WO2022116728A1 - 射频L-PA Mid器件、射频收发系统和通信设备 - Google Patents

射频L-PA Mid器件、射频收发系统和通信设备 Download PDF

Info

Publication number
WO2022116728A1
WO2022116728A1 PCT/CN2021/125296 CN2021125296W WO2022116728A1 WO 2022116728 A1 WO2022116728 A1 WO 2022116728A1 CN 2021125296 W CN2021125296 W CN 2021125296W WO 2022116728 A1 WO2022116728 A1 WO 2022116728A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
circuit
frequency
low
port
Prior art date
Application number
PCT/CN2021/125296
Other languages
English (en)
French (fr)
Inventor
王国龙
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21899762.5A priority Critical patent/EP4254808A4/en
Publication of WO2022116728A1 publication Critical patent/WO2022116728A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode

Definitions

  • the present application relates to the field of radio frequency technology, and in particular, to a radio frequency L-PA Mid device, a radio frequency transceiver system, and a communication device.
  • 5G mobile communication technology has gradually begun to be applied to electronic devices.
  • the communication frequency of 5G mobile communication technology is higher than that of 4G mobile communication technology.
  • a radio frequency front-end module that supports preset low-frequency signals (for example, N28 band signals) will be set.
  • the module will set a transceiver device with a built-in power amplifier and an external circuit outside the transceiver device. , to support the transceiver processing of N28 frequency band signals.
  • the link loss of the transceiver link for the preset low-frequency signal is too large, resulting in poor performance of the radio frequency front-end module.
  • a radio frequency L-PA Mid device a radio frequency transceiver system, and a communication device are provided.
  • a radio frequency L-PA Mid device is configured with a transmitting port, an antenna port and a plurality of receiving ports for connecting a radio frequency transceiver, wherein the radio frequency L-PA Mid device comprises:
  • a first transmitting circuit connected to the transmitting port, for amplifying the received preset low-frequency signal
  • a second transmitting circuit connected to the transmitting port, and used for amplifying the received multiple low-frequency signals
  • a receiving circuit connected to a plurality of the receiving ports, for amplifying the received preset low-frequency signal and a plurality of low-frequency signals
  • a switch circuit a plurality of first ends of the switch circuit are respectively connected to the first transmitting circuit, the second transmitting circuit and the receiving circuit, and the second end of the switch circuit is connected to the antenna port for selecting a conducting circuit
  • the radio frequency paths between the first transmitting circuit, the second transmitting circuit, the receiving circuit and the antenna port are respectively communicated.
  • a radio frequency transceiver system comprising:
  • An antenna group including a first antenna, the first antenna is connected to the antenna port of the radio frequency L-PA Mid device;
  • the radio frequency transceiver is respectively connected with the transmitting port and the receiving port of the radio frequency L-PA Mid device.
  • a communication device includes the aforementioned radio frequency transceiver system.
  • Fig. 1 is one of the structural block diagrams of the radio frequency L-PA Mid device in one embodiment
  • Fig. 2 is the second structural block diagram of the radio frequency L-PA Mid device in one embodiment
  • Fig. 3 is the third structural block diagram of the radio frequency L-PA Mid device in one embodiment
  • Fig. 4 is the fourth structural block diagram of the radio frequency L-PA Mid device in one embodiment
  • Fig. 5 is the fifth structural block diagram of the radio frequency L-PA Mid device in one embodiment
  • 6 is a graph showing the relationship between the input power and the output power of the power amplifier in one embodiment
  • Fig. 7 is the sixth structural block diagram of the radio frequency L-PA Mid device in one embodiment
  • Fig. 8 is the seventh structural block diagram of the radio frequency L-PA Mid device in one embodiment
  • Fig. 9 is the eighth structural block diagram of the radio frequency L-PA Mid device in one embodiment.
  • 11 is the second structural block diagram of a radio frequency transceiver system in one embodiment
  • FIG. 13 is the fourth structural block diagram of a radio frequency transceiver system in one embodiment
  • 15 is the sixth structural block diagram of a radio frequency transceiver system in one embodiment
  • 16 is the seventh structural block diagram of a radio frequency transceiver system in one embodiment
  • FIG. 17 is an eighth structural block diagram of a radio frequency transceiver system in an embodiment.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plural means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.
  • severeal means at least one, such as one, two, etc., unless expressly and specifically defined otherwise.
  • the radio frequency L-PA Mid device involved in the embodiments of the present application can be applied to a communication device with a wireless communication function, and the communication device may be a handheld device, a vehicle-mounted device, a wearable device, a computing device, or other processing device connected to a wireless modem, And various forms of user equipment (User Equipment, UE) (for example, a mobile phone), a mobile station (Mobile Station, MS) and so on.
  • UE User Equipment
  • UE user equipment
  • MS Mobile Station
  • Network devices may include base stations, access points, and the like.
  • the embodiment of the present application provides a radio frequency L-PA Mid device.
  • the RF L-PA Mid device can be understood as a power amplifier module (Power Amplifier Modules including Duplexers With LNA, L-PA Mid) with a built-in low noise amplifier.
  • the RF L-PA Mid device can support the reception and transmission of low-frequency signals and preset low-frequency signals in multiple different frequency bands. Therefore, the radio frequency L-PA Mid device in the embodiments of the present application can also be referred to as a low frequency power amplifier module with a built-in low noise amplifier (Low Band PA Mid With LNA, LB L-PA Mid).
  • the radio frequency L-PA Mid device can be understood as a package structure, and the radio frequency L-PA Mid device is configured with a transmit port 4G LB RFIN, an antenna port LB ANT and a plurality of receive ports LNA OUT.
  • the transmitting port 4G LB RFIN, the antenna port LB ANT and the multiple receiving ports LNA OUT configured in the device can be understood as the radio frequency pin terminals of the radio frequency L-PA Mid device, which are used to connect with various external devices.
  • the receiving port LNA OUT and the low-frequency transmitting port 4G LB RFIN can be used to connect with the radio frequency transceiver; the antenna port LB ANT can be used to connect to the antenna.
  • the radio frequency L-PA Mid device includes: a first transmitting circuit 110 , a second transmitting circuit 120 , a receiving circuit 130 and a switching circuit 140 .
  • the input end of the first transmitting circuit 110 is connected to the transmitting port 4G LB RFIN, and the output end of the first transmitting circuit 110 is connected to the switching circuit 140.
  • the first transmitting circuit 110 can amplify the preset low frequency signal received by the transmitting port 4G LB RFIN.
  • the preset low frequency signal may be a signal of the N28 frequency band.
  • the input end of the second transmitting circuit 120 is connected to the transmitting port 4G LB RFIN, and the output end of the second transmitting circuit 120 is connected to the switching circuit 140.
  • the second transmitting circuit 120 can perform amplifying processing on a plurality of low frequency band signals received by the transmitting port 4G LB RFIN.
  • the second transmission circuit 120 may be provided with multiple radio frequency channels to support the transmission of multiple low frequency signals.
  • the frequency bands of the plurality of low frequency frequency signals may at least include B8, B12, B20, B26, N8, B28, N20, and N26 frequency bands.
  • the frequency bands of the plurality of low frequency signals may also include B13 and B29 frequency bands.
  • the receiving circuit 130 is connected to the switching circuit 140 and the plurality of receiving ports LNA OUT respectively, and is used for amplifying the received preset low frequency signal and the plurality of low frequency signals. That is, the receiving circuit 130 can support the receiving control of the aforementioned preset low-frequency signal and any low-frequency signal.
  • the receiving circuit 130 may also be provided with a plurality of radio frequency paths for transmitting preset low frequency signals and each low frequency signal. Exemplarily, corresponding radio frequency channels may be set for frequency bands N28, B8, B12, B20, B26, N8, B28, N20, and N26.
  • the antenna port LB ANT, the switch circuit 140, the receiving circuit 130, and any receiving port LNA OUT form a receiving path together, that is, a receiving path can be set for the preset low-frequency signal and the low-frequency signal of each frequency band, In order to support the reception and processing of preset low-frequency signals and multiple low-frequency signals.
  • the multiple first ends of the switch circuit 140 are respectively connected to the first transmitting circuit 110, the second transmitting circuit 120 and the receiving circuit 130, and the second end of the switching circuit 140 is connected to the antenna port LB ANT for selectively conducting the first transmitting The radio frequency path between the circuit 110, the second transmitting circuit 120, the receiving circuit 130 and the antenna port LB ANT respectively. That is, the switch circuit 140 can be used to selectively turn on the transmit path or the receive path of the preset low-frequency signal or multiple low-frequency signals.
  • the switch circuit 140 may include one or more switches, and the number of the first ends of the switch circuit 140 is the same as the number of radio frequency signals that can be processed by the first transmitting circuit 110 , the second transmitting circuit 120 and the receiving circuit 130 Associated.
  • the above-mentioned radio frequency L-PA Mid device includes a first transmitting circuit 110, a second transmitting circuit 120, a receiving circuit 130 and a switching circuit 140, that is, the device integrates a signal for preset low frequency (for example, N28 frequency band signal)
  • the first transmitting circuit 110 for transmitting and the receiving circuit 130 for receiving can reduce the insertion loss of the transmitting and receiving links and improve the For the output power of the preset low-frequency signal, the sensitivity performance of the preset low-frequency signal can be improved, thereby improving the communication performance of the device.
  • the integration degree of the device can also be improved, and the area can be saved, which is beneficial to the miniaturization of the device.
  • the logic control of the switch circuit 140, the laying of the power supply network, etc. are all provided by the RF L-PA Mid device itself, which will not affect other components of the RF PA Mid RF device, and can also reduce costs.
  • the switch circuit 140 includes a first switch unit 141 and a second switch unit 142 .
  • the first switch unit 141 includes a plurality of first ends and a second end, and the plurality of first ends of the first switch unit 141 are respectively connected to the second transmitting circuit 120 and the receiving circuit 130 .
  • the second switch unit 142 includes two first terminals and a second terminal, a first terminal of the second switch unit 142 is connected to the second terminal of the first switch unit 141 , and the second switch unit The other first end of 142 is connected to the first transmitting circuit 110, and the second end of the second switch unit 142 is connected to the antenna port LB ANT.
  • the first switch unit 141 may be an SPnT switch.
  • the first switch unit 141 may be an SP9T switch
  • the second switch unit 142 may be an SPDT switch.
  • n may be set according to the number of multiple low-frequency signals and the internal structural features of the second transmitting circuit 120 and the receiving circuit 130 , which are not further limited here.
  • the preset transmission path of the low frequency signal in the radio frequency L-PA Mid device is the transmission port 4G LB RFIN ⁇ the first transmission circuit 110 ⁇ the second switch unit 142 ⁇ the antenna port LB ANT.
  • the switch circuit 140 includes a multi-channel selection switch 143 , wherein a plurality of first ends of the multi-channel selection switch 143 respectively correspond to the first transmitting circuit 110 , the second transmitting circuit 120 and the receiving circuit 130 are connected; the second end of the multi-channel selection switch 143 is connected with the antenna port LB ANT.
  • the multi-channel selection switch 143 may be an SPmT switch, where m ⁇ 4.
  • the multi-channel selection switch 143 may be an SP10T switch.
  • m may be set according to the preset low-frequency signal, the number of multiple low-frequency signals, and the internal structural characteristics of the first transmitting circuit 110 , the second transmitting circuit 120 , and the receiving circuit 130 . further restrictions.
  • the preset transmission path of the low frequency signal in the radio frequency L-PA Mid device is the transmission port 4G LB RFIN ⁇ the first transmission circuit 110 ⁇ the multi-channel selection switch 143 ⁇ the antenna port LB ANT.
  • the transmission path based on the preset low frequency signal shown in Figure 2 is compared with the transmission path of the preset low frequency signal shown in Figure 3.
  • the switches on the transmit path are different, one is an SPDT switch and the other is an SPmT switch (m ⁇ 4), and the insertion loss of the SPDT switch is lower than that of the SPmT switch, which can reduce preset low-frequency signals (for example, N28 band signals). ) of the receiving path and the insertion loss value of the transmitting path, therefore, the transmit power and sensitivity of the preset low-frequency signal can be improved.
  • the multi-channel selection switch 143 in the radio frequency L-PA Mid device shown in FIG. 3 is less than the first switch unit 141 and the second switch unit 142 in the radio frequency L-PA Mid device shown in FIG. 2 .
  • the use of one-stage switching unit can further reduce the insertion loss of any transmission path.
  • the RF L-PA Mid device shown in Figure 3 can reduce the insertion loss by 0.5dB, and then can increase the output power of multiple low-frequency signals at the antenna port LB ANT, so as to achieve each 26.0dBm required by R&D standards issued by major operators.
  • the number of transmitting ports 4G LB RFIN is multiple, which are respectively denoted as the first transmitting port 4G LB0 RFIN and the second transmitting port 4G LB1 RFIN, wherein the first transmitting circuit
  • the input end of 110 is connected with the first transmitting port 4G LB0RFIN
  • the input end of the second transmitting circuit 120 is connected with the second transmitting port 4G LB1 RFIN.
  • the first transmitting circuit 110 includes a first power amplifier 111 and a first filtering unit 112 .
  • the second transmitting circuit 120 includes a second power amplifier 121 , a fourth switching unit 122 and a plurality of second filtering units 123 .
  • the input end of the first power amplifier 111 is connected to the second transmission port 4G LB1 RFIN for power amplifying the received preset low frequency signal, and the first filtering unit 112 is respectively connected with the output end of the first power amplifier 111, the switch
  • the circuit 140 is connected for filtering the received preset low frequency signal.
  • the first power amplifier 111 and the first filtering unit 112 can support correlation processing on the N28-band signal. It should be noted that, after the filtering processing by the first filtering unit 112, it can correspondingly output the N28 frequency band signal without clutter.
  • the second transmission port 4G LB1 RFIN, the first power amplifier 111, the first filtering unit 112, the switch circuit 140 and the antenna port LB ANT constitute the first transmission path, which is used to support the transmission processing of the preset low frequency signal.
  • the input end of the second power amplifier 121 is connected to the first transmission port 4G LB0 RFIN, and is used for power amplifying the received multiple preset low frequency signals.
  • the first end of the fourth switch unit 122 is connected to the output end of the first power amplifier 111 , the input end of each second filter unit 123 is connected to a second end of the fourth switch unit 122 correspondingly, and the The output end is correspondingly connected to the switch circuit 140 for filtering the received low-frequency signal, and the frequency bands of the low-frequency signal output by each second filtering unit 123 are different.
  • the second power amplifier 121 can perform power amplification processing on a plurality of low-frequency signals received through the first transmission port 4G LB0 RFIN, and then the low-frequency signals processed by the second power amplifier 121 are passed through the fourth switch unit 122. It is transmitted to each second filtering unit 123; the frequency band of the low frequency signal output by each second filtering unit 123 is different. It can be understood that the filtering paths in the multiple transmitting paths are independent of each other and do not overlap with each other.
  • the second filtering unit 123 only allows low frequency signals of a preset frequency band to pass.
  • the frequency bands of the multiple low frequency signals can be eight different frequency bands of B12 (N12), B8 (N8), B20 (N20), and B26 (N26)
  • four second filtering units 123 that is, four filters
  • the fourth switch unit 122 may be an SP4T switch, wherein the first end of the SP4T switch is connected to the output end of the second power amplifier 121 , and the four second ends of the SP4T switch correspond one-to-one with the four second filter Unit 123 is connected. After the filtering processing by the four second filtering units 123, eight low-frequency signals of B12 (N12), B8 (N8), B20 (N20), and B26 (N26) can be output to the switch circuit 140 correspondingly.
  • the first transmission port 4G LB0 RFIN, the fourth switch unit 122, and a second filter unit 123 can constitute a radio frequency channel.
  • the frequency band of the low-frequency signal output by the second filtering unit 123 corresponds to the radio frequency channel of the frequency band.
  • the radio frequency path where the second filtering unit 123 outputting the B8/N8 frequency band is located can be understood as the B8/N8 radio frequency path
  • the radio frequency path where the second filtering unit 123 outputting the B20/N20 frequency band is located can be understood as the B20/N20 radio frequency. path.
  • the transmit port 4G LB RFIN, the second power amplifier 121, the fourth switch unit 122, a second filter unit 123, the switch circuit 140 and the antenna port LB ANT form a second transmit path, wherein the second transmit path uses for transmitting any low frequency radio frequency signal.
  • the RF L-PA Mid device is configured with one transmit port 4G LB RFIN.
  • the radio frequency L-PA Mid device also includes a third switch unit 150, the first end of the third switch unit 150 is connected to the transmitting port 4G LB RFIN, and the two second ends of the third switch unit 150 are respectively connected with the first transmitting circuit 110.
  • the input terminal is connected to the input terminal of the second transmitting circuit 120 .
  • the third switch unit 150 may be an SPDT switch, a single terminal of the SPDT switch is connected to the transmit port 4G LB RFIN, and two selection terminals of the SPDT switch are respectively connected to the input terminal of the first power amplifier 111 and the second power amplifier 121 input connection.
  • the number of the transmitting port 4G LB RFIN can be reduced from 2 to 1, which can save the number of 4G LB RFIN of the transmitting port of the radio frequency L-PA Mid device, and then correspondingly reduce the resources of the radio frequency input interface of the radio frequency transceiver connected to the transmitting port 4G LB RFIN.
  • Pout Pin+Gain, where Pout is the output power, Pin is the input power, and Gain is the gain of the device. According to this formula, the output power of the power amplifier is related to the input power and the device gain.
  • the maximum linear output power of the power amplifier is PoutE, and the corresponding input power is PinE. Since the SPDT switch is at the input end of the first power amplifier 111, it will increase the insertion loss of the RF input end. Referring to the insertion loss data of the SPDT switch in Table 2, the insertion loss in the LB frequency band is 0.2 dB, while the output power of the RF transceiver is 0.2 dB. An additional boost of 0.2dB is required, which has no effect on the RF input signal quality.
  • the maximum linear output power will not be affected, that is, the transmit output power and its performance will not be affected.
  • the receiving circuit 130 includes a first low noise amplifier 131 , a third filtering unit 132 , at least one second low noise amplifier 133 , and a fifth switching unit 134 and a plurality of fourth filtering units 135 .
  • the output end of the first low noise amplifier 131 is connected to a receiving port LNA OUT for amplifying the received preset low frequency signal;
  • the third filtering unit 132 is respectively connected to the input end of the first low noise amplifier 131, the switch
  • the circuit 140 is connected for filtering the received preset low frequency signal.
  • the first low-noise amplifier 131 and the third filtering unit 132 can support low-noise amplification and filtering processing of the N28-band signal. It should be noted that, after the filtering processing by the third filtering unit 132, it can correspondingly output the N28 frequency band signal without clutter.
  • the antenna port LB ANT, the switch circuit 140, the third filtering unit 132, the first low noise amplifier 131 and a receiving port LNA OUT constitute the first receiving path, which is used to support the receiving and processing of the preset low frequency signal.
  • the number of receiving ports LNA OUT may be set to three
  • the second low noise amplifier 133 may be set to two
  • the fifth switch unit 134 may correspondingly include two first ends and a plurality of second ends .
  • the output end of each second low noise amplifier 133 is correspondingly connected to one receiving port LNA OUT; the two first ends of the fifth switch unit 134 are respectively connected to the input ends of the two second low noise amplifiers 133 in a one-to-one correspondence .
  • the input end of each fourth filter unit 135 is correspondingly connected to the switch circuit 140
  • the output end of each fourth filter unit 135 is correspondingly connected to a second end of the fifth switch unit 134 , and is used for processing the received low frequency signal.
  • the antenna port LB ANT, the switch circuit 140, the fourth filter unit 135, the fifth switch unit 134, the second low noise amplifier 133, and the receiving port LNA OUT can form a second receiving channel, which is used to support any low frequency band Signal reception processing.
  • the second filter unit 123 and the fourth filter unit 135 may also be connected to the same terminal of the switch circuit 140.
  • filters disposed on the transmit path and on the receive path for corresponding filtering processing B8 (N8) may be connected to the same terminal of the switch circuit 140, respectively. It should be noted that, in the embodiment of the present application, the number of filters connected to the same terminal of the switch circuit 140 and the frequency bands of the low-frequency signals used for filtering processing by the connected filters are not further limited. frequency range of the signal.
  • the number and types of switches included in the fifth switch unit 134 are not further limited.
  • the fifth switch unit 134 may include one switch, such as a double-pole multi-throw switch; the fifth switch unit 134 may include two radio frequency switches, such as two SPDT switches or two SP4T switches.
  • the receiving circuit 130 further includes a sixth switch unit 136 .
  • the plurality of first ends of the sixth switch unit 136 are respectively connected to the plurality of receiving ports LNA OUT in a one-to-one correspondence, and the plurality of second ends of the sixth switch unit 136 are respectively connected to the output end of the first low noise amplifier 131 ,
  • the output terminals of each of the second low noise amplifiers 133 are connected in a one-to-one correspondence.
  • the number of the receiving ports LNA OUT is equal to the number of the first ends of the sixth switch unit 136
  • the sum of the numbers of the first low noise amplifiers 131 and the second low noise amplifiers 133 is equal to the number of the second ends of the sixth switch unit 136 equal.
  • the radio frequency L-PA Mid device is provided with three receiving ports (LNA OUT1, LNA OUT2, LNA OUT3), a first low-noise amplifier 131 and two second low-noise amplifiers 133, and its sixth switch Unit 136 may be a 3P3T switch.
  • each receiving port LNA OUT can output any frequency band correspondingly low-band signal to the RF transceiver.
  • the radio frequency L-PA Mid device is further configured with a plurality of auxiliary transmit ports LB TXOUT1, LB TXOUT2, LB TXOUT3, LB TXOUT4, a plurality of auxiliary transmit ports for connecting with an external switching circuit
  • multiple auxiliary transmitting ports 4G LB RFIN are respectively connected with the transmitting circuit
  • multiple auxiliary transmitting and receiving ports are connected with the switching circuit
  • multiple auxiliary receiving ports LNA OUT are connected with the receiving circuit.
  • a plurality of auxiliary transmit ports LB TXOUT1, LB TXOUT2, LB TXOUT3, and LB TXOUT4 can be used to transmit signals of frequency bands B13, B28A (N28A), B28B, and B29. That is, the transmission and reception paths of the signals of the four frequency bands B13, B28A (N28A), B28B, and B29 also include an external switching circuit (or filter circuit) (not shown in the figure).
  • each switch unit in the second transmitting circuit, the receiving circuit and the switching circuit can also be adjusted adaptively.
  • part of the second ends of the fourth switch unit 122 of the second transmission circuit are respectively connected to the second filter units 123 in a one-to-one correspondence, and the remaining second ends of the fourth switch unit 122 are respectively connected to the multiple auxiliary transmit ports LB TXOUT1.
  • LB TXOUT2, LB TXOUT3, LB TXOUT4, one-to-one connection Part of the first ends of the switch circuit are respectively connected to the first filter unit 112, the third filter unit 132, the plurality of second filter units 123, and the plurality of fourth filter units 135 in one-to-one correspondence, and the remaining first ends of the switch circuit are respectively connected to Multiple auxiliary transceiver ports LB_TRX1, LB_TRX2, LB_TRX3, and LB_TRX4 are connected in one-to-one correspondence.
  • Part of the second ends of the fifth switching unit 134 are connected to the plurality of fourth filtering units 135 in one-to-one correspondence, and the remaining second ends of the fifth switching unit 134 are connected to the plurality of auxiliary receiving ports LNA OUTLNA_AUX1, LNA_AUX2, LNA_AUX3, and LNA_AUX4.
  • the transceiver control of any low-frequency signal can be realized.
  • the implementation of the low-frequency signal of the N28 frequency band is taken as an example for description.
  • the transmission path of the N28 frequency band is as follows:
  • Transmission port 4G LB1 RFIN ⁇ first power amplifier 111 ⁇ first filtering unit 112 ⁇ multi-channel selection switch 143 ⁇ antenna port LB ANTLB ANT.
  • the receive path of the N28 frequency band is as follows:
  • the insertion loss from the antenna port LB ANT to the antenna on the transmission path is shown in Table 3. It can be seen from the data in Table 3 that the overall insertion loss is around 1.5dB.
  • the output power of the first power amplifier 111 is higher than the requirement in Table 4, with a margin of 0.5dB.
  • stricter parameter indicators are proposed.
  • the indicator parameters of N28 are shown in Table 4. It should be noted that the test bandwidth of the transmit index in Table 4 is 10MHz, and the test bandwidth of the receive index is 5MHz.
  • the first low-noise amplifier 131 is a separately added low-noise amplifier device for the N28 receiving channel, and its parameters are shown in Table 5.
  • Table 5 The first low noise amplifier 131 switch insertion loss table
  • the receiving sensitivity of the new scheme is calculated as shown in Table 6.
  • the theoretical calculation value of the sensitivity of the RF L-PA Mid device as shown in Figure 7 is increased by 0.7dB, reaching -102.3dBm/5MHz; Therefore, the sensitivity index of the RF L-PA Mid device provided by the embodiment of the present application meets the requirements for building a high-performance N28.
  • the transceiver control of any low-frequency signal can be realized.
  • the implementation of the low-frequency signal of the N28 frequency band is taken as an example for description.
  • the transmission path of the N28 frequency band is as follows:
  • the receive path of the N28 frequency band is as follows:
  • the RF L-PA Mid device shown in Figure 8 Compared with the RF L-PA Mid device shown in Figure 7, the RF L-PA Mid device shown in Figure 8 has the same receiving path in the N28 frequency band.
  • the RF L-PA Mid device shown in Figure 8 has the same receiving path.
  • the N28 frequency band signal in the path is separately connected to the second switch unit 142 (eg, SPDT switch), skipping the SP9T switch.
  • the introduction of the SPDT switch is mainly to reduce the insertion loss value of the N28 transmit path.
  • the specific parameters of the SPDT insertion loss value are shown in Table 7.
  • the transceiver control of any low-frequency signal can be realized.
  • the implementation of the low-frequency signal of the N28 frequency band is taken as an example for description.
  • the transmission path of the N28 frequency band is as follows:
  • the receive path of the N28 frequency band is as follows:
  • the RF L-PA Mid device has a first transmitter circuit (first power amplifier 111 and first filter unit 112) and a receiver circuit (first low noise amplifier 131) separately added to N28 inside the device. and the third filtering unit 132) to improve the output power of the N28 frequency band signal, improve the sensitivity performance of the N28 frequency band signal, and the communication performance of the N28 frequency band signal is high performance.
  • the radio frequency L-PA Mid device is further configured with a second low frequency transmit port 2G LB RFIN, a high frequency transmit port 2G HB IN and a high frequency output port 2G HB OUT , the radio frequency L-PA Mid device further includes a third power amplifier 161 and a fourth power amplifier 162 .
  • the input end of the third power amplifier 161 is connected to the second low frequency transmission port 2G LB RFIN, and the output end of the third power amplifier 161 is connected to a first end of the switch circuit for amplifying the received 2G low frequency signal.
  • the low-band signals are 4G signals and 5G signals.
  • the input end of the fourth power amplifier 162 is connected to the high-frequency transmitting port 2G HB IN, and the output end of the third power amplifier 161 is connected to the high-frequency output port 2G HB OUT for amplifying the received 2G high-frequency signal.
  • the transmission control of the low frequency signal of the 2G signal can be realized.
  • the low-frequency signal of the 2G signal may include the 900M frequency band of the GSM standard, the 800M frequency band of the CDMA standard, and the like.
  • the fourth power amplifier 162 the transmission control of the high-frequency signal of the 2G signal can be realized, wherein the low-frequency signal of the 2G signal may include the 900M frequency band of the GSM standard, the 800M frequency band of the CDMA standard, and the like.
  • the radio frequency L-PA Mid device is further configured with a coupling output port CPLOUT, and the radio frequency L-PA Mid device further includes a connection between the switch circuit 140 and the antenna port LB ANT.
  • the coupled signal can be used to measure the forward coupling power and the reverse coupling power of the low frequency signal.
  • the coupling circuit 170 includes an input terminal, an output terminal and a coupling terminal. The input end of the coupling circuit 170 is coupled to the switch circuit 140, the output end of the coupling circuit 170 is coupled to the antenna port LB ANT, and the coupling end is used for coupling the intermediate frequency signal received by the input end and outputting the coupled signal to the coupling output port CPLOUT.
  • the coupled signal includes a forward coupled signal and a reverse coupled signal.
  • the forward power information of the low frequency signal can be detected; based on the reverse coupling signal output by the coupling end, the reverse power information of the low frequency signal can be detected correspondingly, and the The detection mode is defined as the reverse power detection mode.
  • only one coupling output port CPLOUT is set in the RF L-PA Mid device. Since low-frequency signals of multiple frequency bands are not transmitted at the same time, one coupling output port CPLOUT can also meet the communication requirements, and also reduce the RF L- The complexity of the RF traces inside the PA Mid device can also improve the isolation performance of each trace of the RF L-PA Mid device.
  • the radio frequency L-PA Mid device further includes a first control unit 181 and a second control unit 182 .
  • the first control unit 181 is respectively connected to each switch unit and each power amplifier, for example, the first switch unit 141 , the second switch unit 142 , . . . , the first power amplifier 111 , and the third power amplifier 161 are connected for controlling The on-off of each switch unit is also used to control the working state of each power amplifier.
  • the second control unit 182 can be connected to each low-noise amplifier, and is used to adjust the gain coefficient of each low-noise amplifier, thereby adjusting the link loss of the receiving path of each intermediate-frequency signal and low-frequency signal, so as to improve the Sensitivity of the signal's receive path.
  • the first control unit 181 and the second control unit 182 may be a mobile industry processor interface (Mobile Industry Processor Interface, MIPI)-radio frequency front end control interface (RF Front End Control Interface, RFFE) control unit or a radio frequency front end control interface ( RF Front End Control Interface, RFFE) control unit, which conforms to the control protocol of the RFFE bus.
  • MIPI Mobile Industry Processor Interface
  • RF Front End Control Interface RF Front End Control Interface
  • RFFE radio frequency front end control interface
  • control logic of each switch unit matches the control logic of the first control unit 181.
  • control logic of each switch unit, the first control unit 181, the second The specific type of the control unit 182 is not further limited.
  • Embodiments of the present application further provide a radio frequency transceiver system.
  • the radio frequency transceiver system includes the radio frequency L-PA Mid device 10 , the antenna group 20 and the radio frequency transceiver 30 as in any of the foregoing embodiments.
  • the antenna group 20 includes a first antenna Ant0, and the first antenna Ant0 is connected to the antenna port LB ANT of the radio frequency L-PA Mid device 10.
  • the radio frequency transceiver 30 is respectively connected with the transmitting port 4G LB RFIN and the receiving port LNA OUT of the radio frequency L-PA Mid device 10.
  • the first antenna Ant0 may be formed using any suitable type of antenna.
  • the first antenna Ant0 may include an antenna with resonant elements formed from the following antenna structures: an array antenna structure, a loop antenna structure, a patch antenna structure, a slot antenna structure, a helical antenna structure, a strip antenna, a monopole antenna, At least one of dipole antennas, etc.
  • Different types of antennas can be used for different frequency bands and combinations of frequency bands.
  • the type of the first antenna Ant0 is not further limited.
  • the radio frequency L-PA Mid device 10 in the above-mentioned radio frequency transceiver system includes a first transmitting circuit 110, a second transmitting circuit 120, a receiving circuit 130 and a switching circuit 140, that is, the radio frequency L-PA Mid device 10 is integrated with
  • the first transmitting circuit and receiving circuit of the preset low frequency signal for example, N28 frequency band signal
  • the insertion loss of the sending and receiving link can be reduced.
  • the output power of the device to the preset low-frequency signal is improved, the sensitivity performance of the preset low-frequency signal is improved, and the communication performance of the device can be improved.
  • the integration degree of the device can also be improved, and the area can be saved, which is beneficial to the miniaturization of the device.
  • the logic control of the switch circuit 140, the laying of the power supply network, etc. are all provided by the RF L-PA Mid device itself, which will not affect other components of the RF PA Mid RF device, and can also reduce costs.
  • the radio frequency transceiver system includes the radio frequency L-PA Mid device 10 as in any of the embodiments in FIGS. 7-9 .
  • the radio frequency transceiver system further includes a switching circuit 90 .
  • the switching circuit 90 is respectively connected with multiple auxiliary transmit ports LB TXOUT1, LB TXOUT2, LB TXOUT3, LB TXOUT4, multiple auxiliary transceiver ports LB_TRX1, LB_TRX2, LB_TRX3, LB_TRX4 and multiple auxiliary receive ports of the radio frequency L-PA Mid device 10.
  • the switching circuit may include a plurality of duplexers.
  • the switching circuit of the radio frequency transceiver system is connected to the auxiliary transmitting port 4G LB RFIN, the auxiliary transmitting and receiving port, and the auxiliary receiving port LNA OUT of the radio frequency L-PA Mid device 10, which can support the reception and transmission of signals in the built-in frequency band and the external frequency band. Specific information As shown in Table 8.
  • the radio frequency L-PA Mid device 10 in the above-mentioned radio frequency transceiver system includes a first transmitting circuit 110, a second transmitting circuit 120, a receiving circuit 130 and a switching circuit 140, that is, the radio frequency L-PA Mid device 10 is integrated with
  • the first transmitting circuit and the receiving circuit 130 of the preset low-frequency signal for example, the N28 frequency band signal
  • the insertion and reception of the sending and receiving link can be reduced.
  • the output power of the device to the preset low-frequency signal is improved, the sensitivity performance of the preset low-frequency signal is improved, and the communication performance of the device can be improved.
  • the integration degree of the device can also be improved, and the area can be saved, which is beneficial to the miniaturization of the device.
  • the logic control of the switch circuit 140, the laying of the power supply network, etc. are all provided by the RF L-PA Mid device itself, which will not affect other components of the RF PA Mid RF device, and can also reduce costs.
  • the antenna group 20 further includes a second antenna Ant1 , a third antenna Ant2 and a fourth antenna Ant3 . It should be noted that, for the radiation frequency bands and antenna types of the second antenna Ant1, the third antenna Ant2, and the fourth antenna Ant3, reference may be made to the first antenna Ant0, which will not be repeated here.
  • the radio frequency transceiver system further includes a transceiver module 40, a receiving module 50, a switch module and a combiner module.
  • the transceiver module 40 is configured with a first antenna port ANT1 and a second antenna port ANT2, which are used to support transceiving and amplifying processing of multiple intermediate frequency signals and multiple high frequency signals.
  • the transceiver module 40 integrates multiple power amplifiers, low noise amplifiers, filters, switches and other components.
  • the transceiver module 40 can implement the transceiver processing of multiple mid-band signals and multiple high-band signals.
  • the transceiver module 40 may be an MHB L-PA Mid device, that is, a medium and high frequency power amplifier module with a built-in low noise amplifier (Middle and High Band PA Mid With LNA, MHB L-PA Mid).
  • the multiple mid-band signals may at least include: B4, B66, B1, B25, B34, B39, B3, B30 and other frequency band signals; the multiple high-frequency band signals may include B7, B40, B41 and other frequency bands signals.
  • the receiving module 50 is configured with a low frequency antenna port LB ANT, a medium and high frequency antenna port MHB ANT, and a medium and high frequency transceiver port MHB TRX1, which is used to support diversity reception and amplification of multiple low frequency signals, multiple intermediate frequency signals, and multiple high frequency signals. deal with. Specifically, the receiving module 50 integrates multiple low-noise amplifiers, filters, switches and other components.
  • the receiving module 50 can be an LMHB DRX device, that is, it can support the diversity receiving module 50 for low, medium and high frequency bands.
  • the receiving module 50 can realize the receiving and processing of the sum of 4G signals of multiple low, medium and high frequency bands, wherein the low, medium and high frequency band signals can at least include B4, B66, B1, B25, B3, B39, B30, B7, B40, B41, B8, B26, B20, B28A, B28B, B12, B17, etc.
  • the switch module is respectively connected to the first antenna port ANT1, the second antenna port ANT2, the low frequency antenna port LB ANT, the third antenna Ant2, and the fourth antenna Ant3.
  • the multiple first ends of the combiner module are respectively connected with the antenna port LB ANT and the switch module in one-to-one correspondence, and the multiple first ends of the combiner module are respectively connected with the antenna port LB ANT, the intermediate frequency antenna port LB ANT, the high frequency antenna port
  • the frequency antenna ports LB ANT are correspondingly connected, and the two second ends of the combiner module are respectively connected with the first antenna Ant0 and the second antenna Ant1 in a one-to-one correspondence.
  • the switch module may include a seventh switch unit 610 .
  • the combiner module includes a first combiner 710 and a second combiner 720 .
  • the first combiner 710 and the second combiner 720 may both be the dual-frequency combiner 70 .
  • the seventh switch unit 610 includes two first terminals and four second terminals.
  • the seventh switch unit 610 may be a DP4T switch.
  • the two first ends of the DP4T switch are respectively connected to the first antenna port ANT1 and the second antenna port ANT2 in a one-to-one correspondence, a second end of the DP4T switch is connected to a first end of the first combiner 710, and the first The other first end of a combiner 710 is connected to the antenna port LB ANT of the RF L-PA Mid device 10, the second end of the first combiner 710 is connected to the first antenna Ant0; the other end of the DP4T switch A second end is connected to the medium and high frequency transceiver port MHB TRX1; another second end of the DP4T switch is connected to the third antenna Ant2; another second end of the DP4T switch is connected to the fourth antenna Ant3; the low frequency antenna port of the receiving module 50
  • the LB ANT and the mid-high frequency antenna port MHB ANT are respectively connected to the second antenna Ant1 through the second combiner 720 .
  • the insertion loss of the transceiver link can be reduced, and the device can be improved.
  • the sensitivity performance of the preset low-frequency signal can be improved, and then the communication performance of the device can be improved; it can also be used to support the channel sounding reference signal (Sounding Reference Signal SRS) of the RF signal in the middle and high frequency bands.
  • SRS Sounding Reference Signal
  • the radio frequency transceiver system further includes a first MIMO receiving module 80 and a second MIMO receiving module 90 .
  • the first MIMO receiving module 80 is respectively connected with the radio frequency transceiver 30 and the switch module, and is used for supporting the main set receiving and amplifying processing of multiple intermediate frequency signals and multiple high frequency signals;
  • the second MIMO receiving module 90 They are respectively connected with the radio frequency transceiver 30 and the switch module, and are used for supporting diversity receiving and amplifying processing of multiple intermediate frequency signals and multiple high frequency signals.
  • the multiple radio frequency signals in the middle and high frequency bands may at least include frequency bands such as B1, B3, B25, B34, B66, B39, B30, B7, B40, and B41.
  • the switch module further includes an eighth switch unit 620 and a ninth switch unit 630 .
  • a first end of the eighth switch unit 620 is connected to the other second end of the seventh switch unit 610, another first end of the eighth switch unit 620 is connected to the first MIMO receiving module 80, and the eighth switch unit
  • the second end of 620 is connected to the third antenna Ant2;
  • a first end of the ninth switch unit 630 is connected to another second end of the seventh switch unit 610, and the other first end of the ninth switch unit 630 is connected to the second MIMO
  • the receiving module 90 is connected, and the second end of the ninth switch unit 630 is connected to the fourth antenna Ant3.
  • the RF transceiver system shown in Figures 15-17 in addition to using external duplexers in traditional devices to support the transceiver processing of preset low-frequency signals (for example, N28 frequency band signals), can reduce the insertion loss of the transceiver link , to improve the output power of the device to preset low-frequency signals, improve the sensitivity performance of preset low-frequency signals, and then improve the communication performance of the device; it can also support the 1T4R function of SRS for mid-band and high-band RF signals. In addition, It can also support the 4*4 MIMO function of multiple medium and high frequency signals, expand the communication frequency band of the radio frequency transceiver system, and improve the communication performance of the radio frequency transceiver system.
  • preset low-frequency signals for example, N28 frequency band signals
  • the embodiment of the present application further provides a communication device, the communication device is provided with the radio frequency transceiver system in any of the above-mentioned embodiments.
  • Supporting the transceiver processing of preset low-frequency signals can reduce the insertion loss of the transceiver link, improve the output power of the device to preset low-frequency signals, and improve the sensitivity performance of preset low-frequency signals, thereby improving the communication performance of the device.
  • the integration degree of the device can also be improved, and the area can be saved, which is beneficial to the miniaturization of the device.
  • the logic control of the switch circuit, the laying of the power supply network, etc. are all provided by the RF L-PA Mid device itself, which will not affect other components of the RF PA Mid RF device, and can also reduce costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

一种射频PA Mid器件,其中,射频L-PA Mid器件被配置有被配置有发射端口、天线端口和多个接收端口,其中,射频L-PA Mid器件包括:第一发射电路(110),用于对接收的预设低频信号进行放大、滤波处理;第二发射电路(120),用于对接收的多个低频段信号进行放大、滤波处理;接收电路(130),与多个接收端口连接,用于对接收到的预设低频信号和多个低频段信号进行滤波、放大处理;开关电路(140),开关电路的多个第一端分别与第一发射电路(110)、第二发射电路(120)、接收电路(130)连接,开关电路(140)的第二端与天线端口连接,用于选择导通第一发射电路(110)、第二发射电路(120)、接收电路(130)分别与天线端口之间的射频通路。

Description

射频L-PA Mid器件、射频收发系统和通信设备
相关申请的交叉引用
本申请要求于2020年12月02日提交中国专利局、申请号为2020228597743发明名称为“射频L-PA Mid器件、射频收发系统和通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及射频技术领域,特别是涉及一种射频L-PA Mid器件、射频收发系统和通信设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有示例性技术。
随着技术的发展和进步,5G移动通信技术逐渐开始应用于电子设备。5G移动通信技术通信频率相比于4G移动通信技术的频率更高。传统的射频收发系统中会设置以用于支持对预设低频信号(例如,N28频段信号)的射频前端模块,该模块中会设置以内置功率放大器的收发器件以及设置在收发器件外围的外挂电路,以支持对N28频段信号的收发处理。
但是,传统的射频前端模块中用于对预设低频信号的收发链路的链路损耗过大,而导致射频前端模块的性能较差。
发明内容
根据本申请的各种实施例,提供射频L-PA Mid器件、射频收发系统和通信设备。
一种射频L-PA Mid器件,被配置有用于连接射频收发器的发射端口、天线端口和多个接收端口,其中,所述射频L-PA Mid器件包括:
第一发射电路,与所述发射端口连接,用于对接收的预设低频信号进行放大处理;
第二发射电路,与所述发射端口连接,用于对接收的多个低频段信号进行放大处理;
接收电路,与多个所述接收端口连接,用于对接收到的预设低频信号和多个低频段信号进行放大处理;
开关电路,所述开关电路的多个第一端分别与所述第一发射电路、第二发射电路、接收电路连接,所述开关电路的第二端与所述天线端口连接,用于选择导通所述第一发射电路、第二发射电路、接收电路分别与所述天线端口之间的射频通路。
一种射频收发系统,包括:
如前述的射频L-PA Mid器件;
天线组,包括第一天线,所述第一天线与所述射频L-PA Mid器件的天线端口连接;
射频收发器,分别与所述射频L-PA Mid器件的发射端口、接收端口连接。
一种通信设备,包括前述的射频收发系统。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中射频L-PA Mid器件的结构框图之一;
图2为一个实施例中射频L-PA Mid器件的结构框图之二;
图3为一个实施例中射频L-PA Mid器件的结构框图之三;
图4为一个实施例中射频L-PA Mid器件的结构框图之四;
图5为一个实施例中射频L-PA Mid器件的结构框图之五;
图6为一个实施例中功率放大器的输入功率和输出功率的关系曲线图;
图7为一个实施例中射频L-PA Mid器件的结构框图之六;
图8为一个实施例中射频L-PA Mid器件的结构框图之七;
图9为一个实施例中射频L-PA Mid器件的结构框图之八;
图10为一个实施例中射频收发系统的结构框图之一;
图11为一个实施例中射频收发系统的结构框图之二;
图12为一个实施例中射频收发系统的结构框图之三;
图13为一个实施例中射频收发系统的结构框图之四;
图14为一个实施例中射频收发系统的结构框图之五;
图15为一个实施例中射频收发系统的结构框图之六;
图16为一个实施例中射频收发系统的结构框图之七;
图17为一个实施例中射频收发系统的结构框图之八。
具体实施方式
为了便于理解本申请,为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请,附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。在本申请的描述中,“若干”的含义是至少一个,例如一个,两个等,除非另有明确具体的限定。
本申请实施例涉及的射频L-PA Mid器件可以应用到具有无线通信功能的通信设备,其通信设备可以为手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE)(例如,手机),移动台(Mobile Station,MS)等等。为方便描述,上面提到的设备统称为通信设备。网络设备可以包括基站、接入点等。
本申请实施例提供一种射频L-PA Mid器件。该射频L-PA Mid器件可以理解为内置低噪声放大器的功率放大器模块(Power Amplifier Modules including Duplexers With LNA,L-PA Mid)。该射频L-PA Mid器件可以支持对多个不同频段的低频信号和预设低频信号的接收和发射。因此,也可以将本申请实施例中的射频L-PA Mid器件称之为内置低噪声放大器的低频功率放大器模块(Low Band PA Mid With LNA,LB L-PA Mid)。
如图1所示,在其中一个实施例中,射频L-PA Mid器件可以理解为封装结构,射频L-PA Mid器件被配置有发射端口4G LB RFIN、天线端口LB ANT和多个接收端口LNA OUT。其该器件中配置的发射端口4G LB RFIN、天线端口LB ANT和多个接收端口LNA OUT可以理解为射频L-PA Mid器件的射频引脚端子,用于与各外部器件进行连接。具体的,该接收端口LNA OUT、低频发射端口4G LB RFIN可用于与射频收发器连接;天线端口LB ANT可用于与天线连接。
具体的,射频L-PA Mid器件包括:第一发射电路110、第二发射电路120、接收电路130和开关电路140。第一发射电路110的输入端与发射端口4G LB RFIN连接,第一发射电路110的输出端与开关电路140连接。其中,第一发射电路110可对发射端口4G LB RFIN接收的预设低频信号进行放大处理。 其中,预设低频信号可以为N28频段的信号。第二发射电路120的输入端与发射端口4G LB RFIN连接,第二发射电路120的输出端与开关电路140连接。具体的,第二发射电路120可对发射端口4G LB RFIN接收的多个低频段信号进行放大处理。示例性的,该第二发射电路120中可设有多个射频通路以支持多个低频段信号的发射。其中,多个低频段信号的频段至少可包括B8、B12、B20、B26、N8、B28、N20、N26频段。此外,多个低频段信号的频段还可以包括B13和B29频段。
在本申请实施例中,需要说明的是,对于射频L-PA Mid器件,5G NR和4G LTE的关系如表1所示。从表1可以看出,4G LTE与5G NR的某些频段范围相同。因此,N26、N8、N20的物理收发通道分别与B26、B8、B20共用收发通道。
表1 4G LTE和5G NR基本信息
Figure PCTCN2021125296-appb-000001
接收电路130,分别与开关电路140、多个接收端口LNA OUT连接,用于对接收到的预设低频信号和多个低频段信号进行放大处理。也即该接收电路130能够支持对前述提及的预设低频信号和任一低频段信号的接收控制。该接收电路130中也可以设置多个用于传输预设低频信号、各低频段信号的射频通路。示例性的,可以针对N28、B8、B12、B20、B26、N8、B28、N20、N26频段,设置各自对应的射频通路。其中,天线端口LB ANT、开关电路140、接收电路130、任一接收端口LNA OUT共同构成的一接收通路,也即,可以为预设低频信号、每一频段的低频段信号设置一接收通路,以支持对预设低频信号和多个低频段信号的接收处理。
开关电路140的多个第一端分别与第一发射电路110、第二发射电路120、接收电路130连接,开关电路140的第二端与天线端口LB ANT连接,用于选择导通第一发射电路110、第二发射电路120、接收电路130分别与天线端口LB ANT之间的射频通路。也即,开关电路140可用于选择性导通预设低频信号、多个低频段信号的发射通路或接收通路。
需要说明的是,该开关电路140可包括一个或多个开关,该开关电路140的第一端的数量与第一发射电路110、第二发射电路120以及接收电路130能够处理的射频信号的数量相关联。
上述射频L-PA Mid器件包括第一发射电路110、第二发射电路120、接收电路130和开关电路140,也即在该器件内集成了用于对预设低频信号(例如,N28频段信号)进行发射的第一发射电路110和用于接收的接收电路130,相对于传统器件中采用外挂双工器来支持对预设低频信号的收发处理,可以降低收发链路的插损,提高该器件对预设低频信号的输出功率,提升预设低频信号的灵敏度性能,进而可提升该器件的通信性能。同时,相对于传统器件,还可以提高器件的集成度,另外可以节省面积,有利于器件的小型化。另外,该开关电路140逻辑控制、供电网络铺设等均由该射频L-PA Mid器件本身提供,不会对射频PA Mid射频器件的其他元件带来影响,同时还可以降低成本。
如图2所示,在其中一个实施例中,开关电路140包括第一开关单元141和第二开关单元142。其中,第一开关单元141包括多个第一端和一个第二端,所述第一开关单元141的多个第一端分别对应与所述第二发射电路120、接收电路130连接。第二开关单元142包括两个第一端和一个第二端,所述第二开关单元142的一第一端连接与所述第一开关单元141的第二端连接,所述第二开关单元142的另一第一端连接与第一发射电路110连接,所述第二开关单元142的第二端与天线端口LB ANT连接。
具体的,该第一开关单元141可以为SPnT开关,示例性的,第一开关单元141可以为SP9T开关,第二开关单元142可以为SPDT开关。在本申请实施例中,n可以根据多个低频段信号的数量以及第二发射电路120和接收电路130的内部结构特征来设置,在此,不做进一步的限定。
其中,预设低频信号在射频L-PA Mid器件内的发射路径为发射端口4G LB RFIN→第一发射电路110→第二开关单元142→天线端口LB ANT。
如图3所示,在其中一个实施例中,所述开关电路140包括多通道选择开关143,其中,所述多通道选择开关143的多个第一端分别对应与所述第一发射电路110、第二发射电路120、接收电路130连接;所述多通道选择开关143的第二端与所述天线端口LB ANT连接。
具体的,该多通道选择开关143可以为SPmT开关,其中,m≥4。示例性的,多通道选择开关143可以为SP10T开关。在本申请实施例中,m可以根据预设低频信号、多个低频段信号的数量以及第一发射电路110、第二发射电路120和接收电路130的内部结构特征来设置,在此,不做进一步的限定。
其中,预设低频信号在射频L-PA Mid器件内的发射路径为发射端口4G LB RFIN→第一发射电路110→多通道选择开关143→天线端口LB ANT。
基于如图2和图3所示的射频L-PA Mid器件可知,基于如图2所示的预设低频信号的发射路径相比于如图3所示的预设低频信号的发射路径,其发射路径上的开关不同,其中,一个为SPDT开关,一个为SPmT开关(m≥4),而SPDT开关的插入损耗低于SPmT开关的插入损耗,可以降低预设低频信号(例如,N28频段信号)的接收路径和发射路径的插入损耗值,因此,可以提高预设低频信号的发射功率和灵敏度。
同时,如图3所示的射频L-PA Mid器件中的多通道选择开关143相对于如图2所示的射频L-PA Mid器件中的第一开关单元141和第二开关单元142,减少一级开关单元的使用,进而可以降低任一发射通路的插入损耗。针对多个低频段信号的发射通路,如图3所示的射频L-PA Mid器件可以降低0.5dB的插入损耗,进而可以提升多个低频段信号在天线端口LB ANT的输出功率,以达到各大运营商发布的研发标准要求的26.0dBm。
参考图1-图3,在其中一个实施例中,发射端口4G LB RFIN的数量为多个,分别记为第一发射端口4G LB0 RFIN、第二发射端口4G LB1 RFIN,其中,第一发射电路110的输入端与第一发射端口4G LB0RFIN连接,第二发射电路120的输入端与第二发射端口4G LB1 RFIN连接。
参考图2和图3,在其中一个实施例中,第一发射电路110包括第一功率放大器111和第一滤波单元112。第二发射电路120包括第二功率放大器121、第四开关单元122和多个第二滤波单元123。第一功率放大器111的输入端与与第二发射端口4G LB1 RFIN连接连接,用于对接收的预设低频信号进行功率放大,第一滤波单元112分别与第一功率放大器111的输出端、开关电路140连接,用于对接收的预设低频信号进行滤波。具体的,当预设低频段信号为N28频段信号时,其第一功率放大器111、第一滤波单元112可支持对N28频段信号的相关处理。需要说明的是,经过该第一滤波单元112的滤波处理,其可以对应输出无杂波的N28频段信号。其中,第二发射端口4G LB1 RFIN、第一功率放大器111、第一滤波单元112、开关电路140和天线端口LB ANT构成第一发射通路,用于支持对预设低频信号的发射处理。
第二功率放大器121的输入端与第一发射端口4G LB0 RFIN连接,用于对接收的多个预设低频段信号进行功率放大。第四开关单元122的第一端与第一功率放大器111的输出端连接,各第二滤波单元123的输入端对应与第四开关单元122的一第二端连接,各第二滤波单元123的输出端对应与开关电路140连接,用于对接收的低频段信号进行滤波,且每个第二滤波单元123输出的低频段信号的频段不同。具体的,第二功率放大器121可对经第一发射端口4G LB0 RFIN接收的多个低频段信号进行功率放大处理,进而将该第二功率放大器121处理后的低频段信号经第四开关单元122传输至各第二滤波单元123;各第二滤波单元123输出的低频段信号的频段不同。可以理解的是,多个发射通路中的滤波通路相互独立,彼此不重合。
具体的,第二滤波单元123仅允许预设频段的低频段信号通过。示例性的,若多个低频段信号的频段可B12(N12)、B8(N8)、B20(N20)、B26(N26)这八个不同频段,其可对应设置四个第二滤波单元123(也即,四个滤波器),以实现对着八个低频段信号的滤波处理。相应的,该第四开关单元122可以为SP4T开关,其中,SP4T开关的第一端与第二功率放大器121的输出端连接,SP4T开关的四个第二端一一对应与四个第二滤波单元123连接。经过这四个第二滤波单元123的滤波处理后,可以对应 输出B12(N12)、B8(N8)、B20(N20)、B26(N26)这八个低频段信号至开关电路140。
其中,第一发射端口4G LB0 RFIN、第四开关单元122、一第二滤波单元123可构成一射频通路。其中,第二滤波单元123输出的低频段信号的频段对应于该频段的射频通路。示例性的,输出B8/N8频段的第二滤波单元123所在的射频通路可以理解为B8/N8射频通路,输出B20/N20频段的第二滤波单元123所在的射频通路可以理解为B20/N20射频通路。进一步的,发射端口4G LB RFIN、第二功率放大器121、第四开关单元122、一第二滤波单元123、开关电路140和天线端口LB ANT构成一个第二发射通路,其中,第二发射通路用于发射任一低频段的射频信号。
如图4和图5所示,在其中一个实施例中,射频L-PA Mid器件配置有一个发射端口4G LB RFIN。射频L-PA Mid器件还包括第三开关单元150,第三开关单元150的第一端与发射端口4G LB RFIN连接,第三开关单元150的两个第二端分别与第一发射电路110的输入端、第二发射电路120的输入端连接。具体的,该第三开关单元150可以为SPDT开关,SPDT开关的单端子与发射端口4G LB RFIN连接,SPDT开关的两个选择端分别与第一功率放大器111的输入端、第二功率放大器121的输入端连接。
本实施例中,通过在发射端口4G LB RFIN与第一功率放大器111之间(也即,功率放大器的前端)设置第三开关单元150,可以将发射端口4G LB RFIN的数量由2个缩减到1个,达到了节省射频L-PA Mid器件的发射端口4G LB RFIN的数量,进而与可以对应减少与该发射端口4G LB RFIN连接的射频收发器的射频输入接口的资源。同时,基于公式Pout=Pin+Gain,其中,Pout是输出功率,Pin是输入功率,Gain是器件的增益。根据该公式可知,功率放大器的输出功率与输入功率和器件增益相关。如图6所示,功率放大器的最大线性输出功率是PoutE,对应的输入功率是PinE。由于SPDT开关在第一功率放大器111的输入端,其会增加射频输入端的插入损耗,参考表2中SPDT开关的插入损耗数据,在LB频段的插入损耗在0.2dB,而射频收发器的输出功率需要额外提升0.2dB,其对于射频输入信号质量没有影响。
表2 SPDT开关插入损耗表
频率(MHz) 1000~1600 1600~3000 3000~4500
损耗(dB) 0.20 0.25 0.30
因此,通过增设SPDT开关也不会影响最大线性输出功率,也即不会对发射输出功率及其性能造成影响。
如图7、图8和图9所示,在其中一个实施例中,接收电路130包括第一低噪声放大器131、第三滤波单元132、至少一第二低噪声放大器133、第五开关单元134和多个第四滤波单元135。其中,第一低噪声放大器131的输出端与一接收端口LNA OUT连接,用于对接收的预设低频信号进行放大处理;第三滤波单元132分别与第一低噪声放大器131的输入端、开关电路140连接,用于对接收的预设低频信号进行滤波。具体的,当预设低频段信号为N28频段信号时,其第一低噪声放大器131、第三滤波单元132可支持对N28频段信号的低噪声放大和滤波处理。需要说明的是,经过该第三滤波单元132的滤波处理,其可以对应输出无杂波的N28频段信号。其中,天线端口LB ANT、开关电路140、第三滤波单元132、第一低噪声放大器131和一接收端口LNA OUT构成第一接收通路,用于支持对预设低频信号的接收处理。
在其中一个实施例中,接收端口LNA OUT的数量可设置为三个,第二低噪声放大器133可设置为两个,第五开关单元134可对应包括两个第一端和多个第二端。其中,每一第二低噪声放大器133的输出端对应与一个接收端口LNA OUT连接;第五开关单元134的两个第一端分别与两个第二低噪声放大器133的输入端一一对应连接。各第四滤波单元135的输入端对应与开关电路140连接,每一第四滤波单元135的输出端对应与第五开关单元134的一第二端对应连接,用于对接收的低频段信号进行滤波,且每个第四滤波单元135输出的低频段信号的频段不同。其中,天线端口LB ANT、开关电路140、第四滤波单元135、第五开关单元134、第二低噪声放大器133、接收端口LNA OUT可构成一第二接收通路,用于支持对任一低频段信号的接收处理。
在其中一个实施例中,第二滤波单元123和第四滤波单元135也可以与开关电路140的同一端子连 接。示例性的,设置在发射通路上以及接收通路上用于对应滤波处理B8(N8)的滤波器可分别与开关电路140的同一端子连接。需要说明的是,在本申请实施例中,开关电路140的同一端子连接的滤波器的数量,以及连接的滤波器用于滤波处理的低频段信号的频段均不作进一步的限定,可以根据各低频段信号的频段范围来设定。
需要说明的是,在本申请实施例中对第五开关单元134所包括的开关的数量及其类型不做进一步的限定。示例性的,该第五开关单元134可包括一个开关,例如双刀多掷开关;第五开关单元134可包括两个射频开关,例如可包括两个SPDT开关或两个SP4T开关等。
在其中一个实施例中,所述接收电路130还包括第六开关单元136。其中,第六开关单元136的多个第一端分别与多个接收端口LNA OUT一一对应连接,第六开关单元136的多个第二端分别与所述第一低噪声放大器131的输出端、各所述第二低噪声放大器133的输出端一一对应连接。具体的,接收端口LNA OUT的数量与第六开关单元136的第一端的数量相等,第一低噪声放大器131和第二低噪声放大器133数量之和与第六开关单元136的第二端的数量相等。示例性的,该射频L-PA Mid器件中设置了三个接收端口(LNA OUT1、LNA OUT2、LNA OUT3)、一个第一低噪声放大器131和两个第二低噪声放大器133,其第六开关单元136可以为3P3T开关。
通过在射频L-PA Mid器件中设置第六开关单元136,可以增加该多个接收端口LNA OUT输出的低频段信号的灵活性,也即,每一接收端口LNA OUT均可对应输出任一频段的低频段信号至射频收发器。
参考图7-图9,在其中一个实施例中,射频L-PA Mid器件还被配置有用于与外部切换电路连接的多个辅助发射端口LB TXOUT1、LB TXOUT2、LB TXOUT3、LB TXOUT4、多个辅助收发端口LB_TRX1、LB_TRX2、LB_TRX3、LB_TRX4和多个辅助接收端口LNA OUTLNA_AUX1、LNA_AUX2、LNA_AUX3、LNA_AUX4。其中,多个辅助发射端口4G LB RFIN分别与发射电路连接,多个辅助收发端口与开关电路连接;多个辅助接收端口LNA OUT与接收电路连接。
在其中一个实施例中,多个辅助发射端口LB TXOUT1、LB TXOUT2、LB TXOUT3、LB TXOUT4可用于发射B13、B28A(N28A)、B28B、B29频段的信号。也即,B13、B28A(N28A)、B28B、B29这四个频段的信号的收发通路还包括外部的切换电路(或滤波电路)(图中未示)。需要说明的是,当B13、B28A(N28A)、B28B、B29这四个频段信号的滤波单元外挂时,其发射电路和接收电路中可以省略B13、B28A(N28A)、B28B、B29这四个频段的滤波器。同时,第二发射电路、接收电路和开关电路中的各个开关单元也可以做适应性的调整。示例性的,第二发射电路的第四开关单元122的部分第二端分别与第二滤波单元123一一对应连接,第四开关单元122的剩余第二端分别与多个辅助发射端口LB TXOUT1、LB TXOUT2、LB TXOUT3、LB TXOUT4、一一对应连接。开关电路的部分第一端分别与第一滤波单元112、第三滤波单元132、多个第二滤波单元123、多个第四滤波单元135一一对应连接,开关电路的剩余第一端分别与多个辅助收发端口LB_TRX1、LB_TRX2、LB_TRX3、LB_TRX4一一对应连接。第五开关单元134的部分第二端与多个第四滤波单元135一一对应连接,第五开关单元134的剩余第二端与多个辅助接收端口LNA OUTLNA_AUX1、LNA_AUX2、LNA_AUX3、LNA_AUX4连接。
基于如图7所示的射频L-PA Mid器件,可以实现对任一低频段信号的收发控制。示例性的,以实现对N28频段的低频段信号为例进行说明。
N28频段的发射通路路径如下:
发射端口4G LB1 RFIN→第一功率放大器111→第一滤波单元112→多通道选择开关143→天线端口LB ANTLB ANT。
N28频段的接收通路路径如下:
天线端口LB ANTLB ANT→多通道选择开关143→第三滤波单元132→第一低噪声放大器131→第六开关单元136→接收端口LNA OUT1。
针对于其N28频段的发射通路路径,其发射通路路径上天线端口LB ANT到天线的插入损耗如表3所示。由表3中的数据可以看出,整体插入损耗在1.5dB左右。
表3天线端口LB ANT到天线插入损耗表
频率(MHz) 699 763 840 915
损耗(dB) 1.35 1.4 1.5 1.6
相比于传统采用外挂N28双工器的技术方案,天线的输出功率提高了25.5-24.5=1dB。同时,第一功率放大器111的输出功率高于表4中要求,余量0.5dB。需要说明的是,基于打造高性能的N28,相比于3GPP标准,提出更为严格的参数指标,N28的指标参数如表4所示。需要说明的是,表4中的发射指标的测试带宽是10MHz,而接收指标的测试带宽是5MHz。
表4 N28指标参数
  发射功率 ACLR 灵敏度
3GPP 23dBm 32dBc -96.5dBm
研发指标 25dBm 37dBc -102dBm
针对于其N28频段的接收通路路径,在如图7所示的射频L-PA Mid器件中,N28经过第三滤波单元132后,不再经过外挂滤波器,而是直接到达第一低噪声放大器131。第一低噪声放大器131是为N28接收通道单独增设的低噪声放大器器件,其参数指标如表5所示。
表5第一低噪声放大器131开关插入损耗表
指标 增益(dB) 噪声系数(NF)
参数 20 2.5
依据接收器件的链路预算公式,计算新型方案的接收灵敏度如表6所示。
表6灵敏度的链路预算
Figure PCTCN2021125296-appb-000002
相对于传统的技术方案,如图7所示射频L-PA Mid器件的灵敏度的理论计算值提高了0.7dB,达到了-102.3dBm/5MHz;对比分析表6和表4中的数据,余量0.3dB,因此,基于本申请实施例提供的射频L-PA Mid器件的灵敏度指标满足打造高性能N28的要求。
基于如图8所示的射频L-PA Mid器件,可以实现对任一低频段信号的收发控制。示例性的,以实现对N28频段的低频段信号为例进行说明。
N28频段的发射通路路径如下:
发射端口4G LB1 RFIN→第一功率放大器111→第一滤波单元112→第二开关单元142→天线端口LB ANT。
N28频段的接收通路路径如下:
天线端口LB ANT→第二开关单元142→第三滤波单元132→第一低噪声放大器131→第六开关单元136→接收端口LNA OUT1。
如图8所示的射频L-PA Mid器件相对于如图7所示的射频L-PA Mid器件其N28频段的接收通路路径相同,如图8所示的射频L-PA Mid器件的接收通路路径中N28频段信号单独接入第二开关单元142(例如,SPDT开关),跳过SP9T开关。SPDT开关的引入,主要是为了降低N28发射路径的插入损耗 值,SPDT的插入损耗值具体参数如表7所示。
表7 SPDT开关插入损耗表
频率(MHz) 1000~1600 1600~3000 3000~4500
损耗(dB) 0.20 0.25 0.30
改进方案中N28发射路径的插入损耗变更为:29.5+0.55-2.5-0.2-1.5=25.85dBm。与如图7所示的射频L-PA Mid器件相比,改进方案的功率提高了25.85-25.5=0.35dB;对比表4中的要求,余量达到0.85dB,满足打造高性能N28的要求。
基于如图9所示的射频L-PA Mid器件,可以实现对任一低频段信号的收发控制。示例性的,以实现对N28频段的低频段信号为例进行说明。
N28频段的发射通路路径如下:
发射端口4G LB RFIN→第三开关单元150→第一功率放大器111→第一滤波单元112→第二开关单元142→天线端口LB ANT。
N28频段的接收通路路径如下:
天线端口LB ANT→第二开关单元142→第三滤波单元132→第一低噪声放大器131→第六开关单元136→接收端口LNA OUTLNA OUT1。
如图7-9所示的射频L-PA Mid器件,其器件内部为N28单独增加了第一发射电路(第一功率放大器111和第一滤波单元112)和接收电路(第一低噪声放大器131和第三滤波单元132),提高了N28频段信号的输出功率,提升了N28频段信号的灵敏度性能,其N28频段信号的通信性能为高性能。
请继续参考图7至图9,在其中一个实施例中,射频L-PA Mid器件还被配置有第二低频发射端口2G LB RFIN、高频发射端口2G HB IN和高频输出端口2G HB OUT,射频L-PA Mid器件还包括第三功率放大器161和第四功率放大器162。其中,第三功率放大器161的输入端与第二低频发射端口2G LB RFIN连接,第三功率放大器161的输出端与开关电路的一第一端连接,用于对接收的2G低频信号进行放大处理;其中,低频段信号为4G信号和5G信号。第四功率放大器162的输入端与高频发射端口2G HB IN连接,第三功率放大器161的输出端与高频输出端口2G HB OUT连接,用于对接收的2G高频信号进行放大处理。
本实施例中的射频L-PA Mid器件,通过设置第三功率放大器161,可以实现对2G信号的低频段信号的发射控制。其中,2G信号的低频段信号可包括GSM制式的900M频段、CDMA制式的800M频段等。通过设置第四功率放大器162,可以实现对2G信号的高频段信号的发射控制,其中,2G信号的低频段信号可包括GSM制式的900M频段、CDMA制式的800M频段等。
请继续参考图7-图9,在其中一个实施例中,射频L-PA Mid器件还被配置有耦合输出端口CPLOUT,射频L-PA Mid器件还包括设置在开关电路140和天线端口LB ANT之间的射频通路中的耦合电路170。该耦合电路170用于耦合射频通路中的低频段信号,以经耦合输出端口CPLOUT输出耦合信号。
其中,耦合信号可用于测量该低频段信号的前向耦合功率和反向耦合功率。具体的,耦合电路170包括输入端、输出端和耦合端。其中,耦合电路170的输入端与开关电路140耦接,耦合电路170的输出端与天线端口LB ANT耦接,耦合端用于对输入端接收的中频信号进行耦合并输出耦合信号至耦合输出端口CPLOUT。其中,耦合信号包括前向耦合信号和反向耦合信号。其中,基于耦合端输出的前向耦合信号,可以检测该低频段信号的前向功率信息;基于耦合端输出的反向耦合信号,可以对应检测该低频段信号的反向功率信息,并将该检测模式定义为反向功率检测模式。
本实施例中,射频L-PA Mid器件仅设置一个耦合输出端口CPLOUT,由于多个频段的低频段信号并不是同时发射的,一个耦合输出端口CPLOUT也可以满足通信需求,而且还减少射频L-PA Mid器件内部的射频走线复杂度,同时也可以提高射频L-PA Mid器件各走线的隔离度性能。
请继续参考图7-图9在其中一个实施例中,射频L-PA Mid器件还包括第一控制单元181和第二控制单元182。其中,第一控制单元181分别与各开关单元、各功率放大器连接,例如,第一开关单元141、第二开关单元142、…、第一功率放大器111、第三功率放大器161连接,用于控制各开关单元的通断, 还用于控制各功率放大器的工作状态。第二控制单元182可与各低噪声放大器连接,用于调节各低噪声放大器的增益系数,进而调节各中频信号、低频段信号的接收通路的链路损耗,进而可以提高各中频信号、低频段信号的接收通路的灵敏度。
其中,第一控制单元181、第二控制单元182可以为移动行业处理器接口(Mobile Industry Processor Interface,MIPI)-射频前端控制接口(RF Front End Control Interface,RFFE)控制单元或射频前端控制接口(RF Front End Control Interface,RFFE)控制单元,其符合RFFE总线的控制协议。
需要说明的是,在本申请实施例中,各开关单元的控制逻辑与第一控制单元181的控制逻辑相匹配,在本申请实施例中,对各开关单元、第一控制单元181、第二控制单元182的具体类型不做进一步的限定。
本申请实施例还提供一种射频收发系统。如图10所示,在其中一个实施例中,射频收发系统包括如前述任一实施例中的射频L-PA Mid器件10、天线组20和射频收发器30。其中,天线组20包括第一天线Ant0,所述第一天线Ant0与所述射频L-PA Mid器件10的天线端口LB ANT连接。射频收发器30,分别与所述射频L-PA Mid器件10的发射端口4G LB RFIN、接收端口LNA OUT连接。
在其中一个实施例中,第一天线Ant0可以使用任何合适类型的天线形成。例如,第一天线Ant0可以包括由以下天线结构形成的具有谐振元件的天线:阵列天线结构、环形天线结构、贴片天线结构、缝隙天线结构、螺旋形天线结构、带状天线、单极天线、偶极天线中的至少一种等。不同类型的天线可以用于不同的频段和频段组合。在本申请实施例中,对第一天线Ant0的类型不做进一步的限定。
上述射频收发系统中的射频L-PA Mid器件10中包括第一发射电路110、第二发射电路120、接收电路130和开关电路140,也即在射频L-PA Mid器件10内集成了用于对预设低频信号(例如,N28频段信号)的第一发射电路和接收电路,相对于传统器件中采用外挂双工器来支持对预设低频信号的收发处理,可以降低收发链路的插损,提高该器件对预设低频信号的输出功率,提升预设低频信号的灵敏度性能,进而可提升该器件的通信性能。同时,相对于传统器件,还可以提高器件的集成度,另外可以节省面积,有利于器件的小型化。另外,该开关电路140逻辑控制、供电网络铺设等均由该射频L-PA Mid器件本身提供,不会对射频PA Mid射频器件的其他元件带来影响,同时还可以降低成本。
如图11所示,在其中一个实施例中,该射频收发系统包括可如图7-9任一实施例中的射频L-PA Mid器件10。该射频收发系统还包括切换电路90。其中,切换电路90分别与射频L-PA Mid器件10的多个辅助发射端口LB TXOUT1、LB TXOUT2、LB TXOUT3、LB TXOUT4、多个辅助收发端口LB_TRX1、LB_TRX2、LB_TRX3、LB_TRX4和多个辅助接收端口LNA_AUX1、LNA_AUX2、LNA_AUX3、LNA_AUX4连接。
在其中一个实施例中,该切换电路可包括多个双工器。该射频收发系统的切换电路和射频L-PA Mid器件10的辅助发射端口4G LB RFIN、辅助收发端口以及辅助接收端口LNA OUT连接,可以支持内置频段和外挂频段的信号的接收和发射,具体信息如表8所示。
制式 内置频段 外挂频段
GSM 850/900/1800/1900 ---
WCDMA B1/3/4/5 B2
LTE B1/3/4/5/7/8/12/17/18/19/20/26/28/34/38/39/40/41 B2/13/25
上述射频收发系统中的射频L-PA Mid器件10中包括第一发射电路110、第二发射电路120、接收电路130和开关电路140,也即在射频L-PA Mid器件10内集成了用于对预设低频信号(例如,N28频段信号)的第一发射电路和接收电路130,相对于传统器件中采用外挂双工器来支持对预设低频信号的收发处理,可以降低收发链路的插损,提高该器件对预设低频信号的输出功率,提升预设低频信号的灵敏度性能,进而可提升该器件的通信性能。同时,相对于传统器件,还可以提高器件的集成度,另外可以节省面积,有利于器件的小型化。另外,该开关电路140逻辑控制、供电网络铺设等均由该射频L-PA Mid器件本身提供,不会对射频PA Mid射频器件的其他元件带来影响,同时还可以降低成本。
如图12-图14所示,在其中一个实施例中,所述天线组20还包括第二天线Ant1、第三天线Ant2和第四天线Ant3。需要说明的是,第二天线Ant1、第三天线Ant2、第四天线Ant3的辐射频段、天线类型可以参考第一天线Ant0,在此,不再赘述。
其中,所述射频收发系统还包括收发模块40、接收模块50、开关模块和合路器模块。其中,收发模块40被配置有第一天线端口ANT1和第二天线端口ANT2,用于支持对多个中频信号、多个高频信号的收发放大处理。具体的,该收发模块40中集成了多个功率放大器、低噪声放大器、滤波器、开关等元器件。收发模块40可以实现对多个中频段信号和多个高频段信号的收发处理。具体的,该收发模块40可以为MHB L-PA Mid器件,也即,内置低噪声放大器的中高频功率放大器模块(Middle and High Band PA Mid With LNA,MHB L-PA Mid)。其中,多个中频段信号可至少包括:B4、B66、B1、B25、B34、B39、B3、B30等频段的信号;多个高频段信号可包括B7、B40、B41等频段的信号。
接收模块50被配置有低频天线端口LB ANT、中高频天线端口MHB ANT和中高频收发端口MHB TRX1,用于支持对多个低频段信号、多个中频信号、多个高频信号的分集接收放大处理。具体的,该接收模块50中集成了多个低噪声放大器、滤波器、开关等元器件。接收模块50可以为LMHB DRX器件,也即,可以支持对低中高频段的分集接收模块50。接收模块50可以实现对多个低、中、高频段的4G信号和的接收处理,其中,低、中、高频段信号可至少包括B4、B66、B1、B25、B3、B39、B30、B7、B40、B41、B8、B26、B20、B28A、B28B、B12、B17等。
开关模块分别与所述第一天线端口ANT1、第二天线端口ANT2、低频天线端口LB ANT、第三天线Ant2、第四天线Ant3连接。合路器模块的多个第一端分别与天线端口LB ANT、开关模块一一对应连接,合路器模块的多个第一端分别与所述天线端口LB ANT、中频天线端口LB ANT、高频天线端口LB ANT对应连接,所述合路器模块的两个第二端分别与第一天线Ant0、第二天线Ant1一一对应连接。
具体的,该开关模块可包括第七开关单元610。合路器模块包括第一合路器710和第二合路器720。其中,第一合路器710和第二合路器720可均为双频合路器70。第七开关单元610包括两个第一端和四个第二端。示例性的,该第七开关单元610可以为DP4T开关。其中,DP4T开关的两个第一端分别与第一天线端口ANT1和第二天线端口ANT2一一对应连接,DP4T开关的一第二端与第一合路器710的一第一端连接,第一合路器710的另一第一端与所述射频L-PA Mid器件10的天线端口LB ANT连接,第一合路器710的第二端连接与第一天线Ant0连接;DP4T开关的另一第二端与中高频收发端口MHB TRX1连接;DP4T开关的又一第二端与第三天线Ant2连接;DP4T开关的再一第二端与第四天线Ant3连接;接收模块50的低频天线端口LB ANT、中高频天线端口MHB ANT分别经第二合路器720与第二天线Ant1连接。
本实施例中的射频收发系统,除了相对于传统器件中采用外挂双工器来支持对预设低频信号(例如,N28频段信号)的收发处理,可以降低收发链路的插损,提高该器件对预设低频信号的输出功率,提升预设低频信号的灵敏度性能,进而可提升该器件的通信性能;还可用于支持中频段、高频段的射频信号的信道探测参考信号(Sounding Reference Signal SRS)的1T4R功能。
如图15-图17所示,在其中一个实施例中,所述射频收发系统还包括第一MIMO接收模块80和第二MIMO接收模块90。其中,第一MIMO接收模块80,分别与所述射频收发器30、开关模块连接,用于支持对多个中频信号、多个高频信号的主集接收放大处理;第二MIMO接收模块90,分别与所述射频收发器30、开关模块连接,用于支持对多个中频信号、多个高频信号的分集接收放大处理。具体的,中高频段的多个射频信号可至少包括B1、B3、B25、B34、B66、B39、B30、B7、B40、B41等频段。
进一步的,开关模块还包括第八开关单元620和第九开关单元630。其中,第八开关单元620的一第一端与第七开关单元610的另一第二端连接,第八开关单元620的另一第一端与第一MIMO接收模块80连接,第八开关单元620的第二端与第三天线Ant2;第九开关单元630的一第一端与第七开关单元610的又一第二端连接,第九开关单元630的另一第一端与第二MIMO接收模块90连接,第九开关单元630的第二端与第四天线Ant3连接。
如图15-图17所示的射频收发系统,除了相对于传统器件中采用外挂双工器来支持对预设低频信号 (例如,N28频段信号)的收发处理,可以降低收发链路的插损,提高该器件对预设低频信号的输出功率,提升预设低频信号的灵敏度性能,进而可提升该器件的通信性能;还可以支持中频段、高频段的射频信号的SRS的1T4R功能,另外,还能够支持多个中高频信号的4*4 MIMO功能,拓展了该射频收发系统的通信频段,以及提高了该射频收发系统的通信性能。
本申请实施例还提供一种通信设备,该通信设备上设置有上述任一实施例中的射频收发系统,通过在通信设备上设置该射频收发系统,相对于传统器件中采用外挂双工器来支持对预设低频信号的收发处理,可以降低收发链路的插损,提高该器件对预设低频信号的输出功率,提升预设低频信号的灵敏度性能,进而可提升该器件的通信性能。同时,相对于传统器件,还可以提高器件的集成度,另外可以节省面积,有利于器件的小型化。另外,该开关电路逻辑控制、供电网络铺设等均由该射频L-PA Mid器件本身提供,不会对射频PA Mid射频器件的其他元件带来影响,同时还可以降低成本。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (19)

  1. 一种射频L-PA Mid器件,被配置有发射端口、天线端口和多个接收端口,其中,所述射频L-PA Mid器件包括:
    第一发射电路,与所述发射端口连接,用于对所述发射端口接收的预设低频信号进行放大、滤波处理;
    第二发射电路,与所述发射端口连接,用于对接收的多个低频段信号进行放大、滤波处理;
    接收电路,与多个所述接收端口连接,用于对接收到的预设低频信号和多个低频段信号进行滤波、放大处理;
    开关电路,所述开关电路的多个第一端分别与所述第一发射电路、第二发射电路、接收电路连接,所述开关电路的第二端与所述天线端口连接,用于选择导通所述第一发射电路、第二发射电路、接收电路分别与所述天线端口之间的射频通路;其中,所述预设低频信号和所述低频信号的频率范围不同。
  2. 根据权利要求1所述的射频L-PA Mid器件,所述开关电路包括多通道选择开关,其中,所述多通道选择开关的多个第一端分别对应与所述第一发射电路、第二发射电路、接收电路连接;所述多通道选择开关的第二端与所述天线端口连接。
  3. 根据权利要求1所述的射频L-PA Mid器件,所述开关电路包括:
    第一开关单元,包括多个第一端和一个第二端,所述第一开关单元的多个第一端分别对应与所述第二发射电路、接收电路连接;
    第二开关单元,包括两个第一端和一个第二端;所述第二开关单元的一第一端与所述第一开关单元的第二端连接,所述第二开关单元的另一第一端与所述第一发射电路连接,所述第二开关单元的第二端与天线端口连接。
  4. 根据权利要求2或3所述的射频L-PA Mid器件,所述射频L-PA Mid器件还包括第三开关单元,所述第三开关单元的第一端与所述发射端口连接,所述第三开关单元的两个第二端分别与所述第一发射电路的输入端、第二发射电路的输入端连接。
  5. 根据权利要求2或3所述的射频L-PA Mid器件,所述发射端口的数量为多个,分别记为第一发射端口、第二发射端口,其中,
    所述第一发射电路的输入端与所述第一发射端口连接,所述第二发射电路的输入端与所述第二发射端口连接。
  6. 根据权利要求1所述的射频L-PA Mid器件,所述第一发射电路包括:
    第一功率放大器,所述第一功率放大器的输入端与所述发射端口连接,用于对接收的所述预设低频信号进行滤波
    第一滤波单元,分别与所述第一功率放大器的输出端、开关电路连接,用于对接收的所述预设低频信号进行滤波。
  7. 根据权利要求6所述的射频L-PA Mid器件,所述第二发射电路包括:
    第二功率放大器,所述第二功率放大器的输入端与所述发射端口连接;
    第四开关单元,所述第四开关单元的第一端与所述第一功率放大器的输出端连接;
    多个第二滤波单元,各所述第二滤波单元的输入端对应与所述第四开关单元的一第二端连接,各所述第二滤波单元的输出端对应与所述开关电路连接,用于对接收的所述低频段信号进行滤波,且每个所述第二滤波单元输出的所述低频段信号的频段不同。
  8. 根据权利要求1所述的射频L-PA Mid器件,所述接收电路包括:
    第一低噪声放大器,所述第一低噪声放大器的输出端与一所述接收端口连接,用于对接收的所述预设低频信号进行放大处理;
    第三滤波单元,分别与所述第一低噪声放大器的输入端、开关电路连接,用于对接收的所述预设低频信号进行滤波;
    至少一第二低噪声放大器,每一所述第二低噪声放大器的输出端对应与一个所述接收端口连接;
    第五开关单元,所述第五开关单元的每一第一端对应与一个所述第二低噪声放大器的输入端一一 对应连接;
    多个第四滤波单元,各所述第四滤波单元的输入端对应与所述开关电路连接,每一所述第四滤波单元的输出端与所述第五开关单元的一第二端对应连接,用于对接收的所述低频段信号进行滤波,且每个所述第四滤波单元输出的所述低频段信号的频段不同。
  9. 根据权利要求8所述的射频L-PA Mid器件,所述第二低噪声放大器的数量为多个,其中,所述接收电路还包括:
    第六开关单元,所述第六开关单元的多个第一端分别与多个接收端口一一对应连接,所述第六开关单元的多个第二端分别与所述第一低噪声放大器的输出端、各所述第二低噪声放大器的输出端一一对应连接。
  10. 根据权利要求1所述的射频L-PA Mid器件,射频L-PA Mid器件还被配置有用于与外部切换电路连接的多个辅助发射端口、多个辅助收发端口和多个辅助接收端口,其中,多个辅助发射端口分别与所述第二发射电路连接,多个所述辅助收发端口与所述开关电路连接;多个辅助接收端口与所述接收电路连接。
  11. 根据权利要求1所述的射频L-PA Mid器件,所述射频L-PA Mid器件还被配置有耦合输出端口,所述射频L-PA Mid器件还包括:
    耦合电路,设置在所述开关电路和所述天线端口之间的射频通路中,用于耦合所述射频通路中的所述低频段信号,以经所述耦合输出端口输出耦合信号。
  12. 根据权利要求1所述的射频L-PA Mid器件,所述预设低频信号为N28频段,多个所述低频段信号至少包括:B8、B12、B20、B26、N8、N20、N26和B28频段。
  13. 一种射频收发系统,包括:
    如权利要求1-12任一项所述的射频L-PA Mid器件;
    天线组,包括第一天线,所述第一天线与所述射频L-PA Mid器件的天线端口连接;
    射频收发器,分别与所述射频L-PA Mid器件的发射端口、接收端口连接。
  14. 根据权利要求13所述的射频收发系统,当所述射频L-PA Mid器件被配置有多个辅助发射端口、多个辅助收发端口和多个辅助接收端口时,所述射频系统还包括:
    切换电路,所述切换电路分别与多个所述辅助发射端口、多个所述辅助收发端口和多个所述辅助接收端口连接,所述切换电路用于支持对多个所述低频信号的滤波处理。
  15. 根据权利要求13所述的射频收发系统,所述天线组还包括第二天线、第三天线和第四天线;其中,所述射频收发系统还包括:
    收发模块,所述收发模块被配置有第一天线端口和第二天线端口,用于支持对多个中频信号、多个高频信号的收发放大处理;
    接收模块,所述接收模块被配置有低频天线端口、中频天线端口和高频收发端口,用于支持对多个所述低频段信号、多个中频信号、多个高频信号的分集接收放大处理;
    开关模块,分别与所述第一天线端口、第二天线端口、低频天线端口、第三天线、第四天线连接;
    合路器模块,所述合路器模块的多个第一端分别与所述天线端口、中频天线端口、高频天线端口对应连接,所述合路器模块的两个第二端分别与第一天线、第二天线一一对应连接。
  16. 根据权利要求15所述的射频收发系统,所述开关模块包括:
    所述开关模块包括第七开关单元,所述合路器模块包括第一合路器和第二合路器,其中,所述第七开关单元包括两个第一端和四个第二端,所述第七开关单元的两个第一端分别与第一天线端口和第二天线端口一一对应连接,所述第七开关单元的一第二端与所述第一合路器一第一端连接,所述第一合路器的另一第一端与所述射频L-PA Mid器件的天线端口连接,所述第一合路器的第二端与所述第一天线连接;所述第七开关单元的另一第二端与所述中高频收发端口连接;所述第七开关单元的又一第二端与所述第三天线连接;所述第七开关单元的再一第二端与所述第四天线连接;所述接收模块的低频天线端、中高频天线端口分别经所述第二合路器与所述第二天线连接。
  17. 根据权利要求16所述的射频收发系统,所述射频收发系统还包括:
    第一MIMO接收模块,分别与所述射频收发器、开关模块连接,用于支持对多个中频信号、多个高频信号的主集接收放大处理;
    第二MIMO接收模块,分别与所述射频收发器、开关模块连接,用于支持对多个中频信号、多个高频信号的分集接收放大处理。
  18. 根据权利要求17所述的射频收发系统,所述开关模块还包括:
    第八开关单元,所述第八开关单元的一第一端与所述第七开关单元的另一第二端连接,所述第八开关单元的另一第一端与所述第一MIMO接收模块连接,所述第八开关单元的第二端与所述第三天线;
    第九开关单元,所述第九开关单元的一第一端与所述第七开关单元的又一第二端连接,所述第九开关单元的另一第一端与所述第二MIMO接收模块连接,所述第九开关单元的第二端与所述第四天线连接。
  19. 一种通信设备,包括:
    射频L-PA Mid器件,被配置有用于连接射频收发器的发射端口、天线端口和多个接收端口,其中,所述射频L-PA Mid器件包括:
    第一发射电路,与所述发射端口连接,用于对接收的预设低频信号进行放大处理;
    第二发射电路,与所述发射端口连接,用于对接收的多个低频段信号进行放大处理;
    接收电路,与多个所述接收端口连接,用于对接收到的预设低频信号和多个低频段信号进行放大处理;
    开关电路,所述开关电路的多个第一端分别与所述第一发射电路、第二发射电路、接收电路连接,所述开关电路的第二端与所述天线端口连接,用于选择导通所述第一发射电路、第二发射电路、接收电路分别与所述天线端口之间的射频通路;
    第一天线,与所述射频L-PA Mid器件的天线端口连接;
    射频收发器,分别与所述射频L-PA Mid器件的发射端口、接收端口连接。
PCT/CN2021/125296 2020-12-02 2021-10-21 射频L-PA Mid器件、射频收发系统和通信设备 WO2022116728A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21899762.5A EP4254808A4 (en) 2020-12-02 2021-10-21 HIGH FREQUENCY L-PA-MID DEVICE, HIGH FREQUENCY TRANSMITTER-RECEIVE SYSTEM AND COMMUNICATION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022859774.3U CN213661598U (zh) 2020-12-02 2020-12-02 射频L-PA Mid器件、射频收发系统和通信设备
CN202022859774.3 2020-12-02

Publications (1)

Publication Number Publication Date
WO2022116728A1 true WO2022116728A1 (zh) 2022-06-09

Family

ID=76688450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125296 WO2022116728A1 (zh) 2020-12-02 2021-10-21 射频L-PA Mid器件、射频收发系统和通信设备

Country Status (3)

Country Link
EP (1) EP4254808A4 (zh)
CN (1) CN213661598U (zh)
WO (1) WO2022116728A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115102560A (zh) * 2022-06-23 2022-09-23 Oppo广东移动通信有限公司 射频系统及通信设备
CN115173880A (zh) * 2022-06-29 2022-10-11 Oppo广东移动通信有限公司 一种射频前端器件及电子设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213661598U (zh) * 2020-12-02 2021-07-09 Oppo广东移动通信有限公司 射频L-PA Mid器件、射频收发系统和通信设备
CN113872619A (zh) * 2021-10-08 2021-12-31 Oppo广东移动通信有限公司 射频前端器件、射频收发系统和通信设备
CN113938152B (zh) * 2021-11-30 2022-12-13 Oppo广东移动通信有限公司 射频系统及通信设备
CN113949400B (zh) * 2021-11-30 2022-12-13 Oppo广东移动通信有限公司 射频系统及通信设备
CN113949401B (zh) * 2021-11-30 2022-12-09 Oppo广东移动通信有限公司 射频系统及通信设备
CN114124141B (zh) * 2021-11-30 2023-03-17 Oppo广东移动通信有限公司 射频系统和通信设备
CN113949402B (zh) * 2021-11-30 2022-12-13 Oppo广东移动通信有限公司 射频系统及通信设备
CN114039614B (zh) * 2021-12-07 2022-10-18 Oppo广东移动通信有限公司 射频前端器件、射频收发系统和通信设备
CN114124115B (zh) * 2021-12-07 2023-03-10 Oppo广东移动通信有限公司 射频收发系统和通信设备
WO2023189178A1 (ja) * 2022-03-29 2023-10-05 株式会社村田製作所 高周波モジュール

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105099493A (zh) * 2014-04-25 2015-11-25 华为技术有限公司 射频电路和移动终端
US20160028432A1 (en) * 2014-07-28 2016-01-28 Rfaxis, Inc. Complementary metal oxide semiconductor differential antenna transmit-receive switches with power combining circuitry for orthogonal frequency-division multiplexing systems
CN105978584A (zh) * 2016-05-09 2016-09-28 广东欧珀移动通信有限公司 一种射频信号发射模块及移动终端
CN108880602A (zh) * 2018-06-29 2018-11-23 Oppo广东移动通信有限公司 多路选择开关以及相关产品
CN213661598U (zh) * 2020-12-02 2021-07-09 Oppo广东移动通信有限公司 射频L-PA Mid器件、射频收发系统和通信设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108512556B (zh) * 2018-03-16 2020-06-16 Oppo广东移动通信有限公司 多路选择开关、射频系统和无线通信设备
CN108199730B (zh) * 2018-03-16 2020-11-06 Oppo广东移动通信有限公司 多路选择开关、射频系统以及无线通信设备
CN108988903B (zh) * 2018-07-23 2020-09-01 Oppo广东移动通信有限公司 射频系统及电子设备
CN111294081B (zh) * 2020-01-22 2022-01-11 Oppo广东移动通信有限公司 射频系统和电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105099493A (zh) * 2014-04-25 2015-11-25 华为技术有限公司 射频电路和移动终端
US20160028432A1 (en) * 2014-07-28 2016-01-28 Rfaxis, Inc. Complementary metal oxide semiconductor differential antenna transmit-receive switches with power combining circuitry for orthogonal frequency-division multiplexing systems
CN105978584A (zh) * 2016-05-09 2016-09-28 广东欧珀移动通信有限公司 一种射频信号发射模块及移动终端
CN108880602A (zh) * 2018-06-29 2018-11-23 Oppo广东移动通信有限公司 多路选择开关以及相关产品
CN213661598U (zh) * 2020-12-02 2021-07-09 Oppo广东移动通信有限公司 射频L-PA Mid器件、射频收发系统和通信设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4254808A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115102560A (zh) * 2022-06-23 2022-09-23 Oppo广东移动通信有限公司 射频系统及通信设备
CN115102560B (zh) * 2022-06-23 2023-12-05 Oppo广东移动通信有限公司 射频系统及通信设备
CN115173880A (zh) * 2022-06-29 2022-10-11 Oppo广东移动通信有限公司 一种射频前端器件及电子设备

Also Published As

Publication number Publication date
EP4254808A4 (en) 2024-06-19
EP4254808A1 (en) 2023-10-04
CN213661598U (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2022116728A1 (zh) 射频L-PA Mid器件、射频收发系统和通信设备
CN112436845B (zh) 射频L-PA Mid器件、射频收发系统和通信设备
WO2022062585A1 (zh) 射频L-PA Mid器件、射频收发系统和通信设备
WO2021143877A1 (zh) 射频电路和电子设备
WO2022116724A1 (zh) 射频L-PA Mid器件、射频收发系统和通信设备
CN112436847B (zh) 射频L-PA Mid器件、射频收发系统和通信设备
WO2021238453A1 (zh) 射频PA Mid器件、射频系统和通信设备
CN112436846B (zh) 射频L-PA Mid器件、射频收发系统及通信设备
CN113676208B (zh) 放大器模组、射频系统及通信设备
WO2021258863A1 (zh) 射频PA Mid器件、射频系统和通信设备
CN113726360B (zh) 射频PA Mid器件、射频收发装置和通信设备
CN114039614B (zh) 射频前端器件、射频收发系统和通信设备
WO2023016204A1 (zh) 放大器模组、射频系统及通信设备
CN114124115B (zh) 射频收发系统和通信设备
WO2022062584A1 (zh) 射频drx器件、射频收发系统和通信设备
WO2022143453A1 (zh) 射频电路及电子设备
WO2022127402A1 (zh) 射频PA Mid器件、射频收发系统和通信设备
CN114553250A (zh) 射频系统和通信设备
CN213661596U (zh) 射频L-PA Mid器件、射频收发系统和通信设备
WO2023236530A1 (zh) 射频PA Mid器件、射频系统和通信设备
WO2023098244A1 (zh) 射频前端器件和射频系统
WO2023142766A1 (zh) 射频前端模组和射频系统
WO2023016217A1 (zh) 放大器模组、射频系统及通信设备
WO2023016216A1 (zh) 放大器模组、射频系统及通信设备
WO2021238430A1 (zh) 射频PA Mid器件、射频系统和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899762

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021899762

Country of ref document: EP

Effective date: 20230628

NENP Non-entry into the national phase

Ref country code: DE