WO2022116053A1 - 一种参考信号的通信方法、装置及系统 - Google Patents

一种参考信号的通信方法、装置及系统 Download PDF

Info

Publication number
WO2022116053A1
WO2022116053A1 PCT/CN2020/133413 CN2020133413W WO2022116053A1 WO 2022116053 A1 WO2022116053 A1 WO 2022116053A1 CN 2020133413 W CN2020133413 W CN 2020133413W WO 2022116053 A1 WO2022116053 A1 WO 2022116053A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
csi
index
pdcch
random access
Prior art date
Application number
PCT/CN2020/133413
Other languages
English (en)
French (fr)
Inventor
颜矛
郭志恒
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080107506.6A priority Critical patent/CN116584059A/zh
Priority to PCT/CN2020/133413 priority patent/WO2022116053A1/zh
Publication of WO2022116053A1 publication Critical patent/WO2022116053A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method, apparatus and system for a reference signal.
  • the communication between the base station and the terminal equipment can use the multi-antenna technology to send and receive signals towards a specific spatial direction (spatial channel). Since the gains in different spatial directions are different, a beam pattern (beam pattern for short) can be used to describe the space according to the size of the gain. Take downlink communication as an example.
  • the base station transmits in a specific direction, and the terminal device receives in a specific direction. Only when the directions of transmission and reception are aligned, can a relatively high communication efficiency be achieved.
  • the beam alignment between the base station and the terminal equipment requires the help of uplink or downlink reference signals and corresponding channel information feedback, such as precoding Vector, channel quality indicator (channel quality indicator, CQI), precoding matrix index (precoding matrix indicator, PMI), rank index (rank index, RI) and so on.
  • channel information feedback such as precoding Vector, channel quality indicator (channel quality indicator, CQI), precoding matrix index (precoding matrix indicator, PMI), rank index (rank index, RI) and so on.
  • MCS modulation and coding scheme
  • RB resource blocks
  • the downlink reference signal mainly includes synchronization/broadcast signal block (synchronization signal/Physical broadcast channel block, SSB), channel state information reference signal (channel state information reference signal, CSI-RS), tracking reference signal (tracking reference signal, TRS) ).
  • synchronization/broadcast signal block synchronization signal/Physical broadcast channel block, SSB
  • channel state information reference signal channel state information reference signal
  • CSI-RS channel state information reference signal
  • TRS tracking reference signal
  • uplink and downlink receive beams and transmit beams are determined based on the SSB.
  • the number of SSBs supported by the current protocol is relatively small, so the coverage of the entire cell is often achieved with a relatively wide beam, resulting in a low gain.
  • the beam alignment based on CSI-RS in the current protocol needs to increase the resource configuration overhead of CSI-RS after random access, resulting in low communication performance.
  • the present application provides a communication method, apparatus and system for a reference signal, which reduces the resource configuration overhead of CSI-RS and improves communication performance.
  • an embodiment of the present application provides a method for communicating a reference signal, which can be applied to a terminal device or a component in a terminal device, such as a chip, a processor, etc.
  • the method includes: receiving a first data sent by a network device. message, the first message includes at least one of system information block No. 1, message 2 and message 4; according to the first message, determine the resource configuration of the channel state information reference signal CSI-RS; according to the resource configuration, The CSI-RS sent by the network device is received.
  • the resource configuration of the CSI-RS is determined through the first message, which reduces the resource configuration overhead of the CSI-RS and improves the communication performance.
  • the first message and the CSI-RS are sent together.
  • the terminal device can determine the resource configuration of the CSI-RS through the first message, which reduces the need for the terminal device to receive the CSI-RS. incoming delay.
  • the terminal device is based on the physical downlink control channel PDCCH associated with the first message, the physical downlink shared channel PDSCH associated with the first message, the control resource set of the PDCCH associated with the first message, the At least one of the search space of the PDCCH, the physical cell identifier associated with the first message, and the index of the synchronization signal block SSB associated with the first message determines the resource configuration of the CSI-RS.
  • the resource configuration of the CSI-RS is determined by the association information of the first message, which reduces the resource configuration overhead of the CSI-RS and reduces the time delay of terminal equipment access and subsequent data transmission.
  • the resources of the CSI-RS are configured according to the physical downlink control channel PDCCH associated with the first message, the physical downlink shared channel PDSCH associated with the first message, the control resource set of the PDCCH associated with the first message, It is determined by at least one of the search space of the PDCCH associated with the first message, the physical cell identifier associated with the first message, and the index of the synchronization signal block SSB associated with the first message.
  • the resource configuration of the CSI-RS is determined by the association information of the first message, which reduces the resource configuration overhead of the CSI-RS.
  • the terminal device is based on the maximum possible number of synchronization signal blocks SSBs associated with the first message, the time domain position of the synchronization signal blocks SSBs associated with the first message, the number of SSBs associated with the first message, and the number of SSBs associated with the first message. At least one of the carrier frequency range associated with the message, the bandwidth of the search space of the PDCCH associated with the first message, the PDCCH associated with the first message, and the random access response RAR protocol data packet PDU carried by the PDSCH associated with the first message. , and determine the number of ports corresponding to the CSI-RS. The number of ports corresponding to the CSI-RS is determined by the association information of the first message, which reduces the resource configuration overhead of the CSI-RS.
  • the number of ports corresponding to the CSI-RS is the maximum possible number of synchronization signal blocks SSB associated with the first message, the time domain position of the synchronization signal block SSB associated with the first message, the first message associated The number of SSBs associated with the first message, the carrier frequency range associated with the first message, the bandwidth of the search space of the PDCCH associated with the first message, the random access response RAR protocol data packet carried by the PDCCH associated with the first message and the PDSCH associated with the first message determined by at least one of the PDUs.
  • the number of ports corresponding to the CSI-RS is determined by the association information of the first message, which reduces the resource configuration overhead of the CSI-RS.
  • the terminal device determines the frequency domain of the CSI-RS according to at least one of the bandwidth of the search space of the PDCCH associated with the first message, the PDCCH associated with the first message, and the PDSCH associated with the first message The number of resource blocks RB.
  • the number of frequency domain resource blocks RB of the CSI-RS is determined by the association information of the first message, which reduces the resource configuration overhead of the CSI-RS.
  • the number of RBs in the frequency domain of the CSI-RS is at least according to the bandwidth of the search space of the PDCCH associated with the first message, the PDCCH associated with the first message, and the PDSCH associated with the first message a definite.
  • the number of the frequency domain resource blocks RB of the CSI-RS is determined by the association information of the first message, which reduces the resource configuration overhead of the CSI-RS and reduces the delay of random access.
  • the terminal device can use the starting position of the control resource set of the PDCCH associated with the first message, the starting position of the PDCCH associated with the first message, the ending position of the PDCCH associated with the first message, the first message At least one of the start position of the associated PDSCH and the end position of the PDSCH associated with the first message determines the start position of the frequency domain RB of the CSI-RS.
  • the starting position of the frequency domain RB of the CSI-RS is determined by the association information of the first message, which reduces the resource configuration overhead of the CSI-RS.
  • the starting position of the frequency domain RB of the CSI-RS is the starting position of the control resource set of the PDCCH associated with the first message, the starting position of the PDCCH associated with the first message, the first At least one of the end position of the PDCCH associated with the message, the start position of the PDSCH associated with the first message, and the end position of the PDSCH associated with the first message is determined.
  • the starting position of the frequency domain RB of the CSI-RS is determined by the association information of the first message, which reduces the resource configuration overhead of the CSI-RS.
  • the terminal device determines the frequency domain allocation of the CSI-RS according to at least one of the physical cell identifier associated with the first message and the index of the SSB associated with the first message.
  • the frequency domain allocation of the CSI-RS is determined by the association information of the first message, which reduces the resource configuration overhead of the CSI-RS.
  • the frequency domain allocation of the CSI-RS is determined according to at least one of a physical cell identifier associated with the first message and an index of an SSB associated with the first message.
  • the frequency domain allocation of the CSI-RS is determined by the association information of the first message, which reduces the resource configuration overhead of the CSI-RS.
  • the terminal device is associated with the first message according to the index of the SSB associated with the first message, the physical cell identifier associated with the first message, the index of the time slot of the control resource set of the PDCCH associated with the first message, and the The index of the time slot of the PDCCH, the index of the time slot of the PDSCH associated with the first message, the index of the start or end OFDM symbol of the PDCCH control resource set associated with the first message, and the time when the CSI-RS is located
  • the index of the slot, the index of the starting or ending OFDM symbol of the PDCCH associated with the first message, the index of the starting or ending OFDM symbol of the PDSCH associated with the first message, the index of the OFDM symbol where the CSI-RS is located, and the corresponding CSI-RS At least one of the number of ports of , determines the sequence corresponding to the CSI-RS.
  • the sequence corresponding to the CSI-RS is determined by the association information of the first message, which reduces the resource configuration overhead of the
  • the sequence corresponding to the CSI-RS is the index of the SSB associated with the first message, the physical cell identifier associated with the first message, and the index of the time slot of the control resource set of the PDCCH associated with the first message , the index of the time slot of the PDCCH associated with the first message, the index of the time slot of the PDSCH associated with the first message, the index of the start or end OFDM symbol of the PDCCH control resource set associated with the first message, The index of the time slot where the CSI-RS is located, the index of the starting or ending OFDM symbol of the PDCCH associated with the first message, the index of the starting or ending OFDM symbol of the PDSCH associated with the first message, the index of the OFDM symbol where the CSI-RS is located, It is determined by at least one of the number of ports corresponding to the CSI-RS.
  • the sequence corresponding to the CSI-RS is determined by the association information of the first message, which reduces the resource configuration overhead of the CSI-RS.
  • the terminal device may also use the random access wireless network temporary identifier RA-RNTI associated with the first message, the random access wireless network temporary identifier RA-RNTI associated with the first message, The index of the time slot of the access opportunity, the index of the frequency of the random access opportunity associated with the first message, the index of the carrier where the random access opportunity associated with the first message is located, and the part where the random access opportunity associated with the first message is located At least one of the index of the bandwidth BWP and the index of the starting OFDM symbol of the random access opportunity associated with the first message determines the sequence corresponding to the CSI-RS.
  • the sequence corresponding to the CSI-RS is determined by the association information of the first message, which reduces the resource configuration overhead of the CSI-RS and reduces the delay of random access.
  • the terminal device may combine the above two kinds of information to determine the sequence corresponding to the CSI-RS.
  • the sequence corresponding to the CSI-RS is the random access wireless network temporary identifier RA-RNTI associated with the first message, the index of the time slot of the random access opportunity associated with the first message, the first The index of the frequency of the random access opportunity associated with the message, the index of the carrier where the random access opportunity associated with the first message is located, the index of the partial bandwidth BWP where the random access opportunity associated with the first message is located, and the random access opportunity associated with the first message. At least one of the indices of the starting OFDM symbol of the access opportunity is determined.
  • the sequence corresponding to the CSI-RS is determined by the association information of the first message, which reduces the resource configuration overhead of the CSI-RS.
  • the terminal device before the terminal device receives the first message sent by the network device, the terminal device sends a second message to the network device, where the second message includes at least one of the index of the synchronization signal block SSB and the CSI-RS request information Item, at least one of the index of the SSB and the CSI-RS request information is used to instruct the network device to send the CSI-RS in the sending time slot of the first message.
  • the index of the SSB and the CSI-RS request information instruct the network device to send the first message and the CSI-RS together, so as to complete the resource configuration of the CSI-RS according to the first message, thereby reducing the configuration overhead of the CSI-RS.
  • the resource configuration of the CSI-RS includes at least one of the following: a resource mapping parameter, a sequence generation parameter, a period, and a slot position.
  • an embodiment of the present application provides a method for communicating a reference signal, which can be applied to a network device or a component in a network device, such as a chip, a processor, etc.
  • the method includes: determining a channel according to the first message
  • the status information refers to the resource configuration of the signal CSI-RS, and the first message includes at least one of system information block No. 1, message 2 and message 4; the first message and the CSI-RS are sent to the terminal device.
  • the resource configuration of the CSI-RS is determined through the first message, which reduces the resource configuration overhead of the CSI-RS and improves the communication performance.
  • the first message and the CSI-RS are sent together.
  • the terminal device can determine the resource configuration of the CSI-RS through the first message, which reduces the need for the terminal device to receive the CSI-RS. incoming delay.
  • the network device is based on the physical downlink control channel PDCCH associated with the first message, the physical downlink shared channel PDSCH associated with the first message, the control resource set of the PDCCH associated with the first message, the At least one of the search space of the PDCCH, the physical cell identifier associated with the first message, and the index of the synchronization signal block SSB associated with the first message determines the resource configuration of the CSI-RS.
  • the resource configuration of the CSI-RS is determined by the association information of the first message, which reduces the resource configuration overhead of the CSI-RS and reduces the time delay of terminal equipment access and subsequent data transmission.
  • the network device determines the maximum possible number of synchronization signal blocks SSBs associated with the first message, the time domain position of the synchronization signal blocks SSBs associated with the first message, the number of SSBs associated with the first message, the number of SSBs associated with the first message, and the At least one of the carrier frequency range associated with the message, the bandwidth of the search space of the PDCCH associated with the first message, the PDCCH associated with the first message, and the random access response RAR protocol data packet PDU carried by the PDSCH associated with the first message. , and determine the number of ports corresponding to the CSI-RS. The number of ports corresponding to the CSI-RS is determined by the association information of the first message, which reduces the resource configuration overhead of the CSI-RS.
  • the network device determines the frequency domain of the CSI-RS according to at least one of the bandwidth of the search space of the PDCCH associated with the first message, the PDCCH associated with the first message, and the PDSCH associated with the first message The number of resource blocks RB.
  • the number of frequency domain resource blocks RB of the CSI-RS is determined by the association information of the first message, which reduces the resource configuration overhead of the CSI-RS.
  • the network device is based on the start position of the control resource set of the PDCCH associated with the first message, the start position of the PDCCH associated with the first message, the end position of the PDCCH associated with the first message, the first message At least one of the start position of the associated PDSCH and the end position of the PDSCH associated with the first message determines the start position of the frequency domain RB of the CSI-RS.
  • the starting position of the frequency domain RB of the CSI-RS is determined by the association information of the first message, which reduces the resource configuration overhead of the CSI-RS.
  • the network device determines the frequency domain allocation of the CSI-RS according to at least one of the physical cell identifier associated with the first message and the index of the SSB associated with the first message.
  • the frequency domain allocation of the CSI-RS is determined by the association information of the first message, which reduces the resource configuration overhead of the CSI-RS.
  • the network device is associated with the first message according to the index of the SSB associated with the first message, the physical cell identifier associated with the first message, the index of the time slot of the control resource set of the PDCCH associated with the first message, the first message associated The index of the time slot of the PDCCH, the index of the time slot of the PDSCH associated with the first message, the index of the start or end OFDM symbol of the PDCCH control resource set associated with the first message, and the time when the CSI-RS is located The index of the slot, the index of the starting or ending OFDM symbol of the PDCCH associated with the first message, the index of the starting or ending OFDM symbol of the PDSCH associated with the first message, the index of the OFDM symbol where the CSI-RS is located, and the corresponding CSI-RS At least one of the number of ports determines the sequence of CSI-RS.
  • the sequence corresponding to the CSI-RS is determined by the association information of the first message, which reduces the resource configuration overhead of the CSI-RS
  • the network device is based on the random access wireless network temporary identifier RA-RNTI associated with the first message, the index of the time slot of the random access opportunity associated with the first message, and the random access opportunity associated with the first message.
  • At least one of the indices of the initial OFDM symbol is used to determine the sequence of the CSI-RS.
  • the sequence corresponding to the CSI-RS is determined by the association information of the first message, which reduces the resource configuration overhead of the CSI-RS.
  • the network device before the network device sends the first message together with the channel state information reference signal CSI-RS to the terminal device, the network device receives the second message sent by the terminal device, where the second message includes the synchronization signal block SSB at least one item of the index and CSI-RS request information; according to at least one item of the index of the SSB and the CSI-RS request information, it is determined to send the CSI-RS in the sending time slot of the first message.
  • the index of the SSB and the CSI-RS request information instruct the network device to send the first message and the CSI-RS together, so as to complete the resource configuration of the CSI-RS according to the first message, thereby reducing the configuration overhead of the CSI-RS.
  • the resource configuration of the CSI-RS includes at least one of the following: a resource mapping parameter, a sequence generation parameter, a period, and a slot position.
  • the resource mapping parameters of the CSI-RS include at least one of the following: the number of ports, the frequency domain density, the starting position of the frequency domain RBs, the number of frequency domain RBs, the frequency domain allocation, the time Domain start position and code division multiplexing type.
  • an embodiment of the present application provides a communication apparatus, where the first communication apparatus is configured to implement the method and function performed by the terminal device in the first aspect, and is implemented by hardware/software, wherein the hardware/software includes and The corresponding modules of the above functions.
  • an embodiment of the present application provides a communication device, the second communication device is configured to implement the method and function performed by the network device in the second aspect, and is implemented by hardware/software, wherein the hardware/software includes and The corresponding modules of the above functions.
  • the present application provides a communication apparatus, and the apparatus may be a terminal device, a device in a terminal device, or a device that can be matched and used with the terminal device.
  • the communication device may also be a chip system.
  • the communication device may perform the method described in the first aspect.
  • the functions of the communication device may be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the module can be software and/or hardware.
  • the present application provides a communication device, and the device may be a network device, a device in a network device, or a device that can be matched and used with the network device.
  • the communication device may also be a chip system.
  • the communication device can perform the method of the second aspect.
  • the functions of the communication device may be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the module can be software and/or hardware.
  • the present application provides a communication device, the communication device includes a processor, when the processor calls a computer program in a memory, the method according to any one of the first and second aspects be executed.
  • the present application provides a communication device, the communication device includes a processor and a memory, the memory is used for storing computer-executed instructions; the processor is used for executing the computer-executed instructions stored in the memory, to The communication device is caused to perform the method of any one of the first and second aspects.
  • the present application provides a communication device, the communication device includes a processor, a memory and a transceiver, the transceiver is used for receiving a channel or a signal, or sending a channel or signal; the memory is used for Store program code; the processor is configured to call the program code from the memory to execute the method according to any one of the first aspect and the second aspect.
  • the present application provides a communication device, the communication device includes a processor and an interface circuit, the interface circuit is configured to receive a code instruction and transmit it to the processor; the processor executes the code instructions to perform the method of any one of the first and second aspects.
  • the present application provides a computer-readable storage medium, the computer-readable storage medium is used to store instructions, and when the instructions are executed, make any one of the first aspect and the second aspect The described method is implemented.
  • the present application provides a computer program product comprising instructions which, when executed, cause the method of any one of the first and second aspects to be implemented.
  • an embodiment of the present application provides a communication system, where the communication system includes at least one terminal device and at least one network device, where the terminal device is configured to perform the steps in the foregoing first aspect, and the network device is configured to perform The steps in the second aspect above.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • Fig. 3 is a kind of schematic diagram of the association relationship between SSB and random access opportunity or preamble
  • FIG. 4 is a flow chart of downlink beam management based on CSI-RS
  • FIG. 5 is a schematic diagram of a resource mapping method
  • FIG. 6 is a flowchart of a method for communicating a reference signal provided by an embodiment of the present application.
  • FIG. 7 is a flowchart of another method for communicating a reference signal provided by an embodiment of the present application.
  • FIG. 8 is a flowchart of another method for communicating a reference signal provided by an embodiment of the present application.
  • FIG. 9 is a flowchart of another method for communicating a reference signal provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a network device proposed by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication system 100 provided by an embodiment of the present application.
  • the communication system 100 may include a network device 110 and terminal devices 101 to 106 . It should be understood that more or less network devices or terminal devices may be included in the communication system 100 to which the methods of the embodiments of the present application may be applied.
  • the network device or the terminal device may be hardware, software divided by functions, or a combination of the above two.
  • the network device and the terminal device can communicate through other devices or network elements.
  • the network device 110 can send downlink data to the terminal devices 101 to 106 .
  • the terminal device 101 to the terminal device 106 may also send uplink data to the network device 110 .
  • the terminal devices 101 to 106 may not be limited to mobile phones, but may also be various IoT devices, such as automobiles, speakers, computers, tablets, home appliances, and modules used in various industries.
  • the equipment used for wireless communication in the future will be called terminal equipment.
  • the communication system 100 may adopt a public land mobile network (PLMN), a vehicle to everything (V2X), a device-to-device (D2D) network, a machine to machine (machine to machine, M2M) network, internet of things (IoT) or other networks.
  • PLMN public land mobile network
  • V2X vehicle to everything
  • D2D device-to-device
  • M2M machine to machine
  • IoT internet of things
  • the terminal device 104 to the terminal device 106 may also form a communication system.
  • the terminal device 105 can send downlink data to the terminal device 104 or the terminal device 106 .
  • the methods in the embodiments of the present application may be applied to the communication system 100 shown in FIG. 1 .
  • Random access In long term evolution (LTE) or fifth generation mobile communication technology (5-Generation, 5G) communication systems with access control, it is used for An information exchange mechanism for establishing a connection between a terminal device and a network device. Since the random access process is carried by a random access channel (RACH), RA and RACH are often mixed in protocols and spoken languages. It is divided into contention-based random access and non-contention random access. Contention-based random access is usually divided into 4 steps, each step corresponds to a message, including message 1, message 2, message 3, and message 4, which respectively carry different signaling or information. Non-contention based random access has only the first 2 steps. In addition, in order to reduce the access time of 4-step contention-based random access, 2-step random access may be performed.
  • LTE long term evolution
  • 5G fifth generation mobile communication technology
  • 2-step random access it consists of message A and message B, where message A includes the preamble and the first data information (for example, similar to message 1 and message 3 in 4-step random access), message B It includes contention resolution and uplink scheduling (eg, similar to message 2 and message 4 in 4-step random access).
  • Random access opportunity also known as random access resource (RACH resource), random access opportunity (RACH occasion/RACH transmission occasion/RACH opportunity/RACH chance, RO), is used to carry one or more time and frequency resources for a random access preamble.
  • RACH resource random access resource
  • RACH occasion/RACH transmission occasion/RACH opportunity/RACH chance, RO random access opportunity
  • PRACH occasion RO
  • PRACH resource physical random access resource
  • Message 1 (message 1, Msg1): the random access preamble (preamble or sequence), which is carried through a physical random access channel (PRACH). It is usually used to initiate connection requests, handover requests, synchronization requests, and scheduling requests between terminal devices and network devices.
  • PRACH physical random access channel
  • Message 2 (message 2, Msg2): Also known as a random access response (random access response, RAR) message. It is the reply of the network side to the received message 1, and one message 2 can reply to multiple Msg1s.
  • Msg2 Also known as a random access response (random access response, RAR) message. It is the reply of the network side to the received message 1, and one message 2 can reply to multiple Msg1s.
  • Msg2 also known as a random access response (random access response, RAR) message. It is the reply of the network side to the received message 1, and one message 2 can reply to multiple Msg1s.
  • Msg2 Random access response (random access response, RAR) message. It is the reply of the network side to the received message 1, and one message 2 can reply to multiple Msg1s.
  • Msg2 Random access response
  • RAR random access response
  • the network side If the network side receives message 1, it will encapsulate at least one of the following information into a random access response (RAR) and send: the index of message 1 (random access preamble identity, RAPID), uplink scheduling grant (uplink grant) , timing advance, temporary cell radio network temporary identity (TC-RNTI), etc.
  • RAR random access response
  • the network side can respond to multiple Msg1s simultaneously in the same Msg2, that is, including multiple RARs.
  • Message 3 (message 3, Msg3): Also known as the first uplink scheduling transmission, it is scheduled transmission by the uplink grant (UL grant) in message 2, or downlink control information (DCI) scrambled by TC-RNTI ) scheduled retransmissions.
  • the transmission content of Msg3 is a high-level message, such as a connection establishment request message (specifically, the identification information of the user who initiates the connection request). The function of this message is for contention resolution. If multiple different devices use the same Msg1 for random access, Msg3 and Msg4 can jointly determine whether there is a conflict.
  • the transmission of message 3 includes retransmission and power control, that is, in the UL grant that schedules initial transmission or retransmission, there is power control information.
  • Message 4 (message 4, Msg4): used for contention resolution. It usually includes the CCCH common control channel (CCCH) service data unit (SDU) carried in message 3. If the terminal device detects the CCCH SDU sent by itself in message 4, it is considered to be competing for random access. Success, continue with the next communication process.
  • Message 4 is retransmitted, that is, there is a corresponding physical uplink control channel (physical uplink control channel, PUCCH) to transmit feedback information. For example, whether the message 4 is successfully detected, the terminal device has power control for sending feedback information on the PUCCH.
  • PUCCH physical uplink control channel
  • Transmit power also known as output power. It can be defined as the output power measured on all or part of the supported frequencies or frequency bands or bandwidths within a given time and/or period.
  • the measured time is at least 1 ms, and for example, the measured time is at least one time slot corresponding to a certain subcarrier interval.
  • power obtained for a time period of at least 1 ms of measurement is used.
  • Precoding and codebook Multi-day technology (multiple input multiple output, MIMO) technology is used to increase system capacity and improve throughput.
  • y the received signal
  • H the MIMO channel
  • x the transmitted signal
  • n the noise.
  • precoding is used to reduce system overhead and maximize the system capacity of MIMO.
  • it is used to reduce the complexity of the receiver to eliminate inter-channel effects.
  • P can be selected from a predefined matrix (or vector) set, which is called a codebook (codebook), and this method is also called a codebook-based transmission method. If the sender can obtain all the information of H, then P can be obtained by itself at the sender, and this method is also called a non-codebook sending method (Non-codebook, NCB).
  • precoding There are two ways of precoding: open loop or closed loop.
  • the sender determines the precoding codebook to be sent by itself.
  • the transmitter determines the precoding codebook to send based on feedback information or indication information from the receiver.
  • Modulation is the process of processing the information of the signal source and adding it to the carrier to make it suitable for channel transmission. Different modes correspond to different modulation methods, such as multi-carrier modulation or single-carrier modulation, quadrature amplitude modulation (QAM), pulse amplitude modulation (PAM), phase shift keying (phase shift keying) keying, PSK) modulation, amplitude shift keying (amplitude shift keying, ASK) modulation, etc.
  • Demodulation is the reverse process of modulation, recovering the original data bits or symbols from the signal. Demodulation can also sometimes be referred to as detection.
  • Orthogonal frequency division multiplexing It is a multi-carrier transmission waveform of frequency division multiplexing, and each signal (also called each carrier/subcarrier) participating in the multiplexing is orthogonal .
  • OFDM technology converts high-speed data streams into multiple parallel low-speed data streams through serial/parallel conversion, and then assigns them to several sub-carriers of different frequencies for transmission.
  • OFDM technology utilizes mutually orthogonal sub-carriers, so that the frequency spectra of the sub-carriers overlap. Compared with the traditional FDM multi-carrier modulation system, which requires guard intervals between sub-carriers, the OFDM technology greatly improves the spectrum utilization.
  • Discrete Fourier Transform Spread Spectrum Orthogonal Frequency Division Multiplexing (discrete fourier transformation spreading OFDM, DFT-s-OFDM): It is a derivative technology based on OFDM.
  • the subcarriers used by each user are subjected to DFT processing, converted from the time domain to the frequency domain, and then the frequency domain signals of each user are subjected to OFDM modulation (ie, input to the IFFT module), so that the The signals are again converted to the time domain and sent together.
  • OFDM modulation ie, input to the IFFT module
  • the signal is returned from the frequency domain signal (traditional OFDM) to the time domain signal (same as the single carrier system). Since in this technology, the modulated signal waveform is similar to a single carrier, some people regard it as a single carrier technology, although it is evolved from the OFDM technology.
  • Reference signal also known as demodulation reference signal (DMRS), channel state information reference signal (CSI-RS), phase tracking reference signal (phase tracking reference signal) , PTRS), channel sounding reference signal (sounding reference signal, SRS) and so on. It means that the sender or receiver knows or can infer according to predetermined rules: the time and frequency position of the signal, and the signal/symbol carried on the time and frequency.
  • the reference signal is used to obtain a known signal that is affected by the outside world (eg, spatial channel, device non-ideality) during transmission, and is generally used for channel estimation, auxiliary signal demodulation, and detection.
  • DMRS and CSI-RS are used to obtain channel information
  • PTRS is used to obtain phase change information.
  • Resource block Also known as physical resource block (physical resource block), it is the basic unit of frequency resources in an OFDM-based communication system.
  • a resource block generally consists of N resource elements (resource elements, REs), and one resource element is also called one subcarrier. Among them, N is generally 12.
  • resource blocks form a resource block group (RBG), or also called a physical resource block group.
  • precoding is performed in units of resource blocks or resource block groups, and the basic unit for precoding transmission is also called a precoding resource block group (precoding resource block group, PRG).
  • precoding resource block group precoding resource block group
  • One precoding resource group may not be smaller than one resource block group.
  • Layer The complex symbols (modulation symbols) obtained after scrambling and modulation of one or two codewords are mapped to one or more transmission layers after layer mapping. , also commonly known as layer).
  • the transport layer is usually mapped to the antenna port, so it is also called the antenna port.
  • Each layer corresponds to a valid data stream.
  • the number of transmission layers ie the number of layers, is called “transmission rank” or “transmission rank”.
  • the transmission rank can be dynamically changed.
  • the number of layers must be less than or equal to the minimum value of the number of transmit antenna ports and the number of receive antenna ports, that is, "number of layers ⁇ min(number of transmit antenna ports, number of receive antenna ports)".
  • the number of transmission layers is less than or equal to the number of antenna ports, and the number of antenna ports for data is the same as the number of configured SRS ports.
  • Quasi co-location A QCL relationship is used to indicate that multiple resources have one or more identical or similar communication characteristics. For multiple resources with a quasi co-location relationship, the same or Similar communication configuration. Specifically, the signals corresponding to the antenna ports with the QCL relationship have the same parameters, or the parameters of one antenna port (also referred to as QCL parameters) can be used to determine the signal of another antenna port with the QCL relationship with the antenna port. parameter, or the two antenna ports have the same parameter, or the parameter difference between the two antenna ports is less than a certain threshold.
  • the parameters may include one or more of the following: delay spread (delay spread), Doppler spread (doppler spread), Doppler shift (doppler shift), average delay (average delay), average Gain, spatial Rx parameters.
  • the spatial reception parameters may include one or more of the following: angle of arrival (AOA), average AOA, AOA extension, angle of departure (AOD), average departure angle AOD, AOD extension, reception Antenna spatial correlation parameters, transmit antenna spatial correlation parameters, transmit beams, receive beams, and resource identifiers.
  • the UE is used as the terminal device, and the base station is used as the network device to describe the technical solution of the present application, which will not be repeated in the following.
  • Figure 2 is a flow chart of a random access process, which mainly includes the following steps:
  • the base station transmits a synchronization signal and system information at a specific location in a broadcast manner.
  • the synchronization signal sent by the base station is called SSB, and the SSB and system information are periodically sent by the base station according to the configuration.
  • the time domain position of the synchronization signal block SSB is indicated by high-layer signaling, and the actually sent SSB or the number of sent SSB can be determined according to the time domain position of the synchronization signal block SSB.
  • the number of SSBs sent by the base station in a half system frame time (generally refers to the number in the time domain, may be more in the frequency domain) can be obtained according to the index of the SSB sent within a half system frame (eg, 5ms).
  • MIB master information block
  • PDCCH physical downlink control channel
  • SIB1 system information block 1
  • common search space common search space
  • CORESET control resource set information
  • the UE selects a random access resource associated with the SSB according to the random access resource configuration information and the synchronized SSB, and the random access resource includes time, frequency resources and code domain resources (random access preamble), and A random access signal, also called message 1 (Msg1 ), is sent using the random access resource.
  • the base station can acquire the downlink beam for sending message 2 (Msg2) and/or.
  • FIG. 3 is a schematic diagram of an association relationship between an SSB and a random access opportunity or a preamble.
  • the left picture shows that multiple SSBs are associated with the same random access opportunity, and the SSBs are distinguished by the random access preamble; the right picture shows that one SSB is associated with multiple random access opportunities.
  • the base station estimates the timing advance of the UE according to the preamble sent by the user, and replies to the user with a message 2 (Msg2), which includes the message 2 used by the UE to send the message 3 (Msg3) for conflict Configuration information such as time-frequency resource location, modulation and coding mode to be solved.
  • the random access response can be called message 2 at both the physical layer and the MAC layer. However, at the physical layer, RAR is generally also referred to as a response message corresponding to a specific random access preamble.
  • RAR is a combination of a random access opportunity or multiple random access opportunities and all random access preamble response messages detected by the base station, and is packaged in the form of MAC data units.
  • the UE after receiving the message 2, the UE sends the message 3 in the corresponding time-frequency resource according to the configuration in the message 2.
  • the base station replies to the UE with a message 4 (Msg4), indicating that the UE successfully accesses the base station.
  • Msg4 message 4
  • the process from Msg1 to Msg4 is generally referred to as a 4-step random access process.
  • the random access preamble sent in Msg1 can also be applied to non-contention-based random access and 2-step random access. It's just that the non-contention random access only includes Msg1 and Msg2.
  • there is a 2-step random access which consists of message A and message B.
  • message A includes the transmission of the random access preamble and the first data information (for example, similar to message 1 and message 3 in 4-step random access)
  • message B includes contention resolution and uplink scheduling (for example, similar to 4 -step message 2 and message 4 in random access).
  • Msg1, Msg3, Msg4 can be retransmitted after sending failure.
  • Figure 4 is a flow chart of downlink beam management based on CSI-RS, which mainly includes the following steps:
  • the detailed access process may refer to the steps shown in FIG. 2 .
  • the UE reports the index of the SSB, so that the base station can configure corresponding CSI-RS resources based on the SSB.
  • the index of the SSB reported here may also be the index of the SSB determined by using the association relationship between the random access preamble and the SSB in S202, or reported in a similar manner to S202.
  • the base station sends the CSI-RS resource configuration through radio resource control (radio resource control, RRC).
  • radio resource control radio resource control, RRC
  • the base station sends the CSI-RS, and the UE performs measurement.
  • the base station may configure CSI-RS resources for repeated transmission, so as to facilitate the UE to perform beam scanning, so as to determine the optimal receiving beam for the UE.
  • the base station may also be configured with the same reception information of CSI-RS, and the base station adopts different transmit beams to transmit the CSI-RS, so as to determine the optimal transmit beam of the base station.
  • the base station performs related scheduling processing, such as uplink or downlink data transmission, based on the measurement information reported by the UE.
  • the CSI-RS used for beam management in the NR is the CSI-RS of non-zero power (NZP).
  • NZP non-zero power
  • the main parameters of CSI-RS resource configuration include: resource mapping, power control offset of PDSCH RE relative to NZP CSI-RS RE, and power control offset of NZP CSI-RS RE relative to SS RE.
  • Power offset power control offset SS
  • scrambling ID scrambling ID
  • period and offset configuration period and offset configuration (periodicity and offset) and QCL configuration.
  • the resource mapping configuration mainly includes: time-domain resource configuration, frequency-domain resource configuration, code grouping configuration, density, frequency-domain bandwidth, and the like.
  • the key information for generating a CSI-RS sequence includes: the generator polynomial initialization parameter c init of the sequence and the slot number in the radio frame Number of OFDM symbols in a slot Parameters such as the OFDM symbol index 1 and the scrambling index n ID in the time slot are related.
  • the scrambling index is configured by upper layer parameters.
  • the uplink and downlink receive beams and transmit beams are determined based on the SSB.
  • the number of SSBs supported by the current protocol is relatively small, so the coverage of the entire cell is often achieved with a relatively wide beam, resulting in a low gain.
  • the beam alignment based on CSI-RS in the current protocol needs to be configured and implemented after random access, and the terminal equipment has high access delay and low communication performance.
  • FIG. 6 is a flowchart of a method for communicating a reference signal provided by an embodiment of the present application.
  • the steps in this embodiment of the present application include at least:
  • the base station determines the resource configuration of the channel state information reference signal CSI-RS according to the first message.
  • the first message may include at least one of system information block 1 (system information block 1, SIB1), message 2 and message 4.
  • the base station may indicate, through the SSB, the control resource set of the PDCCH associated with the No. 1 system information block SIB1 and the search space associated with the SIB1. Then, the UE receives the No. 1 system information block sent by the base station according to the control resource set and search space of the PDCCH.
  • message 2 may be a random access response
  • message 4 may be an access success message.
  • CSI-RS may also be called random access reference signal (random access-reference signal, RA-RS), initial access and mobility reference signal (initial access and mobility-reference signal, IAM-RS), or beam adjustment Reference signal (beam refinement-reference signal, BR-RS), or cell searching-reference signal (CS-RS), or handover-reference signal (H-RS), or other names.
  • RA-RS random access-reference signal
  • IAM-RS initial access and mobility reference signal
  • BR-RS beam adjustment Reference signal
  • CS-RS cell searching-reference signal
  • H-RS handover-reference signal
  • CSI-RS refers to the reference signal used for beam alignment in the random access process, or the reference signal that some channel parameters have a QCL relationship with the SSB in the random access process, the port number or spatial coefficient corresponding to the CSI-RS Not exactly the same as SSB.
  • the resource configuration of the CSI-RS includes at least one of the following: a resource mapping parameter, a sequence generation parameter, a period, and a slot position.
  • the resource mapping parameter of the CSI-RS includes at least one of the following: the number of ports, the frequency domain density, the starting position of the frequency domain RB, the number of the frequency domain RB, the frequency domain allocation, and the time domain start Location and code division multiplexing type.
  • the base station may use a physical downlink control channel (PDCCH) associated with the first message, a physical downlink shared channel (PDSCH) associated with the first message, and the first message.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • CORESET control resource set
  • search space common search space, CSS
  • SSB physical layer cell
  • the base station uses the maximum possible number of synchronization signal blocks SSB associated with the first message, the synchronization signal associated with the first message
  • the time domain position of the block SSB, the number of SSBs associated with the first message, the carrier frequency range associated with the first message, the bandwidth of the search space of the PDCCH associated with the first message, the At least one item in the random access response RAR protocol data packet PDU carried by the PDCCH and the PDSCH associated with the first message is used to determine the number of ports corresponding to the CSI-RS.
  • the base station may control the bandwidth of the resource set according to the maximum possible number of SSBs associated with the first message Determine the number of ports nrofPorts corresponding to the CSI-RS.
  • the maximum possible number of SSBs is related to the carrier frequency range.
  • the maximum possible number of SSBs is 4.
  • the maximum possible number of SSBs is 8.
  • the maximum possible number of SSBs is 64.
  • f0 is 3GHz.
  • the maximum possible number of SSBs is 8, that is, the carrier frequency is located in the first frequency range
  • the first frequency range may be less than 7.125 GHz.
  • the maximum possible number of SSBs is 64, that is, the carrier frequency is located in the second frequency range
  • the second frequency range may be greater than 7.125 GHz and less than 52.6 GHz.
  • the number of ports corresponding to CSI-RS is 4.
  • the maximum possible number of SSBs is 8, and When it is 48, the number of ports corresponding to CSI-RS is 8.
  • the maximum possible number of SSBs is 8, and When it is 96, the number of ports corresponding to CSI-RS is 16.
  • the maximum possible number of SSBs is 64, and When it is 24, the number of ports corresponding to CSI-RS is 2. When the maximum possible number of SSBs is 64, and When it is 48, the number of ports corresponding to CSI-RS is 4. When the maximum possible number of SSBs is 64, and When it is 96, the number of ports corresponding to CSI-RS is 8.
  • the bandwidth of the control resource set can be controlled according to the PDCCH associated with SIB1 Determine the number of ports nrofPorts corresponding to the CSI-RS.
  • the values of P1, P2, and P3 can be determined according to the carrier frequency or subcarrier interval where the CSI-RS (or SIB1, SSB) is located, that is, different tables can be defined at different carrier frequencies or subcarrier intervals to determine the corresponding P1, P2, and P3.
  • P1, P2, and P1 may be determined according to the maximum number of SSBs supported by the frequency band or bandwidth part (BWP) where the CSI-RS (or initial access) is located, and the actually sent SSBs (or the number of sent SSBs). The value of P3.
  • the number of ports corresponding to the CSI-RS is 2.
  • the maximum possible number of SSBs is 64 and the number of transmitted SSBs is 16
  • the number of ports corresponding to the CSI-RS is 4.
  • the maximum possible number of SSBs is 64 and the number of transmitted SSBs is 30, the number of ports corresponding to the CSI-RS is 2.
  • the maximum possible number of SSBs is 40 and the number of transmitted SSBs is 30, the number of ports corresponding to the CSI-RS is 2.
  • the number of ports nrofPorts corresponding to the CSI-RS may be determined according to the PDCCH associated with the SIB1. Specifically, the number of ports nrofPorts corresponding to the CSI-RS is determined according to the CSI-RS port information (CSI-RS nrofPorts) field in the PDCCH associated with the SIB1.
  • CSI-RS nrofPorts CSI-RS port information
  • the base station can associate the bandwidth of the PDCCH search space with the first message according to the first message. At least one of the PDCCH associated with the first message and the PDSCH associated with the first message, determine the number of frequency domain resource blocks RB of the CSI-RS.
  • the number nrofRBs of the frequency domain RBs of the CSI-RS may be determined according to the CSI-RS frequency domain resource assignment (frequency domain resource assignment for CSI-RS) field in the PDCCH associated with SIB1.
  • the number of frequency domain RBs of the CSI-RS may be determined according to the bandwidth of the control resource set of the PDCCH associated with the SIB1.
  • the bandwidth of the PDCCH control resource set associated with the SIB1 may be determined according to the indication information of a master information block (master information block, MIB).
  • the number nrofRBs of CSI-RS frequency domain resource RBs is equal to the bandwidth of the control resource set of the PDCCH associated with SIB1
  • Table 4 is the bandwidth of the control resource set for a group of PDCCHs
  • the mapping relationship with the number of CSI-RS frequency domain RBs nrofRBs can be obtained by looking up the table Obtain the number of CSI-RS frequency domain RBs nrofRBs.
  • the values of K1, K2, and K3 can be determined according to the carrier frequency or subcarrier spacing where the CSI-RS (or SIB1, SSB) is located, that is, the values of K1, K2, and K3 can be determined at different carrier frequencies or subcarriers. Tables with different carrier spacing definitions determine the corresponding values of K1, K2, and K3.
  • the values of K1, K2, and K3 are determined according to the frequency band where the CSI-RS (or initial access) is located or the maximum number of SSBs supported by the BWP, and the values of K1, K2, and K3 can be determined according to the actually transmitted SSB (or the number of transmitted SSBs).
  • the number nrofRBs of the frequency domain RBs of the CSI-RS may be determined according to the PDCCH associated with the SIB1 and/or the PDSCH associated with the SIB1.
  • the number nrofRBs of CSI-RS frequency domain RBs is equal to the PDSCH bandwidth associated with SIB1, or the number nrofRBs of CSI-RS frequency domain RBs is determined according to the frequency domain resource assignment (frequency domain resource assignment) field in the PDCCH associated with SIB1.
  • the number nrofRBs of CSI-RS frequency domain RBs is determined according to the CSI-RS frequency domain resource assignment (frequency domain resource assignment for CSI-RS) field in the PDCCH associated with SIB1.
  • Table 5 is a mapping relationship between SIB1PDSCH bandwidth, frequency domain resource allocation in SIB1PDCCH, CSI-RS frequency domain resource allocation in SIB1PDCCH and the number of CSI-RS frequency domain RBs nrofRBs.
  • the number nrofRBs of CSI-RS frequency domain RBs may be determined according to at least one of SIB1PDSCH bandwidth, frequency domain resource allocation in SIB1PDCCH, and CSI-RS frequency domain resources in SIB1PDCCH by looking up a table.
  • R1, R2, K1, and K2 can be determined according to the carrier frequency or subcarrier spacing where the CSI-RS (or SIB1, SSB) is located, that is, the values of R1, R2, K1, and K2 can be determined at different carrier frequencies. Or tables with different subcarrier spacing definitions determine the corresponding values of R1, R2, K1, and K2.
  • the base station when the resource mapping parameter is the starting position of the frequency domain RB of the CSI-RS, the base station according to the starting position of the PDCCH control resource set associated with the first message, the first at least one of the start position of the PDCCH associated with the message, the end position of the PDCCH associated with the first message, the start position of the PDSCH associated with the first message, and the end position of the PDSCH associated with the first message, Determine the starting position of the frequency domain RB of the CSI-RS.
  • the starting position and/or the ending position endingRB of the frequency domain RB of the CSI-RS may be determined according to the starting position of the PDCCH control resource set associated with the SIB1.
  • the starting position of the PDCCH control resource set associated with the SIB1 is determined according to the offset (CORESET Offset) of the control resource set indicated by the MIB indication information and the frequency starting position of the SSB associated with the SIB1.
  • the location refers to RB or RB grouping.
  • the starting position of the CSI-RS frequency domain RB, startingRB is equal to the starting position of the PDCCH CORESET associated with SIB1.
  • the starting position startingRB and/or the ending position endingRB of the CSI-RS frequency domain RB may be determined according to the starting position or ending position of the PDCCH associated with SIB1.
  • the base station can obtain the start position or the end position of the PDCCH by sending the PDCCH associated with the SIB1
  • the UE can obtain the start position or the end position of the PDCCH by receiving the PDCCH associated with the SIB1.
  • the starting position of the CSI-RS frequency domain RB, startingRB is equal to the starting position of the PDCCH associated with SIB1; or, the starting position of the CSI-RS frequency domain RB, startingRB, is equal to the ending position of the PDCCH associated with SIB1.
  • the starting position of the CSI-RS frequency domain RB, startingRB is equal to the central position within the PDCCH bandwidth associated with SIB1.
  • the starting position startingRB and/or the ending position endingRB of the CSI-RS frequency domain RB may be determined according to the starting position or ending position of the PSDCH associated with SIB1.
  • the base station can obtain the start position or end position of the PSDCH by sending the PSDCH associated with SIB1
  • the UE can obtain the start position or end position of the PSDCH by receiving the PSDCH associated with SIB1.
  • the starting position of the CSI-RS frequency domain RB, startingRB is equal to the starting position of the PSDCH associated with SIB1; or, the starting position of the CSI-RS frequency domain RB, startingRB, is equal to the ending position of the PSDCH associated with SIB1.
  • the starting position of the CSI-RS frequency domain RB, startingRB is equal to the central position within the PSDCH bandwidth associated with SIB1.
  • the base station when the resource mapping parameter is the frequency domain allocation of CSI-RS, the base station according to at least one of the physical cell identifier associated with the first message and the index of the SSB associated with the first message , and determine the frequency domain allocation of the CSI-RS.
  • the frequency domain allocation (frequency domain allocation) represents the subcarrier position of the CSI-RS in the resource block RB.
  • the subcarrier position can be mod nrofPorts, where nrofPorts is the number of ports corresponding to the CSI-RS, and mod represents a modulo operation.
  • the frequency domain allocation of the CSI-RS may be determined according to the SSB index associated with SIB1.
  • the subcarrier position of the CSI-RS in the resource block RB may be the SSB index mod nrofPorts, where nrofPorts is the number of ports corresponding to the CSI-RS.
  • the index of the SSB may refer to the index of the SSB in the sent SSB, or the time index of the SSB, or the index of the SSB within half a system frame, or the SSB in the maximum possible transmission index in the SSB.
  • the base station may determine the time domain starting position of the CSI-RS according to the PDCCH associated with SIB1 and/or the PDSCH associated with SIB1 (first OFDM symbol in time domain). Wherein, SIB1 and CSI-RS are sent in the same time slot.
  • the time domain starting position of the CSI-RS is the last OFDM symbol associated with the PDSCH of SIB1.
  • the time domain starting position of the CSI-RS is the kth OFDM symbol after the last OFDM symbol of the PDSCH associated with SIB1.
  • k any one of 0 and 1.
  • the time domain starting position of the CSI-RS may be determined according to the time domain resource assignment (time domain resource assignment) field in the PDCCH associated with the SIB1.
  • the time domain starting position of the CSI-RS is determined according to the CSI-RS frequency domain resource assignment (time domain resource assignment for CSI-RS) field in the PDCCH associated with SIB1.
  • the time domain starting position of the CSI-RS is the OFDM symbol where the demodulation reference signal (de-modulation reference signal, DMRS) corresponding to the PDSCH associated with the SIB1 is located.
  • the base station when the base station generates the CSI-RS sequence according to the sequence generation parameter, the base station generates the CSI-RS sequence according to the index of the SSB associated with the first message, the physical cell identifier associated with the first message, the first message
  • the pseudo-random sequence generator corresponding to CSI-RS is initialized
  • n ID is the index of the SSB associated with SIB1 or the physical cell identity is the number of OFDM symbols in a slot, is one of the following parameters: the index of the time slot of the PDCCH control resource set associated with SIB1, the index of the time slot of the PDCCH associated with SIB1, the index of the time slot of the PDSCH associated with SIB1, and the index of the time slot where the CSI-RS is located.
  • l is one of the following parameters: the index of the start or end OFDM symbol of the PDCCH control resource set associated with SIB1, the index of the start or end OFDM symbol of the PDCCH associated with SIB1, the start or end OFDM symbol of the PDSCH associated with SIB1 , the index of the OFDM symbol where the CSI-RS is located.
  • pseudo-random sequence generator corresponding to CSI-RS should be initialized as:
  • K is a non-negative integer, indicating the number of candidate SSBs, for example, K can be 4, 8, 16, 64, or 128; or K can be 10, or 20.
  • the base station may be based on the random access wireless network temporary identifier (random access-radio network temporary identifier, RA-RNTI) associated with the first message, the index of the time slot of the random access opportunity associated with the first message , the index of the frequency of the random access opportunity associated with the first message, the index of the carrier where the random access opportunity associated with the first message is located, and the partial bandwidth BWP where the random access opportunity associated with the first message is located.
  • the sequence of the CSI-RS is determined by at least one of the index of the first message and the index of the starting OFDM symbol of the random access opportunity associated with the first message.
  • the pseudo-random sequence generator corresponding to CSI-RS should be initialized as:
  • RA-RNTI is a random access wireless network temporary identifier.
  • the base station may determine the sequence of the CSI-RS according to the temporary wireless network temporary identifier (temporary cell-radio network temporary identifier, TC-RNTI) associated with the first message.
  • temporary wireless network temporary identifier temporary cell-radio network temporary identifier, TC-RNTI
  • pseudo-random sequence generator corresponding to CSI-RS should be initialized as:
  • TC-RNTI is a temporary wireless network temporary identifier.
  • the time period for CSI-RS transmission is related to the time period of the SSB or SIB1.
  • M or N may be determined according to the first message, or may be predefined.
  • the resource configuration of the CSI-RS can also be determined by combining the above two or more ways.
  • the above only enumerates several parameters in the resource configuration of the CSI-RS, and the present application can also use the same method to determine other parameters in the resource configuration of the CSI-RS, which will not be repeated here. Similar methods for determining the resource configuration of the CSI-RS are all within the scope of protection of the present application.
  • correlation can also be understood as “correspondence”.
  • the index of the associated SSB can also be understood as: the PDCCH corresponding to the first message, the PDSCH corresponding to the first message, the control resource set of the PDCCH corresponding to the first message, the search space of the PDCCH corresponding to the first message, the The physical cell identifier and the index of the SSB corresponding to the first message.
  • the SSB associated with the first message may refer to an SSB quasi-co-located with the first message (eg, SIB1, message 2, or message 4).
  • the SSB associated with the first message refers to the SSB associated with the message 1 in the random access process, where the first message is the message 2 or the message 4 corresponding to the message 1 .
  • the UE may send a second message to the base station, where the second message includes at least one of the index of the synchronization signal block SSB and the CSI-RS request information, and the base station requests the information according to the SSB index and the CSI-RS.
  • the first message and the CSI-RS are sent at the same time, or the first message is sent first and then the CSI-RS is sent, or the first message and the CSI-RS are sent in the same time slot, for example, in the first message.
  • the CSI-RS is transmitted in a transmission slot.
  • the second message may be Msg3.
  • the base station sends the first message and the CSI-RS to the UE.
  • the base station sends the first message and the CSI-RS together to the UE.
  • the fact that the base station sends the first message and the CSI-RS together to the UE can be understood as: the base station first sends the first message, and then sends the CSI-RS.
  • the base station sends the first message and the CSI-RS at the same time, for example, the first message and the CSI-RS have the same time domain and orthogonal frequency domains.
  • the time (time slot and/or OFDM symbol) when the base station sends the first message has an associated relationship with the time (time slot and/or OFDM symbol) for sending CSI-RS, for example, the starting OFDM symbol for sending CSI-RS is X OFDM symbols after the last OFDM symbol of the first message is transmitted, where X is an integer.
  • it is transmitted at the same time (slot and/or OFDM symbol) and frequency (resource block or part of the bandwidth).
  • the UE determines the resource configuration of the CSI-RS according to the first message.
  • the method for the UE to determine the CSI-RS resource configuration according to the first message is the same as the method for the base station to determine the CSI-RS resource configuration according to the first message.
  • the UE may receive the CSI-RS sent by the base station according to the resource configuration of the CSI-RS.
  • the UE can obtain channel information according to CSI-RS, realize beam alignment, and so on.
  • the UE and the base station can complete the above steps in the wireless access process.
  • the wireless access process may include cell search, downlink synchronization, random access, handover, and the like.
  • the resource configuration of the CSI-RS is determined by the first message, the resource configuration overhead of the CSI-RS is reduced, and the beam alignment is more accurate.
  • the beam transceiver performance in the wireless access process can be improved, the delay of random access and subsequent data transmission can be reduced, and the communication performance can be improved.
  • FIG. 7 is a flowchart of a method for communicating a reference signal provided by an embodiment of the present application.
  • the embodiment of the present application includes at least the following steps:
  • the base station sends the SSB to the UE.
  • the base station may send the SSB to the UE according to a preset period.
  • the base station may indicate, through the SSB, the control resource set of the PDCCH associated with the No. 1 system information block SIB1 and the search space associated with the SIB1.
  • the UE may receive the No. 1 system information block sent by the base station according to the control resource set and search space of the PDCCH.
  • the parameter information of the control resource set of the PDCCH includes: the bandwidth of the control resource set Number of OFDM symbols Offset value relative to the starting position of the SSB.
  • the unit is a resource block (resource block, RB).
  • the slot position of the search space of the PDCCH associated with SIB1 is related to the SSB index.
  • the slot position of the PDCCH associated with SIB1 corresponding to SSB i is: M and O can be determined through MIB indication information and looking up Table 6.
  • the last column in Table 6 is the position of the starting OFDM symbol of the control resource set within the slot.
  • the base station transmits the PDCCH associated with the SIB1, the PDSCH associated with the SIB1, and the CSI-RS associated with the SIB1 together to the UE.
  • sending the PDCCH associated with SIB1, PDSCH associated with SIB1, and CSI-RS associated with SIB1 together can be understood as: CSI-RS and PDCCH associated with SIB1 and/or PDSCH associated with SIB1 at the same time (time slot and/or OFDM symbol) and frequency (resource block or fractional bandwidth).
  • the base station first transmits SIB1 and then transmits CSI-RS.
  • the time (time slot and/or OFDM symbol) at which the base station sends SIB1 has an associated relationship with the time (time slot and/or OFDM symbol) at which CSI-RS is sent, for example, the starting OFDM symbol for sending CSI-RS is when SIB1 is sent X OFDM symbols after the last OFDM symbol of , where X is an integer.
  • the base station transmits the SIB1 and the CSI-RS at the same time, for example, the time domain of the SIB1 and the CSI-RS are the same, and the frequency domain is orthogonal.
  • the UE can obtain the PDCCH associated with SIB1, the PDSCH associated with SIB1, the control resource set of PDCCH associated with SIB1, the search space of PDCCH associated with SIB1, the At least one of the physical cell identifier and the index of the synchronization signal block SSB associated with SIB1 determines the resource configuration of the CSI-RS.
  • the resource configuration of the CSI-RS includes at least one of the following: a resource mapping parameter, a sequence generation parameter, a period, and a slot position.
  • the resource mapping parameter of the CSI-RS includes at least one of the following: the number of ports, the frequency domain density, the starting position of the frequency domain RB, the number of the frequency domain RB, the frequency domain allocation, and the time domain start Location and code division multiplexing type.
  • the method for the UE to determine the CSI-RS resource configuration is the same as the method for the base station to determine the CSI-RS resource configuration in the embodiment shown in FIG.
  • the UE receives the CSI-RS sent by the base station according to the resource configuration of the CSI-RS.
  • the UE sends message 1 to the base station.
  • message 1 may include one or more random access preambles associated with SSB or CSI-RS.
  • the UE may measure the signal between the base station and the UE according to the SSB or the CSI-RS to determine the measurement information of the SSB or the CSI-RS. And one or more random access preambles associated with the SSB or the CSI-RS are determined according to the measurement information of the SSB and the CSI-RS.
  • the UE may use multiple antenna ports to send a random access preamble, wherein the precoding manner for sending the random access preamble is determined according to the measurement information of CSI-RS or SSB.
  • the UE may use multiple antenna ports to send multiple random access preambles, wherein each random access preamble adopts different precoding manners.
  • the base station sends message 2 to the UE.
  • message 2 is a random access response.
  • the message 2 includes an uplink scheduling grant.
  • the UE sends message 3 to the base station according to the uplink scheduling grant.
  • the message 3 may be an uplink transmission scheduled by a random access response.
  • the UE may report CSI-RS or SSB measurement information to the base station, where the measurement information includes at least one of the following: a CSI-RS resource index (CSI-RS resource index, CRI), a channel quality indicator (channel quality indicator, CQI), precoding matrix index (precoding matrix indicator, PMI), rank index (rank index, RI).
  • CSI-RS resource index CRI
  • CQI channel quality indicator
  • precoding matrix index precoding matrix indicator
  • PMI rank index
  • rank index rank index
  • the base station sends message 4 or indication information to the UE, where the indication information is used to indicate retransmission of message 3 .
  • the indication information is used to indicate retransmission of message 3 .
  • the CSI-RS and SIB1 are sent to the UE together, so that the CSI-RS resource configuration is completed during the wireless access process or before the RRC connection is established with the base station, and the CSI-RS is reduced.
  • the resource allocation overhead of the RS makes beam alignment more accurate.
  • the beam transceiver performance in the wireless access process is improved, the delay of random access and subsequent data transmission is reduced, and the communication performance is improved.
  • FIG. 8 is a flowchart of a method for communicating a reference signal provided by an embodiment of the present application.
  • the embodiment of the present application includes at least the following steps:
  • the base station sends the SSB to the UE.
  • This step is the same as S701 in the embodiment shown in FIG. 7 , and reference may be made to S701 for a specific implementation manner, and this step will not be repeated.
  • the base station sends the PDCCH associated with the SIB1 and the PDSCH associated with the SIB1 to the UE.
  • the UE sends message 1 to the base station.
  • message 1 may include one or more random access preambles associated with the SSB.
  • the UE may measure the signal between the base station and the UE according to the SSB to determine the measurement information of the SSB. And according to the measurement information of the SSB, one or more random access preambles associated with the SSB are determined.
  • the UE may use multiple antenna ports to send a random access preamble, wherein the precoding manner for sending the random access preamble is determined according to the measurement information of the SSB.
  • the UE may use multiple antenna ports to send multiple random access preambles, wherein each random access preamble adopts different precoding manners.
  • the base station sends message 2 (Msg2) together with the CSI-RS to the UE.
  • message 2 may be a random access response.
  • the message 2 may include an uplink scheduling grant.
  • sending message 2 and CSI-RS together can be understood as: CSI-RS and PDCCH associated with message 2 and/or PDSCH associated with message 2 are at the same time (time slot and/or OFDM symbol) and frequency (resource block or part of the bandwidth) is sent.
  • the base station first transmits message 2, and then transmits the CSI-RS.
  • the time (time slot and/or OFDM symbol) at which the base station sends message 2 has an associated relationship with the time (time slot and/or OFDM symbol) at which CSI-RS is sent, for example, the starting OFDM symbol for sending CSI-RS is sent Y OFDM symbols after the last OFDM symbol of message 2, where Y is an integer.
  • the base station sends the message 2 and the CSI-RS at the same time. For example, the time domain of the message 2 and the CSI-RS are the same, and the frequency domains are orthogonal.
  • the UE can use the random access response protocol data unit (random access response protocol data unit, RAR PDU) in the PDCCH associated with the message 2, the PDSCH associated with the message 2, and the PDSCH associated with the message 2. ) in the uplink scheduling grant, the control resource set of the PDCCH associated with the message 2, the search space of the PDCCH associated with the message 2, the physical cell identity associated with the message 2, and the synchronization signal block associated with the message 2. At least one of the block SSB index , and determine the resource configuration of the CSI-RS.
  • RAR PDU random access response protocol data unit
  • the search space and control resource set of the PDCCH associated with message 2 may be the same as the search space and control resource set of the PDCCH associated with SIB1.
  • the PDCCH control resource set and the parameter information of the search space corresponding to SIB1 can be indicated through the MIB in the SSB, that is, the search space and control resource set of the PDCCH associated with the message 2 can be obtained.
  • the search space and control resource set of the PDCCH associated with message 2 may also be configured through SIB1 or other RRC messages.
  • the base station can configure the values or value ranges of some parameters in the resource configuration of the CSI-RS through SIB1, and use at least one of the PDCCH associated with message 2, the PDSCH associated with message 2, and the RAR PDU associated with message 2. Indicates the value or value range of another part of the parameter in the resource configuration indicating the CSI-RS.
  • the resource configuration of the CSI-RS includes at least one of the following: a resource mapping parameter, a sequence generation parameter, a period, and a slot position.
  • the resource mapping parameter of the CSI-RS includes at least one of the following: the number of ports, the frequency domain density, the starting position of the frequency domain RB, the number of the frequency domain RB, the frequency domain allocation, and the time domain start Location and code division multiplexing type.
  • the method for the UE to determine the CSI-RS resource configuration is the same as the method for the base station to determine the CSI-RS resource configuration in the embodiment shown in FIG.
  • the UE receives the CSI-RS sent by the base station according to the resource configuration of the CSI-RS. Then, the signal between the base station and the UE is measured according to the CSI-RS to determine the measurement information of the CSI-RS.
  • the UE sends message 3 to the base station according to the uplink scheduling grant.
  • the message 3 may also be an uplink transmission scheduled by a random access response.
  • the base station sends message 4 or indication information to the UE, where the indication information is used to instruct to retransmit message 3 .
  • the indication information is used to instruct to retransmit message 3 .
  • the CSI-RS and message 2 are sent to the UE together, so that the CSI-RS resource configuration is completed during the wireless access process or before the RRC connection is established with the base station, and the CSI is reduced.
  • -Resource configuration overhead of RS to achieve more accurate beam alignment.
  • the beam transceiver performance in the wireless access process is improved, the delay of random access and subsequent data transmission is reduced, and the communication performance is improved.
  • FIG. 9 is a flowchart of a method for communicating a reference signal provided by an embodiment of the present application.
  • the embodiment of the present application includes at least the following steps:
  • the base station sends the SSB to the UE.
  • This step is the same as S701 in the embodiment shown in FIG. 7 , and reference may be made to S701 for a specific implementation manner, and this step will not be repeated here.
  • the base station sends the PDCCH associated with the SIB1 and the PDSCH associated with the SIB1 to the UE.
  • the UE sends message 1 to the base station.
  • message 1 may include one or more random access preambles associated with the SSB.
  • the UE may measure the signal between the base station and the UE according to the SSB to determine the measurement information of the SSB. And according to the measurement information of the SSB, one or more random access preambles associated with the SSB are determined.
  • the UE may use multiple antenna ports to send a random access preamble, wherein the precoding manner for sending the random access preamble is determined according to the measurement information of the SSB.
  • the UE may use multiple antenna ports to send multiple random access preambles, wherein each random access preamble adopts different precoding manners.
  • the base station sends message 2 to the UE.
  • message 2 may be a random access response.
  • the message 2 includes an uplink scheduling grant.
  • the UE sends message 3 to the base station according to the uplink scheduling grant.
  • the message 3 may also be the uplink transmission scheduled by the random access response.
  • the message 3 may include CSI-RS request information.
  • the base station may determine to send the CSI-RS in the transmission time slot of the message 4 according to the CSI-RS request information.
  • the CSI-RS request information may include the resource configuration of the CSI-RS that the UE expects to receive.
  • the resource configuration of the CSI-RS that the UE expects to receive includes at least one of the following: the number of ports, the frequency domain density, the start of the frequency domain RB Location frequency domain resource RB number, frequency domain allocation, time domain starting position 1, code division multiplexing type.
  • message 3 may include the index or indication information of the synchronization signal block SSB.
  • the base station can determine to send the CSI-RS in the sending time slot of the message 4 according to the index or indication information of the SSB.
  • message 3 may include the index of the synchronization signal block SSB and CSI-RS request information.
  • the base station can determine to transmit the CSI-RS in the transmission time slot of the message 4 according to the index of the synchronization signal block SSB and the CSI-RS request information, wherein the CSI-RS is quasi-co-located with the SSB.
  • the base station sends message 4 together with the CSI-RS to the UE.
  • sending message 4 and CSI-RS together can be understood as: CSI-RS and PDCCH associated with message 4 and/or PDSCH associated with message 2 are at the same time (time slot and/or OFDM symbol) and frequency (resource block or part of the bandwidth) is sent.
  • the base station first transmits message 4, and then transmits the CSI-RS.
  • the time (time slot and/or OFDM symbol) at which the base station sends message 4 has an associated relationship with the time (time slot and/or OFDM symbol) at which the CSI-RS is sent, for example, the starting OFDM symbol for sending the CSI-RS is sent Z OFDM symbols after the last OFDM symbol of message 4, where Z is an integer.
  • the base station sends the message 4 and the CSI-RS at the same time, for example, the time domain of the message 4 and the CSI-RS are the same, and the frequency domain is orthogonal.
  • the UE may associate the PDCCH with the message 4, the PDSCH associated with the message 4, the control resource set of the PDCCH associated with the message 4, the search space of the PDCCH associated with the message 4, the physical cell identifier associated with the message 4, and the message 4. At least one item in the index of the synchronization signal block SSB, determines the resource configuration of the CSI-RS.
  • the search space and control resource set of the PDCCH associated with message 4 may be the same as the search space and control resource set of the PDCCH associated with SIB1.
  • the PDCCH control resource set and the parameter information of the search space corresponding to SIB1 can be indicated through the MIB in the SSB, that is, the search space and control resource set of the PDCCH associated with message 4 can be obtained.
  • the search space and control resource set of the PDCCH associated with message 4 may also be configured through SIB1 or other RRC messages.
  • the base station can configure the values or value ranges of some parameters in the resource configuration of the CSI-RS through SIB1, and use at least one of the PDCCH associated with message 2, the PDSCH associated with message 2, and the RAR PDU associated with message 2. Indicates the value or value range of another part of the parameter in the resource configuration indicating the CSI-RS.
  • the resource configuration of the CSI-RS includes at least one of the following: a resource mapping parameter, a sequence generation parameter, a period, and a slot position.
  • the resource mapping parameter of the CSI-RS includes at least one of the following: the number of ports, the frequency domain density, the starting position of the frequency domain RB, the number of the frequency domain RB, the frequency domain allocation, and the time domain start Location and code division multiplexing type.
  • the method for the UE to determine the CSI-RS resource configuration is the same as the method for the base station to determine the CSI-RS resource configuration in the embodiment shown in FIG.
  • the UE receives the CSI-RS sent by the base station according to the resource configuration of the CSI-RS. Then, the signal between the base station and the UE is measured according to the CSI-RS to determine the measurement information of the CSI-RS.
  • the CSI-RS and message 4 are sent to the UE together, so that the CSI-RS resource configuration is completed during the wireless access process or before the RRC connection is established with the base station, and the CSI is reduced.
  • -Resource configuration overhead of RS to achieve more accurate beam alignment.
  • the beam transceiver performance in the wireless access process is improved, the delay of random access and subsequent data transmission is reduced, and the communication performance is improved.
  • the methods and operations implemented by the terminal device can also be implemented by components (such as chips or circuits) that can be used in the terminal device, and the methods and operations implemented by the network device can also be implemented by A component (eg, chip or circuit) implementation that may be used in a network device.
  • components such as chips or circuits
  • a component eg, chip or circuit
  • each network element such as a transmitter device or a receiver device
  • each network element includes hardware structures and/or software modules corresponding to performing each function in order to implement the above functions.
  • Those skilled in the art should realize that the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the transmitting-end device or the receiving-end device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module. middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware, or can be implemented in the form of software function modules.
  • the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation. The following description will be given by using the division of each function module corresponding to each function as an example.
  • FIG. 10 is a schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 10 may include a receiving module 1001 and a sending module 1003 , and optionally, a processing module 1002 .
  • the receiving module 1001 and the sending module 1003 can communicate with the outside, and the processing module 1002 is used for processing, such as determining the resource configuration of the CSI-RS.
  • the receiving module 1001 and the transmitting module 1003 may also be referred to as a communication interface, a transceiving unit or a transceiving module.
  • the receiving module 1001 and the sending module 1003 may be used to perform the actions performed by the terminal device in the above method embodiments.
  • the receiving module 1001 and the sending module 1003 may also be called transceiver modules or transceiver units (including a receiving unit and/or a sending unit), and are respectively used to perform the sending and receiving steps of the terminal device in the above method embodiments.
  • the communication apparatus 10 may implement steps or processes corresponding to the terminal equipment in the above method embodiments, for example, it may be a terminal equipment, or a chip or circuit configured in the terminal equipment.
  • the receiving module 1001 and the sending module 1003 are configured to perform the transceiving related operations on the terminal device side in the above method embodiments, and the processing module 1002 is configured to perform the processing related operations on the terminal device in the above method embodiments.
  • the receiving module 1001 is configured to receive the first message sent by the network device, the first message includes at least one of the No. 1 system information block, the message 2 and the message 4; the processing module 1002 is configured to, according to the first message, Determine the resource configuration of the channel state information reference signal CSI-RS; the receiving module 1001 is further configured to receive the CSI-RS sent by the network device according to the resource configuration.
  • the first message is sent together with the CSI-RS.
  • the processing module 1002 is further configured to control resource sets according to the physical downlink control channel PDCCH associated with the first message, the physical downlink shared channel PDSCH associated with the first message, and the PDCCH associated with the first message , at least one of the search space of the PDCCH associated with the first message, the physical cell identifier associated with the first message, and the index of the synchronization signal block SSB associated with the first message, to determine the CSI-RS resource configuration.
  • the processing module 1002 is further configured to, according to the maximum possible number of synchronization signal blocks SSB associated with the first message, the time domain position of the synchronization signal block SSB associated with the first message, and the SSB associated with the first message number, the carrier frequency range associated with the first message, the bandwidth of the search space of the PDCCH associated with the first message, the random access carried by the PDCCH associated with the first message and the PDSCH associated with the first message In response to at least one item in the RAR protocol data message PDU, determine the number of ports corresponding to the CSI-RS.
  • the processing module 1002 is further configured to determine according to at least one of the bandwidth of the search space of the PDCCH associated with the first message, the PDCCH associated with the first message, and the PDSCH associated with the first message.
  • the processing module 1002 is further configured to, according to the starting position of the control resource set of the PDCCH associated with the first message, the starting position of the PDCCH associated with the first message, and the PDCCH associated with the first message At least one of the end position, the start position of the PDSCH associated with the first message, and the end position of the PDSCH associated with the first message, determines the start position of the frequency domain RB of the CSI-RS.
  • the processing module 1002 is further configured to determine the frequency domain allocation of the CSI-RS according to at least one of the physical cell identifier associated with the first message and the index of the SSB associated with the first message.
  • the processing module 1002 is further configured to: according to the index of the SSB associated with the first message, the physical cell identifier associated with the first message, and the time slot of the control resource set of the PDCCH associated with the first message.
  • index the index of the time slot of the PDCCH associated with the first message, the index of the time slot of the PDSCH associated with the first message, the start or end orthogonal frequency division of the PDCCH control resource set associated with the first message.
  • the index of the multiplexed OFDM symbol, the index of the time slot where the CSI-RS is located, the index of the start or end OFDM symbol of the PDCCH associated with the first message, and the start or end OFDM of the PDSCH associated with the first message The sequence corresponding to the CSI-RS is determined by at least one of the index of the symbol, the index of the OFDM symbol where the CSI-RS is located, and the number of ports corresponding to the CSI-RS.
  • the processing module 1002 is further configured to, according to the random access wireless network temporary identifier RA-RNTI associated with the first message, the index of the time slot of the random access opportunity associated with the first message, the first message An index of the frequency of the random access opportunity associated with a message, the index of the carrier where the random access opportunity associated with the first message is located, the index of the partial bandwidth BWP where the random access opportunity associated with the first message is located, the At least one of the indices of the starting OFDM symbol of the random access opportunity associated with the first message is used to determine the sequence corresponding to the CSI-RS.
  • the random access wireless network temporary identifier RA-RNTI associated with the first message
  • the index of the time slot of the random access opportunity associated with the first message the first message
  • the first message An index of the frequency of the random access opportunity associated with a message, the index of the carrier where the random access opportunity associated with the first message is located, the index of the partial bandwidth BWP where the random access opportunity associated with the first message is located, the At least
  • the sending module 1003 is configured to send a second message to the network device, where the second message includes at least one of the index of the synchronization signal block SSB and the CSI-RS request information, the index of the SSB and the CSI-RS request information. At least one item of the CSI-RS request information is used to instruct the network device to send the CSI-RS in the sending time slot of the first message.
  • the resource configuration of the CSI-RS includes at least one of the following: a resource mapping parameter, a sequence generation parameter, a period, and a slot position.
  • the resource mapping parameter of the CSI-RS includes at least one of the following: the number of ports, the frequency domain density, the starting position of the frequency domain RB, the number of the frequency domain RB, the frequency domain allocation, the time domain Start position and code division multiplexing type.
  • each module may also correspond to the corresponding descriptions of the method embodiments shown in FIG. 6 to FIG. 9 to execute the methods and functions performed by the terminal device in the above embodiments.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication apparatus 11 may include a sending module 1101 and a receiving module 1103 , and optionally, a processing module 1102 .
  • the receiving module 1101 and the sending module 1103 can communicate with the outside, and the processing module 1102 is used for processing, such as determining the resource configuration of the CSI-RS.
  • the sending module 1101 and the receiving module 1103 may also be referred to as a communication interface, a transceiver module or a transceiver unit.
  • the sending module 1101 and the receiving module 1103 may be configured to perform the actions performed by the network device in the above method embodiments.
  • the sending module 1101 and the receiving module 1103 may also be called a transceiver module or a transceiver unit (including a sending unit and/or a receiving unit), and are respectively used to perform the steps of sending and receiving by the network device in the above method embodiments.
  • the communication apparatus 11 may implement steps or processes corresponding to those performed by the network device in the above method embodiments, for example, may be a network device, or a chip or circuit configured in the network device.
  • the sending module 1101 and the receiving module 1103 are configured to perform the transceiving related operations on the network device side in the above method embodiments, and the processing module 1102 is configured to perform the processing related operations on the network device in the above method embodiments.
  • the processing module 1102 is configured to determine the resource configuration of the channel state information reference signal CSI-RS according to the first message, where the first message includes at least one of system information block No. 1, message 2 and message 4; the sending module 1101, for sending the first message and the CSI-RS to the terminal device.
  • the first message is sent together with the CSI-RS.
  • the processing module 1102 is further configured for the network device to use the physical downlink control channel PDCCH associated with the first message, the physical downlink shared channel PDSCH associated with the first message, and the PDCCH associated with the first message.
  • the control resource set associated with the first message, the search space of the PDCCH associated with the first message, the physical cell identifier associated with the first message, and the index of the synchronization signal block SSB associated with the first message determine the The resource configuration of the CSI-RS described above.
  • the processing module 1102 is further configured to, according to the maximum possible number of synchronization signal blocks SSB associated with the first message, the time domain position of the synchronization signal block SSB associated with the first message, and the SSB associated with the first message number, the carrier frequency range associated with the first message, the bandwidth of the search space of the PDCCH associated with the first message, the random access carried by the PDCCH associated with the first message and the PDSCH associated with the first message In response to at least one item in the RAR protocol data message PDU, determine the number of ports corresponding to the CSI-RS.
  • the processing module 1102 is further configured to determine according to at least one of the bandwidth of the search space of the PDCCH associated with the first message, the PDCCH associated with the first message, and the PDSCH associated with the first message.
  • the processing module 1102 is further configured to, according to the starting position of the control resource set of the PDCCH associated with the first message, the starting position of the PDCCH associated with the first message, and the PDCCH associated with the first message At least one of the end position, the start position of the PDSCH associated with the first message, and the end position of the PDSCH associated with the first message, determines the start position of the frequency domain RB of the CSI-RS.
  • the processing module 1102 is further configured to determine the frequency domain allocation of the CSI-RS according to at least one of the physical cell identifier associated with the first message and the index of the SSB associated with the first message.
  • the processing module 1102 is further configured to: according to the index of the SSB associated with the first message, the physical cell identifier associated with the first message, and the time slot of the control resource set of the PDCCH associated with the first message.
  • index the index of the time slot of the PDCCH associated with the first message, the index of the time slot of the PDSCH associated with the first message, the start or end orthogonal frequency division of the PDCCH control resource set associated with the first message.
  • the index of the multiplexed OFDM symbol, the index of the time slot where the CSI-RS is located, the index of the start or end OFDM symbol of the PDCCH associated with the first message, and the start or end OFDM of the PDSCH associated with the first message The sequence of the CSI-RS is determined by at least one of the index of the symbol, the index of the OFDM symbol where the CSI-RS is located, and the number of ports corresponding to the CSI-RS.
  • the processing module 1102 is further configured to, according to the random access wireless network temporary identifier RA-RNTI associated with the first message, the index of the time slot of the random access opportunity associated with the first message, the first message An index of the frequency of the random access opportunity associated with a message, the index of the carrier where the random access opportunity associated with the first message is located, the index of the partial bandwidth BWP where the random access opportunity associated with the first message is located, the at least one of the indices of the starting OFDM symbol of the random access opportunity associated with the first message, to determine the sequence of the CSI-RS.
  • the random access wireless network temporary identifier RA-RNTI associated with the first message
  • the index of the time slot of the random access opportunity associated with the first message the first message An index of the frequency of the random access opportunity associated with a message, the index of the carrier where the random access opportunity associated with the first message is located, the index of the partial bandwidth BWP where the random access opportunity associated with the first message is located, the at least one of the indices of the
  • the receiving module 1103 is configured to receive a second message sent by the terminal device, where the second message includes at least one of the index of the synchronization signal block SSB and the CSI-RS request information;
  • the processing module 1102 is further configured to determine to send the CSI-RS in the sending time slot of the first message according to at least one of the index of the SSB and the CSI-RS request information.
  • the resource configuration of the CSI-RS includes at least one of the following: a resource mapping parameter, a sequence generation parameter, a period, and a slot position.
  • the resource mapping parameter of the CSI-RS includes at least one of the following: the number of ports, the frequency domain density, the starting position of the frequency domain RB, the number of the frequency domain RB, the frequency domain allocation, the time domain Start position and code division multiplexing type.
  • each module may also correspond to the corresponding descriptions of the method embodiments shown in FIGS. 6-9 to execute the methods and functions performed by the network device in the foregoing embodiments.
  • FIG. 12 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the above method embodiments, or implement the steps or processes performed by the terminal device in the above method embodiments.
  • the terminal device includes a processor 1201 and a transceiver 1202 .
  • the terminal device further includes a memory 1203 .
  • the processor 1201, the transceiver 1202 and the memory 1203 can communicate with each other through an internal connection path to transmit control and/or data signals.
  • the computer program is invoked and executed to control the transceiver 1202 to send and receive signals.
  • the terminal device may further include an antenna for sending the uplink data or uplink control signaling output by the transceiver 1202 through wireless signals.
  • the above-mentioned processor 1201 and the memory 1203 can be combined into a processing device, and the processor 1201 is configured to execute the program codes stored in the memory 1203 to realize the above-mentioned functions.
  • the memory 1203 may also be integrated in the processor 1201 or independent of the processor 1201 .
  • the processor 1201 may correspond to the processing module in FIG. 10 .
  • the foregoing transceiver 1202 may correspond to the receiving module and the transmitting module in FIG. 10 , and may also be referred to as a transceiver unit or a transceiver module.
  • the transceiver 1202 may include a receiver (or receiver, receive circuit) and a transmitter (or transmitter, transmit circuit). Among them, the receiver is used for receiving signals, and the transmitter is used for transmitting signals.
  • the terminal device shown in FIG. 12 can implement various processes involving the terminal device in the method embodiments shown in FIG. 6 to FIG. 9 .
  • the operations and/or functions of each module in the terminal device are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 1201 may be used to perform the actions described in the foregoing method embodiments that are implemented internally by the terminal device, and the transceiver 1202 may be used to perform the operations described in the foregoing method embodiments that the terminal device sends to or receives from the network device. action.
  • the transceiver 1202 may be used to perform the operations described in the foregoing method embodiments that the terminal device sends to or receives from the network device. action.
  • the processor 1201 may be a central processing unit, a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array, or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • the processor 1201 may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and the like.
  • the communication bus 1204 may be a peripheral component interconnect standard PCI bus or an extended industry standard structure EISA bus, or the like. The bus can be divided into an address bus, a data bus, a control bus, and the like.
  • the communication bus 1204 is used to implement the connection communication between these components.
  • the transceiver 1202 in this embodiment of the present application is used for signaling or data communication with other node devices.
  • the memory 1203 may include volatile memory, such as nonvolatile dynamic random access memory (NVRAM), phase change random access memory (PRAM), magnetoresistive random access memory (magetoresistive) RAM, MRAM), etc., and may also include non-volatile memory, such as at least one magnetic disk storage device, electronically erasable programmable read-only memory (EEPROM), flash memory devices, such as reverse or flash memory (NOR flash memory) or NAND flash memory, semiconductor devices, such as solid state disk (SSD), etc.
  • the memory 1203 may also be at least one storage device located away from the aforementioned processor 1201 .
  • memory 1203 may also store a set of computer program code or configuration information.
  • the processor 1201 can also execute the program stored in the memory 1203 .
  • the processor may cooperate with the memory and the transceiver to execute any one of the methods and functions of the terminal device in the foregoing application embodiments.
  • FIG. 13 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiments, or implement the steps or processes performed by the network device in the foregoing method embodiments.
  • the network device includes a processor 1301 and a transceiver 1302 .
  • the network device further includes a memory 1303 .
  • the processor 1301, the transceiver 1302 and the memory 1303 can communicate with each other through an internal connection path to transmit control and/or data signals.
  • the computer program is invoked and executed to control the transceiver 1302 to send and receive signals.
  • the network device may further include an antenna for sending the uplink data or uplink control signaling output by the transceiver 1302 through wireless signals.
  • the above-mentioned processor 1301 and the memory 1303 can be combined into a processing device, and the processor 1301 is configured to execute the program codes stored in the memory 1303 to realize the above-mentioned functions.
  • the memory 1303 may also be integrated in the processor 1301 or independent of the processor 1301 .
  • the processor 1301 may correspond to the processing module in FIG. 11 .
  • the foregoing transceiver 1302 may correspond to the receiving module and the transmitting module in FIG. 11 , and may also be referred to as a transceiver unit or a transceiver module.
  • the transceiver 1302 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used for receiving signals, and the transmitter is used for transmitting signals.
  • the network device shown in FIG. 13 can implement various processes involving the network device in the method embodiments shown in FIGS. 6 to 9 .
  • the operations and/or functions of each module in the network device are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 1301 may be used to perform the actions described in the foregoing method embodiments that are implemented inside the network device, and the transceiver 1302 may be used to execute the network equipment described in the foregoing method embodiments. action.
  • the transceiver 1302 may be used to execute the network equipment described in the foregoing method embodiments. action.
  • the transceiver 1302 may be used to execute the network equipment described in the foregoing method embodiments. action.
  • the processor 1301 may be various types of processors mentioned above.
  • the communication bus 1304 may be a peripheral component interconnect standard PCI bus or an extended industry standard architecture EISA bus, or the like. The bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 13, but it does not mean that there is only one bus or one type of bus.
  • the communication bus 1304 is used to implement the connection communication between these components.
  • the transceiver 1302 of the device in the embodiment of the present application is used for signaling or data communication with other devices.
  • the memory 1303 may be the various types of memory mentioned above. Optionally, the memory 1303 may also be at least one storage device located away from the aforementioned processor 1301 .
  • a set of computer program codes or configuration information is stored in the memory 1303 , and the processor 1301 executes the programs in the memory 1303 .
  • the processor may cooperate with the memory and the transceiver to execute any one of the methods and functions of the network device in the above application embodiments.
  • An embodiment of the present application further provides a chip system, where the chip system includes a processor, configured to support a terminal device or a network device to implement the functions involved in any of the foregoing embodiments, such as generating or processing the functions involved in the foregoing method.
  • the first message and CSI-RS may further include a memory, where the memory is used for necessary program instructions and data of the terminal device or the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the input and output of the chip system respectively correspond to the receiving and sending operations of the terminal device or the network device in the method embodiment.
  • the embodiment of the present application also provides a processing apparatus, including a processor and an interface.
  • the processor may be used to execute the methods in the above method embodiments.
  • the above processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or a It is a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • MCU microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the aforementioned processors may be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • the methods, steps, and logic block diagrams disclosed in the embodiments of this application can be implemented or executed.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code is run on a computer, the computer is made to execute the steps shown in FIGS. 6 to 9 .
  • the present application further provides a computer-readable medium, where the computer-readable medium stores program codes, when the program codes are run on a computer, the computer is made to execute the programs shown in FIGS. 6 to 9 .
  • the present application further provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, high-density digital video discs (DVDs)), or semiconductor media (eg, solid state discs, SSD)) etc.
  • the network equipment in each of the above apparatus embodiments corresponds to the network equipment or terminal equipment in the terminal equipment and method embodiments, and corresponding steps are performed by corresponding modules or units.
  • a processing module processor
  • processor For functions of specific modules, reference may be made to corresponding method embodiments.
  • the number of processors may be one or more.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist physically alone, or two or more modules may be integrated into one module.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种参考信号的通信方法、装置及系统,该方法包括:终端设备接收网络设备发送的第一消息,所述第一消息包括1号系统信息块、消息2和消息4中的至少一个;根据所述第一消息,确定信道状态信息参考信号CSI-RS的资源配置;根据所述资源配置,接收所述网络设备发送的所述CSI-RS。采用本申请,通过第一消息的关联信息完成CSI-RS的资源配置,降低了CSI-RS的资源配置开销,提高了通信性能。

Description

一种参考信号的通信方法、装置及系统 技术领域
本申请涉及通信技术领域,尤其涉及一种参考信号的通信方法、装置及系统。
背景技术
为了提升传输性能,基站和终端设备的通信可以借助多天线技术,朝向特定空间方向(空间信道)发送和接收信号。由于不同空间方向上的增益不同,在空间上可以根据增益大小使用波束形状(beam pattern)描述,简称波束。以下行通信为例,基站朝向特定方向发送,终端设备朝向特定方向接收,只有当发送和接收的方向对齐时,才能实现比较高的通信效率。按照第三代合作伙伴计划(3rd generation partnership project,3GPP)R15的协议框架,基站与终端设备之间的波束对准,需要借助于上行或下行参考信号,以及相应的信道信息反馈,例如预编码向量、信道质量指示(channel quality indicator,CQI)、预编码矩阵索引(precoding matrix indicator,PMI)、秩索引(rank index,RI)等。基站获得信道状态信息(channel state information,CSI)信息之后,可以根据信道质量调度调制与编码策略(modulation and coding scheme,MCS)、分配资源块(resource block,RB)以及进行波束赋型,提高速率。其中,下行参考信号主要包括同步/广播信号块(synchronization signal/Physical broadcast channel block,SSB)、信道状态信息参考信号(channel state information reference signal,CSI-RS)、跟踪参考信号(tracking reference signal,TRS)。
在当前协议的随机接入过程中,基于SSB确定上行和下行的接收波束和发送波束。但是,当前协议支持的SSB个数比较少,因此往往以比较宽的波束来实现整个小区的覆盖,导致增益较低。此外,当前协议基于CSI-RS的波束对准需要在随机接入之后,增加了CSI-RS的资源配置开销,导致通信性能不高。
发明内容
本申请提供了一种参考信号的通信方法、装置及系统,降低了CSI-RS的资源配置开销,提高通信性能。
第一方面,本申请实施例提供了一种参考信号的通信方法,可以应用于终端设备,或者终端设备中的部件,例如,芯片、处理器等,该方法包括:接收网络设备发送的第一消息,所述第一消息包括1号系统信息块、消息2和消息4中的至少一个;根据所述第一消息,确定信道状态信息参考信号CSI-RS的资源配置;根据所述资源配置,接收所述网络设备发送的所述CSI-RS。通过第一消息确定CSI-RS的资源配置,降低了CSI-RS的资源配置开销,提高了通信性能。
在一种可能的设计中,第一消息和CSI-RS一起被发送,通过一起发送第一消息和CSI-RS,使得终端设备通过第一消息确定CSI-RS的资源配置,减少了终端设备接入的时延。
在另一种可能的设计中,终端设备根据第一消息关联的物理下行控制信道PDCCH、 第一消息关联的物理下行共享信道PDSCH、第一消息关联的PDCCH的控制资源集、第一消息关联的PDCCH的搜索空间、第一消息关联的物理小区标识、和第一消息关联的同步信号块SSB的索引中的至少一项,确定CSI-RS的资源配置。通过第一消息的关联信息确定CSI-RS的资源配置,降低了CSI-RS的资源配置开销,减少了终端设备接入以及后续数据传输的时延。
在另一种可能的设计中,CSI-RS的资源配置为根据第一消息关联的物理下行控制信道PDCCH、第一消息关联的物理下行共享信道PDSCH、第一消息关联的PDCCH的控制资源集、第一消息关联的PDCCH的搜索空间、第一消息关联的物理小区标识、和第一消息关联的同步信号块SSB的索引中的至少一项确定的。通过第一消息的关联信息确定CSI-RS的资源配置,降低了CSI-RS的资源配置开销。
在另一种可能的设计中,终端设备根据第一消息关联的同步信号块SSB的最大可能数量、第一消息关联的同步信号块SSB的时域位置、第一消息关联的SSB的数量、第一消息关联的载波频率范围、第一消息关联的PDCCH的搜索空间的带宽、第一消息关联的PDCCH和第一消息关联的PDSCH承载的随机接入响应RAR协议数据报文PDU中的至少一项,确定CSI-RS对应的端口数。通过第一消息的关联信息确定CSI-RS对应的端口数,降低了CSI-RS的资源配置开销。
在另一种可能的设计中,CSI-RS对应的端口数为根据第一消息关联的同步信号块SSB的最大可能数量、第一消息关联的同步信号块SSB的时域位置、第一消息关联的SSB的数量、第一消息关联的载波频率范围、第一消息关联的PDCCH的搜索空间的带宽、第一消息关联的PDCCH和第一消息关联的PDSCH承载的随机接入响应RAR协议数据报文PDU中的至少一项确定的。通过第一消息的关联信息确定CSI-RS对应的端口数,降低了CSI-RS的资源配置开销。
在另一种可能的设计中,终端设备根据第一消息关联的PDCCH的搜索空间的带宽、第一消息关联的PDCCH和第一消息关联的PDSCH中的至少一项,确定CSI-RS的频域资源块RB的数量。通过第一消息的关联信息确定CSI-RS的频域资源块RB的数量,降低了CSI-RS的资源配置开销。
在另一种可能的设计中,CSI-RS的频域资源块RB的数量为根据第一消息关联的PDCCH的搜索空间的带宽、第一消息关联的PDCCH和第一消息关联的PDSCH中的至少一项确定的。通过第一消息的关联信息确定CSI-RS的频域资源块RB的数量,降低了CSI-RS的资源配置开销,减少了随机接入的时延。
在另一种可能的设计中,终端设备根据第一消息关联的PDCCH的控制资源集的起始位置、第一消息关联的PDCCH的起始位置、第一消息关联的PDCCH结束位置、第一消息关联的PDSCH的起始位置和第一消息关联的PDSCH的结束位置中的至少一项,确定CSI-RS的频域RB的起始位置。通过第一消息的关联信息确定CSI-RS的频域RB的起始位置,降低了CSI-RS的资源配置开销。
在另一种可能的设计中,CSI-RS的频域RB的起始位置为根据第一消息关联的PDCCH的控制资源集的起始位置、第一消息关联的PDCCH的起始位置、第一消息关联的PDCCH结束位置、第一消息关联的PDSCH的起始位置和第一消息关联的PDSCH的 结束位置中的至少一项确定的。通过第一消息的关联信息确定CSI-RS的频域RB的起始位置,降低了CSI-RS的资源配置开销。
在另一种可能的设计中,终端设备根据第一消息关联的物理小区标识和第一消息关联的SSB的索引中至少一项,确定CSI-RS的频域分配。通过第一消息的关联信息确定CSI-RS的频域分配,降低了CSI-RS的资源配置开销。
在另一种可能的设计中,CSI-RS的频域分配为根据第一消息关联的物理小区标识和第一消息关联的SSB的索引中至少一项确定的。通过第一消息的关联信息确定CSI-RS的频域分配,降低了CSI-RS的资源配置开销。
在另一种可能的设计中,终端设备根据第一消息关联的SSB的索引、第一消息关联的物理小区标识、第一消息关联的PDCCH的控制资源集的时隙的索引、第一消息关联的PDCCH的时隙的索引、第一消息关联的PDSCH的时隙的索引、第一消息关联的PDCCH控制资源集的起始或结束正交频分复用OFDM符号的索引、CSI-RS所在时隙的索引、第一消息关联的PDCCH的起始或结束OFDM符号的索引、第一消息关联的PDSCH的起始或结束OFDM符号的索引、CSI-RS所在OFDM符号的索引、和CSI-RS对应的端口数中的至少一项,确定CSI-RS对应的序列。通过第一消息的关联信息确定CSI-RS对应的序列,降低了CSI-RS的资源配置开销。
在另一种可能的设计中,CSI-RS对应的序列为根据第一消息关联的SSB的索引、第一消息关联的物理小区标识、第一消息关联的PDCCH的控制资源集的时隙的索引、第一消息关联的PDCCH的时隙的索引、第一消息关联的PDSCH的时隙的索引、第一消息关联的PDCCH控制资源集的起始或结束正交频分复用OFDM符号的索引、CSI-RS所在时隙的索引、第一消息关联的PDCCH的起始或结束OFDM符号的索引、第一消息关联的PDSCH的起始或结束OFDM符号的索引、CSI-RS所在OFDM符号的索引、和CSI-RS对应的端口数中的至少一项确定的。通过第一消息的关联信息确定CSI-RS对应的序列,降低了CSI-RS的资源配置开销。
在另一种可能的设计中,终端设备除了根据以上信息确定CSI-RS对应的序列之外,还可以根据第一消息关联的随机接入无线网络临时标识RA-RNTI、第一消息关联的随机接入机会的时隙的索引、第一消息关联的随机接入机会的频率的索引、第一消息关联的随机接入机会所在的载波的索引、第一消息关联的随机接入机会所在的部分带宽BWP的索引、第一消息关联的随机接入机会的起始OFDM符号的索引中的至少一项,确定CSI-RS对应的序列。通过第一消息的关联信息确定CSI-RS对应的序列,降低了CSI-RS的资源配置开销,减少了随机接入的时延。
在另一种可能的设计中,终端设备可以结合以上两种信息来确定CSI-RS对应的序列。
在另一种可能的设计中,CSI-RS对应的序列为根据第一消息关联的随机接入无线网络临时标识RA-RNTI、第一消息关联的随机接入机会的时隙的索引、第一消息关联的随机接入机会的频率的索引、第一消息关联的随机接入机会所在的载波的索引、第一消息关联的随机接入机会所在的部分带宽BWP的索引、第一消息关联的随机接入机会的起始OFDM符号的索引中的至少一项确定的。通过第一消息的关联信息确定CSI-RS对应的序列,降低了CSI-RS的资源配置开销。
在另一种可能的设计中,终端设备接收网络设备发送的第一消息之前,终端设备向网络设备发送第二消息,第二消息包括同步信号块SSB的索引和CSI-RS请求信息中的至少一项,SSB的索引和CSI-RS请求信息中的至少一项用于指示网络设备在第一消息的发送时隙中发送CSI-RS。通过SSB的索引和CSI-RS请求信息指示网络设备一起发送第一消息和CSI-RS,实现根据第一消息完成CSI-RS的资源配置,从而降低CSI-RS的配置开销。
在另一种可能的设计中,CSI-RS的资源配置包括以下中的至少一项:资源映射参数、序列生成参数、周期和时隙位置。
第二方面,本申请实施例提供了一种参考信号的通信方法,可以应用于网络设备,或者网络设备中的部件,例如,芯片、处理器等,该方法包括:根据第一消息,确定信道状态信息参考信号CSI-RS的资源配置,所述第一消息包括1号系统信息块、消息2和消息4中的至少一个;向终端设备发送所述第一消息和所述CSI-RS。通过第一消息确定CSI-RS的资源配置,降低了CSI-RS的资源配置开销,提高了通信性能。
在一种可能的设计中,第一消息和CSI-RS一起被发送,通过一起发送第一消息和CSI-RS,使得终端设备通过第一消息确定CSI-RS的资源配置,减少了终端设备接入的时延。
在另一种可能的设计中,网络设备根据第一消息关联的物理下行控制信道PDCCH、第一消息关联的物理下行共享信道PDSCH、第一消息关联的PDCCH的控制资源集、第一消息关联的PDCCH的搜索空间、第一消息关联的物理小区标识、和第一消息关联的同步信号块SSB的索引中的至少一项,确定CSI-RS的资源配置。通过第一消息的关联信息确定CSI-RS的资源配置,降低了CSI-RS的资源配置开销,减少了终端设备接入以及后续数据传输的时延。
在另一种可能的设计中,网络设备根据第一消息关联的同步信号块SSB的最大可能数量、第一消息关联的同步信号块SSB的时域位置、第一消息关联的SSB的数量、第一消息关联的载波频率范围、第一消息关联的PDCCH的搜索空间的带宽、第一消息关联的PDCCH和第一消息关联的PDSCH承载的随机接入响应RAR协议数据报文PDU中的至少一项,确定CSI-RS对应的端口数。通过第一消息的关联信息确定确定CSI-RS对应的端口数,降低了CSI-RS的资源配置开销。
在另一种可能的设计中,网络设备根据第一消息关联的PDCCH的搜索空间的带宽、第一消息关联的PDCCH和第一消息关联的PDSCH中的至少一项,确定CSI-RS的频域资源块RB的数量。通过第一消息的关联信息确定CSI-RS的频域资源块RB的数量,降低了CSI-RS的资源配置开销。
在另一种可能的设计中,网络设备根据第一消息关联的PDCCH的控制资源集的起始位置、第一消息关联的PDCCH的起始位置、第一消息关联的PDCCH结束位置、第一消息关联的PDSCH的起始位置和第一消息关联的PDSCH的结束位置中的至少一项,确定CSI-RS的频域RB的起始位置。通过第一消息的关联信息确定CSI-RS的频域RB的起始位置,降低了CSI-RS的资源配置开销。
在另一种可能的设计中,网络设备根据第一消息关联的物理小区标识和第一消息关联 的SSB的索引中至少一项,确定CSI-RS的频域分配。通过第一消息的关联信息确定CSI-RS的频域分配,降低了CSI-RS的资源配置开销。
在另一种可能的设计中,网络设备根据第一消息关联的SSB的索引、第一消息关联的物理小区标识、第一消息关联的PDCCH的控制资源集的时隙的索引、第一消息关联的PDCCH的时隙的索引、第一消息关联的PDSCH的时隙的索引、第一消息关联的PDCCH控制资源集的起始或结束正交频分复用OFDM符号的索引、CSI-RS所在时隙的索引、第一消息关联的PDCCH的起始或结束OFDM符号的索引、第一消息关联的PDSCH的起始或结束OFDM符号的索引、CSI-RS所在OFDM符号的索引、和CSI-RS对应的端口数中的至少一项,确定CSI-RS的序列。通过第一消息的关联信息确定CSI-RS对应的序列,降低了CSI-RS的资源配置开销。
在另一种可能的设计中,网络设备根据第一消息关联的随机接入无线网络临时标识RA-RNTI、第一消息关联的随机接入机会的时隙的索引、第一消息关联的随机接入机会的频率的索引、第一消息关联的随机接入机会所在的载波的索引、第一消息关联的随机接入机会所在的部分带宽BWP的索引、第一消息关联的随机接入机会的起始OFDM符号的索引中的至少一项,确定CSI-RS的序列。通过第一消息的关联信息确定CSI-RS对应的序列,降低了CSI-RS的资源配置开销。
在另一种可能的设计中,网络设备向终端设备一起发送第一消息和信道状态信息参考信号CSI-RS之前,网络设备接收终端设备发送的第二消息,第二消息包括同步信号块SSB的索引和CSI-RS请求信息中的至少一项;根据SSB的索引和CSI-RS请求信息中的至少一项,确定在第一消息的发送时隙中发送CSI-RS。通过SSB的索引和CSI-RS请求信息指示网络设备一起发送第一消息和CSI-RS,实现根据第一消息完成CSI-RS的资源配置,从而降低CSI-RS的配置开销。
在另一种可能的设计中,CSI-RS的资源配置包括以下中的至少一项:资源映射参数、序列生成参数、周期和时隙位置。
在另一种可能的设计中,CSI-RS的资源映射参数包括以下中的至少一项:端口数、频域密度、频域RB的起始位置、频域RB的数量、频域分配、时域起始位置和码分复用类型。
第三方面,本申请实施例提供了一种通信装置,该第一通信装置被配置为实现上述第一方面中终端设备所执行的方法和功能,由硬件/软件实现,其硬件/软件包括与上述功能相应的模块。
第四方面,本申请实施例提供了一种通信装置,该第二通信装置被配置为实现上述第二方面中网络设备所执行的方法和功能,由硬件/软件实现,其硬件/软件包括与上述功能相应的模块。
第五方面,本申请提供了一种通信装置,该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该通信装置还可以为芯片系统。该通信装置可执行第一方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。该模块可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第一方面所 述的方法以及有益效果,重复之处不再赘述。
第六方面,本申请提供了一种通信装置,该装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。其中,该通信装置还可以为芯片系统。该通信装置可执行第二方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。该模块可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第二方面所述的方法以及有益效果,重复之处不再赘述。
第七方面,本申请提供了一种通信装置,所述通信装置包括处理器,当所述处理器调用存储器中的计算机程序时,如第一方面和第二方面中任意一项所述的方法被执行。
第八方面,本申请提供了一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如第一方面和第二方面中任意一项所述的方法。
第九方面,本申请提供了一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信道或信号,或者发送信道或信号;所述存储器,用于存储程序代码;所述处理器,用于从所述存储器调用所述程序代码执行如第一方面和第二方面中任意一项所述的方法。
第十方面,本申请提供了一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如第一方面和第二方面面中任意一项所述的方法。
第十一方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质用于存储指令,当所述指令被执行时,使得如第一方面和第二方面中任意一项所述的方法被实现。
第十二方面,本申请提供一种包括指令的计算机程序产品,当所述指令被执行时,使得如第一方面和第二方面中任意一项所述的方法被实现。
第十三方面,本申请实施例提供了一种通信系统,该通信系统包括至少一个终端设备和至少一个网络设备,该终端设备用于执行上述第一方面中的步骤,该网络设备用于执行上述第二方面中的步骤。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是一种随机接入过程的流程图;
图3是一种SSB与随机接入机会或前导关联关系的示意图;
图4是一种基于CSI-RS的下行波束管理的流程图;
图5是一种资源映射方式的示意图;
图6是本申请实施例提供的一种参考信号的通信方法的流程图;
图7是本申请实施例提供的另一种参考信号的通信方法的流程图;
图8是本申请实施例提供的另一种参考信号的通信方法的流程图;
图9是本申请实施例提供的另一种参考信号的通信方法的流程图;
图10是本申请实施例提供的一种通信装置的结构示意图;
图11是本申请实施例提供的一种通信装置的结构示意图;
图12是本申请实施例提供的一种终端设备的结构示意图;
图13是本申请实施例提出的一种网络设备的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
如图1所示,图1是本申请实施例提供的一种通信系统100的架构示意图。该通信系统100可以包括网络设备110和终端设备101~终端设备106。应理解,可以应用本申请实施例的方法的通信系统100中可以包括更多或更少的网络设备或终端设备。网络设备或终端设备可以是硬件,也可以是从功能上划分的软件或者以上二者的结合。网络设备与终端设备之间可以通过其他设备或网元通信。在该通信系统100中,网络设备110可以向终端设备101~终端设备106发送下行数据。当然,终端设备101~终端设备106也可以向网络设备110发送上行数据。终端设备101~终端设备106可以不限于手机,还可以是各种物联网设备,比如,汽车,音箱,电脑,平板,家电及应用于各种行业的模块。未来用于无线通信的设备都称为终端设备。通信系统100可以采用公共陆地移动网络(public land mobile network,PLMN)、车联网(vehicle to everything,V2X)、设备到设备(device-to-device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)或其他网络。此外,终端设备104~终端设备106也可以组成一个通信系统。在该通信系统中,终端设备105可以发送下行数据给终端设备104或终端设备106。在本申请实施例中的方法可以应用于图1所示的通信系统100中。
下面介绍与本申请相关的关键术语:
随机接入(random access,RA):在长期演进(long term evolution,LTE)或第五代移动通信技术(5-Generation,5G)有接入控制的通信系统中,用于未接入网络的终端设备与网络设备建立连接的信息交互机制。由于随机接入过程由随机接入信道(random access channel,RACH)承载,协议和口语中也常将RA和RACH混用。分为基于竞争的随机接入和非竞争的随机接入。基于竞争的随机接入通常分为4步,每一步对应一个消息,包括消息1、消息2、消息3、消息4,分别承载不同的信令或者信息。基于非竞争的随机接入只有前2步。另外,为了降低4步基于竞争的随机接入的接入时间,可以进行2步随机接入。在2步随机接入中,由消息A和消息B两个组成,其中,消息A中包括前导和第一个数据信息(例如类似4步随机接入中的消息1和消息3),消息B中包括竞争解决以及上行调度(例如类似4步随机接入中的消息2和消息4)。
随机接入机会:随机接入机会又称为随机接入资源(RACH resource)、随机接入时机(RACH occasion/RACH transmission occasion/RACH opportunity/RACH chance,RO),是指用于承载一个或者多个随机接入前导的时间、频率资源。逻辑上,一个随机接入机 会用于承载物理随机接入信道(physical random access channel,PRACH)的信息/信号。有时也等效被称为物理随机接入机会(PRACH occasion,RO)、物理随机接入资源(PRACH resource)。
消息1(message 1,Msg1):即随机接入前导(preamble或sequence),通过物理随机接入信道(physical random access channel,PRACH)承载。通常用于终端设备与网络设备之间发起连接请求、切换请求、同步请求、调度请求。
消息2(message 2,Msg2):也称为随机接入响应(random access response,RAR)消息。是网络侧对接收到的消息1的回复,一个消息2中可以回复多个Msg1。对于单个随机接入前导来说,在媒体访问控制(media access control,MAC)具有特定的随机接入响应消息。而基站往往将一个随机接入机会上检测到的所有随机接入前导的响应,封装到一起,组成一个Msg2。即终端设备发送随机接入前导后,则在对应的消息2中搜寻自己发送的随机接入前导对应的随机接入响应消息,且忽略针对其他随机接入前导的响应消息。
如果网络侧接收到了消息1,则将以下至少一个信息封装成一个随机接入响应(random access response,RAR)发送:消息1的索引(random access preamble identity,RAPID)、上行调度授权(uplink grant)、时间提前(timing advance)、临时小区-无线网络临时标识(temporary cell radio network temporary identity,TC-RNTI)等。网络侧可以在同一个Msg2里面,同时针对多个Msg1进行响应,即包含多个RAR。
消息3(message 3,Msg3):也称为第一次上行调度传输,是由消息2中的上行授权(UL grant)调度传输,或者TC-RNTI加扰的下行控制信息(downlink control information,DCI)调度的重传。Msg3传输内容为高层消息,例如连接建立请求消息(具体可能是发起连接请求用户的标识信息)。该消息的作用是用于竞争解决,如果多个不同设备使用相同Msg1进行随机接入,通过Msg3和Msg4可以共同确定是否有冲突。消息3的传输有重传和功率控制,即调度初传或者重传的UL grant中,有功率控制信息。
消息4(message 4,Msg4):用于竞争解决。通常包含消息3中携带的CCCH公共控制信道(common control channel,CCCH)服务数据单元(service data unit,SDU),如果终端设备在消息4中检测到自己发送的CCCH SDU,则认为竞争随机接入成功,继续进行接下来的通信过程。消息4有重传,即有相应的物理上行控制信道(physical uplink control channel,PUCCH)传输反馈信息。例如是否成功检测到消息4,终端设备在PUCCH发送反馈信息有功率控制。
发送功率,也称为输出功率。可以定义为在给定时间和/或周期内,在所支持的全部或者部分频率或者频段或者带宽上测量得到的输出功率。例如测量的时间至少为1ms,再例如测量的时间至少为与某个子载波间隔对应的一个时隙。在一种实施例中,使用测量的时间为至少1ms所获取的功率。
预编码和码本:采用多天技术(multiple input multiple output,MIMO)技术增加系统容量,提升吞吐率。数学表达式为y=Hx+n,其中y为接收信号,H为MIMO信道,x为发送信号,n为噪声。在具有多天线的通信系统中,多个发送天线的信号会叠加到任意一个接收天线上,因此发送端发送信号的方法影响到系统的性能,而且在接收端恢复 发送信号时,往往比较复杂。在这个背景下,一方面,预编码(precoding)用于减少系统开销,最大提升MIMO的系统容量。另一方面用于降低接收机消除信道间影响实现的复杂度。此时,数学表达为y=HPx+n,P为预编码矩阵(或向量)。为了简化实现复杂度,P为可以从一个预定义的矩阵(或向量)集合中选取,该集合被称为码本(codebook),该方法也被称为基于码本的发送方法。如果发送端可以获知H的全部信息,则P可以在发送端自行获取,该方法也被称为非码本的发送方法(Non-codebook,NCB)。
预编码有开环或者闭环两种方式。在开环方式下,发送端自行确定发送的预编码码本。在闭环方式下,发送端基于接收端反馈信息或者指示信息,确定发送的预编码码本。
调制、解调:调制就是对信号源的信息进行处理加到载波上,使其变为适合于信道传输的形式的过程。不同的模式就对应于不同的调制方法,例如多载波调制还是单载波调制,正交振幅调制(quadrature amplitude modulation,QAM)、脉冲振幅调制(pulse amplitude modulation、PAM)、相移键控(phase shift keying,PSK)调制、振幅键控(amplitude shift keying,ASK)调制等等。解调即调制的逆过程,从信号中恢复原始数据比特或符号。解调有时也可以称为检测。
正交频分复用(orthogonal frequency division multiplexing,OFDM):是一种频分复用的多载波传输波形,参与复用的各路信号(也称为各路载波/子载波)是正交的。OFDM技术是通过串/并转换将高速的数据流变成多路并行的低速数据流,再将它们分配到若干个不同频率的子载波上传输。OFDM技术利用了相互正交的子载波,从而子载波的频谱是重叠的。传统的FDM多载波调制系统中子载波间需要保护间隔,与之相比,OFDM技术大大的提高了频谱利用率。
离散傅里叶变换扩频正交频分复用(discrete fourier transformation spreading OFDM,DFT-s-OFDM):是基于OFDM的一种衍生技术。直观上看,是将每个用户所使用的子载波进行DFT处理,由时域转换到频域,然后将各用户的频域信号进行OFDM调制(即,输入到IFFT模块),这样各用户的信号又一起被转换到时域并发送。经过DFT的改进,信号由频域信号(传统OFDM)又回到了时域信号(和单载波系统相同)。由于在该技术中,调制后的信号波形类似于单载波,也有人将其看作一种单载波技术,虽然它是从OFDM技术演变而来的。
参考信号(reference signal,RS):又称为解调参考信号(demodulation reference signal,DMRS)、信道状态信息参考信号(channel state information reference signal,CSI-RS)、相位跟踪参考信号(phase tracking reference signal,PTRS)、信道探测参考信号(sounding reference signal,SRS)等。是指发送端或接收端已知或按照预定的规则可以推断:信号所在的时间和频率位置,以及时间和频率上承载的信号/符号。参考信号用于获取信号在传输中所受外界(例如,空间信道、器件非理想性)影响的已知信号,一般用于进行信道估计、辅助信号解调、检测。例如DMRS和CSI-RS用于获取信道信息,PTRS用于获取相位变化信息。
资源块(resource block,RB):也称为物理资源块(physical resource block),是基于OFDM的通信系统中频率资源的基本单位。一个资源块一般由N个资源元素(resource element,RE)组成,一个资源元素也称为一个子载波。其中,N一般为12。若干个资 源块组成一个资源块组(resource block group,RBG),或者也称为物理资源块组。一般情况下,以资源块或资源块组为单位进行预编码,进行预编码发送的基本单位也被称为预编码资源块组(precoding resource block group,PRG))。一个预编码资源组可以不小于一个资源块组。
层(Layer):对1个或2个码字进行加扰(scrambling)和调制(modulation)之后得到的复数符号(调制符号)进行层映射后,会映射到一个或多个传输层(transmission layer,通常也称为layer)。传输层通常被映射到天线端口,因此也被称为天线端口。每层对应一条有效的数据流。传输层的个数,即层数被称为“传输阶”或“传输秩(rank)”。传输秩是可以动态变化的。层数必须小于或等于发射天线端口个数和接收天线端口个数二者的最小值,即“层数≤min(发射天线端口数,接收天线端口数)”。在NR的上行通信中,一般情况下传输层数小于或者等于天线端口数,而其中数据的天线端口数与配置的SRS端口数一致。
准共址(quasi co-location,QCL):QCL关系用于表示多个资源之间具有一个或多个相同或者相类似的通信特征,对于具有准共址关系的多个资源,可以采用相同或者类似的通信配置。具体的,具有QCL关系的天线端口对应的信号中具有相同的参数,或者,一个天线端口的参数(也可以称为QCL参数)可以用于确定与该天线端口具有QCL关系的另一个天线端口的参数,或者,两个天线端口具有相同的参数,或者,两个天线端口间的参数差小于某阈值。其中,所述参数可以包括以下一项或多项:时延扩展(delay spread),多普勒扩展(doppler spread),多普勒频移(doppler shift),平均时延(average delay),平均增益,空间接收参数(spatial Rx parameters)。其中,空间接收参数可以包括以下的一项或多项:到达角(angle of arrival,AOA)、平均AOA、AOA扩展、离开角(angle of departure,AOD)、平均离开角AOD、AOD扩展、接收天线空间相关性参数、发送天线空间相关性参数、发射波束、接收波束以及资源标识。
本申请实施例中以UE作为终端设备,以基站作为网络设备,对本申请的技术方案进行说明,后文不再赘述。
如图2所示,图2是一种随机接入过程的流程图,主要包括如下步骤:
S201,基站以广播方式发送在特定的位置发送同步信号和系统信息。在NR中,基站发送的同步信号称为SSB,SSB和系统信息由基站根据配置周期性发送。同步信号块SSB的时域位置由高层信令指示,可以根据同步信号块SSB的时域位置确定实际发送的SSB或发送的SSB的数量。例如,可以根据半个系统帧(如5ms)内发送的SSB的索引,获取基站在半个系统帧时间内发送的SSB的数量(一般指时域的数量,在频域可以有更多)。
UE开机之后或者需要重新接入网络时,扫描基站的同步信号,进行下行时间和频率同步,同时从SSB中获得主系统信息块(master information block,MIB)。MIB可以指示1号系统信息块(system information block 1,SIB1)对应的控制信道(physical downlink control channel,PDCCH)的搜索空间,也称为公共搜索空间(common search space,CSS)和控制资源集信息(control resource set,CORESET)。然后根据SIB1关联的PDCCH CSS和CORESET,接收1号系统信息块,其中,1号系统信息块携带有随 机接入资源的配置信息。
S202,UE根据随机接入资源配置信息以及同步到的SSB,选择该SSB关联的随机接入资源,该随机接入资源包括时间、频率资源和码域资源(随机接入前导码preamble),并使用该随机接入资源发送随机接入信号,又称为消息1(Msg1)。在NR中,通过SSB与随机接入资源之间的关联,使得基站检测到随机接入前导码后,就可以获取发送消息2(Msg2)和/或的下行波束。
如图3所示,图3是一种SSB与随机接入机会或前导关联关系的示意图。左图为多个SSB关联到同一个随机接入机会,通过随机接入前导区分SSB;右图为一个SSB关联到多个随机接入机会。
S203,基站接收到UE发送的消息1之后,根据用户发送的preamble,估计UE的定时提前量,并向用户回复消息2(Msg2),消息2中包括UE用于发送消息3(Msg3)进行冲突解决的时频资源位置、调制编码方式等配置信息。随机接入响应(random access response,RAR)在物理层和MAC层都可以称为消息2。但是,在物理层,RAR一般也被称为与具体某个随机接入前导相对应的响应消息。而在MAC层,RAR是针对某个随机接入机会或者多个随机接入机会、基站检测到的所有随机接入前导响应消息的组合,以MAC数据单元形式组包。
S204,UE接收到消息2之后,根据消息2中配置,在对应时频资源发送消息3。
S205,基站接收到消息3之后,向UE回复消息4(Msg4),指示UE成功接入基站。
其中,Msg1到Msg4的过程一般被称为4-step的随机接入过程。此外,Msg1中发送随机接入前导码,还可以应用到基于非竞争的随机接入和2-step随机接入中。只不过非竞争的随机接入只包括Msg1和Msg2。另外,还有一种2-step随机接入,由消息A和消息B两个组成。其中,消息A中包括随机接入前导码的发送和第一个数据信息(例如类似4-step随机接入中的消息1和消息3),消息B中包括竞争解决和上行调度(例如类似4-step随机接入中的消息2和消息4)。Msg1、Msg3、Msg4可以在发送失败后进行重新传输。
如图4所示,图4是一种基于CSI-RS的下行波束管理的流程图,主要包括如下步骤:
S401,当UE接入基站,详细接入过程可以参考图2所示的步骤。
S402,UE上报SSB的索引,从而供基站基于该SSB配置相应的CSI-RS资源。需要注意的是,此处上报的SSB的索引,也可以是S202利用随机接入前导与SSB的关联关系确定的SSB的索引,或者采取S202类似方式上报。
S403,基站通过无线资源控制(radio resource control,RRC)发送CSI-RS资源配置。
S404,基站发送CSI-RS,UE进行测量。例如,基站可以配置CSI-RS资源进行重复发送,方便UE进行波束扫描,从而确定UE最优的接收波束。基站也可以配置CSI-RS相同的接收信息,基站采取不同的发送波束发送CSI-RS,从而确定基站最优的发送波束。
S405,基站基于UE上报的测量信息,进行相关调度处理,例如上行或者下行数据传输。
其中,NR中用于波束管理的CSI-RS为非零功率(non-zero power,NZP)的CSI-RS。 CSI-RS的主要配置特性如表1所示。
Figure PCTCN2020133413-appb-000001
表1
第一,CSI-RS资源配置的主要参数包括:资源映射配置(resource mapping)、PDSCH RE相对于NZP CSI-RS RE的功率偏移(power control offset)、NZP CSI-RS RE相对于SS RE的功率偏移(power control offset SS)、扰码ID(scrambling ID)、周期和偏移配置(periodicity and offset)和QCL配置。
其中,资源映射配置主要包括:时域资源配置,频域资源配置,码分组配置,密度,频域带宽等。
例如,如表1所示,资源参数配置为:Row1=[b 3,…,b 0]=[0010],k i=f(i),可得:f(i)=[1],k 0=1。Port数为1,所以N=1;密度ρ为3;CDM-Type为No CDM,所以L=1;s=0…L-1=0,j=0,发送的端口具体为P=3000+s+jL。
Figure PCTCN2020133413-appb-000002
表2
其中,图5是一种资源映射方式的示意图。因为ρ=3,所以CSI-RS每1/3RB(4个RE)重复一次,假设基站通过频域分配(frequency domain allocation)配置的Row1=[b 3,…,b 0]=[0010]和CDM-Type为No CDM,所以CSI-RS出现在第1/5/9个RE上。
第二,生成CSI-RS的序列的关键信息包括:序列的生成多项式初始化参数c init与无线帧中的时隙号
Figure PCTCN2020133413-appb-000003
时隙中的OFDM符号数目
Figure PCTCN2020133413-appb-000004
时隙中的OFDM符号索引l、加扰索引n ID等参数有关。其中,加扰索引由上层参数配置。
对于当前协议,在随机接入过程中,基于SSB确定上行和下行的接收波束和发送波束。但是,当前协议支持的SSB个数比较少,因此往往以比较宽的波束来实现整个小区的覆盖,导致增益较低。此外,当前协议基于CSI-RS的波束对准需要在随机接入之后,配置和实现复杂,终端设备接入时延较高、通信性能不高。为了解决上述技术问题,本申请实施例提供了如下解决方案。
如图6所示,图6是本申请实施例提供的一种参考信号的通信方法的流程图。本申请实施例的步骤至少包括:
S601,基站根据第一消息,确定信道状态信息参考信号CSI-RS的资源配置。
其中,第一消息可以包括1号系统信息块(system information block 1,SIB1)、消息2和消息4中的至少一个。基站可以通过SSB指示1号系统信息块SIB1关联的PDCCH的控制资源集和SIB1关联的搜索空间。然后UE根据PDCCH的控制资源集和搜索空间,接收基站发送的1号系统信息块。其中,消息2可以为随机接入响应,消息4可以为接入成功消息。
其中,CSI-RS也可以称为随机接入参考信号(random access-reference signal,RA-RS)、初始接入和移动参考信号(initial access and mobility-reference signal,IAM-RS)、或波束调整参考信号(beam refinement-reference signal、BR-RS)、或小区搜索参考信号(cell searching-reference signal,CS-RS)、或切换参考信号(handover-reference signal,H-RS),或者其它名称。CSI-RS是指在随机接入过程中用于波束对准的参考信号,或者是在随机接入过程中部分信道参数与SSB具有QCL关系的参考信号,CSI-RS对应的端口号或者空域系数与SSB不完全相同。
其中,所述CSI-RS的资源配置包括以下中的至少一项:资源映射参数、序列生成参数、周期和时隙位置。其中,所述CSI-RS的所述资源映射参数包括以下中的至少一项:端口数、频域密度、频域RB的起始位置、频域RB的数量、频域分配、时域起始位置和码分复用类型。
可选的,基站可以根据所述第一消息关联的物理下行控制信道(physical downlink control channel,PDCCH)、所述第一消息关联的物理下行共享信道(physical downlink shared channel,PDSCH)、所述第一消息关联的PDCCH的控制资源集(control resource set,CORESET)、所述第一消息关联的PDCCH的搜索空间(common search space,CSS)、所述第一消息关联的物理小区标识(physical layer cell identity)、和所述第一消息关联的同步信号块SSB的索引中的至少一项,确定所述CSI-RS的资源配置。具体可以包括如下几种可选方式:
第一种可选方式,当所述资源映射参数为CSI-RS对应的端口数时,基站根据所述第一消息关联的同步信号块SSB的最大可能数量、所述第一消息关联的同步信号块SSB的时域位置、所述第一消息关联的SSB的数量、所述第一消息关联的载波频率范围、所述第一消息关联的PDCCH的搜索空间的带宽、所述第一消息关联的PDCCH和所述第一消息关联的PDSCH承载的随机接入响应RAR协议数据报文PDU中的至少一项,确定所述CSI-RS对应的端口数。
例如,基站可以根据第一消息关联的SSB的最大可能数量和控制资源集的带宽
Figure PCTCN2020133413-appb-000005
确定CSI-RS对应的端口数nrofPorts。
其中,SSB的最大可能数量与载波频率范围有关。当载波频率位于第一频率范围且载波频率小于f0,SSB最大可能数量为4。当载波频率位于第一频率范围且载波频率大于f0时,SSB最大可能数量为8。当载波频率位于第二频率范围时,SSB最大可能数量为 64。其中,f0为3GHz。又如,当SSB的最大可能数量为8时,也即载波频率位于第一频率范围,第一频率范围可以是小于7.125GHz。当SSB的最大可能数量为64时,也即载波频率位于第二频率范围,第二频率范围可以是大于7.125GHz且小于52.6GHz。
当SSB的最大可能数量为8、且PDCCH的控制资源集的带宽
Figure PCTCN2020133413-appb-000006
为24时,CSI-RS对应的端口数为4。当SSB的最大可能数量为8、且
Figure PCTCN2020133413-appb-000007
为48时,CSI-RS对应的端口数为8。当SSB的最大可能数量为8、且
Figure PCTCN2020133413-appb-000008
为96时,CSI-RS对应的端口数为16。
当SSB的最大可能数量为64、且
Figure PCTCN2020133413-appb-000009
为24时,CSI-RS对应的端口数为2。当SSB最大可能数量为64、且
Figure PCTCN2020133413-appb-000010
为48时,CSI-RS对应的端口数为4。当SSB最大可能数量为64、且
Figure PCTCN2020133413-appb-000011
为96时,CSI-RS对应的端口数为8。
又如,如表2所示,可以根据SIB1关联的PDCCH的控制资源集的带宽
Figure PCTCN2020133413-appb-000012
确定CSI-RS对应的端口数nrofPorts。
Figure PCTCN2020133413-appb-000013
表3
其中,P1=4、P2=8、P3=12。或者,P1=2、P2=4、P3=6。
应理解,本实施例可以与其它参数联合使用。例如,可以根据CSI-RS(或SIB1、SSB)所在载波频率或子载波间隔确定P1、P2、P3的取值,也即可以在不同载波频率或子载波间隔定义不同的表格确定相应的P1、P2、P3的取值。又如,可以根据CSI-RS(或初始接入)所在频带或部分带宽(band width part,BWP)所支持的最大SSB数量、实际发送的SSB(或发送的SSB的数量)确定P1、P2、P3的取值。例如,当SSB最大可能数量为8,发送的SSB数量为4,则CSI-RS对应的端口数为2。例如,当SSB的最大可能数量为64,发送的SSB的数量为16,则CSI-RS对应的端口数为4。例如,当SSB的最大可能数量为64,发送的SSB的数量为30,则CSI-RS对应的端口数为2。例如,当SSB的最大可能数量为40,发送的SSB的数量为30,则CSI-RS对应的端口数为2。
需要注意的是,以上仅以3档
Figure PCTCN2020133413-appb-000014
和CSI-RS nrofRBs为例,不对档位数量进行任何限制。
又如,可以根据SIB1关联的PDCCH确定CSI-RS对应的端口数nrofPorts。具体的,根据SIB1关联的PDCCH中的CSI-RS端口信息(CSI-RS nrofPorts)字段确定CSI-RS对应的端口数nrofPorts。
第二种可选方式,当所述资源映射参数为CSI-RS的频域资源块RB的数量时,基站可以根据所述第一消息关联的PDCCH的搜索空间的带宽、所述第一消息关联的PDCCH和所述第一消息关联的PDSCH中的至少一项,确定所述CSI-RS的频域资源块RB的数量。
例如,可以根据SIB1关联的PDCCH中的CSI-RS频域资源分配(frequency domain resource assignment for CSI-RS)字段确定CSI-RS的频域RB的数量nrofRBs。
又如,可以根据SIB1关联的PDCCH的控制资源集的带宽确定CSI-RS的频域RB的数量。其中,SIB1关联的PDCCH控制资源集的带宽可以根据主系统信息块(master information block,MIB)指示信息确定。具体的,CSI-RS频域资源RB数量nrofRBs等于SIB1关联的PDCCH的控制资源集的带宽
Figure PCTCN2020133413-appb-000015
或者,如表4所示,表4是一组PDCCH的控制资源集的带宽
Figure PCTCN2020133413-appb-000016
与CSI-RS频域RB数量nrofRBs的之间的映射关系。可以通过查表,根据SIB1关联的PDCCH的控制资源集的带宽
Figure PCTCN2020133413-appb-000017
获取CSI-RS频域RB数量nrofRBs。
Figure PCTCN2020133413-appb-000018
表4
具体地,可以是K1=24、K2=48、K3=48。
应理解,本实施例可以与其它参数联合使用,例如根据CSI-RS(或SIB1、SSB)所在载波频率或子载波间隔确定K1、K2、K3的取值,也即可以在不同载波频率或子载波间隔定义不同的表格确定相应的K1、K2、K3的取值。又如根据CSI-RS(或初始接入)所在频带或BWP所支持的最大SSB数量确定K1、K2、K3的取值,还可以进一步根据实际发送的SSB(或发送的SSB的数量),确定相应的K1、K2、K3的取值。需要注意的是,以上仅以3档
Figure PCTCN2020133413-appb-000019
或CSI-RS nrofRBs为例,不对档位数量进行任何限制。
又如,可以根据SIB1关联的PDCCH和/或SIB1关联的PDSCH确定CSI-RS的频域RB的数量nrofRBs。
具体地,CSI-RS频域RB的数量nrofRBs等于SIB1关联的PDSCH带宽,或者根据SIB1关联的PDCCH中的频域资源分配(frequency domain resource assignment)字段确定CSI-RS频域RB的数量nrofRBs。或者,根据SIB1关联的PDCCH中的CSI-RS频域资源分配(frequency domain resource assignment for CSI-RS)字段确定CSI-RS频域RB的数量nrofRBs。
表5是一种SIB1PDSCH带宽、SIB1PDCCH中的频域资源分配、SIB1PDCCH中的CSI-RS频域资源分配与CSI-RS频域RB的数量nrofRBs的映射关系。可以通过查表根据SIB1PDSCH带宽、SIB1PDCCH中的频域资源分配、SIB1PDCCH中的CSI-RS频域资源中的至少一种,确定CSI-RS频域RB数量nrofRBs。
Figure PCTCN2020133413-appb-000020
表5
具体地,R1=32、R2=68、K1=24、K2=48。
应理解,本实施例可以与其它参数联合使用,例如根据CSI-RS(或SIB1、SSB)所在载波频率或子载波间隔确定R1、R2、K1、K2的取值,也即可以在不同载波频率或子载波间隔定义不同的表格确定相应的R1、R2、K1、K2的取值。
第三种可选方式,当所述资源映射参数为CSI-RS的频域RB的起始位置时,基站根据所述第一消息关联的PDCCH的控制资源集的起始位置、所述第一消息关联的PDCCH的起始位置、所述第一消息关联的PDCCH结束位置、所述第一消息关联的PDSCH的起始位置和所述第一消息关联的PDSCH的结束位置中的至少一项,确定所述CSI-RS的频域RB的起始位置。
例如,可以根据SIB1关联的PDCCH控制资源集的起始位置确定CSI-RS的频域RB的起始位置和/或结束位置endingRB。其中,SIB1关联的PDCCH控制资源集的起始位置是根据MIB指示信息指示的控制资源集的偏移(CORESET Offset)和SIB1关联的SSB的频率起始位置确定。位置是指RB或者RB分组。具体的,CSI-RS频域RB的起始位置startingRB等于SIB1关联的PDCCH CORESET的起始位置。
又如,可以根据SIB1关联的PDCCH的起始位置或结束位置确定CSI-RS频域RB的起始位置startingRB和/或结束位置endingRB。具体的,基站可以通过发送SIB1关联的PDCCH获取PDCCH的起始位置或结束位置,UE可以通过接收SIB1关联的PDCCH获取PDCCH的起始位置或结束位置。其中,CSI-RS频域RB的起始位置startingRB等于SIB1关联的PDCCH起始位置;或者,CSI-RS频域RB起始位置startingRB等于SIB1关联的PDCCH的结束位置。或者,CSI-RS频域RB的起始位置startingRB等于SIB1关联的PDCCH带宽内的中心位置。
又如,可以根据SIB1关联的PSDCH的起始位置或结束位置确定CSI-RS频域RB的起始位置startingRB和/或结束位置endingRB。具体的,基站可以通过发送SIB1关联的PSDCH获取PSDCH的起始位置或结束位置,UE可以通过接收SIB1关联的PSDCH获取PSDCH的起始位置或结束位置。其中,CSI-RS频域RB的起始位置startingRB等于SIB1关联的PSDCH起始位置;或者,CSI-RS频域RB起始位置startingRB等于SIB1关联的PSDCH的结束位置。或者,CSI-RS频域RB的起始位置startingRB等于SIB1关联的PSDCH带宽内的中心位置。
第四种可选方式,当所述资源映射参数为CSI-RS的频域分配时,基站根据所述第一消息关联的物理小区标识和所述第一消息关联的SSB的索引中至少一项,确定所述CSI-RS的频域分配。其中,频域分配(frequency domain allocation)表示CSI-RS在资源块RB内的子载波位置。
例如,可以根据物理小区标识(physical layer cell identity)
Figure PCTCN2020133413-appb-000021
确定CSI-RS的频域分配。具体的,子载波位置可以是
Figure PCTCN2020133413-appb-000022
mod nrofPorts,其中,nrofPorts是CSI-RS对应的端口数,mod表示取模运算。
又如,可以根据SIB1关联的SSB索引确定CSI-RS的频域分配。具体的,CSI-RS在资源块RB内的子载波位置可以是SSB索引mod nrofPorts,其中nrofPorts是CSI-RS对应的端口数。需要注意的是,SSB的索引可以是指该SSB在发送的SSB中的索引,也可 以是指该SSB的时间索引,或者该SSB在半个系统帧内的索引,或者该SSB在最大可能发送的SSB中的索引。
第五种可选方式,当所述资源映射参数为CSI-RS的时域起始位置时,基站可以根据SIB1关联的PDCCH和/或SIB1关联的PDSCH确定CSI-RS的时域起始位置(first OFDM symbol in time domain)。其中,SIB1与CSI-RS在同一个时隙被发送。
例如,CSI-RS的时域起始位置为SIB1关联PDSCH最后的一个OFDM符号。或者,CSI-RS的时域起始位置为SIB1关联的PDSCH最后的一个OFDM符号之后的第k个OFDM符号。其中,k=0,1中的任意一个。或者,可以根据SIB1关联的PDCCH中的时域资源分配(time domain resource assignment)字段确定CSI-RS的时域起始位置。或者,根据SIB1关联的PDCCH中的CSI-RS频域资源分配(time domain resource assignment for CSI-RS)字段确定CSI-RS的时域起始位置。或者,CSI-RS的时域起始位置为SIB1关联的PDSCH对应的解调参考信号(de-modulation reference signal,DMRS)所在的OFDM符号。
第六种可选方式,当基站根据序列生成参数生成CSI-RS的序列时,基站根据所述第一消息关联的SSB的索引、所述第一消息关联的物理小区标识、所述第一消息关联的PDCCH的控制资源集的时隙的索引、所述第一消息关联的PDCCH的时隙的索引、所述第一消息关联的PDSCH的时隙的索引、所述第一消息关联的PDCCH控制资源集的起始或结束正交频分复用OFDM符号的索引、所述CSI-RS所在时隙的索引、所述第一消息关联的PDCCH的起始或结束OFDM符号的索引、所述第一消息关联的PDSCH的起始或结束OFDM符号的索引、所述CSI-RS所在OFDM符号的索引、和所述CSI-RS对应的端口数中的至少一项,确定所述CSI-RS的序列。
例如,CSI-RS对应的伪随机序列生成器初始化
Figure PCTCN2020133413-appb-000023
其中,n ID为SIB1关联的SSB的索引或物理小区标识
Figure PCTCN2020133413-appb-000024
为一个时隙中的OFDM符号数量,
Figure PCTCN2020133413-appb-000025
为以下参数中的一个:SIB1关联的PDCCH控制资源集的时隙的索引、SIB1关联的PDCCH的时隙的索引、SIB1关联的PDSCH的时隙的索引、CSI-RS所在时隙的索引。l为以下参数中的一个:SIB1关联的PDCCH控制资源集的起始或结束OFDM符号的索引、SIB1关联的PDCCH的起始或结束OFDM符号的索引、SIB1关联的PDSCH的起始或结束OFDM符号的索引、CSI-RS所在OFDM符号的索引。
又如:CSI-RS对应的伪随机序列生成器应该初始化为:
Figure PCTCN2020133413-appb-000026
其中,
Figure PCTCN2020133413-appb-000027
为一个时隙中的OFDM符号数量(例如,
Figure PCTCN2020133413-appb-000028
),
Figure PCTCN2020133413-appb-000029
为CSI-RS所 在的时隙的索引,k SSB为SIB1关联的SSB的索引,
Figure PCTCN2020133413-appb-000030
为物理小区标识;K为非负整数,表示候选SSB数目,例如,K可以取值4、8、16、64、或128;或者K可以取值10、或20。
进一步的,基站可以根据所述第一消息关联的随机接入无线网络临时标识(random access-radio network temporary identifier,RA-RNTI)、所述第一消息关联的随机接入机会的时隙的索引、所述第一消息关联的随机接入机会的频率的索引、所述第一消息关联的随机接入机会所在的载波的索引、所述第一消息关联的随机接入机会所在的部分带宽BWP的索引、所述第一消息关联的随机接入机会的起始OFDM符号的索引中的至少一项,确定所述CSI-RS的序列。
例如,CSI-RS对应的伪随机序列生成器应该初始化为:
Figure PCTCN2020133413-appb-000031
其中,
Figure PCTCN2020133413-appb-000032
为一个时隙中的OFDM符号数量,
Figure PCTCN2020133413-appb-000033
为以下参数中的一个:消息2关联的PDCCH控制资源集的时隙的索引、消息2关联的PDCCH的时隙的索引、消息2关联的PDSCH的时隙的索引、CSI-RS所在时隙的索引。l为以下参数中的一个:消息2关联的PDCCH控制资源集的起始或结束OFDM符号的索引、消息2关联的PDCCH的起始或结束OFDM符号的索引、消息2关联的PDSCH的起始或结束OFDM符号的索引、CSI-RS所在OFDM符号的索引。RA-RNTI为随机接入无线网络临时标识。
进一步的,基站可以根据所述第一消息关联的临时无线网络临时标识(temporary cell-radio network temporary identifier,TC-RNTI)确定所述CSI-RS的序列。
又如:CSI-RS对应的伪随机序列生成器应该初始化为:
Figure PCTCN2020133413-appb-000034
其中,
Figure PCTCN2020133413-appb-000035
为一个时隙中的OFDM符号数量,
Figure PCTCN2020133413-appb-000036
为以下参数中的一个:消息4关联的PDCCH控制资源集的时隙的索引、消息4关联的PDCCH的时隙的索引、消息4关联的PDSCH的时隙的索引、CSI-RS所在时隙的索引。l为以下参数中的一个:消息4关联的PDCCH控制资源集的起始或结束OFDM符号的索引、消息4关联的PDCCH的起始或结束OFDM符号的索引、消息4关联的PDSCH的起始或结束OFDM符号的索引、CSI-RS所在OFDM符号的索引。TC-RNTI为临时无线网络临时标识。
第七种可选方式,CSI-RS发送的时间周期与SSB或SIB1的时间周期有关。例如,CSI-RS发送的时间周期P1与SSB的周期P2满足:P1=N×P2,其中,P2为5ms、10ms、20ms、40ms、80ms、160ms、320ms或者640ms等等。N为整数,N=1、2、4、8或者16等等。再例如,CSI-RS发送的时间周期P1与SIB1的周期P3满足:P1=M×P3,其中,M为整数,M=1,2,4,8或者16等等,P3为20ms、40ms、80ms、160ms、320ms或者640ms等等。可选的,M或N可以是根据第一消息确定的,也可以是预定义 的。
除了以上几种可选方式确定CSI-RS的资源配置之外,还可以结合以上两种或两种以上方式来确定CSI-RS的资源配置。以上仅仅列举了CSI-RS的资源配置中几种参数,本申请还可以采用相同的方法确定CSI-RS的资源配置中其他参数,此处不再赘述。与此相类似的确定CSI-RS的资源配置的方法均在本申请的保护范围内。
需要说明的是,“关联”也可以理解为“对应”。例如,第一消息关联的PDCCH、第一消息关联的PDSCH、第一消息关联的PDCCH的控制资源集、第一消息关联的PDCCH的搜索空间、第一消息关联的物理小区标识、和第一消息关联的SSB的索引也可以理解为:第一消息对应的PDCCH、第一消息对应的PDSCH、第一消息对应的PDCCH的控制资源集、第一消息对应的PDCCH的搜索空间、第一消息对应的物理小区标识、和第一消息对应的SSB的索引。
第一消息关联的SSB,可以是指与第一消息(例如,SIB1、消息2、或消息4)准共址的SSB。或者,第一消息关联的SSB是指在随机接入过程中消息1关联的SSB,其中,第一消息为消息1对应的消息2或消息4。
可选的,UE可以向基站发送第二消息,所述第二消息包括同步信号块SSB的索引和CSI-RS请求信息中的至少一项,基站根据所述SSB的索引和CSI-RS请求信息中的至少一项,同时发送第一消息和CSI-RS,或者先发送第一消息后发送CSI-RS,或者在同一个时隙中发送第一消息和CSI-RS,例如在第一消息的发送时隙中发送所述CSI-RS。其中,第二消息可以为Msg3。
S602,基站向UE发送所述第一消息和所述CSI-RS。
可选的,基站向UE一起发送所述第一消息和所述CSI-RS。
其中,基站向UE一起发送第一消息和CSI-RS可以理解为:基站首先发送第一消息,然后发送CSI-RS。或者,基站同时发送第一消息和CSI-RS,例如第一消息和CSI-RS的时域相同,频域正交。或者,基站发送第一消息的时间(时隙和/或OFDM符号)与发送CSI-RS的时间(时隙和/或OFDM符号)具有关联关系,例如,发送CSI-RS的起始OFDM符号是在发送第一消息的最后一个OFDM符号之后X个OFDM符号,其中,X为整数。或者,在相同的时间(时隙和/或OFDM符号)和频率(资源块或部分带宽)发送。
S603,UE根据第一消息,确定CSI-RS的资源配置。
其中,UE根据第一消息确定CSI-RS的资源配置的方法与基站根据第一消息确定CSI-RS的资源配置的方法相同,具体实现方式可以参考基站确定CSI-RS的资源配置的方法,此处不再赘述。
S604,UE可以根据CSI-RS的资源配置,接收基站发送的CSI-RS。
例如,UE可以根据CSI-RS获取信道信息,实现波束对齐等等。
需要说明的是,UE和基站可以在无线接入过程中完成上述步骤。其中,无线接入过程可以包括小区搜索、下行同步、随机接入、切换等。
在本申请实施例中,通过向UE发送CSI-RS和第一消息,实现通过第一消息确定CSI-RS的资源配置,降低了CSI-RS的资源配置开销,实现波束对齐更加准确。并且,可以提升在无线接入过程中的波束收发性能,减少了随机接入以及后续数据传输的时 延,提高通信性能。
如图7所示,图7是本申请实施例提供的一种参考信号的通信方法的流程图。本申请实施例至少包括如下步骤:
S701,基站向UE发送SSB。
可选的,基站可以按照预设周期向UE发送SSB。
可选的,基站可以通过SSB指示1号系统信息块SIB1关联的PDCCH的控制资源集和SIB1关联的搜索空间。UE可以根据PDCCH的控制资源集和搜索空间,接收基站发送的1号系统信息块。其中,PDCCH的控制资源集的参数信息包括:控制资源集的带宽
Figure PCTCN2020133413-appb-000037
OFDM符号的数目
Figure PCTCN2020133413-appb-000038
相对于SSB的起始位置的偏移值。其中,单位为资源块(resource block,RB)。
其中,SIB1关联的PDCCH的搜索空间的时隙位置与SSB索引有关。例如,SSB i对应的SIB1关联的PDCCH的时隙位置为
Figure PCTCN2020133413-appb-000039
M和O可以通过MIB指示信息并查表6确定。表6中最后一列为时隙内控制资源集的起始OFDM符号的位置。搜索空间所在的系统帧号SFN C满足:如果
Figure PCTCN2020133413-appb-000040
SFN Cmod 2=0。或者,如果
Figure PCTCN2020133413-appb-000041
则SFN Cmod 2=1。
Figure PCTCN2020133413-appb-000042
表6
S702,基站向UE一起发送SIB1关联的PDCCH、SIB1关联的PDSCH、SIB1关联的CSI-RS。
其中,一起发送SIB1关联的PDCCH、SIB1关联的PDSCH、SIB1关联的CSI-RS可以理解为:CSI-RS与SIB1关联的PDCCH和/或SIB1关联的PDSCH在相同的时间(时隙和/或OFDM符号)和频率(资源块或部分带宽)发送。或者,基站首先发送SIB1,然后发送CSI-RS。或者,基站发送SIB1的时间(时隙和/或OFDM符号)与发送CSI-RS的时间(时隙和/或OFDM符号)具有关联关系,例如发送CSI-RS的起始OFDM符号是在发送SIB1的最后一个OFDM符号之后X个OFDM符号,其中,X为整数。或者,基站同时发送SIB1与CSI-RS,例如SIB1和CSI-RS的时域相同,频域正交。
可选的,UE接收到SIB1关联的PDCCH、SIB1关联的PDSCH之后,可以根据SIB1 关联的PDCCH、SIB1关联的PDSCH、SIB1关联的PDCCH的控制资源集、SIB1关联的PDCCH的搜索空间、SIB1关联的物理小区标识、和SIB1关联的同步信号块SSB的索引中的至少一项,确定所述CSI-RS的资源配置。
其中,所述CSI-RS的资源配置包括以下中的至少一项:资源映射参数、序列生成参数、周期和时隙位置。其中,所述CSI-RS的所述资源映射参数包括以下中的至少一项:端口数、频域密度、频域RB的起始位置、频域RB的数量、频域分配、时域起始位置和码分复用类型。
UE确定CSI-RS的资源配置的方法与图6所示的实施例中的基站确定CSI-RS的资源配置的方法相同,具体实现方式可以参考S601,此处不再赘述。
可选的,UE根据所述CSI-RS的资源配置,接收基站发送的CSI-RS。
S703,UE向基站发送消息1。
其中,消息1可以包括SSB或CSI-RS关联的一个或者多个随机接入前导。
可选的,在UE向基站发送消息1之前,UE可以根据SSB或CSI-RS对基站与UE之间的信号进行测量确定SSB或CSI-RS的测量信息。并根据SSB和CSI-RS的测量信息确定SSB或CSI-RS关联的一个或者多个随机接入前导。
可选地,UE可以采取多个天线端口发送一个随机接入前导,其中,发送随机接入前导的预编码方式是根据CSI-RS或SSB的测量信息确定的。
可选地,UE可以采取多个天线端口发送多个随机接入前导,其中,各个随机接入前导采取的预编码方式不同。
S704,基站向UE发送消息2。
其中,消息2为随机接入响应。所述消息2包括上行调度授权。
S705,UE根据上行调度授权,向基站发送消息3。
其中,消息3可以是随机接入响应调度的上行传输。
可选的,UE可以向基站上报CSI-RS或SSB的测量信息,所述测量信息包括以下中的至少一项:CSI-RS资源索引(CSI-RS resource index,CRI)、信道质量指示(channel quality indicator,CQI)、预编码矩阵索引(precoding matrix indicator,PMI)、秩索引(rank index,RI)。
S706,基站向UE发送消息4或者指示信息,所述指示信息用于指示重传消息3。继续后续建立RRC连接或数据通信过程。
在本申请实施例中,在无线连接过程中,通过向UE一起发送CSI-RS和SIB1,实现在无线接入过程中或与基站建立RRC连接之前完成CSI-RS的资源配置,降低了CSI-RS的资源配置开销,实现波束对齐更加准确。并且,提升了无线接入过程中的波束收发性能,减少了随机接入以及后续数据传输的时延,提高了通信性能。
如图8所示,图8是本申请实施例提供的一种参考信号的通信方法的流程图。本申请实施例至少包括如下步骤:
S801,基站向UE发送SSB。
本步骤与图7所示的实施例中的S701相同,具体实现方式可以参考S701,本步骤 不再赘述。
S802,基站向UE发送SIB1关联的PDCCH、SIB1关联的PDSCH。
S803,UE向基站发送消息1。
其中,消息1可以包括SSB关联的一个或者多个随机接入前导。
可选的,在UE向基站发送消息1之前,UE可以根据SSB对基站与UE之间的信号进行测量确定SSB的测量信息。并根据SSB的测量信息,确定SSB关联的一个或者多个随机接入前导。
可选地,UE可以采取多个天线端口发送一个随机接入前导,其中,发送随机接入前导的预编码方式是根据SSB的测量信息确定的。
可选地,UE可以采取多个天线端口发送多个随机接入前导,其中,各个随机接入前导采取的预编码方式不同。
S804,基站向UE一起发送消息2(Msg2)和CSI-RS。
其中,消息2可以为随机接入响应。所述消息2可以包括上行调度授权。
其中,一起发送消息2与CSI-RS可以理解为:CSI-RS和消息2关联的PDCCH和/或消息2关联的PDSCH在相同的时间(时隙和/或OFDM符号)和频率(资源块或部分带宽)发送。或者,基站首先发送消息2,然后发送CSI-RS。或者,基站发送消息2的时间(时隙和/或OFDM符号)与发送CSI-RS的时间(时隙和/或OFDM符号)具有关联关系,例如发送CSI-RS的起始OFDM符号是在发送消息2的最后一个OFDM符号之后Y个OFDM符号,其中,Y为整数。或者,基站同时发送消息2和CSI-RS,例如消息2与CSI-RS的时域相同,频域正交。
可选的,UE接收到消息2之后,可以根据消息2关联的PDCCH、消息2关联的PDSCH、消息2关联的PDSCH中的随机接入响应协议数据报文(random access response protocol data unit,RAR PDU)中的上行调度授权、消息2关联的PDCCH的控制资源集、消息2关联的PDCCH的搜索空间、消息2关联的物理小区标识、和消息2关联的同步信号块SSB的索引中的至少一项,确定所述CSI-RS的资源配置。
其中,消息2关联的PDCCH的搜索空间和控制资源集可以与SIB1关联的PDCCH的搜索空间和控制资源集相同。例如,可以通过SSB中的MIB指示SIB1对应的PDCCH的控制资源集和搜索空间的参数信息,也即得到消息2关联的PDCCH的搜索空间和控制资源集。
其中,消息2关联的PDCCH的搜索空间和控制资源集也可以通过SIB1或其它RRC消息进行配置。
可选的,基站可以通过SIB1配置CSI-RS的资源配置中一部分参数的取值或取值范围,通过消息2关联的PDCCH、消息2关联的PDSCH、消息2关联的RAR PDU中的至少一个用于指示CSI-RS的资源配置中的另一部分参数的取值或取值范围。
其中,所述CSI-RS的资源配置包括以下中的至少一项:资源映射参数、序列生成参数、周期和时隙位置。其中,所述CSI-RS的所述资源映射参数包括以下中的至少一项:端口数、频域密度、频域RB的起始位置、频域RB的数量、频域分配、时域起始位置和码分复用类型。
需要说明的是,UE确定CSI-RS的资源配置的方法与图6所示的实施例中的基站确定CSI-RS的资源配置的方法相同,具体实现方式可以参考S601,此处不再赘述。
可选的,UE根据CSI-RS的资源配置,接收基站发送的CSI-RS。然后根据CSI-RS对基站与UE之间的信号进行测量确定CSI-RS的测量信息。
S805,UE根据上行调度授权,向基站发送消息3。
其中,消息3也可以是随机接入响应调度的上行传输。
S806,基站向UE发送消息4或指示信息,所述指示信息用于指示重传消息3。继续后续建立RRC连接或数据通信过程。
在本申请实施例中,在无线连接过程中,通过向UE一起发送CSI-RS和消息2,实现在无线接入过程中或与基站建立RRC连接之前完成CSI-RS的资源配置,降低了CSI-RS的资源配置开销,实现波束对齐更加准确。并且,提升了无线接入过程中的波束收发性能,减少了随机接入以及后续数据传输的时延,提高了通信性能。
如图9所示,图9是本申请实施例提供的一种参考信号的通信方法的流程图。本申请实施例至少包括如下步骤:
S901,基站向UE发送SSB。
本步骤与图7所示的实施例中的S701相同,具体实现方式可以参考S701,本步骤不再赘述。
S902,基站向UE发送SIB1关联的PDCCH、SIB1关联的PDSCH。
S903,UE向基站发送消息1。
其中,消息1可以包括SSB关联的一个或者多个随机接入前导。
可选的,在UE向基站发送消息1之前,UE可以根据SSB对基站与UE之间的信号进行测量确定SSB的测量信息。并根据SSB的测量信息,确定SSB关联的一个或者多个随机接入前导。
可选地,UE可以采取多个天线端口发送一个随机接入前导,其中,发送随机接入前导的预编码方式是根据SSB的测量信息确定的。
可选地,UE可以采取多个天线端口发送多个随机接入前导,其中,各个随机接入前导采取的预编码方式不同。
S904,基站向UE发送消息2。
其中,消息2可以为随机接入响应。所述消息2包括上行调度授权。
S905,UE根据上行调度授权,向基站发送消息3。
其中,消息3也可以为随机接入响应调度的上行传输。
可选的,消息3可以包括CSI-RS请求信息,基站接收到消息3之后,可以根据该CSI-RS请求信息,确定在消息4的发送时隙中发送CSI-RS。
其中,CSI-RS请求信息可以包括UE期望接收到的CSI-RS的资源配置,例如,UE期望接收CSI-RS的资源配置包括如下至少一个:端口数、频域密度、频域RB的起始位置频域资源RB数量、频域分配、时域起始位置1、码分复用类型。
可选的,消息3可以包括同步信号块SSB的索引或指示信息。基站接收到消息3之 后,可以根据所述SSB的索引或指示信息,确定在消息4的发送时隙中发送CSI-RS。
可选的,消息3可以包括同步信号块SSB的索引和CSI-RS请求信息。基站接收到消息3之后,可以根据同步信号块SSB的索引和CSI-RS请求信息,确定在消息4的发送时隙中发送CSI-RS,其中,CSI-RS与SSB准共址。
S906,基站向UE一起发送消息4和CSI-RS。
其中,一起发送消息4与CSI-RS可以理解为:CSI-RS和消息4关联的PDCCH和/或消息2关联的PDSCH在相同的时间(时隙和/或OFDM符号)和频率(资源块或部分带宽)发送。或者,基站首先发送消息4,然后发送CSI-RS。或者,基站发送消息4的时间(时隙和/或OFDM符号)与发送CSI-RS的时间(时隙和/或OFDM符号)具有关联关系,例如发送CSI-RS的起始OFDM符号是在发送消息4的最后一个OFDM符号之后Z个OFDM符号,其中,Z为整数。或者,基站同时发送消息4和CSI-RS,例如消息4与CSI-RS的时域相同,频域正交。
可选的,UE可以根据消息4关联的PDCCH、消息4关联的PDSCH、消息4关联的PDCCH的控制资源集、消息4关联的PDCCH的搜索空间、消息4关联的物理小区标识、和消息4关联的同步信号块SSB的索引中的至少一项,确定所述CSI-RS的资源配置。
其中,消息4关联的PDCCH的搜索空间和控制资源集可以与SIB1关联的PDCCH的搜索空间和控制资源集相同。例如,可以通过SSB中的MIB指示SIB1对应的PDCCH的控制资源集和搜索空间的参数信息,也即得到消息4关联的PDCCH的搜索空间和控制资源集。
其中,消息4关联的PDCCH的搜索空间和控制资源集也可以通过SIB1或其它RRC消息进行配置。
可选的,基站可以通过SIB1配置CSI-RS的资源配置中一部分参数的取值或取值范围,通过消息2关联的PDCCH、消息2关联的PDSCH、消息2关联的RAR PDU中的至少一个用于指示CSI-RS的资源配置中的另一部分参数的取值或取值范围。
其中,所述CSI-RS的资源配置包括以下中的至少一项:资源映射参数、序列生成参数、周期和时隙位置。其中,所述CSI-RS的所述资源映射参数包括以下中的至少一项:端口数、频域密度、频域RB的起始位置、频域RB的数量、频域分配、时域起始位置和码分复用类型。
需要说明的是,UE确定CSI-RS的资源配置的方法与图6所示的实施例中的基站确定CSI-RS的资源配置的方法相同,具体实现方式可以参考S601,此处不再赘述。
可选的,UE根据CSI-RS的资源配置,接收基站发送的CSI-RS。然后根据CSI-RS对基站与UE之间的信号进行测量确定CSI-RS的测量信息。
在本申请实施例中,在无线连接过程中,通过向UE一起发送CSI-RS和消息4,实现在无线接入过程中或与基站建立RRC连接之前完成CSI-RS的资源配置,降低了CSI-RS的资源配置开销,实现波束对齐更加准确。并且,提升了无线接入过程中的波束收发性能,减少了随机接入以及后续数据传输的时延,提高了通信性能。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上述主要从各个交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以使用硬件的形式实现,也可以使用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以使用对应各个功能划分各个功能模块为例进行说明。
以上,结合图6至图9详细说明了本申请实施例提供的方法。以下,结合图10至图13详细说明本申请实施例提供的通信设备。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
请参见图10,图10是本申请实施例提供的一种通信装置的结构示意图。该通信装置10可以包括接收模块1001和发送模块1003,可选地,还可以包括处理模块1002。接收模块1001和发送模块1003可以与外部进行通信,处理模块1002用于进行处理,如确定CSI-RS的资源配置等。接收模块1001和发送模块1003还可以称为通信接口、收发单元或收发模块。该接收模块1001和发送模块1003可以用于执行上文方法实施例中终端设备所执行的动作。
例如:接收模块1001和发送模块1003也可以称为收发模块或收发单元(包括接收单元和/或发送单元),分别用于执行上文方法实施例中终端设备发送和接收的步骤。
在一种可能的设计中,该通信装置10可实现对应于上文方法实施例中的终端设备执行的步骤或者流程,例如,可以为终端设备,或者配置于终端设备中的芯片或电路。接收模块1001和发送模块1003用于执行上文方法实施例中终端设备侧的收发相关操作,处理模块1002用于执行上文方法实施例中终端设备的处理相关操作。
接收模块1001,用于接收网络设备发送的第一消息,所述第一消息包括1号系统信息块、消息2和消息4中的至少一个;处理模块1002,用于根据所述第一消息,确定信道状态信息参考信号CSI-RS的资源配置;接收模块1001,还用于根据所述资源配置,接收所述网络设备发送的所述CSI-RS。
可选的,所述第一消息和所述CSI-RS一起被发送。
可选的,处理模块1002,还用于根据所述第一消息关联的物理下行控制信道PDCCH、 所述第一消息关联的物理下行共享信道PDSCH、所述第一消息关联的PDCCH的控制资源集、所述第一消息关联的PDCCH的搜索空间、所述第一消息关联的物理小区标识、和所述第一消息关联的同步信号块SSB的索引中的至少一项,确定所述CSI-RS的资源配置。
可选的,处理模块1002,还用于根据所述第一消息关联的同步信号块SSB的最大可能数量、所述第一消息关联的同步信号块SSB的时域位置、第一消息关联的SSB的数量、所述第一消息关联的载波频率范围、所述第一消息关联的PDCCH的搜索空间的带宽、所述第一消息关联的PDCCH和所述第一消息关联的PDSCH承载的随机接入响应RAR协议数据报文PDU中的至少一项,确定所述CSI-RS对应的端口数。
可选的,处理模块1002,还用于根据所述第一消息关联的PDCCH的搜索空间的带宽、所述第一消息关联的PDCCH和所述第一消息关联的PDSCH中的至少一项,确定所述CSI-RS的频域资源块RB的数量。
可选的,处理模块1002,还用于根据所述第一消息关联的PDCCH的控制资源集的起始位置、所述第一消息关联的PDCCH的起始位置、所述第一消息关联的PDCCH结束位置、所述第一消息关联的PDSCH的起始位置和所述第一消息关联的PDSCH的结束位置中的至少一项,确定所述CSI-RS的频域RB的起始位置。
可选的,处理模块1002,还用于根据所述第一消息关联的物理小区标识和所述第一消息关联的SSB的索引中至少一项,确定所述CSI-RS的频域分配。
可选的,处理模块1002,还用于根据所述第一消息关联的SSB的索引、所述第一消息关联的物理小区标识、所述第一消息关联的PDCCH的控制资源集的时隙的索引、所述第一消息关联的PDCCH的时隙的索引、所述第一消息关联的PDSCH的时隙的索引、所述第一消息关联的PDCCH控制资源集的起始或结束正交频分复用OFDM符号的索引、所述CSI-RS所在时隙的索引、所述第一消息关联的PDCCH的起始或结束OFDM符号的索引、所述第一消息关联的PDSCH的起始或结束OFDM符号的索引、所述CSI-RS所在OFDM符号的索引、和所述CSI-RS对应的端口数中的至少一项,确定所述CSI-RS对应的序列。
可选的,处理模块1002,还用于根据所述第一消息关联的随机接入无线网络临时标识RA-RNTI、所述第一消息关联的随机接入机会的时隙的索引、所述第一消息关联的随机接入机会的频率的索引、所述第一消息关联的随机接入机会所在的载波的索引、所述第一消息关联的随机接入机会所在的部分带宽BWP的索引、所述第一消息关联的随机接入机会的起始OFDM符号的索引中的至少一项,确定所述CSI-RS对应的序列。
可选的,发送模块1003,用于向所述网络设备发送第二消息,所述第二消息包括同步信号块SSB的索引和CSI-RS请求信息中的至少一项,所述SSB的索引和CSI-RS请求信息中的至少一项用于指示所述网络设备在所述第一消息的发送时隙中发送所述CSI-RS。
可选的,所述CSI-RS的资源配置包括以下中的至少一项:资源映射参数、序列生成参数、周期和时隙位置。
可选的,所述CSI-RS的所述资源映射参数包括以下中的至少一项:端口数、频域密度、频域RB的起始位置、频域RB的数量、频域分配、时域起始位置和码分复用类型。
需要说明的是,各个模块的实现还可以对应参照图6-图9所示的方法实施例的相应描述,执行上述实施例中终端设备所执行的方法和功能。
请参见图11,图11是本申请实施例提供的一种通信装置的结构示意图。该通信装置11可以包括发送模块1101和接收模块1103,可选地,还可以包括处理模块1102。接收模块1101和发送模块1103可以与外部进行通信,处理模块1102用于进行处理,如确定CSI-RS的资源配置等。发送模块1101和接收模块1103还可以称为通信接口、收发模块或收发单元。该发送模块1101和接收模块1103可以用于执行上文方法实施例中网络设备所执行的动作。
例如:发送模块1101和接收模块1103也可以称为收发模块或收发单元(包括发送单元和/或接收单元),分别用于执行上文方法实施例中网络设备发送和接收的步骤。
在一种可能的设计中,该通信装置11可实现对应于上文方法实施例中的网络设备执行的步骤或者流程,例如,可以为网络设备,或者配置于网络设备中的芯片或电路。发送模块1101和接收模块1103用于执行上文方法实施例中网络设备侧的收发相关操作,处理模块1102用于执行上文方法实施例中网络设备的处理相关操作。
处理模块1102,用于根据第一消息,确定信道状态信息参考信号CSI-RS的资源配置,所述第一消息包括1号系统信息块、消息2和消息4中的至少一个;发送模块1101,用于向终端设备发送所述第一消息和所述CSI-RS。
可选的,所述第一消息和所述CSI-RS一起被发送。
可选的,处理模块1102,还用于所述网络设备根据所述第一消息关联的物理下行控制信道PDCCH、所述第一消息关联的物理下行共享信道PDSCH、所述第一消息关联的PDCCH的控制资源集、所述第一消息关联的PDCCH的搜索空间、所述第一消息关联的物理小区标识、和所述第一消息关联的同步信号块SSB的索引中的至少一项,确定所述CSI-RS的资源配置。
可选的,处理模块1102,还用于根据所述第一消息关联的同步信号块SSB的最大可能数量、所述第一消息关联的同步信号块SSB的时域位置、第一消息关联的SSB的数量、所述第一消息关联的载波频率范围、所述第一消息关联的PDCCH的搜索空间的带宽、所述第一消息关联的PDCCH和所述第一消息关联的PDSCH承载的随机接入响应RAR协议数据报文PDU中的至少一项,确定所述CSI-RS对应的端口数。
可选的,处理模块1102,还用于根据所述第一消息关联的PDCCH的搜索空间的带宽、所述第一消息关联的PDCCH和所述第一消息关联的PDSCH中的至少一项,确定所述CSI-RS的频域资源块RB的数量。
可选的,处理模块1102,还用于根据所述第一消息关联的PDCCH的控制资源集的起始位置、所述第一消息关联的PDCCH的起始位置、所述第一消息关联的PDCCH结束位置、所述第一消息关联的PDSCH的起始位置和所述第一消息关联的PDSCH的结束位置中的至少一项,确定所述CSI-RS的频域RB的起始位置。
可选的,处理模块1102,还用于根据所述第一消息关联的物理小区标识和所述第一消息关联的SSB的索引中至少一项,确定所述CSI-RS的频域分配。
可选的,处理模块1102,还用于根据所述第一消息关联的SSB的索引、所述第一消 息关联的物理小区标识、所述第一消息关联的PDCCH的控制资源集的时隙的索引、所述第一消息关联的PDCCH的时隙的索引、所述第一消息关联的PDSCH的时隙的索引、所述第一消息关联的PDCCH控制资源集的起始或结束正交频分复用OFDM符号的索引、所述CSI-RS所在时隙的索引、所述第一消息关联的PDCCH的起始或结束OFDM符号的索引、所述第一消息关联的PDSCH的起始或结束OFDM符号的索引、所述CSI-RS所在OFDM符号的索引、和所述CSI-RS对应的端口数中的至少一项,确定所述CSI-RS的序列。
可选的,处理模块1102,还用于根据所述第一消息关联的随机接入无线网络临时标识RA-RNTI、所述第一消息关联的随机接入机会的时隙的索引、所述第一消息关联的随机接入机会的频率的索引、所述第一消息关联的随机接入机会所在的载波的索引、所述第一消息关联的随机接入机会所在的部分带宽BWP的索引、所述第一消息关联的随机接入机会的起始OFDM符号的索引中的至少一项,确定所述CSI-RS的序列。
可选的,接收模块1103,用于接收所述终端设备发送的第二消息,所述第二消息包括同步信号块SSB的索引和CSI-RS请求信息中的至少一项;
处理模块1102,还用于根据所述SSB的索引和CSI-RS请求信息中的至少一项,确定在所述第一消息的发送时隙中发送所述CSI-RS。
可选的,所述CSI-RS的资源配置包括以下中的至少一项:资源映射参数、序列生成参数、周期和时隙位置。
可选的,所述CSI-RS的所述资源映射参数包括以下中的至少一项:端口数、频域密度、频域RB的起始位置、频域RB的数量、频域分配、时域起始位置和码分复用类型。
需要说明的是,各个模块的实现还可以对应参照图6-图9所示的方法实施例的相应描述,执行上述实施例中网络设备所执行的方法和功能。
图12是本申请实施例提供的一种终端设备的结构示意图。该终端设备可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能,或者实现上述方法实施例中终端设备执行的步骤或者流程。
如图12所示,该终端设备包括处理器1201和收发器1202。可选地,该终端设备还包括存储器1203。其中,处理器1201、收发器1202和存储器1203之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器1203用于存储计算机程序,该处理器1201用于从该存储器1203中调用并运行该计算机程序,以控制该收发器1202收发信号。可选地,终端设备还可以包括天线,用于将收发器1202输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器1201可以和存储器1203可以合成一个处理装置,处理器1201用于执行存储器1203中存储的程序代码来实现上述功能。具体实现时,该存储器1203也可以集成在处理器1201中,或者独立于处理器1201。该处理器1201可以与图10中的处理模块对应。
上述收发器1202可以与图10中的接收模块和发送模块对应,也可以称为收发单元或收发模块。收发器1202可以包括接收器(或称接收机、接收电路)和发射器(或称发射 机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图12所示的终端设备能够实现图6至图9所示方法实施例中涉及终端设备的各个过程。终端设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
上述处理器1201可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器1202可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
其中,处理器1201可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器1201也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。通信总线1204可以是外设部件互连标准PCI总线或扩展工业标准结构EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。通信总线1204用于实现这些组件之间的连接通信。其中,本申请实施例中收发器1202用于与其他节点设备进行信令或数据的通信。存储器1203可以包括易失性存储器,例如非挥发性动态随机存取内存(nonvolatile random access memory,NVRAM)、相变化随机存取内存(phase change RAM,PRAM)、磁阻式随机存取内存(magetoresistive RAM,MRAM)等,还可以包括非易失性存储器,例如至少一个磁盘存储器件、电子可擦除可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、闪存器件,例如反或闪存(NOR flash memory)或是反及闪存(NAND flash memory)、半导体器件,例如固态硬盘(solid state disk,SSD)等。存储器1203可选的还可以是至少一个位于远离前述处理器1201的存储装置。存储器1203中可选的还可以存储一组计算机程序代码或配置信息。可选的,处理器1201还可以执行存储器1203中所存储的程序。处理器可以与存储器和收发器相配合,执行上述申请实施例中终端设备的任意一种方法和功能。
图13是本申请实施例提供的一种网络设备的结构示意图。该网络设备可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能,或者实现上述方法实施例中网络设备执行的步骤或者流程。
如图13所示,该网络设备包括处理器1301和收发器1302。可选地,该网络设备还包括存储器1303。其中,处理器1301、收发器1302和存储器1303之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器1303用于存储计算机程序,该处理器1301用于从该存储器1303中调用并运行该计算机程序,以控制该收发器1302收发信号。可选地,网络设备还可以包括天线,用于将收发器1302输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器1301可以和存储器1303可以合成一个处理装置,处理器1301用于执行存储器1303中存储的程序代码来实现上述功能。具体实现时,该存储器1303也可以集成在处理器1301中,或者独立于处理器1301。该处理器1301可以与图11中的处理模块对应。
上述收发器1302可以与图11中的接收模块和发送模块对应,也可以称为收发单元或收发模块。收发器1302可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图13所示的网络设备能够实现图6至图9所示方法实施例中涉及网络设备的各个过程。网络设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
上述处理器1301可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而收发器1302可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
其中,处理器1301可以是前文提及的各种类型的处理器。通信总线1304可以是外设部件互连标准PCI总线或扩展工业标准结构EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。通信总线1304用于实现这些组件之间的连接通信。其中,本申请实施例中设备的收发器1302用于与其他设备进行信令或数据的通信。存储器1303可以是前文提及的各种类型的存储器。存储器1303可选的还可以是至少一个位于远离前述处理器1301的存储装置。存储器1303中存储一组计算机程序代码或配置信息,且处理器1301执行存储器1303中程序。处理器可以与存储器和收发器相配合,执行上述申请实施例中网络设备的任意一种方法和功能。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持终端设备或网络设备以实现上述任一实施例中所涉及的功能,例如生成或处理上述方法中所涉及的第一消息和CSI-RS。在一种可能的设计中,所述芯片系统还可以包括存储器,所述存储器,用于终端设备或网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。其中,芯片系统的输入和输出,分别对应方法实施例终端设备或网络设备的接收与发送操作。
本申请实施例还提供了一种处理装置,包括处理器和接口。所述处理器可用于执行上述方法实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上 述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图6至图9所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图6至图9所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备对应,由相应的模块或单元执行相应的步骤,例如接收模块和发送模块(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理模块(处理器)执行。具体模块的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬 件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (53)

  1. 一种参考信号的通信方法,其特征在于,所述方法包括:
    终端设备接收网络设备发送的第一消息,所述第一消息包括1号系统信息块、消息2和消息4中的至少一个;
    所述终端设备根据所述第一消息,确定信道状态信息参考信号CSI-RS的资源配置;
    所述终端设备根据所述资源配置,接收所述网络设备发送的所述CSI-RS。
  2. 如权利要求1所述的方法,其特征在于,所述第一消息和所述CSI-RS一起被发送。
  3. 如权利要求1或2所述的方法,其特征在于,所述终端设备根据所述第一消息,确定CSI-RS的资源配置包括:
    所述终端设备根据所述第一消息关联的物理下行控制信道PDCCH、所述第一消息关联的物理下行共享信道PDSCH、所述第一消息关联的PDCCH的控制资源集、所述第一消息关联的PDCCH的搜索空间、所述第一消息关联的物理小区标识、和所述第一消息关联的同步信号块SSB的索引中的至少一项,确定所述CSI-RS的资源配置。
  4. 如权利要求1或2所述的方法,其特征在于,所述终端设备根据所述第一消息,确定CSI-RS的资源配置包括:
    所述终端设备根据所述第一消息关联的同步信号块SSB的最大可能数量、所述第一消息关联的同步信号块SSB的时域位置、所述第一消息关联的载波频率范围、所述第一消息关联的PDCCH的搜索空间的带宽、所述第一消息关联的PDCCH和所述第一消息关联的PDSCH承载的随机接入响应RAR协议数据报文PDU中的至少一项,确定所述CSI-RS对应的端口数。
  5. 如权利要求1或2所述的方法,其特征在于,所述终端设备根据所述第一消息,确定CSI-RS的资源配置包括:
    所述终端设备根据所述第一消息关联的PDCCH的搜索空间的带宽、所述第一消息关联的PDCCH和所述第一消息关联的PDSCH中的至少一项,确定所述CSI-RS的频域资源块RB的数量。
  6. 如权利要求1或2所述的方法,其特征在于,所述终端设备根据所述第一消息,确定CSI-RS的资源配置包括:
    所述终端设备根据所述第一消息关联的PDCCH的控制资源集的起始位置、所述第一消息关联的PDCCH的起始位置、所述第一消息关联的PDCCH结束位置、所述第一消息关联的PDSCH的起始位置和所述第一消息关联的PDSCH的结束位置中的至少一项,确 定所述CSI-RS的频域RB的起始位置。
  7. 如权利要求1或2所述的方法,其特征在于,所述终端设备根据所述第一消息,确定CSI-RS的资源配置包括:
    所述终端设备根据所述第一消息关联的物理小区标识和所述第一消息关联的SSB的索引中至少一项,确定所述CSI-RS的频域分配。
  8. 如权利要求1或2所述的方法,其特征在于,所述终端设备根据所述第一消息,确定CSI-RS的资源配置包括:
    所述终端设备根据所述第一消息关联的SSB的索引、所述第一消息关联的物理小区标识、所述第一消息关联的PDCCH的控制资源集的时隙的索引、所述第一消息关联的PDCCH的时隙的索引、所述第一消息关联的PDSCH的时隙的索引、所述第一消息关联的PDCCH控制资源集的起始或结束正交频分复用OFDM符号的索引、所述CSI-RS所在时隙的索引、所述第一消息关联的PDCCH的起始或结束OFDM符号的索引、所述第一消息关联的PDSCH的起始或结束OFDM符号的索引、所述CSI-RS所在OFDM符号的索引、和所述CSI-RS对应的端口数中的至少一项,确定所述CSI-RS对应的序列。
  9. 如权利要求1或2所述的方法,其特征在于,所述终端设备根据所述第一消息,确定CSI-RS的资源配置包括:
    所述终端设备根据所述第一消息关联的随机接入无线网络临时标识RA-RNTI、所述第一消息关联的随机接入机会的时隙的索引、所述第一消息关联的随机接入机会的频率的索引、所述第一消息关联的随机接入机会所在的载波的索引、所述第一消息关联的随机接入机会所在的部分带宽BWP的索引、所述第一消息关联的随机接入机会的起始OFDM符号的索引中的至少一项,确定所述CSI-RS对应的序列。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述终端设备接收网络设备发送的第一消息之前,所述方法包括:
    所述终端设备向所述网络设备发送第二消息,所述第二消息包括同步信号块SSB的索引和CSI-RS请求信息中的至少一项,所述SSB的索引和CSI-RS请求信息中的至少一项用于指示所述网络设备在所述第一消息的发送时隙中发送所述CSI-RS。
  11. 如权利要求1-10任一项所述的方法,其特征在于,所述CSI-RS的资源配置包括以下中的至少一项:资源映射参数、序列生成参数、周期和时隙位置。
  12. 如权利要求11所述的方法,其特征在于,所述CSI-RS的所述资源映射参数包括以下中的至少一项:端口数、频域密度、频域RB的起始位置、频域RB的数量、频域分配、时域起始位置和码分复用类型。
  13. 一种参考信号的通信方法,其特征在于,所述方法包括:
    网络设备根据第一消息,确定信道状态信息参考信号CSI-RS的资源配置,所述第一消息包括1号系统信息块、消息2和消息4中的至少一个;
    所述网络设备向终端设备发送所述第一消息和所述CSI-RS。
  14. 如权利要求13所述的方法,其特征在于,所述第一消息和所述CSI-RS一起被发送。
  15. 如权利要求13或14所述的方法,其特征在于,所述网络设备根据第一消息,确定信道状态信息参考信号CSI-RS的资源配置包括:
    所述网络设备根据所述第一消息关联的物理下行控制信道PDCCH、所述第一消息关联的物理下行共享信道PDSCH、所述第一消息关联的PDCCH的控制资源集、所述第一消息关联的PDCCH的搜索空间、所述第一消息关联的物理小区标识、和所述第一消息关联的同步信号块SSB的索引中的至少一项,确定所述CSI-RS的资源配置。
  16. 如权利要求13或14所述的方法,其特征在于,所述网络设备根据第一消息,确定信道状态信息参考信号CSI-RS的资源配置包括:
    所述网络设备根据所述第一消息关联的同步信号块SSB的最大可能数量、所述第一消息关联的同步信号块SSB的时域位置、所述第一消息关联的载波频率范围、所述第一消息关联的PDCCH的搜索空间的带宽、所述第一消息关联的PDCCH和所述第一消息关联的PDSCH承载的随机接入响应RAR协议数据报文PDU中的至少一项,确定所述CSI-RS对应的端口数。
  17. 如权利要求13或14所述的方法,其特征在于,所述网络设备根据第一消息,确定信道状态信息参考信号CSI-RS的资源配置包括:
    所述网络设备根据所述第一消息关联的PDCCH的搜索空间的带宽、所述第一消息关联的PDCCH和所述第一消息关联的PDSCH中的至少一项,确定所述CSI-RS的频域资源块RB的数量。
  18. 如权利要求13或14所述的方法,其特征在于,所述网络设备根据第一消息,确定信道状态信息参考信号CSI-RS的资源配置包括:
    所述网络设备根据所述第一消息关联的PDCCH的控制资源集的起始位置、所述第一消息关联的PDCCH的起始位置、所述第一消息关联的PDCCH结束位置、所述第一消息关联的PDSCH的起始位置和所述第一消息关联的PDSCH的结束位置中的至少一项,确定所述CSI-RS的频域RB的起始位置。
  19. 如权利要求13或14所述的方法,其特征在于,所述网络设备根据第一消息,确定信道状态信息参考信号CSI-RS的资源配置包括:
    所述网络设备根据所述第一消息关联的物理小区标识和所述第一消息关联的SSB的索引中至少一项,确定所述CSI-RS的频域分配。
  20. 如权利要求13或14所述的方法,其特征在于,所述网络设备根据第一消息,确定信道状态信息参考信号CSI-RS的资源配置包括:
    所述网络设备根据所述第一消息关联的SSB的索引、所述第一消息关联的物理小区标识、所述第一消息关联的PDCCH的控制资源集的时隙的索引、所述第一消息关联的PDCCH的时隙的索引、所述第一消息关联的PDSCH的时隙的索引、所述第一消息关联的PDCCH控制资源集的起始或结束正交频分复用OFDM符号的索引、所述CSI-RS所在时隙的索引、所述第一消息关联的PDCCH的起始或结束OFDM符号的索引、所述第一消息关联的PDSCH的起始或结束OFDM符号的索引、所述CSI-RS所在OFDM符号的索引、和所述CSI-RS对应的端口数中的至少一项,确定所述CSI-RS的序列。
  21. 如权利要求13或14所述的方法,其特征在于,所述网络设备根据第一消息,确定信道状态信息参考信号CSI-RS的资源配置包括:
    所述网络设备根据所述第一消息关联的随机接入无线网络临时标识RA-RNTI、所述第一消息关联的随机接入机会的时隙的索引、所述第一消息关联的随机接入机会的频率的索引、所述第一消息关联的随机接入机会所在的载波的索引、所述第一消息关联的随机接入机会所在的部分带宽BWP的索引、所述第一消息关联的随机接入机会的起始OFDM符号的索引中的至少一项,确定所述CSI-RS的序列。
  22. 如权利要求13-21任一项所述的方法,其特征在于,所述网络设备向终端设备发送所述第一消息和所述CSI-RS之前,所述方法还包括:
    所述网络设备接收所述终端设备发送的第二消息,所述第二消息包括同步信号块SSB的索引和CSI-RS请求信息中的至少一项;
    所述网络设备根据所述SSB的索引和CSI-RS请求信息中的至少一项,确定在所述第一消息的发送时隙中发送所述CSI-RS。
  23. 如权利要求13-22任一项所述的方法,其特征在于,所述CSI-RS的资源配置包括以下中的至少一项:资源映射参数、序列生成参数、周期和时隙位置。
  24. 如权利要求23所述的方法,其特征在于,所述CSI-RS的所述资源映射参数包括以下中的至少一项:端口数、频域密度、频域RB的起始位置、频域RB的数量、频域分配、时域起始位置和码分复用类型。
  25. 一种通信装置,其特征在于,所述装置包括:
    接收模块,用于接收网络设备发送的第一消息,所述第一消息包括1号系统信息块、消息2和消息4中的至少一个;
    处理模块,用于根据所述第一消息,确定信道状态信息参考信号CSI-RS的资源配置;
    所述接收模块,还用于根据所述资源配置,接收所述网络设备发送的所述CSI-RS。
  26. 如权利要求25所述的装置,其特征在于,所述第一消息和所述CSI-RS一起被发送。
  27. 如权利要求25或26所述的装置,其特征在于,
    所述处理模块,还用于根据所述第一消息关联的物理下行控制信道PDCCH、所述第一消息关联的物理下行共享信道PDSCH、所述第一消息关联的PDCCH的控制资源集、所述第一消息关联的PDCCH的搜索空间、所述第一消息关联的物理小区标识、和所述第一消息关联的同步信号块SSB的索引中的至少一项,确定所述CSI-RS的资源配置。
  28. 如权利要求25或26所述的装置,其特征在于,
    所述处理模块,还用于根据所述第一消息关联的同步信号块SSB的最大可能数量、所述第一消息关联的同步信号块SSB的时域位置、所述第一消息关联的载波频率范围、所述第一消息关联的PDCCH的搜索空间的带宽、所述第一消息关联的PDCCH和所述第一消息关联的PDSCH承载的随机接入响应RAR协议数据报文PDU中的至少一项,确定所述CSI-RS对应的端口数。
  29. 如权利要求25或26所述的装置,其特征在于,
    所述处理模块,还用于根据所述第一消息关联的PDCCH的搜索空间的带宽、所述第一消息关联的PDCCH和所述第一消息关联的PDSCH中的至少一项,确定所述CSI-RS的频域资源块RB的数量。
  30. 如权利要求25或26所述的装置,其特征在于,
    所述处理模块,还用于根据所述第一消息关联的PDCCH的控制资源集的起始位置、所述第一消息关联的PDCCH的起始位置、所述第一消息关联的PDCCH结束位置、所述第一消息关联的PDSCH的起始位置和所述第一消息关联的PDSCH的结束位置中的至少一项,确定所述CSI-RS的频域RB的起始位置。
  31. 如权利要求25或26所述的装置,其特征在于,
    所述处理模块,还用于根据所述第一消息关联的物理小区标识和所述第一消息关联的SSB的索引中至少一项,确定所述CSI-RS的频域分配。
  32. 如权利要求25或26所述的装置,其特征在于,
    所述处理模块,还用于根据所述第一消息关联的SSB的索引、所述第一消息关联的物理小区标识、所述第一消息关联的PDCCH的控制资源集的时隙的索引、所述第一消息关联的PDCCH的时隙的索引、所述第一消息关联的PDSCH的时隙的索引、所述第一 消息关联的PDCCH控制资源集的起始或结束正交频分复用OFDM符号的索引、所述CSI-RS所在时隙的索引、所述第一消息关联的PDCCH的起始或结束OFDM符号的索引、所述第一消息关联的PDSCH的起始或结束OFDM符号的索引、所述CSI-RS所在OFDM符号的索引、和所述CSI-RS对应的端口数中的至少一项,确定所述CSI-RS对应的序列。
  33. 如权利要求25或26所述的装置,其特征在于,
    所述处理模块,还用于根据所述第一消息关联的随机接入无线网络临时标识RA-RNTI、所述第一消息关联的随机接入机会的时隙的索引、所述第一消息关联的随机接入机会的频率的索引、所述第一消息关联的随机接入机会所在的载波的索引、所述第一消息关联的随机接入机会所在的部分带宽BWP的索引、所述第一消息关联的随机接入机会的起始OFDM符号的索引中的至少一项,确定所述CSI-RS对应的序列。
  34. 如权利要求25-33任一项所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向所述网络设备发送第二消息,所述第二消息包括同步信号块SSB的索引和CSI-RS请求信息中的至少一项,所述SSB的索引和CSI-RS请求信息中的至少一项用于指示所述网络设备在所述第一消息的发送时隙中发送所述CSI-RS。
  35. 如权利要求25-34任一项所述的装置,其特征在于,所述CSI-RS的资源配置包括以下中的至少一项:资源映射参数、序列生成参数、周期和时隙位置。
  36. 如权利要求35所述的装置,其特征在于,所述CSI-RS的所述资源映射参数包括以下中的至少一项:端口数、频域密度、频域RB的起始位置、频域RB的数量、频域分配、时域起始位置和码分复用类型。
  37. 一种通信装置,其特征在于,所述装置包括:
    处理模块,用于根据第一消息,确定信道状态信息参考信号CSI-RS的资源配置,所述第一消息包括1号系统信息块、消息2和消息4中的至少一个;
    发送模块,用于向终端设备发送所述第一消息和所述CSI-RS。
  38. 如权利要求37所述的装置,其特征在于,所述第一消息和所述CSI-RS一起被发送。
  39. 如权利要求37或38所述的装置,其特征在于,
    所述处理模块,还用于所述网络设备根据所述第一消息关联的物理下行控制信道PDCCH、所述第一消息关联的物理下行共享信道PDSCH、所述第一消息关联的PDCCH的控制资源集、所述第一消息关联的PDCCH的搜索空间、所述第一消息关联的物理小区标识、和所述第一消息关联的同步信号块SSB的索引中的至少一项,确定所述CSI-RS的资源配置。
  40. 如权利要求37或38所述的装置,其特征在于,
    所述处理模块,还用于根据所述第一消息关联的同步信号块SSB的最大可能数量、所述第一消息关联的同步信号块SSB的时域位置、所述第一消息关联的载波频率范围、所述第一消息关联的PDCCH的搜索空间的带宽、所述第一消息关联的PDCCH和所述第一消息关联的PDSCH承载的随机接入响应RAR协议数据报文PDU中的至少一项,确定所述CSI-RS对应的端口数。
  41. 如权利要求37或38所述的装置,其特征在于,
    所述处理模块,还用于根据所述第一消息关联的PDCCH的搜索空间的带宽、所述第一消息关联的PDCCH和所述第一消息关联的PDSCH中的至少一项,确定所述CSI-RS的频域资源块RB的数量。
  42. 如权利要求37或38所述的装置,其特征在于,
    所述处理模块,还用于根据所述第一消息关联的PDCCH的控制资源集的起始位置、所述第一消息关联的PDCCH的起始位置、所述第一消息关联的PDCCH结束位置、所述第一消息关联的PDSCH的起始位置和所述第一消息关联的PDSCH的结束位置中的至少一项,确定所述CSI-RS的频域RB的起始位置。
  43. 如权利要求37或38所述的装置,其特征在于,
    所述处理模块,还用于根据所述第一消息关联的物理小区标识和所述第一消息关联的SSB的索引中至少一项,确定所述CSI-RS的频域分配。
  44. 如权利要求37或38所述的装置,其特征在于,
    所述处理模块,还用于根据所述第一消息关联的SSB的索引、所述第一消息关联的物理小区标识、所述第一消息关联的PDCCH的控制资源集的时隙的索引、所述第一消息关联的PDCCH的时隙的索引、所述第一消息关联的PDSCH的时隙的索引、所述第一消息关联的PDCCH控制资源集的起始或结束正交频分复用OFDM符号的索引、所述CSI-RS所在时隙的索引、所述第一消息关联的PDCCH的起始或结束OFDM符号的索引、所述第一消息关联的PDSCH的起始或结束OFDM符号的索引、所述CSI-RS所在OFDM符号的索引、和所述CSI-RS对应的端口数中的至少一项,确定所述CSI-RS的序列。
  45. 如权利要求37或38所述的装置,其特征在于,
    所述处理模块,还用于根据所述第一消息关联的随机接入无线网络临时标识RA-RNTI、所述第一消息关联的随机接入机会的时隙的索引、所述第一消息关联的随机接入机会的频率的索引、所述第一消息关联的随机接入机会所在的载波的索引、所述第一消息关联的随机接入机会所在的部分带宽BWP的索引、所述第一消息关联的随机接入机会的起始OFDM符号的索引中的至少一项,确定所述CSI-RS的序列。
  46. 如权利要求37-45任一项所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述终端设备发送的第二消息,所述第二消息包括同步信号块SSB的索引和CSI-RS请求信息中的至少一项;
    所述处理模块,还用于根据所述SSB的索引和CSI-RS请求信息中的至少一项,确定在所述第一消息的发送时隙中发送所述CSI-RS。
  47. 如权利要求37-46任一项所述的装置,其特征在于,所述CSI-RS的资源配置包括以下中的至少一项:资源映射参数、序列生成参数、周期和时隙位置。
  48. 如权利要求47所述的装置,其特征在于,所述CSI-RS的所述资源映射参数包括以下中的至少一项:端口数、频域密度、频域RB的起始位置、频域RB的数量、频域分配、时域起始位置和码分复用类型。
  49. 一种装置,其特征在于,包括处理器和存储器,所述存储器用于存储指令,所述处理器运行所述指令以使得所述装置执行权利要求1至24中任一项所述的方法。
  50. 一种芯片,其特征在于,所述芯片为网络设备或终端设备内的芯片,所述芯片包括处理器和与所述处理器连接的输入接口和输出接口,所述芯片还包括存储器,当所述代码被执行时,所述权利要求1至24中任一项所述的方法被执行。
  51. 一种计算机可读存储介质,其特征在于,用于存储指令,当所述指令在计算机上运行时,使所述计算机执行权利要求1至24中任一项所述的方法。
  52. 一种计算机程序产品,其特征在于,所述计算机程序产品包括一个或多个计算机指令,当所述计算机指令在计算机上运行时,使所述计算机执行权利要求1至24中任一项所述的方法。
  53. 一种通信系统,其特征在于,所述系统包括至少一个终端设备和至少一个网络设备,所述终端设备执行权利要求1-12中任一项所述的方法,所述网络设备执行权利要求13-24中任一项所述的方法。
PCT/CN2020/133413 2020-12-02 2020-12-02 一种参考信号的通信方法、装置及系统 WO2022116053A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080107506.6A CN116584059A (zh) 2020-12-02 2020-12-02 一种参考信号的通信方法、装置及系统
PCT/CN2020/133413 WO2022116053A1 (zh) 2020-12-02 2020-12-02 一种参考信号的通信方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/133413 WO2022116053A1 (zh) 2020-12-02 2020-12-02 一种参考信号的通信方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2022116053A1 true WO2022116053A1 (zh) 2022-06-09

Family

ID=81853774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133413 WO2022116053A1 (zh) 2020-12-02 2020-12-02 一种参考信号的通信方法、装置及系统

Country Status (2)

Country Link
CN (1) CN116584059A (zh)
WO (1) WO2022116053A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024032310A1 (zh) * 2022-08-12 2024-02-15 华为技术有限公司 通信方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012041016A2 (zh) * 2010-09-29 2012-04-05 中兴通讯股份有限公司 一种移动通信系统及其信道状态指示参考信号的配置方法
CN108809574A (zh) * 2017-05-05 2018-11-13 展讯通信(上海)有限公司 Csi-rs配置方法及装置、计算机可读存储介质、基站、用户设备
US20190021058A1 (en) * 2017-07-17 2019-01-17 Fg Innovation Ip Company Limited Method and apparatus for power saving in a wireless communication system
CN110831125A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 发送和接收寻呼消息的方法以及通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012041016A2 (zh) * 2010-09-29 2012-04-05 中兴通讯股份有限公司 一种移动通信系统及其信道状态指示参考信号的配置方法
CN108809574A (zh) * 2017-05-05 2018-11-13 展讯通信(上海)有限公司 Csi-rs配置方法及装置、计算机可读存储介质、基站、用户设备
US20190021058A1 (en) * 2017-07-17 2019-01-17 Fg Innovation Ip Company Limited Method and apparatus for power saving in a wireless communication system
CN110831125A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 发送和接收寻呼消息的方法以及通信装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024032310A1 (zh) * 2022-08-12 2024-02-15 华为技术有限公司 通信方法和装置

Also Published As

Publication number Publication date
CN116584059A (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
US11716704B2 (en) Beamformed paging transmission
US11219021B2 (en) Method and apparatus for transmitting and receiving system information
WO2018228187A1 (en) Method for Response to Beam Failure Recovery Request
US11310015B2 (en) Method for transmitting and receiving reference signal and device therefor
US11570781B2 (en) Method and apparatus for receiving downlink signal in wireless communication system
US20220167425A1 (en) Waveform configuration and indication for uplink transmission
JP2020504514A (ja) ランダムアクセスチャネルを送受信する方法及びそのための装置
US11956078B2 (en) Method of transmitting and receiving system information and device therefor
JP2023514126A (ja) 複数の関連付けられたnzp csi-rsを用いた非コードブックベースのマルチtrp puschの信頼性
US11943036B2 (en) Method and device for transmitting or receiving signal on basis of space parameter in wireless communication system
KR20230044459A (ko) 랜덤 액세스 절차에서의 pusch 반복 방법 및 장치
KR20200087698A (ko) 무선통신시스템에서 사이드링크 물리계층 세션 아이디를 결정하는 방법 및 장치
KR20230110629A (ko) RedCap UE들의 식별을 위한 방법 및 장치
CN115245037A (zh) 用于随机接入的资源选择
KR20190112194A (ko) 다중 사용자 상향 전송을 위한 무선 통신 방법 및 무선 통신 단말
WO2022211911A1 (en) Managing potential collision between uplink transmission and synchronization signal block (ssb)
JP2024502976A (ja) 新無線サイドリンクにおけるサイドリンクフィードバックチャネルシグナリング
TW202211643A (zh) 收發器、無線通訊系統和用於存取無線媒體的方法
WO2022116053A1 (zh) 一种参考信号的通信方法、装置及系统
JP2018170621A (ja) 無線通信装置および無線通信方法
US20220248477A1 (en) Random access channel message repetition indication for retransmission
TW202249525A (zh) 用於下行鏈路控制通道命令的下行鏈路控制通道重複
WO2022094820A1 (zh) 一种消息传输方法及相关设备
WO2023028930A1 (en) Multi physical uplink shared channel (pusch) scheduling for multiple transmission reception points (m-trp)
WO2022205431A1 (en) Implicitly repeated initial transmission of msg3 pusch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963901

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107506.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963901

Country of ref document: EP

Kind code of ref document: A1