WO2022116567A1 - 液压控制系统和机械设备 - Google Patents

液压控制系统和机械设备 Download PDF

Info

Publication number
WO2022116567A1
WO2022116567A1 PCT/CN2021/109015 CN2021109015W WO2022116567A1 WO 2022116567 A1 WO2022116567 A1 WO 2022116567A1 CN 2021109015 W CN2021109015 W CN 2021109015W WO 2022116567 A1 WO2022116567 A1 WO 2022116567A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
pressure
fluid
control system
hydraulic control
Prior art date
Application number
PCT/CN2021/109015
Other languages
English (en)
French (fr)
Inventor
唐文杰
罗建华
肖广飞
Original Assignee
上海华兴数字科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海华兴数字科技有限公司 filed Critical 上海华兴数字科技有限公司
Publication of WO2022116567A1 publication Critical patent/WO2022116567A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/001Servomotor systems with fluidic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means

Definitions

  • the present application relates to the technical field of construction machinery, in particular to a hydraulic control system and mechanical equipment.
  • hydraulic control systems are widely used in mechanical equipment (such as excavators).
  • the mechanical equipment performs a specific operation (such as swing braking, etc.)
  • the fluid in the hydraulic control system such as hydraulic oil, etc.
  • the Spilled fluid has high pressure energy.
  • the overflowing fluid will return to the fluid storage device (such as a fuel tank), so that the above-mentioned high-pressure energy cannot be effectively utilized.
  • the overflowing fluid flows back to the storage device. A large amount of heat is released and the heat causes the fluid temperature of the hydraulic control system to rise, resulting in the ineffective operation of the mechanical equipment.
  • the present application provides a hydraulic control system and mechanical equipment, which can solve the above technical problems.
  • a first aspect of the present application provides a hydraulic control system including a pump, a first device, a second device and a return control device.
  • the pump includes an output channel to output fluid.
  • the first device is connected to the output channel to perform work operations driven by fluid output from the pump.
  • the second device is connected to the output channel to perform work operations under the supply of fluid output by the pump.
  • a backflow control device is connected between the output channel and the first device. When the first device performs the first work operation, the first device discharges fluid, and the return control device is turned on to direct the fluid discharged from the first device to the output channel and to the second device.
  • the fluid discharged by the first device when performing the first work operation is delivered to the output channel of the pump for application to the second device, thereby reducing the amount of fluid supplied by the pump to the second device alone, thereby reducing the The work burden of the pump, that is, reducing the power consumption of the pump; in addition, the output channel of the pump itself has a high pressure, in the above process, the discharged fluid does not need to be depressurized or the depressurization is limited, that is, the first device discharges.
  • the fluid enters the output channel it does not release heat or emits less heat, so that the temperature of the fluid in the entire hydraulic control system is prevented from heating up, and the equipment of the hydraulic control system is prevented from malfunctioning.
  • the hydraulic control system may further include a control device that is signally connected to the backflow control device and the first device.
  • the control device detects that the first device is performing the first work operation, the control device controls the backflow control device to be turned on.
  • the control device detects that the first device is not performing the first work operation, the control device controls the backflow control device to be turned off.
  • the discharged fluid is guided to the output channel of the pump only when the first device performs the first work operation, and when the first device performs other work operations, the return control device is in a closed state and does not affect the first device. Work operations with fluids are affected.
  • the first device includes a first chamber, a second chamber and an actuator.
  • the first chamber is in communication with the backflow control device; the second chamber is in communication with the output passage; and the actuator is configured to perform the first work operation.
  • the first chamber and the second chamber drive the actuator to move through the pressure difference, and when the actuator performs the first operation, the pressure of the first chamber changes from less than that of the second chamber to greater than that of the second chamber. pressure.
  • the discharged fluid with high-pressure energy is returned to the output channel of the pump by means of a backflow control device to realize energy recovery.
  • the control device includes a controller, a first pressure sensor and/or a second pressure sensor, and the first pressure sensor and/or the second pressure sensor are signally connected to the controller.
  • the controller is in signal connection with the return flow control device.
  • the first pressure sensor is located in the first chamber.
  • the second pressure sensor is located in the second chamber.
  • the controller is configured to detect the pressure state of the first chamber according to the first pressure sensor, and/or detect the pressure state of the second chamber according to the second pressure sensor to determine whether the first device is in the first operation stage.
  • the first pressure sensor and the second pressure sensor are used to determine the operation state of the first device, and accordingly, the timing when the backflow control device needs to be turned on and off can be determined.
  • the hydraulic control system may further include a storage tank and a first relief valve.
  • the storage tank supplies fluid to the pump.
  • the first overflow valve is located on the first chamber, and the first overflow valve is used for allowing the fluid in the first chamber to overflow to the storage tank through the first overflow valve when the first device performs the first operation.
  • the controller controls the lower limit pressure of the first chamber to be the second preset pressure when the backflow control device is turned on, and the first relief valve
  • the preset opening pressure is greater than the second preset pressure, and the second preset pressure is greater than the first preset pressure.
  • the first overflow valve can function as a protection mechanism.
  • the hydraulic control system may further include a third pressure sensor, which is signally connected to the controller and configured to detect the pressure of the output channel.
  • the controller is configured to adjust the opening degree of the backflow control device when it is turned on according to the pressure of the output channel and the pressure of the first chamber; and/or, the controller is connected to the pump signal, and the controller is configured to be based on the pressure of the output channel and the first chamber.
  • the pressure in the chamber regulates the output power of the pump.
  • the pressure of the output channel can be kept within a safe range or a preset range; in addition, the pump requires the output of the fluid reduced, so that the output power of the pump can be reduced to reduce power consumption.
  • the backflow control device includes a valve and a first pipeline, one end of the first pipeline is connected to the first device, the other end of the first pipeline is connected to the output channel, and the valve is configured as The conduction of the first pipeline is controlled, and the control device controls the opening of the valve.
  • the backflow control device includes a second overflow valve and a second pipeline, one end of the second pipeline is connected to the second overflow valve, and the other end of the second pipeline is connected to the second overflow valve.
  • the output channel, the second relief valve is connected to the first device, the first device maintains the lower limit pressure of the overflow generated when the first operation is operated to be the first preset pressure, and the preset opening pressure of the second overflow valve is higher than the first preset pressure. Set pressure.
  • the hydraulic control system may further include a storage tank and a first relief valve.
  • the storage tank supplies fluid to the pump.
  • the first overflow valve is used for allowing the fluid in the first chamber to overflow to the storage tank through the first overflow valve when the first device performs the first operation.
  • the backflow control device includes the second relief valve, the preset opening pressure of the first relief valve is greater than the preset opening pressure of the second relief valve.
  • the first relief valve when the first work operation is performed, if the flow rate of the fluid derived from the second relief valve is limited, the first relief valve can function as a protection mechanism.
  • the first device includes one or a combination of a swing motor, a stick oil cylinder, a bucket oil cylinder, and a boom oil cylinder
  • the second device includes a swing motor, an arm oil cylinder , Bucket Cylinder, Boom Cylinder or another or a combination of the other.
  • the first device and the second device have the same structure, and both the first device and the second device include a swing motor, a stick cylinder, a bucket cylinder, and a boom.
  • both the first device and the second device include a swing motor, a stick cylinder, a bucket cylinder, and a boom.
  • a second aspect of the present application provides a mechanical device comprising the hydraulic control system of the first aspect.
  • a third aspect of the present application provides a hydraulic control method for a hydraulic control system, comprising: detecting whether a first device of the hydraulic control system performs a first work operation, wherein the first device and the pump of the hydraulic control system are in contact with each other.
  • the output channel is connected to perform work operation driven by the fluid output by the pump, and a backflow control device is provided between the first device and the output channel of the pump; when it is detected that the first device performs the first work operation when the backflow control device is controlled to open to direct the fluid discharged from the first device to the output passage of the pump and supply it to the second device.
  • the fluid discharged by the first device when performing the first work operation is delivered to the output channel of the pump to be applied to the second device, thereby reducing the amount of fluid supplied by the pump to the second device alone,
  • the workload of the pump is reduced, that is, the power consumption of the pump is reduced;
  • the output channel of the pump itself has a relatively high pressure, and in the above process, the discharged fluid does not need to be depressurized or the depressurization is limited, that is, the first When the fluid discharged from the device enters the output channel, it does not emit heat or emits less heat, so that the temperature of the fluid in the entire hydraulic control system is prevented from heating up, and the equipment of the hydraulic control system is prevented from malfunctioning.
  • the first device includes a first chamber, a second chamber and an actuator, the first chamber is communicated with the backflow control device, and the second chamber is communicated with the output channel,
  • the actuator is configured to perform the first work operation, and detecting whether the first device of the hydraulic control system performs the first work operation includes: detecting the pressure in the first chamber and/or the second chamber to obtain the first chamber and The state of the pressure of the second chamber, and when the pressure of the first chamber changes from less than the pressure of the second chamber to greater than the pressure of the second chamber, it is determined that the first device is in the first operation stage.
  • FIG. 1 is a schematic structural diagram of a hydraulic control system according to an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of another hydraulic control system provided by an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of still another hydraulic control system provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a control method of a hydraulic control system provided by an embodiment of the application.
  • Mechanical equipment with hydraulic control system needs to discharge fluid with high pressure energy when performing certain operations.
  • the slewing device of the hydraulic excavator needs to perform a slewing operation so as to have slewing kinetic energy.
  • the swing valve core in the hydraulic excavator (such as the swing reversing valve in the following embodiment) is closed, and most of the hydraulic oil used to drive the swing device to rotate is overflowed through the relief valve in the swing motor. After returning to the oil tank, the overflowing hydraulic oil has high-pressure energy caused by the rotational kinetic energy.
  • the valve port will be throttled.
  • the hot-pressed oil with high-pressure energy generates heat due to the release of pressure during the flow back to the oil tank, which leads to an increase in the fluid temperature of the hydraulic control system.
  • the operating efficiency of the slewing device even causes the slewing device to fail to achieve effective braking when it needs to stop the slewing action, and there is a risk of operation failure.
  • the hydraulic control system includes a pump, a first device, a second device, and a return control device.
  • the pump includes an output channel to output fluid.
  • the first device is connected to the output channel to perform work operations driven by fluid output from the pump.
  • the second device is connected to the output channel to perform work operations under the supply of fluid output by the pump.
  • a backflow control device is connected between the output channel and the first device. When the first device performs the first work operation, the first device discharges fluid, and the return control device is turned on to direct the fluid discharged from the first device to the output channel and to the second device.
  • the fluid discharged by the first device when performing the first work operation is delivered to the output channel of the pump to be applied to the second device, thereby reducing the amount of fluid supplied by the pump to the second device alone, thereby reducing the operation of the pump
  • the burden is to reduce the power consumption of the pump; in addition, the output channel of the pump itself has a relatively high pressure, in the above process, the discharged fluid does not need to be depressurized or the depressurization is limited, that is, the fluid discharged from the first device enters the The output channel does not emit heat or emits less heat, so as to prevent the temperature of the fluid in the entire hydraulic control system from heating up, and prevent the equipment of the hydraulic control system from operating poorly.
  • the hydraulic control system includes a first device 100 , a second device 200 , a pump 300 and a backflow control device 400 .
  • the pump 300 includes an output channel 310 to output fluid, eg, the pump 300 draws fluid from a storage tank 600 for output.
  • the first device 100 is connected to the output channel 310 to perform work operations driven by the fluid output from the pump 100 .
  • the second device 200 is connected with the output channel 310 to perform a work operation under the supply of the fluid output by the pump 100 .
  • the backflow control device 400 is connected between the output channel 310 and the first device 100 . When the first device 100 performs the first work operation, the first device 100 discharges fluid, and the backflow control device 400 is turned on to guide the fluid discharged from the first device 100 to the output channel 310 and supply it to the second device 200 .
  • the hydraulic control system may further include a control device in signal connection with the backflow control device and the first device.
  • the control device controls the backflow control device to be turned on.
  • the control device controls the backflow control device to be turned off.
  • the control device is used to detect whether the first device is in the stage of performing the first work operation, so as to control the working state of the backflow control device according to the detection result, so that the backflow control device can only discharge the fluid when the first device performs the first work operation.
  • the backflow control device is in a closed state without affecting the work operation of the first device using the fluid.
  • the hydraulic control system includes a control device 500 that is signally connected to the first device 100 to detect whether the first device 100 performs the first operation, and to control the flow of the backflow control device 400 accordingly.
  • the control device 500 detects the working state of the first device 100, so as to ensure that the first device 100 can perform the first working operation, by controlling the opening and closing of the backflow control device 400 to realize the extraction of the fluid, that is, The operation of the first device 100 is not affected while the fluid energy is recovered and utilized.
  • the types of the first device and the second device are not limited, provided that the following conditions are met: the first device can be driven by a fluid to perform an operation operation and perform a specific operation.
  • the operation requires the discharge of high pressure fluid, and the second device is required to perform work operations under the supply of fluid.
  • the hydraulic control system is applied to a hydraulic excavator
  • the first device and the second device can be selected as one or a combination of a swing motor, a stick cylinder, a bucket cylinder, and a boom cylinder.
  • the first device and the second device may be the same type of device or different types of devices.
  • the first device and the second device may be different types of devices
  • the first device includes a swing motor, a stick cylinder, a bucket cylinder, a boom cylinder, or one or a combination of some of them.
  • the two devices include the other of the swing motor, the stick cylinder, the bucket cylinder, the boom cylinder, or a combination of the others.
  • the first device and the second device may be devices of the same type, and the first device and the second device are one of a swing motor, a stick cylinder, a bucket cylinder, and a boom cylinder, Or a combined structure formed by at least two of these structures.
  • the operation operation of the first device may include actions such as rotating, sliding, extending, swinging, or lifting (or lifting), or performing other types of actions. Actions.
  • the working principle of the structure of the hydraulic control system will be described in detail by taking the first device as a swing motor and the second device as an arm cylinder.
  • the work operation of the first device is rotation, and the first work operation is braking during the rotation process.
  • the first device includes a first chamber, a second chamber and an actuator.
  • the first chamber is in communication with the backflow control device; the second chamber is in communication with the output passage; and the actuator is configured to perform the first work operation.
  • the first chamber and the second chamber drive the actuator to move through the pressure difference, and when the actuator performs the first operation, the pressure of the first chamber changes from less than that of the second chamber to greater than that of the second chamber. pressure.
  • the first device Take the first device as a rotary motor as an example.
  • a pressure differential is created between the first and second chambers by controlling the flow of fluid in the first and second chambers.
  • the actuator moves (rotates) from the second chamber to the first chamber under the action of the pressure difference, and when the first operation is performed (for example, slewing brake), the actuator continues to rotate and compress the space of the first chamber under the action of inertia, so that the pressure of the first chamber increases and the pressure of the second chamber decreases, and the pressure of the first chamber is too large fluid needs to be drained.
  • the discharged fluid with high-pressure energy is returned to the output channel of the pump by the return control device to realize energy recovery.
  • the swing motor 100 (which may also be a stick cylinder, bucket cylinder, boom cylinder, etc.) includes a chamber A, a chamber B and an actuator (not shown).
  • Chamber A and chamber B are connected to the output channel 310 of the pump 300 .
  • the actuator can be connected to or integrally formed with chamber A and chamber B, so that in the event of a pressure difference between chamber A and chamber B, the actuator can move (rotate) under the action of the pressure difference .
  • the first chamber is one of chamber A and chamber B
  • the second chamber is the other of chamber A and chamber B.
  • the actuator turns from chamber A to chamber B and then brakes.
  • the first chamber is chamber B and the second chamber is chamber A.
  • the actuator turns from chamber B to chamber A and then brakes, during which the first chamber is chamber A and the second chamber is chamber B.
  • the hydraulic control system may include a switch-back valve that communicates with the first chamber, the second chamber and the output passage of the pump, and the switch-back valve communicates with the output passage of the pump.
  • the directional valve is configured with a directional switch such that one of chamber A and chamber B acts as a first chamber and the other of chamber A and chamber B acts as a second chamber, eg the first chamber is actually fluid Outlet, the second chamber is actually the fluid inlet.
  • the reversing valve 110 communicates with chamber A, chamber B, and the output passage 310 of the pump 300 .
  • Direction switching switching the flow direction of the fluid
  • the back switch valve 110 allows chamber B to act as a fluid inlet and chamber A as a fluid outlet, or chamber A as a fluid inlet and chamber B as a fluid outlet. In this way, by controlling the flow difference between the fluid inlet and the fluid outlet, the pressure difference between the chamber A and the chamber B can be caused.
  • the working principle of the first device in the hydraulic control system will be described in detail by taking a swing process of the swing motor as an example.
  • the chamber A acts as the first chamber
  • the chamber B acts as the second chamber.
  • the fluid is input into chamber B (the second chamber) through the output channel 310 of the pump 300 to increase the fluid pressure in the chamber B, so that the fluid pressure in the chamber B is much greater than that in the chamber A (
  • the fluid pressure in the first chamber) causes the actuator to rotate from chamber B to chamber A.
  • the actuator will continue to rotate toward chamber A, so that the When the pressure increases, the pressure in chamber B decreases.
  • the rotary brake (actuator stops moving)
  • the fluid pressure in chamber A changes to be much greater than the fluid pressure in chamber B.
  • the pressure in chamber A is too high and the fluid needs to be discharged.
  • the actuator in the slewing motor may be a slewing platform.
  • operator stations can be set up on the platform.
  • a mechanism such as a control device (controller) may be provided in the operator station.
  • an input device including a steering wheel, a handle, a push-pull device, a switch, a pedal, etc. may also be provided in the operator station, and the input device is used to send an instruction to the control device.
  • the control device includes a controller, a first pressure sensor and/or a second pressure sensor, and the first pressure sensor and/or the second pressure sensor are signally connected to the controller .
  • the controller is in signal connection with the return flow control device.
  • the first pressure sensor is located in the first chamber.
  • the second pressure sensor is located in the second chamber.
  • the controller is configured to detect the pressure state of the first chamber and/or the second chamber according to the first pressure sensor and/or the second pressure sensor to determine whether the first device is in the first operation stage.
  • the motion state of the first device (actuator) is determined by the pressure difference between the first chamber and the second chamber.
  • the first chamber can be detected by the first pressure sensor and the second pressure sensor and the pressure of the second chamber, so as to calculate the pressure difference between the first chamber and the second chamber, to judge the operation state of the first device, and to judge when the backflow control device needs to be turned on and off. For example, after the pressure difference reaches a certain value, the first device can perform the first operation. At this time, the pressure of the first chamber is the lower limit pressure at which the first device can perform the first operation. Correspondingly, the pressure difference If it is smaller than the above-mentioned value, the first device cannot perform the first work operation.
  • the control device 500 includes a controller 510 , a first pressure sensor 521 and a second pressure sensor 522 .
  • the first pressure sensor 521 and the second pressure sensor 522 are signally connected to the controller 510 .
  • the first pressure sensor 521 is located in the first chamber (chamber A in FIG. 1 ), and the second pressure sensor 522 is located in the second chamber (chamber B in FIG. 1 ).
  • the functions and types of the first pressure sensor 521 and the second pressure sensor 522 are the same. In this way, the identities of the first pressure sensor 521 and the second pressure sensor 522 can be interchanged. That is, when performing the turning process as shown in FIG.
  • the signs 521 and 522 represent the first pressure sensor and the second pressure sensor, respectively; if the turning process opposite to the turning process shown in FIG. 1 is performed, the cavity The chamber A is used as the second chamber, and the chamber B is used as the first chamber, then the mark 521 and the mark 522 represent the second pressure sensor and the first pressure sensor, respectively.
  • the control device 500 includes a first pressure sensor 521 and a second pressure sensor 522, so as to detect the chamber A and the chamber B (the first chamber and the second pressure sensor 522), respectively.
  • the pressure in the second chamber to improve the detection accuracy, so as to accurately determine the working state of the first device (for example, whether it is in the stage of executing the first working operation).
  • the laws of pressure changes in chamber A and chamber B are synchronized, and the pressure change in one of chamber A and chamber B can be Knowing the pressure change of the other one of chamber A and chamber B, in these embodiments, the control device can choose to set only the first pressure sensor (ie, not set the second pressure sensor) or only set the first pressure sensor. Two pressure sensors (ie, no first pressure sensor is provided), thereby simplifying the structure of the control device and reducing the cost.
  • the controller may include a central processing unit (CPU), which may be a single-core or multi-core processor or multiple processors for parallel processing.
  • the controller also includes memory (eg, random access memory, read only memory, flash memory), a communication interface (eg, network adapter) for and one or more other processing devices, and peripheral devices such as timers and the like.
  • the memory, interfaces and peripherals are configured to be electrically connected to the central processing unit through a communication bus (solid lines) such as a motherboard.
  • a controller may include one or more of an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a computer system, and a logic circuit capable of allowing the controller to operate in accordance with the present application.
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the hydraulic control system may further include a storage tank and a first relief valve.
  • the storage tank supplies fluid to the pump.
  • the first overflow valve is located on the first chamber, and the first overflow valve is used for allowing the fluid in the first chamber to overflow to the storage tank through the first overflow valve when the first device performs the first operation.
  • the first device maintains the lower limit pressure of the first chamber during the first operation (that is, if it is lower than the lower limit pressure, the first operation cannot be performed) as the first preset pressure, and the controller controls the return control device to turn on the first pressure.
  • the lower limit pressure of the chamber is the second preset pressure
  • the preset opening pressure of the first relief valve is greater than the second preset pressure
  • the second preset pressure is greater than the first preset pressure.
  • the first relief valve can function as a protection mechanism, that is, when the first operation is performed, if the backflow control device is closed or the flow rate of the fluid derived from the backflow control device is limited, the pressure of the first chamber is still too high , the fluid in the first chamber can be automatically overflowed through the first overflow valve, thereby preventing the pressure of the first chamber from exceeding the safety pressure (for example, the preset opening pressure of the first overflow valve) range, thereby affecting the first device to protect.
  • the safety pressure for example, the preset opening pressure of the first overflow valve
  • the fluid in the chamber A overflows through the first overflow valve and returns to the storage tank 600 .
  • the fluid may be hydraulic oil and the storage tank 600 may be an oil tank.
  • a first overflow valve can be set in both chamber A and chamber B, one of chamber A or chamber B is used as the first chamber and the pressure of the first chamber reaches the first overflow valve The first relief valve in the chamber A or the chamber B serving as the first chamber will be opened only when the preset opening pressure is .
  • the hydraulic control system may further include a third pressure sensor, which is signally connected to the controller and configured to detect the pressure of the output channel.
  • the controller is configured to adjust the opening degree of the backflow control device when it is turned on according to the pressure of the output channel and the pressure of the first chamber; and/or, the controller is connected to the pump signal, and the controller is configured to be based on the pressure of the output channel and the first chamber.
  • the pressure in the chamber regulates the output power of the pump.
  • the third pressure sensor can detect the pressure of the output channel
  • the pressure of the output channel can be kept within a safe range or a preset range; in addition, after the part of the fluid is led to the output channel, the pressure of the output channel is maintained unchanged (or not changed much) In this case, the demand of the pump for the output of the fluid is actually reduced, so that the output power of the pump can be reduced to reduce the power consumption.
  • the fluid to be supplied by the second device 200 has a first flow rate (or is set to a first pressure according to the pressure), and when the backflow control device 400 is turned on, it is assumed that the backflow control device 400 is passed through.
  • the fluid led from the first device 100 to the output channel 310 of the pump 300 has a second flow rate, then the flow rate of the fluid pumped by the pump 300 from the storage tank 600 to supply the second device 200 is the first flow rate minus the second flow rate.
  • the output power (not the maximum output power) of the pump 300 is allowed to decrease, thereby reducing the power consumption of the pump 300 .
  • the controller 510 can use the third pressure sensor 700 to monitor the pressure of the output channel 310 of the pump 300 in real time, so as to control the output power of the pump 300 and the opening of the backflow control device 400 (equivalent to regulating the output from the first device 100 ).
  • the flow rate of the fluid directed to the output channel 310) is comprehensively regulated.
  • the opening degree of the backflow control device 400 may be increased to further reduce the output power of the pump 300 .
  • the backflow control device includes a valve and a first pipeline, one end of the first pipeline is connected to the first device, the other end of the first pipeline is connected to the output channel, and the valve configuration
  • the control device controls the opening degree of the valve.
  • the switch of the valve included in the reflux device is regulated by the control device (controller).
  • the intervention factor of this selection can be manual intervention.
  • the backflow control device 400 includes a valve and a first conduit 430 .
  • the valve includes a control valve 410 and an on-off valve 420 .
  • the on-off valve 420 is located on the first pipeline 430 to control whether the first pipeline 430 is conducting or not.
  • the control valve 410 is signally connected to the controller 510 and controls the opening of the on-off valve 420 .
  • the on-off valve 420 may be a sequence valve, a hydraulically controlled check valve, or the like.
  • the backflow control device includes a second relief valve and a second pipe, one end of the second pipe is connected to the second relief valve, and the other end of the second pipe is connected to the second relief valve.
  • the second relief valve Connected to the output channel, the second relief valve is connected to the first device, the first device maintains the lower limit pressure of the overflow generated during the first operation to be the first preset pressure, and the preset opening pressure of the second overflow valve is higher than the first pressure. a preset pressure.
  • the fluid can be automatically discharged to the output channel of the pump through the second relief valve
  • the second relief valve is automatically closed so that the pressure of the fluid in the first device (for example, the fluid pressure in the first chamber) is still satisfied
  • the pressure is greater than the first preset pressure, so that the first device can still maintain the first operation.
  • the backflow control device includes a second relief valve (not shown) and a second conduit 440 .
  • the second relief valve may be located at the end of the second conduit 440 .
  • chamber A and chamber B are respectively provided with second overflow valves.
  • the hydraulic control system may further include a storage tank and a first relief valve.
  • the storage tank supplies fluid to the pump.
  • the first overflow valve is used for allowing the fluid in the first chamber to overflow to the storage tank through the first overflow valve when the first device performs the first operation.
  • the preset opening pressure of the first relief valve is greater than the preset opening pressure of the second relief valve.
  • the first relief valve can function as a protection mechanism, that is, when the first operation is performed, if the flow rate of the fluid exported by the second relief valve is limited, the fluid that needs to be exported in the first device (for example, the first The pressure of the fluid in the chamber) is still too large, and part of the fluid can also be automatically overflowed through the first relief valve, thereby preventing the pressure of the fluid that needs to be exported in the first device from exceeding the safety pressure (for example, the first relief valve). Preset opening pressure) range, so as to protect the first device.
  • the second device 200 when the first device 100 is a swing motor, the second device 200 may be an arm cylinder.
  • the stick oil cylinder is connected to the output channel 310 of the pump 300 through the stick shaker reversing valve 210 .
  • At least one embodiment of the present application provides a mechanical device including the hydraulic control system of the foregoing embodiments.
  • the mechanical equipment may be a hydraulic excavator, a front shovel, a backhoe, a dragline or the like.
  • At least one embodiment of the present application provides a hydraulic control method, the hydraulic control method includes: detecting whether a first device of a hydraulic control system performs a first work operation, wherein the first device and the pump of the hydraulic control system are in contact with each other.
  • the output channel is connected to perform work operation driven by the fluid output by the pump, and a backflow control device is provided between the first device and the output channel of the pump; when it is detected that the first device performs the first work operation when the backflow control device is controlled to open to direct the fluid discharged from the first device to the output passage of the pump and supply it to the second device.
  • the fluid discharged by the first device when performing the first work operation is delivered to the output channel of the pump to be applied to the second device, thereby reducing the amount of fluid supplied by the pump to the second device alone, thereby reducing the
  • the workload of the small pump is to reduce the power consumption of the pump; in addition, the output channel of the pump itself has a relatively high pressure.
  • the fluid enters the output channel it does not emit heat or emits less heat, thereby avoiding the temperature rise of the fluid in the entire hydraulic control system, and preventing the equipment of the hydraulic control system from malfunctioning.
  • the process from the beginning to the end of the execution of a hydraulic control method of the hydraulic control system may include the following steps S410 to S450 .
  • step S410 at the start of the operation, it is judged whether it is necessary to use the backflow control device in the operation according to needs, and in the case of deciding to use it, the energy recovery function of the hydraulic control system is turned on. Correspondingly, if it is not necessary to use the return flow in the operation control device, the energy recovery function of the hydraulic control system can be turned off.
  • the controller mentioned in the foregoing embodiments can be used to control the backflow control device to execute the application program shown in FIG. 4 , that is, to execute the following steps S420 to S450 , wherein step S450 is the end stage of the entire hydraulic control method , which will not be repeated below.
  • step S420 when it is decided to use the backflow control device, it is detected whether the first device executes the first work operation, that is, whether to execute step S430 or step S440 described below is selected.
  • step S430 if it is detected that the first device is in the stage of performing the first work operation, the backflow control device is controlled to be turned on.
  • step S440 if it is detected that the first device is not in the stage of performing the first operation, the backflow control device is controlled to be turned off, so that the first device still operates in the original state (the state when the backflow control device is not provided).
  • the detection method refer to the control device mentioned in the foregoing embodiment, and the control device detects the working state of the first device by using the first pressure sensor and the second pressure sensor.
  • the first device in a hydraulic control system, includes a first chamber, a second chamber and an actuator, the first chamber communicates with the backflow control device, the second chamber communicates with the output channel, and the actuator is configured to execute the first chamber.
  • detecting whether the first device of the hydraulic control system performs the first work operation includes: detecting the pressure in the first chamber and/or the second chamber, so as to obtain the pressure of the first chamber and the second chamber. The pressure state, and when the pressure of the first chamber changes from less than the pressure of the second chamber to greater than the pressure of the second chamber, it is determined that the first device is in the first operation stage.
  • the structure of the hydraulic control system may refer to the relevant descriptions in the foregoing embodiments (for example, the embodiments shown in FIGS. 1 to 2 ), which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

一种液压控制系统和机械设备,该液压控制系统包括泵(300)、第一装置(100)、第二装置(200)和回流控制装置(400)。泵(300)包括输出通道(310)以输出流体,第一装置(100)与输出通道(310)连接以在泵(300)输出的流体驱动下执行作业操作,第二装置(200)与输出通道(310)连接以在泵(300)输出的流体的供给下执行作业操作。回流控制装置(400)连接在输出通道(310)和第一装置(100)之间。在第一装置(100)执行第一作业操作时,第一装置(100)排出流体,并且回流控制装置(400)开启以将第一装置(100)排出的流体引导至输出通道(310)并供给至第二装置(200)。该液压控制系统可以减小泵的作业负担,降低泵的功耗,还可以避免整个液压控制系统的流体温度升温,避免该液压控制系统的设备出现作业不良。

Description

液压控制系统和机械设备
本申请要求于2020年12月01日递交的中国专利申请第202011387538.4号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本申请涉及工程机械技术领域,具体涉及一种液压控制系统和机械设备。
背景技术
目前液压控制系统广泛应用于机械设备(例如挖掘机)中,在机械设备执行特定操作(例如回转制动等)时,液压控制系统中的流体(例如液压油等)会发生溢流,并且该溢出的流体具有高压能量。
对于当前的液压控制系统,该溢流的流体会返回流体储存装置(例如油箱)中而导致上述的高压能量不能有效利用,此外,该溢出的流体在流回储存装置的过程中,因为压强的释放而产生大量热量,该热量造成液压控制系统的流体温度升高,导致机械设备无法有效作业。
发明内容
有鉴于此,本申请提供一种液压控制系统和机械设备,可以解决上述技术问题。
本申请的第一方面提供了一种液压控制系统,该液压控制系统包括泵、第一装置、第二装置和回流控制装置。泵包括输出通道以输出流体。第一装置与输出通道连接以在泵输出的流体驱动下执行作业操作。第二装置与输出通道连接以在泵输出的流体的供给下执行作业操作。回流控制装置连接在输出通道和第一装置之间。在第一装置执行第一作业操作时,第一装置排出流体,并且回流控制装置开启以将第一装置排出的流体引导至输出通道并供给至第二装置。
在该方案中,将第一装置在执行第一作业操作时排出的流体输送至泵的输出通道以应用至第二装置,从而减小泵单独向第二号装置供应流体的量,从而减小泵的作业负担,即,降低泵的功耗;另外,泵的输出通道本身具有较高的压强,在上述过程中,排出的流体不需要降压或者降压有限,即,第一装置排出的流体在进入输出通道时不会放热或者放热较少,避免整个液压控制系统的流体温度升温,避免该液压控制系统的设备出现作业不良。
在本申请第一方面的一种可能的实现方式中,液压控制系统还可以包括与回流控制 装置和第一装置信号连接的控制装置。在控制装置检测第一装置处于执行第一作业操作时,控制装置控制回流控制装置开启。在控制装置检测第一装置未处于执行第一作业操作时,控制装置控制回流控制装置关闭。
在该方案中,只有在第一装置执行第一作业操作时将排出的流体引导至泵的输出通道,在第一装置执行其它作业操作时,回流控制装置处于关闭状态而不会对第一装置利用流体进行的作业操作造成影响。
在本申请第一方面的一种可能的实现方式中,第一装置包括第一腔室、第二腔室和执行机构。第一腔室与回流控制装置连通;第二腔室与输出通道连通;执行机构配置为可执行第一作业操作。第一腔室和第二腔室通过压强差异驱动执行机构运动,且在执行机构执行第一作业操作时,第一腔室的压强由小于第二腔室的压强转变为大于第二腔室的压强。
在该方案中,利用回流控制装置将该排出的具有高压能量的流体回流至泵的输出通道以实现能量回收。
在本申请第一方面的一种可能的实现方式中,控制装置包括控制器、第一压力传感器和/或第二压力传感器,第一压力传感器和/或第二压力传感器与控制器信号连接。控制器与回流控制装置信号连接。第一压力传感器位于第一腔室中。第二压力传感器位于第二腔室中。控制器配置为根据第一压力传感器检测第一腔室的压强状态,和/或根据第二压力传感器检测第二腔室的压强状态以判断第一装置是否处于执行第一作业操作阶段。
在该方案中,利用第一压力传感器和第二压力传感器判断第一装置的作业操作状态,据此可以判断回流控制装置需要开启和关闭的时机。
在本申请第一方面的一种可能的实现方式中,液压控制系统还可以包括储存罐和第一溢流阀。储存罐向泵供给流体。第一溢流阀位于第一腔室上,第一溢流阀用于在第一装置执行第一作业操作时使得第一腔室的流体可通过第一溢流阀溢出至储存罐。第一装置维持第一作业操作时第一腔室的下限压强为第一预设压强,控制器控制回流控制装置开启时第一腔室的下限压强为第二预设压强,第一溢流阀的预设开启压强大于第二预设压强,第二预设压强大于第一预设压强。
在该方案中,如果回流控制装置关闭或者回流控制装置导出的流体的流量有限,第一溢流阀可以起到保护机制的作用。
在本申请第一方面的一种可能的实现方式中,液压控制系统还可以包括第三压力传感器,第三压力传感器与控制器信号连接并配置为检测输出通道的压强。控制器配置为 根据输出通道的压强和第一腔室的压强调节回流控制装置开启时的开度;和/或,控制器与泵信号连接,控制器配置为根据输出通道的压强和第一腔室的压强调节泵的输出功率。
在该方案中,第一装置在执行第一作业操作时,通过调控回流控制装置的开度可以使得输出通道的压强在安全范围或者预设范围之内;此外,泵对流体的输出量的需要降低,从而可以减小泵的输出功率以降低功耗。
在本申请第一方面的一种可能的实现方式中,回流控制装置包括阀和第一管道,第一管道的一端连接至第一装置,第一管道的另一端连接至输出通道,阀配置为控制第一管道的导通,控制装置控制阀的开度。
在该方案中,可以根据实际工艺需要选择是否需要启用回流控制装置。
在本申请第一方面的一种可能的实现方式中,回流控制装置包括第二溢流阀和第二管道,第二管道的一端连接至第二溢流阀,第二管道的另一端连接至输出通道,第二溢流阀连接至第一装置,第一装置维持第一作业操作时产生溢流的下限压强为第一预设压强,第二溢流阀的预设开启压强大于第一预设压强。
在该方案中,在第一装置执行第一作业操作时,不需要控制器等进行调控,可以简化液压控制系统的结构设计,并简化液压控制系统的操作方式,降低成本。
在本申请第一方面的一种可能的实现方式中,液压控制系统还可以包括储存罐和第一溢流阀。储存罐向泵供给流体。第一溢流阀用于在第一装置执行第一作业操作时,使得第一腔室的流体可通过第一溢流阀溢出至储存罐。在回流控制装置包括第二溢流阀的情况下,第一溢流阀的预设开启压强大于第二溢流阀的预设开启压强。
在该方案中,在执行第一作业操作时,如果第二溢流阀导出的流体的流量有限,第一溢流阀可以起到保护机制的作用。
在本申请第一方面的一种可能的实现方式中,第一装置包括回转马达、斗杆油缸、铲斗油缸、动臂油缸之一或一些的组合,第二装置包括回转马达、斗杆油缸、铲斗油缸、动臂油缸之另一或者另一些的组合。
在本申请第一方面的另一种可能的实现方式中,第一装置和第二装置为相同的结构,第一装置和第二装置都包括回转马达、斗杆油缸、铲斗油缸、动臂油缸之一或至少两个的组合。
本申请的第二方面提供了一种机械设备,该机械设备包括如第一方面所述的液压控制系统。
本申请的第三方面提供了一种液压控制系统的液压控制方法,包括:检测液压控制系统的第一装置是否执行第一作业操作,其中所述第一装置与所述液压控制系统的泵的 输出通道连接以在所述泵输出的流体驱动下执行作业操作,所述第一装置与所述泵的输出通道之间设置有回流控制装置;在检测到所述第一装置执行第一作业操作时,控制所述回流控制装置开启以将所述第一装置排出的流体引导至所述泵的输出通道并供给至所述第二装置。
在该方案的检测方法中,将第一装置在执行第一作业操作时排出的流体输送至泵的输出通道以应用至第二装置,从而减小泵单独向第二号装置供应流体的量,从而减小泵的作业负担,即,降低泵的功耗;另外,泵的输出通道本身具有较高的压强,在上述过程中,排出的流体不需要降压或者降压有限,即,第一装置排出的流体在进入输出通道时不会放热或者放热较少,避免整个液压控制系统的流体温度升温,避免该液压控制系统的设备出现作业不良。
在本申请的第三方面提供的液压控制方法中,第一装置包括第一腔室、第二腔室和执行机构,第一腔室与回流控制装置连通,第二腔室与输出通道连通,执行机构配置为可执行第一作业操作,检测液压控制系统的第一装置是否执行第一作业操作包括:检测第一腔室和/或第二腔室中的压强,以获得第一腔室和第二腔室的压强状态,以及在第一腔室的压强由小于第二腔室的压强转变为大于第二腔室的压强的情况下,判断第一装置处于执行第一作业操作阶段。
附图说明
图1为本申请一实施例提供的一种液压控制系统的结构示意图;
图2为本申请一实施例提供的另一种液压控制系统的结构示意图;
图3为本申请一实施例提供的再一种液压控制系统的结构示意图;以及
图4为本申请一实施例提供的一种液压控制系统的控制方法的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
具有液压控制系统的机械设备在执行特定操作时,需要排出有高压能量的流体。以液压挖掘机为例,液压挖掘机的回转装置需要执行回转操作从而具有回转动能。在回转动作停止时,液压挖掘机中的回转阀芯(例如下述实施例中的回转换向阀)关闭,用于驱动回转装置 转动的大部分液压油通过回转马达中的溢流阀溢流后回油箱,而该溢流出的液压油具有因回转动能造成的高压能量,如果这些具有高压能量的液压油直接返回油箱以重新利用,会造成该部分高压能量浪费,即导致阀口节流损失;此外,该具有高压能量的热压油在流回油箱的过程中因压强释放而产生热量从而导致液压控制系统的流体温度升高,液压油温度升高之后粘度急剧降低,从而降低回转装置的运行效率,甚至导致回转装置在需要停止回转动作时无法实现有效制动,存在作业失效的风险。
有鉴于此,本申请至少一个实施例提供一种液压控制系统,可以解决上述技术问题。该液压控制系统包括泵、第一装置、第二装置和回流控制装置。泵包括输出通道以输出流体。第一装置与输出通道连接以在泵输出的流体驱动下执行作业操作。第二装置与输出通道连接以在泵输出的流体的供给下执行作业操作。回流控制装置连接在输出通道和第一装置之间。在第一装置执行第一作业操作时,第一装置排出流体,并且回流控制装置开启以将第一装置排出的流体引导至输出通道并供给至第二装置。如此,将第一装置在执行第一作业操作时排出的流体输送至泵的输出通道以应用至第二装置,从而减小泵单独向第二号装置供应流体的量,从而减小泵的作业负担,即,降低泵的功耗;另外,泵的输出通道本身具有较高的压强,在上述过程中,排出的流体不需要降压或者降压有限,即,第一装置排出的流体在进入输出通道时不会放热或者放热较少,避免整个液压控制系统的流体温度升温,避免该液压控制系统的设备出现作业不良。
下面,结合附图对根据本申请至少一个实施例中的液压控制系统的结构进行详细地说明。
如图1所示,本申请至少一个实施例提供的液压控制系统包括第一装置100、第二装置200、泵300和回流控制装置400。泵300包括输出通道310以输出流体,例如泵300从储存罐600中抽取流体以输出。第一装置100与输出通道310连接以在泵100输出的流体驱动下执行作业操作。第二装置200与输出通道310连接以在泵100输出的流体的供给下执行作业操作。回流控制装置400连接在输出通道310和第一装置100之间。在第一装置100执行第一作业操作时,第一装置100排出流体,并且回流控制装置400开启,以将第一装置100排出的流体引导至输出通道310并供给至第二装置200。
例如,本申请的一些实施例提供液压控制系统还可以包括与回流控制装置和第一装置信号连接的控制装置。在检测到第一装置处于执行第一作业操作时,控制装置控制回流控制装置开启。在检测到第一装置处于未执行第一作业操作的阶段时,控制装置控制回流控制装置关闭。如此,利用控制装置检测第一装置是否处于执行第一作业操作阶段,以根据检测结果控制回流控制装置的工作状态,可以使得回流控制装置只有在第一装置执行第一作业操作时将排出的流体引导至泵的输出通道,在第一装置执行其它作业操作时,回流控制装置处于关 闭状态而不会对第一装置利用流体进行的作业操作造成影响。
示例性的,如图1所示,液压控制系统包括控制装置500,控制装置500与第一装置100信号连接以检测第一装置100是否执行第一作业操作,并据此控制回流控制装置400的开启和关闭。控制装置500通过对第一装置100的作业状态进行检测,从而在保证第一装置100可以执行第一作业操作的情况下,通过控制回流控制装置400的开启和关闭实现对流体的导出,即,在回收利用流体能量的同时不会影响第一装置100的作业操作。
需要说明的是,在本申请的实施例中,在满足下述条件下,对第一装置和第二装置的类型不做限制:第一装置可以通过流体驱动以执行作业操作并在执行特定作业操作时需要排出高压流体,以及第二装置需要在流体的供给下执行作业操作。
例如,在本申请的实施例中,液压控制系统应用于液压挖掘机,第一装置和第二装置可以选择为回转马达、斗杆油缸、铲斗油缸、动臂油缸之一或者组合。例如,第一装置和第二装置可以为相同类型或者不同类型的装置。
例如,在本申请一些实施例中,第一装置和第二装置可以为不同类型的装置,第一装置包括回转马达、斗杆油缸、铲斗油缸、动臂油缸之一或一些的组合,第二装置包括回转马达、斗杆油缸、铲斗油缸、动臂油缸之另一或者另一些的组合。
例如,在本申请另一些实施例中,第一装置和第二装置可以为相同类型的装置,第一装置和第二装置为回转马达、斗杆油缸、铲斗油缸、动臂油缸之一,或者该些结构中的至少两个形成的组合结构。
需要说明的是,在本公开的实施例中,根据第一装置的不同类型,第一装置的作业操作可以包括转动、滑动、延伸、摆动或提升(或举升)等动作,或者执行其它类型的动作。
下面,以第一装置为回转马达且第二装置为斗杆油缸为例,对根据本申请至少一个实施例中的液压控制系统的结构的工作原理进行详细的说明,在该些实施例中,第一装置的作业操作为转动,第一作业操作为转动进程中的制动。
例如,在本申请的一些实施例提供的液压控制系统中,第一装置包括第一腔室、第二腔室和执行机构。第一腔室与回流控制装置连通;第二腔室与输出通道连通;执行机构配置为可执行第一作业操作。第一腔室和第二腔室通过压强差异驱动执行机构运动,且在执行机构执行第一作业操作时,第一腔室的压强由小于第二腔室的压强转变为大于第二腔室的压强。以第一装置为回转马达为例。通过控制流体在第一腔室和第二腔室中的流量而使得第一腔室和第二腔室之间形成压差。在第一腔室的压强小于第二腔室的压强的情况下,执行机构在压差的推动作用下从第二腔室向第一腔室移动(转动),在执行第一作业操作时(例如回转制动),执行机构在惯性作用下继续转动并压缩第一腔室的空间,从而使得第一腔室的压强增 加而第二腔室的压强减小,第一腔室的压强过大时需要排出流体。在此情况下,利用回流控制装置将该排出的具有高压能量的流体回流至泵的输出通道以实现能量回收。
示例性的,如图1所示,回转马达100(也可以为斗杆油缸、铲斗油缸、动臂油缸等)包括腔室A、腔室B和执行机构(未示出)。腔室A和腔室B与泵300的输出通道310连接。例如,执行机构可以与腔室A和腔室B连接或者一体成型,如此,在腔室A和腔室B中出现压差的情况下,执行机构可以在该压差的作用下移动(转动)。
需要说明的是,在本申请的实施例中,第一腔室为腔室A和腔室B之一,第二腔室为腔室A和腔室B之另一。例如,在一个回转进程中,执行机构从腔室A转向腔室B然后制动,在该制动过程中,第一腔室为腔室B,第二腔室为腔室A。相反地,在另一个回转进程中,执行机构从腔室B转向腔室A然后制动,在该制动过程中,第一腔室为腔室A,第二腔室为腔室B。
例如,在本申请至少一个实施例中,如图1所示,液压控制系统可以包括回转换向阀,回转换向阀与第一腔室、第二腔室以及泵的输出通道连通,回转换向阀配置为具有方向切换以使得腔室A和腔室B之一充当第一腔室,并使得腔室A和腔室B之另一充当第二腔室,例如第一腔室实际为流体出口,第二腔室实际为流体入口。例如,回转换向阀110与腔室A、腔室B以及泵300的输出通道310连通。通过回转换向阀110的方向切换(切换流体的流向)使得腔室B充当流体进口、腔室A充当流体出口,或者使得腔室A充当流体进口、腔室B充当流体出口。如此,通过控制流体进口和流体出口的流量差异,可以使得腔室A和腔室B出现压差。
下面,以回转马达的一个回转进程为例,对根据本申请至少一个实施例中的液压控制系统中的第一装置的工作原理进行详细地说明。在该回转进程中,腔室A作为第一腔室,腔室B作为第二腔室。
如图1所示,通过泵300的输出通道310向腔室B(第二腔室)输入流体以增加腔室B中的流体压强,从而使得腔室B中的流体压强远大于腔室A(第一腔室)中的流体压强,腔室A和腔室B之间的压强差使得执行机构从腔室B向腔室A转动。在回转制动时,停止向腔室A和腔室B输送流体(例如回转换向阀110关闭),由于执行机构的惯性运动,执行机构会继续向腔室A转动,从而使得腔室A的压强增加而使得腔室B的压强减小,在回转制动(执行机构停止运动)时,腔室A中的流体压强转变为远大于腔室B中的流体压强。在回转制动时,腔室A的压强过大而需要将流体排出。
例如,在本申请至少一个实施例中,回转马达中的执行机构可以为回转平台。例如,该平台上可以设置操作员站。例如,该操作员站中可以设置控制装置(控制器)等机构。例如, 该操作员站中还可以设置包括方向盘、把手、推拉装置、开关、踏板等的输入装置,该输入装置用于向控制装置发送指令。
例如,在本申请的一些实施例提供的液压控制系统中,控制装置包括控制器、第一压力传感器和/或第二压力传感器,第一压力传感器和/或第二压力传感器与控制器信号连接。控制器与回流控制装置信号连接。第一压力传感器位于第一腔室中。第二压力传感器位于第二腔室中。控制器配置为根据第一压力传感器和/或第二压力传感器检测第一腔室和/或第二腔室的压强状态以判断第一装置是否处于执行第一作业操作阶段。第一装置(执行机构)的运动状态由第一腔室和第二腔室之间的压差决定,在该些实施例中,利用第一压力传感器和第二压力传感器可以检测第一腔室和第二腔室的压强,从而计算出第一腔室和第二腔室的压差,以判断第一装置的作业操作状态,据此可以判断回流控制装置需要开启和关闭的时机。例如,在该压差达到一定数值后,第一装置才可以执行第一作业操作,此时第一腔室的压强为第一装置可以执行第一作业操作的下限压强,相应地,该压差如果小于上述的数值,第一装置不能执行第一作业操作。
示例性的,如图1所示,控制装置500包括控制器510、第一压力传感器521和第二压力传感器522。第一压力传感器521和第二压力传感器522与控制器510信号连接。第一压力传感器521位于第一腔室(图1中为腔室A)中,第二压力传感器522位于第二腔室(图1中为腔室B)中。需要说明的是,在本申请的实施例中,第一压力传感器521和第二压力传感器522的功能一致、类型一致,如此,第一压力传感器521和第二压力传感器522的身份可以互换,即,在执行如图1所示的回转进程时,标识521和标识522分别代表第一压力传感器和第二压力传感器;如果在执行与如图1所示的回转进程相反的回转进程时,腔室A作为第二腔室,腔室B作为第一腔室,那么标识521和标识522分别代表第二压力传感器和第一压力传感器。
例如,在本申请的一些实施例中,如图1所示,控制装置500包括第一压力传感器521和第二压力传感器522,从而分别检测腔室A和腔室B(第一腔室和第二腔室)中的压强,以提高检测精度,从而精准判断第一装置的作业状态(例如是否处于执行第一作业操作的阶段)。
例如,在本申请的另一些实施例中,如图1所示,腔室A和腔室B中的压强变化的规律是同步的,根据腔室A和腔室B之一的压强变化即可得知腔室A和腔室B之另一的压强变化,如此,在该些实施例中,控制装置中可以选择仅设置第一压力传感器(即,不设置第二压力传感器)或者仅设置第二压力传感器(即,不设置第一压力传感器),从而简化控制装置的结构,降低成本。
在本申请的实施例中,控制器可以包括中央处理单元(CPU),该中央处理单元可以是单核或多核处理器或者是用于并行处理的多个处理器。控制器还包括存储器(例如,随机存取存储器、只读存储器、闪速存储器)、用于和一个或多个其他处理设备的通信接口(例如,网络适配器)以及外围设备例如计时器等。存储器、接口和外围设备被配置为通过诸如母板等通信总线(实线)与中央处理单元电连接。例如,控制器可以包括能够允许控制器根据本申请运行的专用集成电路(ASIC)、现场可编程门阵列(FPGA)、计算机系统和逻辑电路中的一个或多个。
例如,本申请的一些实施例提供的液压控制系统还可以包括储存罐和第一溢流阀。储存罐向泵供给流体。第一溢流阀位于第一腔室上,第一溢流阀用于在第一装置执行第一作业操作时使得第一腔室的流体可通过第一溢流阀溢出至储存罐。第一装置维持第一作业操作时第一腔室的下限压强(即,若低于该下限压强,第一作业操作不能实施)为第一预设压强,控制器控制回流控制装置开启时第一腔室的下限压强为第二预设压强,第一溢流阀的预设开启压强大于第二预设压强,第二预设压强大于第一预设压强。如此,第一溢流阀可以起到保护机制的作用,即,在执行第一作业操作时,如果回流控制装置关闭或者回流控制装置导出的流体的流量有限,第一腔室的压强仍然过大,第一腔室的流体可以通过第一溢流阀实现自动溢流,从而防止第一腔室的压强超过安全压强(例如第一溢流阀的预设开启压强)范围,从而对第一装置进行保护。
示例性的,如图1所示,第一装置100的执行结构在停止回转的制动(第一作业操作)阶段时,腔室A中的流体通过第一溢流阀溢出后返回储存罐600。例如,流体可以为液压油,储存罐600可以为油箱。需要说明的是,腔室A和腔室B中都可以设置第一溢流阀,在腔室A或腔室B之一作为第一腔室且第一腔室的压强达到第一溢流阀的预设开启压强时,充当第一腔室的腔室A或腔室B中的第一溢流阀才会打开。
例如,本申请的一些实施例提供的液压控制系统还可以包括第三压力传感器,第三压力传感器与控制器信号连接并配置为检测输出通道的压强。控制器配置为根据输出通道的压强和第一腔室的压强调节回流控制装置开启时的开度;和/或,控制器与泵信号连接,控制器配置为根据输出通道的压强和第一腔室的压强调节泵的输出功率。如此,第一装置在执行第一作业操作时排出的流体经由回流控制装置引导至泵的输出通道之后,该部分流体会影响输出通道的压强,通过第三压力传感器可以实施检测输出通道的压强,通过调控回流控制装置的开度可以使得输出通道的压强在安全范围或者预设范围之内;此外,在该部分流体引导至输出通道之后,在维持输出通道的压强不变(或者变化不大)的情况下,泵对流体的输出量的需要实际是降低的,从而可以减小泵的输出功率以降低功耗。
示例性的,如图2所示,设定第二装置200需要供给的流体具有第一流量(或者根据压强设定为第一压强),在回流控制装置400开启时,假设经由回流控制装置400从第一装置100引导至泵300的输出通道310的流体具有第二流量,那么泵300从储存罐600抽出以供给第二装置200的流体的流量为第一流量减去第二流量之值。如此,在向第二装置200供给的流体的流量(或者流体压强)维持不变的情况下,允许泵300的输出功率(非最大输出功率)降低,从而降低了泵300的功耗。在上述过程中,控制器510可以利用第三压力传感器700实时监测泵300的输出通道310的压强,从而对泵300的输出功率以及回流控制装置400的开度(相当于调控从第一装置100引导至输出通道310的流体的流量)进行综合调控。例如,在维持第一腔室的压强大于第一预设压强的情况下,可以加大回流控制装置400的开度从而进一步降低泵300的输出功率。
例如,在本申请的一些实施例提供的液压控制系统中,回流控制装置包括阀和第一管道,第一管道的一端连接至第一装置,第一管道的另一端连接至输出通道,阀配置为控制第一管道的导通,控制装置控制阀的开度。如此,回流装置包括的阀的开关由控制装置(控制器)进行调控,在实际工艺过程中,可以根据实际工艺需要选择是否需要启用回流控制装置,例如该选择的介入因素可以是人工干预。
示例性的,如图2所示,回流控制装置400包括阀和第一管道430。该阀包括控制阀410和开关阀420。开关阀420位于第一管道430上以控制第一管道430是否导通,控制阀410与控制器510信号连接并控制开关阀420的开度。例如,开关阀420可以为顺序阀、液控单向阀等。
例如,在本申请的另一些实施例提供的液压控制系统中,回流控制装置包括第二溢流阀和第二管道,第二管道的一端连接至第二溢流阀,第二管道的另一端连接至输出通道,第二溢流阀连接至第一装置,第一装置维持第一作业操作时产生溢流的下限压强为第一预设压强,第二溢流阀的预设开启压强大于第一预设压强。如此,在第一装置执行第一作业操作时,只要需要排出的流体的压强达到第二溢流阀的预设开启压强,该流体即可以自动通过第二溢流阀排出至泵的输出通道,在需要排出的流体的压强低于第二溢流阀的预设开启压强时,第二溢流阀自动关闭从而使得第一装置中流体的压强(例如第一腔室中的流体压强)仍满足大于第一预设压强,从而使得第一装置仍然可以维持第一作业操作。在上述过程中,不需要控制器等进行调控,可以简化液压控制系统的结构设计,并简化液压控制系统的操作方式,降低成本。
示例性的,如图3所示,回流控制装置包括第二溢流阀(未示出)和第二管道440。第二溢流阀可以位于第二管道440的端部。例如,腔室A和腔室B中分别设置有第二溢流阀。 第二管道440的设置方式可以参考如图1和图2所示的实施例中的第一管道430的相关说明,在此不作赘述。
例如,在本申请的一些实施例提供的液压控制系统中的回流控制装置包括第二溢流阀的情况下,液压控制系统还可以包括储存罐和第一溢流阀。储存罐向泵供给流体。第一溢流阀用于在第一装置执行第一作业操作时使得第一腔室的流体可通过第一溢流阀溢出至储存罐。第一溢流阀的预设开启压强大于第二溢流阀的预设开启压强。如此,第一溢流阀可以起到保护机制的作用,即,在执行第一作业操作时,如果第二溢流阀导出的流体的流量有限,第一装置中需要导出的流体(例如第一腔室中的流体)的压强仍然过大,部分流体还可以通过第一溢流阀实现自动溢流,从而防止第一装置中需要导出的流体的压强超过安全压强(例如第一溢流阀的预设开启压强)范围,从而对第一装置进行保护。
例如,在本申请的一个实施例中,如图1~图3所示,在第一装置100为回转马达的情况下,第二装置200可以为斗杆油缸。斗杆油缸通过抖杆换向阀210连通至泵300的输出通道310,回转控制装置400从第一装置100导出的流体进入输出通道310后经由斗杆换向阀210进入斗杆油缸。
本申请至少一个实施例提供一种机械设备,该机械设备包括前述实施例中的液压控制系统。该机械设备可以为液压挖掘机、正铲挖土机、反铲挖掘机、拉铲挖掘机等。
本申请至少一个实施例提供了一种液压控制方法,该液压控制方法包括:检测液压控制系统的第一装置是否执行第一作业操作,其中所述第一装置与所述液压控制系统的泵的输出通道连接以在所述泵输出的流体驱动下执行作业操作,所述第一装置与所述泵的输出通道之间设置有回流控制装置;在检测到所述第一装置执行第一作业操作时,控制所述回流控制装置开启以将所述第一装置排出的流体引导至所述泵的输出通道并供给至所述第二装置。在该检测方法中,将第一装置在执行第一作业操作时排出的流体输送至泵的输出通道以应用至第二装置,从而减小泵单独向第二号装置供应流体的量,从而减小泵的作业负担,即,降低泵的功耗;另外,泵的输出通道本身具有较高的压强,在上述过程中,排出的流体不需要降压或者降压有限,即,第一装置排出的流体在进入输出通道时不会放热或者放热较少,避免整个液压控制系统的流体温度升温,避免该液压控制系统的设备出现作业不良。
示例性的,如图4所示,液压控制系统的一种液压控制方法的执行从开始到结束的过程可以包括如下步骤S410~S450。
在步骤S410中,在作业开始时,根据需要判断是否需要在作业中使用回流控制装置,在决定使用的情况下,开启液压控制系统的能量回收功能,相应地,如果不需要在作业中使用回流控制装置,则可以关闭液压控制系统的能量回收功能。例如,可以利用前述实施例中 提及的控制器控制回流控制装置执行如图4所示的应用程序,即,执行下述的步骤S420~S450,其中,步骤S450为整个液压控制方法的结束阶段,下面不作赘述。
在步骤S420中,在决定使用回流控制装置的情况下,检测第一装置是否执行第一作业操作,即,选择执行下述的步骤S430还是步骤S440。
在步骤S430中,如果检测到第一装置处于执行第一作业操作的阶段,控制回流控制装置开启。
在步骤S440中,如果检测到第一装置未处于执行第一作业操作的阶段,控制回流控制装置关闭,以使得第一装置仍按照原状态(未设置回流控制装置时的状态)运行。例如,检测的手段参见前述实施例中提及的控制装置,控制装置利用第一压力传感器、第二压力传感器检测第一装置的工作状态。
例如,液压控制系统中,第一装置包括第一腔室、第二腔室和执行机构,第一腔室与回流控制装置连通,第二腔室与输出通道连通,执行机构配置为可执行第一作业操作。在液压控制方法中,检测液压控制系统的第一装置是否执行第一作业操作包括:检测第一腔室和/或第二腔室中的压强,以获得第一腔室和第二腔室的压强状态,以及在第一腔室的压强由小于第二腔室的压强转变为大于第二腔室的压强的情况下,判断第一装置处于执行第一作业操作阶段。
在上述的液压控制方法中,液压控制系统的结构可以参见前述实施例(例如图1~图2所示的实施例)中的相关描述,在此不作赘述。
另外,还需要说明的是,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案所记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
需要注意的是,以上列举的仅为本申请的具体实施例,显然本申请不限于以上实施例,随之有着许多的类似变化。本领域的技术人员如果从本申请公开的内容直接导出或联想到的所有变形,均应属于本申请的保护范围。
应当理解,本申请实施例中提到的第一、第二等限定词,仅仅为了更清楚地描述本申请实施例的技术方案使用,并不能用以限制本申请的保护范围。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种液压控制系统,包括:
    泵,包括输出通道以输出流体;
    第一装置,与所述输出通道连接以在所述泵输出的流体驱动下执行作业操作;
    第二装置,与所述输出通道连接以在所述泵输出的流体的供给下执行作业操作;以及
    回流控制装置,连接在所述输出通道和所述第一装置之间;
    其中,在所述第一装置执行第一作业操作时,所述第一装置排出所述流体,并且所述回流控制装置开启以将所述第一装置排出的流体引导至所述输出通道并供给至所述第二装置。
  2. 根据权利要求1所述的液压控制系统,还包括与所述回流控制装置和所述第一装置信号连接的控制装置,其中,
    在所述控制装置检测所述第一装置处于执行所述第一作业操作时,所述控制装置控制所述回流控制装置开启;以及
    在所述控制装置检测所述第一装置未处于执行所述第一作业操作时,所述控制装置控制所述回流控制装置关闭。
  3. 根据权利要求2所述的液压控制系统,其中,所述第一装置包括:
    第一腔室,与所述回流控制装置连通;
    第二腔室,与所述输出通道连通;以及
    执行机构,配置为可执行所述第一作业操作;
    其中,所述第一腔室和所述第二腔室通过压强差异驱动所述执行机构运动,且在所述执行机构执行所述第一作业操作时,所述第一腔室的压强由小于所述第二腔室的压强转变为大于所述第二腔室的压强。
  4. 根据权利要求3所述的液压控制系统,其中,所述控制装置包括:
    控制器,与所述回流控制装置信号连接;以及
    位于所述第一腔室中的第一压力传感器和/或位于所述第二腔室中的第二压力传感器,所述第一压力传感器和/或所述第二压力传感器与所述控制器信号连接;
    其中,所述控制器配置为根据所述第一压力传感器检测所述第一腔室的压强状态和/或根据所述第二压力传感器检测所述第二腔室的压强状态,以判断所述第一装置是否处于执行所述第一作业操作阶段。
  5. 根据权利要求4所述的液压控制系统,还包括:
    储存罐,向所述泵供给所述流体;以及
    第一溢流阀,位于所述第一腔室上,所述第一溢流阀用于在所述第一装置执行所述第一作业操作时使得所述第一腔室的流体可通过所述第一溢流阀溢出至所述储存罐;
    其中,所述第一装置维持所述第一作业操作时所述第一腔室的下限压强为第一预设压强,所述控制器控制所述回流控制装置开启时所述第一腔室的下限压强为第二预设压强,
    所述第一溢流阀的预设开启压强大于所述第二预设压强,所述第二预设压强大于所述第一预设压强。
  6. 根据权利要求4或5所述的液压控制系统,还包括:
    第三压力传感器,与所述控制器信号连接并配置为检测所述输出通道的压强;
    其中,所述控制器配置为根据所述输出通道的压强和所述第一腔室的压强调节所述回流控制装置开启时的开度;和/或
    所述控制器与所述泵信号连接,所述控制器配置为根据所述输出通道的压强和所述第一腔室的压强调节所述泵的输出功率。
  7. 根据权利要求2-6中任一项所述的液压控制系统,其中,所述回流控制装置包括:
    第一管道,其一端连接至所述第一装置,其另一端连接至所述输出通道;以及
    阀,配置为控制所述第一管道的导通,且所述控制装置配置为控制所述阀的开度。
  8. 根据权利要求7所述的液压控制系统,其中,
    所述阀包括控制阀和开关阀,所述开关阀位于所述第一管道上以控制所述第一管道的导通,所述控制阀设置为控制所述开关阀的开度。
  9. 根据权利要求1-4中任一项所述的液压控制系统,其中,所述回流控制装置包括第二溢流阀和第二管道,所述第二管道的一端连接至所述第二溢流阀,所述第二管道的另一端连接至所述输出通道,所述第二溢流阀连接至所述第一装置,以及
    所述第一装置维持所述第一作业操作时产生溢流的下限压强为第一预设压强,所述第二溢流阀的预设开启压强大于所述第一预设压强。
  10. 根据权利要求9所述的液压控制系统,还包括:
    储存罐,向所述泵供给所述流体;
    第一溢流阀,用于在所述第一装置执行所述第一作业操作时使得所述第一腔室的流体可通过所述第一溢流阀溢出至所述储存罐;
    其中,所述第一溢流阀的预设开启压强大于所述第二溢流阀的预设开启压强。
  11. 根据权利要求1-10中任一项所述的液压控制系统,其中,
    所述第一装置为回转马达、斗杆油缸、铲斗油缸、动臂油缸中的一个或者一些的组合;以及
    所述第一装置为回转马达、斗杆油缸、铲斗油缸、动臂油缸中的另一个或者另一些的组合。
  12. 根据权利要求1-10中任一项所述的液压控制系统,其中,
    所述第一装置和所述第二装置为相同的结构,所述第一装置和所述第二装置都为回转马达、斗杆油缸、铲斗油缸、动臂油缸中的一个或者至少两个的组合。
  13. 一种机械设备,包括如权利要求1-12中任一项所述的液压控制系统。
  14. 一种液压控制系统的液压控制方法,其中,所述液压控制系统包括泵、第一装置、第二装置和回流控制装置,所述第一装置和所述第二装置都与所述泵的输出通道连接,以在所述泵输出的流体驱动下执行作业操作,所述回流控制装置连接在所述输出通道和所述第一装置之间,所述方法包括:
    检测所述液压控制系统的所述第一装置是否执行第一作业操作;以及
    在检测到所述第一装置执行第一作业操作时,控制所述回流控制装置开启以将所述第一装置排出的流体引导至所述输出通道并供给至所述第二装置。
  15. 根据权利要求14所述的液压控制方法,其中,所述第一装置包括第一腔室、第二腔室和执行机构,所述第一腔室与所述回流控制装置连通,所述第二腔室与所述输出通道连通,所述执行机构配置为可执行所述第一作业操作,所述检测所述液压控制系统的所述第一装置是否执行第一作业操作包括:
    检测所述第一腔室和/或所述第二腔室中的压强,以获得所述第一腔室和所述第二腔室的压强状态,以及
    在所述第一腔室的压强由小于所述第二腔室的压强转变为大于所述第二腔室的压强的情况下,判断所述第一装置处于执行第一作业操作阶段。
PCT/CN2021/109015 2020-12-01 2021-07-28 液压控制系统和机械设备 WO2022116567A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011387538.4A CN112555207A (zh) 2020-12-01 2020-12-01 液压控制系统和机械设备
CN202011387538.4 2020-12-01

Publications (1)

Publication Number Publication Date
WO2022116567A1 true WO2022116567A1 (zh) 2022-06-09

Family

ID=75047193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109015 WO2022116567A1 (zh) 2020-12-01 2021-07-28 液压控制系统和机械设备

Country Status (2)

Country Link
CN (1) CN112555207A (zh)
WO (1) WO2022116567A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112555207A (zh) * 2020-12-01 2021-03-26 上海华兴数字科技有限公司 液压控制系统和机械设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103270318A (zh) * 2010-12-27 2013-08-28 沃尔沃建造设备有限公司 用于施工装置的能量再循环系统
JP2013204223A (ja) * 2012-03-27 2013-10-07 Kobelco Contstruction Machinery Ltd 制御装置及びこれを備えた建設機械
CN103649560A (zh) * 2011-07-26 2014-03-19 沃尔沃建造设备有限公司 用于施工机械的液压系统
CN105026773A (zh) * 2013-01-28 2015-11-04 卡特彼勒Sarl 发动机辅助装置及作业机械
CN106574646A (zh) * 2014-10-02 2017-04-19 日立建机株式会社 作业机械的液压驱动系统
CN106662131A (zh) * 2014-10-02 2017-05-10 日立建机株式会社 作业机械的液压驱动系统
CN107949706A (zh) * 2015-12-22 2018-04-20 日立建机株式会社 作业机械
CN112555207A (zh) * 2020-12-01 2021-03-26 上海华兴数字科技有限公司 液压控制系统和机械设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101220823A (zh) * 2006-11-14 2008-07-16 胡斯可国际股份有限公司 用于液压系统的能量回收与再利用技术
CN101576107B (zh) * 2009-06-01 2011-07-13 浙江大学 盾构管片拼装驱动系统中的能量回收装置
JP5687150B2 (ja) * 2011-07-25 2015-03-18 日立建機株式会社 建設機械
CN105164347B (zh) * 2013-08-05 2017-11-03 川崎重工业株式会社 建筑机械用能量再生装置
JP6005082B2 (ja) * 2014-02-04 2016-10-12 日立建機株式会社 建設機械
CN104314131B (zh) * 2014-09-16 2017-02-15 徐州徐工挖掘机械有限公司 一种油液混合动力的挖掘机控制系统
CN105697474B (zh) * 2014-12-11 2020-10-16 罗伯特·博世有限公司 用于做功机械的液压的设备和用于液压的设备的方法
CN107614896B (zh) * 2015-03-27 2023-06-16 住友重机械工业株式会社 挖土机及挖土机的驱动方法
JP2017015132A (ja) * 2015-06-29 2017-01-19 Kyb株式会社 エネルギ回生システム
JP7029939B2 (ja) * 2017-11-17 2022-03-04 川崎重工業株式会社 建設機械の駆動システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103270318A (zh) * 2010-12-27 2013-08-28 沃尔沃建造设备有限公司 用于施工装置的能量再循环系统
CN103649560A (zh) * 2011-07-26 2014-03-19 沃尔沃建造设备有限公司 用于施工机械的液压系统
JP2013204223A (ja) * 2012-03-27 2013-10-07 Kobelco Contstruction Machinery Ltd 制御装置及びこれを備えた建設機械
US20150066313A1 (en) * 2012-03-27 2015-03-05 Kobelco Construction Machinery Co., Ltd. Control device and construction machine provided therewith
CN105026773A (zh) * 2013-01-28 2015-11-04 卡特彼勒Sarl 发动机辅助装置及作业机械
CN106574646A (zh) * 2014-10-02 2017-04-19 日立建机株式会社 作业机械的液压驱动系统
CN106662131A (zh) * 2014-10-02 2017-05-10 日立建机株式会社 作业机械的液压驱动系统
CN107949706A (zh) * 2015-12-22 2018-04-20 日立建机株式会社 作业机械
CN112555207A (zh) * 2020-12-01 2021-03-26 上海华兴数字科技有限公司 液压控制系统和机械设备

Also Published As

Publication number Publication date
CN112555207A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
US10233613B2 (en) Shovel and method of driving shovel
CN103562565B (zh) 回转式工程机械
US8826656B2 (en) Slewing type working machine
KR102218354B1 (ko) 쇼벨 및 쇼벨의 제어방법
US9664209B2 (en) Control system for hybrid construction machine
WO2014000386A1 (zh) 液压系统、液压系统的控制方法和工程机械
WO2012150651A1 (ja) 旋回式作業機械
US20170073932A1 (en) Hydraulic fluid energy recovery system for work
JP2009281525A (ja) ハイブリッド建設機械の制御装置
WO2022116567A1 (zh) 液压控制系统和机械设备
KR101582689B1 (ko) 건설기계의 선회제어장치 및 선회제어방법
US9618019B2 (en) Hydraulic pressure control device for construction machinery
JP2010169204A (ja) 油圧作業機の油圧回路
JP2017166604A (ja) ショベル
JP2003120616A (ja) 建設機械の油圧制御装置
CN105612358A (zh) 油压驱动系统
KR20120072748A (ko) 건설중장비의 유압시스템 및 비상 운전 방법
JP2011226491A (ja) 油圧ショベルの旋回油圧回路
US11214941B2 (en) Construction machine
US11371212B2 (en) Work machine
KR20130075663A (ko) 건설기계의 유압시스템
JP5735407B2 (ja) 慣性体の揺れ戻し防止装置
US12018460B2 (en) Excavator
JPH09203069A (ja) ブームスイング式油圧ショベル
CN102536761B (zh) 工程机械及其非电控液压泵的功率控制系统及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899606

Country of ref document: EP

Kind code of ref document: A1