WO2022116913A1 - 一种燃料电池微孔层连续印刷设备及工艺 - Google Patents

一种燃料电池微孔层连续印刷设备及工艺 Download PDF

Info

Publication number
WO2022116913A1
WO2022116913A1 PCT/CN2021/133546 CN2021133546W WO2022116913A1 WO 2022116913 A1 WO2022116913 A1 WO 2022116913A1 CN 2021133546 W CN2021133546 W CN 2021133546W WO 2022116913 A1 WO2022116913 A1 WO 2022116913A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
microporous layer
printing
conveyor belt
fuel cell
Prior art date
Application number
PCT/CN2021/133546
Other languages
English (en)
French (fr)
Inventor
张洪杰
郝金凯
邵志刚
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2022116913A1 publication Critical patent/WO2022116913A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/08Machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/08Machines
    • B41F15/12Machines with auxiliary equipment, e.g. for drying printed articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/14Details
    • B41F15/16Printing tables
    • B41F15/18Supports for workpieces
    • B41F15/20Supports for workpieces with suction-operated elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/14Details
    • B41F15/34Screens, Frames; Holders therefor
    • B41F15/36Screens, Frames; Holders therefor flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • B41F33/02Arrangements of indicating devices, e.g. counters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/12Stencil printing; Silk-screen printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • G01N2021/8427Coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • G01N2021/8438Mutilayers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the field of fuel cells, in particular to a continuous printing device and process for a microporous layer of a fuel cell.
  • the proton exchange membrane fuel cell is a power generation device that directly converts the chemical energy in the fuel and oxidant into electrical energy.
  • the membrane electrode is its core component.
  • the membrane electrode is composed of a proton exchange membrane, a catalyst layer and a gas diffusion layer.
  • GDL gas diffusion layer
  • MPL microporous layer
  • the gas diffusion layer is mainly made of conductive carbon black slurry and uniformly coated on the surface of the hydrophobic treated carbon fiber paper, and is made by high temperature sintering and curing; the coating methods include screen printing, electrospinning, spray printing and coating film formation. , of which screen printing is the most widely used.
  • a preparation method of a gas diffusion layer for a proton exchange membrane fuel cell is disclosed on the patent search website (application number: 201710318918.4).
  • the method is as follows: uniformly disperse conductive carbon powder in a low-boiling alcohol solvent to form uniform carbon black layer slurry; using low concentration water repellent emulsion as the raw material of the water repellent layer, the toner layer slurry and the raw material of the water repellent layer are uniformly coated on the hydrophobic treated porous conductive support layer alternately for many times.
  • the surface is finally heat treated to form a gas diffusion layer, and the coating methods are screen printing, brushing, blade coating, etc.
  • This patent discloses the preparation of slurry and the coating method of the diffusion layer. Screen printing has the advantages of strong adhesion, soft layout, small printing pressure, and strong ink layer coverage. However, for the microporous layer of non-flexible paper, screen printing is used.
  • each microporous layer needs to be positioned with the help of auxiliary equipment such as a press plate during the printing process, and the screen printing itself is limited in size, so it can only achieve single-piece printing of the microporous layer, so it needs to be printed during the printing process.
  • Manual or manual replacement cannot achieve the continuous production process, which affects the production efficiency, which in turn leads to the inability of the screen printing process to be widely used in the commercialization of gas diffusion layers.
  • the purpose of the present invention is to provide a continuous printing equipment and process for the microporous layer of a fuel cell, the advantages of which are that the positioning of the microporous layer with the aid of an auxiliary fixture during the printing process can be omitted, and the batch printing process of the flexible or non-flexible microporous layer can be realized.
  • Productivity is to provide a continuous printing equipment and process for the microporous layer of a fuel cell, the advantages of which are that the positioning of the microporous layer with the aid of an auxiliary fixture during the printing process can be omitted, and the batch printing process of the flexible or non-flexible microporous layer can be realized.
  • a continuous printing device for the microporous layer of a fuel cell comprising a plc system
  • the continuous printing device for the microporous layer of the fuel cell further comprises a conveyor belt assembly for conveying the microporous layer controlled by the plc system and driven by a servo motor, and arranged in sequence along the conveying direction of the conveyor belt assembly
  • the printing processing area, detection area, brushing processing area, secondary detection area, non-conforming product marking area and robotic arm sorting area connected with the circuit signal of the plc system,
  • the conveyor belt assembly includes a base belt, and a plurality of metal support areas are fixedly arranged in a spaced array in the base belt, and any of the metal support areas is flatly fixed on the base belt by a plurality of thin strip-shaped metal sheets that are parallel to each other and arranged at intervals. internal composition;
  • the sheet base belt is provided with strip-shaped adsorption holes and nano-scale micro-adsorption holes which run through the whole of the sheet-base belt; Adsorbing the non-coating area around the microporous layer, and the nano-scale micro adsorption holes are used for adsorbing the coating area of the microporous layer;
  • Both the printing processing area and the brushing processing area include a screen printing machine and a tunnel heating furnace arranged in sequence along the conveying direction; a vacuum suction box is provided below the conveying belt assembly and corresponding to the position of the screen printing machine.
  • the vacuum adsorption box is provided with vacuum adsorption holes which are connected with the strip adsorption holes and nano-scale micro adsorption holes;
  • Each of the vacuum adsorption boxes is provided with electromagnetic sheets that adsorb the metal support area, and a fan is connected to one side of the vacuum adsorption box.
  • the printing processing area includes three screen printing machines, and a tunnel heating furnace arranged at the rear station of each screen printing machine, along the conveying direction, the meshes in the three screen printing machines
  • the mesh numbers of the plate holes are 50-80 meshes, 90-140 meshes, and 150-180 meshes, respectively.
  • the brushing treatment area includes a screen printing machine with a mesh plate hole mesh number of 160-200 meshes and a subsequent station. tunnel heating furnace.
  • the film base tape is provided with limit grooves for embedding the microporous layer above the metal support area, and the limit grooves correspond to the metal support area one-to-one; when the microporous layer is embedded When entering the limit slot, the upper surface of the microporous layer is flush with the upper surface of the base tape, the strip-shaped adsorption holes and the nano-scale micro-adsorption holes are all arranged in the limit slot, and the strip-shaped adsorption holes are distributed at intervals within the limit. At the inner periphery of the position groove, the nano-scale micro adsorption holes are located in the inner region of the position limit groove.
  • the present invention is further set up as follows: the screen printing machine is provided with optical fiber sensors that act on the microporous layer, and when the optical fiber sensor senses the microporous layer, the microporous layer is just below the screen in the screen printing machine.
  • the vacuum adsorption holes on the vacuum adsorption box are connected with the strip adsorption holes and the nano-scale micro adsorption holes.
  • both the detection area and the secondary detection area include a thickness detection device and a defect detection device.
  • the present invention further provides that: the thickness detection device adopts an X-ray thickness detection device or a ⁇ -ray thickness detection device or a ⁇ -ray thickness detection device, and the defect detection device is a CCD imaging system.
  • the tunnel heating furnace is provided with an air outlet and several air outlets; the air outlets are arranged on the top of the furnace body and are perpendicular to the conveyor belt assembly, and the air outlet is arranged at the bottom of the furnace body.
  • the present invention is further configured as follows: the non-conforming product marking area uses electrostatic spraying equipment to spray fluorescent pigments on the non-coating area of the microporous layer, and the robotic arm in the robotic arm sorting area is provided with ultraviolet light for detecting and identifying fluorescent pigments searchlight.
  • the present invention also provides a continuous printing process for the microporous layer of a fuel cell, the process comprising the following steps:
  • step (1) batches of microporous layers are placed in the metal support area of the conveyor belt assembly in turn, and transferred to the printing processing area in turn.
  • the plc system controls the conveyor belt assembly to stop.
  • the electromagnetic sheet realizes the adsorption of the metal support area
  • the vacuum adsorption box realizes the vacuum adsorption and positioning of the microporous layer
  • the screen printing machine realizes the printing of the microporous layer, and after the printing is completed, it is dried in a tunnel heating furnace;
  • step (2) the microporous layer is transported in the printing processing area, and step (1) is repeated. After continuous printing by three screen printing machines in total, the gradient distribution of the slurry on the microporous layer is realized, and the gas diffusion is obtained.
  • Floor After continuous printing by three screen printing machines in total, the gradient distribution of the slurry on the microporous layer is realized, and the gas diffusion is obtained.
  • Step (3) the gas diffusion layer passes through the thickness detection of the thickness detection device and the defect detection of the defect detection device, and the detection data is transmitted to the display screen of the plc system;
  • step (4) through the comparison of the detection data in step (3), the unqualified gas diffusion layer needs to go through the brushing treatment of the brushing area again, and then go through the detection of the secondary detection area, and the detection data is sent to the plc control again.
  • the still unqualified gas diffusion layer is transferred to the marking area, and after the electrostatic spraying equipment sprays fluorescent pigments on the non-coating area of the gas diffusion layer, it is identified and picked up by the robotic arm sorting area; after step (3) ), the qualified gas diffusion layer is directly transported to the collection by the conveyor belt assembly.
  • the present invention is further arranged as follows: in step (1), step (2) and step (4), after the microporous layer is printed by the screen printing machine or the gas diffusion layer is repaired by the screen printing machine, the screen is controlled first. The screen plate of the printing machine is lifted and withdrawn, and then the electromagnetic adsorption of the metal support area is cancelled, and then the vacuum adsorption of the microporous layer or the gas diffusion layer is cancelled, and finally the transfer is carried out.
  • the present invention has the following beneficial effects:
  • This equipment is equipped with multiple printing equipments to realize continuous printing of the microporous layer.
  • a detection area, a brushing treatment area, a non-conforming product marking area and a robotic arm sorting area are set up to realize the printing, drying, and cleaning of the microporous layer.
  • the integrated intelligent operation process of detection, brushing, marking and picking improves work efficiency;
  • the equipment adopts a vacuum adsorption box to realize the positioning of the microporous layer at the printing position, which eliminates the need to use auxiliary fixtures to locate the microporous layer in the existing printing process, which saves the tedious fixing steps and achieves Continuous production effect, and can be applied to continuous printing preparation of flexible or non-flexible microporous layer;
  • the conveyor belt assembly of this equipment adopts the combination of sheet base belt and thin strip metal sheet, which can ensure the overall toughness of the conveyor belt.
  • the metal support area formed by the metal sheet can realize the support function for the microporous layer printing, and the vacuum adsorption box
  • there is an electromagnetic sheet that acts on the metal support area which can adsorb the metal support to achieve pre-positioning, ensure that the conveyor belt will not shake during the printing process, and ensure the stability of the printing process;
  • several thin strip-shaped metal sheets are used to level
  • the overall metal sheet may be in contact with the conveying mechanism in a large area during the transmission process, resulting in a large deformation that cannot be restored to its original state.
  • the metal sheet is more conducive to the overall transmission of the belt mechanism.
  • strip adsorption holes and nanoscale adsorption holes in the metal support area of the equipment.
  • the strip adsorption holes can achieve a strong adsorption effect on the non-coated area around the microporous layer, and the nanoscale adsorption holes in the middle can also be used. Realize weak adsorption to the microporous layer, so as to avoid the bad phenomenon that the paste leaks through the microporous layer and runs through the conveyor belt during the printing process;
  • the metal support area of the transmission belt assembly is provided with a limit groove for embedding the microporous layer, and when the microporous layer is embedded, the upper surface of the microporous layer is flush with the upper surface of the conveyor belt, so that the microporous layer is not affected.
  • each microporous layer is limited on the conveyor belt assembly to ensure the smooth transportation of the microporous layer, and avoid large displacement during the transportation of the microporous layer, which cannot be accurately transferred to the screen printing machine. directly below the plate, resulting in printing misalignment and other undesirable phenomena;
  • the air outlet in the tunnel heating furnace in this equipment needs to be perpendicular to the conveyor belt assembly, that is, the wind direction of the air outlet is also perpendicular to the microporous layer on the conveyor belt, so as to further limit the transmission process of the microporous layer and avoid the microporous layer.
  • the coating surface is blown away during the drying process, resulting in scratches and damage to the coating surface;
  • Fig. 1 is the process block diagram of this equipment
  • Fig. 2 is the schematic diagram of printing processing area in this equipment
  • Figure 3 is a schematic diagram of the strip-shaped adsorption holes, nano-scale micro-adsorption holes and limit grooves on the conveyor belt assembly in the equipment;
  • FIG. 4 is a schematic diagram of the positional relationship between a metal support area and a limit groove formed by a plurality of thin strip-shaped metal sheets in the conveyor belt assembly;
  • Fig. 5 is a partial enlarged view of the limiting groove and the internal structure in Fig. 3;
  • Fig. 6 is the structural representation of vacuum adsorption box
  • Fig. 7 is the structural representation of tunnel heating furnace
  • Figure 8 is a schematic diagram of the structure of the robotic arm sorting area
  • Figure 9 is a block diagram of the system connection of the device.
  • vacuum adsorption box 1-1, fan; 1-2, vacuum adsorption hole; 1-3, electromagnetic sheet; 2, conveyor belt assembly; 2-1, sheet base belt; 2-2, metal support area; 2-2-1, thin strip metal sheet; 3, screen printing machine; 3-1, optical fiber sensor; 3-2, screen plate; 4, tunnel heating furnace; 4-1, air outlet; 4-2, exhaust Air outlet; 5. Auxiliary rotating roller; 6. Strip adsorption hole; 7. Nano-scale micro adsorption hole; 8. Limit slot; 9. Robot arm; 9-1, UV searchlight; 9-2, Sorting adsorption plate 10. Microporous layer.
  • a fuel cell microporous layer continuous printing equipment includes the following devices:
  • the conveyor belt assembly 2 includes a sheet base belt 2-1 wound on a roller to form a loop, as shown in Figures 1 and 4, a plurality of metal support areas 2-2 are fixedly arranged in an spaced array in the sheet base belt 2-1, Any metal support area 2-2 is composed of a plurality of thin strip-shaped metal sheets 2-2-1 that are parallel to each other and arranged at intervals, and are fixed to the inside of the base belt 2-1.
  • the conveyor belt assembly 2 is driven by a servo motor to realize micro The transmission of the hole layer is precisely controlled by the servo controller in the servo motor.
  • the limit groove 8 is not opened to expose the metal support area 2-2, that is, the film
  • the base tape 2-1 protects the metal support area 2-2 from corrosion and moisture.
  • the microporous layer is embedded in the limit groove 8, the upper surface of the microporous layer is flush with the upper surface of the base tape 2-1.
  • the limiting groove 8 is provided with a strip-shaped adsorption hole 6 that can achieve strong adsorption to the non-coating area at the four peripheral ends of the microporous layer, and a nano-scale micro-adsorption hole 7 that adsorbs the coating area of the microporous layer.
  • the adsorption holes 6 are distributed at intervals on the inner periphery of the limit groove 8, and the nano-scale micro adsorption holes 7 are located in the inner area of the limit groove 8. As shown in Figure 3-5, the strip-shaped adsorption holes 6 in the limit groove 8 The nano-scale micro-adsorption holes 7 all run through the whole of the base tape 1 at the same time to realize the adsorption of the micro-porous layer.
  • a plurality of groups of auxiliary traction mechanisms are arranged in an array on both sides of the conveyor belt assembly 2 along the conveying direction, and each group of auxiliary traction mechanisms is composed of two auxiliary rotating rollers 5.
  • the transmission belt assembly 2 is interspersed between the two auxiliary rotating rollers 5 of each set of auxiliary traction mechanisms, that is, the two auxiliary rotating rollers 5 realize further transmission and support for the conveyor belt.
  • the printing processing area and the touch-up processing area the printing processing area consists of three screen printing machines 3, as shown in Figures 1 and 2, and are arranged along the conveying direction of the conveyor belt and located behind each screen printing machine 3
  • the number of screen holes in the tunnel heating furnace 4 at the station and the three screen printing machines 3 are 70 meshes, 120 meshes, and 160 meshes, respectively.
  • the brushing treatment area includes a screen printing machine 3 and a tunnel heating furnace 4 located at the subsequent station.
  • the screen printing machine 3 has 180 meshes on the screen 3-2 of the screen.
  • the control of the mesh number of 3-2 holes in the 3-screen screen of the printing machine realizes the gradient paste printing of the microporous layer, and meets the loading and thickness of the paste required for the microporous layer, reducing the number of printing times and the demand for printing machines.
  • the air outlets 4-1 in the tunnel heating furnace 4 are all arranged on the top of the furnace body and are perpendicular to the conveyor belt assembly 2, and the air outlet 4-2 is arranged at the bottom of the furnace body.
  • the vacuum suction box 1 is arranged below the conveyor belt assembly 2 and also directly below the screen plate of each screen printing machine 3, so as to realize the transfer of the microporous layer directly below the screen printing machine 3.
  • the vacuum adsorption box 1 is provided with electromagnetic sheets 1-3 that are adsorbed to the metal support area 2-2, as shown in FIGS. 1 and 6 .
  • the optical fiber sensor 3-1 is installed on the screen printing machine 3 and used to identify the arrival of the microporous layer.
  • the optical fiber sensor 3-1 senses the microporous layer
  • the microporous layer It is just below the screen plate 3-2 in the screen printing machine 3, and if the above-mentioned magnet sheet is turned on at this time, the metal support area 2-2 is adsorbed on the vacuum suction box 1, and the vacuum suction box 1 and the
  • the opposite surfaces of the conveyor belt assembly are provided with vacuum adsorption holes 1-2.
  • the vacuum adsorption holes 1-2 are connected with the strip adsorption holes 6 and the nano-scale micro adsorption holes 7.
  • the positioning of the microporous layer, and then the positioning of the metal support area 2-2, ensures that the strip-shaped adsorption holes 6 and the nano-scale micro-adsorption holes 7 can realize vacuum adsorption on the microporous layer, and ensure the vacuum adsorption of the overall microporous layer. uniformity.
  • the detection area and the secondary detection area are composed of a thickness detection device and a defect detection device.
  • the thickness detection device adopts an X-ray thickness detection device or a ⁇ -ray thickness detection device or a ⁇ -ray thickness detection device.
  • the device is a CCD imaging system, as shown in Figure 1.
  • the non-conforming product marking area uses electrostatic spraying equipment to spray fluorescent pigments on the non-coated area of the microporous layer, as shown in Figure 1.
  • the robotic arm 9 in the sorting area of robotic arm 9 is provided with an ultraviolet searchlight 9-1 for detecting and identifying fluorescent pigments and an adsorption sorting plate for vacuum adsorption and picking of the gas diffusion layer, as shown in Figure 8 shown.
  • the Plc system is connected with the servo controller of the above-mentioned servo motor, the fan 1-1 and the electromagnetic sheet 1-3 in the vacuum adsorption box 1, the printing processing area, the detection area, the brushing area, and the secondary detection area.
  • the non-conforming product marking area and the 9 sorting area of the robotic arm are connected to the circuit signal, and the opening and closing of the work of the above parts are programmed and controlled in advance.
  • the present invention also provides a process for realizing the continuous printing of the microporous layer of the fuel cell by using the above-mentioned equipment. As shown in FIG. 1 , the process includes the following steps:
  • step (1) batches of microporous layers are placed in the limit slot 8 of the conveyor belt assembly 2 in turn, and the transmission and transportation are realized by the drive control of the servo motor and the transmission of the base belt 2-1;
  • step (2) the microporous layer is sequentially transferred to the printing processing area, and when it reaches the first screen printing machine 3, after the optical fiber sensor 3-1 on the screen printing machine 3 senses the microporous layer, the plc system controls the conveyor belt.
  • the assembly 2 stops conveying, and at the same time, the electromagnetic sheet 1-3 realizes the adsorption of the metal support area 2-2, the vacuum adsorption box 1 realizes the vacuum adsorption and positioning of the microporous layer, and then the screen printing machine 3 realizes the printing of the microporous layer.
  • the mesh of the screen 3-2 of the screen printing machine 3 is set to 70 mesh, and the gas diffusion layer 1 with a total thickness of 80-120 ⁇ m can be obtained in this printing;
  • Step (3) after the printing is completed, the plc system first controls the screen 3-2 of the screen printing machine 3 to rise and evacuate from the microporous layer, then cancel the electromagnetic adsorption to the metal support area 2-2, and then cancel the gas The vacuum adsorption of diffusion layer 1, and finally the servo motor works, and the conveyor belt continues to convey along the conveying direction;
  • Step (4) as soon as the gas diffusion layer continues to be transported in the printing processing area, steps (1)-(3) are repeated, and a total of three screen printers 3 continuously print to realize the gradient of the paste on the microporous layer. After distribution, a gas diffusion layer is obtained;
  • Step (5) the gas diffusion layer is then transmitted through the thickness detection of the thickness detection device and the defect detection of the defect detection device, and the detection data is transmitted to the display screen of the plc system;
  • step (6) through the comparison of the detection data in step (5), the thickness of the unqualified gas diffusion layer and the gas diffusion layer with obvious blank spots on the coated surface need to be re-brushed by the screen printing machine 3 in the area of the re-brushing area.
  • the screen printing machine 3 in the processing area has a mesh number of 160 meshes for the screen plate 3-2, which can print a uniform thin layer, meet the requirements of small thickness and cover the defects, and obtain a qualified gas diffusion layer, which is then passed through
  • the detection data is transmitted to the PLC control system again.
  • the gas diffusion layer that is still unqualified is transmitted to the marking area.
  • the electrostatic spraying equipment sprays fluorescent pigments on the non-coating area of the gas diffusion layer, It is recognized and picked up by the sorting area of the robotic arm 9; after the comparison of the detection data in step (5), the qualified gas diffusion layer is directly conveyed by the conveyor belt assembly 2 to the collection.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Fuel Cell (AREA)
  • Printing Methods (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明公开一种燃料电池微孔层连续印刷设备及印刷工艺,设备包括传送带组件、印刷处理区、检测区、补刷处理区、二次检测区、不合格品标记区以及机械臂分拣区,实现对微孔层的印刷、烘干、检测、补刷、标记、挑拣的一体化智能操作工序,提高了工作效率;传送带组件采用片基带与细条形金属薄片结合,一来可以保证传送带整体韧性,同时由金属薄片构成的金属支撑区可以实现对微孔层印刷时的支撑作用;印刷处理区以及补刷处理区处均设置带有电磁片的真空吸附箱,可以对金属支撑进行吸附实现预先定位,保证印刷过程中不会出现传送带晃动现象,保证印刷过程中的平稳性。

Description

一种燃料电池微孔层连续印刷设备及工艺 技术领域
本发明涉及燃料电池领域,尤其涉及一种燃料电池微孔层连续印刷设备及工艺。
背景技术
质子交换膜燃料电池是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置,膜电极是其核心组件,膜电极由质子交换膜、催化剂层以及气体扩散层构成,质子交换膜燃料电池(PEMFC)气体扩散层(GDL)中反应气和液态水的传质过程受其结构和性质的影响显著,引入微孔层(MPL)可以改善GDL中的传质,并且MPL的制备方法可以显著影响MPL和GDL的结构和性质。
气体扩散层主要选用导电碳黑浆料均匀涂覆在经过疏水处理的碳纤维纸表面,经过高温烧结固化制成;涂覆方式有丝网印刷、静电纺丝、喷印刷涂和涂覆成膜方式,其中丝网印刷方式应用最为广泛。专利检索网站上公开了一种质子交换膜燃料电池用气体扩散层的制备方法(申请号:201710318918.4),方法如下:将导电碳粉均匀分散在低沸点的醇类溶剂中,形成均匀的炭黑层浆料;将低浓度的憎水剂乳液作为憎水层的原料,分别多次交替地将碳粉层浆料和憎水层的原料均匀的涂覆在经憎水处理的多孔导电支撑层的表面,最后经过热处理形成气体扩散层,涂覆方式为丝网印刷、刷涂、刮涂等。该专利公开了扩散层制备浆料以及涂覆方式,丝网印刷具有附着力强、版面柔软印压小、墨层覆盖力强等优点,但是对于非柔性纸质的微孔层采用丝网印刷制备时,每片微孔层都需要借助压板等辅助设备实现其印刷过程中的定位,并且丝网印刷本身网版尺寸限制,只能实现对微孔层单片印刷,故而在印刷过程中需要人工或者手动进行更换,达不到连续生产工艺,影响了生产效率,进而导致丝网印刷工艺在气体扩散层的商业化上不能得到较多的应用。
发明内容
本发明的目的是提供一种燃料电池微孔层连续印刷设备及工艺,其优点在于,可以省却印刷过程中借助辅助夹具对微孔层定位,实现柔性或者非柔性微孔层批量印刷工艺,提高生产效率。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种燃料电池微孔层连续印刷设备,包括plc系统,燃料电池微孔层连续印刷设备还包括由plc系统控制、由伺服电机驱动的微孔层传送用传送带组件,沿传送带组件传送方向依次设置并与plc系统电路信号连接的印刷处理区、检测区、补刷处理区、二次检测区、不合格品标记区以及机械臂分拣区,
所述传送带组件包括片基带,所述片基带内间隔阵列固定设置多个金属支撑区,任一所述金属支撑区由多个相互平行并间隔排布的细条形金属薄片平铺固定于片基带内部构成;
所述片基带上设有贯穿片基带整体的条形吸附孔和纳米级微型吸附孔;所述条形吸附孔和纳米级微型吸附孔均位于金属支撑区内,所述条形吸附孔用于对微孔层四周的非涂敷区进行吸附,所述纳米级微型吸附孔用于对微孔层涂敷区进行吸附;
所述印刷处理区以及补刷处理区均包括沿传送方向依次设置的丝网印刷机与隧道加热炉;所述传送带组件下方并与丝网印刷机位置对应处均设有真空吸附箱,所述真空吸附箱设有与条形吸附孔、纳米级微型吸附孔相通真空吸附孔;
所述真空吸附箱内均设有对金属支撑区吸附的电磁片,所述真空吸附箱的一侧连有风机。
本发明进一步设置为:所述印刷处理区包括三台丝网印刷机,以及设置在每台丝网印刷机后工位处的隧道加热炉,沿传送方向,三台丝网印刷机中的网版孔目数分别为50-80目,90-140目,150-180目,所述补刷处理区内包括一台网版孔目数为160-200目的丝网印刷机以及其后工位的隧道加热炉。
本发明进一步设置为:所述片基带上位于金属支撑区的上方均设有供微孔层嵌置的限位槽,所述限位槽与金属支撑区一一对应;当微孔层嵌置入限位槽内时,微孔层上表面与片基带上表面平齐,所述条形吸附孔以及纳米级微型吸附孔均设置在限位槽内,所述条形吸附孔间隔分布于限位槽内周边处,所述纳米级微型吸附孔位于限位槽内部区域。
本发明进一步设置为:所述丝网印刷机上均设有对微孔层作用的光纤传感器,当光纤传感器感应到微孔层时,微孔层正处于丝网印刷机中网版的正下方位置处,当金属支撑区吸附于真空吸附箱上时,真空吸附箱上的真空吸附孔与条形吸附孔、纳米级微型吸附孔相通。
本发明进一步设置为:所述检测区以及二次检测区均包括厚度检测装置以及缺陷检测装置。
本发明进一步设置为:所述厚度检测装置采用X射线厚度检测装置或者γ射线厚度检测装置或者β射线厚度检测装置,所述缺陷检测装置为CCD成像系统。
本发明进一步设置为:所述隧道加热炉设有排风口和若干出风口;所述出风口均设置在炉体的顶部并垂直于传送带组件,所述排风口设置在炉体的底部。
本发明进一步设置为:所述不合格品标记区采用静电喷涂设备对微孔层的非涂敷区喷涂荧光颜料,所述机械臂分拣区中的机械臂上设置对荧光颜料检测识别的紫外探照灯。
本发明还提供一种燃料电池微孔层连续印刷工艺,所述工艺包括以下步骤:
步骤(1),批量的微孔层依次放置在传送带组件的金属支撑区内,并依次传送至印刷处理区,丝网印刷机上的光纤传感器感应到微孔层后,通过plc系统控制传送带组件停止传送,同时电磁片实现对金属支撑区的吸附,真空吸附箱实现对微孔层的真空吸附定位,之后丝网印刷机实现对微孔层的印刷,印刷完成后经过隧道加热炉进行烘干;
步骤(2),微孔层在印刷处理区内传送,重复步骤(1),总共经过三台丝网印刷机的连续印刷,实现浆料在微孔层上的梯度式分布后,得到气体扩散层;
步骤(3),气体扩散层再经过厚度检测装置的厚度检测、缺陷检测装置的缺陷检测,检测数据传送至plc系统的显示屏中;
步骤(4),经过步骤(3)中的检测数据对比,不合格的气体扩散层需再次经过补刷处区的补刷处理后再经过二次检测区的检测,检测数据再次传送至plc控制系统内,比对后,依旧不合格的气体扩散层传送至标记区由静电喷涂设备在气体扩散层的非涂敷区喷涂荧光颜料后,被机械臂分拣区识别捡出;经过步骤(3)中的检测数据对比,合格的气体扩散层则直接由传送带组件传送至收集。
本发明进一步设置为:步骤(1)、步骤(2)以及步骤(4)中,微孔层经过丝网印刷机的印刷或者气体扩散层经过丝网印刷机的补刷后,先控制丝网印刷机的网版上升撤离,之后撤销对金属支撑区的电磁吸附,再撤销对微孔层或气体扩散层的真空吸附,最后再进行传送。
综上所述,本发明具有以下有益效果:
1、本设备具备多台印刷设备实现对微孔层连续印刷,同时设置检测区、补刷处理区、不合格品标记区以及机械臂分拣区,实现对微孔层的印刷、烘干、检测、补刷、标记、挑拣的一体化智能操作工序,提高了工作效率;
并且,本设备采用真空吸附箱实现对处于印刷位置处的微孔层的定位,去除了现有印刷工艺中,需要借助辅助夹具等对微孔层的定位,即省却了繁琐的固定步骤,达到连续化生产效果,并且可以适用于柔性或者非柔性微孔层的连续印刷制备;
进一步的,本设备的传送带组件采用片基带与细条形金属薄片结合,一来可以保证传送带整体韧性,同时由金属薄片构成的金属支撑区可以实现对微孔层印刷时的支撑作用,真空吸附箱内同时设置对金属支撑区作用的电磁片,可以对金属支撑进行吸附实现预先定位,保证印刷过程中不会出现传送带晃动现象,保证印刷过程中的平稳性;同时采用若干个细条形金属薄片平铺设置于片基带内,而非采用一块整体的金属片,主要考虑整体金属 片传送过程中可能出现与传送机构大面积接触后导致出现较大变形无法恢复原状的情况,阵列平铺的细条形金属薄片更有利于传动带机构的整体传送。
2、本设备的金属支撑区内设置条形吸附孔和纳米级吸附孔,条形吸附孔可以实现对微孔层周边非涂覆区的较强吸附作用,同时中间的纳米级吸附孔也可以实现对微孔层弱吸附,从而避免印刷过程中浆料透过微孔层滴漏贯穿传送带的不良现象;
3、本设备的印刷处理区中仅采用了三台丝网印刷机,通过对三个丝网印刷机网版孔目数的控制,实现对微孔层梯度式浆料印刷,并满足微孔层所需浆料的担载量以及厚度,减少了印刷次数和印刷机器的需求;
4、传动带组件的金属支撑区处设置供微孔层嵌置的限位槽,并且当微孔层嵌置入内时,微孔层上表面与传送带上表面平齐,从而在不影响微孔层印刷工艺同时,使每片微孔层均在传送带组件上得到限位,保证微孔层的运输平稳性,避免微孔层运输中出现较大位移,不能准确的传送至丝网印刷机网版的正下方,导致印刷错位等不良现象;
5、本设备中隧道加热炉内的出风口需垂直于传送带组件,即出风口的风向也垂直于传送带上的微孔层,进而实现对微孔层传送过程中的进一步限位,避免微孔层烘干过程中被吹跑导致涂覆面刮花损坏等不良现象;
6、在本燃料电池微孔层连续印刷工艺中,微孔层印刷完毕后,需先控制丝网印刷机的网版上升撤离,保证此时微孔层依旧吸附于真空吸附箱上,避免微孔层被网版粘结带离的现象,之后再撤销对金属支撑区的电磁吸附,保证微孔层依旧吸附于真空吸附箱上,避免传送带组件恢复原位过程中有跳动现象导致微孔层发生较大位移,影响后续印刷工序。
附图说明
图1是本设备的工艺框图;
图2是本设备中印刷处理区的示意图;
图3是本设备中传送带组件上条形吸附孔、纳米级微型吸附孔以及限位槽的示意图;
图4是传送带组件中由多片细条形金属薄片构成的金属支撑区与限位槽的位置关系示意图;
图5为图3中限位槽及内部结构的局部放大图;
图6是真空吸附箱的结构示意图;
图7是隧道加热炉的结构示意图;
图8是机械臂分拣区内的结构示意图;
图9是本设备的系统连接框图。
图中:1、真空吸附箱;1-1、风机;1-2、真空吸附孔;1-3、电磁片;2、传送带组件;2-1、片基带;2-2、金属支撑区;2-2-1、细条形金属薄片;3、丝网印刷机;3-1、光纤传感器;3-2、网版;4、隧道加热炉;4-1、出风口;4-2、排风口;5、辅助转动辊;6、条形吸附孔;7、纳米级微型吸附孔;8、限位槽;9、机械臂;9-1、紫外探照灯;9-2、分拣吸附板;10、微孔层。
具体实施方式
以下结合附图对本发明作进一步详细说明。
实施例
一种燃料电池微孔层连续印刷设备,如图1所示,包括以下装置:
传送带组件2,传送带组件2包括卷绕在辊轮上形成回路的片基带2-1,如图1和4所示,片基带2-1内间隔阵列固定设置多个金属支撑区2-2,任一金属支撑区2-2由多个相互平行并间隔排布的细条形金属薄片2-2-1平铺固定于片基带2-1内部构成,本传送带组件2由伺服电机驱动实现对微孔层的传送,并通过伺服电机中的伺服控制器进行精准的传送控制。同时片基带2-1上位于金属支撑区2-2的上方设有供微孔层完全嵌置的限位槽8,限位槽8未开设至将金属支撑区2-2暴露在外,即片基带2-1对金属支撑区2-2起到防腐、防潮等保护作用;当微孔层嵌置入限位槽8内时,微孔层上表面与片基带2-1上表面平齐,限位槽8内设有对微孔层四周边端的非涂敷区实现较强吸附的条形吸附孔6,以及对微孔层涂敷区吸附的纳米级微型吸附孔7,所述条形吸附孔6间隔分布于限位槽8内周边处,所述纳米级微型吸附孔7位于限位槽8内部区域,如图3-5所示,处于限位槽8内的条形吸附孔6、纳米级微型吸附孔7均同时贯穿片基带1整体以实现对微孔层的吸附作用。
如图3所示,为了提高本传送带组件2的传送稳定性,在传送带组件2沿其传送方向的两侧阵列设置多组辅助牵引机构,每组辅助牵引机构由两个辅助转动辊5构成,传动带组件2穿插于每组辅助牵引机构的两个辅助转动辊5之间,即两个辅助转动辊5实现对传送带的进一步传送以及支撑作用。
印刷处理区和补刷处理区,印刷处理区由印刷处理区包括三台丝网印刷机3,如图1和2所示,以及设置在沿传送带传送方向并位于每台丝网印刷机3后工位处的隧道加热炉4,三台丝网印刷机3中的网版孔目数分别为70目,120目,160目。补刷处理区内包括一台丝网印刷机3和位于其后工位的隧道加热炉4,该丝网印刷机3的网版3-2孔目数为180目,通过对三个丝网印刷机3网版3-2孔目数的控制,实现对微孔层梯度式浆料印刷,并满足微孔层所需浆料的担载量以及厚度,减少了印刷次数和印刷机器的需求。同时隧道加热炉4 内的出风口4-1均设置在炉体的顶部并垂直于传送带组件2,其排风口4-2设置在炉体的底部。
真空吸附箱1,真空吸附箱1设置在传送带组件2的下方同时也位于每台丝网印刷机3网版的正下方,以实现对传送于丝网印刷机3正下方处的微孔层的吸附定位,同时真空吸附箱1内均设有对金属支撑区2-2吸附的电磁片1-3,如图1和6所示。
光纤传感器3-1,如图2所示,光纤传感器3-1设置在丝网印刷机3上并用来识别微孔层的到来,当光纤传感器3-1感应到微孔层时,微孔层正处于丝网印刷机3中网版3-2的正下方位置处,并且,此时若开启上述磁体片,金属支撑区2-2吸附于真空吸附箱1上,真空吸附箱1上、与传送带组件的相对的表面上设有真空吸附孔1-2,真空吸附孔1-2与条形吸附孔6、纳米级微型吸附孔7均相通,真空吸附箱1通过光纤传感器3-1实现对微孔层的定位,进而实现对金属支撑区2-2的定位,保证条形吸附孔6、纳米级微型吸附孔7均可以对微孔层实现真空吸附,保证对微孔层整体真空吸附的均匀性。
检测区和二次检测区,检测区以及二次检测区均由厚度检测装置以及缺陷检测装置组成,厚度检测装置采用X射线厚度检测装置或者γ射线厚度检测装置或者β射线厚度检测装置,缺陷检测装置为CCD成像系统,如图1所示。
不合格品标记区,不合格品标记区采用静电喷涂设备对微孔层的非涂敷区喷涂荧光颜料,如图1所示。
机械臂9分拣区,机械臂9分拣区中的机械臂9上设置对荧光颜料检测识别的紫外探照灯9-1以及对气体扩散层真空吸附并拣取的吸附分拣板,如图8所示。
Plc系统,如图9所示,与上述伺服电机的伺服控制器、真空吸附箱1内的风机1-1以及电磁片1-3、印刷处理区、检测区、补刷区、二次检测区、不合格品标记区、机械臂9分拣区电路信号连接,对上述各个部分的工作开启以及关闭进行事先编程控制。
本发明还提供利用上述设备实现燃料电池微孔层连续印刷的工艺,如图1所示,工艺包括以下步骤:
步骤(1),批量的微孔层依次放置在传送带组件2的限位槽8内,通过伺服电机的驱动控制以及片基带2-1的传动实现传送运输;
步骤(2),微孔层依次传送至印刷处理区,到达第一台丝网印刷机3处时,丝网印刷机3上的光纤传感器3-1感应到微孔层后,plc系统控制传送带组件2停止传送,同时电磁片1-3实现对金属支撑区2-2的吸附,真空吸附箱1实现对微孔层的真空吸附定位,之后丝网印刷机3实现对微孔层的印刷第一次印刷,此台丝网印刷机3的网版3-2的孔目设置为 70目,此次印刷即可以得到总厚为80-120μm的气体扩散层一;
步骤(3),印刷完成后,plc系统先控制该丝网印刷机3的网版3-2上升从微孔层处撤离,之后撤销对金属支撑区2-2的电磁吸附,再撤销对气体扩散层一的真空吸附,最后伺服电机工作,传送带沿传送方向继续传送;
步骤(4),气体扩散层一继续在印刷处理区内传送,重复步骤(1)-(3),总共经过三台丝网印刷机3的连续印刷,实现浆料在微孔层上的梯度式分布后,得到气体扩散层;
步骤(5),气体扩散层再传送经过厚度检测装置的厚度检测、缺陷检测装置的缺陷检测,检测数据传送至plc系统的显示屏中;
步骤(6),经过步骤(5)中的检测数据对比,厚度不合格以及涂覆面有明显空白点的气体扩散层需再次经过补刷处区处的丝网印刷机3的补刷处理,补刷处理区的丝网印刷机3网版3-2的孔目数为160目,可以印刷出均匀的薄层,满足较小的厚度需求并覆盖缺陷处,得到合格的气体扩散层,之后再经过二次检测区的检测,检测数据再次传送至plc控制系统内,比对后,依旧不合格的气体扩散层传送至标记区由静电喷涂设备在气体扩散层的非涂敷区喷涂荧光颜料后,被机械臂9分拣区识别捡出;经过步骤(5)中的检测数据对比,合格的气体扩散层则直接由传送带组件2传送至收集。
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。

Claims (10)

  1. 一种燃料电池微孔层连续印刷设备,包括plc系统,其特征在于:所述燃料电池微孔层连续印刷设备包括微孔层传送用传送带组件(2);沿传送带组件(2)传送方向,所述设备依次设置均与plc系统电路信号连接的印刷处理区、检测区、补刷处理区、二次检测区、不合格品标记区以及机械臂(9)分拣区;
    所述传送带组件(2)包括片基带(2-1),所述片基带(2-1)内间隔阵列固定设置多个金属支撑区(2-2),任一所述金属支撑区(2-2)由多个相互平行并间隔排布的细条形金属薄片(2-2-1)平铺固定于片基带(2-1)内部构成;
    所述片基带(2-1)上设有贯穿片基带(2-1)整体的条形吸附孔(6)和纳米级微型吸附孔(7);所述条形吸附孔(6)和纳米级微型吸附孔(7)均位于金属支撑区(2-2)内,所述条形吸附孔(6)用于对微孔层四周的非涂敷区进行吸附,所述纳米级微型吸附孔(7)用于对微孔层涂敷区进行吸附;
    所述印刷处理区以及补刷处理区均包括沿传送方向依次设置的丝网印刷机(3)与隧道加热炉(4);
    所述传送带组件(2)下方并与丝网印刷机(3)位置对应处均设有真空吸附箱(1),所述真空吸附箱(1)上设有与条形吸附孔(6)、纳米级微型吸附孔(7)相通的真空吸附孔(1-2);
    所述真空吸附箱(1)内设有对金属支撑区(2-2)吸附的电磁片(1-3);所述真空吸附箱的一侧连有风机。
  2. 根据权利要求1所述的一种燃料电池微孔层连续印刷设备,其特征在于:所述片基带(2-1)上并位于金属支撑区(2-2)的上方均设有供微孔层嵌置的限位槽(8),所述限位槽(8)与金属支撑区(2-2)一一对应;当微孔层嵌入限位槽(8)时,微孔层上表面与片基带(2-1)上表面平齐,所述条形吸附孔(6)间隔分布于限位槽(8)内周边处,所述纳米级微型吸附孔(7)位于限位槽(8)内部区域。
  3. 根据权利要求1所述的一种燃料电池微孔层连续印刷设备,其特征在于:所述印刷处理区包括三台丝网印刷机(3),以及设置在每台丝网印刷机(3)后工位处的隧道加热炉(4);沿传送方向,所述三台丝网印刷机(3)中的网版(3-2)孔目数分别为50-80目,90-140目,150-180目;
    所述补刷处理区包括一台网版孔目数为160-200目的丝网印刷机(3)以及其后工位的隧道加热炉(4)。
  4. 根据权利要求3所述的一种燃料电池微孔层连续印刷设备,其特征在于:所述丝网印刷机(3)上设有感应微孔层的光纤传感器(3-1);当光纤传感器(3-1)感应到微孔层时,微孔层正处于丝网印刷机(3)中网版(3-2)的正下方位置处,当金属支撑区(2-2)吸附于真空吸附箱(1)上 时,真空吸附箱(1)上的真空吸附孔(1-2)与条形吸附孔(6)、纳米级微型吸附孔(7)相通。
  5. 根据权利要求1所述的一种燃料电池微孔层连续印刷设备,其特征在于:所述隧道加热炉(4)设有排风口(4-2)和若干出风口(4-1);所述出风口(4-1)均设置在炉体的顶部并垂直于传送带组件(2),所述排风口(4-2)设置在炉体的底部。
  6. 根据权利要求1所述的一种燃料电池微孔层连续印刷设备,其特征在于:所述检测区以及二次检测区均包括厚度检测装置以及缺陷检测装置。
  7. 根据权利要求6所述的一种燃料电池微孔层连续印刷设备,其特征在于:所述厚度检测装置采用X射线厚度检测装置或者γ射线厚度检测装置或者β射线厚度检测装置,所述缺陷检测装置为CCD成像系统。
  8. 根据权利要求1所述的一种燃料电池微孔层连续印刷设备,其特征在于:所述不合格品标记区包括静电喷涂设备,所述静电喷涂设备用于对微孔层的非涂敷区喷涂荧光颜料;所述机械臂(9)分拣区中的机械臂(9)上设置用于识别荧光颜料的紫外探照灯(9-1)。
  9. 一种燃料电池微孔层连续印刷工艺,其特征在于,所述工艺采用权利要求1-8任一项所述的装置,所述工艺包括以下步骤:
    步骤(1),批量的微孔层依次放置在传送带组件(2)的金属支撑区(2-2)内,并依次传送至印刷处理区,丝网印刷机(3)上的光纤传感器(3-1)感应到微孔层后,通过plc系统控制传送带组件(2)停止传送,同时电磁片(1-3)实现对金属支撑区(2-2)的吸附,真空吸附箱(1)实现对微孔层的真空吸附定位,之后丝网印刷机(3)实现对微孔层的印刷,印刷完成后经过隧道加热炉(4)进行烘干;
    步骤(2),微孔层在印刷处理区内传送,重复步骤(1),共经过三台丝网印刷机(3)的连续印刷,实现浆料在微孔层上的梯度式分布后,得到气体扩散层;
    步骤(3),气体扩散层再经过厚度检测装置的厚度检测、缺陷检测装置的缺陷检测,检测数据传送至plc系统的显示屏中;
    步骤(4),经过步骤(3)中的检测数据对比,不合格的气体扩散层需再次经过补刷处理区的补刷处理后再经过二次检测区的检测,检测数据再次传送至plc控制系统内,比对后,依旧不合格的气体扩散层传送至标记区由静电喷涂设备在气体扩散层的非涂敷区喷涂荧光颜料后,被机械臂(9)分拣区识别捡出;经过步骤(3)中的检测数据对比,合格的气体扩散层则直接由传送带组件(2)传送至收集。
  10. 根据权利要求9所述的燃料电池微孔层连续印刷工艺,其特征在于:步骤(1)、步骤(2)以及步骤(4)中,微孔层经过丝网印刷机(3)的印刷或者气体扩散层经过丝网印刷机 (3)的补刷后,先控制丝网印刷机(3)的网版(3-2)上升撤离,之后撤销对金属支撑区(2-2)的电磁吸附,再撤销对微孔层或气体扩散层的真空吸附,最后再进行传送。
PCT/CN2021/133546 2020-12-03 2021-11-26 一种燃料电池微孔层连续印刷设备及工艺 WO2022116913A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011414969.5A CN112549749B (zh) 2020-12-03 2020-12-03 一种燃料电池微孔层连续印刷设备及工艺
CN202011414969.5 2020-12-03

Publications (1)

Publication Number Publication Date
WO2022116913A1 true WO2022116913A1 (zh) 2022-06-09

Family

ID=75059144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133546 WO2022116913A1 (zh) 2020-12-03 2021-11-26 一种燃料电池微孔层连续印刷设备及工艺

Country Status (2)

Country Link
CN (1) CN112549749B (zh)
WO (1) WO2022116913A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112549749B (zh) * 2020-12-03 2021-08-27 中国科学院大连化学物理研究所 一种燃料电池微孔层连续印刷设备及工艺
CN113113617B (zh) * 2021-06-11 2021-12-14 武汉氢能与燃料电池产业技术研究院有限公司 一种膜电极、燃料电池气体扩散层及其制备方法
CN113427920A (zh) * 2021-08-05 2021-09-24 惠州市夏瑞科技有限公司 一种高精度全自动丝网印刷方法
CN114824308B (zh) * 2022-03-15 2024-02-09 上海碳际实业集团有限公司 一种多结构气体扩散层连续制备用设备
CN114824309B (zh) * 2022-03-15 2024-04-12 上海碳际实业集团有限公司 燃料电池气体扩散层连续制备用设备及其制备方法
CN114976050A (zh) * 2022-05-13 2022-08-30 上海碳际实业集团有限公司 一种燃料电池用气体扩散层及其制备工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118910A1 (en) * 1999-06-09 2003-06-26 Carlson Steven A. Microporous articles and methods of preparation
CN102001242A (zh) * 2010-10-14 2011-04-06 吴江迈为技术有限公司 一种用于太阳能电池片印刷的偏差测定方法、印刷方法及其装置
CN103401003A (zh) * 2013-07-17 2013-11-20 南京大学昆山创新研究院 质子交换膜燃料电池的气体扩散层及其制备方法
CN209561548U (zh) * 2019-02-25 2019-10-29 深圳晓兰联泰氢能源高科技有限公司 一种燃料电池堆的自动装配装置
CN111146450A (zh) * 2019-12-26 2020-05-12 一汽解放汽车有限公司 一种连续制备燃料电池气体扩散层的装置及方法
CN112549749A (zh) * 2020-12-03 2021-03-26 中国科学院大连化学物理研究所 一种燃料电池微孔层连续印刷设备及工艺
CN112606537A (zh) * 2020-12-14 2021-04-06 中国科学院大连化学物理研究所 多规格燃料电池微孔层智能化连续印刷设备及其印刷工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103481646B (zh) * 2013-08-16 2015-05-20 常州天合光能有限公司 丝网印刷装置
JP6270133B2 (ja) * 2014-02-12 2018-01-31 株式会社小森コーポレーション フレキシブル電子デバイス製造装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118910A1 (en) * 1999-06-09 2003-06-26 Carlson Steven A. Microporous articles and methods of preparation
CN102001242A (zh) * 2010-10-14 2011-04-06 吴江迈为技术有限公司 一种用于太阳能电池片印刷的偏差测定方法、印刷方法及其装置
CN103401003A (zh) * 2013-07-17 2013-11-20 南京大学昆山创新研究院 质子交换膜燃料电池的气体扩散层及其制备方法
CN209561548U (zh) * 2019-02-25 2019-10-29 深圳晓兰联泰氢能源高科技有限公司 一种燃料电池堆的自动装配装置
CN111146450A (zh) * 2019-12-26 2020-05-12 一汽解放汽车有限公司 一种连续制备燃料电池气体扩散层的装置及方法
CN112549749A (zh) * 2020-12-03 2021-03-26 中国科学院大连化学物理研究所 一种燃料电池微孔层连续印刷设备及工艺
CN112606537A (zh) * 2020-12-14 2021-04-06 中国科学院大连化学物理研究所 多规格燃料电池微孔层智能化连续印刷设备及其印刷工艺

Also Published As

Publication number Publication date
CN112549749B (zh) 2021-08-27
CN112549749A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
WO2022116913A1 (zh) 一种燃料电池微孔层连续印刷设备及工艺
KR101048044B1 (ko) 롤투롤 연속공정을 통한 염료감응형 태양전지의 생산장치 및 생산방법
KR101658842B1 (ko) 연료전지 조립장치
JP2010514099A (ja) ロール製品型燃料電池サブアセンブリを製作するための方法及び装置
KR20160092493A (ko) 건조 장치 및 건조 방법
KR101061637B1 (ko) 기판의 파티클 제거 방법, 그 장치 및 도포, 현상 장치
CN112606537B (zh) 多规格燃料电池微孔层智能化连续印刷设备及其印刷工艺
CN104798451A (zh) 用于制造多层元件的方法和设备以及多层元件
KR20210059640A (ko) 서브 개스킷이 달린 막전극 접합체의 제조 장치 및 제조 방법
WO2018168105A1 (ja) 塗工装置および塗工方法
JP2019034550A (ja) 太陽電池セルの電極印刷用の自動位置決め印刷システム及び方法
JP2017142897A (ja) 膜・触媒層接合体の製造装置および製造方法
CN212648292U (zh) 膜电极的制备系统
CN112536193B (zh) 燃料电池催化层连续化涂布生产设备及工艺
WO2023241460A1 (zh) 一种冷烫膜输送装置
KR20210059641A (ko) 서브 개스킷이 달린 막전극 접합체의 제조 방법 및 제조 장치, 서브 개스킷이 달린 막전극 접합체
CN111082110A (zh) 一种燃料电池膜电极的制作方法及设备
JP6155989B2 (ja) 膜電極接合体の製造装置、及び製造方法
JP2002231228A (ja) 電池用コンポーネントの製造装置及び方法
CN211217220U (zh) 一种夹层玻璃涂覆设备
CN111295090B (zh) 一种高效抗干扰线缆屏蔽带生产工艺
JP2019164890A (ja) 支持フィルム、貼り付け方法、膜・電極接合体の製造方法および製造装置
JP2004319117A (ja) 電極塗布方法
US8316792B2 (en) Apparatus for making working electrode of dye-sensitized solar cell
JP5001305B2 (ja) 燃料電池用電解質膜キュアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899945

Country of ref document: EP

Kind code of ref document: A1