WO2022115981A1 - 离心式反应装置和离心式反应方法 - Google Patents

离心式反应装置和离心式反应方法 Download PDF

Info

Publication number
WO2022115981A1
WO2022115981A1 PCT/CN2020/133038 CN2020133038W WO2022115981A1 WO 2022115981 A1 WO2022115981 A1 WO 2022115981A1 CN 2020133038 W CN2020133038 W CN 2020133038W WO 2022115981 A1 WO2022115981 A1 WO 2022115981A1
Authority
WO
WIPO (PCT)
Prior art keywords
centrifugal
reaction
magnetic
force
reaction tube
Prior art date
Application number
PCT/CN2020/133038
Other languages
English (en)
French (fr)
Inventor
王锦弘
Original Assignee
王锦弘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王锦弘 filed Critical 王锦弘
Priority to CN202080100598.5A priority Critical patent/CN115516311A/zh
Priority to US17/922,206 priority patent/US20230257797A1/en
Priority to JP2022580169A priority patent/JP2023533221A/ja
Priority to PCT/CN2020/133038 priority patent/WO2022115981A1/zh
Priority to EP20963830.3A priority patent/EP4145129A4/en
Publication of WO2022115981A1 publication Critical patent/WO2022115981A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0332Component parts; Auxiliary operations characterised by the magnetic circuit using permanent magnets
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5021Test tubes specially adapted for centrifugation purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/06Test-tube stands; Test-tube holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/288Magnetic plugs and dipsticks disposed at the outer circumference of a recipient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • C12N15/1013Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by using magnetic beads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0098Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor involving analyte bound to insoluble magnetic carrier, e.g. using magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/26Details of magnetic or electrostatic separation for use in medical applications

Definitions

  • the present disclosure relates to a reaction device and a reaction method for experiments, in particular to a centrifugal reaction device and a centrifugal reaction method that can complete molecular biological detection in one-key manner by combining centrifugal force with magnetic force.
  • Magnetic bar Use the magnetic bar and the magnetic bar sleeve to rotate back and forth in the reaction tank to mix the reaction liquid.
  • the magnetic beads and the magnetic rod sleeve must be removed together, and then moved into different reaction tanks for subsequent reactions. Since the magnetic beads and the magnetic rod sleeve will be moved in and out of the reaction tank in sequence, the operation time is prolonged and there is a risk of contamination.
  • the magnetic rod sleeve and a plurality of reaction tanks used in the reaction process are replaced as consumables, which increases the cost.
  • Magnetic block the magnetic block is used outside, the magnetic beads are placed in the micropipette, and the micropipette is used to suck the solution up and down during the reaction to mix.
  • the reaction solution it is necessary to use the external magnetic block to first adsorb the magnetic beads in the micropipette, and then move it to a different reaction tank for reaction. Because the magnetic beads and micropipettes will be moved in and out of the reaction tank in sequence, the operation time is prolonged and it is not suitable for large-scale operations.
  • special micropipettes and multiple reaction tanks used in the reaction process are replaced as consumables, which increases the cost.
  • one object of the present invention is to provide a centrifugal reaction device.
  • the magnetic beads in the reaction tube are subjected to the magnetic force of the magnetic block in addition to the centrifugal force during the centrifugation process.
  • the magnetic beads will move in the reaction tube.
  • the movement of the magnetic beads drives the reaction mixture in the reaction tube to move in different directions for thorough mixing.
  • centrifugal force can be used to control the opening of the one-way valve, and magnetic beads can be used to adsorb the product to remove the waste liquid, so that extraction, reaction, washing and/or signal detection can be performed in the same reaction microtube to reduce the reaction tube. Quantitative needs.
  • an embodiment of the present invention provides a centrifugal reaction device, comprising:
  • centrifugal disc which includes a centrifugal shaft and at least one centrifugal seat, and the centrifugal seat is annularly arranged with the centrifugal shaft as the center;
  • At least one magnetic block which is arranged on at least one side of the centrifugal seat
  • centrifuge seat is used for detachably arranging the reaction tube, and the reaction tube is used for accommodating the magnetic beads;
  • the magnetic beads are moved in the reaction tube by the force of the sum of the magnetic force of the magnetic block and the centrifugal force.
  • the magnet block may not be connected with the centrifugal disc without interlocking.
  • the magnet block can be an electromagnet, a magnet or a combination thereof.
  • the magnetic block can be linked with the centrifugal disc.
  • an electromagnet can be arranged in the magnet block.
  • the distance between the magnet block and the centrifugal seat may be 0 to 300 mm.
  • the centrifugal force may be 1 to 80,000 g.
  • the magnetic force of the magnet block may be 1 ⁇ 15,000 Gauss.
  • the reaction tube may comprise at least one reaction zone and at least one one-way valve.
  • the one-way valve of the reaction tube can be opened and closed by electronic control or magnetic control.
  • the magnetic beads can be coated with biomolecules including antibodies, aptamers, peptides or nucleic acids.
  • an embodiment of the present invention provides a kind of centrifugal reaction method, comprising:
  • the method may further comprise adding a wash buffer to remove impurities.
  • the method may further comprise recovering product from the magnetic beads.
  • the magnetic beads can be coated with biomolecules including antibodies, aptamers, peptides or nucleic acids.
  • the magnetic beads can be coated with silica.
  • the product may be deoxyribonucleic acid (DNA) or ribonucleic acid (RNA).
  • DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • the reaction zone is capable of carrying out a polymerase chain reaction.
  • the reaction zone is capable of carrying out a nucleic acid hybridization reaction.
  • FIG. 1 is a plan view of a centrifugal reaction apparatus according to a first embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view of a centrifugal reaction apparatus according to a first embodiment of the present disclosure.
  • FIG 3 is a cross-sectional view of a centrifugal reaction apparatus according to a second embodiment of the present disclosure.
  • FIG. 4 is a plan view of a centrifugal reaction apparatus according to a third embodiment of the present disclosure.
  • FIG 5 is a cross-sectional view of a centrifugal reaction apparatus according to a third embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view of a centrifugal reaction apparatus according to a fourth embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a mode in which magnets are arranged on the outer magnet block according to the first embodiment of the present disclosure. Wherein A is connected with A', and the three-dimensional structure of the outer magnetic block is cylindrical. Solid squares show that magnets are set, and hollow squares show that no magnets are set. Arrows indicate the direction of bead movement.
  • FIG. 8 is a schematic diagram of a mode of arranging magnets in the inner and outer magnet blocks according to the first embodiment of the present disclosure.
  • the outer magnetic block is the outer magnetic block
  • the inner magnetic block is the inner magnetic block.
  • Solid squares show that magnets are set, and hollow squares show that no magnets are set. Arrows indicate the direction of bead movement.
  • a centrifugal reaction device which includes: a centrifugal disk and at least one magnetic block.
  • the centrifuge disc contains a centrifuge shaft and at least one centrifuge seat.
  • the centrifugal shaft is arranged in the center of the centrifugal disc.
  • the centrifugal seat is annularly arranged with the centrifugal shaft as the center, and moves with the rotation of the centrifugal disc.
  • the magnetic block is disposed on at least one side of the centrifugal seat. In one embodiment, the magnetic block is disposed on the inner side, outer side, upper side, lower side, side side or a combination thereof of the centrifugal seat. In a specific embodiment, the inner, outer and side magnet blocks are arranged on a horizontal plane passing through the center of the reaction tube, and the upper and lower magnet blocks are arranged above and below the horizontal plane of the reaction tube.
  • the centrifuge seat of the centrifugal reaction device is used for detachably arranging the reaction tube, and the reaction tube is used for accommodating the magnetic beads.
  • the magnetic beads are moved in the reaction tube by the combined force of the magnetic force and the centrifugal force of the magnetic block.
  • the moving direction and speed of the magnetic beads depend on the force of the sum of the magnetic force and centrifugal force on the magnetic beads.
  • the "direction of the magnetic force of the magnetic block to the magnetic bead" as defined in the present disclosure refers to the direction in which the magnetic bead is subjected to the force of the magnetic field of the magnetic block.
  • magnetism of the magnetic block to the magnetic bead refers to the magnitude of the force that the magnetic bead is subjected to by the magnetic field of the magnetic block.
  • the direction or magnitude of the magnetic force of the magnetic block to the magnetic beads is changed.
  • the reaction tube is arranged in the centrifuge seat and is linked with the centrifuge seat.
  • the centrifuge seat is used for detachably arranging the reaction tubes.
  • the reaction tube is manually or mechanically added with specimens or reagents, and then mounted on the centrifuge seat for centrifugation. After the reaction is completed, stop the centrifugation. You can choose to directly detect or collect the product without removing the reaction tube, or manually or mechanically remove the reaction tube from the centrifuge seat to detect or collect the product.
  • the reaction tube has a feeding port and a discharging port, which are respectively connected with the feeding pipe and the discharging pipe.
  • the sample or reagent is added to the reaction tube through the feed tube and through the feed port.
  • the waste liquid or product is discharged from the reaction tube through the discharge port and the discharge pipe. In this state, the reaction tube does not have to be removed from the centrifuge stand.
  • the reaction tube is used for accommodating magnetic beads, and the magnetic beads move in the reaction tube with the force of centrifugal force and magnetic force.
  • the material, shape or capacity of the reaction tube is not particularly limited as long as it does not affect the movement of the magnetic beads, the reaction is carried out and the centrifugation device is matched.
  • the material of the reaction tube is plastic, glass or steel.
  • plastics as the material of the reaction tube are polyethylene (PE), polycarbonate (PC) or polypropylene (PP), preferably polypropylene.
  • the reaction tube in order to facilitate the detection or monitoring of the reaction intermediate or final product in the reaction tube, is made of a light-transmitting and high-transparency material, more preferably a nearly transparent material.
  • the capacity of the reaction tube is 500 mL (milliliter), 250 mL, 50 mL, 15 mL, 2 mL, 1.5 mL, 0.65 mL, and 0.2 mL.
  • the shape of the reaction tube has different designs for the bottom according to experimental requirements, such as a conical centrifuge tube, a flat-bottom centrifuge tube or a round-bottom centrifuge tube.
  • the magnet block may not be coupled with the centrifugal disk and not be linked with the centrifugal disk. That is, the magnet block and the centrifugal disk are not connected to each other, and the magnet block does not move with the rotation of the centrifugal disk.
  • the magnetic block is arranged on the inner side, outer side, upper side, lower side or a combination thereof of the centrifugal seat. In this embodiment, the magnet blocks are not arranged beside the centrifugal seat to avoid hindering the rotation of the centrifugal seat.
  • the magnet block is an electromagnet, a magnet, or a combination thereof. The type and shape of the magnet or electromagnet are not particularly limited, and sufficient magnetic force is required to attract the magnetic beads.
  • the positions of the magnets in the different orientations are not all the same.
  • the magnetic force of the magnet will have an included angle with the horizontal plane, so that the magnetic beads are displaced upwards of the horizontal plane.
  • the magnet is arranged below the horizontal plane, the magnetic force of the magnet will have an included angle with the horizontal plane, so that the magnetic beads will be displaced below the horizontal plane.
  • the magnetic beads can move up and down, left and right in the reaction tube due to the different horizontal or vertical positions of the magnets arranged in different directions of the centrifuge disk.
  • the magnetic force of the magnet to the magnetic bead is adjusted by the position of the magnetic block, thereby controlling the movement mode of the magnetic bead.
  • the electromagnet is used to control the magnetic force whether it is on or off. That is to say, the electromagnet determines the presence, strength and direction of the magnetic force by whether the current passes or not and its magnitude. The control of the movement mode of the magnetic beads by the electromagnet is the same as the description of the magnet.
  • the magnetic block can be connected with the centrifugal disc to be linked with the centrifugal disc. That is, the magnet block and the centrifugal disk are mutually connected members, and the magnet block will move as the centrifugal disk rotates.
  • the magnetic block is arranged on the inner side, outer side, upper side, lower side, side side or a combination thereof of the centrifugal seat. The magnets can be placed beside the centrifuge seat without hindering the rotation of the centrifuge seat.
  • the magnet block is an electromagnet. The principle and function of the electromagnet are as described above.
  • the distance between the magnet block and the centrifugal seat is 0 to 300 mm, preferably 0 to 20 mm, more preferably 0 to 3 mm. If the distance between the magnetic block and the centrifuge seat is too large, the magnetic force will not sufficiently attract the magnetic beads, and the movement range of the magnetic beads will be limited. In the state where the magnet block and the centrifugal disc are not connected but not linked with the centrifugal disc, since the movement patterns of the magnet block and the centrifugal disc are inconsistent, in order to avoid the risk of mutual wear between the components, the distance between the magnet block and the centrifugal seat is preferably less than 10 mm, more preferably less than 5 mm.
  • the centrifuge disc of the centrifugal reaction device can be a commercially available centrifuge device.
  • the size of the centrifugal force is not particularly limited, and a suitable centrifugal device can be selected and adjusted according to the needs.
  • the centrifugal force is 0 to 80,000 grams (g), preferably 0 to 12000 g, more preferably 0 to 6000 g.
  • the reaction tube can still achieve the effect of fully mixing the reaction mixture by using the existing commercial centrifuge tube.
  • the one-way valve switch can be controlled by the centrifugal force to automatically remove the waste liquid, and no human intervention is required.
  • the magnetic beads of the centrifugal reaction device can use existing commercial products.
  • the magnetic block of the present disclosure is added to the existing centrifugal device.
  • the magnetic block can be fixed on the centrifuge device but not linked with the centrifuge disc, or fixed on the centrifuge disc and linked with the centrifuge disc.
  • the magnetic force of the magnet block is 1 to 15000 Gauss, preferably 1 to 12000 Gauss, more preferably 1 to 8000 Gauss.
  • the magnitudes of the magnetic forces of the magnetic blocks are the same or different.
  • the reaction tube includes: at least one reaction area for containing a reaction mixture including reaction reagents, washing solutions and/or samples; and at least one one-way valve located in the centrifugal direction of the reaction area.
  • the centrifugal speed or centrifugal force exceeds a threshold
  • the one-way valve opens, and the centrifugal force makes the reaction mixture flow away from the axis and leave the reaction zone.
  • the one-way valve closes when the centrifugal speed or centrifugal force falls below a threshold, preventing the reaction mixture from flowing back into the original reaction zone.
  • the reaction tube can be divided into multiple reaction zones to provide reactants for biomolecules such as proteins, nucleic acids, etc. for reactions such as purification, amplification and analysis.
  • one-way valve means that the reaction reagent, washing solution and/or the sample can be controlled to remain in a reaction zone when not centrifuged, and the reaction reagent, washing solution and/or detection can be controlled during centrifugation. A mechanism whereby the body passes through the "one-way valve" in one direction to another reaction zone without backflow.
  • the actuation principle of the one-way valve body can be in many ways, for example: a mechanical one-way valve, which is mainly composed of springs with different elastic constants and balls of different weights, and the material can be metal or non-metal. Different magnitudes of centrifugal force can correspond to valve bodies with different elastic constants, so that different valve bodies in the reaction microtube can be opened or closed under different magnitudes of centrifugal force. That is, with the use of centrifugal force, the one-way valve can control the retention or exclusion of the reaction mixture. In addition, the one-way valve can also be controlled by electronic control or magnetic control to control the opening and closing of the one-way valve.
  • the one-way valve is controlled by a compression spring to open and close, then under the condition of static, no centrifugal force or the centrifugal force does not reach the compressive stress of the spring, the compression spring is fully extended, and the one-way valve is completely closed.
  • the centrifugal force reaches the compressive stress of the spring, as the centrifugal force gradually increases, the compression spring gradually shortens due to compression, thereby opening the one-way valve, so that the reaction mixture can move through the one-way valve in a direction away from the rotation axis.
  • All waste liquids generated in the reaction process can be collected by closed or vacuum, depending on whether the reaction microtube has an opening and the amount of waste liquid.
  • the waste liquid is collected in an airtight manner, that is, the centrifugal reaction microtube may further include a waste liquid area, which is separated from the reaction area by a one-way valve, so that the reaction mixture or washing liquid after the reaction is carried out in the reaction area, By centrifugation it can leave the reaction zone to the waste zone without backflow.
  • magnetic beads are coated with biomolecules for hybridization or adsorption of the reaction mixture.
  • Biomolecules can include antibodies, aptamers, peptides or nucleic acids, and the like.
  • a heating module can be adjacent to the outside of the reaction zone, which can raise the temperature of the reaction zone by means of substantial contact heating.
  • the heating module can be U-shaped or O-shaped to effectively surround the reaction zone, thereby increasing the heating speed of the reaction zone 111 .
  • a heating module can also be arranged on at least one side of each reaction zone at the same time, so as to independently control the reaction temperature of each reaction zone.
  • the centrifugal device is provided with an inner magnetic base, but the outer magnetic base is not provided at the original position of the outer magnetic base, but a heating module is instead provided.
  • the centrifugal reaction device may further include a temperature control module for controlling the reaction temperature of the centrifugal reaction microtubes, including heating block, liquid (eg, hot water), gas (eg, hot air), far infrared, etc.
  • a temperature control module for controlling the reaction temperature of the centrifugal reaction microtubes, including heating block, liquid (eg, hot water), gas (eg, hot air), far infrared, etc.
  • the heating block and liquid heating surround the centrifugal reaction microtube in a U-shaped or O-shaped manner to increase the efficiency of temperature control.
  • the centrifugal reaction device may further include a signal detection module for detecting the reaction signal of the centrifugal reaction microtube.
  • the signal detection module may be a fluorescence, luminescence or visible light phase sensing system. After the reaction in the reaction zone of the centrifugal reaction microtube is completed, biomolecules (such as antibodies, aptamers, peptides or nucleic acids, etc.) labeled with fluorescent, luminescent or color signals can be added to the reaction zone to detect the signal by and qualitative or quantitative reaction products.
  • the magnetic beads have different force modes, including that the magnetic beads are subjected to force only from magnetic force, from centrifugal force only, or from both magnetic and centrifugal force. Examples of specific status are as follows:
  • the centrifugal disc does not rotate, the magnetic block has a magnetic force on the magnetic beads, and the force on the magnetic beads only comes from the magnetic force;
  • the centrifugal disk rotates, the magnetic force of the magnetic block to the magnetic beads is close to zero or negligible, and the force of the magnetic beads only comes from the centrifugal force;
  • the centrifugal disc rotates, the magnetic block has a magnetic force on the magnetic beads, and the force on the magnetic beads comes from both the magnetic force and the centrifugal force.
  • the force pattern of the magnetic beads varies with different time points.
  • the centrifuge disk can be moved up or down relative to the magnet block, changing its relative position to the magnet block other than in a rotational manner.
  • the centrifugal disk is not rotated first, the magnetic block is rotated, the magnetic block is moved up or down, or the centrifugal disk is moved up or down to drive the magnetic beads to mix the reaction solution, and then the centrifugal disk is rotated to open with centrifugal force One-way valve removes waste.
  • the present disclosure provides a centrifugal reaction method, comprising: adding a sample and a reaction reagent to at least one reaction zone of the reaction tube in a centrifugal reaction device to form a reaction mixture.
  • the specimen comprises fresh or frozen whole blood, serum, plasma, bone marrow, umbilical cord blood, cells, urine, human body, tissue, cell culture.
  • the reaction reagents are lysis buffer, binding buffer, wash buffer, and elution buffer.
  • the centrifugal reaction method may further include: adding magnetic beads to the reaction zone; centrifuging the reaction tube with a first centrifugal force to perform the first reaction, wherein the magnetic beads are moved in the reaction tube by the force of the sum of the magnetic force of the magnetic block and the centrifugal force.
  • the first reaction is lysis buffer to expose nucleic acids in cells or tissues.
  • the reaction method may further comprise adding a binding buffer to promote the binding of nucleic acid to the magnetic beads.
  • the reaction method may further include adding a washing buffer to wash the nucleic acid magnetic bead conjugates and remove salts and impurities. The direction change of the centrifuge seat by the magnetic force makes the magnetic beads move in the reaction tube, which helps to mix thoroughly, and can reduce the time required for mixing.
  • the centrifugal reaction method may further comprise: centrifuging the reaction tube with a second centrifugal force to open the one-way valve to remove the waste liquid of the first reaction. Because the reaction tube is designed with a groove, the magnetic beads fall into the groove, and will not be discharged from the reaction tube together with the waste liquid through the open one-way valve. In a possible embodiment, the second centrifugal force is greater than the first centrifugal force.
  • the centrifugation reaction method may further include: recovering a product from the magnetic beads.
  • the reaction method further comprises adding a wash buffer to elute the product from the magnetic beads.
  • the product is recovered from the magnetic beads.
  • the magnetic beads separated from the product are not taken out from the reaction tube, but the magnetic beads are adsorbed by a magnetic block to concentrate the magnetic beads in a specific area in the reaction tube.
  • the concentration of the product is detected by a spectrophotometer in a centrifugal reaction device.
  • the magnetic beads used in the centrifugal reaction method are coated with biomolecules including antibodies, aptamers, peptides or nucleic acids according to experimental requirements.
  • the magnetic beads are coated with silica.
  • the product obtained in the centrifugal reaction method is deoxyribonucleic acid (DNA) or ribonucleic acid (RNA).
  • the reaction zone performs a polymerase chain reaction or a nucleic acid hybridization reaction.
  • the centrifugal reaction device 1 includes a centrifugal disk 11 and a magnetic block 12 .
  • the centrifugal disc 11 includes a centrifugal shaft 111 and a centrifugal seat 112 .
  • the centrifugal shaft 111 is located in the center of the disk surface of the centrifugal disk 11 .
  • the centrifugal shaft 111 is used as the axis of rotation to drive the disk surface to rotate.
  • the centrifugal seat 112 is located on the centrifugal disc, with the centrifugal shaft 111 as the center, and is arranged annularly and symmetrically around the centrifugal shaft 111 .
  • the magnetic block 12 is disposed on at least one side of the centrifugal seat 112 .
  • the magnet block 12 disposed on the inner side close to the centrifugal shaft is the inner magnet block 121
  • the magnet block 12 disposed on the outer side away from the centrifugal shaft is the outer magnet block 122 .
  • the magnet block 12 is not interlocked with the centrifugal disc 11 . That is, when the centrifugal disc 11 rotates during centrifugation, the magnetic block 12 will not move together.
  • the centrifugal reaction device 1 may be provided with one reaction tube 13 and at least one magnetic bead 14 . More preferably, the reaction tube 13 is detachably arranged on the centrifuge seat 112 .
  • the reaction tubes 13 arranged on the centrifuge seat 112 will move together.
  • At least one magnetic bead 14 is arranged in the reaction tube.
  • FIG. 2 is a cross-sectional view at the dotted line in FIG. 1 .
  • the magnet block 12 further includes an upper magnet block 123 and a lower magnet block 124 .
  • the magnet block 12 disposed on the upper side of the horizontal plane of the centrifugal seat 112 is the upper magnet block 123
  • the magnet block 12 disposed on the lower side of the horizontal plane of the centrifugal seat 112 is the lower magnet block 124 .
  • the magnet block 12 is not interlocked with the centrifugal disc 11 . That is, when the centrifugal disk 11 rotates during centrifugation, the upper magnetic block 123 and the lower magnetic block 124 will not rotate together with the centrifugal disk 11 .
  • the magnetic blocks 12 included in the centrifugal reaction device 1 are not limited to being arranged on the upper, lower, inner and outer sides of the centrifugal disk 11 .
  • the magnetic blocks 12 can be arranged on different directions of the centrifugal seat 112 with the centrifugal seat 112 as the center according to requirements.
  • a magnetic block is provided every 60 degrees with the centrifugal seat as the center, and there are 6 magnetic blocks in total.
  • the centrifugal reaction device 1 includes a centrifugal disk 11 and a magnetic block 12 .
  • the centrifugal disc 11 includes a centrifugal shaft 111 and a centrifugal seat 112 .
  • the centrifugal shaft 111 is located in the center of the disk surface of the centrifugal disk 11 .
  • the centrifugal shaft 111 is used as the axis of rotation to drive the disk surface to rotate.
  • the centrifugal seat 112 is located on the centrifugal disc 11 , with the centrifugal shaft 111 as the center, and is annularly arranged around the centrifugal shaft 111 .
  • the magnetic block 12 is disposed on at least one side of the centrifugal seat 112 .
  • the magnet block 12 disposed on the inner side of the centrifugal seat 112 close to the centrifugal shaft is the inner magnet block 121
  • the magnet block 12 disposed on the outer side of the centrifugal seat 112 away from the centrifugal shaft is the outer magnet block 122
  • the magnet block 12 disposed on the side of the centrifugal seat 112 is the side magnet block 121 .
  • Side magnets 125 the magnetic block 12 is linked with the centrifugal disc 11 . That is, when the centrifugal disc 11 rotates during centrifugation, the magnetic block 12 will move together.
  • the centrifugal reaction device 1 may be provided with one reaction tube 13 and at least one magnetic bead 14 .
  • the reaction tube 13 is detachably arranged on the centrifuge seat 112 .
  • the reaction tubes 13 arranged on the centrifuge seat 112 will move together.
  • At least one magnetic bead 14 is arranged in the reaction tube.
  • FIG. 5 is a cross-sectional view at the dotted line in FIG. 4 .
  • the magnet block 12 further includes an upper magnet block 123 and a lower magnet block 124 .
  • the magnet block 12 disposed on the upper side of the horizontal plane of the centrifugal seat 112 is the upper magnet block 123
  • the magnet block 12 disposed on the lower side of the horizontal plane of the centrifugal seat 112 is the lower magnet block 124 .
  • the magnetic block 12 is linked with the centrifugal disc 11 . That is, when the centrifugal disc 11 rotates during centrifugation, the upper magnet block 123 and the lower magnet block 124 move together.
  • the magnetic blocks 12 included in the centrifugal reaction device 1 are not limited to be disposed on the upper, lower, inner, outer, and sides of the centrifugal seat 112 .
  • the magnetic blocks 12 can be arranged on different directions of the centrifugal seat 112 with the centrifugal seat 112 as the center according to requirements.
  • a magnetic block is arranged every 60 degrees with the centrifugal seat as the center, and there are 6 magnetic blocks in total.
  • the magnet block 12 can be a magnet.
  • the inner magnetic blocks 121 or the outer magnetic blocks 122 are arranged in 8 horizontal rows and 3 straight columns, and the rows and columns (a few-a few) are numbered counterclockwise.
  • the outer magnet blocks are in the first row, the first row (1-1), the third row, the third row (3-3), the fifth row, the first row (5-1), and the seventh row. 3 rows (7-3), and the 2nd row of the inner magnet block, the 2nd row (2-2), the 4th row, the 2nd row (4-2), the 6th row, the 2nd row (6-2), the The second column (8-2) of the 8th row is equipped with magnets, and the other magnet blocks are not equipped with magnets.
  • the magnetic beads 14 arranged in the reaction tube 13 also move accordingly.
  • the magnetic beads 14 will be attracted by the magnets in the inner and outer magnetic blocks in different orientations. More specifically, when the centrifugal seat 112 rotates counterclockwise, the magnetic beads 14 will first pass through the magnets in the first row and first column (1-1) of the outer magnetic block. For example, (1-1) The angle of the magnetic force generated by the magnet is positive 30 degrees compared to the horizontal plane, causing the magnetic beads to shift outward and upward. Next, the magnetic beads 14 pass through the magnets in the second row and second column (2-2) of the inner magnet block.
  • the outer magnet blocks have the first row, the third row (1-3), the third row, the second row (3-2), the fifth row, the first row (5-1), and the inner magnet block. Magnets are installed in the 2nd row, 3rd row (2-3), 4th row, 2nd row (4-2), 6th row, 1st row (6-1), and no magnets are installed in other magnet blocks.
  • the reaction tube 13 rotates counterclockwise with the centrifuge seat, the magnetic beads 14 arranged in the reaction tube 13 also move accordingly.
  • the magnetic beads 14 will be attracted by the magnets in the inner and outer magnetic blocks in different orientations. More specifically, when the centrifugal seat 112 rotates counterclockwise, the magnetic beads 14 will first pass through the magnets in the first row and the third column (1-3) of the outer magnet block. For example, (1-3) The angle of the magnetic force generated by the magnet is minus 30 degrees compared to the horizontal plane, so that the magnetic beads are displaced outward and downward. Next, the magnetic beads 14 pass through the magnets in the second row and third column (2-3) of the inner magnet block.
  • the included angle of the magnetic force generated by the magnet is minus 30 degrees compared to the horizontal plane, so that the magnetic beads are displaced inward, but remain in the lower and middle position of the reaction tube.
  • the magnetic beads 14 pass through the magnets in the third row and the second column (3-2) of the outer magnetic block.
  • the magnetic force generated by the magnet is parallel to the horizontal plane, so the angle between it and the horizontal plane is 0 degrees, so that the magnetic beads are displaced outward and upward to approach the horizontal plane. And so on, the magnetic beads move up, down, in, and out with the passing magnets.
  • the reaction tube rotates once and returns to the original position, the number of round-trips between the inner and outer sides of the magnetic beads 14 is 3 times, and the number of round-trips between the upper and lower sides is 1 time.
  • the arrangement of the magnet blocks in horizontal rows and columns is as described above, but those skilled in the art to which the present invention pertains can adjust the configuration of the magnet blocks according to the needs of use, including adjusting the number of horizontal rows and columns and the positions of the discharges. The above configuration is limited.
  • the magnet block since the magnet block is interlocked with the reaction tube, it is preferable to provide an electromagnet to the magnet block 12 .
  • the presence or absence of the magnetic force of the electromagnet is regulated, so that the direction of the magnetic force changes as the centrifugal seat rotates to different directions.
  • sample to be tested such as a cultured cell sample
  • sample tank such as a 1.5mL centrifuge tube or a 96-well plate
  • Magnetic beads are collected and fixed in the reaction tube toward the centrifuge axis.
  • the purpose of completing the molecular biological reaction in one click can be achieved.
  • the magnetic beads can be driven to mix the reaction mixture more thoroughly in a shorter time.
  • the application of centrifugal force and reaction tube can miniaturize the molecular biology detection machine, which not only saves energy and space, but also greatly shortens the detection time.
  • there is no need to transfer between different machines during the reaction process thereby achieving many purposes such as simple and fast operation, safety and energy saving, accurate and economical, and avoiding pollution.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Clinical Laboratory Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Centrifugal Separators (AREA)

Abstract

一种离心式反应装置(1),包括:离心盘(11),其包含离心轴(111)和至少一离心座(112),且离心座(112)以离心轴(111)为中心环状排列;至少一磁块(12),其设置于该离心座(112)的至少一侧;其中该离心座(112)用于可拆卸式地设置反应管(13),而反应管(13)用于容纳磁珠(14);其中该磁珠(14)受到该磁块(12)的磁力与离心力之总和的受力而在反应管(13)中移动。藉此,反应混合物得以更短时间、更充分地混合而有利于反应进行,且通过磁珠(14)吸附产物、离心力开启反应管(13)阀门排除废液而减少反应管(13)耗材消耗。

Description

离心式反应装置和离心式反应方法 技术领域
本公开涉及一种实验用的反应装置和反应方法,特别是关于一种通过离心力搭配磁力而一键式完成分子生物检测的离心式反应装置和离心式反应方法。
背景技术
随着生物技术领域的发展,通过生化和分子生物方法进行检测的需求日渐增加。目前市面上利用磁珠来萃取核酸的装置分为两类型。
1.磁棒:利用磁棒外加磁棒套筒,在反应槽内来回上下转动,使反应液混合。移动反应液时,磁珠连同磁棒套筒须一并移出,再移入到不同反应槽内进行后续反应。由于磁珠与磁棒套筒会依序在反应槽内移入、移出,而拉长作业时间且有污染的风险。此外,反应过程中所使用的磁棒套筒和多个反应槽作为耗材替换,故会提高成本。
2.磁块:利用磁块在外,磁珠置入于微量吸管中,反应时利用微量吸管上下来回吸取溶液混合。移动反应液时,须利用在外磁块先让将磁珠吸附在微量吸管中,再移动到不同反应槽反应。由于磁珠与微量吸管会依序在反应槽内移入、移出,而拉长作业时间且不适合大量操作。此外,反应过程中所使用的特殊微量吸管和多个反应槽作为耗材替换,故会提高成本。
本领域针对大量样本或检体要求更快、更有效、更节省成本的萃取或分析装置。但目前市售产品尚无法一键式即完成所有分子生物反应且耗时,并仍会丢弃大量耗材。
发明内容
有鉴于上述先前技术的问题,本发明的一目的就是在提供一种离心式反应装置。通过磁块的设计,使反应管中的磁珠在离心过程中除了离心力以外还受到该磁块的磁力。当磁珠受到磁块的磁力与离心力之总和的受力,会使磁珠在反应管中移动。借由磁珠的移动来带动反应管中的反应混合物往不同方向移动而充分混合。又可通过反应管的设计以离心力控制单向阀开启,搭配磁珠吸附产物,以排除废液,即可于同一反应微管中进行萃取、反应、洗涤和/或检测信号而减少反应管的数量上的需求。
根据本发明的一目的,本发明的一实施例提供一种离心式反应装置,包括:
离心盘,其包含离心轴和至少一离心座,且离心座以离心轴为中心环状排列;
至少一磁块,其设置于该离心座的至少一侧;
其中该离心座用于可拆卸式地设置反应管,而反应管用于容纳磁珠;
其中该磁珠受到该磁块的磁力与离心力之总和的受力而在反应管中移动。
优选地,该磁块可不与离心盘连结而不连动。
优选地,该磁块可为电磁铁、磁铁或其组合。
优选地,该磁块可与离心盘连结而连动。
优选地,该磁块中可设置电磁铁。
优选地,该磁块与离心座的距离可为0至300毫米。
优选地,离心力可为1至80,000g。
优选地,该磁块的磁力可为1~15000高斯(Gauss)。
优选地,该反应管可包含至少一反应区和至少一单向阀。
优选地,可通过电控或磁控控制该反应管的该单向阀开闭。
优选地,该磁珠上可涂布包括抗体、适体、胜肽或核酸的生物分子。
根据本发明的另一目的,本发明的一实施例提供一种离心式反 应方法,包括:
将检体和/或试剂加入至离心式反应装置中该反应管的至少一反应区,以形成一反应混合物;
将磁珠加入至该反应区;
以第一离心力离心该反应管以进行第一反应,其中磁珠受到该磁块的磁力与离心力之总和的受力而在反应管中移动;
以第二离心力离心该反应管使第一单向阀开启,以排除该第一反应的废液,其中该第二离心力大于第一离心力。
优选地,该方法可以还包含加入洗涤缓冲液以除去杂质。
优选地,该方法可以还包含从该磁珠回收产物。
优选地,该磁珠上可涂布包括抗体、适体、胜肽或核酸的生物分子。
优选地,该磁珠上可涂布二氧化硅。
优选地,该产物可为脱氧核糖核酸(DNA)或核糖核酸(RNA)。
优选地,该反应区可进行聚合酶连锁反应。
优选地,该反应区可进行核酸杂交反应。
本发明的上述以及其它目的、特征与优点,在参照以下的详细说明与优选实施例和随文所附的附图后,将变得明显。
附图说明
在以下的详细描述中,为了解释本发明,提供了许多具体细节,以便能彻底理解所公开的实施方式。然而,显而易见的是,一个或多个的实施方式可以在没有所述具体细节的情况下实现。在其它情况中,为了简化附图,公知的结构和流程将以示意性的方式显示。
图1是根据本公开第1实施例的离心式反应装置的俯视图。
图2是根据本公开第1实施例的离心式反应装置的剖面图。
图3是根据本公开第2实施例的离心式反应装置的剖面图。
图4是根据本公开第3实施例的离心式反应装置的俯视图。
图5是根据本公开第3实施例的离心式反应装置的剖面图。
图6是根据本公开第4实施例的离心式反应装置的剖面图。
图7是根据本公开第1实施例中的外磁块设置磁铁的模式的示意图。其中A与A’相连,外磁块的立体构造为筒状。实心方块显示有设置磁铁,空心方块则显示没有设置磁铁。箭头表示磁珠移动的方向。
图8是根据本公开第1实施例的内、外磁块设置磁铁的模式的示意图。其中外圈磁块为外磁块,内圈磁块为内磁块。实心方块显示有设置磁铁,空心方块则显示没有设置磁铁。箭头表示磁珠移动的方向。
具体实施方式
以下是参照相关附图以详细描述实施例。然而,该些实施例可用不同型态来实现,但这并非实施或运用本公开所请发明的具体实施例的唯一形式,故不应理解成对上述实施例的限制。实施方式中涵盖了多个具体实施例的特征以及用以建构与操作这些具体实施例的方法步骤与其顺序。然而,亦可利用其他具体实施例来达成相同或均等的功能与步骤顺序。相反的,提供该些实施例是让本说明书可彻底且完整公开,以充分地向本发明所属技术领域中的技术人员完全表达本发明的精神。附图中相似的组件符号是指相似的组件。在以下的叙述中,将不会详细描述公知的功能或结构,以不赘述实施例中不必要的细节。
除非另有定义,本文所用的所有技术用词与术语均与本发明所属技术领域中的技术人员所通常理解的意义相同。在发生冲突的情况下,以包括定义在内的本说明书为准。
在不和上下文冲突的情形下,本说明书所用的单数名词涵盖该名词的复数型;而所用的复数名词时亦涵盖该名词的单数型。此外,在本说明书与申请专利范围中,“至少一”与“一或更多”等表述方式的意义相同,两者都代表包含了一、二、三或更多。
连接词“主要由…组成”(consisting essentially of)是用于界定 一组成物、方法或装置,其包括明文所述者以外之物料、步骤、特征、组分或组件,其限制条件是这些额外之物料、步骤、特征、组分或组件不会显著影响所主张发明之基本与新颖特征。用语“主要由……组成”(consisting essentially of)居于“包含”(comprising)与“由……组成”(consisting of)之间的中间地带。
虽然用以界定本发明较广范围的数值范围与参数皆是约略的数值,此处已尽可能精确地呈现具体实施例中的相关数值。然而,任何数值本质上不可避免地含有因个别测试方法所致的标准偏差。在此处,“约”通常是指实际数值在一特定数值或范围的正负10%、5%、1%或0.5%之内。或者是,“约”一词代表实际数值落在平均值的可接受标准误差之内,视本发明所属技术领域中的技术人员的考虑而定。除了实施例之外,或除非另有明确的说明,当可理解本文中所用的所有范围、数量、数值与百分比(例如用以描述材料用量、时间长短、温度、操作条件、数量比例和其他相似者)均经过“约”的修饰。因此,除非另有相反的说明,本说明书与申请专利范围所揭示的数值参数皆为约略的数值,且可视需求而更动。至少应将这些数值参数理解为所指出的有效位数与套用一般进位法所得到的数值。在此处,将数值范围表示成由一端点至另一端点或介于二端点之间;除非另有说明,此处所述的数值范围皆包含端点。
在一实施例中,提供一种离心式反应装置,其包括:离心盘以及至少一磁块。离心盘包含离心轴和至少一离心座。在优选的实施例中,离心轴设置于离心盘的中央。当动力传送至离心轴以带动离心盘旋转时,得以保持离心盘平稳而不会偏移。在实施例中,离心座以离心轴为中心环状排列,并随着离心盘转动而移动。
在一实施例中,磁块设置于该离心座的至少一侧。在一实施例中,磁块设置于离心座的内侧、外侧、上侧、下侧、旁侧或其组合。在一具体实施例中,内侧、外侧、旁侧磁块设置于通过反应管中心的水平面,而上侧、下侧磁块则设置于该反应管水平面之上与之下。
在一实施例中,离心式反应装置的离心座用于可拆卸式地设置 反应管,而反应管用于容纳磁珠。在一实施例中,该磁珠受到该磁块的磁力与离心力之总和的受力而在反应管中移动。换言之,磁珠的移动方向与速度,取决于磁珠所受磁力与离心力之总和的受力。本公开所定义之“磁块对磁珠的磁力方向”是指磁珠受磁块的磁场所受力的方向。本公开所定义之“磁块对磁珠的磁力大小”是指磁珠受磁块的磁场所受力的大小。在一优选的实施例中,磁块对磁珠的磁力方向或大小会变换。
在一实施例中,反应管设置于离心座,并与离心座连动。在一优选的实施例中,离心座用于可拆卸式地设置反应管。反应管由人工或机械添加检体或试剂,再安装至离心座上以进行离心。反应完成后停止离心,可选择不拆下反应管直接检测或收集产物,或由人工或机械将反应管由离心座拆下来检测或收集产物。在一可行的实施例中,反应管具有进料口与出料口,分别与进料管和出料管连结。检体或试剂经由进料管、通过进料口而添加至反应管中。废液或产物则通过出料口、经由出料管排出反应管。此状态中,反应管不一定要从离心座上拆卸。在一实施例中,反应管用于容纳磁珠,磁珠于反应管中随离心力与磁力的受力而移动。
在不影响磁珠移动、反应进行与离心装置搭配之下,对于反应管的材质、形状或容量不特别限定。在一实施例中,反应管的材质为塑料、玻璃或钢。作为反应管材料的塑料的示例如聚乙烯(PE)、聚碳酸酯(PC)或聚丙烯(PP),优选为聚丙烯。在一优选的实施例中,为方便检测或监测反应管中的反应中间物或最终产物,反应管为透光且透明度高的材质,更优选为接近透明的材质。在一实施例中,反应管的容量为500mL(毫升)、250mL、50mL、15mL、2mL、1.5mL、0.65mL、0.2mL。在一实施例中,反应管的形状因应实验需求而针对底部有不同设计,例如锥形离心管、平底离心管或圆底离心管。
在一实施例中,磁块可不与离心盘连结而不与离心盘连动。亦即,磁块与离心盘是互不相连结的构件,磁块不会随着离心盘转动而移动。该磁块设置于该离心座的内侧、外侧、上侧、下侧或其组 合。在此实施例中,磁块不设置在离心座旁侧,以避免阻碍离心座转动。在一实施例中,该磁块为电磁铁、磁铁或其组合。磁铁或电磁铁的种类和形状并无特别限定,要求有充足磁力吸引磁珠。在一实施例中,当反应管转动至不同方位上,磁铁在该不同方位上设置的位置不全数相同。例如,若以通过反应管中心的水平面作为基准,若磁铁设置在水平面上,而该磁铁的磁力就会与该水平面有一夹角,使磁珠往水平面上方偏移。反之,若磁铁设置在水平面下,而该磁铁的磁力就会与该水平面有一夹角,使磁珠往水平面下方偏移。借由在离心盘不同方位上设置的磁铁水平或垂直位置不相同,就会使磁珠在反应管中上下左右移动。换句话说,通过磁块放置的位置,来调整磁铁对磁珠的磁力,进而控制磁珠的移动模式。在一实施例中,采用电磁铁则是以开启与否来控制磁力。亦即,电磁铁是通过电流通过与否和大小来决定磁力有无、强弱与方向。电磁铁对磁珠的移动模式的控制同磁铁的说明。
在一实施例中,磁块可与离心盘连结而与离心盘连动。亦即,磁块与离心盘是相互连结的构件,磁块会随着离心盘转动而移动。该磁块设置于该离心座的内侧、外侧、上侧、下侧、旁侧或其组合。磁块可设置在离心座旁侧,而不会阻碍离心座转动。在一实施例中,该磁块为电磁铁。电磁铁设置原理与作用如上所述。
在一实施例中,磁块与离心座相隔的距离为0至300毫米,优选为0至20毫米,更优选为0至3毫米。若磁块与离心座相隔的距离过大,则磁力不充分吸引磁珠,磁珠的移动范围受限。在磁块与离心盘不连结而不与离心盘连动的状态中,由于磁块与离心盘的移动模式不一致,为避免构件互相磨损的风险,使磁块与离心座相隔的距离优选为小于10毫米,更优选为小于5毫米。
离心式反应装置的离心盘可采用现有市售的离心装置。离心力大小并不特别限定,按需求选用适合的离心装置并调整其离心力即可。在一实施例中,离心力为0至80,000克(g),优选为0至12000g,更优选为0至6000g。在一可行的状态中,反应管采用现有市售 的离心管,仍能达到使反应混合物充分混合的效果。在一优选的实施例中,采用本公开的反应管,就能通过离心力大小控制单向阀开关以自动排除废液,且不需要以人力介入。
离心式反应装置的磁珠可采用现有市售产品。在一可行的实施例中,在现有的离心装置外加本公开的磁块。该磁块可固定于离心装置上但不与离心盘连动,或固定于离心盘上与离心盘连动。在一实施例中,磁块的磁力为1至15000高斯(Gauss),优选为1至12000高斯,更优选为1至8000高斯。在一可行的实施例中,磁块的磁力大小为相同或不同。
在一实施例中,反应管包括:至少一反应区,用于容纳包括反应试剂、洗涤液和/或检体的反应混合物;以及至少一单向阀,位于反应区的离心方向。当离心速度或离心力超过一阈值时单向阀打开,离心力使反应混合物往远离轴心方向流动而离开反应区。当离心速度或离心力低于一阈值时单向阀关闭,避免反应混合物回流至原反应区。通过设置可选择性地反复开启或关闭的单向阀,在反应进行中可多次排除废液。甚至,可将反应管分隔成多个反应区,提供例如蛋白质、核酸等生物分子的反应物进行如纯化、放大和分析等反应。
本申请案中,“单向阀”是指可在未离心时控制反应试剂、洗涤液和/或检体留在一反应区中,并在离心时可使反应试剂、洗涤液和/或检体单向通过所述“单向阀”至另一反应区而不回流的机构。
单向阀体的致动原理可以有多种方式,例如:机械式单向阀,其主要由不同弹性常数的弹簧与不同重量的圆珠所组成,材质可为金属或非金属。不同大小的离心力可对应不同弹性常数的阀体,让反应微管中的不同阀体在不同大小的离心力下开启或关闭。即配合离心力高低的运用,单向阀可控制反应混合物的滞留或排除。除此之外,单向阀也可由电控或磁控等方式,控制单向阀的开闭。
举例而言,若单向阀是由压缩弹簧控制其开闭,则在静止、没有离心或是离心力未达弹簧的压缩应力的状况下,压缩弹簧为完全 延伸,而使单向阀完全密闭。当离心力到达弹簧的压缩应力时,随着离心力逐步增加,压缩弹簧则会因压缩而逐步变短,进而使单向阀打开,使反应混合物可以离开旋转轴心的方向移动通过单向阀。
所有反应过程中所产生的废液,可采用密闭收集或真空收集,视反应微管有无开口和废液量而定。在一实施例中,废液采用密闭收集,即离心式反应微管可以还包括废液区,借由单向阀与反应区分离,使在反应区进行反应后的反应混合物或是洗涤液,借由离心可离开反应区至废液区而不回流。
在一实施例中,磁珠上涂布生物分子,用于反应混合物进行杂交或吸附。生物分子可包括抗体、适体、胜肽或核酸等。
反应区外侧可邻近一加热模块,其可通过实质接触加热的方式升高反应区的温度。优选地,加热模块可为U字型或O字形,以有效环绕反应区,进而提高对反应区111的加热速度。若反应管中分隔有多个反应区,亦可同时设置加热模块于各个反应区的至少一侧,以独立地控制各个反应区的反应温度。在一可行的实施例中,离心装置设置有内侧磁座,但原外侧磁座的设置位置上不设置外侧磁座,而改为设置加热模块。
在一实施例中,离心式反应装置可还包括温度控制模块,用于控制离心式反应微管的反应温度,包括通过加热块、液体(如,热水)、气体(如,热空气)、远红外线等。优选地,加热块和液体加热是以U字型或O字型方式围绕离心式反应微管,以增加温度控制的效率。
在一实施例中,离心式反应装置可还包括信号检测模块,用于检测离心式反应微管之反应信号。例如,信号检测模块可为荧光、冷光或可见光照相感测系统。在离心式反应微管的反应区中的反应完成后,可于反应区中添加标记荧光、冷光或颜色信号的生物分子(如抗体、适体、胜肽或核酸等),以通过检测该信号而定性或定量反应产物。
在一实施例中,磁珠有不同的受力模式,其包含磁珠所受的力 仅来自磁力、仅来自离心力或来自磁力与离心力两者。具体状态举例如下:
·离心盘不转动、磁块对磁珠具有磁力,磁珠的受力仅来自于磁力;
·离心盘转动、磁块对磁珠的磁力近乎于零或得忽略,磁珠的受力仅来自于离心力;
·离心盘转动、磁块对磁珠具有磁力,磁珠的受力来自于磁力与离心力两者。
在一实施例中,磁珠的受力模式随时间点不同而变化。在一实施例中,离心盘得相对于磁块以上移或下移,在转动方式以外改变其与磁块的相对位置。在一实施例中,首先离心盘不转动,以磁块转动、磁块上移或下移、或离心盘上移或下移,来带动磁珠以混合反应液,接着离心盘转动以离心力开启单向阀排除废液。
在又一实施例中,本公开提供一种离心反应方法,包括:将检体、反应试剂加入至离心式反应装置中该反应管的至少一反应区,以形成反应混合物。在一优选的实施例中,检体包含新鲜或冷冻的全血、血清、血浆、骨髓、脐带血、细胞、尿液、人体大体、组织、细胞培养。在一实施例中,反应试剂为裂解缓冲液(lysis buffer)、结合缓冲液(binding buffer)、洗涤缓冲液(wash buffer)、洗脱缓冲液(elution buffer)。
离心反应方法可还包括:将磁珠加入至反应区;以第一离心力离心反应管以进行第一反应,其中磁珠受到磁块的磁力与离心力之总和的受力而在反应管中移动。在一优选的实施例中,第一反应是裂解缓冲液使细胞或组织中的核酸裸露。在一优选的实施例中,反应方法可还包含加入结合缓冲液以促使核酸与磁珠结合。在一优选的实施例中,反应方法可还包含加入洗涤缓冲液以清洗核酸磁珠结合物,并去除盐类和杂质。磁力对离心座的方向变换使磁珠于反应管中移动,而有助于充分混合,且能减少混合所需时间。
离心反应方法可更包括:以第二离心力离心该反应管使单向阀 开启,以排除第一反应的废液。借由反应管设计有凹槽,使磁珠落入凹槽中,不会与废液一同经开启的单向阀排出反应管。在一可行的实施例中,该第二离心力大于第一离心力。
离心反应方法可还包括:从该磁珠回收产物。在一优选的实施例中,反应方法又包含加入洗涤缓冲液,以将产物从磁珠上洗提出来。在一实施例中,从该磁珠回收产物。在一实施例中,与产物脱离的磁珠不从反应管中取出,而是以磁块吸附磁珠来使磁珠集中于反应管中的特定区域。在一优选的实施例中,以离心式反应装置中的分光亮度计,来检测产物的浓度。
离心反应方法中所使用的磁珠,依实验需求涂布包括抗体、适体、胜肽或核酸的生物分子。在一优选的实施例中,磁珠上涂布二氧化硅。在一可行的实施例中,离心反应方法中所得产物为脱氧核糖核酸(DNA)或核糖核酸(RNA)。在一可行的实施例中,该反应区进行聚合酶连锁反应或核酸杂交反应。
离心式反应装置的具体实施例
如图1所示,在第1实施例中,离心式反应装置1包括一个离心盘11和一个磁块12。离心盘11包含离心轴111与离心座112。离心轴111位于离心盘11的盘面中央。当离心时,以离心轴111为旋转的轴心带动盘面旋转。离心座112位于离心盘上,以离心轴111为中心,围绕离心轴111而环状、对称排列。磁块12设置于离心座112的至少一侧。磁块12设置于靠近离心轴的内侧者为内侧磁块121、设置于远离离心轴的外侧者为外侧磁块122。在第1实施例中,磁块12不与离心盘11连动。亦即,离心时当离心盘11转动,磁块12则不会一并移动。离心式反应装置1可设置一个反应管13和至少一个磁珠14。更优选地,反应管13可拆卸式地设置于该离心座112。离心时当离心盘11转动,设置于该离心座112上的反应管13会一并移动。至少一个磁珠14设置于该反应管中。离心时当反应管13随着离心盘11转动,设置于反应管13中的磁珠会一并移动。
图2是图1中虚线处的剖面图。如图2所示,在第1实施例中, 磁块12还包括上侧磁块123与下侧磁块124。磁块12设置于离心座112水平面的上侧者为上侧磁块123、设置于离心座112水平面下侧者为下侧磁块124。在第1实施例中,磁块12不与离心盘11连动。亦即,离心时当离心盘11转动,上侧磁块123与下侧磁块124则不会与离心盘11一并转动。
如图3所示,在第2实施例中,离心式反应装置1所包括的磁块12不仅限设置于离心盘11上、下、内、外侧。为更精准地、细腻地操控磁珠14在反应管13中的移动模式,可依需求以离心座112为中心,在离心座112的各不同方向上设置磁块12。在一可行的实施例中,离心座112与轴心连线所形成的切面上,以离心座为中心的每60度设置一磁块,共设置有6个磁块。
如图4所示,在第3实施例中,离心式反应装置1包括一个离心盘11和一个磁块12。离心盘11包含离心轴111与离心座112。离心轴111位于离心盘11的盘面中央。当离心时,以离心轴111为旋转的轴心带动盘面旋转。离心座112位于离心盘11上,以离心轴111为中心,围绕离心轴111而环状排列。磁块12设置于离心座112的至少一侧。磁块12设置于离心座112中靠近离心轴的内侧者为内侧磁块121、设置于离心座112中远离离心轴的外侧者为外侧磁块122、设置于离心座112中旁侧者为旁侧磁块125。在第4实施例中,磁块12与离心盘11连动。亦即,离心时当离心盘11转动,磁块12会一并移动。离心式反应装置1可设置一个反应管13和至少一个磁珠14。反应管13可拆卸式地设置于该离心座112。离心时当离心盘11转动,设置于该离心座112上的反应管13会一并移动。至少一个磁珠14设置于该反应管中。离心时当反应管13随着离心盘11转动,设置于反应管13中的磁珠会一并移动。
图5是图4中虚线处的剖面图。如图5所示,在第3实施例中,磁块12还包括上侧磁块123与下侧磁块124。磁块12设置于离心座112水平面的上侧者为上侧磁块123、设置于离心座112水平面的下侧者为下侧磁块124。在第3实施例中,磁块12与离心盘11连动。 亦即,离心时当离心盘11转动,上侧磁块123与下侧磁块124会一并移动。
如图6所示,在第4实施例中,离心式反应装置1所包括的磁块12不仅限设置于离心座112上、下、内、外、旁侧。为更精准地、细腻地操控磁珠14在反应管13中的移动模式,可依需求以离心座112为中心,在离心座112的各不同方向上设置磁块12。在一可行的实施例中,离心座112与轴心的连线垂直的平面上,以离心座为中心的每60度设置一磁块,共设置有6个磁块。
在第1实施例中,磁块12可为磁铁。在一可行实施例中,内磁块121或外磁块122各以横排8排、直列3列的方式设置,并以逆时钟编号第几排第几列(几-几)。在一具体实施例中,外磁块第1排第1列(1-1)、第3排第3列(3-3)、第5排第1列(5-1)、第7排第3列(7-3),以及该内磁块第2排第2列(2-2)、第4排第2列(4-2)、第6排第2列(6-2)、第8排第2列(8-2)设置磁铁,其他磁块则不设置磁铁。反应管13随着离心座逆时钟转动的过程中,设置于反应管13中的磁珠14也跟着移动。随着反应管13转动至不同方位,磁珠14会被不同方位上的内、外磁块中的磁铁吸引。更具体来说,当离心座112逆时钟转动,磁珠14首先会经过外磁块第1排第1列(1-1)的磁铁。例如,(1-1)磁铁所产生的磁力相较于水平面的夹角为正30度,使磁珠向外、向上偏移。接着,磁珠14经过内磁块第2排第2列(2-2)的磁铁。(2-2)磁铁所产生的磁力平行于水平面,故其与水平面的夹角为0度,使磁珠向内、向下偏移趋近水平面。再来,磁珠14经过外磁块第3排第3列(3-3)的磁铁。(3-3)磁铁所产生的磁力相较于水平面的夹角为负30度,使磁珠向外、向下偏移。以此类推,磁珠随着经过的磁铁而往上、下、内、外地移动。当反应管转动一周并回到原始位置时,磁珠14于内、外侧间的往返数为4次、于上、下侧间的往返数为2次。上述状态的具体磁块设置磁铁的模式显示如图7与图8。
在另一可行实施例中,以横排6排、直列3列的方式设置,并 以逆时针编号第几排第几列(几-几)。在一具体实施例中,该外磁块第1排第3列(1-3)、第3排第2列(3-2)、第5排第1列(5-1)、以及该内磁块第2排第3列(2-3)、第4排第2列(4-2)、第6排第1列(6-1)设置磁铁,其他磁块则不设置磁铁。反应管13随着离心座逆时钟转动的过程中,设置于反应管13中的磁珠14也跟着移动。随着反应管13转动至不同方位,磁珠14会被不同方位上的内、外磁块中的磁铁吸引。更具体来说,当离心座112逆时钟转动,磁珠14首先会经过外磁块第1排第3列(1-3)的磁铁。例如,(1-3)磁铁所产生的磁力相较于水平面的夹角为负30度,使磁珠向外、向下偏移。接着,磁珠14经过内磁块第2排第3列(2-3)的磁铁。(2-3)磁铁所产生的磁力相较于水平面的夹角为负30度,使磁珠向内偏移、但维持位于反应管中下方位置。再来,磁珠14经过外磁块第3排第2列(3-2)的磁铁。(3-2)磁铁所产生的磁力平行于水平面,故其与水平面的夹角为0度,使磁珠向外、向上偏移趋近水平面。以此类推,磁珠随着经过的磁铁而往上、下、内、外地移动。当反应管转动一周并回到原始位置时,磁珠14于内、外侧间的往返数为3次、于上、下侧间的往返数为1次。磁块在横排、直列的设置方式如上所述,但本发明所属技术领域中的技术人员能依使用需求调整磁块的配置方式,包括调整横排、直列的数目和排放的位置,不以上述配置为限。
在第3或第4实施例中,由于磁块与反应管连动,因此优选设置电磁铁于磁块12。借此调控电磁铁的磁力有无,使磁力方向随着离心座转动至不同方位而变换。
离心式反应方法的具体实施例
1)从检体槽(如1.5mL离心管或96孔盘)取1-200μL的待测检体(如培养的细胞样本)加入至反应管中;
2)从试剂槽(如1.5mL离心管)取1-200μL的裂解缓冲液(lysis buffer)加入反应管;
3)以低速(如0.05-10g的离心力)离心。检体和裂解缓冲液 混合于反应区,且单向阀关闭;
4)从试剂槽(如1.5mL离心管)取1-20μL的磁珠加入反应管;
5)从试剂槽(如1.5mL离心管)取1-200μL之结合缓冲液(binding buffer)加入反应管;
6)以低速(如0.05-10g的离心力)离心,检体释出的核酸和磁珠借由结合缓冲液混合于反应区,且单向阀关闭;
7)以磁块吸引磁珠落入反应管的凹槽中,再以高速(如100-500g的离心力)离心,单向阀开启,前述混合物中的杂质和缓冲液排出反应区;
8)从试剂槽(如1.5mL离心管)取1-200μL的洗涤缓冲液(wash buffer)加入反应管;
9)以低速(如0.05-10g的离心力)离心。结合有核酸的磁珠与洗涤缓冲液混合于反应区,且单向阀关闭;
10)以磁块吸引磁珠落入反应管的凹槽中,再以高速(如100-500g的离心力)离心,单向阀开启,前述混合物中的杂质和缓冲液排出反应区;
11)从试剂槽(如1.5mL离心管)取1-200μL的洗脱缓冲液(elution buffer)加入反应管;
12)以低速(如0.05-10g的离心力)离心,结合有核酸的磁珠与洗脱缓冲液混合于反应管的凹槽,且单向阀仍关闭;
13)以磁块吸引磁珠。磁珠于反应管中往离心轴方向聚集并固定位置。
14)以离心式反应装置中的分光亮度计,检测核酸浓度。
如上所述,通过本公开所述的离心式反应装置和其离心式反应方法,可达成一键式完成分子生物反应的目的。借由离心力与磁力的搭配,能够带动磁珠使反应混合物在更短时间内更充分地混合。利用离心力搭配反应管的应用,能够将分子生物检测机台微小化,既节能又省空间,可大幅缩短检测时程。此外,反应过程中无须在不同机台间的转移,进而达成了操作简便快速、安全节能、准确又 经济实惠、避免污染等诸多目的。
以上所述仅为示例性,而非为限制性。任何未脱离本发明的精神与范畴,而对其进行的等效修改或变更,均应包含于权利要求书所界定的范围中。
【符号说明】
1       离心式反应装置
11      离心盘
111     离心轴
112     离心座
12      磁块
121     内磁块
122     外磁块
123     上磁块
124     下磁块
125     旁磁块
13      反应管
14      磁珠

Claims (19)

  1. 一种离心式反应装置,包括:
    离心盘,其包含离心轴和至少一离心座,且离心座以离心轴为中心环状排列;
    至少一磁块,其设置于所述离心座的至少一侧;
    其中所述离心座用于可拆卸式地设置反应管,而反应管用于容纳磁珠;
    其中所述磁珠受到所述磁块的磁力与离心力之总和的受力而在反应管中移动。
  2. 根据权利要求1所述的离心式反应装置,其中所述磁块不与离心盘连结而不连动。
  3. 根据权利要求2所述的离心式反应装置,其中所述磁块为电磁铁、磁铁或其组合。
  4. 根据权利要求1所述的离心式反应装置,其中所述磁块与离心盘连结而连动。
  5. 根据权利要求4所述的离心式反应装置,其中所述磁块为电磁铁。
  6. 根据权利要求1所述的离心式反应装置,其中所述磁块与离心盘的距离为0至300毫米。
  7. 根据权利要求1所述的离心式反应装置,其中离心力为1至80000克。
  8. 根据权利要求1所述的离心式反应装置,其中所述磁块的磁力为1至15000高斯。
  9. 根据权利要求1所述的离心式反应装置,其中所述反应管包含至少一反应区和至少一单向阀。
  10. 根据权利要求9所述的离心式反应装置,其中通过电控或磁控控制所述反应管的所述单向阀开闭。
  11. 根据权利要求1所述的离心式反应装置,其中所述磁珠上涂 布包括抗体、适体、胜肽或核酸的生物分子。
  12. 一种离心式反应方法,包括:
    将检体和/或反应试剂加入至根据权利要求1至11所述的离心式反应装置中的所述反应管的至少一反应区,以形成反应混合物;
    将磁珠加入至所述反应区;
    以第一离心力离心所述反应管以进行第一反应,其中磁珠受到所述磁块的磁力与离心力之总和的受力而在反应管中移动;
    以第二离心力离心所述反应管使第一单向阀开启,以排除第一反应的废液,其中所述第二离心力大于所述第一离心力。
  13. 根据权利要求12所述的方法,还包含加入洗涤缓冲液以除去杂质。
  14. 根据权利要求12所述的方法,还包含从所述磁珠回收产物。
  15. 根据权利要求12所述的方法,其中所述磁珠上涂布包括抗体、适体、胜肽或核酸的生物分子。
  16. 根据权利要求15所述的方法,其中所述磁珠上涂布二氧化硅。
  17. 根据权利要求14所述的方法,其中所述产物为脱氧核糖核酸(DNA)或核糖核酸(RNA)。
  18. 根据权利要求12所述的方法,其中所述反应区进行聚合酶连锁反应。
  19. 根据权利要求12所述的方法,其中所述反应区进行核酸杂交反应。
PCT/CN2020/133038 2020-12-01 2020-12-01 离心式反应装置和离心式反应方法 WO2022115981A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080100598.5A CN115516311A (zh) 2020-12-01 2020-12-01 离心式反应装置和离心式反应方法
US17/922,206 US20230257797A1 (en) 2020-12-01 2020-12-01 Centrifugal reaction device and centrifugal reaction method
JP2022580169A JP2023533221A (ja) 2020-12-01 2020-12-01 遠心反応装置及び遠心反応方法
PCT/CN2020/133038 WO2022115981A1 (zh) 2020-12-01 2020-12-01 离心式反应装置和离心式反应方法
EP20963830.3A EP4145129A4 (en) 2020-12-01 2020-12-01 Centrifugal reaction device and centrifugal reaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/133038 WO2022115981A1 (zh) 2020-12-01 2020-12-01 离心式反应装置和离心式反应方法

Publications (1)

Publication Number Publication Date
WO2022115981A1 true WO2022115981A1 (zh) 2022-06-09

Family

ID=81852791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133038 WO2022115981A1 (zh) 2020-12-01 2020-12-01 离心式反应装置和离心式反应方法

Country Status (5)

Country Link
US (1) US20230257797A1 (zh)
EP (1) EP4145129A4 (zh)
JP (1) JP2023533221A (zh)
CN (1) CN115516311A (zh)
WO (1) WO2022115981A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060040273A1 (en) * 2004-08-17 2006-02-23 Alison Chaiken Method and apparatus for magnetic sensing and control of reagents
US20100227379A1 (en) * 2009-03-03 2010-09-09 Wo Andrew M Compact disk based system for separating immunomagnetic bead labeled particulates and method thereof
US20110020194A1 (en) * 2006-09-05 2011-01-27 Samsung Electronics Co., Ltd. Centrifugal force-based microfluidic device for protein detection and microfluidic system including the same
CN103575880A (zh) * 2013-11-15 2014-02-12 司珂 多组分标记免疫分析方法和即时检测系统
CN106226526A (zh) * 2016-06-30 2016-12-14 深圳市亚辉龙生物科技股份有限公司 一种锌转运蛋白8抗体化学发光免疫检测试剂盒及其制备方法
CN210090482U (zh) * 2019-05-31 2020-02-18 艾特生物科技(深圳)有限公司 一种免疫分析仪及其磁珠清洗分离装置、混匀装置
CN211741324U (zh) * 2020-03-16 2020-10-23 广州奕昕生物科技有限公司 一种化学发光仪用试剂槽

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446288B2 (en) * 2005-05-06 2008-11-04 Applied Biosystems Inc. Device including inductively heatable fluid retainment region, and method
KR102155587B1 (ko) * 2018-11-15 2020-09-14 재단법인대구경북과학기술원 미세 유동 장치 및 이를 이용한 표적 세포 분리 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060040273A1 (en) * 2004-08-17 2006-02-23 Alison Chaiken Method and apparatus for magnetic sensing and control of reagents
US20110020194A1 (en) * 2006-09-05 2011-01-27 Samsung Electronics Co., Ltd. Centrifugal force-based microfluidic device for protein detection and microfluidic system including the same
US20100227379A1 (en) * 2009-03-03 2010-09-09 Wo Andrew M Compact disk based system for separating immunomagnetic bead labeled particulates and method thereof
CN103575880A (zh) * 2013-11-15 2014-02-12 司珂 多组分标记免疫分析方法和即时检测系统
CN106226526A (zh) * 2016-06-30 2016-12-14 深圳市亚辉龙生物科技股份有限公司 一种锌转运蛋白8抗体化学发光免疫检测试剂盒及其制备方法
CN210090482U (zh) * 2019-05-31 2020-02-18 艾特生物科技(深圳)有限公司 一种免疫分析仪及其磁珠清洗分离装置、混匀装置
CN211741324U (zh) * 2020-03-16 2020-10-23 广州奕昕生物科技有限公司 一种化学发光仪用试剂槽

Also Published As

Publication number Publication date
JP2023533221A (ja) 2023-08-02
EP4145129A4 (en) 2023-06-28
EP4145129A1 (en) 2023-03-08
US20230257797A1 (en) 2023-08-17
CN115516311A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
JP5089384B2 (ja) 磁性粒子を流体と分離、混合および濃縮するための装置および方法、ならびに精製方法におけるこれらの使用
CN111876468B (zh) 一种全自动核酸检测方法及试管
US8716015B2 (en) Manipulation of cells on a droplet actuator
US20070125942A1 (en) Apparatuses, systems and methods for isolating and separating biological materials
US20050136545A1 (en) Microfluidics devices and methods for performing based assays
US9316656B2 (en) Lid separation device and methods
Dong et al. Automated, flexible and versatile manipulation of nanoliter-to-picoliter droplets based on sequential operation droplet array technique
US20210316303A1 (en) Flow cells utilizing surface-attached structures, and related systems and methods
KR20140148275A (ko) 시약 용기 및 그의 키트
WO2022115981A1 (zh) 离心式反应装置和离心式反应方法
TWI780527B (zh) 離心式反應裝置及離心式反應方法
JPWO2008075501A1 (ja) 回転式抽出容器、それを用いた細胞種の同定方法、遺伝子検出方法、及び自動核酸抽出装置
US20210220827A1 (en) Systems and methods for nucleic acid purification using flow cells with actuated surface-attached structures
TWI708057B (zh) 離心式反應微管、離心式反應裝置及其離心式檢驗方法
EP2108700B1 (en) Analytical processing and detection device
JP7390402B2 (ja) 遠心反応小管、遠心反応装置及びその遠心検査方法
CN110923134A (zh) 一种核酸微流控制检测系统
CN218491735U (zh) 全自动磁控多重巢式pcr检测试管
Karle Microfluidic Continuous Nucleic Acid Extraction
CN113999772A (zh) 一种基于数字微流控系统的酵母表面展示方法
Chabert Gene Expression Analysis on Microchips
JPWO2020248203A5 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020963830

Country of ref document: EP

Effective date: 20221130

ENP Entry into the national phase

Ref document number: 2022580169

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE