WO2022116608A1 - 用于数据中心的可再生能源及余热综合利用系统及方法 - Google Patents

用于数据中心的可再生能源及余热综合利用系统及方法 Download PDF

Info

Publication number
WO2022116608A1
WO2022116608A1 PCT/CN2021/115502 CN2021115502W WO2022116608A1 WO 2022116608 A1 WO2022116608 A1 WO 2022116608A1 CN 2021115502 W CN2021115502 W CN 2021115502W WO 2022116608 A1 WO2022116608 A1 WO 2022116608A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
heat
heat pump
storage tank
circulation
Prior art date
Application number
PCT/CN2021/115502
Other languages
English (en)
French (fr)
Inventor
张博博
董凯军
孙钦
罗伟民
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Priority to US17/921,366 priority Critical patent/US20230184446A1/en
Publication of WO2022116608A1 publication Critical patent/WO2022116608A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0003Exclusively-fluid systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • F25B27/007Machines, plants or systems, using particular sources of energy using solar energy in sorption type systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20763Liquid cooling without phase change
    • H05K7/2079Liquid cooling without phase change within rooms for removing heat from cabinets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20836Thermal management, e.g. server temperature control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • F24F2005/0025Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice using heat exchange fluid storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0064Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention relates to the technical field of comprehensive utilization of renewable energy and waste heat, in particular to a system and method for comprehensive utilization of renewable energy and waste heat for a data center.
  • waste heat of medium and low grades will be released.
  • These waste heats are easy to extract, produce stable heat and have a large amount of heat. They are a high-quality heat source that can heat domestic water, heating, or meet other heat needs.
  • the present invention provides a system and method for comprehensive utilization of renewable energy and waste heat for a data center.
  • the waste heat generated by the data center is stored in a multi-temperature zone continuous heat collection technology.
  • the large-scale storage tank serves as a cross-season cold source for the direct supply of the data center, the condensation end of the refrigeration unit, and the heat recovery end of the refrigeration unit in turn, and is finally heated to the target heating temperature by the solar collector.
  • the waste heat of the data center, the solar energy and the heat of the large-scale storage tank are respectively passed through the high-efficiency heat pump technology, the solar thermal technology and the continuous heat release technology in the multi-temperature area to realize the cross-season low-carbon heating in the cold area. It can effectively reduce the user's heating cost in winter, reduce the burning of fossil fuels, the generation of carbon dioxide, and the PUE value of the data center, which has important economic and environmental value.
  • the technical scheme of the present invention is:
  • a system for comprehensive utilization of renewable energy and waste heat comprising:
  • a water storage tank which is used for: using the heat of the data center to complete a heat storage process within a set first period, and using the heat stored in the heat storage process to supply a heat release process within a set second period ;
  • a water circulation system provided with a number of water circulation loops
  • a refrigerant circulation system which is provided with several circulation systems; wherein,
  • the heat storage process and the heat release process are realized by cooperation of several water circulation loops and/or several circulation systems.
  • the above-mentioned comprehensive utilization system of renewable energy and waste heat further, the water circulation system includes:
  • the first water circulation loop includes: a No. 1 plate heat exchanger, a water storage tank, a cooling tower, and a No. 1 heat pump evaporator, wherein one end of the No. 1 plate heat exchanger is respectively connected to the water storage tank, the cooling tower The tower is in communication with the No. 1 heat pump evaporator;
  • the second water circulation loop includes: a condensation end of a refrigeration unit, a water storage tank, and a cooling tower, wherein one end of the condensation end of the refrigeration unit is respectively connected with the storage tank and the cooling tower;
  • the third water circulation loop includes: a heat recovery end of the refrigeration unit and a water reservoir, wherein the heat recovery end of the refrigeration unit is communicated with the water reservoir;
  • the fourth water circulation loop includes: the data center, the No. 1 plate heat exchanger and the evaporator of the refrigeration unit, wherein the cooling water supply/return water interface of the data center is respectively connected with the No. 1 plate heat exchanger, the evaporator of the refrigeration unit connected to each other;
  • a fifth water circulation loop which includes: a solar collector, a water storage tank, and a buffer water tank, wherein the solar thermal collector is in communication with the large storage tank and the buffer water tank, respectively; and,
  • the sixth water circulation loop includes: a buffer water tank, a solar heat collector, a No. 1 heat pump condenser, a No. 2 heat pump condenser, and a No. 2 plate heat exchanger, wherein the buffer water tank is respectively connected to the large water storage tank, The solar collector, the No. 1 heat pump condenser, the No. 2 heat pump condenser, and the No. 2 plate heat exchanger are connected to each other.
  • the refrigerant circulation system includes:
  • a refrigeration unit circulation system which includes an evaporator of the refrigeration unit, a compressor, a heat recovery end of the refrigeration unit, a condensation end of the refrigeration unit, and a throttling device, wherein the evaporator of the refrigeration unit constitutes one end of a heat exchange process, and the heat recovery end of the refrigeration unit The other end of the heat exchange process is formed with the condensation end of the refrigeration unit, and the compressor and the throttling device promote the heat exchange process;
  • the No. 1 heat pump circulation system includes a No. 1 heat pump evaporator, a compressor, a No. 1 heat pump condenser and a throttling device, wherein the No. 1 heat pump evaporator constitutes one end of the heat exchange process, and the No. 1 heat pump condenser constitutes the heat exchange process.
  • a compressor and a throttling device facilitate the heat exchange process;
  • the No. 2 heat pump circulation system includes a No. 2 heat pump evaporator, a compressor, a No. 2 heat pump condenser and a throttling device, wherein the No. 2 heat pump evaporator constitutes one end of the heat exchange process, and the No. 2 heat pump condenser constitutes the heat exchange process. At the other end, the compressor and throttling device facilitate the heat exchange process.
  • the top layer of the reservoir is hot water and the bottom layer is cold water, wherein, when the outlet water is hot water and the return water is cold water, the reservoir
  • the water circulation is carried out by adopting the method of outlet water at the top and returning water at the bottom.
  • the water storage tank adopts the method of outlet water at the bottom and returning water at the top for water circulation.
  • a thermal insulation layer is provided on the top and around the reservoir.
  • the heat source of the No. 2 heat pump evaporator includes the water source or the air source of the reservoir, wherein, when the water pump drives the water circulation loop, the water source of the reservoir serves as the heat source Use, when the water circulation circuit is closed, the fan of the No. 2 heat pump evaporator is driven, and the air source is used as a heat source at this time.
  • the first cycle includes spring, summer and autumn
  • the second cycle includes winter
  • the heat storage process is a process in which water with a certain ice content at 0°C rises to water at 90°C; the heat release process is water at 90°C.
  • the heat storage process includes:
  • the first heat storage stage is used for when the water temperature of the water storage tank is in the first heat storage temperature range, the process includes: opening the water circulation loop composed of the water storage tank and the No. 1 plate heat exchanger and opening the refrigeration unit circulation system, All other water circulation loops and refrigerant circulation systems are closed, and the storage tank directly provides cooling capacity for the data center;
  • the second heat storage stage is used when the water temperature of the water storage tank is in the second heat storage temperature range.
  • the cooling system and the refrigerant circulation system are closed, and the water reservoir provides the cooling capacity for the condensing end of the refrigeration unit;
  • the third heat storage stage is used when the water temperature of the water storage tank is in the third heat storage temperature range.
  • the water circulation circuit composed of the buffer water tank and the circulation system of the refrigeration unit are turned on. Other water circulation circuits and refrigerant circulation systems are closed.
  • the water storage tank provides cooling capacity for the heat recovery end of the refrigeration unit, and the solar collector stores heat for the buffer water tank. , when the temperature of the buffer water tank is raised to the first set temperature, and then the hot and cold water is exchanged with the water layer at the top of the reservoir, and the cycle is repeated;
  • the fourth heat storage stage is used when the water temperature of the water storage tank is in the fourth heat storage temperature range, and the process includes: opening the water circulation circuit composed of the water storage tank and the solar heat collector, other water circulation circuits and the refrigerant circulation system All are closed, and the solar collector provides the reserve heat for the storage tank;
  • the exothermic process includes:
  • the first exothermic stage is used when the water temperature of the reservoir is in the first exothermic temperature range.
  • the water circulation loop composed of the heater is opened, and other water circulation loops and refrigerant circulation systems are closed.
  • the second exothermic stage is used when the water temperature of the reservoir is in the second exothermic temperature range.
  • the process includes: at this time, the water circulation loop composed of the supply/return water of the data center and the No. 1 plate heat exchanger is opened, and a The water circulation loop composed of the No. 1 heat pump evaporator and the No. 1 heat pump evaporator is opened, the water circulation loop composed of the No. 1 heat pump condenser and the buffer water tank is opened, the No. 1 heat pump circulation system is opened, and the buffer water tank and the No. 1 heat pump condenser The water circulation loop is turned on, the water circulation loop composed of the solar collector and the buffer water tank is turned on, the water circulation loop composed of the water storage tank and the No.
  • the temperature of the first heat storage stage is 0-20°C; the temperature of the second heat-storage stage is 21-37°C; the temperature of the third heat-storage stage is 38 ⁇ 37°C 60°C; the temperature of the fourth heat storage stage is 61-90°C; the first exothermic temperature interval is the water temperature 37-90°C; the second exothermic stage is the water temperature 0-37°C.
  • the present invention has the following beneficial effects:
  • the comprehensive utilization system of renewable energy and waste heat for data centers proposed by the present invention realizes a cross-season energy supply mode in which cold energy is stored in winter for summer supply, and heat is stored in winter for summer storage through cross-season cold storage and heat storage technology. It solves the seasonal discontinuity and volatility problems of renewable energy.
  • the comprehensive utilization system of renewable energy and waste heat for data centers proposed by the present invention has broad market prospects and energy-saving significance in northern my country.
  • the large-scale reuse of waste heat in data centers can help users reduce heating costs while at the same time , and can also indirectly reduce the carbon dioxide produced by the use of fossil fuels, which has important economic value and environmental protection value.
  • the comprehensive utilization system of renewable energy and waste heat for the data center proposed by the present invention directly provides cooling capacity for the data center across the seasons, reducing the power consumption of the refrigeration equipment in the total power consumption of the data center. Effectively reducing the PUE value is beneficial for the data center to enhance the brand value, and guide the data center to take the green development path of high efficiency, low carbon, intensive and circular.
  • FIG. 1 is a schematic structural diagram of a system for comprehensive utilization of renewable energy and waste heat for a data center according to an embodiment of the present invention.
  • connection means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • installed should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection.
  • the connection can also be an electrical connection; it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two components.
  • the specific meanings of the above terms in the present invention can be understood in specific situations.
  • FIG. 1 is a schematic structural diagram of a system for comprehensive utilization of renewable energy and waste heat for a data center according to an embodiment of the present invention.
  • the invention provides a system and method for comprehensive utilization of renewable energy and waste heat for a data center.
  • the waste heat generated by the data center is stored in a large-scale reservoir through the continuous heat collection technology in multi-temperature zones.
  • the large-scale water storage tank is used as the cross-season cold source for the direct supply of the data center, the condensation end of the refrigeration unit, and the heat recovery end of the refrigeration unit, and finally the solar collector is assisted to raise the temperature to the target heating temperature; in winter, the waste heat of the data center, solar energy, large Reservoir heat, through high-efficiency heat pump technology, solar thermal technology, multi-temperature zone continuous heat release technology, respectively, to achieve cross-season low-carbon heating in cold areas, the system runs stably throughout the year, and it starts over and over again, which can effectively reduce users' heat consumption in winter Cost, reduction of fossil fuel combustion, carbon dioxide production, data center PUE value, have important economic value and environmental value.
  • the system for comprehensive utilization of renewable energy and waste heat for a data center includes a large water storage tank 1, a No. 1 plate heat exchanger 2, a condensation end 3 of a refrigeration unit, a cooling Unit heat recovery end 4, refrigeration unit evaporator 5, cooling tower 6, solar heat collector 7, buffer water tank 8, No. 1 heat pump evaporator 9, No. 1 heat pump condenser 10, No. 2 heat pump evaporator 11, No. 2 heat pump Condenser 12, No. 2 plate heat exchanger 13, several water pumps 14-22, several shut-off valves 23-34, compressors 35-37, throttling devices 38-40.
  • the renewable energy and waste heat comprehensive utilization system for the data center includes a water circulation system and a refrigerant circulation system, and the water circulation system and the refrigerant circulation system pass through the No. 1 plate heat exchanger 2, the condensation end 3 of the refrigeration unit, The heat recovery end 4 of the refrigeration unit, the evaporator 5 of the refrigeration unit, the No. 1 heat pump evaporator 9, the No. 1 heat pump condenser 10, the No. 2 heat pump evaporator 11, the No. 2 heat pump condenser 12 and other heat exchangers perform heat exchange.
  • the large reservoir 1, as the core device of the whole system, is filled with water during normal operation, and is required to be connected with the No.
  • An independent water circulation loop is formed between the heat collector 7, the buffer water tank 8, and the No. 2 heat pump evaporator 11.
  • the large water storage tank 1 is provided with thermal insulation materials around and on the top.
  • Pool 1 uses the layered design idea of hot water distribution at the top and cold water at the bottom to arrange the water outlet method of the water circulation circuit. When the outlet water is hot water and the return water is cold water, the top outlet and the top return water are preferred for water circulation. When the outlet water is cold water and the return water is hot water, the bottom outlet and the top outlet are preferred for water circulation.
  • the water circulation loop mainly includes: the No. 1 plate heat exchanger 2 and the large-scale water storage tank 1, the cooling tower 6, and the No. 1 heat pump evaporator 9, respectively, forming an independent water circulation loop;
  • the water storage tank 1 and the cooling tower 6 form an independent water circulation circuit;
  • the heat recovery end 4 of the refrigeration unit only forms an independent water circulation circuit with the large-scale water storage tank 1;
  • the cooling water supply/return water interface of the data center is respectively connected with a
  • an independent water circulation loop is formed;
  • the solar collector 7 and the large reservoir 1 and the buffer water tank 8 respectively form an independent water circulation loop;
  • the buffer The water tank 8 forms an independent water circulation loop with the large reservoir 1, the solar collector 7, the No. 1 heat pump condenser 10, the No. 2 heat pump condenser 12, and the No. 2 plate heat exchanger 13 respectively.
  • the refrigerant circulation system includes: a refrigeration unit circulation system, a No. 1 heat pump circulation system and a No. 2 heat pump circulation system.
  • the refrigerant circulation system is mainly composed of the evaporator 1 of the refrigeration unit, the compressor 35, the heat recovery end 4 of the refrigeration unit, the condensation end 5 of the refrigeration unit, and the throttling device 38;
  • the No. 1 heat pump circulation system is mainly composed of the No. 1 heat pump evaporation. 9, compressor 36, No. 1 heat pump condenser 10, and throttling device 39;
  • the No. 2 heat pump circulation system is mainly composed of No. 2 heat pump evaporator 11, compressor 37, No. 2 heat pump condenser 12, throttling device 40 compositions.
  • the 2 heat pump evaporator 11 can be the water source from the large reservoir 1 or the air source.
  • the water pump 19 drives the water circulation circuit, the water source of the large reservoir 1 is used as the heat source.
  • the circuit is closed, the fan of the No. 2 heat pump evaporator 11 is driven, and the air source is used as the heat source at this time.
  • the water pumps 14 to 22 and the shut-off valves 23 to 34 can freely switch between operation modes according to actual needs.
  • the present invention also proposes an operation method of the renewable energy and waste heat comprehensive utilization system for the data center, which focuses on the heat storage process and heat release process of the large-scale reservoir 1 to realize cross-season regional cooling and heating.
  • the heat storage process is also known as the cooling process, and the waste heat utilization system is required to realize the change of the temperature of the large reservoir from 0°C to 90°C in spring, summer and autumn, and the temperature of the large reservoir 1 is 0°C. , the corresponding ice content is about 40%, and the specific realization process is as follows:
  • the large-scale reservoir enters the direct cooling mode of the large-scale reservoir.
  • the water circulation loop composed of the large-scale reservoir 1 and the No. 1 plate heat exchanger 2 is opened, and other water circulates Both the circuit and the refrigerant circulation circuit are closed, and the large water storage tank 1 directly provides cooling capacity for the cooling water circuit of the data center.
  • the large-scale reservoir 1 When the temperature of the large-scale reservoir 1 is 61-90 °C, it enters the large-scale reservoir-heat collector mode, and the water circulation loop composed of the large-scale reservoir 1 and the solar collector 7 is opened, and other water circulation loops and refrigeration. The agent circulation loops are all closed, and the solar collector 7 provides reserve heat for the large storage tank 1 . It is required that the water temperature of the large reservoir 1 reaches about 90°C from the beginning of spring to the end of autumn.
  • the heat release process is also called the cold storage process, and the waste heat utilization system is required to realize the process of changing the temperature of the large reservoir from 90°C to 0°C in winter.
  • the corresponding ice content is about 40%.
  • the specific implementation process is as follows: when the water temperature of the large reservoir 1 is 37-90°C, the large reservoir 1 enters the direct heating mode , the water circulation loop composed of large reservoir 1 and buffer water tank 8 is opened, the water circulation loop composed of buffer water tank 8 and No. 2 plate heat exchanger 13 is opened, and other water circulation loops and refrigerant circulation loops are closed.

Abstract

一种用于数据中心的可再生能源及余热综合利用系统及方法,该系统包括数据中心、蓄水池、水循环系统和制冷剂循环系统。蓄水池用于:在设定第一周期内,利用所述数据中心的热量完成蓄热过程,在设定第二周期内,利用所述蓄热过程储存的热量供应的放热过程;水循环系统设置有若干水循环回路;以及制冷剂循环系统设置有若干循环系统;其中,通过若干水循环回路和/或若干循环系统配合实现所述蓄热过程和所述放热过程。可有效降低用户冬季的用热成本、减少化石燃料的燃烧、二氧化碳的产生、数据中心PUE值,具有重要的经济价值和环保价值。

Description

用于数据中心的可再生能源及余热综合利用系统及方法 技术领域
本发明涉及可再生能源及余热综合利用技术领域,具体涉及一种用于数据中心的可再生能源及余热综合利用系统及方法。
背景技术
数据中心的服务器在运行过程中,会释放出大量中低品位余热,这些余热易提取、产热稳定且热量大,是一种优质热源,可加热生活用水、供暖,或满足其他热需求,我国大约有8万座数据中心,按现有数据中心规模计算,我国北方地区数据中心的可回收余热总量约10GW,理论上可支持3亿平方米建筑供暖,将数据中心余热回收用于区域供暖,在我国北方有着广阔的市场前景及节能意义。
然而,现阶段的数据中心余热大多数被直接排向大气,浪费巨大。目前余热回收利用系统应用案例仅有阿里巴巴千岛湖数据中心、腾讯天津数据中心和中国电信重庆云计算基地等寥寥数家企业。我国数据中心行业的节能重点环节是空调系统和IT系统,余热回收利用往往被忽视,随着数据中心建设规模及数量的快速增长,政府对数据中心节能的要求也越来越高,
另一方面,我国可再生能源资源量丰富,深度开发可再生能源的贡献度,在数据中心节能和区域供冷供热领域,同样具备广阔的发展前景。显然,可再生能源及余热的综合利用已成为亟待解决的技术难题。
发明内容
针对现有技术中的不足,本发明提供一种用于数据中心的可再生能源及余热综合利用系统及方法,在非冬季,将数据中心产生的余热,通过多温区连续集热技术,储存在大型蓄水池内,整个过程大型蓄水池依次作为数据中心直供、制冷机组冷凝端、制冷机组热回收端的跨季节冷源,最终由太阳能集热器辅助升温至目标供暖温度;在冬季,将数据中心余热、太阳能、大型蓄水池热量,分别通过高能效热泵技术、太阳能光热技术、多温区连续放热技术,实现寒冷区域跨季节低碳供暖,系统全年稳定运行,周而复始,可有效降低用户冬季的用热成本、减少化石燃料的燃烧、二氧化碳的产生、数据中心PUE值,具有重要的经济价值和环保价值。
为实现上述目的,本发明的技术方案为:
一种可再生能源及余热综合利用系统,其包括:
数据中心;
蓄水池,其用于:在设定第一周期内,利用所述数据中心的热量完成蓄热过程,在设定第二周期内,利用所述蓄热过程储存的热量供应的放热过程;
水循环系统,其设置有若干水循环回路;以及
制冷剂循环系统,其设置有若干循环系统;其中,
通过若干水循环回路和/或若干循环系统配合实现所述蓄热过程和所述放热过程。
如上所述的可再生能源及余热综合利用系统,进一步地,所述水循环系统包括:
第一水循环回路,其包括:一号板式换热器、蓄水池、冷却塔、一号热泵蒸发器,其中,所述一号板式换热器一端分别与所述蓄水池、所述冷却塔和所述一号热泵蒸发器各自连通;
第二水循环回路,其包括:制冷机组冷凝端、蓄水池、冷却塔,其中,所述制冷机组冷凝端一端分别与蓄水池、冷却塔各自连通;
第三水循环回路,其包括:制冷机组热回收端和蓄水池,其中,所述制冷机组热回收端与蓄水池之间连通;
第四水循环回路,其包括:数据中心、一号板式换热器和制冷机组蒸发器,其中,所述数据中心的冷却水供/回水接口分别与一号板式换热器、制冷机组蒸发器各自连通;
第五水循环回路,其包括:太阳能集热器、蓄水池、缓冲水罐,其中,所述太阳能集热器分别与大型蓄水池、缓冲水罐各自连通;以及,
第六水循环回路,其包括:缓冲水罐、太阳能集热器、一号热泵冷凝器、二号热泵冷凝器、二号板式换热器,其中,所述缓冲水罐分别与大型蓄水池、太阳能集热器、一号热泵冷凝器、二号热泵冷凝器、二号板式换热器各自连通。
如上所述的可再生能源及余热综合利用系统,进一步地,所述制冷剂循环系统包括:
制冷机组循环系统,其包括制冷机组蒸发器、压缩机、制冷机组热回收端、制冷机组冷凝端和节流装置,其中,所述制冷机组蒸发器构成换热过程的一端,制冷机组热回收端和制冷机组冷凝端构成换热过程的另一端,压缩机和节流装置促进换热过程的进行;
一号热泵循环系统,其包括一号热泵蒸发器、压缩机、一号热泵冷凝器和节流装置,其中,一号热泵蒸发器构成换热过程的一端,一号热泵冷凝器构成换热过程的另一端,压缩机和节流装置促进换热过程的进行;以及,
二号热泵循环系统,其包括二号热泵蒸发器、压缩机、二号热泵冷凝器和节流装置,其中,二号热泵蒸发器构成换热过程的一端,二号热泵冷凝器构成换热过程的另一端,压缩机 和节流装置促进换热过程的进行。
如上所述的可再生能源及余热综合利用系统,进一步地,所述蓄水池的顶层为热水且底层为冷水,其中,当出水为热水且回水为冷水时,所述蓄水池采用顶部出水,底部回水的方式进行水循环,当出水为冷水且回水为热水时,所述蓄水池采用底部出水,顶部回水的方式进行水循环。
如上所述的可再生能源及余热综合利用系统,进一步地,所述蓄水池的顶部及四周设置有保温层。
如上所述的可再生能源及余热综合利用系统,进一步地,所述二号热泵蒸发器的热源包括蓄水池的水源或空气源,其中,水泵驱动水循环回路时,蓄水池的水源作为热源使用,当水循环回路关闭时,驱动二号热泵蒸发器的风扇,此时由空气源作为热源使用。
如上所述的可再生能源及余热综合利用系统,进一步地,所述第一周期包括春季、夏季和秋季,所述第二周期包括冬季。
如上所述的可再生能源及余热综合利用系统,进一步地,所述蓄热过程为一定含冰率的0℃的水升至90℃的水的过程;所述放热过程为90℃的水降至一定含冰率的0℃的水的过程。
一种可再生能源及余热综合利用运行方法,其利用如上所述的可再生能源及余热综合利用系统,
所述蓄热过程包括:
第一蓄热阶段,用于当蓄水池的水温在第一蓄热温度区间时,其过程包括:开启由蓄水池和一号板式换热器组成的水循环回路和开启制冷机组循环系统,其他水循环回路和制冷剂循环系统均关闭,由蓄水池直接为数据中心提供冷量;
第二蓄热阶段,用于当蓄水池的水温在第二蓄热温度区间时,其过程包括:开启蓄水池和制冷机组冷凝端组成的水循环回路和开启制冷机组循环系统,其他水循环回路和制冷剂循环系统均关闭,由蓄水池为制冷机组冷凝端提供冷量;
第三蓄热阶段,用于当蓄水池的水温在第三蓄热温度区间时,其过程包括:开启由蓄水池和制冷机组热回收端组成的水循环回路、开启由太阳能集热器和缓冲水罐组成的水循环回路和开启制冷机组循环系统,其他水循环回路和制冷剂循环系统均关闭,由蓄水池为制冷机组热回收端提供冷量,同时太阳能集热器为缓冲水罐储蓄热量,当缓冲水罐温度升温至第一设定温度,再与蓄水池顶部水层之间进行冷热水置换,重复循环;
第四蓄热阶段,用于当蓄水池的水温在第四蓄热温度区间时,其过程包括:开启由蓄水池和太阳能集热器组成的水循环回路,其他水循环回路和制冷剂循环系统均关闭,由太阳能 集热器为蓄水池提供储备热量;
所述放热过程包括:
第一放热阶段,用于当蓄水池的水温在第一放热温度区间时,其过程包括:由蓄水池和缓冲水罐组成的水循环回路开启,由缓冲水罐和二号板式换热器组成的水循环回路开启,其他水循环回路和制冷剂循环系统均关闭,
第二放热阶段,用于当蓄水池的水温在第二放热温度区间时,其过程包括:此时数据中心的供/回水和一号板式换热器组成的水循环回路开启,一号板式换热器和一号热泵蒸发器组成的水循环回路开启,一号热泵冷凝器和缓冲水罐组成的水循环回路开启,一号热泵循环系统开启,缓冲水罐和一号热泵冷凝器组成的水循环回路开启,太阳能集热器和缓冲水罐组成的水循环回路开启,蓄水池和二号热泵蒸发器组成的水循环回路开启,二号热泵冷凝器和缓冲水罐组成的水循环回路开启,二号热泵循环系统开启,缓冲水罐和二号板式换热器组成的水循环回路开启,其他水循环回路和制冷剂循环回路均关闭。
如上所述的可再生能源及余热综合利用运行方法,进一步地,第一蓄热阶段为温度0~20℃;第二蓄热阶段为温度21~37℃;第三蓄热阶段为温度38~60℃;第四蓄热阶段为温度61~90℃;第一放热温度区间为水温37~90℃;第二放热阶段为水温0~37℃。
本发明与现有技术相比,其有益效果在于:
1、本发明提出的用于数据中心的可再生能源及余热综合利用系统,通过跨季节蓄冷蓄热技术,实现了冷量冬蓄夏供,热量冬供夏蓄的跨季节供能模式,解决了可再生能源的季节不连续性、波动性难题。
2、本发明提出的用于数据中心的可再生能源及余热综合利用系统,在我国北方有着广阔的市场前景及节能意义,数据中心余热的规模化再利用,在帮助用户降低用热成本的同时,也可间接减少因使用化石燃料产生的二氧化碳,具有重要的经济价值和环保价值。
3、本发明提出的用于数据中心的可再生能源及余热综合利用系统,跨季节蓄水池直接为数据中心提供冷量,减少了数据中心总电耗中用制冷设备的耗电量,从而有效降低PUE值,有益于数据中心提升品牌价值,引导数据中心走高效、低碳、集约、循环的绿色发展道路。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图进行简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的一种用于数据中心的可再生能源及余热综合利用系统的结构示意图。
附图标记说明:1.大型蓄水池;2.一号板式换热器;3.制冷机组冷凝端;4.制冷机组热回收端;5.制冷机组蒸发器;6.冷却塔;7.太阳能集热器;8.缓冲水罐;9.一号热泵蒸发器;10.一号热泵冷凝器;11.二号热泵蒸发器;12.二号热泵冷凝器;13.二号板式换热器;14~22.水泵;23~34.截止阀;35~37.压缩机;38~40.节流装置。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例:
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,本发明实施例的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。此外,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的 连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
参见图1,图1是本发明实施例的一种用于数据中心的可再生能源及余热综合利用系统的结构示意图。
本发明提供一种用于数据中心的可再生能源及余热综合利用系统及方法,在非冬季,将数据中心产生的余热,通过多温区连续集热技术,储存在大型蓄水池内,整个过程大型蓄水池依次作为数据中心直供、制冷机组冷凝端、制冷机组热回收端的跨季节冷源,最终由太阳能集热器辅助升温至目标供暖温度;在冬季,将数据中心余热、太阳能、大型蓄水池热量,分别通过高能效热泵技术、太阳能光热技术、多温区连续放热技术,实现寒冷区域跨季节低碳供暖,系统全年稳定运行,周而复始,可有效降低用户冬季的用热成本、减少化石燃料的燃烧、二氧化碳的产生、数据中心PUE值,具有重要的经济价值和环保价值。
如图1所示,在本发明实施例中,所述用于数据中心的可再生能源及余热综合利用系统包括大型蓄水池1,一号板式换热器2,制冷机组冷凝端3,制冷机组热回收端4,制冷机组蒸发器5,冷却塔6,太阳能集热7,缓冲水罐8,一号热泵蒸发器9,一号热泵冷凝器10,二号热泵蒸发器11,二号热泵冷凝器12,二号板式换热13,若干水泵14~22,若干截止阀23~34,压缩机35~37,节流装置38~40。所述用于数据中心的可再生能源及余热综合利用系统包含水循环系统和制冷剂循环系统,所述水循环系统与制冷剂循环系统间分别通过一号板式换热器2、制冷机组冷凝端3、制冷机组热回收端4、制冷机组蒸发器5,一号热泵蒸发器9,一号热泵冷凝器10,二号热泵蒸发器11,二号热泵冷凝器12等换热器进行热交换。
所述大型蓄水池1作为整个系统的核心装置,在正常工作时,内部蓄满水,并要求分别与一号板式换热器2、制冷机组冷凝端3、制冷机组热回收端4、太阳能集热器7、缓冲水罐8、二号热泵蒸发器11之间,形成独立水循环回路,所述大型蓄水池1周围和顶部均设有保温材料,图示未给出示意,大型蓄水池1利用热水顶层分布、冷水底层分布的分层设计思路,布置水循环回路的出水方式,当出水为热水、回水为冷水时,优先采用顶部出水,顶部回水的方式进行水循环,当出水为冷水、回水为热水时,优先采用底部出水,顶部回水的方式进行水循环。
所述水循环回路主要包括:一号板式换热器2分别与大型蓄水池1、冷却塔6、一号热泵蒸发器9之间,形成独立水循环回路;所述制冷机组冷凝端3分别与大型蓄水池1、冷却塔6,形成独立水循环回路;所述制冷机组热回收端4仅与大型蓄水池1之间形成独立水循环回路;所述数据中心冷却水供/回水接口分别与一号板式换热器2、制冷机组蒸发器5之间,形成独立水循环回路;所述太阳能集热器7分别与大型蓄水池1、缓冲水罐8之间,形成独立水循 环回路;所述缓冲水罐8分别与大型蓄水池1、太阳能集热器7、一号热泵冷凝器10、二号热泵冷凝器12、二号板式换热器13之间,形成独立水循环回路。
所述制冷剂循环系统包括:制冷机组循环系统、一号热泵循环系统和二号热泵循环系统。所述制冷剂循环系统主要由制冷机组蒸发器1、压缩机35、制冷机组热回收端4、制冷机组冷凝端5、节流装置38组成;所述一号热泵循环系统主要由一号热泵蒸发器9、压缩机36、一号热泵冷凝器10、节流装置39组成;所述二号热泵循环系统主要由二号热泵蒸发器11、压缩机37、二号热泵冷凝器12、节流装置40组成。所述二号热泵蒸发器11热源可以是来自于大型蓄水池1的水源,也可以是空气源,当水泵19驱动水循环回路时,此时大蓄水池1的水源作为热源使用,当水循环回路关闭时,驱动二号热泵蒸发器11的风扇,此时由空气源作为热源使用。
所述水泵14~22和截止阀23~34,根据实际需求,进行各运行模式间的自由切换。
基于上述系统,本发明还提出了用于数据中心的可再生能源及余热综合利用系统的运行方法,围绕大型蓄水池1蓄热过程和放热过程展开,实现跨季节区域供冷供热。
蓄热过程又称为放冷过程,要求所述余热利用系统在春、夏、秋三季实现大型蓄水池温度由0℃升至90℃的变化,其中大型蓄水池1温度为0℃时,对应含冰率在40%左右,具体实现过程如下:
(1)当大型蓄水池1温度0~20℃时,进入大型蓄水池直接供冷模式,此时由大型蓄水池1和一号板式换热器2组成的水循环回路开启,其他水循环回路和制冷剂循环回路均关闭,由大型蓄水池1直接为数据中心冷却水回路提供冷量。
(2)当大型蓄水池1温度21~37℃时,进入大型蓄水池-冷凝端供冷模式,此时制冷机组循环系统回路开启(部件3、4、5、35、38),由大型蓄水池1和制冷机组冷凝端3组成的水循环回路开启,由其他水循环回路和制冷剂循环回路均关闭,由大型蓄水池1为制冷机组冷凝端3提供冷量。
(3)当大型蓄水池1温度38~60℃时,进入大型蓄水池-热回收端供冷模式,此时制冷机组系统循环回路开启(部件3、4、5、35、38),由大型蓄水池1和制冷机组热回收端4组成的水循环回路开启,由太阳能集热器7和缓冲水罐8组成的水循环回路开启,其他水循环回路和制冷剂循环回路均关闭,大型蓄水池1为制冷机组热回收端4提供冷量,同时太阳能集热器7为缓冲水罐8储蓄热量,当缓冲水罐温度升温至90℃,再与大型蓄水池1顶部水层之间进行冷热水置换,重复循环。
(4)当大型蓄水池1温度61~90℃时,进入大型蓄水池-集热器模式,由大型蓄水池1和 太阳能集热器7组成的水循环回路开启,其他水循环回路和制冷剂循环回路均关闭,由太阳能集热器7为大型蓄水池1提供储备热量。要求春季开始至秋季结束时,大型蓄水池1的水温达到90℃左右。
放热过程又称为蓄冷过程,要求所述余热利用系统在冬季实现大型蓄水池温度由90℃降至0℃的变化过程,其中
(1)大型蓄水池1温度为0℃时,对应含冰率在40%左右,具体实现过程如下:当大型蓄水池1水温37~90℃时,进入大型蓄水池直接供热模式,由大型蓄水池1和缓冲水罐8组成的水循环回路开启,由缓冲水罐8和二号板式换热器13组成的水循环回路开启,其他水循环回路和制冷剂循环回路均关闭。
(2)当大型蓄水池1水温0~37℃时,进入缓冲水罐复合供热模式,此时数据中心供/回水和一号板式换热器2组成的水循环回路开启,一号板式换热器2和一号热泵蒸发器9组成的水循环回路开启,一号热泵冷凝器10和缓冲水罐8组成的水循环回路开启,一号热泵循环系统开启(部件9、10、36,、39),缓冲水罐8和一号热泵冷凝器组成的水循环回路开启,太阳能集热器7和缓冲水罐16组成的水循环回路开启,大型蓄水池1和二号热泵蒸发器11组成的水循环回路开启,二号热泵冷凝器12和缓冲水罐8组成的水循环回路开启,二号热泵循环系统开启(部件11、12、37、40),缓冲水罐8和二号板式换热器13组成的水循环回路开启,其他水循环回路和制冷剂循环回路均关闭,实现多元组合系统下的冬季区域供热,要求冬季结束时,大型蓄水池1的水温达到0℃,并且含冰率40%左右。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (10)

  1. 一种可再生能源及余热综合利用系统,其特征在于,包括:
    数据中心;
    蓄水池,其用于:在设定第一周期内,利用所述数据中心的热量完成蓄热过程,在设定第二周期内,利用所述蓄热过程储存的热量供应的放热过程;
    水循环系统,其设置有若干水循环回路;以及,
    制冷剂循环系统,其设置有若制冷剂干循环系统;其中,
    通过若干水循环回路和/或若干制冷剂循环系统配合实现所述蓄热过程和所述放热过程。
  2. 根据权利要求1所述的可再生能源及余热综合利用系统,其特征在于,所述水循环系统包括:
    第一水循环回路,其包括:一号板式换热器、蓄水池、冷却塔、一号热泵蒸发器,其中,所述一号板式换热器一端分别与所述蓄水池、所述冷却塔和所述一号热泵蒸发器各自连通;
    第二水循环回路,其包括:制冷机组冷凝端、蓄水池、冷却塔,其中,所述制冷机组冷凝端一端分别与蓄水池、冷却塔各自连通;
    第三水循环回路,其包括:制冷机组热回收端和蓄水池,其中,所述制冷机组热回收端与蓄水池之间连通;
    第四水循环回路,其包括:数据中心、一号板式换热器和制冷机组蒸发器,其中,所述数据中心的冷却水供/回水接口分别与一号板式换热器、制冷机组蒸发器各自连通;
    第五水循环回路,其包括:太阳能集热器、蓄水池、缓冲水罐,其中,所述太阳能集热器分别与大型蓄水池、缓冲水罐各自连通;以及,
    第六水循环回路,其包括:缓冲水罐、太阳能集热器、一号热泵冷凝器、二号热泵冷凝器、二号板式换热器,其中,所述缓冲水罐分别与大型蓄水池、太阳能集热器、一号热泵冷凝器、二号热泵冷凝器、二号板式换热器各自连通。
  3. 根据权利要求2所述的可再生能源及余热综合利用系统,其特征在于,所述制冷剂循环系统包括:
    制冷机组循环系统,其包括制冷机组蒸发器、压缩机、制冷机组热回收端、制冷机组冷凝端和节流装置,其中,所述制冷机组蒸发器构成换热过程的一端,制冷机组热回收端和制冷机组冷凝端构成换热过程的另一端,压缩机和节流装置促进换热过程的进行;
    一号热泵循环系统,其包括一号热泵蒸发器、压缩机、一号热泵冷凝器和节流装置,其中,一号热泵蒸发器构成换热过程的一端,一号热泵冷凝器构成换热过程的另一端,压缩机 和节流装置促进换热过程的进行;以及,
    二号热泵循环系统,其包括二号热泵蒸发器、压缩机、二号热泵冷凝器和节流装置,其中,二号热泵蒸发器构成换热过程的一端,二号热泵冷凝器构成换热过程的另一端,压缩机和节流装置促进换热过程的进行。
  4. 根据权利要求3所述的可再生能源及余热综合利用系统,其特征在于,所述蓄水池的顶层为热水且底层为冷水,其中,当出水为热水且回水为冷水时,所述蓄水池采用顶部出水,底部回水的方式进行水循环,当出水为冷水且回水为热水时,所述蓄水池采用底部出水,顶部回水的方式进行水循环。
  5. 根据权利要求3所述的可再生能源及余热综合利用系统,其特征在于,所述蓄水池的顶部及四周设置有保温层。
  6. 根据权利要求3所述的可再生能源及余热综合利用系统,其特征在于,所述二号热泵蒸发器的热源包括蓄水池的水源或空气源,其中,水泵驱动水循环回路时,蓄水池的水源作为热源使用,当水循环回路关闭时,驱动二号热泵蒸发器的风扇,此时由空气源作为热源使用。
  7. 根据权利要求3所述的可再生能源及余热综合利用系统,其特征在于,所述第一周期包括春季、夏季和秋季,所述第二周期包括冬季。
  8. 根据权利要求3所述的可再生能源及余热综合利用系统,其特征在于,所述蓄热过程为一定含冰率的0℃的水升至90℃的水的过程;所述放热过程为90℃的水降至一定含冰率的0℃的水的过程。
  9. 一种可再生能源及余热综合利用运行方法,其特征在于,利用如权利要求1至8任一所述的可再生能源及余热综合利用系统,
    所述蓄热过程包括:
    第一蓄热阶段,用于当蓄水池的水温在第一蓄热温度区间时,其过程包括:开启由蓄水池和一号板式换热器组成的水循环回路和开启制冷机组循环系统,其他水循环回路和制冷剂循环系统均关闭,由蓄水池直接为数据中心提供冷量;
    第二蓄热阶段,用于当蓄水池的水温在第二蓄热温度区间时,其过程包括:开启蓄水池和制冷机组冷凝端组成的水循环回路和开启制冷机组循环系统,其他水循环回路和制冷剂循环系统均关闭,由蓄水池为制冷机组冷凝端提供冷量;
    第三蓄热阶段,用于当蓄水池的水温在第三蓄热温度区间时,其过程包括:开启由蓄水池和制冷机组热回收端组成的水循环回路、开启由太阳能集热器和缓冲水罐组成的水循环回 路和开启制冷机组循环系统,其他水循环回路和制冷剂循环系统均关闭,由蓄水池为制冷机组热回收端提供冷量,同时太阳能集热器为缓冲水罐储蓄热量,当缓冲水罐温度升温至第一设定温度,再与蓄水池顶部水层之间进行冷热水置换,重复循环;
    第四蓄热阶段,用于当蓄水池的水温在第四蓄热温度区间时,其过程包括:开启由蓄水池和太阳能集热器组成的水循环回路,其他水循环回路和制冷剂循环系统均关闭,由太阳能集热器为蓄水池提供储备热量;
    所述放热过程包括:
    第一放热阶段,用于当蓄水池的水温在第一放热温度区间时,其过程包括:由蓄水池和缓冲水罐组成的水循环回路开启,由缓冲水罐和二号板式换热器组成的水循环回路开启,其他水循环回路和制冷剂循环系统均关闭,
    第二放热阶段,用于当蓄水池的水温在第二放热温度区间时,其过程包括:此时数据中心的供/回水和一号板式换热器组成的水循环回路开启,一号板式换热器和一号热泵蒸发器组成的水循环回路开启,一号热泵冷凝器和缓冲水罐组成的水循环回路开启,一号热泵循环系统开启,缓冲水罐和一号热泵冷凝器组成的水循环回路开启,太阳能集热器和缓冲水罐组成的水循环回路开启,蓄水池和二号热泵蒸发器组成的水循环回路开启,二号热泵冷凝器和缓冲水罐组成的水循环回路开启,二号热泵循环系统开启,缓冲水罐和二号板式换热器组成的水循环回路开启,其他水循环回路和制冷剂循环回路均关闭。
  10. 根据权利要求9所述的可再生能源及余热综合利用运行方法,其特征在于,第一蓄热阶段为温度0~20℃;第二蓄热阶段为温度21~37℃;第三蓄热阶段为温度38~60℃;第四蓄热阶段为温度61~90℃;第一放热温度区间为水温37~90℃;第二放热阶段为水温0~37℃。
PCT/CN2021/115502 2021-07-12 2021-08-31 用于数据中心的可再生能源及余热综合利用系统及方法 WO2022116608A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/921,366 US20230184446A1 (en) 2021-07-12 2021-08-31 System and method for comprehensive utilization of renewable energy and waste heat of data center

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110785497.2A CN113418255A (zh) 2021-07-12 2021-07-12 用于数据中心的可再生能源及余热综合利用系统及方法
CN202110785497.2 2021-07-12

Publications (1)

Publication Number Publication Date
WO2022116608A1 true WO2022116608A1 (zh) 2022-06-09

Family

ID=77721643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115502 WO2022116608A1 (zh) 2021-07-12 2021-08-31 用于数据中心的可再生能源及余热综合利用系统及方法

Country Status (3)

Country Link
US (1) US20230184446A1 (zh)
CN (1) CN113418255A (zh)
WO (1) WO2022116608A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110345549A (zh) * 2019-06-27 2019-10-18 广东合一新材料研究院有限公司 一种液冷数据中心余热回收系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100307171A1 (en) * 2009-06-06 2010-12-09 International Business Machines Corporation Cooling Infrastructure Leveraging a Combination of Free and Solar Cooling
JP2011247506A (ja) * 2010-05-27 2011-12-08 Fujikura Ltd データセンタの冷却システム
CN103940145A (zh) * 2014-04-17 2014-07-23 重庆大学 一种可用于数据机房的多功能联供型一体化空调机组
CN205299850U (zh) * 2016-01-22 2016-06-08 中国建筑科学研究院 一种数据中心余热回收的供能系统
CN106642799A (zh) * 2016-12-26 2017-05-10 广东申菱环境系统股份有限公司 一种数据中心冷热联供系统及其控制方法
CN208968087U (zh) * 2018-10-15 2019-06-11 依米康科技集团股份有限公司 一种太阳能协同制冷空调
CN111121133A (zh) * 2020-01-06 2020-05-08 中国科学院广州能源研究所 低品位多热源组合应用的热水联供系统及其控制方法
CN213178638U (zh) * 2020-09-03 2021-05-11 中国联合网络通信集团有限公司 一种余热回收型空调系统
CN215412275U (zh) * 2021-07-12 2022-01-04 中国科学院广州能源研究所 用于数据中心的可再生能源及余热综合利用系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100307171A1 (en) * 2009-06-06 2010-12-09 International Business Machines Corporation Cooling Infrastructure Leveraging a Combination of Free and Solar Cooling
JP2011247506A (ja) * 2010-05-27 2011-12-08 Fujikura Ltd データセンタの冷却システム
CN103940145A (zh) * 2014-04-17 2014-07-23 重庆大学 一种可用于数据机房的多功能联供型一体化空调机组
CN205299850U (zh) * 2016-01-22 2016-06-08 中国建筑科学研究院 一种数据中心余热回收的供能系统
CN106642799A (zh) * 2016-12-26 2017-05-10 广东申菱环境系统股份有限公司 一种数据中心冷热联供系统及其控制方法
CN208968087U (zh) * 2018-10-15 2019-06-11 依米康科技集团股份有限公司 一种太阳能协同制冷空调
CN111121133A (zh) * 2020-01-06 2020-05-08 中国科学院广州能源研究所 低品位多热源组合应用的热水联供系统及其控制方法
CN213178638U (zh) * 2020-09-03 2021-05-11 中国联合网络通信集团有限公司 一种余热回收型空调系统
CN215412275U (zh) * 2021-07-12 2022-01-04 中国科学院广州能源研究所 用于数据中心的可再生能源及余热综合利用系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110345549A (zh) * 2019-06-27 2019-10-18 广东合一新材料研究院有限公司 一种液冷数据中心余热回收系统
CN110345549B (zh) * 2019-06-27 2024-04-02 广东西江数据科技有限公司 一种液冷数据中心余热回收系统

Also Published As

Publication number Publication date
US20230184446A1 (en) 2023-06-15
CN113418255A (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
CN204007261U (zh) 相变蓄热换热装置
CN202182589U (zh) 余热、废热回收利用能量平衡系统
CN204084946U (zh) 一种单蒸发器型太阳能空气源复合热泵
CN203518318U (zh) 一种喷淋型空气源吸收式热泵
CN105571029A (zh) 一种实现空调跨季度同步蓄冷蓄热的方法及设备
CN206973677U (zh) 一种空气源热泵和燃气锅炉新型集中供热系统
CN102207306A (zh) 中央空调热回收生产及供应生活热水的节能运行模式
Huang et al. Development and composition of a data center heat recovery system and evaluation of annual operation performance
CN101000166A (zh) 小型多功能太阳能蓄能空调机
CN201297694Y (zh) 水源空气源综合采暖系统
CN103604243A (zh) 一种喷淋型空气源吸收式热泵
WO2022116608A1 (zh) 用于数据中心的可再生能源及余热综合利用系统及方法
WO2014111011A1 (zh) 一种溴化锂机组与冷库结合使用的冷热平衡系统
CN101329106A (zh) 利用空调机冷凝热与辅助热源制备卫生热水的技术与工艺
CN202902525U (zh) 冰蓄冷水蓄热系统
CN201177412Y (zh) 太阳能辅助吸收式直燃机余热回收冷热水机组
CN215412275U (zh) 用于数据中心的可再生能源及余热综合利用系统
CN201218630Y (zh) 一种低温热源驱动的吸收式地源热泵系统
CN207471843U (zh) 用于原油加热的双源热泵系统
CN105258379A (zh) 热泵型太阳能蒸发式冷凝空调机组
CN202393084U (zh) 一种双效喷射式制冷/热泵机组
CN112747585B (zh) 一种基于土壤源、空气源及太阳能耦合的开式热泵干燥系统
CN2300855Y (zh) 相变材料贮能式新风机组
CN200952854Y (zh) 节能蓄能型风源热泵机组
CN102927638B (zh) 冰蓄冷水蓄热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE