WO2022116605A1 - 一种ff现场总线本质安全隔离栅及信号双向传输方法 - Google Patents

一种ff现场总线本质安全隔离栅及信号双向传输方法 Download PDF

Info

Publication number
WO2022116605A1
WO2022116605A1 PCT/CN2021/114336 CN2021114336W WO2022116605A1 WO 2022116605 A1 WO2022116605 A1 WO 2022116605A1 CN 2021114336 W CN2021114336 W CN 2021114336W WO 2022116605 A1 WO2022116605 A1 WO 2022116605A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
intrinsically safe
optocoupler
unit
safe side
Prior art date
Application number
PCT/CN2021/114336
Other languages
English (en)
French (fr)
Inventor
张晓刚
王文辉
陈麒米
戴晨阳
陈军伟
Original Assignee
浙江中控技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江中控技术股份有限公司 filed Critical 浙江中控技术股份有限公司
Publication of WO2022116605A1 publication Critical patent/WO2022116605A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/26Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes without control electrode or semiconductor devices without control electrode to produce the intermediate ac
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/21Pc I-O input output
    • G05B2219/21166Output state, over resistance, coupled back to input to monitor output
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to the field bus field of industrial automation, in particular to an FF field bus intrinsically safe isolation barrier and a signal bidirectional transmission method based on the FF field bus intrinsically safe isolation barrier.
  • the FF safety barrier must ensure that the energy transferred from the control room to the field instrument cannot be ignited by the electric spark or thermal effect generated under the normal operation of the instrument and the specified fault conditions. Explosive mixtures in the field environment, while ensuring normal FF signal transmission. Therefore, the fieldbus intrinsically safe isolation barrier adopts the scheme of power isolation and signal isolation to meet the needs of practical applications.
  • the foreign FF bus intrinsically safe isolation barrier signal isolation transmission scheme adopts the transformer isolation scheme.
  • the advantage of the transformer to achieve signal isolation is that the circuit components are small and the volume is small, and only the FF signal in the safe area and the dangerous area is coupled through the transformer;
  • Signal isolation and transmission have high requirements on the process and design of the transformer, not only to meet the explosion-proof spacing requirements under the specific design scheme, but also to have special requirements for the transformer winding process, transformer materials and plastic sealing treatment.
  • the parasitic inductance and capacitance of the transformer are sensitive to the explosion-proof distance. Excessive parasitic inductance will cause the FF signal to oscillate and distort, and easily resonate with the capacitance in the circuit. Therefore, the actual selection of a transformer as the FF signal transmission scheme is expensive, the process and signal processing are complex, and implementation is difficult.
  • the signal isolation element plays an important role between intrinsically safe and non-intrinsically safe circuits, and plays the role of isolation and signal conversion. Whether its performance is good or not and the design is correct or not It is closely related to safety performance, therefore, the use of appropriate signal isolation technical solutions is of great significance to use performance and safety performance.
  • Signal isolation schemes are usually divided into isolation capacitor schemes and coupling transformer schemes.
  • the isolation capacitor scheme uses the isolation capacitor as the isolation element between the intrinsically safe circuit and the non-intrinsically safe circuit.
  • double or even triple protection design is required. Since capacitors of different materials change their capacitance values differently with temperature, voltage and time, the change in capacitance value can easily cause changes in the AC impedance of the FF bus, resulting in distortion and distortion of the FF signal; secondly, consider its safety , Electrolytic capacitors and tantalum capacitors, due to their poor error, stability and reliability, when they are subjected to overvoltage, overcurrent or heat, gas is easily generated inside and "shoots", which affects safety.
  • Isolation capacitors suitable for FF intrinsically safe isolation barriers should keep the capacitance value stable with changes in voltage, temperature and time, and have high temperature resistance and high reliability. Combined with its multiple protection design, its cost is relatively high. ; In addition, the use of capacitive isolators is sensitive to bus noise and has poor anti-interference, so it is generally not suitable for FF intrinsically safe isolation barriers.
  • the main function of the coupling transformer using the coupling transformer scheme is to couple and transmit the AC intrinsically safe signal and isolate the DC dangerous voltage on the non-intrinsically safe side.
  • ⁇ V ac the amplitude of the FF signal
  • ⁇ t the pulse width of the FF signal
  • L mag the inductance of the primary side of the signal isolation transformer
  • ⁇ I the excitation current of the primary side inductance
  • a set of molds needs to be specially developed for the winding and design of a specific coupling transformer, and the cost is high;
  • the transformer itself is an energy storage element, the inductance is too large, the energy storage is large, and the design of intrinsically safe explosion-proof protection is difficult;
  • the technical problem solved by the present invention is to provide an FF field bus intrinsically safe isolation barrier and a signal bidirectional transmission method, which utilizes an optocoupler to realize the isolated transmission of the FF signal, corrects the FF signal and controls the signal flow through the MCU, and has the advantages of low price and simple circuit. , without the influence of parasitic parameters of the device itself, the advantages of excellent performance. Specifically, the following technical solutions are adopted:
  • the first object of the present invention is an FF field bus intrinsically safe isolation barrier, which at least includes an optocoupler isolation module, and a first module located on the non-intrinsically safe side and a first module located on the intrinsically safe side respectively coupled to the optocoupler isolation module.
  • the control unit realizes the safe two-way transmission of signals on the intrinsically safe side and the non-intrinsically safe side on the FF bus path by controlling the turn-on and turn-off of the optocoupler unit based on the signal flow.
  • control unit is coupled between the optocoupler unit and the second module, and is also used for correcting the digital signal input to the control unit.
  • the control module ensures the stability of the long-distance transmission of the FF signal by modifying the FF signal.
  • the optocoupler unit includes at least a first optocoupler and a second optocoupler, the input end of the first optocoupler is coupled to the output end of the filter shaping unit of the first module, and the output end is coupled to the first input end of the control unit; The input end of the two optocouplers is coupled to the second output end of the control unit, and the output end is coupled to the input end of the modulation unit of the first module.
  • the first optocoupler is a signal isolation device that transmits signals from the non-intrinsically safe side to the non-intrinsically safe side
  • the second optocoupler is a signal isolation device that transmits signals from the intrinsically safe side to the non-intrinsically safe side.
  • the FF fieldbus intrinsically safe isolation barrier is realized through a simple and simple scheme, and there is no influence of the parasitic parameters of the device itself.
  • first optocoupler and the second optocoupler are high-speed optocouplers, and the turn-on and turn-off times of the high-speed optocouplers are shorter than the rising edge or falling edge time of the FF signal.
  • the selection of the optocoupler is mainly based on its turn-on and turn-off time.
  • the filtering and shaping unit includes a filtering circuit for filtering the FF signal input by the FF bus and a shaping circuit for converting the FF signal into a digital pulse width signal.
  • the filter circuit is a band-pass filter
  • the shaping circuit is a comparator circuit
  • the digital pulse width signal after the shaping circuit can drive the optocoupler to conduct.
  • the second object of the present invention is to provide a bidirectional signal transmission method, which is based on the above-mentioned FF field bus intrinsically safe isolation barrier for bidirectional signal transmission, specifically including: S1, the control unit controls the optocoupler unit to keep the open state and receives and converts the digital signal S2, the control unit monitors the flow direction of the FF signal on the bus in real time, and controls the conduction direction of the optocoupler unit based on the signal flow direction, and outputs the digital pulse width signal of the digital FF signal to the modulation unit; S3, the modulation unit The input digital signal is converted into current and modulated on the FF bus.
  • the control unit receiving the FF signal converted into a digital signal specifically includes: S11, the signal on the FF bus is converted into a digital pulse width signal output by the intrinsically safe side/non-intrinsically safe side filtering and shaping unit; S12 , the digital pulse width signal drives the optocoupler unit to conduct, and is output to the control module through the optocoupler unit.
  • S1 also includes the control unit detecting and correcting the received FF signal, specifically including verifying the pulse width of the FF signal and correcting the offset pulse width.
  • step S2 specifically includes: the control unit monitors the sequence in which the intrinsically safe side/non-intrinsically safe side transmits the FF signal to the non-intrinsically safe side/intrinsically safe side on the FF bus, if the non-intrinsically safe side transmits the FF signal to the intrinsically safe side.
  • the control unit controls the optocoupler unit to close the signal transmission path from the intrinsically safe side to the non-intrinsically safe side; if the FF signal transmitted from the intrinsically safe side to the non-intrinsically safe side, the control unit controls the optocoupler unit to close the non-intrinsically safe side.
  • the optocoupler realizes signal isolation and transmission through photoelectricity, without the influence of parasitic parameters of the device itself;
  • the signal bidirectional transmission is realized through the intrinsic safety isolation barrier based on the FF field bus, and the signal is safe, reliable and stable bidirectional transmission.
  • Figure 1 is a schematic diagram of the equivalent model of the coupling transformer
  • Figure 2 is a schematic diagram of the influence of the parasitic parameters of the coupling transformer on the FF signal
  • Fig. 3 is the principle schematic diagram of a kind of FF field bus intrinsically safe isolation barrier of the present invention.
  • Fig. 4 is the schematic diagram of FF bus signal
  • FIG. 5 is a flowchart of an embodiment of a method for bidirectional signal transmission according to the present invention.
  • FIG. 3 A schematic diagram of the principle of an FF field bus intrinsically safe isolation barrier provided by the present invention is shown in FIG. 3 . It includes an optocoupler isolation module, a first module on the non-intrinsically safe side and a second module on the intrinsically safe side respectively coupled to the optocoupler isolation module, the first module and the second module both include a filter shaping unit and a modulation unit ;
  • the optocoupler isolation module includes an optocoupler unit and a control unit. The control unit is coupled between the optocoupler unit and the second module.
  • the optocoupler unit includes at least a first optocoupler and a second optocoupler.
  • the input end of the first optocoupler is coupled to the output end of the filter shaping unit of the first module, and the output end is coupled to the first input end of the control unit; the input end of the second optocoupler is coupled to the second output end of the control unit, and the output end is coupled to the input end of the modulation unit of the first module.
  • the control unit is used to control the turn-on and turn-off of the optocoupler unit, and to correct the digital signal input to the control unit.
  • the filter shaping unit includes a filter circuit for filtering the FF signal input by the FF bus and a shaping circuit for converting the FF signal into a digital pulse width signal.
  • the FF signal of the non-intrinsically safe side is transmitted to the intrinsically safe side.
  • the FF signal of the non-intrinsically safe side is firstly passed through a filter circuit and a shaping circuit, respectively.
  • the FF signal is filtered and converted into a digital pulse width signal.
  • the filter circuit adopts a band-pass filter
  • the shaping circuit is a comparator circuit.
  • the digital pulse width signal drives the optocoupler of the optocoupler unit to conduct, so as to continue to transmit to the MCU of the control unit.
  • the MCU closes the optocoupler transmission channel that converts the intrinsically safe side to the non-intrinsically safe side.
  • the signal is output to the modulation unit after correcting the pulse width.
  • the communication rate of the FF fieldbus H1 segment is 31.25kbit/s.
  • the FF signal generator transmits the 15-20mA AC current signal to an equivalent load of 50 ⁇ /2uF at this rate, and generates a modulated signal on the DC power supply DC. 1V peak-to-peak voltage signal, as shown in Figure 4.
  • the process of transmitting signals from the non-intrinsically safe side to the intrinsically safe side is realized.
  • the optocoupler should choose a high-speed optocoupler, because the communication rate of the FF signal is 31.25kbit/s, and the rising/falling edge time is between 5 and 8us.
  • the on and off of the optocoupler The off time should be much less than the rising/falling edge time of the FF signal.
  • the high-speed optocoupler of ns level can meet the practical application requirements.
  • FIG. 5 it is a flowchart of an embodiment of a method for bidirectional signal transmission according to the present invention. Include the following steps:
  • control unit controls the optocoupler unit to keep the open state and receive the FF signal converted into a digital signal.
  • the control unit further includes verifying the pulse width of the FF signal and correcting the offset pulse width.
  • the FF signal received by the control unit and converted into a digital signal specifically includes:
  • the signal on the FF bus is converted into a digital pulse width signal output by the intrinsically safe side/non-intrinsically safe side filtering and shaping unit;
  • the digital pulse width signal drives the optocoupler unit to conduct, and is output to the control unit through the optocoupler unit.
  • control unit checks the received FF signal pulse width frame by frame, corrects the offset pulse width to make it meet the requirements of Manchester coding, and eliminates the signal distortion caused by long-distance communication after correction by the control unit, The influence of offset greatly improves the stability of FF communication.
  • control unit monitors the FF signal flow direction on the bus in real time, and controls the conduction direction of the optocoupler unit based on the signal flow direction, and outputs the digital pulse width signal of the digital FF signal to the modulation unit.
  • the control unit monitors the sequence in which FF signals are transmitted from the intrinsically safe side/non-intrinsically safe side to the non-intrinsically safe side/intrinsically safe side on the FF bus. If the FF signal transmitted from the non-intrinsically safe side to the intrinsically safe side is transmitted to the control unit first , the control unit controls the optocoupler unit to close the signal transmission path from the intrinsically safe side to the non-intrinsically safe side; if the FF signal transmitted from the intrinsically safe side to the non-intrinsically safe side, the control unit controls the optocoupler unit to close the non-intrinsically safe side to the intrinsically safe side. side signal transmission path. It is guaranteed that there is only one direction of FF signal transmission at a certain time.
  • the modulation unit converts the input digital signal into a current and modulates it on the FF bus.
  • the modulation unit modulates the ⁇ 15-20mA current to the FF bus, and when it falls on the terminal, it can be converted into a standard 0.75V-1V peak-to-peak standard FF signal.
  • FF communication cables are generally long, and long-distance communication often leads to a certain degree of distortion and offset in the FF signal.
  • the distortion and offset of the signal can easily cause the instrument to be dropped.
  • the FF signal after shaping and filtering is corrected and verified by the control module, which can eliminate the influence of signal distortion and offset caused by long-distance communication, and greatly improve the FF communication. stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一种FF现场总线本质安全隔离栅,包括光耦隔离模块,以及与光耦隔离模块分别耦接的位于非本安侧的第一模块和位于本安侧的第二模块,第一模块和第二模块均包括滤波整形单元和调制单元;滤波整形单元用于将FF信号转换为数字信号;调制单元用于将数字信号转换为电流调制至本安侧或非本安侧FF总线上;光耦隔离模块包括光耦单元和控制单元,控制单元用于基于信号流向控制光耦隔离模块的导通和关断。还提出了一种基于FF现场总线本质安全隔离栅的信号双向传输方法,利用光耦实现FF信号的隔离传输,通过控制单元修正FF信号并控制信号流向。FF现场总线本质安全隔离栅具有价格低、电路简单,无器件本身寄生参数的影响,性能优良的优点。

Description

一种FF现场总线本质安全隔离栅及信号双向传输方法 技术领域
本发明涉及工业自动化的现场总线领域,尤其是一种FF现场总线本质安全隔离栅及基于FF现场总线本质安全隔离栅的信号双向传输方法。
背景技术
FF安全栅作为本质安全系统中安全区和危险区之间的限能接口,既要保证控制室传递给现场仪表的能量,在仪表正常工作和规定故障条件下产生的电火花或热效应均不能点燃现场环境中的爆炸性混合物,同时还要保证正常的FF信号传输。因此,现场总线本质安全隔离栅采用电源隔离和信号隔离的方案来满足实际应用的需求。
目前,国外FF总线本质安全隔离栅信号隔离传输方案采用变压器隔离方案,变压器实现信号隔离的优点是电路元件少,体积小,仅通过变压器耦合安全区和危险区的FF信号;但是基于变压器实现FF信号隔离传输对于变压器的工艺和设计要求较高,不仅要满足具体设计方案下的防爆间距要求,还对变压器绕线工艺、变压器材料以及胶封处理有着特殊的要求。除此之外,变压器的寄生电感和电容对防爆间距敏感,过大的寄生电感会导致FF信号振荡失真,并且容易和电路中电容发生谐振。因此,实际选取变压器作为FF信号传输方案成本高昂、工艺和信号处理较为复杂,实现较为困难。
在中国常用的FF现场总线本质安全隔离栅中,信号隔离元件在本安和非本安电路之间扮演着重要的角色,起到隔离与信号转换的作用,其性能好坏及设计正确与否与安全性能紧密相关,因此,采用合适的信号隔离技术方案对使用性能和安全性能来说意义重大。信号隔离方案通常分为隔离电容器方案和耦合变压器方案。
其中,隔离电容器方案采用隔离电容器做为本安电路与非本安电路间的隔离元件,也是耦合元件,用于传递交流本安信号而隔离非本安侧的直流危险电压。对于不同防爆等级电气设备及其关联设备,需采用双重化甚至三重化的保护设计。由于不同材质的电容器随温度、电压和时间的变化其容值变化情况不同,电容容值的变化容易引起FF总线交流阻抗的变化,从而引起FF信号的失真、畸变等;其次,考虑其安全性,电解电容和钽电容由于其误差、稳定性和可靠性较差的原因,当其遭受过压、过流或受热时,内部易产生气体而“放炮”,影响安全。因此,一般应选用高稳定性,高可靠性以及耐高温的气密电容、瓷介电容和陶瓷电容等作为隔离器。适用于FF本质安全隔离栅中的隔离电容器应满足电容容值随电压、温度和时间等的变化保持稳定,具备耐高温性以及高可靠性,结合其多重化的保护设计,因此其成本较高;此外,利用电容隔离器方案对总线噪声敏感,抗干扰性较差,故而一般不适用于FF本质安全隔离栅中。
采用耦合变压器方案的耦合变压器的主要功能是耦合与传递交流本安信号并隔离非本安侧的直流危险电压。在FF本质安全隔离栅中,假定考虑耦合变压器用作信号隔离方案,依据伏秒平衡定理:ΔV ac·Δt=L mag·ΔI。式中,ΔV ac表示FF信号幅值,Δt表示FF信号脉宽,L mag表示信号隔离变压器原边电感量,ΔI表示原边电感励磁电流,取ΔV ac=1V,Δt=32us,ΔI=5%·ΔI ac可得Lmagmin=85mH,即要传递峰峰值1V,速率为31.25kbit/s的FF信号,耦合变压器电感量需做的足够大,结合防爆间距的要求,存在以下问题目前难以解决:
a.需专门开发一套模具用于特定的耦合变压器的绕制、设计,成本高昂;
b.考虑本安防爆的间距要求,变压器的寄生参数[漏感Lp、分布电容Cp]对FF信号影响较大,如图1、图2所示;
c.虽然可以采取高磁导率磁性材料以及足够小的线径绕制电感以降低体积,但过小的线径容易承受应力而断裂,绕制困难;
d.爬电距离、固体绝缘需要特殊设计保证,现有工艺实现困难,成本较高;
e.变压器本身属于储能元件,电感量过大储能较大,本安防爆保护设计困难;
因此采用耦合变压器方案实现FF信号隔离传输对工艺水平以及模具要求较高,整体成本偏高,实现起来较为困难。
发明内容
本发明解决的技术问题在于提供了一种FF现场总线本质安全隔离栅及信号双向传输方法,利用光耦实现FF信号的隔离传输,通过MCU修正FF信号并控制信号流向,具有价格低、电路简单,无器件本身寄生参数的影响,性能优良的优点。具体采用了如下技术方案:
本发明第一个目的在于一种FF现场总线本质安全隔离栅,至少包括光耦隔离模块,以及与光耦隔离模块分别耦接的位于非本安侧的第一模块和位于本安侧的第二模块,第一模块和第二模块均包括滤波整形单元和调制单元;第一/第二模块的滤波整形单元的输入端输入本安侧/非本安侧FF总线上的FF信号,用于将FF信号转换为数字信号输出至光耦隔离模块;第一/第二模块的调制单元的输入端输入光耦隔离模块输出的数字信号并将其转换为电流调制至本安侧/非本安侧FF总线上;光耦隔离模块包括光耦单元和控制单元,所述控制单元用于基于信号流向控制光耦单元的导通和关断。
控制单元通过基于信号流向控制光耦单元的导通和关断,实现了FF总线通路上本安侧和非本安侧信号的安全双向传输。
进一步的,控制单元耦接于光耦单元和第二模块之间,还用于修正输入控制单元的数字信号。
控制模块通过对FF信号的修正,保证了FF信号长距离传输的稳定性。
进一步的,光耦单元至少包括第一光耦和第二光耦,第一光耦的输入端耦接第一模块的滤波整形单元输出端,输出端耦接控制单元的第一输入端;第二光耦的输入端耦接控制单元的第二输出端,输出端耦接第一模块的调制单元的输入端。
第一光耦为非本安侧向非本安侧传输信号的信号隔离器件,第二光耦为本 安侧向非本安侧传输信号的信号隔离器件。通过简单的而方案实现了FF现场总线本质安全隔离栅,并且无器件本身寄生参数影响。
进一步的,第一光耦和第二光耦为高速光耦,所述高速光耦的导通和关断时间小于FF信号上升沿或者下降沿时间。
考虑到FF信号通讯速率为31.25kbit/s,上升/下降沿时间在5~8us之间,为了FF信号的高效传输,对光耦的选取主要依据其导通和关断时间。
进一步的,滤波整形单元包括用于对FF总线输入的FF信号滤波的滤波电路和将FF信号转换为数字脉宽信号的整形电路。
进一步的,所述滤波电路为带通滤波器,所述整形电路为比较器电路。
经整形电路后的数字脉宽信号可以驱动光耦导通。
本发明第二个目的在于提供一种信号双向传输方法,基于上述的FF现场总线本质安全隔离栅进行信号双向传输,具体包括:S1,控制单元控制光耦单元保持打开状态并接收转换为数字信号的FF信号;S2,控制单元实时监测总线上的FF信号流向,并基于信号流向控制光耦单元的导通方向,以及,将数字FF信号的数字脉宽信号输出至调制单元;S3,调制单元对输入的数字信号转换为电流调制至FF总线上。
进一步的,步骤S1中,所述控制单元接收转换为数字信号的FF信号具体包括:S11,FF总线上的信号经本安侧/非本安侧滤波整形单元转换为数字脉宽信号输出;S12,数字脉宽信号驱动光耦单元导通,经光耦单元输出至控制模块。
更进一步的,S1还包括控制单元对接收的FF信号进行检测修正,具体包括对FF信号脉宽进行校验,并对偏移的脉宽进行修正。
进一步的,步骤S2具体包括:控制单元监测FF总线上本安侧/非本安侧向非本安侧/本安侧传输FF信号的先后顺序,若非本安侧向本安侧传输的FF信号先传输至控制单元,则控制单元控制光耦单元关闭本安侧向非本安侧信号传输通路;若本安侧向非本安侧传输的FF信号,则控制单元控制光耦单元关闭非本安侧向本安侧信号传输通路。
本发明的有益效果为:
1、利用高速光耦实现FF信号在本安侧和本安侧的隔离传输,成本较低、电路简单;
2、通过控制单元修正FF信号并控制信号流向,控制简单,大大提高总线抗干扰性;
3、光耦内部通过光电实现信号隔离传输,无器件本身寄生参数的影响;
4、通过基于FF现场总线本质安全隔离栅实现信号双向传输,实现信号安全,可靠、稳定的双向传输。
附图说明
结合附图,本发明的其他特点和优点可从下面通过举例来对本发明的原理进行解释的优选实施方式的说明中变得更清楚。
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
在附图中:
图1为耦合变压器等效模型示意图;
图2为耦合变压器寄生参数对FF信号影响示意图;
图3为本发明一种FF现场总线本质安全隔离栅的原理示意图;
图4为FF总线信号示意图;
图5为本发明一种信号双向传输方法的实施例流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供的一种FF现场总线本质安全隔离栅的原理示意图如图3所示。 包括光耦隔离模块,以及与光耦隔离模块分别耦接的位于非本安侧的第一模块和位于本安侧的第二模块,第一模块和第二模块均包括滤波整形单元和调制单元;光耦隔离模块包括光耦单元和控制单元。控制单元耦接于光耦单元和第二模块之间。
其中,光耦单元至少包括第一光耦和第二光耦。第一光耦的输入端耦接第一模块的滤波整形单元输出端,输出端耦接控制单元的第一输入端;第二光耦的输入端耦接控制单元的第二输出端,输出端耦接第一模块的调制单元的输入端。控制单元用于控制光耦单元导通和关断,以及修正输入控制单元的数字信号。滤波整形单元包括用于对FF总线输入的FF信号滤波的滤波电路和将FF信号转换为数字脉宽信号的整形电路。
在本发明的一个实施中,将非本安侧的FF信号传输至本安侧,为了保证信号传输的安全性和稳定性,首先将非本安侧的FF信号经过滤波电路和整形电路,分别对FF信号进行滤波和转换为数字脉宽信号,滤波电路采用带通滤波器,整形电路为比较器电路。数字脉宽信号驱动光耦单元的光耦导通,从而继续传输至控制单元的MCU,MCU将此时本安侧转换为非本安侧的光耦传输通道关闭,MCU对输入的数字脉宽信号对脉宽校正后输出至调制单元。FF现场总线H1网段的通讯速率为31.25kbit/s,FF信发生设备以该速率将15~20mA的交流电流信号传送给一个50Ω/2uF的等效负载,产生一个调制在直流电源DC上的1V峰峰值的电压信号,如图4所示。从而实现了非本安侧的信号向本安侧传输的过程。
需要说明的是,光耦应选择高速光耦,因为FF信号通讯速率为31.25kbit/s,上升/下降沿时间在5~8us之间,为了FF信号的高效传输,光耦的导通和关断时间应远小于FF信号上升/下降沿时间,一般考虑ns级的高速光耦可以满足实际应用需求。
如图5所示,为本发明一种信号双向传输方法的实施例流程图。包括以下步骤:
S1,控制单元控制光耦单元保持打开状态并接收转换为数字信号的FF信号。 其中,控制单元还包括对FF信号脉宽进行校验,并对偏移的脉宽进行修正。其中控制单元接收转换为数字信号的FF信号具体包括:
S11,FF总线上的信号经本安侧/非本安侧滤波整形单元转换为数字脉宽信号输出;
S12,数字脉宽信号驱动光耦单元导通,经光耦单元输出至控制单元。
一般来说,控制单元对接收的FF信号脉宽进行逐帧校验,修正其中偏移的脉宽使其符合曼彻斯特编码的要求,通过控制单元修正后消除了长距离通信带来的信号失真、偏移的影响,极大提高了FF通信的稳定性。
S2,控制单元实时监测总线上的FF信号流向,并基于信号流向控制光耦单元的导通方向,以及,将数字FF信号的数字脉宽信号输出至调制单元。
具体包括,控制单元监测FF总线上本安侧/非本安侧向非本安侧/本安侧传输FF信号的先后顺序,若非本安侧向本安侧传输的FF信号先传输至控制单元,则控制单元控制光耦单元关闭本安侧向非本安侧信号传输通路;若本安侧向非本安侧传输的FF信号,则控制单元控制光耦单元关闭非本安侧向本安侧信号传输通路。保证了某一时刻只存在一个方向的FF信号传输。
S3,调制单元对输入的数字信号转换为电流调制至FF总线上。
调制单元将±15~20mA电流调制到FF总线上,落到终端上可转换为标准的0.75V-1V的峰峰值标准FF信号。
需要注意的是,为了确保通讯的可靠与稳定性,同一时间FF总线仅有一路FF信号在传输,因为控制单元通过控制光耦的导通方向从而控制信号流向,保证了信号从本安侧向非本安侧,后者从非本安侧向本安侧的双向传输的信号传输安全性。
另外,在实际工程应用中,FF通信线缆一般都较长,长距离通信往往会导致FF信号存在一定程度的失真、偏移等现象。信号的失真偏移容易引起仪表掉线,通过控制模块对经过整形滤波后的FF信号进行修正校验,可以消除长距离通信带来的信号失真、偏移的影响,极大提高了FF通信的稳定性。
最后应说明的是:显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (10)

  1. 一种FF现场总线本质安全隔离栅,其特征在于,
    至少包括光耦隔离模块,以及与光耦隔离模块分别耦接的位于非本安侧的第一模块和位于本安侧的第二模块,所述第一模块和第二模块均包括滤波整形单元和调制单元;
    所述第一/第二模块的滤波整形单元的输入端输入本安侧/非本安侧FF总线上的FF信号,用于将FF信号转换为数字信号输出至光耦隔离模块;
    所述第一/第二模块的调制单元的输入端输入光耦隔离模块输出的数字信号并将其转换为电流调制至本安侧/非本安侧FF总线上;
    所述光耦隔离模块包括光耦单元和控制单元,所述控制单元用于基于信号流向控制光耦单元的导通和关断。
  2. 根据权利要求2所述的本质安全隔离栅,其特征在于,所述控制单元耦接于光耦单元和第二模块之间,还用于修正输入控制单元的数字信号。
  3. 根据权利要求2所述的本质安全隔离栅,其特征在于,所述光耦单元至少包括第一光耦和第二光耦,
    所述第一光耦的输入端耦接第一模块的滤波整形单元输出端,输出端耦接控制单元的第一输入端;
    所述第二光耦的输入端耦接控制单元的第二输出端,输出端耦接第一模块的调制单元的输入端。
  4. 根据权利要求3所述的本质安全隔离栅,其特征在于,所述第一光耦和第二光耦为高速光耦,所述高速光耦的导通和关断时间小于FF信号上升沿或者下降沿时间。
  5. 根据权利要求1-4任一所述的本质安全隔离栅,其特征在于,所述滤波整形单元包括用于对FF总线输入的FF信号滤波的滤波电路和将FF信号转换为数字脉宽信号的整形电路。
  6. 根据权利要求5所述的本质安全隔离栅,其特征在于,所述滤波电路为带通滤波器,所述整形电路为比较器电路。
  7. 一种信号双向传输方法,基于权利要求1-6任一所述的FF现场总线本质安全隔离栅进行信号双向传输,其特征在于,具体包括:
    S1,控制单元控制光耦单元保持打开状态并接收转换为数字信号的FF信号;
    S2,控制单元实时监测总线上的FF信号流向,并基于信号流向控制光耦单元的导通方向,以及,将数字FF信号的数字脉宽信号输出至调制单元;
    S3,调制单元对输入的数字信号转换为电流调制至FF总线上。
  8. 根据权利要求7所述的信号双向传输方法,其特征在于,步骤S1中,所述控制单元接收转换为数字信号的FF信号具体包括:
    S11,FF总线上的信号经本安侧/非本安侧滤波整形单元转换为数字脉宽信号输出;
    S12,数字脉宽信号驱动光耦单元导通,经光耦单元输出至控制单元。
  9. 根据权利要求7所述的信号双向传输方法,其特征在于,S1还包括控制单元对接收的FF信号进行检测修正,具体包括对FF信号脉宽进行校验,并对偏移的脉宽进行修正。
  10. 根据权利要求7所述的信号双向传输方法,其特征在于,步骤S2具体包括:
    控制单元监测FF总线上本安侧/非本安侧向非本安侧/本安侧传输FF信号的先后顺序,
    若非本安侧向本安侧传输的FF信号先传输至控制单元,则控制单元控制光耦单元关闭本安侧向非本安侧信号传输通路;
    若本安侧向非本安侧传输的FF信号,则控制单元控制光耦单元关闭非本安侧向本安侧信号传输通路。
PCT/CN2021/114336 2020-12-02 2021-08-24 一种ff现场总线本质安全隔离栅及信号双向传输方法 WO2022116605A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011401639.2 2020-12-02
CN202011401639.2A CN112596428A (zh) 2020-12-02 2020-12-02 一种ff现场总线本质安全隔离栅及信号双向传输方法

Publications (1)

Publication Number Publication Date
WO2022116605A1 true WO2022116605A1 (zh) 2022-06-09

Family

ID=75188057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114336 WO2022116605A1 (zh) 2020-12-02 2021-08-24 一种ff现场总线本质安全隔离栅及信号双向传输方法

Country Status (2)

Country Link
CN (1) CN112596428A (zh)
WO (1) WO2022116605A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112596428A (zh) * 2020-12-02 2021-04-02 浙江中控技术股份有限公司 一种ff现场总线本质安全隔离栅及信号双向传输方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1916807A (zh) * 2005-08-17 2007-02-21 沈阳中科博微自动化技术有限公司 Ff现场总线本质安全栅
US20080052560A1 (en) * 2006-08-22 2008-02-28 Yokogawa Electric Corporation Field bus communication diagnosing device and field bus communication diagnosing method
CN101820314A (zh) * 2009-02-27 2010-09-01 深圳拓邦股份有限公司 单线双向通信光耦隔离电路
CN104699055A (zh) * 2015-02-13 2015-06-10 西安热工研究院有限公司 一种现场总线控制器及方法
CN107919861A (zh) * 2016-10-08 2018-04-17 北京中科格励微科技有限公司 一种数字信号隔离器
CN110908521A (zh) * 2019-10-23 2020-03-24 连云港杰瑞自动化有限公司 用于防爆场合批控器的本质安全型键盘电路
CN111857077A (zh) * 2020-07-31 2020-10-30 浙江中控技术股份有限公司 一种rs-485隔离电路及安全栅
CN112596428A (zh) * 2020-12-02 2021-04-02 浙江中控技术股份有限公司 一种ff现场总线本质安全隔离栅及信号双向传输方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202351674U (zh) * 2011-11-14 2012-07-25 郑州赛金电气有限公司 一种矿用隔离式安全栅
JP2015185083A (ja) * 2014-03-26 2015-10-22 アズビル株式会社 機器管理装置および機器管理方法
CN104535205A (zh) * 2015-01-06 2015-04-22 上海自动化仪表股份有限公司 基于ff协议的多通道温度值实时传输方法
CN108919745A (zh) * 2018-09-11 2018-11-30 上海辰竹仪表有限公司 隔离电路、安全栅及隔离器
CN109412575B (zh) * 2018-11-30 2022-09-27 中国电子科技集团公司第四十四研究所 一种传输方向可选的高速数字型光电耦合器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1916807A (zh) * 2005-08-17 2007-02-21 沈阳中科博微自动化技术有限公司 Ff现场总线本质安全栅
US20080052560A1 (en) * 2006-08-22 2008-02-28 Yokogawa Electric Corporation Field bus communication diagnosing device and field bus communication diagnosing method
CN101820314A (zh) * 2009-02-27 2010-09-01 深圳拓邦股份有限公司 单线双向通信光耦隔离电路
CN104699055A (zh) * 2015-02-13 2015-06-10 西安热工研究院有限公司 一种现场总线控制器及方法
CN107919861A (zh) * 2016-10-08 2018-04-17 北京中科格励微科技有限公司 一种数字信号隔离器
CN110908521A (zh) * 2019-10-23 2020-03-24 连云港杰瑞自动化有限公司 用于防爆场合批控器的本质安全型键盘电路
CN111857077A (zh) * 2020-07-31 2020-10-30 浙江中控技术股份有限公司 一种rs-485隔离电路及安全栅
CN112596428A (zh) * 2020-12-02 2021-04-02 浙江中控技术股份有限公司 一种ff现场总线本质安全隔离栅及信号双向传输方法

Also Published As

Publication number Publication date
CN112596428A (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
CN201766490U (zh) 基于igbt桥式开关拓扑的驱动电路及其保护模块
CN104065253A (zh) 电力变换装置、驱动装置及驱动方法
WO2022116605A1 (zh) 一种ff现场总线本质安全隔离栅及信号双向传输方法
CN101226411B (zh) 音响系统开关电源的功耗测控方法及其专用装置
CN102377326B (zh) 基于igbt桥式开关拓扑的驱动电路及其保护模块
WO2021232883A1 (zh) 高压互锁电路及其检测方法
CN110299727A (zh) 一种组件关断器及光伏发电系统安全保护系统
CN102545663B (zh) 一种适用于电流模式开关电源的过功率补偿电路
WO2024002033A1 (zh) 信号注入电路及注入方法
CN201113788Y (zh) 一种电源保护电路
CN101888182B (zh) 具有功率接收器的dc-dc转换器
CN202076941U (zh) 具有雷击保护电路的电源供应器
CN110417388A (zh) 一种光伏组件关断器及光伏发电安全保护系统
CN203135826U (zh) 电压型栅控器件的驱动电路
WO2021057054A1 (zh) 一种应用于电力线通信的接口电路、组串及系统
CN108023468A (zh) 开关电源控制电路及开关电源
CN104167724A (zh) 一种隔离型双向通信信号防雷器
CN102368667B (zh) 离线式ac-dc控制电路和包含该控制电路的转换电路
CN108964267B (zh) 一种直流电压型plc光伏关断器电路
CN203895973U (zh) 一种电涌保护箱
CN114553011B (zh) 反激电源和充电器
CN204044223U (zh) 一种链式换流器电流检测装置
CN103812376A (zh) 城轨车辆辅助逆变器及城轨车辆
WO2022160423A1 (zh) 通用信号的双向传输电路
CN108566098A (zh) 一种应用于全桥直流-直流变换器的电流检测线路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899641

Country of ref document: EP

Kind code of ref document: A1