WO2022117301A1 - Verbrennungskraftmaschine für ein kraftfahrzeug, insbesondere für einen kraftwagen, sowie kraftfahrzeug - Google Patents

Verbrennungskraftmaschine für ein kraftfahrzeug, insbesondere für einen kraftwagen, sowie kraftfahrzeug Download PDF

Info

Publication number
WO2022117301A1
WO2022117301A1 PCT/EP2021/081315 EP2021081315W WO2022117301A1 WO 2022117301 A1 WO2022117301 A1 WO 2022117301A1 EP 2021081315 W EP2021081315 W EP 2021081315W WO 2022117301 A1 WO2022117301 A1 WO 2022117301A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary air
exhaust gas
turbine
turbine wheel
air duct
Prior art date
Application number
PCT/EP2021/081315
Other languages
English (en)
French (fr)
Inventor
Maroje Matana
Nils Brinkert
Original Assignee
Mercedes-Benz Group AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mercedes-Benz Group AG filed Critical Mercedes-Benz Group AG
Priority to US18/255,060 priority Critical patent/US20230417175A1/en
Priority to CN202180081508.7A priority patent/CN116547446A/zh
Publication of WO2022117301A1 publication Critical patent/WO2022117301A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/168Control of the pumps by bypassing charging air into the exhaust conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/026Scrolls for radial machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • F01N3/32Arrangements for supply of additional air using air pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • F01N3/34Arrangements for supply of additional air using air conduits or jet air pumps, e.g. near the engine exhaust port
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/04Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using kinetic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/601Fluid transfer using an ejector or a jet pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an internal combustion engine for a motor vehicle, in particular for a motor vehicle, according to the preamble of patent claim 1.
  • the invention also relates to a motor vehicle, in particular a motor vehicle.
  • DE 10 2016 117 961 A1 discloses an exhaust system of a motor vehicle powered by combustion technology with a turbocharger, the exhaust gas streams from cylinders of an internal combustion engine being fed via at least one separate exhaust manifold to a twin scroll turbine, and with a secondary air system for introducing fresh air into the exhaust gas.
  • DE 10 2019 101 576 A1 discloses a device for exhaust gas aftertreatment of an internal combustion engine as known.
  • DE 10 2017 106 164 A1 discloses an exhaust gas turbocharger.
  • a turbine is also known from EP 1 876 335 A1.
  • DE 10 2010 053 057 A1 discloses a charging device for an internal combustion engine.
  • the object of the present invention is to create an internal combustion engine for a motor vehicle and a motor vehicle with such an internal combustion engine, so that a particularly advantageous secondary air duct can be implemented.
  • a first aspect of the invention relates to an internal combustion engine, also referred to as an internal combustion engine and preferably designed as a reciprocating piston engine or reciprocating piston machine, for a motor vehicle, in particular for a motor vehicle preferably designed as a passenger car or as a commercial vehicle motor vehicle.
  • the internal combustion engine has at least one combustion chamber.
  • the internal combustion engine can have several and thus at least two or more than two combustion chambers.
  • combustion processes take place in the respective combustion chamber, during which a respective fuel-air mixture, which is also referred to simply as a mixture, is burned. This results in exhaust gas from the internal combustion engine.
  • exhaust gas from the internal combustion engine is produced as a result of the respective combustion of the mixture in the respective combustion chamber.
  • the internal combustion engine has an exhaust tract through which the exhaust gas from the at least one combustion chamber or from the or all combustion chambers of the internal combustion engine can flow, which is also referred to as an exhaust system or exhaust system.
  • At least one exhaust gas aftertreatment device for aftertreatment of the exhaust gas can be arranged in the exhaust tract.
  • the exhaust gas aftertreatment device can be designed to remove at least one component of the exhaust gas from the exhaust gas. This can in particular be understood to mean that the exhaust gas aftertreatment device is designed, for example, to filter out particles, in particular soot particles, from the exhaust gas.
  • the exhaust aftertreatment device can include a particle filter.
  • the exhaust gas aftertreatment device can be catalytically effective or active for at least one chemical reaction.
  • the exhaust gas aftertreatment device can be designed to catalytically support and/or bring about the chemical reaction.
  • the chemical reaction for example, at least one component of the exhaust gas reacts with at least one other substance and at least one product of the chemical reaction, so that the at least one component is removed from the exhaust gas by the chemical reaction.
  • the exhaust gas aftertreatment device can have, for example, an oxidation catalytic converter and/or an SCR catalytic converter.
  • the internal combustion engine can have, for example, an intake tract, also referred to as an intake tract, through which at least fresh air can flow.
  • the fresh air flowing through the intake tract can be guided to and into the combustion chamber, in particular to and into the combustion chambers, of the internal combustion engine by means of the intake tract.
  • a liquid fuel can be introduced into the respective combustion chamber, in particular injected directly. The fuel and the fresh air form the aforementioned fuel-air mixture.
  • the internal combustion engine also includes at least one exhaust gas turbocharger, which includes a turbine that is arranged in the exhaust gas tract and can therefore be flowed through by the exhaust gas.
  • the turbine has a turbine housing and a turbine wheel, which is arranged at least partially, in particular at least predominantly or completely, in the turbine housing and is rotatable about an impeller axis of rotation relative to the turbine housing.
  • the exhaust gas turbocharger can have, for example, at least one compressor which is arranged in the intake tract and which comprises a compressor wheel arranged in the intake tract.
  • the compressor wheel is preferably at least partially, in particular at least predominantly and thus more than half and very preferably completely, arranged outside of the turbine housing.
  • the compressor wheel can be driven by the turbine wheel, in particular via a shaft of the exhaust gas turbocharger, it being possible for the fresh air flowing through the intake tract to be compressed by driving the compressor wheel.
  • the fresh air compressed by the compressor wheel is also referred to as charge air, which can be supplied to the respective combustion chamber.
  • the respective combustion chamber can be supplied with charge air.
  • the internal combustion engine also has at least one secondary air duct through which secondary air can flow and which opens into the exhaust duct, by means of which the secondary air flowing through the secondary air duct can be introduced into the exhaust duct or into the exhaust gas flowing through the exhaust duct, in particular bypassing all combustion chambers of the internal combustion engine.
  • the secondary air flowing through the secondary air duct can be guided by means of the secondary air duct and can be introduced into the exhaust gas flowing through the exhaust duct in such a way that at least up to the introduction of the secondary air into the exhaust duct or the exhaust gas flowing through the exhaust duct, i.e. at least until the secondary air from the flows out of the secondary air duct and into the exhaust tract or into the exhaust gas flowing through the exhaust tract, the secondary air does not participate in combustion, and the secondary air is therefore not burned, i.e. it is not used to oxidize a substance, in particular a fuel.
  • the aforementioned exhaust aftertreatment device can be heated particularly strongly and in a short time, in particular because the secondary air introduced into the exhaust gas flowing through the exhaust tract, for example, contains unburned and therefore still combustible fuel components contained in the exhaust gas forms a secondary air-fuel fraction mixture that can be burned in the exhaust tract with the release of heat.
  • the secondary air introduced into the exhaust tract or into the exhaust gas flowing through the exhaust tract thus takes part in combustion of the mixture of secondary air and fuel components and is thus used to oxidize the fuel components.
  • the oxygen contained in the secondary air introduced into the exhaust gas flowing through the exhaust tract is used in order to oxidize the initially only unburned fuel components during the combustion of the secondary air/fuel component mixture.
  • the secondary air only takes part in the combustion of the secondary air/fuel fraction mixture, i.e. the secondary air is only then burned or the secondary air is only used to oxidize the fuel fractions, after the secondary air has entered the exhaust tract or has flowed through the exhaust tract Waste gas was introduced, consequently after the secondary air has flowed out of the secondary air duct and has flowed into the exhaust gas tract or into the exhaust gas flowing through the exhaust gas tract.
  • the secondary air only takes part in the combustion of the secondary air/fuel mixture in the exhaust tract, or the secondary air is only used in the exhaust tract for oxidizing the fuel, so that the secondary air only then participates in the combustion of the secondary air/fuel mixture participates or is only used to oxidize the fuel fractions after the secondary air has flowed out of the secondary air duct and has been introduced into the exhaust tract or into the exhaust gas flowing through the exhaust tract.
  • the exhaust gas aftertreatment device can be heated, for example, and thereby brought to or above its light-off temperature, for example.
  • the mixture of secondary air and fuel is burned, for example, by injecting the mixture of secondary air and fuel into the exhaust tract by means of a arranged and for example electrically operable ignition device such as a glow plug is ignited and thereby burned, or the secondary air-fuel fraction mixture ignites on a hot component arranged in the exhaust gas tract, in particular the exhaust gas after-treatment device, whereby the secondary air-fuel fraction mixture is burned.
  • the component is, for example, a catalytic converter, in particular an oxidation catalytic converter or the aforementioned oxidation catalytic converter, of the exhaust gas aftertreatment device.
  • the internal combustion engine can have a valve element, by means of which a quantity of the secondary air flowing through the secondary air duct can be adjusted.
  • a valve element by means of which a quantity of the secondary air flowing through the secondary air duct can be adjusted.
  • a flow cross section through which the secondary air can flow can be adjusted by means of the valve element, as a result of which the quantity of secondary air flowing through the secondary air duct can be adjusted.
  • the feature that the quantity of secondary air flowing through the secondary air duct can be adjusted by means of the valve element can be understood to mean that the valve element can be adjusted or switched between at least two states.
  • a first value of the quantity of secondary air flowing through the secondary air duct is set, wherein the first value can be zero, possibly except for any technically caused leaks, so that, for example, the first state is a closed state in which the valve element blocks the secondary air duct - if necessary except for the previously mentioned, possible, technically caused leaks. Then no secondary air can flow through the secondary air duct.
  • the valve element sets, for example, a second value of the quantity of secondary air flowing through the secondary air duct that is greater than zero and the first value, so that in the second state the valve element opens the secondary air duct.
  • the second state is a release state, for example, in which secondary air can flow through the secondary air duct.
  • the quantity of secondary air flowing through the secondary air duct is greater than in the first state.
  • valve element can be adjusted into at least one or more further states, in which case in the further state the value of the quantity of secondary air flowing through the secondary air duct is different from the first value and from the second value and is greater than zero respectively further, from the first value and from the second value different values, preferably greater than zero, of the quantity of secondary air flowing through the secondary air duct are set.
  • the introduction of the secondary air into the exhaust tract or the exhaust gas flowing through the exhaust tract is also referred to as secondary air introduction, secondary air supply or secondary air injection.
  • the invention provides that the secondary air duct opens into the exhaust duct within the turbine housing.
  • This is to be understood in particular as meaning that the secondary air duct ends within the turbine housing and thus opens into the exhaust gas duct within the turbine housing, so that the secondary air flowing through the secondary air duct flows out of the secondary air duct within the turbine housing and flows into the exhaust gas flowing through the turbine housing and the exhaust gas tract, and is therefore introduced can be.
  • the secondary air duct ends on the exhaust side at one end of the secondary air duct, this one end of the secondary air duct being arranged within the turbine housing, in particular formed by the turbine housing.
  • a particularly advantageous pressure drop can be created between one end of the secondary air duct and a supply point at which, for example, the secondary air can be fed to the secondary air duct, and therefore can be introduced into the secondary air duct.
  • the supply point also referred to as the branch point
  • at least part of the compressed, fresh air from the intake tract can be branched off, in particular can be introduced via the valve element into the secondary air duct and as the secondary air can be introduced by means of the secondary air duct into the exhaust tract or the exhaust gas flowing through the exhaust tract.
  • the part of the fresh air branched off from the intake tract is introduced into the secondary air duct, in particular via the valve element.
  • the part of the fresh air introduced into the secondary air duct or the fresh air introduced into the secondary air duct, in particular via the valve element can be conducted as the secondary air by means of the secondary air duct to and into the exhaust tract, so that the branched-off part of the fresh air on its way from the branching point ( Supply point) to the exhaust tract or to one end, for example, flows through the valve element and preferably bypasses the at least one combustion chamber, in particular all combustion chambers, of the internal combustion engine, i.e. does not flow through any combustion chamber of the internal combustion engine.
  • the fresh air branched off from the intake tract does not take part in combustion on its way from the supply point to one end of the secondary air duct, so that from the branching point to one end of the secondary air duct, the secondary air or the air forming the secondary air participates Fresh air at a combustion does not occur. It is thus preferably provided that fresh air from the intake tract is used as the secondary air.
  • the supply point (branch point) is preferably arranged downstream of the compressor wheel and in particular upstream of the at least one combustion chamber or of all combustion chambers of the internal combustion engine.
  • the branching point is arranged in the direction of flow of the fresh air flowing through the intake tract upstream of a throttle valve arranged in the intake tract, by means of which a quantity of fresh air to be introduced into the at least one combustion chamber or combustion chambers and thus to be fed to the combustion chamber or combustion chambers can be adjusted.
  • the throttle valve that was opened first is closed
  • at least the previously mentioned part of the fresh air conveyed or compressed by means of the compressor wheel which is initially arranged between the compressor wheel and the throttle valve that is then closed
  • the intake tract at the branching point (supply point) and, in particular via the valve element, in the secondary air duct and in are then routed into the exhaust tract.
  • the valve element can have a dual function, so that the valve element can be designed, for example, as a combination valve.
  • the valve element can be used to adjust the amount of secondary air flowing through the secondary air duct and to be introduced into the exhaust gas flowing through the exhaust tract, so that the valve element is used as a kind of secondary air valve.
  • the valve element can be used as a diverter valve (UPS) in order to divert at least the above-mentioned part of the fresh air from the intake tract via the diverter valve, into the secondary air duct and via this into the exhaust gas flowing through the exhaust tract, and thus to use it as the secondary air.
  • UPS diverter valve
  • valve element as a combination valve and the arrangement of the supply point (branch point) also make it possible to use the compressor wheel and, for example, to convey the secondary air by means of the compressor wheel, in particular to convey it through the secondary air duct.
  • the compressor wheel can thus be used as a secondary air pump, which is also referred to as an air pump, the secondary air being or being conveyed, for example, into the secondary air duct and/or through the secondary air duct by means of the secondary air pump.
  • an additional, separate conveying device for conveying secondary air can be avoided, so that the costs, the number of parts, the weight and the space requirement of the internal combustion engine can be kept within a particularly low range.
  • the use of the compressor wheel as a secondary air pump is also advantageous in that a particularly high pressure drop can be created or a particularly large mass and/or volume flow of the secondary air can be realized by means of the compressor wheel.
  • a particularly large amount of oxygen also referred to as the amount of oxygen, which is contained in the secondary air conveyed by means of the compressor wheel, can be introduced into the exhaust gas tract or into the exhaust gas flowing through the exhaust gas tract, so that, for example, the exhaust aftertreatment device can be heated particularly effectively and efficiently.
  • the secondary air duct in particular at its one end, has at least one outlet opening at which the secondary air duct ends and thereby opens into the exhaust tract.
  • the secondary air flowing through the secondary air duct can be discharged from the secondary air duct via the outlet opening and can thereby be introduced into the exhaust gas tract and thus into the exhaust gas flowing through the exhaust gas tract.
  • one embodiment of the invention provides that the secondary air duct opens into the exhaust tract at an inlet point arranged within the turbine housing, the inlet point being arranged downstream of at least a part, in particular at least a major part, of the turbine wheel in the direction of flow of the exhaust gas flowing through the turbine housing.
  • the at least predominant part of the turbine wheel is to be understood as meaning at least more than half of a length of the turbine wheel running in the axial direction of the turbine wheel.
  • a particularly advantageous pressure gradient can be realized between the supply point and the inlet point, with the aforementioned one end of the secondary air duct being arranged at the inlet point, for example.
  • the pressure at the supply point is sufficiently high and, in contrast, the pressure at the introduction point is sufficiently low, so that a particularly large quantity of secondary air can also be introduced into the exhaust gas flowing through the exhaust tract without the need for additional, separate components such as for example valves, pumps or the like would have to be used.
  • a further embodiment is characterized in that the introduction point is arranged in an outlet area of the turbine, via the outlet area of which rotor blades of the turbine wheel can be discharged by the exhaust gas.
  • the exhaust gas flows against and around the impeller blades of the turbine wheel and thereby drives the turbine wheel, whereupon the exhaust gas flows off the impeller blades, flows into the outlet area and flows through the outlet area.
  • the outlet area is preferably arranged downstream of the impeller blades in the direction of flow of the exhaust gas flowing through the turbine housing. It is particularly conceivable that the or all impeller blades, in particular completely, are arranged in the aforementioned part of the turbine wheel.
  • the point of introduction does not necessarily have to be arranged downstream of the entire turbine wheel.
  • This can ensure that a sufficiently low pressure prevails at the introduction point in at least almost all operating states of the internal combustion engine, which is lower than a further pressure prevailing at the supply point, so that the pressure drop is sufficiently large.
  • the pressure gradient is in particular the ratio of the further pressure prevailing at the supply point to the pressure prevailing at the discharge point. The higher the pressure gradient, the easier and more advantageous it is for the secondary air to be introduced into the exhaust gas flowing through the exhaust tract, with the pressure gradient being able to be made particularly high by arranging the introduction point in the outlet region.
  • the outlet area is free of impeller blades of the turbine wheel.
  • a wall extending in the circumferential direction of the turbine wheel, in particular over its circumference is arranged.
  • the wall can be formed in one piece with the turbine housing.
  • the wall can be arranged, in particular downstream of the turbine wheel, in such a way that the wall in the radial direction of the turbine wheel is arranged completely without overlapping the turbine wheel inwards, and is therefore not overlapped by the turbine wheel in the radial direction of the turbine wheel inwards.
  • the wall is preferably arranged in such a way that the wall in the radial direction of the turbine wheel is at least partially, in particular at least predominantly or completely, overlapped by the turbine wheel inwards, so that the wall extends over the turbine wheel in the circumferential direction Scope extends. It is conceivable that the wall is arranged downstream of at least one or the above-mentioned part of the turbine wheel.
  • the wall runs inward in the radial direction of the turbine wheel from the outlet opening and from wall regions of the turbine housing adjoining the outlet opening in the circumferential direction of the turbine wheel, forming a wall region that extends outward in the radial direction of the turbine wheel and through the wall regions inward in the radial direction of the turbine wheel the wall delimited and spaced apart in the circumferential direction of the turbine wheel, in particular over its circumference.
  • the distribution channel is thus, for example, a gap which is arranged in the radial direction of the turbine wheel between the wall areas and the wall and in the radial direction of the turbine wheel and thus of the turbine as a whole through the wall areas to the outside and in the radial direction of the turbine wheel or the turbine inwards the wall, in particular directly, is limited.
  • the axial direction of the turbine wheel coincides with the axis of rotation of the impeller, with the radial direction of the turbine wheel being perpendicular to the axis of rotation of the impeller.
  • the circumferential direction of the turbine wheel runs around the impeller axis of rotation, that is to say around the axial direction of the turbine wheel.
  • the outlet opening opens into the distribution duct, so that the secondary air flowing through the outlet opening and thus flowing out of the secondary air duct via the outlet opening flows, in particular initially, into the distribution duct.
  • the secondary air can then flow through the distributor channel or the secondary air is guided by means of the distributor channel in the circumferential direction of the turbine wheel, in particular over its circumference, and is thus distributed.
  • the wall has throughflow openings for the secondary air that follow one another and are spaced apart from one another, so that the secondary air from the distribution channel can flow through the throughflow openings.
  • the through-flow openings are distributed uniformly in the circumferential direction of the turbine wheel.
  • the through-flow openings open out at one end into the distributor channel and at the other end into an area arranged on the inside of the wall in the radial direction of the turbine wheel.
  • the area is arranged on a side of the wall facing away from the distributor channel inward in the radial direction of the turbine wheel. This means that the secondary air can flow out of the distribution channel into the respective through-flow opening and can flow through the respective through-flow opening.
  • the secondary air flowing through the respective through-flow opening can flow out of the respective through-flow opening and flow into the named area and is thus introduced into the exhaust gas flowing through the area, since the named area can be flowed through by the exhaust gas flowing through the turbine housing via the exhaust tract.
  • the secondary air can be distributed particularly advantageously, in particular in the circumferential direction of the turbine wheel over its circumference, by means of the distributor channel and thus by means of the wall forming or delimiting the distributor channel, so that the secondary air can be introduced particularly advantageously into the exhaust gas and mixed with the exhaust gas.
  • the distribution channel and the wall thus form a distribution device or are part of a distribution device, the distribution device also being referred to as a distributor or secondary air distributor.
  • the secondary air from the secondary air duct can be distributed particularly advantageously by means of the secondary air distributor and introduced into the exhaust gas and in particular mixed with the exhaust gas, so that the exhaust gas aftertreatment device can be heated or warmed up in a short time and thus effectively and efficiently.
  • the outlet opening is at least partially, in particular at least predominantly and thus more than half or completely, overlapped by the turbine wheel in the radial direction of the turbine wheel. This can ensure a particularly advantageous pressure gradient, in particular from the supply point to the outlet opening, so that the secondary air can be introduced particularly advantageously into the exhaust gas flowing through the exhaust tract in at least almost all operating ranges or operating points of the internal combustion engine.
  • the aforementioned one end of the secondary air duct is a so-called end of the secondary air duct on the exhaust gas tract side, since the secondary air duct ends in the exhaust tract or opens into the exhaust tract via the one end on the exhaust gas tract side.
  • the outlet opening is arranged at the one end on the exhaust gas tract side.
  • a longitudinal region of the secondary air duct on the exhaust-gas tract side which has one end and ends at its one end on the exhaust-gas tract side and opens into the exhaust tract at the end on the exhaust-gas tract side, is arranged or runs within the turbine housing.
  • the secondary air duct ends over the length range and at the end on the exhaust gas tract side, so that the length range on the exhaust tract side End ends and is thus an end portion of the secondary air duct.
  • the length range along its circumferential direction is completely delimited directly by the turbine housing.
  • the turbine housing is preferably designed in one piece.
  • the turbine housing is a one-piece housing element in which the turbine wheel is arranged at least partially, in particular at least predominantly or completely.
  • the turbine housing has a one-piece base body which, for example, delimits at least the longitudinal area of the secondary air duct in the circumferential direction of the longitudinal area.
  • the base body or the housing element forms the aforementioned wall and also preferably the wall areas.
  • the turbine housing in particular the base body or the housing element, delimits a receiving area, in particular directly, with the turbine wheel being at least partially, in particular at least predominantly, and therefore is arranged more than half or completely in the receiving area and thus in the preferably one-piece turbine housing, base body or housing element.
  • the number of parts and thus the costs, the space requirement and the costs for guiding and introducing the secondary air, and consequently for realizing the secondary air injection, can thus be kept particularly low.
  • the exhaust tract end or the outlet opening of the secondary air duct is also referred to as a mouth or secondary air outlet, since the secondary air duct opens into the exhaust tract at its exhaust tract end or via the outlet opening. Since the end on the exhaust-gas tract side or the outlet opening is now arranged inside the turbine housing, the invention provides for the secondary air outlet to be integrated into the turbine housing.
  • the invention provides for the aforementioned distributor to be integrated into the turbine housing, it being preferably provided for the secondary air distributor to be arranged downstream of at least part of the turbine wheel in the direction of flow of the exhaust gas flowing through the turbine housing.
  • the secondary air distributor or the wall in which Exit area arranged is arranged.
  • the secondary air outlet or the distributor is arranged, for example, directly after the turbine wheel in order to arrange the outlet opening or the distributor at one point, thus allowing the secondary air duct to open into the exhaust gas tract at a point which is, for example, the aforementioned inlet point, with at the point the pressure is as low as possible.
  • an advantageously low pressure in particular a negative pressure
  • the number of parts and thus the costs, the space requirement and the weight can be kept within a particularly low range.
  • Ensuring a particularly advantageous pressure drop between the supply point and the discharge point is an advantageous position for secondary combustion, during which, for example, the aforementioned mixture of secondary air and fuel is burned, the position preferably being upstream of or directly in front of a catalytic converter, in particular the exhaust gas aftertreatment device the secondary air injection can be implemented in a particularly simple and cost-effective manner.
  • a second aspect of the invention relates to a motor vehicle, preferably designed as a motor vehicle, in particular as a passenger car, which has an internal combustion engine according to the first aspect of the invention.
  • Advantages and advantageous configurations of the first aspect of the invention are to be regarded as advantages and advantageous configurations of the second aspect of the invention and vice versa.
  • FIG. 1 shows a schematic representation of an internal combustion engine according to the invention for a motor vehicle
  • FIG. 2 shows a schematic longitudinal sectional view of a turbine housing of an exhaust gas turbocharger of the internal combustion engine
  • FIG 3 shows a schematic cross-sectional view of the preferably one-piece turbine housing.
  • FIG. 1 shows a schematic representation of an internal combustion engine 10 designed as a reciprocating piston machine or reciprocating piston engine for a motor vehicle preferably designed as a motor vehicle, in particular as a passenger car.
  • the motor vehicle has the internal combustion engine 10 in its fully manufactured state and can be driven by the internal combustion engine 10 .
  • internal combustion engine 10 has exactly four cylinders 12a-d, in particular along an imaginary straight line and thus arranged in a row one behind the other or one after the other, which are formed or delimited by a cylinder housing 14 of internal combustion engine 10 designed, for example, as a cylinder crankcase.
  • the respective cylinder 12a-d delimits a respective combustion chamber 16a-d, so that the internal combustion engine 10 in the exemplary embodiment shown in FIG.
  • combustion chambers 16a-d have exactly four combustion chambers 16a-d.
  • combustion processes take place in the combustion chambers 16a-d.
  • a respective piston is arranged in a translationally movable manner in the respective cylinders 12a-d, with the respective piston partially delimiting the respective combustion chamber 16a-d.
  • the internal combustion engine 10 has an exhaust gas tract 18 through which exhaust gas from the combustion chambers 16a-d can flow and in which, for example, an exhaust gas aftertreatment device (not shown in the figures) for aftertreatment of the exhaust gas can be arranged.
  • a fuel-air mixture which preferably includes a liquid fuel and fresh air, is burned during the respective combustion process taking place in the respective combustion chamber 16a-d.
  • Internal combustion engine 10 has an intake tract 20 through which said fresh air can flow and is also referred to as the intake tract, by means of which the fresh air flowing through intake tract 20 is directed to and into combustion chambers 16a-d and thus to and into cylinders 12a-d .
  • the internal combustion engine 10 also includes an exhaust gas turbocharger 22 which has a compressor 24 arranged in the intake tract 20 and a turbine 26 arranged in the exhaust tract 18 .
  • the compressor 24 includes a compressor wheel 28 which is arranged in the intake tract 20 and by means of which the fresh air flowing through the intake tract 20 can be compressed.
  • the turbine 26 includes a turbine wheel 30 which is arranged in the exhaust tract 18 and can be driven by the exhaust gas.
  • the exhaust gas turbocharger 22 also includes a shaft 32 via which the compressor wheel 28 can be driven by the turbine wheel 30 . By driving the compressor wheel 28 , the fresh air flowing through the intake tract 20 is compressed by means of the compressor wheel 28 .
  • a charge air cooler 34 is arranged downstream of the compressor wheel 28 in the flow direction of the fresh air flowing through the intake tract 20, by means of which the compressed and thereby heated fresh air is cooled before it flows into the combustion chambers 16a-d. Furthermore, in the flow direction of the fresh air flowing through the intake tract 20 , a throttle valve 36 is arranged in the intake tract 20 downstream of the compressor wheel 28 and upstream of the intercooler 34 . The quantity of fresh air to be supplied to the combustion chambers 16a-d can be adjusted by means of the throttle flap 36.
  • the internal combustion engine 10 also includes a secondary air duct 38 through which secondary air can flow, by means of which the secondary air flowing through the secondary air duct 38 can be introduced into the exhaust gas flowing through the exhaust tract 18 .
  • the secondary air introduced into the exhaust tract 18 or into the exhaust gas flowing through the exhaust tract 18 can, for example, contain unburned and thus still combustible components of the aforementioned fuel form a mixture of secondary air and fuel components, the components of the fuel also being referred to as fuel components.
  • the secondary air-fuel fraction mixture may be combusted in the exhaust passage 18 releasing heat.
  • the aforementioned exhaust gas aftertreatment device can be heated up particularly effectively and efficiently, that is to say heated.
  • the above-mentioned components of the fuel contained in exhaust gas tract 18 or in the exhaust gas flowing through exhaust gas tract 18 are fuel proportions that have reached exhaust gas tract 18 unburned from at least one of combustion chambers 16a-d and/or in a targeted manner, in particular by bypassing all combustion chambers 16a -d and/or via at least one of the combustion chambers 16a-d, are introduced, in particular injected, into the exhaust tract 18.
  • the internal combustion engine 10 includes a valve element 40, by means of which a quantity of the secondary air flowing through the secondary air duct 38 can be adjusted.
  • the valve element 40 can be switched or adjusted between at least one closed position and at least one release position. In the closed position, the valve element 40 blocks the secondary air duct 38 so that no secondary air can flow through the secondary air duct 38 . In the release position, the valve element 40 releases the secondary air duct 38 , for example, so that secondary air can flow through the secondary air duct 38 in the release position and can be introduced into the exhaust tract 18 by means of the secondary air duct 38 .
  • the introduction of the secondary air into the exhaust tract 18, that is to say into the exhaust gas flowing through the exhaust tract is also referred to as secondary air injection, secondary air supply or secondary air introduction.
  • the valve element 40 is designed as a combination valve, which is also referred to as a combination valve.
  • the secondary air duct 38 is fluidically connected or can be connected via the valve element 40 to the intake tract 20 at a branch point A arranged downstream of the compressor wheel 28 and upstream of the throttle valve 36 . This means that at the branching point A, at least part of the fresh air can be branched off from the intake tract 20 and consequently discharged or discharged.
  • the fresh air branched off from intake tract 20 at branch point A, or the aforementioned part thereof, can be introduced via valve element 40 into secondary air duct 38 and, as the aforementioned secondary air, can be introduced by means of secondary air duct 38 into exhaust tract 18 or into the exhaust gas flowing through exhaust tract 18 .
  • compressor wheel 28 or compressor 24 can be used as a secondary air pump to convey the secondary air, in particular to convey it into secondary air duct 38 and/or through secondary air duct 38 and/or into the exhaust gas tract 18 or into the exhaust gas flowing through 18 exhaust gas.
  • secondary air pump can be avoided, so that the number of parts, the weight, the costs and the installation space requirement of the internal combustion engine 10 can be kept within a particularly small framework.
  • the secondary air flowing through secondary air duct 38 comes from intake tract 20 and is introduced into the exhaust gas flowing through exhaust tract 18, bypassing the or all combustion chambers 16a-d, with the secondary air at least on its way from branch point A into the exhaust tract 18 or in which the exhaust gas flowing through the exhaust tract 18 does not take part in any combustion, and is therefore not burned or is not used for combustion.
  • the secondary air does not flow through any combustion chamber of internal combustion engine 10 on its way from branch point A into exhaust gas tract 18 .
  • the secondary air duct 38 and the valve element 40 can have a dual function.
  • the secondary air duct 38 is used to introduce the secondary air into the exhaust duct 18 or into the exhaust gas flowing through the exhaust duct 18, that is to say to blow it.
  • the valve element 40 is used on the one hand as a secondary air valve in order to adjust the quantity of secondary air flowing through the secondary air channel 38 and to be introduced into the exhaust gas flowing through the exhaust gas duct 18 .
  • the secondary air duct 38 is used, so to speak, to implement a type of overrun air or overrun air system, in which respect the valve element 40 can be used as an overrun air valve or as a type of overrun air valve.
  • branch point A is located downstream of compressor wheel 28 and upstream of throttle valve 36, for example when the initially open throttle valve 36 is closed, in particular abruptly, an excessive of the compressor wheel 28 compressed fresh air caused braking of the compressor wheel 28 are avoided, such that at least a part of the first between the compressor wheel 28 and the Fresh air arranged on the throttle valve 36 is branched off at the branching point A from the intake tract 20 and introduced into the secondary air duct 38 via the valve element 40 .
  • turbine 26 has a preferably one-piece, i.e. one-piece turbine housing 42, in which turbine wheel 30 is at least partially, in particular at least predominantly or completely arranged.
  • the turbine housing 42 forms or delimits a receiving area 44, also referred to as a receiving space, in particular directly, with the turbine wheel 30 being arranged at least partially, in particular at least predominantly or completely, in the receiving area 44, in particular with regard to its length running in the axial direction of the turbine wheel 30 .
  • the turbine wheel 30 is rotatable relative to the turbine housing 42 about an axis of rotation 46, which is also referred to as the impeller axis of rotation.
  • the axial direction of the turbine wheel 30 coincides with the axis of rotation 46 .
  • the turbine housing 42 is designed in one piece. That is, the turbine housing 42 is a one-piece housing member or body.
  • the internal combustion engine 10 has an exhaust manifold 48, also referred to simply as a manifold, in or by means of which the exhaust gas from the respective combustion chambers 16a-d, in particular into a channel common to the combustion chambers 16a-d, is combined.
  • the turbine housing 42 is integrated into the exhaust manifold 48 or vice versa. In the present case, this means that the exhaust manifold 48 is formed in one piece with the turbine housing 42 .
  • the exhaust manifold 48 has at least one exhaust gas duct 50 for each combustion chamber 16a-d, with the exhaust gas ducts being separated from one another in the respective partial areas.
  • the exhaust gas from the combustion chambers 16a-d can flow through the exhaust gas ducts 50 and is brought together by means of the exhaust gas ducts 50 and in particular guided to the turbine housing 42 .
  • the turbine housing 42 forms or delimits at least or exactly one channel 52 through which the exhaust gas from the or all combustion chambers 16a-d can flow, which channel is preferably designed as a spiral channel. This means that the channel 52 extends spirally in the circumferential direction of the turbine wheel 30 over its circumference.
  • the exhaust gas from the combustion chambers 16a-d can flow through the duct 52 and is conveyed by means of the duct 52 to and in particular into the receiving area 44 and thus to the turbine wheel 30 out, in particular such that the channel 52 opens into the receiving area 44.
  • the one-piece turbine housing 42 forms or delimits the channel 52, in particular directly.
  • the secondary air duct 38 opens out inside the turbine housing 42 into the exhaust gas tract 18.
  • the secondary air duct 38 opens out at an inlet point E (Fig. 3) inside of the turbine housing 42 into the exhaust tract 18, the introduction point E being arranged downstream of at least part of the turbine wheel 30 in the direction of flow of the exhaust gas flowing through the turbine housing 42.
  • the introduction point E is arranged in an outlet area 54 of the turbine 26, via the outlet area 54 of which rotor blades 56 of the turbine wheel 30 can be discharged by the exhaust gas.
  • the outlet area 54 is free of impeller blades of the turbine wheel 30.
  • the secondary air duct 38 has at least or precisely one outlet opening 58 which is arranged at an end E1 of the secondary air duct 38 on the exhaust gas tract side.
  • the secondary air duct 38 ends at the end E1 and thus at the outlet opening 58, as a result of which the secondary air duct 38 opens into the exhaust tract 18 at or via the outlet opening 58 and thus at the end E1.
  • the end E1 is thus arranged at the entry point E.
  • the secondary air flowing through the secondary air duct 38 can be discharged via the outlet opening 58 and thus at the end E1 from the secondary air duct 38 and can thus be introduced into the exhaust gas tract 18 and into the exhaust gas flowing through the exhaust gas tract 18 .
  • Outlet opening 58 is at least partially, in particular at least predominantly or completely, overlapped by turbine wheel 30 in the radial direction of turbine wheel 30, in particular by a partial area of turbine wheel 30 whose partial area is free of impeller blades of turbine wheel 30.
  • the radial direction of the turbine wheel is illustrated in Fig. 2 by a double arrow 60 and runs perpendicular to the axial direction of the turbine wheel 30.
  • FIGS. 2 and 3 it can be seen particularly well from FIGS. 2 and 3 that inside the turbine housing 42 there is a wall 62 which extends in the circumferential direction of the turbine wheel 30 over its circumference.
  • the circumferential direction of the turbine wheel runs around the axis of rotation 46 and is illustrated in FIGS. 2 and 3 by an arrow 64 .
  • the wall 62 is integral with the Turbine housing 42 is formed, that is, formed by the one-piece turbine housing 42, in particular by the one-piece base body or by the one-piece housing element.
  • Wall 62 extends inward in the radial direction of turbine wheel 30 from outlet opening 58 and from wall regions W of turbine housing 52 adjoining outlet opening 58 in the circumferential direction of turbine wheel 30, forming a wall region W in the radial direction of turbine wheel 30 outward through wall regions W and in the radial direction of turbine wheel 30 inwardly delimited by wall 62 and spaced apart in the circumferential direction of turbine wheel 30 and extending over its circumference, which is thus arranged in the radial direction of turbine wheel 30 between wall 62 and wall regions W and located in Circumferential direction of the turbine wheel 30 over its circumference, in particular completely circumferential, extends around.
  • the outlet opening 58 opens into the distributor duct 66 so that the secondary air duct 38 opens into the distributor duct 66 via its outlet opening 58 .
  • wall 62 has through-flow openings 68 that follow one another, are spaced apart from one another, and are preferably arranged uniformly distributed, each of which opens at one end into distribution channel 66 and at the other end into an area B, which is arranged in particular in outlet area 54 and extends in the radial direction of turbine wheel 30 arranged on the inside of the wall 62 and through which the exhaust gas flowing through the turbine housing 42 can flow.
  • the secondary air flowing through the secondary air duct 38 can thus flow out of the secondary air duct 38 via the outlet opening 58 and subsequently flow directly into the distribution duct 66, as illustrated by an arrow 70 in FIG.
  • the secondary air that has flowed into the distribution channel 66 can flow through the distribution channel 66 and is thus guided and distributed by means of the distribution channel 66 in the circumferential direction of the turbine wheel 30 over its circumference.
  • the secondary air from the distribution channel 66 can flow through the flow openings 68 and thus flow via the flow openings 68 out of the distribution channel 66 into the region B and thereby into the exhaust gas flowing through the region B.
  • the secondary air from the secondary air duct 38 is particularly advantageously distributed and introduced into the exhaust gas, in particular mixed with the exhaust gas.
  • the wall 62 and the distribution channel 66 thus form, for example, a secondary air distributor, by means of which the secondary air from the secondary air channel 38 can be distributed particularly advantageously in the circumferential direction of the turbine wheel 30 over its circumference and introduced into the exhaust gas.
  • a first length region L1 of the secondary air duct 38 which has the end E1 of the secondary air duct 38 on the exhaust side, is arranged within the turbine housing 42 and runs completely around along its circumferential direction directly through the turbine housing 42, i.e. through the one-piece housing element or by the one-piece base body, limited or formed.
  • At least a second length region L2 (FIG.
  • the secondary air line 74 is formed separately from the turbine housing 42, for example, and is connected at least fluidically and preferably also mechanically to the turbine housing 42, in particular in such a way that the second longitudinal region L2 through which the secondary air can flow is fluidically connected to the longitudinal region L1. While the longitudinal area L1 runs inside the turbine housing 42, the longitudinal area L2 runs, in particular completely, outside of the turbine housing 42. The secondary air can thus flow out of the longitudinal area L2 and into the longitudinal area L1.
  • the length region L2 is arranged upstream of the length region L1 in the flow direction of the secondary air flowing through the secondary air duct 38 .
  • the secondary air distributor and in particular the end E1 and thus the outlet opening 58 are arranged downstream of at least part of the turbine wheel 30, since then in at least almost every operating point or operating state of the internal combustion engine 10 at the inlet point E and thus at the end E1 of the secondary air duct 38, at its
  • the outlet opening 58 is arranged at the end E1, an advantageously low pressure, in particular negative pressure, prevails, so that a particularly advantageous and particularly advantageously large pressure gradient can be ensured from the branching point A to the entry point E or to the end E1.
  • a sufficiently large quantity of the secondary air can be routed from the branching point A to the introduction point E, without an excessively large number of separate, additional components such as actuators, pumps and/or valves being required for this purpose.
  • exhaust gas undesirably flows back from the inlet point E to the outlet point A.
  • check valves in the secondary air duct 38 can thus be avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Die Erfindung betrifft eine Verbrennungskraftmaschine (10) für ein Kraftfahrzeug, mit einem von Abgas aus wenigstens einem Brennraum (16a-d) der Verbrennungskraftmaschine (10) durchströmbaren Abgastrakt (18), mit einem Abgasturbolader (22), welcher eine in dem Abgastrakt (18) angeordnete Turbine (26) umfasst, die ein Turbinengehäuse (42) und ein zumindest teilweise in dem Turbinengehäuse (42) aufgenommenes und von dem Abgas antreibbares Turbinenrad (30) aufweist, und mit wenigstens einem von Sekundärluft durchströmbaren und in den Abgastrakt (18) mündenden Sekundärluftkanal (38), mittels welchem die den Sekundärluftkanal (38) durchströmende Sekundärluft in das den Abgastrakt (18) durchströmende Abgas einleitbar ist, wobei der Sekundärluftkanal (38) innerhalb des Turbinengehäuse (42) in den Abgastrakt (18) mündet.

Description

Verbrennungskraftmaschine für ein Kraftfahrzeug, insbesondere für einen Kraftwagen, sowie Kraftfahrzeug
Die Erfindung betrifft eine Verbrennungskraftmaschine für ein Kraftfahrzeug, insbesondere für einen Kraftwagen, gemäß dem Oberbegriff von Patentanspruch 1. Des Weiteren betrifft die Erfindung ein Kraftfahrzeug, insbesondere einen Kraftwagen.
Die DE 10 2016 117 961 A1 offenbart ein Abgassystem eines verbrennungstechnisch betriebenen Kraftfahrzeugs mit Turbolader, wobei die Abgasströme von Zylindern eines Verbrennungsmotors über mindestens einen separaten Abgaskrümmer einer Twin Scroll- Turbine zugeführt werden, sowie mit einem Sekundärluftsystem zum Einleiten von Frischluft in das Abgas. Des Weiteren ist der DE 10 2019 101 576 A1 eine Vorrichtung zur Abgasnachbehandlung eines Verbrennungsmotors als bekannt zu entnehmen. Des Weiteren offenbart die DE 10 2017 106 164 A1 einen Abgasturbolader. Außerdem ist aus der EP 1 876 335 A1 eine Turbine bekannt. Die DE 10 2010 053 057 A1 offenbart eine Aufladeeinrichtung für eine Verbrennungskraftmaschine.
Aufgabe der vorliegenden Erfindung ist es, eine Verbrennungskraftmaschine für ein Kraftfahrzeug sowie ein Kraftfahrzeug mit einer solchen Verbrennungskraftmaschine zu schaffen, sodass eine besonders vorteilhafte Sekundärluftführung realisiert werden kann.
Diese Aufgabe wird durch eine Verbrennungskraftmaschine mit den Merkmalen des Patentanspruchs 1 sowie durch ein Kraftfahrzeug mit den Merkmalen des Patentanspruchs 8 gelöst. Vorteilhafte Ausgestaltungen mit zweckmäßigen Weiterbildungen der Erfindung sind in den übrigen Ansprüchen angegeben.
Ein erster Aspekt der Erfindung betrifft eine auch als Verbrennungsmotor bezeichnete und vorzugsweise als Hubkolbenmotor beziehungsweise Hubkolbenmaschine ausgebildete Verbrennungskraftmaschine für ein Kraftfahrzeug, insbesondere für einen vorzugsweise als Personenkraftwagen oder aber als Nutzfahrzeug ausgebildeten Kraftwagen. Dies bedeutet, dass das Kraftfahrzeug in seinem vollständig hergestellten Zustand die Verbrennungskraftmaschine umfasst und mittels der Verbrennungskraftmaschine antreibbar ist. Die Verbrennungskraftmaschine weist wenigstens einen Brennraum auf. Insbesondere kann die Verbrennungskraftmaschine mehrere und somit wenigstens zwei oder aber mehr als zwei Brennräume aufweisen. In einem befeuerten Betrieb der Verbrennungskraftmaschine laufen in dem jeweiligen Brennraum Verbrennungsvorgänge ab, in deren Rahmen ein jeweiliges Kraftstoff-Luft- Gemisch, welches einfach auch als Gemisch bezeichnet wird, verbrannt wird. Hieraus resultiert Abgas der Verbrennungskraftmaschine. Mit anderen Worten entsteht durch die jeweilige Verbrennung des Gemisches in dem jeweiligen Brennraum Abgas der Verbrennungskraftmaschine.
Die Verbrennungskraftmaschine weist dabei einen von dem Abgas aus dem wenigstens einen Brennraum beziehungsweise aus den oder allen Brennräumen der Verbrennungskraftmaschine durchströmbaren Abgastrakt auf, welcher auch als Abgasanlage oder Abgassystem bezeichnet wird. In dem Abgastrakt kann wenigstens eine Abgasnachbehandlungseinrichtung zum Nachbehandeln des Abgases angeordnet sein. Die Abgasnachbehandlungseinrichtung kann dazu ausgebildet sein, wenigstens einen Bestandteil des Abgases aus dem Abgas zu entfernen. Hierunter kann insbesondere verstanden werden, dass die Abgasnachbehandlungseinrichtung beispielsweise dazu ausgebildet ist, Partikel, insbesondere Rußpartikel, aus dem Abgas herauszufiltern. Hierfür kann die Abgasnachbehandlungseinrichtung einen Partikelfilter umfassen. Alternativ oder zusätzlich kann die Abgasnachbehandlungseinrichtung für wenigstens eine chemische Reaktion katalytisch wirksam beziehungsweise aktiv sein. Hierunter ist insbesondere zu verstehen, dass die Abgasnachbehandlungseinrichtung dazu ausgebildet sein kann, die chemische Reaktion katalytisch zu unterstützen und/oder zu bewirken. Bei der chemischen Reaktion reagiert beispielsweise wenigstens ein Bestandteil des Abgases mit wenigstens einem weiteren Stoff sowie wenigstens einem Produkt der chemischen Reaktion, sodass durch die chemische Reaktion der wenigstens eine Bestandteil aus dem Abgas entfernt wird. Hierfür kann die Abgasnachbehandlungseinrichtung beispielsweise einen Oxidationskatalysator und/oder einen SCR-Katalysator aufweisen. Des Weiteren kann die Verbrennungskraftmaschine beispielsweise einen auch als Einlasstrakt bezeichneten Ansaugtrakt aufweisen, welcher zumindest von Frischluft durchströmbar ist. Die den Ansaugtrakt durchströmende Frischluft kann mittels des Ansaugtrakts zu dem und in den Brennraum, insbesondere zu den und in die Brennräume, der Verbrennungskraftmaschine geführt werden. Außerdem kann ein beispielsweise flüssiger Kraftstoff in den jeweiligen Brennraum eingebracht, insbesondere direkt eingespritzt, werden. Der Kraftstoff und die Frischluft bilden das zuvor genannte Kraftstoff-Luft-Gemisch.
Die Verbrennungskraftmaschine umfasst darüber hinaus wenigstens einen Abgasturbolader, welcher eine in dem Abgastrakt angeordnete und somit von dem Abgas durchströmbare Turbine umfasst. Die Turbine weist ein Turbinengehäuse und ein Turbinenrad auf, welches zumindest teilweise, insbesondere zumindest überwiegend oder vollständig, in dem Turbinengehäuse angeordnet und um eine Laufraddrehachse relativ zu dem Turbinengehäuse drehbar ist. Insbesondere kann der Abgasturbolader beispielsweise wenigstens einen in dem Ansaugtrakt angeordneten Verdichter aufweisen, welcher ein in dem Ansaugtrakt angeordnetes Verdichterrad umfasst. Das Verdichterrad ist vorzugsweise zumindest teilweise, insbesondere zumindest überwiegend und somit zu mehr als zur Hälfte und ganz vorzugsweise vollständig, außerhalb des Turbinengehäuses angeordnet. Das Verdichterrad ist, insbesondere über eine Welle des Abgasturboladers, von dem Turbinenrad antreibbar, wobei durch Antreiben des Verdichterrads die den Ansaugtrakt durchströmende Frischluft verdichtet werden kann. Die mittels des Verdichterrads verdichtete Frischluft wird auch als Ladeluft bezeichnet, die dem jeweiligen Brennraum zugeführt werden kann. Dabei kann der jeweilige Brennraum mit der Ladeluft versorgt werden.
Die Verbrennungskraftmaschine weist außerdem wenigstens einen von Sekundärluft durchströmbaren und in den Abgastrakt mündenden Sekundärluftkanal auf, mittels welchem die den Sekundärluftkanal durchströmende Sekundärluft, insbesondere unter Umgehung aller Brennräume der Verbrennungskraftmaschine, in den Abgastrakt beziehungsweise in das den Abgastrakt durchströmende Abgas einleitbar ist. Unter dem vorzugsweise vorgesehenen Merkmal, dass die den Sekundärluftkanal durchströmende Sekundärluft mittels des Sekundärluftkanals unter Umgehung aller Brennräume der Verbrennungskraftmaschine in den Abgastrakt beziehungsweise in das den Abgastrakt durchströmende Abgas einleitbar ist, ist zu verstehen, dass die den Sekundärluftkanal durchströmende Sekundärluft vorzugsweise alle Brennräume der Verbrennungskraftmaschine umgeht und somit nicht durch die Brennräume der Verbrennungskraftmaschine hindurchströmt. Insbesondere ist die den Sekundärluftkanal durchströmende Sekundärluft mittels des Sekundärluftkanals derart führbar und derart in das den Abgastrakt durchströmende Abgas einleitbar, dass zumindest bis zu dem Einleiten der Sekundärluft in den Abgastrakt beziehungsweise das den Abgastrakt durchströmende Abgas, das heißt zumindest bis die Sekundärluft aus dem Sekundärluftkanal ausströmt und in den Abgastrakt beziehungsweise in das den Abgastrakt durchströmende Abgas einströmt, eine Teilnahme der Sekundärluft an einer Verbrennung unterbleibt, mithin die Sekundärluft nicht verbrannt wird, das heißt nicht zu einer Oxidation eines Stoffs, insbesondere eines Brennstoffs, verwendet wird. Mittels der in das den Abgastrakt durchströmende Abgas eingeleiteten Sekundärluft kann beispielsweise die zuvor genannte Abgasnachbehandlungseinrichtung besonders stark und in kurzer Zeit erwärmt werden, insbesondere dadurch, dass die in das den Abgastrakt durchströmende Abgas eingeleitete Sekundärluft beispielsweise mit im Abgas enthaltenen, unverbrannten und somit noch brennbaren Kraftstoffanteilen ein Sekundärluft-Kraftstoffanteile-Gemisch bildet, das in dem Abgastrakt unter Freisetzung von Wärme verbrannt werden kann. Die in den Abgastrakt beziehungsweise in das den Abgastrakt durchströmende Abgas eingeleitete Sekundärluft nimmt somit an einer Verbrennung des Sekundärluft-Kraftstoffanteile-Gemisches teil und wird somit genutzt, um die Kraftstoffanteile zu oxidieren. Genauer gesagt wird in der in das den Abgastrakt durchströmende Abgas eingeleiteten Sekundärluft enthaltener Sauerstoff genutzt, um bei der Verbrennung des Sekundärluft-Kraftstoffanteile-Gemisches die zunächst nur unverbrannten Kraftstoffanteile zu oxidieren. Dabei nimmt die Sekundärluft jedoch an der Verbrennung des Sekundärluft-Kraftstoffanteile-Gemisches erst dann teil, das heißt die Sekundärluft wird erst dann verbrannt beziehungsweise die Sekundärluft wird erst dann zur Oxidation der Kraftstoffanteile genutzt, nachdem die Sekundärluft in den Abgastrakt beziehungsweise in das den Abgastrakt durchströmende Abgas eingeleitet wurde, mithin nachdem die Sekundärluft aus dem Sekundärluftkanal ausgeströmt und in den Abgastrakt beziehungsweise in das den Abgastrakt durchströmende Abgas eingeströmt ist. Wieder mit anderen Worten ausgedrückt nimmt die Sekundärluft erst in dem Abgastrakt an der Verbrennung des Sekundärluft-Kraftstoffanteile-Gemisches teil beziehungsweise die Sekundärluft wird erst in dem Abgastrakt zur Oxidation der Kraftstoffanteile genutzt, sodass die Sekundärluft erst dann an der Verbrennung des Sekundärluft-Kraftstoffanteile-Gemisches teilnimmt beziehungsweise erst dann zur Oxidation der Kraftstoffanteile genutzt wird, nachdem die Sekundärluft aus dem Sekundärluftkanal ausgeströmt und in den Abgastrakt beziehungsweise in das den Abgastrakt durchströmende Abgas eingeleitet wurde.
Mittels der freigesetzten Wärme kann beispielsweise die Abgasnachbehandlungseinrichtung erwärmt und dadurch beispielsweise auf oder über ihre auch als Light-Off-Temperatur bezeichnete Anspringtemperatur gebracht werden. Das Sekundärluft-Kraftstoffanteile-Gemisch wird beispielsweise dadurch verbrannt, dass das Sekundärluft-Kraftstoffanteile-Gemisch mittels einer in dem Abgastrakt angeordneten und beispielsweise elektrisch betreibbaren Zündeinrichtung wie beispielsweise einer Glühkerze gezündet und dadurch verbrannt wird, oder das Sekundärluft-Kraftstoffanteile-Gemisch entzündet sich an einer heißen, in dem Abgastrakt angeordneten Komponente, insbesondere der Abgasnachbehandlungseinrichtung, wodurch das Sekundärluft-Kraftstoffanteile-Gemisch verbrannt wird. Bei der Komponente handelt es sich beispielsweise um einen Katalysator, insbesondere um einen oder den zuvor genannten Oxidationskatalysator, der Abgasnachbehandlungseinrichtung.
Beispielsweise kann die Verbrennungskraftmaschine ein Ventilelement aufweisen, mittels welchem eine Menge der den Sekundärluftkanal durchströmenden Sekundärluft einstellbar ist. Hierunter kann beispielsweise verstanden werden, dass mittels des Ventilelements ein von der Sekundärluft durchströmbarer Strömungsquerschnitt einstellbar ist, wodurch die Menge der den Sekundärluftkanal durchströmenden Sekundärluft einstellbar ist. Insbesondere kann unter dem Merkmal, dass mittels des Ventilelements die Menge der den Sekundärluftkanal durchströmenden Sekundärluft einstellbar ist, verstanden werden, dass das Ventilelement zwischen wenigstens zwei Zuständen verstellbar beziehungsweise umschaltbar ist. In einem ersten der Zustände des Ventilelements wird beispielsweise ein erster Wert der Menge der den Sekundärluftkanal durchströmenden Sekundärluft eingestellt, wobei der erste Wert, gegebenenfalls bis auf etwaige, technisch bedingte Leckagen, Null sein kann, sodass beispielsweise der erste Zustand ein Schließzustand ist, in welchem das Ventilelement den Sekundärluftkanal - gegebenenfalls bis auf die zuvor genannten, etwaigen, technisch bedingten Leckagen -versperrt. Dann kann keine Sekundärluft durch den Sekundärluftkanal hindurchströmen. In dem zweiten Zustand ist durch das Ventilelement beispielsweise ein gegenüber Null und gegenüber dem ersten Wert größerer, zweiter Wert der Menge der den Sekundärluftkanal durchströmenden Sekundärluft eingestellt, sodass in dem zweiten Zustand das Ventilelement den Sekundärluftkanal freigibt. Somit ist der zweite Zustand beispielsweise ein Freigabezustand, in welchem Sekundärluft durch den Sekundärluftkanal hindurchströmen kann. Wieder mit anderen Worten ausgedrückt ist beispielsweise in dem zweiten Zustand die Menge der den Sekundärluftkanal durchströmenden Sekundärluft größer als in dem ersten Zustand.
Ferner ist es denkbar, dass das Ventilelement in wenigstens einen oder mehrere, weitere Zustände verstellbar ist, wobei in dem weiteren Zustand durch das Ventilelement ein von dem ersten Wert und von dem zweiten Wert unterschiedlicher, gegenüber Null größerer Wert der Menge der den Sekundärluftkanal durchströmenden Sekundärluft beziehungsweise weitere, von dem ersten Wert und von dem zweiten Wert unterschiedliche, vorzugsweise gegenüber Null größere Werte der Menge der den Sekundärluftkanal durchströmenden Sekundärluft eingestellt ist beziehungsweise sind. Das Einleiten der Sekundärluft in den Abgastrakt beziehungsweise das den Abgastrakt durchströmende Abgas wird auch als Sekundärlufteinleitung, Sekundärluftzuführung oder Sekundärlufteinblasung bezeichnet.
Um nun eine besonders vorteilhafte und insbesondere besonders kosten-, gewichts- und bauraumgünstige Führung und Einleitung der Sekundärluft in den Abgastrakt beziehungsweise in das den Abgastrakt durchströmende Abgas realisieren zu können, ist es erfindungsgemäß vorgesehen, dass der Sekundärluftkanal innerhalb des Turbinengehäuses in den Abgastrakt mündet. Hierunter ist insbesondere zu verstehen, dass der Sekundärluftkanal innerhalb des Turbinengehäuses endet und somit innerhalb des Turbinengehäuses in den Abgastrakt mündet, sodass die den Sekundärluftkanal durchströmende Sekundärluft innerhalb des Turbinengehäuses aus dem Sekundärluftkanal ausströmen und in das das Turbinengehäuse sowie den Abgastrakt durchströmende Abgas einströmen, mithin eingeleitet werden kann. Wieder mit anderen Worten ausgedrückt endet der Sekundärluftkanal abgastraktseitig an einem Ende des Sekundärluftkanals, wobei dieses eine Ende des Sekundärluftkanals innerhalb des Turbinengehäuses angeordnet, insbesondere durch das Turbinengehäuse gebildet, ist. Hierdurch kann ein besonders vorteilhaftes Druckgefälle zwischen dem einen Ende des Sekundärluftkanals und einer Versorgungsstelle geschaffen werden, an welcher beispielsweise die Sekundärluft dem Sekundärluftkanal zuführbar, mithin in den Sekundärluftkanal einleitbar ist. Insbesondere kann gewährleistet werden, dass in zumindest nahezu jedem Betriebszustand der Verbrennungskraftmaschine an der Versorgungsstelle ein größerer Druck als an dem einen Ende des Sekundärluftkanals herrscht, sodass insbesondere ohne zusätzliche Pumpen, Aktoren, Ventilelemente oder andere, weitere, separate Bauelemente die Sekundärluft besonders vorteilhaft an der Versorgungsstelle in den Sekundärluftkanal einleitbar, mittels des Sekundärluftkanals, insbesondere aufgrund des Druckgefälles, zu dem einen Ende führbar und an dem einen Ende in den Abgastrakt beziehungsweise das den Abgastrakt durchströmende Abgas einleitbar ist.
Besonders bevorzugt ist es vorgesehen, dass der Sekundärluftkanal, insbesondere über das zuvor genannte Ventilelement, an der Versorgungsstelle mit dem Ansaugtrakt fluidisch verbunden oder verbindbar ist, sodass an der auch als Abzweigstelle bezeichneten Versorgungsstelle zumindest ein Teil der, insbesondere mittels des Verdichterrads geförderten und/oder verdichteten, Frischluft aus dem Ansaugtrakt abzweigbar, insbesondere über das Ventilelement in den Sekundärluftkanal einleitbar und als die Sekundärluft mittels des Sekundärluftkanals in den Abgastrakt beziehungsweise das den Abgastrakt durchströmende Abgas einleitbar ist. Mit anderen Worten, an der Versorgungsstelle (Abzweigstelle) kann zumindest der zuvor genannte Teil der Frischluft aus dem Ansaugtrakt abgezweigt, das heißt aus dem Ansaugtrakt ausgeleitet werden. Der abgezweigte Teil der Frischluft aus dem Ansaugtrakt wird, insbesondere über das Ventilelement, in den Sekundärluftkanal eingeleitet. Der in den Sekundärluftkanal eingeleitete Teil der Frischluft beziehungsweise die in den Sekundärluftkanal, insbesondere über das Ventilelement, eingeleitete Frischluft kann als die Sekundärluft mittels des Sekundärluftkanals zu dem und in den Abgastrakt geleitet werden, sodass der abgezweigte Teil der Frischluft auf seinem Weg von der Abzweigstelle (Versorgungsstelle) zu dem Abgastrakt beziehungsweise zu dem einen Ende beispielsweise das Ventilelement durchströmt und dabei vorzugsweise den wenigstens einen Brennraum, insbesondere alle Brennräume, der Verbrennungskraftmaschine umgeht, das heißt keinen Brennraum der Verbrennungskraftmaschine durchströmt. Außerdem ist es vorzugsweise vorgesehen, dass die aus dem Ansaugtrakt abgezweigte Frischluft auf ihrem Weg von der Versorgungsstelle zu dem einen Ende des Sekundärluftkanals nicht an einer Verbrennung teilnimmt, sodass von der Abzweigstelle zu dem einen Ende des Sekundärluftkanals eine Teilnahme der Sekundärluft beziehungsweise der die Sekundärluft bildenden Frischluft an einer Verbrennung unterbleibt. Somit ist es vorzugsweise vorgesehen, dass als die Sekundärluft Frischluft aus dem Ansaugtrakt verwendet wird.
Vorzugsweise ist die Versorgungsstelle (Abzweigstelle) stromab des Verdichterrads und insbesondere stromauf des wenigstens einen Brennraums beziehungsweise aller Brennräume der Verbrennungskraftmaschine angeordnet. Beispielsweise ist die Abzweigstelle in Strömungsrichtung der den Ansaugtrakt durchströmenden Frischluft stromauf einer in dem Ansaugtrakt angeordneten Drosselklappe angeordnet, mittels welcher eine Menge der in den wenigstens einen Brennraum beziehungsweise in die Brennräume einzuleitenden und somit dem Brennraum beziehungsweise den Brennräumen zuzuführende Frischluft einstellbar ist. Wird beispielsweise die zuerst geöffnete Drosselklappe geschlossen, so kann dann zumindest der zuvor genannte, zunächst zwischen dem Verdichterrad und der dann geschlossenen Drosselklappe angeordnete Teil der mittels des Verdichterrads geförderten beziehungsweise verdichteten Frischluft an der Abzweigstelle (Versorgungsstelle) aus dem Ansaugtrakt abgezweigt und, insbesondere über das Ventilelement, in den Sekundärluftkanal und in der Folge in den Abgastrakt geführt werden. Dadurch kann ein übermäßiges, durch die sich zunächst zwischen dem Verdichterrad und der Drosselklappe befindende und verdichtete Frischluft bewirktes Abbremsen des Verdichterrads vermieden werden. Somit kann die Erfindung sozusagen ein Schubumluftsystem mit einem Sekundärluftsystem kombinieren. Hierbei kann dem Ventilelement eine Doppelfunktion zukommen, sodass das Ventilelement beispielsweise als ein Kombinationsventil ausgebildet sein kann. Einerseits kann das Ventilelement genutzt werden, um die Menge der den Sekundärluftkanal durchströmenden und in das den Abgastrakt durchströmende Abgas einzuleitenden Sekundärluft einzustellen, sodass das Ventilelement sozusagen als Sekundärluftventil verwendet wird. Zum anderen kann das Ventilelement als Schubumluftventil (USV) verwendet werden, um über das Schubumluftventil zumindest den zuvor genannten Teil der Frischluft aus dem Ansaugtrakt abzuzweigen, in den Sekundärluftkanal und über diesen in das den Abgastrakt durchströmende Abgas einzuleiten und somit als die Sekundärluft zu nutzen. Somit kann beispielsweise ein zusätzliches, separates Schubumluftsystem vermieden werden, sodass die Teileanzahl, das Gewicht, der Bauraumbedarf und die Kosten der Verbrennungskraftmaschine in einem besonders geringen Rahmen gehalten werden können.
Durch die Ausgestaltung des Ventilelements als Kombinationsventil und durch die Anordnung der Versorgungsstelle (Abzweigstelle) ist es ferner möglich, das Verdichterrad zu nutzen und mittels des Verdichterrads beispielsweise die Sekundärluft zu fördern, insbesondere durch den Sekundärluftkanal hindurchzufördern. Somit kann das Verdichterrad als Sekundärluftpumpe, welche auch als Luftpumpe bezeichnet wird, genutzt werden, wobei mittels der Sekundärluftpumpe die Sekundärluft beispielsweise in den Sekundärluftkanal hineingefördert und/oder durch den Sekundärluftkanal hindurchgefördert wird oder werden kann. Hierdurch kann eine zusätzliche, separate Fördereinrichtung zum Fördern von Sekundärluft vermieden werden, sodass die Kosten, die Teileanzahl, das Gewicht und der Bauraumbedarf der Verbrennungskraftmaschine in einem besonders geringen Rahmen gehalten werden können. Die Nutzung des Verdichterrads als Sekundärluftpumpe ist auch insofern vorteilhaft, als mittels des Verdichterrads ein besonders hohes Druckgefälle geschaffen beziehungsweise ein besonders großer Massen- und/oder Volumenström der Sekundärluft realisiert werden kann. Dies bedeutet insbesondere, dass eine besonders große, auch als Sauerstoffmenge bezeichnete Menge an Sauerstoff, der in der mittels des Verdichterrads geförderten Sekundärluft enthalten ist, in den Abgastrakt beziehungsweise in das den Abgastrakt durchströmende Abgas eingeleitet werden kann, sodass beispielsweise die Abgasnachbehandlungseinrichtung besonders effektiv und effizient aufgeheizt werden kann.
Der Sekundärluftkanal, insbesondere an seinem einen Ende, weist wenigstens eine Austrittsöffnung auf, an welcher der Sekundärluftkanal endet und dadurch in den Abgastrakt mündet. Somit ist die den Sekundärluftkanal durchströmende Sekundärluft über die Austrittsöffnung aus dem Sekundärluftkanal ausleitbar und dadurch in den Abgastrakt und somit in das den Abgastrakt durchströmende Abgas einleitbar.
Um die Sekundärluft auf besonders vorteilhafte, insbesondere auf besonders bauraum-, gewichts- und kostengünstige, Weise führen und insbesondere in den Abgastrakt, das heißt in das den Abgastrakt durchströmende Abgas einleiten zu können, ist es bei einer Ausführungsform der Erfindung vorgesehen, dass der Sekundärluftkanal an einer innerhalb des Turbinengehäuses angeordneten Einleitstelle in den Abgastrakt mündet, wobei die Einleitstelle in Strömungsrichtung des das Turbinengehäuse durchströmenden Abgases stromab zumindest eines Teils, insbesondere zumindest eines überwiegenden Teils, des Turbinenrads angeordnet ist. Unter dem zumindest überwiegenden Teil des Turbinenrads ist zumindest mehr als die Hälfte einer in axialer Richtung des Turbinenrads verlaufenden Länge des Turbinenrads zu verstehen. Durch die Anordnung der Einleitstelle stromab zumindest des Teils des Turbinenrads kann ein besonders vorteilhaftes Druckgefälle zwischen der Versorgungsstelle und der Einleitstelle realisiert werden, wobei beispielsweise das zuvor genannte, eine Ende des Sekundärluftkanals an der Einleitstelle angeordnet ist. Insbesondere kann sichergestellt werden, dass der Druck an der Versorgungsstelle hinreichend hoch und demgegenüber der Druck an der Einleitstelle hinreichend gering ist, sodass auch eine besonders große Menge an Sekundärluft in das den Abgastrakt durchströmende Abgas eingeleitet werden kann, ohne dass hierzu zusätzliche, separate Bauelemente wie beispielsweise Ventile, Pumpen oder dergleichen zum Einsatz kommen müssten.
Eine weitere Ausführungsform zeichnet sich dadurch aus, dass die Einleitstelle in einem Austrittsbereich der Turbine angeordnet ist, über deren Austrittsbereich Laufradschaufeln des Turbinenrads von dem Abgas abströmbar sind. Hierunter ist zu verstehen, dass während eines Betriebs der Turbine das Abgas die Laufradschaufeln des Turbinenrads an- und umströmt und dadurch das Turbinenrad antreibt, woraufhin das Abgas von den Laufradschaufeln abströmt, in den Austrittsbereich einströmt und den Austrittsbereich durchströmt. Somit ist der Austrittsbereich vorzugsweise in Strömungsrichtung des das Turbinengehäuse durchströmenden Abgases stromab der Laufradschaufeln angeordnet. Dabei ist es insbesondere denkbar, dass die beziehungsweise alle Laufradschaufeln, insbesondere vollständig, in dem zuvor genannten Teil des Turbinenrads angeordnet sind. Die Einleitstelle muss nicht notwendigerweise stromab des gesamten Turbinenrads angeordnet sein. Vorzugsweise ist es auch vorgesehen, dass die Einleitstelle stromab zumindest des Teils des Turbinenrads, insbesondere stromab der oder aller Laufradschaufeln des Turbinenrads, angeordnet ist. Dadurch kann sichergestellt werden, dass an der Einleitstelle in zumindest nahezu allen Betriebszuständen der Verbrennungskraftmaschine ein hinreichend geringer Druck herrscht, welcher geringer ist als ein an der Versorgungsstelle herrschender, weiterer Druck, sodass das Druckgefälle hinreichend große ist. Das Druckgefälle ist insbesondere das Verhältnis des an der Versorgungsstelle herrschenden weiteren Drucks zu dem an der Einleitstelle herrschenden Druck. Je höher das Druckgefälle ist, desto einfacher und vorteilhafter kann die Sekundärluft in das den Abgastrakt durchströmende Abgas eingeleitet werden, wobei durch die Anordnung der Einleitstelle in dem Austrittsbereich das Druckgefälle besonders hoch ausgebildet werden kann.
Bei einer weiteren, besonders vorteilhaften Ausgestaltung der Erfindung ist der Austrittsbereich frei von Laufradschaufeln des Turbinenrads. Dadurch kann das Druckgefälle auf besonders einfache Weise besonders groß realisiert werden, sodass die Sekundärluft besonders vorteilhaft und insbesondere besonders einfach geführt und in das den Abgastrakt durchströmende Abgas eingeleitet werden kann.
Um die, insbesondere über die Austrittsöffnung, aus dem Sekundärluftkanal ausströmende und hierdurch in das den Abgastrakt durchströmende Abgas einströmende Sekundärluft besonders vorteilhaft in das den Abgastrakt durchströmende Abgas einzuleiten und besonders vorteilhaft mit dem den Abgastrakt durchströmenden Abgas vermischen zu können, ist es vorgesehen, dass innerhalb des Turbinengehäuses eine sich in Umfangsrichtung des Turbinenrads, insbesondere über dessen Umfang, erstreckende Wandung angeordnet ist. Beispielsweise kann die Wandung einstückig mit dem Turbinengehäuse ausgebildet sein. Die Wandung kann derart, insbesondere stromab des Turbinenrads, angeordnet sein, dass die Wandung in radialer Richtung des Turbinenrads nach innen hin vollständig überlappungsfrei zu dem Turbinenrad angeordnet, mithin in radialer Richtung des Turbinenrads nach innen nicht durch das Turbinenrad überlappt ist. Vorzugweise ist die Wandung jedoch derart angeordnet, dass die Wandung in radialer Richtung des Turbinenrads nach innen hin zumindest teilweise, insbesondere zumindest überwiegend oder vollständig, durch das Turbinenrad überlappt ist, sodass sich die Wandung in Umfangsrichtung des Turbinenrads über dessen Umfang erstreckt. Dabei ist es denkbar, dass die Wandung stromab zumindest eines beziehungsweise des zuvor genannten Teils des Turbinenrads angeordnet ist. Die Wandung ist in radialer Richtung des Turbinenrads nach innen hin von der Austrittsöffnung und von sich in Umfangsrichtung des Turbinenrads an die Austrittsöffnung anschließenden Wandungsbereichen des Turbinengehäuses unter Bildung eines in radialer Richtung des Turbinenrads nach außen durch die Wandungsbereiche und in radialer Richtung des Turbinenrads nach innen durch die Wandung begrenzten und sich in Umfangsrichtung des Turbinenrads, insbesondere über dessen Umfang, erstreckenden Verteilerkanals beabstandet. Der Verteilerkanal ist somit beispielsweise ein Spalt, welcher in radialer Richtung des Turbinenrads zwischen den Wandungsbereichen und der Wandung angeordnet und dabei in radialer Richtung des Turbinenrads und somit der Turbine insgesamt nach außen durch die Wandungsbereiche und in radialer Richtung des Turbinenrads beziehungsweise der Turbine nach innen durch die Wandung, insbesondere jeweils direkt, begrenzt ist. Die axiale Richtung des Turbinenrads fällt mit der Laufraddrehachse zusammen, wobei die radiale Richtung des Turbinenrads senkrecht zur Laufraddrehachse verläuft. Dabei verläuft die Umfangsrichtung des Turbinenrads um die Laufraddrehachse, das heißt um die axiale Richtung des Turbinenrads. Die Austrittsöffnung mündet in den Verteilerkanal, sodass die die Austrittsöffnung durchströmende und somit über die Austrittsöffnung aus dem Sekundärluftkanal ausströmende Sekundärluft, insbesondere zunächst, in den Verteilerkanal einströmt. Daraufhin kann die Sekundärluft den Verteilerkanal durchströmen beziehungsweise die Sekundärluft wird mittels des Verteilerkanals in Umfangsrichtung des Turbinenrads, insbesondere über dessen Umfang, geführt und somit verteilt.
Die Wandung weist in Umfangsrichtung des Turbinenrads aufeinanderfolgende und voneinander beabstandete Durchströmöffnungen für die Sekundärluft auf, sodass die Durchströmöffnungen von der Sekundärluft aus dem Verteilerkanal durchströmbar sind. Vorzugsweise sind die Durchströmöffnungen in Umfangsrichtung des Turbinenrads gleichmäßig verteilt angeordnet. Die Durchströmöffnungen münden einenends in den Verteilerkanal und andernends in einen in radialer Richtung des Turbinenrads innenseitig der Wandung angeordneten Bereich. Mit anderen Worten ist der Bereich auf einer in radialer Richtung des Turbinenrads nach innen hin von dem Verteilerkanal abgewandten Seite der Wandung angeordnet. Dies bedeutet, dass die Sekundärluft aus dem Verteilerkanal in die jeweilige Durchströmöffnung hineinströmen und die jeweilige Durchströmöffnung hindurchströmen kann. Die die jeweilige Durchströmöffnung durchströmende Sekundärluft kann aus der jeweiligen Durchströmöffnung ausströmen und in den genannten Bereich einströmen und wird somit in das den Bereich durchströmende Abgas eingeleitet, da der genannte Bereich von dem das Turbinengehäuse über den Abgastrakt durchströmende Abgas durchströmbar ist. Mittels des Verteilerkanals und somit mittels der den Verteilerkanal bildenden beziehungsweise begrenzenden Wandung kann die Sekundärluft besonders vorteilhaft, insbesondere in Umfangsrichtung des Turbinenrads über dessen Umfang, verteilt werden, sodass die Sekundärluft besonders vorteilhaft in das Abgas eingeleitet und mit dem Abgas vermischt werden kann. Der Verteilerkanal und die Wandung bilden somit eine Verteilereinrichtung oder sind Bestandteil einer Verteilereinrichtung, wobei die Verteilereinrichtung auch als Verteiler oder Sekundärluftverteiler bezeichnet wird. Mittels des Sekundärluftverteilers kann die Sekundärluft aus dem Sekundärluftkanal besonders vorteilhaft verteilt und in das Abgas eingeleitet und insbesondere mit dem Abgas vermischt werden, sodass die Abgasnachbehandlungseinrichtung in kurzer Zeit und somit effektiv und effizient aufgeheizt beziehungsweise erwärmt werden kann.
Dabei hat es sich als besonders vorteilhaft gezeigt, wenn die Austrittsöffnung in radialer Richtung des Turbinenrads nach innen zumindest teilweise, insbesondere zumindest überwiegend und somit zu mehr als zur Hälfte oder aber vollständig, durch das Turbinenrad überlappt ist. Hierdurch kann ein besonders vorteilhaftes Druckgefälle, insbesondere von der Versorgungsstelle bis zu der Austrittsöffnung, gewährleistet werden, sodass die Sekundärluft in zumindest nahezu allen Betriebsbereichen beziehungsweise Betriebspunkten der Verbrennungskraftmaschine besonders vorteilhaft in das den Abgastrakt durchströmende Abgas eingeleitet werden kann.
Das zuvor genannte, eine Ende des Sekundärluftkanals ist ein sogenanntes abgastraktseitiges Ende des Sekundärluftkanals, da der Sekundärluftkanal über das eine, abgastraktseitige Ende in dem Abgastrakt endet beziehungsweise in den Abgastrakt mündet. Dabei ist beispielsweise die Austrittsöffnung an dem einen, abgastraktseitigen Ende angeordnet.
Dabei hat es sich als besonders vorteilhaft gezeigt, wenn ein das abgastraktseitige, eine Ende aufweisender Längenbereich des Sekundärluftkanals, welcher an seinem einen, abgastraktseitigen Ende endet und an dem abgastraktseitigen Ende in den Abgastrakt mündet, innerhalb des Turbinengehäuses angeordnet ist beziehungsweise verläuft. Dies bedeutet, dass der Sekundärluftkanal über den Längenbereich und dabei an dem abgastraktseitigen Ende endet, sodass der Längenbereich an dem abgastraktseitigen Ende endet und somit ein Endbereich des Sekundärluftkanals ist. Dabei ist der Längenbereich entlang seiner Umfangsrichtung vollständig umlaufend direkt durch das Turbinengehäuse begrenzt. Dadurch können die Teileanzahl und somit die Kosten, das Gewicht und der Bauraumbedarf zum Führen und Einleiten der Sekundärluft in das den Abgastrakt durchströmende Abgas besonders gering gehalten werden.
Vorzugsweise ist das Turbinengehäuse einstückig ausgebildet. Mit anderen Worten ist das Turbinengehäuse ein einstückiges Gehäuseelement, in welchem das Turbinenrad zumindest teilweise, insbesondere zumindest überwiegend oder vollständig, angeordnet ist. Wieder mit anderen Worten ausgedrückt weist das Turbinengehäuse einen einstückigen Grundkörper auf, welcher beispielsweise zumindest den Längenbereich des Sekundärluftkanals in Umfangsrichtung des Längenbereichs vollständig umlaufend begrenzt. Alternativ oder zusätzlich bildet der Grundkörper beziehungsweise das Gehäuseelement die zuvor genannte Wandung sowie auch vorzugsweise die Wandungsbereiche.
Schließlich hat es sich als besonders vorteilhaft gezeigt, wenn das Turbinengehäuse, insbesondere der Grundkörper beziehungsweise das Gehäuseelement, einen Aufnahmebereich, insbesondere direkt, begrenzt, wobei das Turbinenrad insbesondere bezogen auf dessen in axialer Richtung des Turbinenrads verlaufende Länge zumindest teilweise, insbesondere zumindest überwiegend und somit zu mehr als zur Hälfte oder vollständig, in dem Aufnahmebereich und somit in dem vorzugsweise einstückigen Turbinengehäuse, Grundkörper beziehungsweise Gehäuseelement angeordnet ist. Somit können die Teileanzahl und dadurch die Kosten, der Bauraumbedarf und die Kosten zum Führen und Einleiten der Sekundärluft, mithin zur Realisierung der Sekundärlufteinblasung, besonders gering gehalten werden.
Das abgastraktseitige Ende beziehungsweise die Austrittsöffnung des Sekundärluftkanals wird auch als Mündung oder Sekundärluftmündung bezeichnet, da der Sekundärluftkanal an seinem abgastraktseitigen Ende beziehungsweise über die Austrittsöffnung in den Abgastrakt mündet. Da nun das abgastraktseitige Ende beziehungsweise die Austrittsöffnung innerhalb des Turbinengehäuses angeordnet ist, ist erfindungsgemäß eine Integration der Sekundärluftmündung in das Turbinengehäuse vorgesehen. Insbesondere ist erfindungsgemäß eine Integration des zuvor genannten Verteilers in das Turbinengehäuse vorgesehen, wobei es vorzugsweise vorgesehen ist, dass der Sekundärluftverteiler in Strömungsrichtung des das Turbinengehäuse durchströmenden Abgases stromab zumindest eines Teils des Turbinenrads angeordnet ist. Insbesondere ist der Sekundärluftverteiler beziehungsweise die Wandung in dem Austrittsbereich angeordnet. Die Sekundärluftmündung beziehungsweise der Verteiler ist beispielsweise direkt nach dem Turbinenrad angeordnet, um die Austrittsöffnung beziehungsweise den Verteiler an einer Stelle anzuordnen, mithin den Sekundärluftkanal an einer Stelle, welche beispielsweise die zuvor genannte Einleitstelle ist, in den Abgastrakt münden zu lassen, wobei an der Stelle ein möglichst niedriger Druck herrscht. Insbesondere kann sichergestellt werden, dass an dem abgastraktseitigen Ende beziehungsweise an der Einleitstelle, insbesondere stets, ein vorteilhaft geringer Druck, insbesondere ein Unterdrück, herrscht, sodass beispielsweise vermieden werden kann, dass ein Gas wie beispielsweise das Abgas in den Sekundärluftkanal einströmt und über den Sekundärluftkanal in den Ansaugtrakt strömt, ohne dass hierzu in dem Sekundärluftkanal ein zusätzliches, separates Rückschlagventil angeordnet werden müsste. Dadurch können die Teileanzahl und somit die Kosten, der Baumraumbedarf und das Gewicht in einem besonders geringen Rahmen gehalten werden.
Somit kann die Erfindung insbesondere die folgenden Vorteile realisieren:
Sicherstellung eines besonders vorteilhaften Druckgefälles zwischen der Versorgungsstelle und der Einleitstelle vorteilhafte Position für eine sekundäre Verbrennung, in deren Rahmen beispielsweise das zuvor genannte Sekundärluft-Kraftstoffanteile-Gemisch verbrannt wird, wobei die Position vorzugsweise stromauf eines beziehungsweise direkt vor einem Katalysator, insbesondere der Abgasnachbehandlungseinrichtung, sein kann die Sekundärlufteinblasung kann besonders einfach und kostengünstig dargestellt werden.
Ein zweiter Aspekt der Erfindung betrifft ein vorzugsweise als Kraftwagen, insbesondere als Personenkraftwagen, ausgebildetes Kraftfahrzeug, welches eine Verbrennungskraftmaschine gemäß dem ersten Aspekt der Erfindung aufweist. Vorteile und vorteilhafte Ausgestaltungen des ersten Aspekts der Erfindung sind als Vorteile und vorteilhafte Ausgestaltungen des zweiten Aspekts der Erfindung anzusehen und umgekehrt.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels sowie anhand der Zeichnung. Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen.
Die Zeichnung zeigt in:
Fig. 1 eine schematische Darstellung einer erfindungsgemäßen Verbrennungskraftmaschine für ein Kraftfahrzeug;
Fig. 2 eine schematische Längsschnittansicht eines Turbinengehäuses eines Abgasturboladers der Verbrennungskraftmaschine; und
Fig. 3 eine schematische Querschnittsansicht des vorzugsweise einstückig ausgebildeten Turbinengehäuses.
In den Fig. sind gleiche oder funktionsgleiche Elemente mit gleichen Bezugszeichen versehen.
Fig. 1 zeigt in einer schematischen Darstellung eine als Hubkolbenmaschine beziehungsweise Hubkolbenmotor ausgebildete Verbrennungskraftmaschine 10 für ein vorzugsweise als Kraftwagen, insbesondere als Personenkraftwagen, ausgebildetes Kraftfahrzeug. Dies bedeutet, dass das Kraftfahrzeug in seinem vollständig hergestellten Zustand die Verbrennungskraftmaschine 10 aufweist und mittels der Verbrennungskraftmaschine 10 antreibbar ist. Die Verbrennungskraftmaschine 10 weist vorliegend genau vier, insbesondere entlang einer gedachten Geraden und somit in Reihe hintereinander beziehungsweise aufeinanderfolgend angeordnete, Zylinder 12a-d auf, welche durch ein beispielsweise als Zylinderkurbelgehäuse ausgebildetes Zylindergehäuse 14 der Verbrennungskraftmaschine 10 gebildet beziehungsweise begrenzt sind. Der jeweilige Zylinder 12a-d begrenzt einen jeweiligen Brennraum 16a-d, sodass die Verbrennungskraftmaschine 10 bei dem in Fig. 1 gezeigten Ausführungsbeispiel genau vier Brennräume 16a-d aufweist. In den Brennräumen 16a-d laufen während eines befeuerten Betriebs der Verbrennungskraftmaschine 10 Verbrennungsvorgänge ab. In den jeweiligen Zylindern 12a-d ist ein jeweiliger Kolben translatorisch bewegbar angeordnet, wobei der jeweilige Kolben den jeweiligen Brennraum 16a-d teilweise begrenzt. Die Verbrennungskraftmaschine 10 weist einen von Abgas aus den Brennräumen 16a-d durchströmbaren Abgastrakt 18 auf, in welchem beispielsweise eine in den Fig. nicht dargestellte Abgasnachbehandlungseinrichtung zum Nachbehandeln des Abgases angeordnet sein kann. Während des befeuerten Betriebs wird bei dem jeweiligen, in dem jeweiligen Brennraum 16a-d stattfindenden Verbrennungsvorgang ein Kraftstoff-Luft- Gemisch verbrannt, welches einen vorzugsweise flüssigen Kraftstoff und Frischluft umfasst. Durch das Verbrennen des Kraftstoff-Luft-Gemisches entsteht das Abgas. Die Verbrennungskraftmaschine 10 weist dabei einen von der genannten Frischluft durchströmbaren und auch als Einlasstrakt bezeichneten Ansaugtrakt 20 auf, mittels welchem die den Ansaugtrakt 20 durchströmende Frischluft zu den und in die Brennräume 16a-d und somit zu den und in die Zylinder 12a-d geleitet wird.
Die Verbrennungskraftmaschine 10 umfasst außerdem einen Abgasturbolader 22, welcher einen in dem Ansaugtrakt 20 angeordneten Verdichter 24 und eine in dem Abgastrakt 18 angeordnete Turbine 26 aufweist. Der Verdichter 24 umfasst ein in dem Ansaugtrakt 20 angeordnetes Verdichterrad 28, mittels welchem die den Ansaugtrakt 20 durchströmende Frischluft verdichtet werden kann. Die T urbine 26 umfasst ein in dem Abgastrakt 18 angeordnetes und von dem Abgas antreibbares Turbinenrad 30. Der Abgasturbolader 22 umfasst außerdem eine Welle 32, über welche das Verdichterrad 28 von dem Turbinenrad 30 antreibbar ist. Durch Antreiben des Verdichterrads 28 wird mittels des Verdichterrads 28 die den Ansaugtrakt 20 durchströmende Frischluft verdichtet.
In Strömungsrichtung der den Ansaugtrakt 20 durchströmenden Frischluft ist stromab des Verdichterrads 28 ein Ladeluftkühler 34 angeordnet, mittels welchem die verdichtete und dadurch erwärmte Frischluft, bevor sie in die Brennräume 16a-d einströmt, gekühlt wird. Des Weiteren ist in Strömungsrichtung der den Ansaugtrakt 20 durchströmenden Frischluft stromab des Verdichterrads 28 und stromauf des Ladeluftkühlers 34 eine Drosselklappe 36 in dem Ansaugtrakt 20 angeordnet. Mittels der Drosselklappe 36 kann eine Menge der den Brennräumen 16a-d zuzuführenden Frischluft eingestellt werden.
Die Verbrennungskraftmaschine 10 umfasst außerdem einen von Sekundärluft durchströmbaren Sekundärluftkanal 38, mittels welchem die den Sekundärluftkanal 38 durchströmende Sekundärluft in das den Abgastrakt 18 durchströmende Abgas einleitbar ist. Die in den Abgastrakt 18 beziehungsweise in das den Abgastrakt 18 durchströmende Abgas eingeleitete Sekundärluft kann beispielsweise mit unverbrannten und somit noch brennbaren Bestandteilen des zuvor genannten Kraftstoffes ein Sekundärluft-Kraftstoffanteile-Gemisch bilden, wobei die Bestandteile des Kraftstoffes auch als Kraftstoffanteile bezeichnet werden. Das Sekundärluft-Kraftstoffanteile- Gemisch kann in dem Abgastrakt 18 unter Freisetzung von Wärme verbrannt werden. Hierdurch kann beispielsweise die zuvor genannte Abgasnachbehandlungseinrichtung besonders effektiv und effizient aufgeheizt, das heißt erwärmt werden. Die zuvor genannten, in dem Abgastrakt 18 beziehungsweise in dem den Abgastrakt 18 durchströmenden Abgas aufgenommenen Bestanteile des Kraftstoffes sind Kraftstoffanteile, die unverbrannt aus zumindest einem der Brennräume 16a-d in den Abgastrakt 18 gelangt sind und/oder gezielt, insbesondere unter Umgehung aller Brennräume 16a-d und/oder über wenigstens einen der Brennräume 16a-d, in den Abgastrakt 18 eingebracht, insbesondere eingespritzt, werden.
Des Weiteren umfasst die Verbrennungskraftmaschine 10 ein Ventilelement 40, mittels welchem eine Menge der den Sekundärluftkanal 38 durchströmenden Sekundärluft einstellbar ist. Beispielsweise kann das Ventilelement 40 zwischen wenigstens einer Schließstellung und wenigstens einer Freigabestellung umgeschaltet oder verstellt werden. In der Schließstellung versperrt das Ventilelement 40 den Sekundärluftkanal 38, sodass keine Sekundärluft durch den Sekundärluftkanal 38 hindurchströmen kann. In der Freigabestellung gibt das Ventilelement 40 beispielsweise den Sekundärluftkanal 38 frei, sodass in der Freigabestellung Sekundärluft durch den Sekundärluftkanal 38 hindurchströmen und mittels des Sekundärluftkanals 38 in den Abgastrakt 18 eingeleitet werden kann. Das Einleiten der Sekundärluft in den Abgastrakt 18, das heißt in das den Abgastrakt durchströmende Abgas, wird auch als Sekundärlufteinblasung, Sekundärluftzufuhr oder Sekundärlufteinleitung bezeichnet.
Um eine besonders vorteilhafte Sekundärlufteinblasung realisieren zu können, ist das Ventilelement 40 als ein Kombinationsventil ausgebildet, welches auch als Kombiventil bezeichnet wird. Über das Ventilelement 40 ist der Sekundärluftkanal 38 mit dem Ansaugtrakt 20 an einer stromab des Verdichterrads 28 und stromauf der Drosselklappe 36 angeordneten Abzweigstelle A fluidisch verbunden oder verbindbar. Dies bedeutet, dass an der Abzweigstelle A zumindest ein Teil der Frischluft aus dem Ansaugtrakt 20 abgezweigt, mithin abgeführt oder ausgeleitet werden kann. Die an der Abzweigstelle A aus dem Ansaugtrakt 20 abgezweigte Frischluft beziehungsweise ihr zuvor genannter Teil kann über das Ventilelement 40 in den Sekundärluftkanal 38 eingeleitet und als die zuvor genannte Sekundärluft mittels des Sekundärluftkanals 38 in den Abgastrakt 18 beziehungsweise in das den Abgastrakt 18 durchströmende Abgas eingeleitet werden. Dies bedeutet, dass der zuvor genannte, an der Abzweigstelle A aus dem Ansaugtrakt 20 abgezweigte Teil der Frischluft die zuvor genannte Sekundärluft ist beziehungsweise als die den Sekundärluftkanal 38 durchströmende Sekundärluft verwendet wird. Da die Abzweigstelle A stromab des Verdichterrads 28 angeordnet ist, kann das Verdichterrad 28 beziehungsweise der Verdichter 24 als Sekundärluftpumpe genutzt werden, um die Sekundärluft zu fördern, insbesondere in den Sekundärluftkanal 38 hineinzufördern und/oder durch den Sekundärluftkanal 38 hindurchzufördern und/oder in den Abgastrakt 18 beziehungsweise in das den Abgastrakt 18 durchströmende Abgas hineinzufördern. Dadurch kann eine zusätzliche, separate Sekundärluftpumpe vermieden werden, sodass die Teileanzahl, das Gewicht, die Kosten und der Bauraumbedarf der Verbrennungskraftmaschine 10 in einem besonders geringen Rahmen gehalten werden können. Es ist erkennbar, dass die den Sekundärluftkanal 38 durchströmende Sekundärluft aus dem Ansaugtrakt 20 stammt und unter Umgehung der beziehungsweise aller Brennräume 16a-d in das den Abgastrakt 18 durchströmende Abgas eingeleitet wird, wobei die Sekundärluft zumindest auf ihrem Weg von der Abzweigstelle A in den Abgastrakt 18 beziehungsweise in das den Abgastrakt 18 durchströmende Abgas an keiner Verbrennung teilnimmt, mithin nicht verbrannt wird beziehungsweise nicht für eine Verbrennung genutzt wird. Außerdem strömt die Sekundärluft auf ihrem Weg von der Abzweigstelle A in den Abgastrakt 18 durch keinen Brennraum der Verbrennungskraftmaschine 10 hindurch.
Dem Sekundärluftkanal 38 und dem Ventilelement 40 kann eine Doppelfunktion zukommen. Zum einen wird der Sekundärluftkanal 38 genutzt, um die Sekundärluft in den Abgastrakt 18 beziehungsweise in das den Abgastrakt 18 durchströmende Abgas einzuleiten, das heißt einzublasen. In dieser Hinsicht wird das Ventilelement 40 zum einen als Sekundärluftventil verwendet, um die Menge der den Sekundärluftkanal 38 durchströmenden und in das den Abgastrakt 18 durchströmende Abgas einzuleitende Sekundärluft einzustellen. Zum anderen wird sozusagen der Sekundärluftkanal 38 zur Realisierung einer Art Schubumluft oder Schubumluftsystem verwendet, wobei in dieser Hinsicht das Ventilelement 40 als ein Schubumluftventil oder als eine Art Schubumluftventil verwendet werden kann. Da die Abzweigstelle A stromab des Verdichterrads 28 und stromauf der Drosselklappe 36 angeordnet ist, kann beispielsweise dann, wenn die zunächst geöffnete Drosselklappe 36, insbesondere abrupt, geschlossen wird, ein übermäßiges, durch die zunächst zwischen dem Verdichterrad 28 und der Drosselklappe 36 angeordnete und mittels des Verdichterrads 28 verdichtete Frischluft bewirktes Abbremsen des Verdichterrads 28 vermieden werden, derart, dass zumindest ein Teil der zunächst zwischen dem Verdichterrad 28 und der Drosselklappe 36 angeordneten Frischluft an der Abzweigstelle A aus dem Ansaugtrakt 20 abgezweigt und über das Ventilelement 40 in den Sekundärluftkanal 38 eingeleitet wird.
In Zusammenschau mit Fig. 2 und 3 ist erkennbar, dass die Turbine 26 ein vorzugsweise einstückiges, das heißt einstückig ausgebildetes Turbinengehäuse 42 aufweist, in welchem das Turbinenrad 30 insbesondere im Hinblick auf seine in axialer Richtung des Turbinenrads 30 verlaufende Länge zumindest teilweise, insbesondere zumindest überwiegend oder vollständig, angeordnet ist. Dabei bildet oder begrenzt das Turbinengehäuse 42 einen auch als Aufnahmeraum bezeichneten Aufnahmebereich 44, insbesondere direkt, wobei das Turbinenrad 30 insbesondere im Hinblick auf seine in axialer Richtung des Turbinenrads 30 verlaufende Länge zumindest teilweise, insbesondere zumindest überwiegend oder vollständig, in dem Aufnahmebereich 44 angeordnet ist. Das Turbinenrad 30 ist um eine Drehachse 46, welche auch als Laufraddrehachse bezeichnet wird, relativ zu dem Turbinengehäuse 42 drehbar. Dabei fällt die axiale Richtung des Turbinenrads 30 mit der Drehachse 46 zusammen. Bei dem in den Fig. gezeigten Ausführungsbeispiel ist das Turbinengehäuse 42 einstückig ausgebildet. Dies bedeutet, dass das Turbinengehäuse 42 ein einstückiges Gehäuseelement oder ein einstückiger Grundkörper ist.
Des Weiteren weist die Verbrennungskraftmaschine 10 einen einfach auch als Krümmer bezeichneten Abgaskrümmer 48 auf, in beziehungsweise mittels welchem das Abgas aus den jeweiligen Brennräumen 16a-d, insbesondere in einen den Brennräumen 16a-d gemeinsamen Kanal, zusammengeführt wird. Dabei ist das Turbinengehäuse 42 in den Abgaskrümmer 48 integriert beziehungsweise umgekehrt. Hierunter ist vorliegend zu verstehen, dass der Abgaskrümmer 48 einstückig mit dem Turbinengehäuse 42 ausgebildet ist. Dabei weist der Abgaskrümmer 48 je Brennraum 16a-d wenigstens einen Abgaskanal 50 auf, wobei die Abgaskanäle in jeweiligen Teilbereichen voneinander getrennt sind. Das Abgas aus den Brennräumen 16a-d kann die Abgaskanäle 50 durchströmen und wird mittels der Abgaskanäle 50 zusammengeführt und insbesondere zu dem Turbinengehäuse 42 geführt. Das Turbinengehäuse 42 bildet oder begrenzt wenigstens oder genau einen von dem Abgas aus dem beziehungsweise allen Brennräumen 16a-d durchströmbaren Kanal 52, welcher vorzugsweise als ein Spiralkanal ausgebildet ist. Dies bedeutet, dass sich der Kanal 52 in Umfangsrichtung des Turbinenrads 30 über dessen Umfang spiralförmig erstreckt. Das Abgas aus den Brennräumen 16a-d kann den Kanal 52 durchströmen und wird mittels des Kanals 52 zu dem und insbesondere in den Aufnahmebereich 44 und somit zu dem Turbinenrad 30 geführt, insbesondere derart, dass der Kanal 52 in den Aufnahmebereich 44 mündet. Dabei bildet beziehungsweise begrenzt das einstückige Turbinengehäuse 42 den Kanal 52, insbesondere direkt.
Um nun die Sekundärlufteinblasung auf besonders einfache und insbesondere besonders kosten-, gewichts- und bauraumgünstige Weise realisieren zu können, mündet der Sekundärluftkanal 38 innerhalb des Turbinengehäuses 42 in den Abgastrakt 18. Dabei mündet der Sekundärluftkanal 38 an einer Einleitstelle E (Fig. 3) innerhalb des Turbinengehäuses 42 in den Abgastrakt 18, wobei die Einleitstelle E in Strömungsrichtung des das Turbinengehäuse 42 durchströmenden Abgases stromab zumindest eines Teils des Turbinenrads 30 angeordnet ist. Aus Fig. 2 und 3 ist besonders gut erkennbar, dass die Einleitstelle E in einem Austrittsbereich 54 der Turbine 26 angeordnet ist, über deren Austrittsbereich 54 Laufradschaufeln 56 des Turbinenrads 30 von dem Abgas abströmbar sind. Dabei ist der Austrittsbereich 54 frei von Laufradschaufeln des Turbinenrads 30.
Der Sekundärluftkanal 38 weist wenigstens oder genau eine Austrittsöffnung 58 auf, welche an einem abgastraktseitigen Ende E1 des Sekundärluftkanals 38 angeordnet ist. An dem Ende E1 und somit an der Austrittsöffnung 58 endet der Sekundärluftkanal 38, wodurch der Sekundärluftkanal 38 an der beziehungsweise über die Austrittsöffnung 58 und somit an dem Ende E1 in den Abgastrakt 18 mündet. Somit ist das Ende E1 an der Einleitstelle E angeordnet. Dabei ist die den Sekundärluftkanal 38 durchströmende Sekundärluft über die Austrittsöffnung 58 und somit an dem Ende E1 aus dem Sekundärluftkanal 38 ausleitbar und dadurch in den Abgastrakt 18 und in das den Abgastrakt 18 durchströmende Abgas einleitbar. Dabei ist die Austrittsöffnung 58 in radialer Richtung des Turbinenrads 30 nach innen hin zumindest teilweise, insbesondere zumindest überwiegend oder vollständig, durch das Turbinenrad 30 überlappt, insbesondere durch einen solchen Teilbereich des Turbinenrads 30 überlappt, dessen Teilbereich frei von Laufradschaufeln des Turbinenrads 30 ist. Die radiale Richtung des Turbinenrads ist in Fig. 2 durch einen Doppelpfeil 60 veranschaulicht und verläuft senkrecht zur axialen Richtung des Turbinenrads 30.
Besonders gut aus Fig. 2 und 3 ist erkennbar, dass innerhalb des Turbinengehäuses 42 eine sich in Umfangsrichtung des Turbinenrads 30 über dessen Umfang erstreckende Wandung 62 angeordnet ist. Die Umfangsrichtung des Turbinenrads verläuft um die Drehachse 46 und ist in Fig. 2 und 3 durch einen Pfeil 64 veranschaulicht. Bei dem in den Fig. gezeigten Ausführungsbeispiel ist die Wandung 62 einstückig mit dem Turbinengehäuse 42 ausgebildet, das heißt durch das einstückig ausgebildete Turbinengehäuse 42, insbesondere durch den einstückigen Grundkörper beziehungsweise durch das einstückige Gehäuseelement, gebildet. Die Wandung 62 ist in radialer Richtung des Turbinenrads 30 nach innen hin von der Austrittsöffnung 58 und von sich in Umfangsrichtung des Turbinenrads 30 an die Austrittsöffnung 58 anschließenden Wandungsbereichen W des Turbinengehäuses 52 unter Bildung eines in radialer Richtung des Turbinenrads 30 nach außen durch die Wandungsbereiche W und in radialer Richtung des Turbinenrads 30 nach innen durch die Wandung 62 begrenzten und sich in Umfangsrichtung des Turbinenrads 30 über dessen Umfang erstreckenden Verteilerkanals 66 beabstandet, welcher somit in radialer Richtung des Turbinenrads 30 zwischen der Wandung 62 und den Wandungsbereichen W angeordnet ist und sich in Umfangsrichtung des Turbinenrads 30 über dessen Umfang, insbesondere vollständig umlaufend, herum erstreckt. Dabei mündet die Austrittsöffnung 58 in den Verteilerkanal 66, sodass der Sekundärluftkanal 38 über seine Austrittsöffnung 58 in den Verteilerkanal 66 mündet.
Die Wandung 62 weist in Umfangsrichtung des Turbinenrads 30 aufeinanderfolgende, voneinander beabstandete und vorzugsweise gleichmäßig verteilt angeordnete Durchströmöffnungen 68 auf, welche jeweils einenends in den Verteilerkanal 66 und andernends in einen insbesondere in dem Austrittsbereich 54 angeordneten Bereich B münden, welcher in radialer Richtung des Turbinenrads 30 innenseitig der Wandung 62 angeordnet und von dem das Turbinengehäuse 42 durchströmenden Abgas durchströmbar ist. Somit kann die den Sekundärluftkanal 38 durchströmende Sekundärluft über die Austrittsöffnung 58 aus dem Sekundärluftkanal 38 ausströmen und in der Folge beziehungsweise daraufhin direkt in den Verteilerkanal 66 einströmen, wie es in Fig. 3 durch einen Pfeil 70 veranschaulicht ist. Die in den Verteilerkanal 66 eingeströmte Sekundärluft kann den Verteilerkanal 66 durchströmen und wird somit mittels des Verteilerkanals 66 in Umfangsrichtung des Turbinenrads 30 über dessen Umfang herum geführt und verteilt. Die Sekundärluft aus dem Verteilerkanal 66 kann die Durchströmöffnungen 68 durchströmen und somit über die Durchströmöffnungen 68 aus dem Verteilerkanal 66 in den Bereich B und dadurch in das den Bereich B durchströmende Abgas strömen. Somit wird die Sekundärluft aus dem Sekundärluftkanal 38 besonders vorteilhaft verteilt und in das Abgas eingeleitet, insbesondere mit dem Abgas vermischt. Die Wandung 62 und der Verteilerkanal 66 bilden somit beispielsweise einen Sekundärluftverteiler, mittels welchem die Sekundärluft aus dem Sekundärluftkanal 38 besonders vorteilhaft in Umfangsrichtung des Turbinenrads 30 über dessen Umfang verteilt und in das Abgas eingeleitet werden kann. Besonders gut aus Fig. 1 bis 3 ist erkennbar, dass ein das abgastraktseitige Ende E1 des Sekundärluftkanals 38 aufweisender, erster Längenbereich L1 des Sekundärluftkanals 38 innerhalb des Turbinengehäuses 42 angeordnet ist und entlang seiner Umfangsrichtung vollständig umlaufend direkt durch das Turbinengehäuse 42, das heißt durch das einstückige Gehäuseelement beziehungsweise durch den einstückigen Grundkörper, begrenzt beziehungsweise gebildet ist. Zumindest ein zweiter Längenbereich L2 (Fig. 1) des Sekundärluftkanals 38 ist beispielsweise durch eine Sekundärluftleitung 74 gebildet oder begrenzt. Die Sekundärluftleitung 74 ist beispielsweise separat von dem Turbinengehäuse 42 ausgebildet und zumindest fluidisch und vorzugsweise auch mechanisch mit dem Turbinengehäuse 42 insbesondere derart verbunden, dass der von der Sekundärluft durchströmbare, zweite Längenbereich L2 fluidisch mit dem Längenbereich L1 verbunden ist. Während der Längenbereich L1 innerhalb des Turbinengehäuses 42 verläuft, verläuft der Längenbereich L2, insbesondere vollständig, außerhalb des Turbinengehäuses 42. Somit kann die Sekundärluft aus dem Längenbereich L2 ausströmen und in den Längenbereich L1 einströmen. Dabei ist in Strömungsrichtung der den Sekundärluftkanal 38 durchströmenden Sekundärluft der Längenbereich L2 stromauf des Längenbereichs L1 angeordnet.
Der Sekundärluftverteiler und insbesondere das Ende E1 und somit die Austrittsöffnung 58 sind stromab zumindest des Teils des Turbinenrads 30 angeordnet, da dann in zumindest nahezu jedem Betriebspunkt beziehungsweise Betriebszustand der Verbrennungskraftmaschine 10 an der Einleitstelle E und somit an dem Ende E1 des Sekundärluftkanals 38, an dessen Ende E1 die Austrittsöffnung 58 angeordnet ist, ein vorteilhaft geringer Druck, insbesondere Unterdrück, herrscht, sodass ein besonders vorteilhaftes und insbesondere vorteilhaft großes Druckgefälle von der Abzweigstelle A zu der Einleitstelle E hin beziehungsweise zu dem Ende E1 hin gewährleistet werden kann. Dadurch kann eine hinreichend große Menge der Sekundärluft von der Abzweigstelle A zu der Einleitstelle E geführt werden, ohne dass hierzu eine übermäßig große Anzahl an separaten, zusätzlichen Bauelementen wie Aktoren, Pumpen und/oder Ventilen erforderlich wäre. Außerdem kann auf einfache Weise vermieden werden, dass Abgas unerwünschterweise von der Einleitstelle E zu der Ausleitstelle A rückströmt. Insbesondere können somit Rückschlagventile in dem Sekundärluftkanal 38 vermieden werden. Bezugszeichenliste
10 Verbrennungskraftmaschine 12a-d Zylinder
14 Zylindergehäuse
16a-d Brennraum
18 Abgastrakt
20 Ansaugtrakt
22 Abgasturbolader
24 Verdichter
26 Turbine
28 Verdichterrad
30 Turbinenrad
32 Welle
34 Ladeluftkühler
36 Drosselklappe
38 Sekundärluftkanal
40 Ventilelement
42 Turbinengehäuse
44 Aufnahmebereich
46 Drehachse
48 Abgaskrümmer
50 Abgaskanal
52 Kanal
54 Austrittsbereich
56 Laufradschaufel
58 Austrittsöffnung
60 Doppelpfeil
62 Wandung
64 Pfeil
66 Verteilerkanal
68 D u rch strö m öff n u n g
70 Pfeil
72 Pfeil
74 Sekundärluftleitung B Bereich
E Einleitstelle
E1 Ende
W Wandungsbereich

Claims

Patentansprüche Verbrennungskraftmaschine (10) für ein Kraftfahrzeug, mit einem von Abgas aus wenigstens einem Brennraum (16a-d) der Verbrennungskraftmaschine (10) durchströmbaren Abgastrakt (18), mit einem Abgasturbolader (22), welcher eine in dem Abgastrakt (18) angeordnete Turbine (26) umfasst, die ein Turbinengehäuse (42) und ein zumindest teilweise in dem Turbinengehäuse (42) aufgenommenes und von dem Abgas antreibbares Turbinenrad (30) aufweist, und mit wenigstens einem von Sekundärluft durchströmbaren und in den Abgastrakt (18) mündenden Sekundärluftkanal (38), mittels welchem die den Sekundärluftkanal (38) durchströmende Sekundärluft in das den Abgastrakt (18) durchströmende Abgas einleitbar ist, wobei der Sekundärluftkanal (38) innerhalb des Turbinengehäuse (42) in den Abgastrakt (18) mündet, und wobei der Sekundärluftkanal (38) wenigstens eine Austrittsöffnung (58) aufweist, an welcher der Sekundärluftkanal (38) endet und dadurch in den Abgastrakt (18) mündet, wobei die den Sekundärluftkanal (38) durchströmende Sekundärluft über die Austrittsöffnung (58) aus dem Sekundärluftkanal (38) ausleitbar und dadurch in den Abgastrakt (18) und in das den Abgastrakt (18) durchströmende Abgas einleitbar ist, dadurch gekennzeichnet, dass innerhalb des Turbinengehäuses (42) eine sich in Umfangsrichtung (64) des Turbinenrads (30) erstreckende Wandung (62) angeordnet ist, die in radialer Richtung (60) des Turbinenrads (30) nach innen von der Austrittsöffnung (58) und von sich in Umfangsrichtung (64) des Turbinenrads (30) an die Austrittsöffnung (58) anschließenden Wandungsbereichen (W) des Turbinengehäuses (42) unter Bildung eines in radialer Richtung (60) des Turbinenrads (30) nach außen durch die Wandungsbereiche (W) und in radialer Richtung (60) des Turbinenrads (30) nach innen durch die Wandung (62) begrenzten und sich in Umfangsrichtung (64) des Turbinenrads (30) erstreckenden Verteilerkanals (66) beabstandet ist, in welchen die Austrittsöffnung (58) mündet, wobei die Wandung (62) in Umfangsrichtung (64) des Turbinenrads (30) aufeinanderfolgende und voneinander beabstandete Durchströmöffnungen (68) aufweist, welche einenends in den Verteilerkanal (66) und andernends in einen in radialer Richtung (60) des Turbinenrads (30) innenseitig der Wandung (62) angeordneten und von dem das Turbinengehäuse (42) durchströmenden Abgas durchströmbaren Bereich (B) münden. Verbrennungskraftmaschine (10) nach Anspruch 1 , dadurch gekennzeichnet, dass der Sekundärluftkanal (38) an einer in Strömungsrichtung des das Turbinengehäuse (42) durchströmenden Abgases stromab zumindest eines Teils des Turbinenrads (30) angeordneten Einleitstelle (E) in den (18) Abgastrakt mündet. Verbrennungskraftmaschine (10) nach Anspruch 2, dadurch gekennzeichnet, dass die Einleitstelle (E) in einem Austrittsbereich (54) der Turbine (26) angeordnet ist, über deren Austrittsbereich (54) Laufradschaufeln (56) des Turbinenrads (30) von dem Abgas abströmbar sind. Verbrennungskraftmaschine (10) nach Anspruch 3, dadurch gekennzeichnet, dass der Austrittsbereich (54) frei von Laufradschaufeln (56) des Turbinenrads (30) ist. Verbrennungskraftmaschine (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Austrittsöffnung (58) in radialer Richtung (60) des Turbinenrads (30) nach innen zumindest teilweise, insbesondere zumindest überwiegend oder vollständig, durch das Turbinenrad (30) überlappt ist. Verbrennungskraftmaschine (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein ein abgastraktseitiges Ende (E1) des Sekundärluftkanals (38) aufweisender Längenbereich (L1) des Sekundärluftkanals (38), welcher an seinem abgastraktseitigen Ende (E1) endet und dadurch in den Abgastrakt (18) mündet, innerhalb des Turbinengehäuse (42) angeordnet ist, wobei der Längenbereich (L1) entlang seiner Umfangsrichtung vollständig umlaufend direkt durch das Turbinengehäuse (42) begrenzt ist. Verbrennungskraftmaschine (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Turbinengehäuse (42) einen Aufnahmebereich (44), insbesondere direkt, begrenzt, wobei das Turbinenrad (30) zumindest teilweise, insbesondere zumindest überwiegend oder vollständig, in dem Aufnahmebereich (44) angeordnet ist. Kraftfahrzeug, mit einer Verbrennungskraftmaschine (10) nach einem der vorhergehenden Ansprüche.
PCT/EP2021/081315 2020-12-03 2021-11-11 Verbrennungskraftmaschine für ein kraftfahrzeug, insbesondere für einen kraftwagen, sowie kraftfahrzeug WO2022117301A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/255,060 US20230417175A1 (en) 2020-12-03 2021-11-11 Combustion Engine for a Motor Vehicle, in Particular for a Car, and Motor Vehicle
CN202180081508.7A CN116547446A (zh) 2020-12-03 2021-11-11 用于机动车尤其是汽车的内燃机以及机动车

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020007366.2A DE102020007366B4 (de) 2020-12-03 2020-12-03 Verbrennungskraftmaschine für ein Kraftfahrzeug, insbesondere für einen Kraftwagen, sowie Kraftfahrzeug
DE102020007366.2 2020-12-03

Publications (1)

Publication Number Publication Date
WO2022117301A1 true WO2022117301A1 (de) 2022-06-09

Family

ID=78770588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/081315 WO2022117301A1 (de) 2020-12-03 2021-11-11 Verbrennungskraftmaschine für ein kraftfahrzeug, insbesondere für einen kraftwagen, sowie kraftfahrzeug

Country Status (4)

Country Link
US (1) US20230417175A1 (de)
CN (1) CN116547446A (de)
DE (1) DE102020007366B4 (de)
WO (1) WO2022117301A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022117716B3 (de) * 2022-07-15 2023-06-07 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Abgassystem einer Brennkraftmaschine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10260779A1 (de) * 2002-12-23 2004-07-01 Daimlerchrysler Ag Abgasturbolader
EP1876335A1 (de) 2006-07-05 2008-01-09 ABB Turbo Systems AG Sekundärluftsystem für Turboladerturbine
DE102010053057A1 (de) 2010-12-01 2012-06-06 Daimler Ag Aufladeeinrichtung für eine Verbrennungskraftmaschine
DE102015006288A1 (de) * 2015-05-15 2015-12-03 Daimler Ag Turbine für einen Abgasturbolader, insbesondere einer Verbrennungskraftmaschine, sowie Antriebseinrichtung für einen Kraftwagen
DE102016117961A1 (de) 2016-09-23 2018-03-29 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Abgassystem eines verbrennungstechnisch betriebenen Kraftfahrzeugs mit Turbolader
DE102017106164A1 (de) 2017-03-22 2018-09-27 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Abgasturbolader
DE102019101576A1 (de) 2019-01-23 2020-07-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Vorrichtung und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10260778A1 (de) * 2002-12-23 2004-07-01 Daimlerchrysler Ag Abgasturbolader für eine Brennkraftmaschine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10260779A1 (de) * 2002-12-23 2004-07-01 Daimlerchrysler Ag Abgasturbolader
EP1876335A1 (de) 2006-07-05 2008-01-09 ABB Turbo Systems AG Sekundärluftsystem für Turboladerturbine
DE102010053057A1 (de) 2010-12-01 2012-06-06 Daimler Ag Aufladeeinrichtung für eine Verbrennungskraftmaschine
DE102015006288A1 (de) * 2015-05-15 2015-12-03 Daimler Ag Turbine für einen Abgasturbolader, insbesondere einer Verbrennungskraftmaschine, sowie Antriebseinrichtung für einen Kraftwagen
DE102016117961A1 (de) 2016-09-23 2018-03-29 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Abgassystem eines verbrennungstechnisch betriebenen Kraftfahrzeugs mit Turbolader
DE102017106164A1 (de) 2017-03-22 2018-09-27 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Abgasturbolader
DE102019101576A1 (de) 2019-01-23 2020-07-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Vorrichtung und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors

Also Published As

Publication number Publication date
DE102020007366B4 (de) 2023-12-14
CN116547446A (zh) 2023-08-04
DE102020007366A1 (de) 2022-06-09
US20230417175A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
AT408785B (de) Aufladeeinrichtung für die ladeluft einer verbrennungskraftmaschine
EP1812698B1 (de) Abgasturbolader für eine brennkraftmaschine
DE102016014254A1 (de) Verfahren zum Aufheizen einer Abgasnachbehandlungseinrichtung eines Kraftfahrzeugs, insbesondere eines Hybridfahrzeugs
DE102007057603B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit einem Abgasturbolader
WO2012072183A1 (de) Aufladeeinrichtung für eine verbrennungskraftmaschine
DE102010053951A1 (de) Turbine für einen Abgasturbolader
WO2022117301A1 (de) Verbrennungskraftmaschine für ein kraftfahrzeug, insbesondere für einen kraftwagen, sowie kraftfahrzeug
DE102021001881A1 (de) Verbrennungskraftmaschine für ein Kraftfahrzeug, insbesondere für einen Kraftwagen
DE102011013496A1 (de) Verbrennungskraftmaschine für einen Kraftwagen
WO2019072521A1 (de) Verbrennungskraftmaschine für ein kraftfahrzeug und kraftfahrzeug mit einer solchen verbrennungskraftmaschine
DE102018005712B3 (de) Verbrennungskraftmaschine für ein Kraftfahrzeug, sowie Verfahren zum Betreiben einer solchen Verbrennungskraftmaschine
DE102017111729A1 (de) Turbolader-Motor
DE102018005460B3 (de) Verbrennungskraftmaschine für ein Kraftfahrzeug, insbesondere für einen Kraftwagen, Verfahren zum Betreiben einer solchen Verbrennungskraftmaschine sowie Kraftfahrzeug mit einer solchen Verbrennungskraftmaschine
WO2022100956A1 (de) Verbrennungskraftmaschine für ein kraftfahrzeug, insbesondere für einen kraftwagen
DE112015003531T5 (de) Öffnungs-/Schliessventilstruktur
DE102020006562A1 (de) Verbrennungskraftmaschine für ein Kraftfahrzeug, insbesondere für einen Kraftwagen, sowie Kraftfahrzeug
DE102023000108B3 (de) Sekundärluftventil für ein Sekundärluftsystem einer Verbrennungskraftmaschine, Verbrennungskraftmaschine sowie Kraftfahrzeug
DE102020127506B4 (de) Verbrennungsmotor
DE102010055101A1 (de) Verdichter, insbesondere für einen Abgasturbolader, sowie Abgasturbolader
DE102022002111A1 (de) Brenner für ein Kraftfahrzeug sowie Kraftfahrzeug mit wenigstens einem solchen Brenner
DE102022002112A1 (de) Brenner für ein Kraftfahrzeug sowie Kraftfahrzeug mit wenigstens einem solchen Brenner
DE102022002119A1 (de) Brenner für ein Kraftfahrzeug sowie Kraftfahrzeug mit wenigstens einem solchen Brenner
DE102021100459A1 (de) Verbrennungskraftmaschine mit zwei Abgasturboladern, Verfahren zum Betreiben einer solchen Verbrennungskraftmaschine sowie Kraftfahrzeug mit einer solchen Verbrennungskraftmaschine
DE102022000415A1 (de) Verbrennungskraftmaschine für ein Kraftfahrzeug, insbesondere für einen Kraftwagen
DE102021001363A1 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine eines Kraftfahrzeugs, insbesondere eines Kraftwagens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814704

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18255060

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180081508.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21814704

Country of ref document: EP

Kind code of ref document: A1