステップS102)。IED300-1は、計測した母線電圧が事前に設定された第1設定値と第2設定値との間の所定範囲内か否かを判定する。例えば、IED300-1は、計測した母線電圧が第1設定値を超えたか否かを判定する(ステップS103)。IED300-1は、計測した母線電圧が第1設定値を超えていない場合には、母線電圧が第2設定値を下回っているか否かを判定する(ステップS104)。
 IED300-1は、ステップS103の判定の結果、計測した母線電圧が第1設定値を超えている場合には、変圧器120の変圧比を下げる制御指令をネットワークNW1を介してセンシング端末200LR-1及びセンシング端末200LR-2に送信する(ステップS105)。これにより、IED300-1は、各センシング端末200LRに対して変圧器120-1及び変圧器120-2のタップの切り換えを指示し、タップ値を上げる制御を行う。具体的には、センシング端末200LR-1は、ステップS105によって送信された制御指令を受信すると、変圧器120-1のタップを切り換えてタップ値を下げる。また、センシング端末200LR-2は、ステップS105によって送信された制御指令を受信すると、変圧器120-2のタップを切り換えてタップ値を下げる。
 ステップS104において、IED300-1は、計測した母線電圧が第2設定値を下回った場合には、変圧器120の変圧比を上げる制御指令を、ネットワークNW1を介してセンシング端末200LR-1及びセンシング端末200LR-2に送信する(ステップS106)。これにより、IED300-1は、各センシング端末200LRに対して変圧器120-1及び変圧器120-2のタップの切り換えを指示して、タップ値を上げる制御を行う。具体的には、センシング端末200LR-1は、ステップS106によって送信された制御指令を受信すると、変圧器120-1のタップを切り換えてタップ値を上げる。また、センシング端末200LR-2は、ステップS106によって送信された制御指令を受信すると、変圧器120-2のタップを切り換えてタップ値を上げる。
 センシング端末200LR-1は、変圧器120-1のタップを切り換えた後、変圧器120-1のタップ値を取り込み、ネットワークMW1を介してIED300に送信する。同様に、センシング端末200LR-2は、変圧器120-2のタップを切り換えた後、変圧器120-2のタップ値を取り込み、ネットワークMW1を介してIED300に送信する。
 IED300-1は、ネットワークMW1を介して変圧器120-1及び変圧器120-2のそれぞれのタップ値の情報を収集し、収集したタップ値の情報に基づいて変圧器120-1及び変圧器120-2のそれぞれのタップの切り替わりを確認する(ステップS107)。IED300-1は、変圧器120のタップの切り替わりが確認できない場合には、その変圧器120に異常が発生していると判定してもよい。
 変圧器120-1及び変圧器120-2がともに単独運転している場合には、IED300-1は、センシング端末200M-1からの計測値に基づいて甲母線111又は乙母線113の母線電圧が所定範囲内になるようにネットワークNW1を介してセンシング端末200LR-1に制御指令を送信する。同様に、IED300-1は、センシング端末200M-2からの計測値に基づいて甲母線112又は乙母線114の母線電圧が所定範囲内になるようにネットワークNW1を介してセンシング端末200LR-2に制御指令を送信する。これにより、IED300-1は、単独運転している変圧器120-1及び変圧器120-2の各タップ値を独立して制御し、母線の安定化を図ることができる。
 以下に、変圧器120-1及び変圧器120-2の単独運転から並列運転への切り替えの制御方法の一例を、図8を用いて説明する。図8は、第1の実施形態における単独運転から並列運転への切り替えの制御方法を示す図である。
 IED300-1は、ネットワークNW1を介してセンシング端末200LR-1及びセンシング端末200LR-2から各変圧器120-1及び変圧器120-2の各タップ値の情報を収集する(ステップS201)。IED300-1は、各タップ値がずれている場合には、ネットワークNW1を介してセンシング端末200LR-1及びセンシング端末200LR-2と通信して各タップ値を揃える(ステップS202)。例えば、IED300-1は、変圧器120-1のタップ値の方が高い場合には、変圧器120-1のタップ値を下げて変圧器120-2のタップ値と同一になるように、センシング端末200LR-1に制御指令を送信する。
 IED300-1は、変圧器120-1のタップ値と変圧器120-2のタップ値とが揃うと、センシング端末200S-1及びセンシング端末200S-2に対して開閉装置130を導通状態にする開閉(オン/オフ)制御指令を送信する(ステップS203)。これにより、センシング端末200S-1は、開閉装置130を導通状態にする開閉(オン/オフ)制御指令を受信すると開閉装置130-1を遮断状態から導通状態に切り替える。センシング端末200S-2は、開閉装置130を導通状態にする開閉(オン/オフ)制御指令を受信すると開閉装置130-2を遮断状態から導通状態に切り替える。したがって、変圧器120-1及び変圧器120-2の運転が単独運転から並列運転に切り替えられる。なお、IED300-1は、単独運転から並列運転への切り替えの契機が変圧器120-1及び変圧器120-2のいずれかの異常の発生である場合には、ステップS203の後に、ネットワークNW1を介して異常が発生した変圧器120を停止させる。ここで、停止とは、例えば、開閉装置130-9あるいは開閉装置130-11を遮断状態に切り替えることである。
 以上説明した変圧器制御システム1では、IED300とセンシング端末200LRとがネットワークNW1を介して接続される。そして、IED300は、母線電圧が所定範囲内になるようにネットワークNW1を介して及びセンシング端末200LRに変圧器120のタップの切り換えを指示することで、ネットワークNW1を用いて電力系統E内の母線電圧の安定化を図ることができる。また、1台のIED300で全台数の変圧器120を一括で制御することが可能となるため、メタルケーブルを含めたハードウェアが削減される。
 なお、第1の実施形態において、現用系のIED300-1と待機系のIED300-2とのうち、一方のIED300(例えば、IED300-1)は、計測した母線電圧が所定範囲内になるようにネットワークNW1を介して変圧器120タップの切り換えを制御し、他方のIED300(例えば、IED300-2)は、上位から操作信号を受信した場合に操作信号に基づいてネットワークNW1を介して変圧器120のタップの切り換えを制御しても良い。例えば、IED300-1は、系統情報に基づいて自動で変圧器120のタップを切り換える。一方、IED300-2は、操作者が変圧器120を切り替える手動操作を行った場合に、変圧器120のタップを切り換える。したがって、例えば、IED300-2は、HMI500からネットワークNW2を介しタップ値を上げる操作信号を受信した場合には、センシング端末200LRに対してタップ値を上げる制御指令をネットワークNW1を介して送信する。一方、例えば、IED300-2は、HMI500からネットワークNW2を介しタップ値を下げる操作信号を受信した場合には、センシング端末200LRに対してタップ値を下げる制御指令をネットワークNW1を介して送信する。これにより、操作者の手動によっても変圧器120のタップを切り換えることができる。
(第2の実施形態)
 次に、第2の実施形態の変圧器制御システム1Aについて説明する。以下の説明において、第1の実施形態で説明した内容と同様の機能を有する部分については、同様の名称および符号を付するものとし、その機能に関する具体的な説明は省略する。
 図9は、第2の実施形態の変圧器制御システム1Aの構成例を示す図である。変圧器制御システム1Aは、図1に示した第1の実施形態の変圧器制御システム1と比較すると、待機系のIED300-2ではなく、IED300とは独立して動作するIED600を備える点が異なる。IED600は、変圧器制御システム1Aの構成内において、IED300とは別に、他の制御や監視を行うことを主に配置される。例えば、IED300が第1の実施形態で説明した電力系統E内のすべての変圧器120を一括して制御する第1の機能を実行し、IED600が第1の機能とは異なる第2の機能を実行する。
 図9に示す変圧器制御システム1Aは、例えば、複数のセンシング端末200と、IED300と、TC400と、HMI500と、IED600と、を備える。IED600は、「機能分担部」の一例である。
 IED600は、ネットワークNW1に接続される。例えば、IED600は、ベイレベルに配置される。ネットワークNW1に接続される変圧器制御システム1Aにおいて、IED300とは別に分散配置されるIED600は、複数のセンシング端末200からネットワークNW1を介して系統情報を収集する。IED600は、IED300との間で電力系統Eに対する第1の機能と第2の機能とを分担して、IED300とは独立して動作する。例えば、IED600は、第2の機能として開閉装置130-5~130-8の開閉状態を制御する機能を有する。ここで、IED600は、第1の機能を有しているが、IED300が正常に動作している場合には第1の機能を実行せずに、第2の機能を実行する。IED300に異常が発生すると、IED300からネットワークNW2を介してIED600に異常の発生が通知される。IED600は、IED300から異常の発生の通知を受け取ると、IED300の機能を引き継いで実行する。例えば、IED600は、IED300に異常が発生すると、第1の機能と、第1の機能(タップ制御)と共にIED600が主として実行している第2の機能とを実行する。なお、IED300とIED600とは相互監視してもよい。
 なお、変圧器制御システム1Aにおける変圧器120の制御方法は、図7と同様の処理であるため、説明を省略する。変圧器制御システム1Aにおける単独運転から並列運転への切り替え方法は、図8と同様の処理であるため、説明を省略する。IED300に異常が発生した場合には、IED600は、第2の機能に加えて、図7に示す変換器制御機能や図8に示す単独運転から並列運転への切り替えを行う。
 以上説明した第2の実施形態の変圧器制御システム1Aは、第1の実施形態の変圧器制御システム1と同様の効果を奏する他、IED300に異常が発生した場合であっても待機系のIED300を用いることなく第1の機能を継続して実行することができる。
 上記各実施形態では、現用系と待機系との二系統のセンシング端末200を備えてもよい。
 また、第1の実施形態の変圧器制御システム1は、第2の実施形態で説明したIED600を更に備えてもよい。また、IED600の待機系を更に備えてもよい。
 上記各実施形態の変圧器制御システム1,1Aは、ネットワークNW3を介してTC400に接続される給電所(又は制御所)700が接続される。図10は、給電所700を備えた変圧器制御システム1Bの一例である。変圧器制御システム1Bでは、TC400は、変電所構外に配置されている給電所700(系統運用)に配置の計算機システムと接続される。IED300は、変電所構内に配置の系統・設備・装置の運用状態をTC400経由で給電所700に通知すると共に、給電所700からの各種指令により変電所構内に配置の機器の開閉制御や、変圧器120のタップ制御を行う。開閉制御やタップ制御などの各種制御は、「遠方制御方式」と「直接制御方式」のうちいずれかで実施される。「遠方制御方式」とは、TC400経由で給電所700の遠方に配置された計算機システムからの制御が可能な方式である。「直接制御方式」とは、変電所構内に配置のHMI500からの制御が可能な方式ある。例えば、「遠方制御方式」と「直接制御方式」のうちいずれか制御権が与えられ、その制御権が与えられた方式で、開閉制御やタップ制御などの各種制御が実施される。例えば、この制御権は、スイッチなどによって「遠方制御方式」と「直接制御方式」とのいずれかに切り替え可能である。なお、HMI500とTC400とは、一体構成であってもよいし、それぞれ分離して配置されてもよい。
 以上説明した少なくともひとつの実施形態によれば、ネットワークNW1を介して収集した系統情報に基づいて計測した母線電圧が所定範囲内になるようにネットワークNW1を介して切換部212と通信して変圧器120のタップの切り換えを制御することにより、ネットワークNW1を用いて電力系統E内の母線電圧の安定化を図ることができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (9)

  1.  電力系統に関する系統情報を検出する検出部と、
     前記検出部からネットワークを介して前記系統情報を収集し、収集した前記系統情報に基づいて前記電力系統内の母線の電圧である母線電圧の計測と前記電力系統内の各変圧器の運用状態の監視を行う制御部と、
     前記母線に接続される変圧器のタップの切り換えを行う切換部と、
     を備え、
     前記制御部は、計測した前記母線電圧が所定範囲内になるように、前記ネットワークを介して前記切換部に前記タップの切り換えを指示する、
     変圧器制御システム。
  2.  前記制御部は、前記ネットワークを介して前記電力系統内の複数の変圧器の運転を集中的に管理し、前記ネットワークを介して前記複数の変圧器の運転を並列運転と単独運転とのいずれかに切り替える、
     請求項1に記載の変圧器制御システム。
  3.  現用系と待機系の二系統の前記制御部を備え、
     現用系と待機系のそれぞれの前記制御部は、前記ネットワークを介して前記検出部から前記系統情報を収集する、
     請求項1又は2に記載の変圧器制御システム。
  4.  前記ネットワークに接続され、前記制御部との間で前記電力系統に対する機能を分担する機能分担部を更に備え、
     前記機能分担部は、前記制御部に異常が発生した場合には、前記タップの切り換えを制御する機能を前記制御部から引き継ぐ、
     請求項1又は2に記載の変圧器制御システム。
  5.  現用系の前記制御部と待機系の前記制御部とのうち、現用系の前記制御部は、前記各変圧器の運用状態を常時監視して前記母線電圧が所定範囲内になるように前記ネットワークを介して前記切換部に前記タップの自動切り換えを指示し、待機系の前記制御部は、操作者による手動操作によって上位から送信された操作信号を受信した場合に前記操作信号に基づいて前記ネットワークを介して前記切換部に前記タップの手動切り換えを指示する、
     請求項2に記載の変圧器制御システム。
  6.  それぞれ現用系と待機系の二系統の前記検出部及び前記切換部を備える、
     請求項3又は4に記載の変圧器制御システム。
  7.  前記制御部は、前記変圧器の運転が単独運転である場合において前記系統情報に基づいて前記変圧器の並列運転の可否を判定し、並列運転が不可能であると判定した場合には前記単独運転から並列運転への切り替えを禁止する、
     請求項1から6のいずれか一項に記載の変圧器制御システム。
  8.  前記制御部は、前記系統情報に基づいて並列運転している前記変圧器の数である並列運転数を管理し、前記並列運転数が所定値を超えた場合には、単独運転している前記変圧器の並列運転への移行を禁止する、
     請求項1から7のいずれか一項に記載の変圧器制御システム。
  9.  前記制御部は、前記系統情報に基づいて前記変圧器の継続運転が困難であると判定した場合には当該変圧器の運転の停止を前記ネットワーク経由で行い、前記系統情報に基づいて並列運転中の前記変圧器の並列運転が困難であると判定した場合には並列運転が困難であると判定された前記変圧器を前記ネットワーク経由で前記変圧器の並列運転から切り離す
     請求項1から8のいずれか一項に記載の変圧器制御システム。
PCT/JP2020/044613 2020-12-01 2020-12-01 変圧器制御システム WO2022118363A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/044613 WO2022118363A1 (ja) 2020-12-01 2020-12-01 変圧器制御システム
JP2022566518A JPWO2022118363A1 (ja) 2020-12-01 2020-12-01
KR1020237016759A KR20230092973A (ko) 2020-12-01 2020-12-01 변압기 제어 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/044613 WO2022118363A1 (ja) 2020-12-01 2020-12-01 変圧器制御システム

Publications (1)

Publication Number Publication Date
WO2022118363A1 true WO2022118363A1 (ja) 2022-06-09

Family

ID=81853028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044613 WO2022118363A1 (ja) 2020-12-01 2020-12-01 変圧器制御システム

Country Status (3)

Country Link
JP (1) JPWO2022118363A1 (ja)
KR (1) KR20230092973A (ja)
WO (1) WO2022118363A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169624A (ja) * 1993-12-14 1995-07-04 Toshiba Corp 変圧器用タップ切換制御装置
JPH10336898A (ja) * 1997-06-03 1998-12-18 Toshiba Corp 変圧器のタップ切換制御装置
JP2012060837A (ja) * 2010-09-10 2012-03-22 Toshiba Corp 変圧器並列運転防止装置およびそれを用いた変電所監視制御システム
JP2012165636A (ja) * 2011-02-08 2012-08-30 General Electric Co <Ge> スマート変電所の管理
JP2017034752A (ja) * 2015-07-29 2017-02-09 東京電力ホールディングス株式会社 監視制御システム
WO2018150461A1 (ja) * 2017-02-14 2018-08-23 三菱電機株式会社 集中電圧制御装置および集中電圧制御システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5985198B2 (ja) 2012-02-10 2016-09-06 株式会社東芝 変電所自動化システム及び端末の自動認識方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169624A (ja) * 1993-12-14 1995-07-04 Toshiba Corp 変圧器用タップ切換制御装置
JPH10336898A (ja) * 1997-06-03 1998-12-18 Toshiba Corp 変圧器のタップ切換制御装置
JP2012060837A (ja) * 2010-09-10 2012-03-22 Toshiba Corp 変圧器並列運転防止装置およびそれを用いた変電所監視制御システム
JP2012165636A (ja) * 2011-02-08 2012-08-30 General Electric Co <Ge> スマート変電所の管理
JP2017034752A (ja) * 2015-07-29 2017-02-09 東京電力ホールディングス株式会社 監視制御システム
WO2018150461A1 (ja) * 2017-02-14 2018-08-23 三菱電機株式会社 集中電圧制御装置および集中電圧制御システム

Also Published As

Publication number Publication date
KR20230092973A (ko) 2023-06-26
JPWO2022118363A1 (ja) 2022-06-09

Similar Documents

Publication Publication Date Title
AU2013328964B2 (en) Coordinated high-impedance fault detection systems and methods
US7495574B2 (en) Electrical system controlling device with wireless communication link
EP2522065B1 (en) A method and system for power management in substations
US8346404B2 (en) Determining a bus bar voltage
US9865410B2 (en) Methods, systems, and computer readable media for topology control and switching loads or sources between phases of a multi-phase power distribution system
KR20200125997A (ko) 상변화 타입 3상 전류 불균형 자동 조절 장치
EP2622705A1 (en) Coordinated control of multi-terminal hvdc systems
CA2843898A1 (en) Systems and methods for synchronizing distributed generation systems
KR102369839B1 (ko) 에너지 저장 시스템(ess)의 비상발전기 대체 방법 및 이를 포함하는 시스템
US20060165023A1 (en) Wireless gateway and controller for network protector relays
EP3309922B1 (en) Power storage system, power storage device, and operation method for power storage device
WO2022118363A1 (ja) 変圧器制御システム
CN108110726A (zh) 船岸等电位保护装置
JP2012228045A (ja) 電圧調整装置及び電圧調整方法
EA021000B1 (ru) Трансформаторная подстанция
JP2010166667A (ja) 地絡方向継電器
WO2023112352A1 (ja) 保護制御端末及び分散型保護制御システム
EP4165745B1 (en) Power distribution arrangement
KR102617698B1 (ko) 충전식 직류공급기기가 내장된 가스절연개폐장치
US11621580B2 (en) Microgrid switchover using zero-cross detection
CN112952779B (zh) 一种三相负荷不平衡保护控制装置及方法
CN107706761A (zh) 充气式交流金属封闭开关设备
CN207977721U (zh) 船岸等电位保护装置
RU2802052C1 (ru) Пункт секционирования столбовой
JP2009183121A (ja) 配電線補償リアクトルシステムおよび配電線補償リアクトル設定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566518

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237016759

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964217

Country of ref document: EP

Kind code of ref document: A1