WO2022116910A1 - 高能量锂电池及包括该锂电池的大型储能系统 - Google Patents

高能量锂电池及包括该锂电池的大型储能系统 Download PDF

Info

Publication number
WO2022116910A1
WO2022116910A1 PCT/CN2021/133523 CN2021133523W WO2022116910A1 WO 2022116910 A1 WO2022116910 A1 WO 2022116910A1 CN 2021133523 W CN2021133523 W CN 2021133523W WO 2022116910 A1 WO2022116910 A1 WO 2022116910A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
energy lithium
lithium battery
energy
liquid
Prior art date
Application number
PCT/CN2021/133523
Other languages
English (en)
French (fr)
Inventor
雷政军
郭鸿香
Original Assignee
中澳储能电力科技(西安)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中澳储能电力科技(西安)有限公司 filed Critical 中澳储能电力科技(西安)有限公司
Publication of WO2022116910A1 publication Critical patent/WO2022116910A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/16Fire prevention, containment or extinguishing specially adapted for particular objects or places in electrical installations, e.g. cableways
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/627Stationary installations, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a high-energy lithium battery with a function of preventing thermal runaway and a large-scale energy storage system including a plurality of the high-energy lithium batteries.
  • the characteristics of the power system of power generation enterprises are that the power generation is stable and continuous at every moment of the day, while the power consumption is variable, and the power consumption has multiple peaks and troughs every day.
  • Power generation companies usually use the peak value of the wave as their power generation value to ensure uninterrupted power supply, but this also leads to oversupply during the trough.
  • the cost of power generation is lower than the cost of power storage, a large number of power abandonment phenomenon occurs.
  • the energy storage cost of lithium-ion battery energy storage system is most likely lower than the average power generation cost.
  • the following two problems need to be overcome.
  • the commonly used method to prevent thermal runaway is to set up a gas fire extinguishing agent or a water mist fire extinguishing agent in the battery box and outside the battery module, and spray the fire extinguishing agent to achieve the effect of fire extinguishing and cooling.
  • the fire extinguishing effect of fog extinguishing agent is better than that of gas extinguishing agent.
  • the second is the problem of working temperature.
  • the electrolyte of commercial secondary lithium batteries is mainly composed of ethylene carbonate, dimethyl carbonate, diethyl carbonate and lithium hexafluorophosphate.
  • carbonate solvents such as dimethyl carbonate are organic solvents with low flash point and volatile. Low, it will significantly affect the efficiency and life of lithium-ion batteries, therefore, it is very important to control the working environment of lithium-ion batteries.
  • the current commonly used temperature control method is to use electric heating when the temperature is too low, and use air cooling and water cooling to dissipate heat when the temperature is too high.
  • the heat dissipation effect of water cooling is much better than that of air cooling.
  • the present invention proposes an effective solution to the aforementioned technical problems such as thermal runaway easily causing danger and difficult temperature control existing in the storage of generated electricity.
  • One aspect of the present invention relates to a high-energy lithium battery with a structure for preventing thermal runaway, which is used for the storage of electricity generated by electricity, comprising a battery cell and a casing for accommodating the battery cell, the energy of the battery cell is above 2KWh,
  • the casing is provided with an explosion venting component, which will rupture when thermal runaway occurs, so that the electrolyte can be released quickly.
  • the energy of the high-energy lithium battery is between 5KWh-30KWh.
  • the casing is an aluminum alloy with a thickness in the range of 5-15 mm.
  • the casing includes an upper casing and a lower casing that are fixedly connected, and the explosion venting component is arranged below the upper casing.
  • the explosion venting component is provided at the connection between the upper casing and the lower casing.
  • the upper casing and the lower casing of the high-energy lithium battery are connected together by threads, and the explosion venting pressure is controlled by the width and size of the threads.
  • the upper case and the lower case of the high-energy lithium battery are connected by interference fit, and the explosion venting pressure is controlled by the tightness of the interference fit.
  • the upper casing has a narrowed bottle mouth with a small diameter, the bottle mouth is threadedly connected with the cap, and the bottle mouth is a passage for the wires of the positive and negative electrodes of the battery cells and a passage for the electrolyte solution. Injection port.
  • the high-energy lithium battery is equipped with a sensor for sensing whether the battery cell is working normally, and its wire outlet is consistent with the positive and negative wire outlets.
  • Another aspect of the present invention provides a battery tank for a large-scale energy storage system, which includes a plurality of the aforementioned high-energy lithium batteries, the battery tank is filled with a heat-conducting absorbing liquid, and the high-energy lithium batteries are all immersed in the in the thermally conductive absorbing liquid.
  • the thermally conductive absorbing liquid has a high decomposition temperature and a large heat capacity, and can dissolve flammable substances such as electrolyte in the high-energy lithium battery, or chemically react with it to make it non-flammable liquid substance.
  • the heat transfer absorbing liquid is water, silicone oil or other liquids that can dissolve or react with the electrolyte.
  • the heat-conducting absorbing liquid should allow all high-energy lithium batteries to be immersed in it, and should be more than 20 cm above the explosion venting surface.
  • the upper part of the battery tank is provided with an exhaust pipe, and when the thermal runaway of the battery occurs, the gas not absorbed by the heat transfer absorbing liquid is discharged from the exhaust pipe.
  • a temperature sensor is provided in the battery can for monitoring the temperature of the heat-conducting absorbing liquid in the battery can.
  • a warning light is provided on the battery tank, and once a high-energy lithium battery is thermally out of control, the warning light will flash and ring.
  • the outside of the battery can is coated with insulating material.
  • the battery can is any one of square, rectangle and circle.
  • a final aspect of the present invention provides a large-scale energy storage system comprising a plurality of the aforementioned battery tanks connected by liquid pipes, the liquid outlet of each battery tank being connected to the liquid inlet port of the adjacent battery tank and connected to the temperature
  • the control device, the heat transfer absorbing liquid of the whole system is connected into a circulation loop through the liquid pipeline.
  • the energy storage system further comprises a liquid replenishment tank, a liquid pump and a cooling and heating tower.
  • the current maximum energy of a lithium battery cell is 0.6KWh, and it is usually about 0.2KWh.
  • the energy of the high-energy lithium battery of the present invention is above 2KWh, preferably between 5KWh-30KWh, so that under a single equal energy, the high-energy lithium battery of the present invention can save most battery racks, battery boxes, battery protection Plates and other devices, thereby greatly reducing the cost of pulling the entire battery pack.
  • the lithium battery case is equipped with an explosion vent valve.
  • the high-energy lithium battery of the present invention is composed of an upper casing and a lower casing, both of which are pressure-resistant components.
  • the upper casing of the high-energy lithium battery of the present invention It is quickly separated from the lower case due to the rupture of the explosion venting parts, exposing the flammable substances such as the electrolyte inside the high-energy lithium battery to the external environment.
  • lithium batteries often do not have a waterproof function, and the internal circuit of the battery is likely to be short-circuited after encountering water, resulting in failure to work, which affects the normal use and service life of the lithium battery.
  • the positive and negative electrodes of the high-energy lithium battery according to the present invention can be drawn out from the bottle mouth of the casing by copper wires, which are tightly sealed and can be immersed in the liquid for a long time.
  • the lithium battery when the lithium battery is cooled by liquid cooling, a single cell or battery module is placed in a sealed battery compartment, and the cooling liquid surrounds the battery compartment to cool down, and the cold liquid does not directly contact the battery cell. , which makes the heat exchange less efficient.
  • the shell of the high-energy lithium battery in the battery tank of the present invention is in direct contact with the heat conduction absorbing liquid, thereby greatly improving the heat exchange efficiency.
  • the cooling and fire extinguishing effect is achieved by spraying the fire extinguishing agent directly to the battery module through the nozzle in the box.
  • thermal runaway occurs, a large amount of gas will be discharged from the explosion vent valve, the fire extinguishing agent cannot reach the inside of the cell, and the thermal runaway reaction inside the cell will continue to increase, still causing adjacent cells and even the entire Risk of thermal runaway of the battery system.
  • the battery tank and large-scale energy storage system of the present invention when the high-energy lithium battery is thermally out of control, the upper and lower casings are rapidly separated due to the rupture of the explosion venting parts, so that the battery components in the casing are in contact with the external environment as much as possible. , so that the flammable substances such as the electrolyte of the high-energy lithium battery are quickly dissolved into the heat-conducting absorption liquid, which can quickly terminate the thermal runaway reaction inside the battery cell and avoid the risk of thermal runaway of the entire battery system.
  • FIG. 1 shows a schematic structural diagram of a high-energy lithium battery 1 provided by the present invention; wherein FIG. 1(a) is a front view of the high-energy lithium battery 1; FIG. 1(b) is a cross-sectional view of the high-energy lithium battery 1;
  • Figure 2 shows a schematic structural diagram of a large-scale energy storage system
  • Figure 2(a) is a front view of the battery tank
  • Figure 2(b) is a cross-sectional view of the A-A side of the battery tank
  • Figure 2(c) is the E-E side of the battery tank
  • Figure 2(d) is a schematic diagram of a large-scale energy storage system.
  • the upper casing 11 and the lower casing 12 of the high-energy lithium battery 1 of the present invention are connected by threads, and there is a sealing ring 13 on the threads, which can ensure that the inside of the casing is space is sealed.
  • the upper casing 11 is provided with a small-diameter bottle mouth, which is the passage through which the wires 18 of the positive and negative electrodes of the battery are connected.
  • the explosion venting component 14 is located at the junction of the upper casing 11 and the lower casing 12.
  • the explosion venting component 14 is thin as a whole or in part and ruptures, and the upper casing 11 and the lower casing are broken.
  • the body 12 is rapidly separated due to the explosion pressure, exposing the flammable substances such as the electrolyte inside the high-energy lithium battery to the external environment.
  • a fixing flange 15 is welded on the upper casing 11 of the high-energy lithium battery 1 so that the high-energy lithium battery 1 can be fixedly assembled.
  • the high-energy lithium battery of the present invention is used for storage of power generation, including but not limited to hydropower, wind power, nuclear power, and the like.
  • the energy of the high-energy lithium battery 1 described in the above technical solution is above 2KWh, preferably between 5KWh and 30KWh.
  • the high-energy lithium battery 1 described in the above technical solution is a lithium iron phosphate battery, and a lithium battery such as lithium cobalt oxide and other lithium metal oxides can also be used.
  • the upper casing 11 and the lower casing 12 of the high-energy lithium battery 1 described in the above technical solution are both pressure-resistant components, and their material is preferably an aluminum alloy with a thickness of 5-15 mm, or equivalent Strong stainless steel and other metal materials and non-metal materials.
  • connection between the upper case 11 and the lower case 12 of the high-energy lithium battery 1 described in the above technical solution is connected together by a thread, and the explosion venting pressure is controlled by the width and size of the thread.
  • connection between the upper casing 11 and the lower casing 12 of the high-energy lithium battery 1 described in the above technical solution can be connected by interference fit, and the explosion venting pressure can be controlled by the tightness of the interference fit.
  • the explosion venting component can be grooved, and the groove thickness is 20-50% of the wall thickness.
  • connection between the upper case 11 and the lower case 12 of the high-energy lithium battery 1 described in the above technical solution can be mechanically connected by extruding the rubber between the upper case 11 and the lower case 12 .
  • the sealing ring is used to realize the fixation of the cover.
  • the high-energy lithium battery 1 described in the above technical solution its explosion venting component can also be located at any position on the side of the battery case. Due to the presence of positive and negative wires, sensor wiring, etc. above the battery case, in order to avoid damage to these components, and to ensure that flammable substances such as electrolytes are in full contact with the thermally conductive absorbing liquid during thermal runaway, the explosion venting components are preferably not arranged on the battery. above the shell.
  • the positive and negative electrodes of the high-energy lithium battery 1 described in the above technical solutions are connected by copper wires 18 from the bottle mouth of the upper casing, which are tightly sealed and have a waterproof function.
  • the high-energy lithium battery 1 in the above technical solution can be equipped with a sensing wire to sense whether the battery cell is working normally, and its wire outlet is consistent with the positive and negative wire outlets.
  • the high-energy lithium battery 1 in the above-mentioned technical solution can be welded with other assembly components such as the flange 15 on its casing according to assembly requirements.
  • the large-scale energy storage system of the present invention is to install several high-energy lithium batteries 1 provided by the present invention to the battery by bolting
  • the upper tank 2117 , the gasket A2119 , and the lower tank 2116 are connected together by the bolt assembly 2118 .
  • the wire 18 of the high-energy lithium battery 1 is passed through the wire hole at the top of the upper can body 2117.
  • the upper wire hole of the upper can body 2117 has a wire sleeve A2122 and a sealing ring C2120.
  • the cover A2121 is connected to the upper can body 2117 through threads. .
  • the large-scale energy storage system consists of multiple battery tanks 21, the liquid outlet 2113 of each battery tank 21 is connected to the liquid inlet 2112 of another battery tank 21, and is connected to the cooling and heating tower 231, the liquid of the whole system passes through the liquid pipeline 234 is connected to form a circulation loop. According to the temperature of the heat transfer absorbing liquid 22, the heat transfer absorbing liquid is heated or cooled in the cooling and heating tower 231, and the heat transfer absorbing liquid 22 with suitable temperature is sent to each tank by the liquid pump 232.
  • the high-energy lithium battery 1 and the heat-conducting absorption liquid 22 are directly exchanged with heat, so as to achieve the purpose of cyclic cooling.
  • the high-energy lithium battery 1 is thermally out of control, the upper casing 11 and the lower casing 12 of the high-energy lithium battery 1 in the battery can 21 are rapidly separated at the explosion venting surface 14, so that the electrolysis of the high-energy lithium battery 1 Liquid and other flammable substances are dissolved and absorbed by the thermally conductive absorbing liquid 22, thereby achieving the purpose of preventing thermal runaway.
  • the liquid inlet pipe 212 and the liquid outlet pipe 213 are closed, which can be used as an independent battery cabinet.
  • the thermally conductive absorbing liquid 22 described in the above technical solution needs to have a higher decomposition temperature and a larger heat capacity, and can dissolve and absorb flammable substances such as the electrolyte in the high-energy lithium battery 1, or be combined with the high-energy lithium battery 1.
  • the flammable substances such as the electrolyte in the lithium battery 1 undergo a chemical reaction, so that the flammable substances such as the electrolyte in the high-energy lithium battery 1 become non-flammable.
  • thermally conductive absorbing liquid 22 described in the above technical solution may be water, silicone oil or other liquids that can dissolve or react with the electrolyte.
  • the height of the liquid level of the thermally conductive absorbing liquid 22 described in the above technical solution is preferably higher than the upper part of the high-energy lithium battery 1, so that the high-energy lithium battery 1 can be completely immersed in it, and is more than 20 cm above the explosion venting surface. , which can effectively exchange heat and prevent thermal runaway.
  • the battery tank 21 described in the above technical solution has an exhaust pipe 2111 on the upper part.
  • the gas not absorbed by the thermally conductive absorbing liquid 22 can be discharged from the exhaust pipe 2111, and the exhaust pipe 2111 It can be directly connected to the outdoors, or it can be communicated with the exhaust pipes 2111 of other battery tanks 21, so as to uniformly treat the harmful gases therein.
  • the battery tank 21 described in the above technical solution has one or more temperature sensors in it, which constantly monitors the temperature of the heat-conducting absorption liquid 22 in the battery tank 21, and adjusts the temperature of the heat-conducting absorption liquid 22 in order to ensure high energy Lithium battery 1 operates within an optimum temperature range.
  • a warning light can be installed in the A-type battery tank 21. Once the high-energy lithium battery 1 is thermally out of control, the warning light will flash and ring, so as to arouse the alertness of the staff, so that they can quickly take the next step. .
  • connection mode of several battery tanks 21 of the large-scale energy storage system is a series mode, or a parallel mode, or a combination of series and parallel mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种高能量锂电池以及包括多个该高能量锂电池的可调节温度和制止热失控的大型储能系统。本发明的高能量锂电池用于发电电量的储存,包括电芯和容纳电芯的壳体,所述电芯的能量在2KWh以上,在所述壳体上设置有泄爆部件。本发明的大型储能系统,是将多个该高能量锂电池浸泡在充满导热吸收液的电池罐内,每个电池罐的进液口与另一个电池罐的出液口相连,数个电池罐、补液箱、液体泵、冷热塔通过液体管道相连组成大型储能系统。正常工作状态时,可通过导热吸收液调节高能量锂电池的工作温度。当发生热失控时,高能量锂电池的泄爆部件发生破裂,让壳体内的电池组件与外界环境尽可能多的接触,让高能量锂电池的电解液等易燃物质迅速溶解到导热吸收液中,可迅速终止电芯内部的热失控反应,避免让整个电池系统发生热失控的风险。

Description

高能量锂电池及包括该锂电池的大型储能系统 技术领域
本发明涉及一种具有防止热失控功能的高能量锂电池以及包括多个该高能量锂电池的大型储能系统。
背景技术
发电企业电力系统的特点是,每天的每时每刻,发电量是稳定和持续的,而用电量是变化的,用电每天有多次的波峰波谷。发电企业通常以波峰值为其发电值,从而保证供电的不间断,但这也造成在波谷时供过于求,因发电成本低于储电成本,因而造成大量的弃电现象,在各种储能方案中,锂离子电池储能体系的储电成本是最有可能低于平均发电成本的,然而锂离子电池储能体系要达到大规模使用的目标,需要克服下面两个问题。
一是由热失控引发的失火问题,锂离子电池在过充、短路、过热时或制造缺陷时,都会造成正负极内部短路,造成电芯内部瞬间产生大量气体和热量,电池内部在高温下隔膜、电解质等成分发生反应所造成的电池热失控燃烧,热失控时电芯阴极材料会产生大量的可燃气体,引发电池箱撕裂或爆炸,大量氧气参与燃烧会导致热失控扩散加剧,从而造成形成大面积火灾而难以抑制,危害性极大。
对于该问题,目前常用的防止热失控的方法为在电池箱内,电池模组外,设置气体灭火剂或水雾灭火剂蓬头,通过喷射灭火剂来达到灭火和降温效果,相对而言水雾灭火剂的灭火效果要好于气体灭火剂。
关于在灭火方面的专利也很多,如CN 111384341 A、CN 207353319 U、CN 211428305 U专利,是通过在箱内的喷头向电池模组直接喷射灭火剂来达到降温和灭火效果,又如专利CN 111640891 A,是电池模组浸泡在静止的绝缘液体灭火剂中,在正常工作时,该绝缘液体灭火剂没有温度调节作用,但在电池热失 控时,该绝缘液体灭火剂可起到灭火作用。目前常规的锂电池芯都带有泄爆阀,且泄爆阀的口径很小,在发生热失控时,会有大量气体从泄爆阀排出,灭火剂无法达到电芯内部,而电芯内部的高温反应会持续增加,依旧有造成相邻电芯发生热失控的风险,且上述专利的结构都很复杂,成本很高。
二是工作温度问题,商用二次锂电池电解液主要是由碳酸乙烯酯、碳酸二甲酯、碳酸二乙酯和六氟磷酸锂混合而成。其中,由于六氟磷酸锂60℃以上会发生分解,碳酸二甲酯等碳酸酯类溶剂为低闪点、易挥发的有机溶剂,在高于55度时,可能引发热积累而导致热失控,而温度过低,又会明显影响锂离子电池的效率和寿命,因此,控制锂电池的工作环境至关重要。
对于该问题,目前常用的温控方法为温度过低时采取电加热,温度过高时通过风冷和水冷散热,相对而言水冷的散热效果要远好于风冷。
关于在水冷方面的专利很多,如CN 203895574、UCN 106058383 A、CN 207052730 U、CN 108023140 A、CN110379974 A专利,都是通过水冷方式进行降温,其核心是将单个电芯或电池模组置于密封的电池仓内,冷却水围绕着电池仓进行降温,冷却水与电芯不直接接触,这使的热交换效率较低,且上述专利的结构都很复杂,成本很高。
当锂电池应用于大规模电力储能时,尤其在使用高能量电池时,因电池数量巨大,其对温度控制和安全性提出更高要求。
目前的技术和专利仅适合小能量电芯,目前锂电池电芯的能量最大为0.6KWh,常见为0.2KWh左右。现有的大规模储能系统急需改进,缺少可有效用于发电电量储存的高能量电池。
发明内容
本发明针对前述发电电量储存时存在的热失控易造成危险、温度控制难等技术问题提出了有效的解决手段。
本发明的一个方面涉及一种具有防止热失控结构的高能量锂电池,用于发电电量的储存,其包括电芯和容纳电芯的壳体,所述电芯的能量在2KWh以上, 在所述壳体上设置有泄爆部件,当发生热失控时所述泄爆部件会发生破裂,以使电解液快速释放。
优选地,所述高能量锂电池的能量在5KWh-30KWh之间。
优选地,所述壳体为厚度5-15mm范围的铝合金。
优选地,所述壳体包括固定连接的上壳体和下壳体,所述泄爆部件设置在所述上壳体的下方。
优选地,所述泄爆部件设置在所述上壳体和下壳体的连接处。
优选地,所述高能量锂电池的上壳体与下壳体通过螺纹连接在一起,并通过螺纹宽窄和多少来控制泄爆压力。
优选地,所述高能量锂电池的上壳体与下壳体通过过盈配合连接,并通过过盈配合的松紧来控制泄爆压力。
优选地,所述上壳体具有收窄的小直径的瓶口,所述瓶口与封盖螺纹连接,所述瓶口为内接电芯正负极的导线的穿过通道以及电解液的注液口。
优选地,所述高能量锂电池内装有传感器,用于感应电芯是否正常工作,其导线出口与正负极导线出口一致。
本发明的又一方面提供一种用于大型储能系统的电池罐,其包括多个前述高能量锂电池,所述电池罐内部装有导热吸收液,所述高能量锂电池全部浸泡在所述导热吸收液中。
优选地,所述导热吸收液为具有较高的分解温度、较大的热容,可以溶解高能量锂电池中的电解液等易燃物质,或与其发生化学反应,使其变成不易燃的液体物质。
优选地,所述导热吸收液为水,硅油或者其他可溶解电解液或与电解液反应的液体。
优选地,所述导热吸收液要使高能量锂电池可全部浸泡在其中,并要高出泄爆面20厘米以上。
优选地,所述电池罐的上部设置有排气管,当发生电池热失控时,未被导热吸收液吸收的气体从所述排气管排出。
优选地,所述电池罐内设置有温度传感器,用于监控所述电池罐内的导热吸收液的温度。
优选地,所述电池罐上设置有警示灯,一旦有高能量锂电池发生热失控, 警示灯会闪烁和响铃。
优选地,所述电池罐外面涂有绝缘材料。
优选地,所述电池罐为正方形、长方形和圆形中的任意一种。
本发明的最后一方面提供一种大型储能系统,其包括多个通过液体管道连接的前述电池罐,每个电池罐的出液口与相邻电池罐的进液口相连,并连接到温度控制装置,整个系统的导热吸收液通过所述液体管道连接成循环回路。
优选地,所述储能系统进一步包括补液箱、液体泵和冷热塔。
根据现有技术,目前锂电池电芯的能量最大为0.6KWh,常见为0.2KWh左右。而本发明所述的高能量锂电池的能量在2KWh以上,优选5KWh-30KWh之间,这样在单个同等能量下,本发明的高能量锂电池可以省去大多数电池架、电池箱、电池保护板等装置,从而大幅降低拉整个电池组的成本。
根据现有技术,根据现有技术,锂电池壳体都带有泄爆阀,当锂电池电芯发生热失控时,其产生的大量热量从泄爆阀泄出,壳体始终完整,壳体内的电解液等易燃物质不与外界接触。而本发明所述的高能量锂电池由上壳体和下壳体组成,其均为耐压部件,当高能量锂电池发生热失控时,本发明所述的高能量锂电池的上壳体与下壳体由于泄爆部件破裂迅速分离,让高能量锂电池内部的电解液等易燃物质暴露在外部环境中。
根据现有技术,锂电池往往不具备防水功能,在遇水后容易出现电池内部电路短路而导致无法工作的情况,影响锂电池正常使用和使用寿命。而本发明所述的高能量锂电池的正负极可以由铜质导线从壳体的瓶口引出,其密封严密,可以长期浸泡在液体中。
根据现有技术,锂电池在通过液冷方式进行降温时,是将单个电芯或电池模组置于密封的电池仓内,冷液围绕着电池仓进行降温,冷液与电芯不直接接触,这使的热交换效率较低。而本发明所述的电池罐中高能量锂电池的外壳与导热吸收液直接接触,从而大幅度提高热交换效率。
根据现有技术,当锂电池发生热失控时,是通过在箱内的喷头向电池模组直接喷射灭火剂来达到降温和灭火效果,而锂电池芯都带有泄爆阀,且泄爆阀的口径很小,在发生热失控时,会有大量气体从泄爆阀排出,灭火剂无法达到电芯内部,而电芯内部的热失控反应会持续增加,依旧有造成相邻电芯乃至整个电池系统发生热失控的风险。而根据本发明的电池罐和大型储能系统,当高能 量锂电池发生热失控时,其上下壳体由于泄爆部件破裂而迅速分离,让壳体内的电池组件与外界环境尽可能多的接触,让高能量锂电池的电解液等易燃物质迅速溶解到导热吸收液中,可迅速终止电芯内部的热失控反应,避免让整个电池系统发生热失控的风险。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1所示为本发明提供的一种高能量锂电池1的结构示意图;其中图1(a)为高能量锂电池1的正视图;图1(b)为高能量锂电池1的剖视图;
图2所示为大型储能系统的结构示意图;其中图2(a)为电池罐的正视图;图2(b)为电池罐A-A面的剖视图;图2(c)为电池罐的E-E面的剖视图;图2(d)为大型储能系统示意图。
附图标记说明:1、高能量锂电池;11、上壳体;12、下壳体;13、密封圈A;14、泄爆面;15、固定法兰;16、密封圈B;17、封盖;18、导线;21、电池罐;2111、排气管;2112、进液管;2113、出液管;2114、电池支架;2115、支腿A;2116、下罐体;2117、上罐体;2118、螺栓组件;2119、密封圈A;2120、密封圈C;2121、封盖A;2122、导线套A;22、导热吸收液;231、冷热塔;232、液体泵;233、储液箱;234、液体管道
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。
应当理解,在多个附图中使用的相同元件符号表示相同的组件或相同功能的组件。另外,附图仅用于说明而不是限制本发明的范围,并且不应视为按比例。
如图1(a)、图1(b)所示,本发明的高能量锂电池1的上壳体11与下壳体 12是通过螺纹连接,螺纹上有密封圈13,这样可以保证壳体内的空间成密封状态。上壳体11上带有小直径的瓶口,其为内接电芯的正负极的导线18的穿过通道,在装配时,该瓶口可作为注液口和补液口,上壳体11的瓶口与封盖17之间有密封圈B16,上壳体11的瓶口与封盖17通过螺纹连接,这样可以保证高能量锂电池1具有防水功能。泄爆部件14位于上壳体11与下壳体12的连接处,当高能量锂电池1反生热失控时,泄爆部件14整体或局部较薄,发生破裂,上壳体11与下壳体12因泄爆压力而迅速分离,让高能量锂电池内部的电解液等易燃物质暴露在外部环境中。高能量锂电池1的上壳体11上焊有固定法兰15,以便高能量锂电池1可以固定装配。
本发明的高能量锂电池被用于发电电量的储存,所述发电包括但不限于水力发电、风力发电、核能发电等。
进一步说明,上述技术方案中所述的高能量锂电池1的能量在2KWh以上,优选5KWh-30KWh之间。
进一步说明,上述技术方案中所述的高能量锂电池1,为磷酸铁锂电池,也可选用锂钴氧化物,其他锂金属氧化物等锂电池。
进一步说明,上述技术方案中所述的高能量锂电池1的上壳体11与下壳体12,其均为耐压部件,其材质优选为铝合金,厚度为5-15mm,也可选用同等强度的不锈钢等其它金属材质和非金属材质。
进一步说明,上述技术方案中所述的高能量锂电池1的上壳体11与下壳体12的连接通过螺纹连接在一起,并通过螺纹宽窄和多少来控制泄爆压力。
进一步说明,上述技术方案中所述的高能量锂电池1的上壳体11与下壳体12的连接可以通过过盈配合连接,并通过过盈配合的松紧来控制泄爆压力。
进一步说明,泄爆部件可以采用刻槽方式,刻槽厚度为壁厚的20-50%。
进一步说明,上述技术方案中所述的高能量锂电池1的上壳体11与下壳体12的连接可以通过机械的方式连接,通过挤压上壳体11与下壳体12之间的橡胶密封圈来实现封盖的固定。
进一步说明,上述技术方案中所述的高能量锂电池1,其泄爆部件也可以位 于电池壳体的侧面任意位置。由于电池壳体上方存在正负极导线、传感器接线等,为避免对这些部件的破坏,同时为了保证热失控时电解液等易燃物质与导热吸收液充分接触,泄爆部件优选不设置在电池壳体上方。
进一步说明,上述技术方案中所述的高能量锂电池1,其正负极是由铜质导线18从上壳体的瓶口连出,其密封严密,具有防水功能。
进一步说明,上述技术方案中的高能量锂电池1,可装有传感线,以感应电芯是否正常工作,其导线出口与正负极导线出口一致。
进一步说明,上述技术方案中的高能量锂电池1,可以根据装配需要在其壳体上可焊接如法兰盘15等其它装配部件。
如图2(a)、2(b)、2(c)、2(d)所示,本发明的大型储能系统是将数个本发明提供的高能量锂电池1通过螺栓连接装到电池支架3114上,将上罐体2117、密封垫A2119、下罐体2116通过螺栓组件2118连接在一起,电池罐21中充满导热吸收液22,高能量锂电池1全部淹没在导热吸收液22里。高能量锂电池1的导线18由上罐体2117的顶端导线孔中穿出,上罐体2117的上端导线孔内有导线套A2122和密封圈C2120,封盖A2121通过螺纹与上罐体2117连接。大型储能系统由多个电池罐21组成,每个电池罐21的出液口2113与另一个电池罐21的进液口2112相连,并连接到冷热塔231,整个系统的液体通过液体管道234连接成循环回路,根据导热吸收液22的温度,在冷热塔231内对导热吸收液进行加热或冷却,并由液体泵232将温度合适的导热吸收液22送到各罐体。
这样,使高能量锂电池1与导热吸收液22直接进行热交换,实现循环降温的目的。当高能量锂电池1发生热失控时,在电池罐21内的高能量锂电池1的上壳体11与下壳体12在泄爆面14处迅速分离,让高能量锂电池1里面的电解液等易燃物质被导热吸收液22溶解吸收,从而达到阻止热失控目的。
进一步说明,上述技术方案中在电池罐21在充满导热吸收液22后,关闭进液管212和出液管213,可以作为独立电池柜,单独使用。
进一步说明,上述技术方案中所述的导热吸收液22需具有较高的分解温度、较大的热容,可以溶解吸收高能量锂电池1中的电解液等等易燃物质,或与高 能量锂电池1中的电解液等易燃物质发生化学反应,使高能量锂电池1中的电解液等易燃物质变成不易燃。
进一步说明,上述技术方案中所述的导热吸收液22可以是水,硅油或者其他可溶解电解液或与电解液反应的液体。
进一步说明,上述技术方案中所述的导热吸收液22的液面高度,优选高出高能量锂电池1上部,使高能量锂电池1可全部浸泡在其中,并高出泄爆面20厘米以上,这样可以有效地进行热交换和防止热失控。
进一步说明,上述技术方案中所述的电池罐21,上部有一个排气管2111,当发生电池热失控时,未被导热吸收液22吸收的气体可以从排气管2111排出,排气管2111可以直接连到室外,也可以与其它电池罐21的排气管2111连通,以便对其中的有害气体统一处理。
进一步说明,上述技术方案中所述的电池罐21,内有一个或多个温度传感器,时刻监控电池罐21内导热吸收液22的温度,并以次来调节导热吸收液22温度,保证高能量锂电池1在最佳温度范围内工作。
进一步说明,上述技术方案中在A型电池罐21可装警示灯,一旦有高能量锂电池1发生热失控,警示灯会闪烁和响铃,以引起工作人员警觉,使其可以迅速采取下一步措施。
进一步说明,上述技术方案中,大型储能系统的数个电池罐21的连接方式为串联方式,也可以是并联方式,也可以是串并联相结合的方式。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。
由技术常识可知,本发明可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同于本发明的范围内的改变均 被本发明包含。

Claims (24)

  1. 一种具有防止热失控结构的高能量锂电池,用于发电电量的储存,其包括电芯和容纳电芯的壳体,所述电芯的能量在2KWh以上,在所述壳体上设置有泄爆部件,当发生热失控时所述泄爆部件会发生破裂,以使电解液快速释放。
  2. 根据权利要求1所述的高能量锂电池,其中所述高能量锂电池的能量在5KWh-30KWh之间。
  3. 根据权利要求1或2所述的高能量锂电池,其中所述壳体为厚度5-15mm范围的铝合金。
  4. 根据权利要求1或2所述的高能量锂电池,其中所述的高能量锂电池的电池壳,其材质为与铝合金同等强度的不锈钢、其它金属材质或非金属材质。
  5. 根据权利要求1-4任意所述的高能量锂电池,其中所述壳体包括固定连接的上壳体和下壳体,所述泄爆部件设置在所述上壳体的下方。
  6. 根据权利要求5所述的高能量锂电池,其中所述泄爆部件设置在所述上壳体和下壳体的连接处。
  7. 根据权利要求5或6所述的高能量锂电池,其中所述高能量锂电池的上壳体与下壳体通过螺纹连接在一起,并通过螺纹宽窄和多少来控制泄爆压力。
  8. 根据权利要求5或6所述的高能量锂电池,其中所述高能量锂电池的上壳体与下壳体通过过盈配合连接,并通过过盈配合的松紧来控制泄爆压力。
  9. 根据权利要求5或6所述的高能量锂电池,其特征在于,所述高能量锂电池的上壳体与下壳体的连接通过机械方式连接,通过挤压上壳体与下壳体之间的橡胶密封圈来实现封盖的固定。
  10. 根据权利要求1-9任意所述的高能量锂电池,其特征在于,所述泄爆部件采用刻槽方式,刻槽厚度为壁厚的20-50%。
  11. 根据权利要求5-9任意所述的高能量锂电池,其中所述上壳体具有收窄的小直径的瓶口,所述瓶口与封盖螺纹连接,所述瓶口为内接电芯正负极的导线的穿过通道以及电解液的注液口。
  12. 根据权利要求11所述的高能量锂电池,其特征在于,所述高能量锂电池的正负极由导线从壳体的瓶口连出,其密封严密,具有防水功能,可以长期浸泡在液体中。
  13. 根据权利要求1-12任意所述的高能量锂电池,其中所述高能量锂电池内装有传感器,该传感器直接与电芯中的电解液接触,用于感应电芯是否正常工作,其导线出口与正负极导线出口一致。
  14. 一种用于大型储能系统的电池罐,其包括多个前述权利要求1-13任意所述的高能量锂电池,所述电池罐内部装有导热吸收液,所述高能量锂电池全部浸泡在所述导热吸收液中。
  15. 根据权利要求14所述的电池罐,其中所述导热吸收液为具有较高的分解温度、较大的热容,可以溶解高能量锂电池中的电解液等易燃物质,或与其发生化学反应,使其变成不易燃的液体物质。
  16. 根据权利要求15所述的电池罐,其中导热吸收液为水,硅油或者其他可溶解电解液或与电解液反应的液体。
  17. 根据权利要求14-16任意所述的电池罐,其中所述导热吸收液要使高能量锂电池可全部浸泡在其中,并要高出泄爆面20厘米以上。
  18. 根据权利要求14-17任意所述的电池罐,其中所述电池罐的上部设置有排气管,当发生电池热失控时,未被导热吸收液吸收的气体从所述排气管排出。
  19. 根据权利要求14-18任意所述的电池罐,其中所述电池罐内设置有温度传感器,用于监控所述电池罐内的导热吸收液的温度。
  20. 根据权利要求14-19任意所述的电池罐,其中所述电池罐上设置有警示灯,一旦有高能量锂电池发生热失控,警示灯会闪烁和响铃。
  21. 根据权利要求14-20任意所述的电池罐,其中所述电池罐外面涂有绝缘材料。
  22. 根据权利要求14-21任意所述的电池罐,其中所述电池罐为正方形、长方形和圆形中的任意一种。
  23. 一种大型储能系统,其包括多个通过液体管道连接的前述权利要求14-21任意所述的电池罐,每个电池罐的出液口与相邻电池罐的进液口相连,并连接到温度控制装置,整个系统的液体通过所述液体管道连接成循环回路。
  24. 根据权利要求23所述的大型储能系统,其中所述储能系统进一步包括补液箱、液体泵和冷热塔。
PCT/CN2021/133523 2020-12-04 2021-11-26 高能量锂电池及包括该锂电池的大型储能系统 WO2022116910A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011405025.1 2020-12-04
CN202011405025.1A CN112421160A (zh) 2020-12-04 2020-12-04 高能量锂电池及包括该锂电池的大型储能系统

Publications (1)

Publication Number Publication Date
WO2022116910A1 true WO2022116910A1 (zh) 2022-06-09

Family

ID=74830118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133523 WO2022116910A1 (zh) 2020-12-04 2021-11-26 高能量锂电池及包括该锂电池的大型储能系统

Country Status (2)

Country Link
CN (1) CN112421160A (zh)
WO (1) WO2022116910A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421159A (zh) * 2020-12-04 2021-02-26 澳大利亚国家电力储能控股有限公司 高能量锂电池及包括该锂电池的大型储能系统
CN112421160A (zh) * 2020-12-04 2021-02-26 澳大利亚国家电力储能控股有限公司 高能量锂电池及包括该锂电池的大型储能系统
WO2023036248A1 (zh) * 2021-09-10 2023-03-16 陕西奥林波斯电力能源有限责任公司 一种用于大型储能系统的电池罐及泄爆方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1419308A (zh) * 2002-12-27 2003-05-21 李鑫 一种安全高能锂离子电芯及其制造方法
CN101882670A (zh) * 2010-05-14 2010-11-10 张天任 一种储能蓄电池用防水装置
CN110112329A (zh) * 2019-05-07 2019-08-09 国网江苏省电力有限公司电力科学研究院 一种新型锂离子电池及电池模组
CN110635086A (zh) * 2019-10-31 2019-12-31 纪国军 一种电池包防过热防自燃防自爆方法
CN111668415A (zh) * 2020-05-26 2020-09-15 华南理工大学 一种电池系统、车辆以及电池系统热失控的处理方法
CN211907477U (zh) * 2020-03-27 2020-11-10 湖北亿纬动力有限公司 电池以及电池模组
CN112421160A (zh) * 2020-12-04 2021-02-26 澳大利亚国家电力储能控股有限公司 高能量锂电池及包括该锂电池的大型储能系统
CN112421159A (zh) * 2020-12-04 2021-02-26 澳大利亚国家电力储能控股有限公司 高能量锂电池及包括该锂电池的大型储能系统
CN214542383U (zh) * 2020-12-04 2021-10-29 澳大利亚国家电力储能控股有限公司 高能量锂电池及包括该锂电池的电池罐和大型储能系统
CN214589045U (zh) * 2020-12-04 2021-11-02 澳大利亚国家电力储能控股有限公司 高能量锂电池、包括该锂电池的电池罐及大型储能系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1419308A (zh) * 2002-12-27 2003-05-21 李鑫 一种安全高能锂离子电芯及其制造方法
CN101882670A (zh) * 2010-05-14 2010-11-10 张天任 一种储能蓄电池用防水装置
CN110112329A (zh) * 2019-05-07 2019-08-09 国网江苏省电力有限公司电力科学研究院 一种新型锂离子电池及电池模组
CN110635086A (zh) * 2019-10-31 2019-12-31 纪国军 一种电池包防过热防自燃防自爆方法
CN211907477U (zh) * 2020-03-27 2020-11-10 湖北亿纬动力有限公司 电池以及电池模组
CN111668415A (zh) * 2020-05-26 2020-09-15 华南理工大学 一种电池系统、车辆以及电池系统热失控的处理方法
CN112421160A (zh) * 2020-12-04 2021-02-26 澳大利亚国家电力储能控股有限公司 高能量锂电池及包括该锂电池的大型储能系统
CN112421159A (zh) * 2020-12-04 2021-02-26 澳大利亚国家电力储能控股有限公司 高能量锂电池及包括该锂电池的大型储能系统
CN214542383U (zh) * 2020-12-04 2021-10-29 澳大利亚国家电力储能控股有限公司 高能量锂电池及包括该锂电池的电池罐和大型储能系统
CN214589045U (zh) * 2020-12-04 2021-11-02 澳大利亚国家电力储能控股有限公司 高能量锂电池、包括该锂电池的电池罐及大型储能系统

Also Published As

Publication number Publication date
CN112421160A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2022116908A1 (zh) 高能量锂电池及包括该锂电池的大型储能系统
WO2022116910A1 (zh) 高能量锂电池及包括该锂电池的大型储能系统
CN208298909U (zh) 一种安全防爆圆柱型电池模块
WO2017011974A1 (zh) 电池组及电池组系统
WO2022116911A1 (zh) 一种带吸附剂层的蜂窝体电池箱
TWI692900B (zh) 固態電池用的防火裝置
CN218827611U (zh) 一种具备液冷功能抗泄压储能用电池包
KR102172449B1 (ko) 상변화 물질의 잠열을 이용한 배터리 시스템의 화재 방지 장치 및 이를 포함하는 배터리 시스템
KR102137977B1 (ko) 태양광 발전 설비용 에너지 저장 시스템의 화재 확산 방지 구조
CN214542383U (zh) 高能量锂电池及包括该锂电池的电池罐和大型储能系统
CN112018300B (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
CN214589045U (zh) 高能量锂电池、包括该锂电池的电池罐及大型储能系统
CN213093263U (zh) 一种具有高温防护结构的锂电池组
CN204946962U (zh) 一种带有阻燃装置的电池包
CN112018322B (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2023093233A1 (zh) 储能装置
WO2023020571A1 (zh) 带有泄爆装置的电池、电池模组及具有泄爆通道的电池箱
CN113725477A (zh) 一种用于大型储能系统的电池罐
CN112768819A (zh) 一种高消防安全的储能电池包与储能电池集装箱
CN205882034U (zh) 一种锂电池的防爆阻燃装置
WO2023036248A1 (zh) 一种用于大型储能系统的电池罐及泄爆方法
CN116111234B (zh) 一种浸没式安全储能电池
CN216413163U (zh) 一种用于大型储能系统的电池罐
CN217361777U (zh) 一种用于大型储能系统的电池罐
CN113725541A (zh) 一种用于大型储能系统的电池罐

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899942

Country of ref document: EP

Kind code of ref document: A1