WO2022114895A1 - 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템 및 방법 - Google Patents
영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템 및 방법 Download PDFInfo
- Publication number
- WO2022114895A1 WO2022114895A1 PCT/KR2021/017769 KR2021017769W WO2022114895A1 WO 2022114895 A1 WO2022114895 A1 WO 2022114895A1 KR 2021017769 W KR2021017769 W KR 2021017769W WO 2022114895 A1 WO2022114895 A1 WO 2022114895A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- image information
- unit
- emotion
- location
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 230000008451 emotion Effects 0.000 claims abstract description 205
- 238000004458 analytical method Methods 0.000 claims abstract description 49
- 238000001514 detection method Methods 0.000 claims abstract description 30
- 230000002996 emotional effect Effects 0.000 claims description 34
- 238000007726 management method Methods 0.000 claims description 32
- 230000008859 change Effects 0.000 claims description 20
- 238000005259 measurement Methods 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000013507 mapping Methods 0.000 claims description 3
- 230000001629 suppression Effects 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 18
- 230000006870 function Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 239000000470 constituent Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- 238000013135 deep learning Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000008921 facial expression Effects 0.000 description 2
- 239000003205 fragrance Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/174—Facial expression recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/168—Feature extraction; Face representation
Definitions
- the present invention relates to a system and method for providing a customized content service using image information, and utilizes image information capable of editing object units using image information and providing customized preferences of individuals and groups and preference information for each regional location
- a system and method for providing a customized content service are provided.
- the present invention has been devised to solve the above problems, and utilizes image information that enables object tracking through object unit image editing and emotion, that is, facial expression analysis in an object, and provides personalized content service and preference information. It relates to a system and method for providing a customized content service.
- An information collection unit for collecting image information includes an object detection unit for recognizing an object in image information and classifying an object class, an object recognition unit for recognizing an object as an individual user, and the emotion of an individual user object
- a system for providing a customized content service using image information which includes an emotion analysis unit to analyze, a management unit for providing individual user customized contents, and a storage unit for storing information in the system.
- the object detection unit includes a cell divider that divides the standardized image information into a plurality of cell regions, a boundary calculator that calculates a boundary of an object in the image information based on the divided cell regions, and an object divider that divides the calculated object. may include wealth.
- the cell area is partitioned into the same size, bounding boxes of various sizes are created through the bounding calculator, weights are given to the box area according to the probability distribution where an object is located in the bounding box, and a candidate box with a large weight value is selected.
- the object boundary is calculated through the non-maximum value suppression algorithm, the stored classification class value is given for object classification, and the highest value among the assigned values can be classified as a class object corresponding to the classification class.
- a plurality of channels are created, box area information is located at the front of each channel, and object class information of a cell area is stored at the rear side of each channel, so that object division and object classification can be performed at the same time.
- the emotion analysis unit includes an emotion information input unit for extracting and changing object image information based on the object boundary divided by the object detection unit, a face recognition unit for recognizing a face from the changed object image information, and extracting features from the recognized face information. It may include a feature extractor for mapping, and an emotion analyzer for analyzing emotions using the extracted features.
- the emotion analysis unit analyzes seven emotions of anger, dislike, fear, happiness, sadness, surprise, and calm by using the CNN model, and may analyze the seven emotional elements in the form of probability distribution.
- the object recognition unit includes a recognition information input unit for extracting and changing object image information based on the object boundary divided by the object detection unit, and a recognition candidate calculation unit for selecting a plurality of candidate objects by comparing the changed object image information with the stored object information; , may include an object specifying unit for calculating a recognition feature point between the changed object image information and the candidate image information, and for specifying an object in the object image information through this.
- the management unit provides individual user-customized content by utilizing image information, device information and location information of the information collection unit, object recognition information of the object recognition unit, and emotion analysis information of the emotion analysis unit, provided by location and location of recognition objects
- An object tracking unit that detects content, a preference measurer that identifies changes in emotions of objects, maps content information and emotional changes provided for each object location to calculate preferences, and content that provides content with high preference to objects may include wealth.
- the object tracking unit maps the location information provided through the information collection unit and the object recognition information provided through the object recognition unit based on time to confirm the location and movement of the recognized object, and the preference measurement unit includes location information and object recognition information Then, based on the emotion information of the object by time, the emotion change of the object is identified, and the preference specifying unit groups the detected 7 emotions into 5 types, assigns different weights to the grouped emotions, and evaluates the weighted values. divided by the exposure time of , calculates emotional change for each location, and the content provider stores the content provided or displayed and exhibited at the location and time measured with high preference, and continuously provides the same or similar content to the object can do.
- the grouping includes anger, dislike and fear into a first emotional group, sadness into a second emotional group, calm into a third emotional group, surprise into a fourth emotional group, and happiness into a fifth emotional group, and
- the weight increases toward the fifth emotion group, but may increase by 0.5 to 0.7 times the weight value of the previous stage group.
- an information collecting unit for collecting image information at a specified location, extracting a face image of an object collected from within the image information, characterizing the extracted face image, recognizing an object, and an object recognition unit And, an emotion analysis unit that categorizes the emotions in the face image into seven emotional stages of anger, dislike, fear, happiness, sadness, surprise, and calm, and a management unit that controls the emotions of the object according to the analyzed emotion results; and information; provides a system for providing a customized content service utilizing image information including a storage unit in which is stored.
- the management unit includes a tracking unit that tracks the movement of the object, an emotion measurement unit that determines whether emotion adjustment is necessary through emotional evaluation of the object, an emotion adjustment unit that adjusts the object's emotion, and provides the object's emotional result to the manager It may include an emotion notification unit.
- the emotion measurement unit receives the probability distribution values of 7 emotion stages, quantifies the provided results, selects the emotion with the highest value as the current emotion, and anger, dislike, fear, and sadness in addition to the selected emotion. , surprise emotion, and if the emotion value is higher than the average value, it is classified as an emotion adjustment target, and at least one of lighting, video, image, music, and message for emotion adjustment is provided to the object through the emotion adjustment unit, and emotion If the value exceeds the upper average value, the manager can be notified.
- the average value may be 40 to 60% of the maximum emotional value, and the upper average value may be 70 to 90%.
- an information collecting unit for collecting image information according to the present invention, an object detecting unit for respectively detecting a plurality of objects from the collected image information, and analyzing the emotion of the detected object, separate objects for each frame, and one frame
- An emotion analysis unit that analyzes emotions of star objects and detects emotion values for each frame by averaging the analysis values, a management unit that calculates overall emotion results based on the analyzed emotions, and a storage unit in which information is stored;
- the management unit calculates the overall emotional results based on the analyzed emotion values for each frame, but classifies anger, dislike, and fear into group 1, calmness into group 2, happiness, sadness, and surprise into 3 groups, If the average emotion is group 1, it is determined that the preference is low, in the case of the 2nd group, the preference is normal, and in the case of the 3rd group, the customized content service providing system using image information is provided.
- an information collecting unit for collecting image information according to the present invention, an object detecting unit for respectively detecting a plurality of objects from the collected image information, and analyzing the emotion of the detected object, separating the objects by frame, and one frame
- An emotion analysis unit that analyzes the emotions of star objects and averages the analysis values to detect the emotion values for each frame, a management unit that determines whether there is an emergency based on the analyzed emotions and notifies the manager, and the information is stored
- the management unit determines the emotion value for each frame, and when the fear, anger, and surprise emotion value is above the average value, notifies the manager at a warning level, and when the fear, anger, and surprise emotion value is higher than the upper average value provides a system for providing customized content services using video information that notifies administrators as risks.
- a plurality of information collecting units for collecting unique information of the photographing device, image information, and location information of the photographing device from the image photographing apparatus according to the present invention and an object detection function detect an object in the image information in frame units through an object detection function and an object classification unit that classifies the detected objects and gives unique information to each object, an object tracking unit that tracks the classified object, a management unit that edits and provides the tracked object information, and a storage that stores information It provides a system for providing a customized content service using image information including wealth.
- the object tracking unit compares and analyzes the image information and location information according to the unique information of the imaging device, and the object information of the front and back units of the frame through the detected object information and the object-specific information, and if it is the same object, the object-specific information is maintained or After changing to the previous unique information, the management unit may edit the object tracking image by collecting the object image information tracked on a frame-by-frame basis, and adding location information to the collected object image information.
- the present invention provides the steps of receiving image information, location information, and image photographing device information, standardizing the received image information, detecting an object in the standardized image information, and distinguishing and recognizing the object to identify the location area of the object Displaying on the image, extracting face image information from the object at the same time, analyzing the emotion from the extracted face image information in 7 steps, and determining whether the recognized object matches the pre-stored object information Adds pre-stored stored information to , and if they do not match, adds random unique information, analyzes emotional changes according to the location of the recognition object or provided content, and determines the preference of the recognition object using the analysis result
- a method of providing a content service using image information comprising: adding content similar to content that makes you feel happy according to preference determination; provides
- the present invention recognizes an object from an input image and analyzes the object's emotion, that is, an expression, to calculate the preference for the location of the object and the provided content.
- analysis speed can be improved by analyzing each object on different devices.
- FIG. 1 is a conceptual diagram of a system for providing a customized content service using image information according to an embodiment of the present invention.
- FIG. 2 is a block diagram of an object detection unit according to an embodiment
- FIG. 3 is a block diagram of an object recognition unit according to an embodiment
- FIG. 4 is a block diagram of an emotion analysis unit according to an exemplary embodiment
- FIG. 5 is a block diagram of a management unit according to an embodiment
- FIG. 6 is a conceptual diagram of a system for providing a customized content service using image information according to a first modification of the present invention.
- Fig. 7 is a block diagram of a management unit according to a first modification
- FIG. 8 is a conceptual diagram of a system for providing a customized content service using image information according to a second modification of the present invention.
- FIG. 9 is a conceptual diagram illustrating a system for providing a customized content service using image information according to another embodiment of the present invention.
- FIG. 10 is a flowchart illustrating a method of providing a content service using image information according to an embodiment of the present invention.
- FIG. 11 is a flowchart for explaining a content service providing method using image information according to a modified example of the present invention.
- FIG. 12 is a flowchart for explaining a content service providing method using image information according to another embodiment of the present invention.
- each constituent unit is responsible for. That is, two or more components to be described below may be combined into one component, or one component may be divided into two or more for each more subdivided function.
- each of the constituent units to be described below may additionally perform some or all of the functions of other constituent units in addition to the main function it is responsible for. Of course, it can also be performed by being dedicated to it. Therefore, the existence or non-existence of each component described through the present specification should be interpreted functionally. For this reason, it is clearly stated that the configuration of the components of the system and method for providing a customized content service using image information of the present invention may be different within the limit capable of achieving the object of the present invention.
- FIG. 1 is a conceptual diagram of a system for providing a customized content service using image information according to an embodiment of the present invention.
- FIG. 2 is a block diagram of an object detection unit according to an exemplary embodiment.
- 3 is a block diagram of an object recognition unit according to an exemplary embodiment.
- 4 is a block diagram of an emotion analysis unit according to an exemplary embodiment.
- 5 is a block diagram of a management unit according to an exemplary embodiment.
- the system for providing a customized content service includes an information collection unit 100 for collecting image information, and an object for recognizing an object in image information and classifying the object class.
- each part has been described in this embodiment, the implementation is not limited thereto, and each part may be implemented in the form of devices, terminals, and servers, as well as parts, modules, and programs in devices, terminals, and servers.
- the information collection unit 100 is an image processing device capable of capturing and providing an image or an image, and it is effective to use a camera or CCTV. It is preferable that the information collection unit 100 also collects location information of the captured image. When at least one information collection unit 100 is fixedly disposed, unique number information of the information collection unit 100 and location information at which the information collection unit 100 is located may be provided together. In addition, in the case of the mobile information collection unit 100, it is preferable to collect only the location information of the information collection unit 100, and to recognize this location information as shared number information.
- the information collection unit 100 may be a streaming unit that receives images or image information through an image photographing device. It is preferable that the information collection unit 100 provides image information in units of frames. Of course, the present invention is not limited thereto, and may be provided as single image information for each predetermined time period, or may be provided in the form of real-time image information.
- the storage unit 600 when information is provided through the various information collection units 100 , it is effective for the storage unit 600 to include an information conversion unit that converts the provided image information to a size applicable to subsequent parts. Through this, it is possible to increase the operating speed of the entire system by making the size of the image information constant.
- the object detection unit 200 recognizes an object in information from the image information collected by the information collection unit 100 , and distinguishes the object from the position of the object in the image.
- the object detection unit 200 includes a cell divider 210 that divides the standardized image information into a plurality of cell regions, and a boundary calculator 220 that calculates a boundary of an object in the image information based on the divided cell regions; and an object classifying unit 230 for classifying the calculated objects.
- an image shaping unit for standardizing separate image information may be included, and the image shaping unit may be omitted when the image information is formatted to a predetermined size in the aforementioned storage unit 600 .
- the image information is divided into 7*7 cell regions through the cell divider 210, but the size of each cell is equally divided.
- the present invention is not limited thereto, and it is possible to divide the cell region into various types of cell regions.
- the boundary calculating unit 220 calculates the boundary of the object based on the information divided by the cell division unit 210 , and at the same time, the object division unit 230 classifies what the object is and defines the object.
- the boundary calculator 220 generates a plurality of boundary boxes, but it is effective to generate boundary boxes corresponding to twice the cell area.
- the present invention is not limited thereto, and it is possible to create a larger number of bounding boxes.
- the size of the bounding box is not constant. This is because the boundary of the object in the image information is not constant.
- the boundary calculator 220 gives weight to the box area according to a probability distribution in which an object in the boundary box is located. Review the weight value and delete the boxed area if the provisional value is small. Through this, a candidate box region in which an object is estimated to be located may be selected, and an object boundary may be calculated through a non-maximum suppression (NMS) algorithm.
- NMS non-maximum suppression
- the object classification unit 230 gives a stored classification class value for object classification within the candidate box area, and classifies a class corresponding to the classification class having the highest value among these values as an object.
- the classification class can have various values, it is not limited in this embodiment, and it is also preferable to generate it using a deep learning technique or the like.
- it is effective to separate people into things based on people, but in the case of things, it is effective to separate them into animals, vehicles, and the like.
- objects in the box area are distinguished based on the color of the candidate box area.
- the 30 channels are composed of 4 box area information (x, y, w, h) and 20 probabilities regarding which class value to have according to the probability of an object in the corresponding area.
- x and y of the box area information refer to the center position of the entire boundary value of the object
- w and h refer to the overall image size in the horizontal and vertical lengths of the object.
- the first box area information is located in front of the 30 channels, and the second box area information is located after it.
- the scalar value is multiplied by the class classification probability of the cell to obtain the classification probability regarding the class, that is, the object within the boundary region. Thereafter, by sorting the class probability values from a high value to a low value, it is possible to determine the high probability class as an object within the boundary region.
- the object detection unit 200 converts image information to simultaneously calculate boundary information and object classification information.
- box area information for confirming an object position in an image, object classification information for object classification, and probability value information thereof are stored.
- object classification and object area setting are possible using a plurality of single channel data.
- the object recognition unit 300 recognizes a corresponding object through the object detection unit 200 based on boundary information and object classification information of the object in the image information. That is, it is possible to specify who the object detected in the image information is through the object recognition unit 300 .
- the object recognition unit 300 may recognize an object through image information comparison or may recognize an object using deep learning technology. Of course, it is effective to improve its accuracy by doing both.
- the object recognition unit 300 includes a recognition information input unit 310 that extracts and changes object image information based on the object boundary divided by the object detection unit 200, and compares the changed object image information with the stored object information to obtain a plurality of candidates. It includes an object recognition candidate calculation unit 320 for selecting an object, and an object specifying unit 330 for calculating a recognition feature point between the changed object image information and the candidate image information and specifying an object in the object image information through this.
- the recognition information input unit 310 may include an image editing module to cut and resize an image. Through this, it may be possible to process and edit image information used in the object detection unit 200 . This is because there may be at least one object on the image information used by the object detection unit 200, and the sizes of the objects may be different, so that data used in subsequent networks can be unified to improve analysis and recognition capabilities. .
- the recognition candidate calculation unit 320 compares the pre-stored object image information with the edited input object image information, and selects 1 to 10 future objects according to the comparison value. Through this, the load of the subsequent object specifying unit 330 may be reduced, and thus the reaction speed may be greatly improved.
- the object specifying unit 330 determines whether the candidate image information and the edited input object image information are similar to each other using deep learning technology to specify the final object. To this end, recognition features in the image information are calculated, a feature map is created based on the calculated features, classes are classified, and the degree of similarity between them is detected with a probability to specify an object.
- a unique ID of pre-stored object information is given to an object in the input image information for which the object is specified.
- the emotion analysis unit 400 includes an emotion information input unit 410 for extracting and changing object image information based on the object boundary divided by the object detection unit 200, and a face recognition unit 420 for recognizing a face from the changed object image information. ), a feature extractor 430 that extracts and maps features from the recognized face information, and an object emotion analyzer 440 that analyzes emotions using the extracted features.
- the emotion analysis unit 400 may use the changed object image information changed by the recognition information input unit 310 of the object recognition unit 300 .
- the emotion analysis unit 400 analyzes seven emotions of an object based on image information using a convolution neural networks (CNN) model.
- CNN convolution neural networks
- KFERC Kaggle Facial Expression Recognition Challenge
- the face recognition unit 420 recognizes a face from the changed object image information provided from the emotion information input unit 410 .
- it is effective to use the Harr cascade algorithm of OpenCV. Through this, the searched face information can be converted to a specific size. In this example, it is effective to resize a 48x48 black-and-white image.
- the feature extraction unit 430 configures a feature map by setting the kernel size to 3*3 and continuously overlapping the original image with the kernel in order to extract features from the recognized face information.
- MAX Pooling can be used to create 256 feature maps and reduce the dimension of the feature maps using the ReLU function.
- the object emotion analyzer 440 may classify the recognized face image information into various classes, and may represent seven emotion elements in the form of a probability distribution using soft max as an activation function. In this case, the object emotion analysis unit 440 uses data learned from KFERC.
- the management unit 500 utilizes image information, device information, and location information of the information collection unit 100 , object recognition information of the object recognition unit 300 , and emotion analysis information of the emotion analysis unit 400 to customize individual users content can be provided.
- the management unit 500 includes an object tracking unit 510 that detects the location of a recognized object and content provided for each location, detects a change in the emotion of the object, and maps the content information and emotion change provided for each location of the object to calculate a preference and a preference measuring unit 520 for providing content with high preference, and a content providing unit 530 for providing an object with high preference content.
- an object tracking unit 510 that detects the location of a recognized object and content provided for each location, detects a change in the emotion of the object, and maps the content information and emotion change provided for each location of the object to calculate a preference and a preference measuring unit 520 for providing content with high preference, and a content providing unit 530 for providing an object with high preference content.
- the object tracking unit 510 maps the location information provided through the information collection unit 100 and the object recognition information provided through the object recognition unit 300 based on time to check the position and movement of the recognized object. It is possible. Through this, the management unit 500 may be able to recognize in which location the corresponding object passes.
- the preference measuring unit 520 detects a change in the object's emotion based on the location information, the object recognition information, and the emotion information of the object by time. At this time, it is possible to measure the change for each frame of the seven emotions analyzed through the emotion analysis unit 400 to understand the flow of the change.
- the preference measurement unit 520 may group the detected seven emotions into five types, give different weights to the grouped emotions, and divide the weighted value by the exposure time of the emotions to calculate the emotion change for each location.
- the grouping classifies anger, dislike, and fear into a first emotion group, sadness into a second emotion group, calmness into a third emotion group, surprise into a fourth emotion group, and happiness into a fifth emotion group.
- a weight is assigned to each group, but it is effective to increase the weight from the first emotion group to the fifth emotion group. For accurate emotional change, it is effective to increase the weight by 0.5 to 0.7 times compared to the weight value of the previous group according to the results of various surveys. It may be possible to measure the preference for each content as a quantified numerical value by mapping this with the content provided for each location.
- the content providing unit 530 may store content that is provided or displayed and exhibited at a location and time with a high preference, and may continuously provide the same or similar content to the stored content to the object.
- an object when an object views an image, it analyzes the customer's emotional change regarding the viewed image, determines the image preference based on the result, and determines whether the object wants to receive additional image content based on the determined preference. In this case, it becomes possible to continuously provide image information similar to an image with high preference.
- the object when the object conducts shopping while moving the shopping space, it is possible to select a preferred store of the object according to the location information of each store passed by and preference determination information according to emotion analysis, and the location of a store similar to the preferred store It is possible to display through the terminal of the object or the display device in the shopping space.
- the preference measuring unit 520 reflects the location information for each time, and if there is a lot of time staying at the corresponding location, it is possible to give additional points when measuring the preference.
- the management unit 500 stores the terminal information of the object, and it is possible to provide the above-mentioned information about attracting similar stores through the stored information.
- an object that is, an employee (member, user) may improve efficiency by changing the employee's emotion based on the emotion analysis result.
- FIG. 6 is a conceptual diagram of a system for providing a customized content service using image information according to a first modification of the present invention.
- 7 is a block diagram of a management unit according to a first modification.
- the system for providing a customized content service includes an information collection unit 100 that collects image information at a specified location, and object recognition that detects and recognizes objects from the collected image information.
- the unit 300, the emotion analysis unit 400 for analyzing the emotion of the detected object, the management unit 500 for performing emotion adjustment of the object according to the analyzed emotion result, and the storage unit 600 for storing information include
- the collection of image information is collected by a CCTV, which is an image collecting device at a fixed location.
- the image information provided through the information collection unit 100 includes unique CCTV information, and through this, it may be easy to determine the location where the image information was collected.
- the face image of the object collected in the image information is extracted through the object recognition unit 300 and the extracted face image is characterized.
- pre-registered object information such as employees, users, and members exists in the storage unit 600 , and it is possible to recognize who is an object in the input image information based on the object information. After recognizing who the object in the image information is, the emotion of the object in the image information is classified into seven stages through the emotion analysis unit 400 .
- the management unit 500 includes a tracking unit 510-1 for tracking the movement of an object, an emotion measurement unit 520-1 for determining whether emotion adjustment is necessary through emotional evaluation of the object, and a method for adjusting the object's emotion. It includes an emotion adjustment unit 530-1 and an emotion notification unit 540-1 that provides the emotion result of the object to the manager.
- the emotion measurement unit 520-1 measures emotion for each moving position of the object and determines whether emotion adjustment is necessary. Probability distribution values of seven emotion stages are provided through the emotion analysis unit 400, and the provided results are digitized. The emotion values for the seven emotions are calculated, the calculated emotion values are quantified, and the emotion with the highest value is selected as the emotion in the current state. At this time, if the selected emotion is happiness or calm, it is determined that the emotion is not subject to adjustment. In addition, in the case of anger, dislike, fear, sadness, and surprise in addition to the selected emotion, if the emotion value is higher than the average value, it is classified as an emotion adjustment target.
- the average value it is effective to use a value of 40 to 60% of the maximum value that can be calculated through emotion analysis as the average value.
- the emotion for the emotion angry, dislike, fear, sadness, surprise. judge to be
- the emotion measurement unit 520-1 it is effective for the emotion measurement unit 520-1 to measure the emotional change of the object in units of 1 to 100 minutes. That is, it is preferable to measure the average value during this time. At this time, it is effective to measure the emotion in units of 5 to 30 minutes because it is recognized that an emotional abnormality may occur when a person's emotional change maintains the same emotion for 5 minutes or more. If it exceeds 30 minutes, it may be difficult to identify specific emotions due to various emotional changes.
- the emotion adjustment unit 530-1 predicts a path along which the object moves, and distributes music or fragrance for emotion adjustment to the moving path.
- the emotion adjusting unit 530-1 provides an image or music through the terminal to adjust the object's emotion.
- the emotion notification unit 540-1 may notify the manager of the presence or absence of an emotion abnormality of the object by notifying the manager when an upper average value is obtained from among the selected emotions. In this case, it is effective to use an emotion value of 70 to 90% of the maximum value as the upper average value.
- the average value and the upper average value higher than this are separated based on the maximum value of the emotion value that can be derived through the emotion analysis unit 400, and the sound, fragrance, image, as well as the encouraging message are primarily used. It is possible to improve the object's efficiency by adjusting the object's emotion and notifying the manager of the object's emotional abnormality. That is, when emotions of anger, dislike, fear, sadness, and surprise occur continuously in the emotion analysis measured for a certain period of time (about 5 to 30 minutes), it is desirable to provide it to the manager so that they can adjust it.
- the system of the present invention may provide a result by analyzing the emotions of all objects in the collected image without analyzing the emotions for each recognized single object. In this way, it may be possible to evaluate the preferences of lectures, lectures, and regions.
- FIG. 8 is a conceptual diagram of a system for providing a customized content service using image information according to a second modification of the present invention.
- the system for providing a customized content service includes an information collection unit 100 for collecting image information, an object detection unit 200 for detecting a plurality of objects from the collected image information, respectively; It includes an emotion analysis unit 400 for analyzing the emotion of the detected object, a management unit 500 for calculating an overall emotion result based on the analyzed emotion, and a storage unit 600 for storing information.
- the object detection unit 200 assigns a unique ID to each detected object, and the emotion analysis unit 400 analyzes the emotion change of the object for each unique ID.
- the present invention is not limited thereto, and the object detection unit 200 separates the objects for each frame, and the emotion analysis unit 400 analyzes the emotions of the objects for each frame, and averages the analysis values to detect the emotion values for each frame. it is possible
- the emotion analysis unit 400 extracts a feature from the face image of the object provided through the object detection unit 200 , calculates the emotion value of each object based on this, and averages them to set the frame emotion value. That is, the emotion value of each object is measured as a probability distribution value, and the frame emotion value can be calculated by adding the probability distribution values of these individual objects.
- the management unit 500 calculates the overall emotion result based on the analyzed emotion value for each frame, but divides the emotion into three groups and calculates the result. At this time, it is possible to classify group 1 into anger, disgust, and fear, group 2 as calm, and group 3 as happiness, sadness, and surprise.
- the management unit 500 determines that the preference is low in the case of lectures, lectures, or emotions of objects in the corresponding area in the 1st group, in the case of the 2nd group, the preference is normal, and in the case of the 3rd group, the preference is high. It is possible to judge With such feedback, it may also be possible for a lecturer or regional manager to make changes to his or her lecture or region.
- the present invention it may be possible to prevent a crime or determine an emergency according to the frame emotion value of the analyzed object.
- the customized content service providing system includes an information collection unit 100 for collecting location information and image information, an object detection unit 200 for respectively detecting a plurality of objects from the collected image information, and It includes an emotion analysis unit 400 that analyzes emotions, a management unit 500 that determines whether there is an emergency based on the analyzed emotions, and notifies a manager thereof, and a storage unit 600 in which information is stored.
- the management unit 500 of this modification determines the frame emotion value provided through the emotion analysis unit 400, and when the fear, anger, and surprise emotion values are greater than or equal to the average value, many objects show feelings of fear, anger, or surprise Because of this, the administrator is notified of this with a warning level. And, as a result of the judgment, if the fear, anger, and surprise emotion values are higher than or equal to the upper average value, it is possible to notify the manager as a danger, and the manager can request to be dispatched to the location where the video is provided. As described above, in this modified example, it may be possible to determine whether a danger or a crime has occurred in the corresponding area through the emotional change of the objects.
- the present invention is not limited to the above description, and object tracking may be possible.
- FIG. 9 is a conceptual diagram illustrating a system for providing a customized content service using image information according to another embodiment of the present invention.
- the system for providing a customized content service includes a plurality of information collection units 1100 for collecting image information, an object classification unit 1200 for recognizing and classifying objects in image information, It includes an object tracking unit 1300 for tracking the classified object, a management unit 1400 for editing and providing the tracked object information, and a storage unit 1500 for storing the information.
- the plurality of information collection units 1100 receive unique information of the photographing apparatus, image information, and location information of the photographing apparatus from the image photographing apparatus.
- the object classifier 1200 detects an object in the image information on a frame-by-frame basis through the object detection function, classifies the detected object, and assigns unique information to each object.
- the object tracking unit 1300 compares and analyzes the image information and location information according to the unique information of the imaging device, and the object information of the front and rear units of the frame through the detected object information and the object-specific information, and in the case of the same object, the object-specific information to retain or change to previously unique information.
- objects in the image information provided through different photographing devices may have different object-specific information when viewed in units of frames, but through object image information comparison, the object image information in frame units of the rear end is the same as the object image information in units of the front stage. In this case, the unique information assigned to the information on the rear end is changed to the unique information on the information on the front end. Through this, even if the object moves from one photographing device to another, it is possible to track the object.
- the management unit 1400 collects object image information tracked on a frame-by-frame basis, edits the object tracking image by adding location information to the collected object image information, and provides it.
- object recognition in image information can be performed by classifying different devices. That is, object recognition in the image may be different for each class. That is, one object classifier may recognize and classify only objects related to people, and separate objects such as vehicles from other objects and animals from other objects. In this case, they may be implemented as completely independent devices such as different servers or terminals. It is also possible to partition programmatically. Accordingly, object recognition speed may be improved, and object tracking images may be easily edited.
- FIG. 10 is a flowchart illustrating a method of providing a content service using image information according to an embodiment of the present invention.
- image information, location information, and image photographing device information are provided ( S110 ).
- the received image information is standardized, the object is detected within the standardized image information, the object is distinguished and recognized to display the location area of the object on the image (S120), and at the same time, the face image information is extracted from the object, and the extracted face Analyze the emotion in the image information in 7 steps (S130).
- a change in emotion is analyzed according to the location of the recognition object or provided content, and the preference of the recognition object is determined using the analysis result (S140).
- content similar to the content that makes you feel happy may be additionally provided, or location information having content similar to the content of the corresponding location may be provided to the object (S150).
- the emotional state for each object information is analyzed, the probability distribution value of the seven emotional stages is calculated, and according to the calculated result, one of anger, dislike, fear, sadness, and surprise is the average value or higher.
- any one of lighting, video, music, and message for emotional adjustment is provided, and if it is higher than the upper average value, the manager may be notified.
- FIG. 11 is a flowchart illustrating a method for providing a content service using image information according to a modified example of the present invention.
- image information is provided from the photographing device ( S210 ).
- An object is detected within the provided image information, and face image information of each object is extracted (S220).
- the emotion of the object for each frame is analyzed using the extracted face image information of the objects (S230).
- the overall emotion result is calculated based on the sum of the emotion values of each object for each analyzed frame (S240), but if the result is an emotion of anger, dislike, or fear, the preference is bad, and in the case of a calm emotion, the preference is normal, happy, In the case of sadness or surprise, it is determined that the preference is good, and this is provided to the manager (S250).
- the overall emotion result is calculated based on the sum of the emotion values of each object for each analyzed frame, but when the emotion values of fear, anger, and surprise are higher than the average value, a warning is issued, and when the upper average value is higher It is possible to notify the potential risk, but also notify the manager with the corresponding location information.
- FIG. 12 is a flowchart illustrating a method of providing a content service using image information according to another embodiment of the present invention.
- a plurality of image information and location information are collected from each image capturing device ( S310 ).
- An object in the image information is detected by performing object detection on the image information (S320).
- Image information and location information according to the unique information of the photographing device, and the detected object information and object-specific information are used to compare and analyze the front and rear object information for each frame. change (S330).
- frame unit image information in which an object is located is edited into one piece of information, and location information is added to the edited image information (S340).
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Tourism & Hospitality (AREA)
- Human Computer Interaction (AREA)
- Multimedia (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Analysis (AREA)
Abstract
본 실시예에 따른 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템 및 방법은 영상 정보를 수집하는 정보 수집부와, 영상 정보내에서 객체를 인식하고 객체의 클래스를 분류하는 객체 검출부와, 객체를 개별 사용자로 인식하는 객체 인식부와, 개별 사용자 객체의 감정을 분석하는 감정 분석부와, 개별 사용자 맞춤형 컨텐츠를 제공하는 관리부 및 시스템 내의 정보들을 저장하는 저장부를 포함하는 하는 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템 및 방법을 제공한다.
Description
본 발명은 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템 및 방법에 관한 것으로, 영상 정보를 이용하여 객체 단위의 편집과, 개인 및 단체의 맞춤형 선호도와 지역 위치별 선호도 정보의 제공이 가능한 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템 및 방법을 제공한다.
최근 들어, 영상을 촬영하는 장치의 발전과 이의 보급으로 인해 이미지 및 비디오와 같은 영상 정보의 양이 기하급수적으로 증가하고 있다. 이와 같은 영상 정보를 활용하기 위한 많은 시도가 이루어지고 있다. 최근에는 공공분야에서는 범죄와 민간 치안에 활용하기 위한 시스템 개발은 물론, 이러한 영상 정보 활용 기술을 국방상에 활용하기 위한 다양한 시도가 시행되고 있다.
또한, 민간 부문에서는 차량 입출입 영상 분석을 통한 주차장 관리 시스템 등이 상용화되어 있는 실정이다.
본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로서, 객체 단위 영상 편집과 객체 내의 감정 즉, 표정 분석을 통해 객체 추적이 가능하고, 개인 맞춤형 컨텐츠 서비스 제공과 선호도 정보의 제공이 가능한 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템 및 방법에 관한 것이다.
본 발명에 따른 영상 정보를 수집하는 정보 수집부와, 영상 정보내에서 객체를 인식하고 객체의 클래스를 분류하는 객체 검출부와, 객체를 개별 사용자로 인식하는 객체 인식부와, 개별 사용자 객체의 감정을 분석하는 감정 분석부와, 개별 사용자 맞춤형 컨텐츠를 제공하는 관리부와, 시스템 내의 정보들을 저장하는 저장부를 포함하는 하는 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템을 제공한다.
상기 객체 검출부는 정형화된 영상 정보를 다수의 셀 영역으로 구분하는 셀 구획부와, 구획된 셀 영역을 기반으로 영상 정보 내의 객체의 경계를 산출하는 경계 산출부와, 산출된 객체를 구분하는 객체 구분부를 포함할 수 있다.
셀 영역은 동일 사이즈로 구획되고, 경계 산출부를 통해 다양한 사이즈의 경계 박스를 생성하고, 경계 박스 내에 객체가 위치할 확률 분포에 따라 박스 영역에 가중치를 부여하고, 가중치 값이 큰 후보 박스를 선정한 다음 비 최대값 억제 알고리즘을 통해 객체 경계를 산출하고, 객체 구분을 위해 저장된 구분 클래스 값을 부여하고, 부여 값 중에서 가장 높은 값을 구분 클래스에 해당하는 클래스 객체로 구분할 수 있다.
다수의 채널을 생성하고, 각각의 채널의 앞쪽에는 박스 영역 정보가 위치하고, 뒷쪽에는 셀 영역의 객체 클래스 정보가 저장되어, 객체의 구획과 객체의 구분을 동시에 실시할 수 있다.
상기 감정 분석부는 객체 검출부에 의해 구분된 객체 경계를 바탕으로 객체 영상 정보를 추출 변경하는 감정 정보 입력부와, 변경된 객체 영상 정보에서 얼굴을 인식하는 얼굴 인식부와, 인식된 얼굴 정보에서 특징을 추출하여 매핑하는 특징 추출부와, 추출된 특징을 이용하여 감정을 분석하는 감정 분석부를 포함할 수 있다.
상기 감정 분석부는 CNN 모델을 사용하여 화남, 싫음, 공포, 행복, 슬픔, 놀람, 차분함의 7가지 감정을 분석하되, 7개의 감정 요소를 확률 분포 형태로 분석할 수 있다.
상기 객체 인식부는 객체 검출부에 의해 구분된 객체 경계를 바탕으로 객체 이미지 정보를 추출 변경하는 인식 정보 입력부와, 변경된 객체 이미지 정보와 저장된 객체 정보를 비교하여 다수의 후보 객체를 선정하는 인식 후보 산출부와, 변경된 객체 이미지 정보와 후보 이미지 정보간의 인식 특징점을 산출하고, 이를 통해 객체 이미지 정보 내의 객체를 특정하는 객체 특정부를 포함할 수 있다.
상기 관리부는 정보 수집부의 영상정보, 장치 정보 및 위치 정보와, 객체 인식부의 객체 인식 정보 그리고, 감정 분석부의 감정 분석 정보를 활용하여 개별 사용자 맞춤형 컨텐츠를 제공하되, 인식 객체의 위치 및 위치별 제공되는 컨텐츠를 파악하는 객체 추적부와, 객체의 감정 변화를 파악하고, 객체 위치별 제공되는 컨텐츠 정보와 감정 변화를 매핑하여 선호도를 산출하는 선호도 측정부와, 선호도가 높은 컨텐츠를 객체에게 제공하는 컨텐츠 제공부를 포함할 수 있다.
상기 객체 추적부는 정보 수집부를 통해 제공된 위치 정보와 객체 인식부를 통해 제공되는 객체 인식 정보를 시간을 기준으로 매핑하여 인식된 객체의 위치와 이동을 확인하고, 상기 선호도 측정부는 위치 정보와, 객체 인식 정보 그리고, 시간별 객체의 감정 정보를 바탕으로 객체의 감정 변화를 파악하고, 상기 선호도 특정부는 검출된 7가지 감정을 5가지로 그룹화하고, 이 그룹화된 감정에 가중치를 다르게 부여하고, 이 가중치 값을 감정의 노출 시간으로 나누어 위치별 감정 변화를 산출하고, 컨텐츠 제공부는 선호도가 높게 측정된 위치와 시간에 제공되거나 표시 및 전시된 컨텐츠를 저장하고, 이 저장된 컨텐츠와 동일하거나 유사한 컨텐츠를 지속적으로 객체에게 제공할 수 있다.
상기 그룹화는 화남, 싫음, 공포를 제1 감정 그룹, 슬픔을 제2 감정 그룹, 차분함을 제3 감정 그룹, 놀람을 제4 감정 그룹 그리고, 행복을 제5 감정 그룹으로 분류하고, 제1 감정 그룹에서 제5 감정 그룹으로 갈수록 가중치가 증가하되, 전 단계그룹의 가중치값 대비 0.5 내지 0.7배씩 증가할 수 있다.
또한, 본 발명에 따른 지정된 위치에서 영상 정보를 수집하는 정보 수집부와, 영상 정보 내에서 수집된 객체의 얼굴 이미지를 추출하고, 추출된 얼굴 이미지를 특징화하여, 객체를 인식하고, 객체 인식부와, 얼굴 이미지 내의 감정을 화남, 싫음, 공포, 행복, 슬픔, 놀람, 차분함의 7가지 감정단계로 분류하는 감정 분석부와, 분석된 감정 결과에 따라 객체의 감정 조절을 수행하는 관리부와, 정보가 저장된 저장부를 포함하는 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템을 제공한다.
상기 관리부는 객체의 이동을 추적하는 추적부와, 객체의 감정 평가를 통해 감정 조정이 필요한지 여부를 판단하는 감정 측정부와, 객체의 감정을 조정하는 감정 조정부와, 객체의 감정 결과를 관리자에게 제공하는 감정 알림부를 포함할 수 있다.
감정 측정부는 7가지 감정 단계의 확률 분포값을 제공 받고, 이 제공 받은 결과를 수치화하여, 가장 높은 값이 나온 감정을 현재 상태의 감정으로 선정하고, 선정된 감정이 이외에 화남, 싫음, 공포, 슬픔, 놀람 감정이고, 감정 값이 평균 값보다 상회하는 경우에는 감정 조정 대상으로 분류하여, 감정 조정부를 통해 감정 조정을 위한 조명, 영상, 이미지, 음악 및 메시지중 적어도 어느하나를 객체에 제공하고, 감정값이 상위 평균 값을 상회하는 경우에는 관리자에게 이를 통지할 수 있다.
상기 평균 값은 감정 최대값의 40 내지 60%이고, 상기 상위 평균 값은 70 내지 90%일 수 있다.
또한, 본 발명에 따른 영상 정보를 수집하는 정보 수집부와, 수집된 영상 정보에서 다수의 객체를 각기 검출하는 객체 검출부와, 검출된 객체의 감정을 분석하되, 프레임별로 객체를 분리하고, 일 프래임 별 객체의 감정을 분석하고, 그 분석 값을 평균화하여 프래임별 감정값을 검출하는 감정 분석부와, 분석된 감정을 바탕으로 전체 감정 결과를 산출하는 관리부와, 정보가 저장된 저장부를 포함하되, 상기 관리부는 분석된 프레임별 감정값을 바탕으로 전체 감정 결과를 산출하되, 화남, 싫은, 공포 감정을 1그룹으로, 차분함을 2그룹으로, 행복, 슬픔, 놀람 감정을 3그룹으로 분류하고, 객체들의 평균 감정이 1그룹인 경우에는 선호도가 낮음으로 판단하고, 2그룹인 경우에는 선호도가 보통이고, 3그룹인 경우에는 선호도가 높음으로 판단하는 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템을 제공한다.
또한, 본 발명에 따른 영상 정보를 수집하는 정보 수집부와, 수집된 영상 정보에서 다수의 객체를 각기 검출하는 객체 검출부와, 검출된 객체의 감정을 분석하되, 프레임별로 객체를 분리하고, 일 프래임 별 객체의 감정을 분석하고, 그 분석 값을 평균화하여 프래임별 감정값을 검출하는 감정 분석부와, 분석된 감정을 바탕으로 위급 상황 여부를 판단하고, 이를 관리자에게 통지하는 관리부와, 정보가 저장된 저장부를 포함하되, 상기 관리부는 프레임별 감정 값을 판단하여, 공포, 화남, 놀람 감정 값이 평균 값 이상인 경우에는 경고 수준으로 관리자에게 통지하고, 공포, 화남, 놀람 감정 값이 상위 평균 값 이상인 경우에는 관리자에게 위험으로 통지하는 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템을 제공한다.
또한, 본 발명에 따른 영상 촬영 장치로부터 촬영 장치의 고유 정보와, 영상 정보와 촬영 장치의 위치 정보를 수집하는 다수의 정보 수집부와, 객체 검출 기능을 통해 프레임 단위로, 영상 정보 내에 객체를 검출하고, 검출된 객체를 각기 분류하여 각 객체에 고유 정보를 부여하는 객체 분류부와, 분류된 객체를 추적하는 객체 추적부와, 추적된 객체 정보를 편집하여 제공하는 관리부와, 정보들을 저장하는 저장부를 포함하는 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템을 제공한다.
상기 객체 추적부는 찰영 장치의 고유 정보에 따른 영상 정보와 위치 정보 그리고, 검출된 객체 정보와 객체 고유 정보를 통해 프레임의 앞뒤 단위의 객체 정보를 비교 분석하여 동일 객체일 경우에는 객체 고유 정보를 유지 또는 이전 고유 정보로 변경하고, 상기 관리부는 프레임 단위로 추적된 객체 영상 정보를 프레임 단위로 취합하고, 이 취합한 객체 영상 정보에 위치 정보를 추가하여 객체 추적 영상을 편집할 수 있다.
또한, 본 발명은 영상 정보 및 위치 정보 그리고, 영상 촬영 장치 정보를 제공 받는단계와, 제공 받은 영상 정보를 정형화하고, 정형화된 영상 정보 내에서 객체를 검출하고, 객체를 구분 인식하여 객체의 위치 영역을 영상에 표시하고, 동시에 객체에서 얼굴 영상 정보를 추출하고, 추출된 얼굴 영상 정보에서 감정을 7단계로 분석하는 단계와, 인식된 객체가 기 저장된 객체 정보와 일치하는지 여부를 판단하여 일치하는 경우에는 기 저장된 저장 정보를 추가하고, 일치하지 않는 경우에는 랜덤 고유 정보를 추가하는 단계와, 인식 객체의 위치 또는 제공되는 컨텐츠에 따라 감정 변화를 분석하고, 분석 결과를 이용하여 인식 객체의 선호도를 판단하는 단계와, 선호도 판단에 따라 행복함을 느끼는 컨텐츠와 유사한 컨텐츠를 추가 제공하거나, 해당 위치의 컨텐츠와 유사한 컨텐츠가 있는 위치 정보를 객체에 제공하는 단계를 포함하는 영상 정보를 활용한 컨텐츠 서비스 제공 방법을 제공한다.
이와 같이 본 발명은 입력 영상으로부터 객체를 인식하고, 객체의 감정 즉, 표정을 분석하여 객체의 위치 및 제공 컨텐츠에 관한 선호도를 산출할 수 있다.
또한, 본 발명은 다수 객체를 동시에 인식하고, 전체 객체의 감정을 분석하여 그 결과를 피드백 형태로 제공하는 것이 가능하고, 다수 객체의 감정을 통해 위험 감지와 범죄발생 여부를 파악하는 것이 가능하다.
또한, 각 객체를 서로 다른 장치에서 분석하여 분석 속도를 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템의 개념도.
도 2는 일 실시예에 따른 객체 검출부의 블록도.
도 3은 일 실시예에 따른 객체 인식부의 블록도.
도 4는 일 실시예에 따른 감정 분석부의 블록도.
도 5는 일 실시예에 따른 관리부의 블록도.
도 6은 본 발명의 제1 변형예에 따른 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템의 개념도.
도 7은 제1 변형예에 따른 관리부의 블록도.
도 8은 본 발명의 제2 변형예에 따른 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템의 개념도.
도 9는 본 발명의 다른 실시예에 따른 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템을 설명하기 위한 개념도.
도 10은 본 발명의 일 실시예에 따른 영상 정보를 활용한 컨텐츠 서비스 제공 방법을 설명하기 위한 흐름도.
도 11는 본 발명의 변형예에 따른 영상 정보를 활용한 컨텐츠 서비스 제공 방법을 설명하기 위한 흐름도.
도 12는 본 발명의 다른 실시예에 따른 영상 정보를 활용한 컨텐츠 서비스 제공 방법을 설명하기 위한 흐름도.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면상에서 동일 부호는 동일한 요소를 지칭한다.
본 명세서에서의 구성부들에 대한 구분은 각 구성부가 담당하는 주기능별로 구분한 것에 불과함을 명확히 하고자 한다. 즉, 이하에서 설명할 2개 이상의 구성부가 하나의 구성부로 합쳐지거나 또는 하나의 구성부가 보다 세분화된 기능별로 2개 이상으로 분화되어 구비될 수도 있다. 그리고 이하에서 설명할 구성부 각각은 자신이 담당하는 주기능 이외에도 다른 구성부가 담당하는 기능 중 일부 또는 전부의 기능을 추가적으로 수행할 수도 있으며, 구성부 각각이 담당하는 주기능 중 일부 기능이 다른 구성부에 의해 전담되어 수행될 수도 있음은 물론이다. 따라서, 본 명세서를 통해 설명되는 각 구성부들의 존재 여부는 기능적으로 해석 되어야 할 것이다. 이러한 이유로 본 발명의 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템 및 방법의 구성부들의 구성은 본 발명의 목적을 달성할 수 있는 한도 내에서 상이해질 수 있음을 명확히 밝혀둔다.
본 명세서에서, 제1 및 제2, 상부 및 하부 등의 관계적인 용어는, 그러한 엔티티 또는 액션 간의 실제 관계 또는 순서를 반드시 요구하거나 암시하지 않고 다른 엔티티나 액션과 하나의 엔티티 또는 액션을 구별하는 데에만 사용될 수 있다. 용어 "포함하다(comprises)", "포함하는(comprising)" 또는 그 다른 변형은, 구성요소의 리스트를 포함하는 프로세스, 방법, 제품, 또는 장치가 구성요소만을 포함하지 않지만 그러한 프로세스, 방법, 제품, 또는 장치에 명시적으로 열거되거나 내재되지 않은 다른 구성요소를 포함할 수 있도록, 비배타적인 포함물을 커버하도록 의도된다. "하나의 ~를 포함하다"로 진행되는 하나의 구성요소는, 더 이상의 제한없이, 구성요소를 포함하는 프로세스, 방법, 제품, 또는 장치 내에 부가적인 동일한 구성요소의 존재를 배제한다.
도 1은 본 발명의 일 실시예에 따른 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템의 개념도이다.
도 2는 일 실시예에 따른 객체 검출부의 블록도이다. 도 3은 일 실시예에 따른 객체 인식부의 블록도이다. 도 4는 일 실시예에 따른 감정 분석부의 블록도이다. 도 5는 일 실시예에 따른 관리부의 블록도이다.
도 1 내지 도 5에 도시된 바와 같이, 본 실시예에 따른 맞춤형 컨텐츠 서비스 제공 시스템은 영상 정보를 수집하는 정보 수집부(100)와, 영상 정보내에서 객체를 인식하고 객체의 클래스를 분류하는 객체 검출부(200)와, 객체를 개별 사용자로 인식하는 객체 인식부(300)와, 개별 사용자 객체의 감정을 분석하는 감정 분석부(400)와, 개별 사용자 맞춤형 컨텐츠를 제공하는 관리부(500)와, 시스템 내의 정보들을 저장하는 저장부(600)를 포함한다.
본 실시예에서는 각부로 설명하였지만, 이의 구현에 있어서는 한정되지 않고, 각부는 장치, 단말, 서버는 물론, 장치, 단말, 서버내의 부품, 모듈, 프로그램 형태로 구현될 수 있다.
정보 수집부(100)는 영상이나 이미지를 촬영하여 제공할 수 있는 영상 처리장치로, 카메라 또는 CCTV를 사용하는 것이 효과적이다. 정보 수집부(100)는 촬영된 영상의 위치 정보도 함께 수집하는 것이 바람직하다. 적어도 하나의 정보 수집부(100)가 고정 배치된 경우에는 정보 수집부(100)의 고유 번호 정보와 정보 수집부(100)가 위치한 위치 정보가 함께 제공될 수 있다. 또한, 이동형 정보 수집부(100)인 경우에는 정보 수집부(100)의 위치 정보만을 수집하고, 이 위치 정보를 공유 번호 정보로 함께 인식하는 것이 바람직하다. 정보 수집부(100)는 영상 촬영 장치를 통해 영상이나 이미지 정보를 수집받는 스트리밍부일 수도 있다. 정보 수집부(100)는 영상 정보를 프레임 단위로 제공하는 것이 바람직하다. 물론, 이에 한정되지 않고, 일정 시간별 단일 이미지 정보로 제공할 수도 있고, 리얼타임 영상 정보 형태로 제공하는 것도 가능하다.
앞서 언급한 바와 같이 다양한 정보 수집부(100)를 통해 정보가 제공되는 경우, 저장부(600)는 제공된 영상 정보를 후속 각부에 적용될 수 있는 크기로 변환하는 정보 변환부를 구비하는 것이 효과적이다. 이를 통해 영상 정보의 크기를 일정하게 하여 전체 시스템의 동작 속도를 증대시킬 수 있다.
객체 검출부(200)는 정보 수집부(100)에 의해 수집된 영상 정보에서 정보 내의 객체를 인식하고, 영상내 객체 위치와 객체를 구분한다.
객체 검출부(200)는 정형화된 영상 정보를 다수의 셀 영역으로 구분하는 셀 구획부(210)와, 구획된 셀 영역을 기반으로 영상 정보 내의 객체의 경계를 산출하는 경계 산출부(220)와, 산출된 객체를 구분하는 객체 구분부(230)를 포함한다.
물론, 별도의 영상 정보를 정형화하는 영상 정형화부를 포함할 수 있고, 영상 정형화부는 앞서 언급한 저장부(600)내에서 영상 정보를 일정 크기로 정형화하는 경우 생략하는 것이 가능하다.
본 실시예에서는 셀 구획부(210)를 통해 영상 정보를 7*7의 셀 영역으로 구분하되, 각 셀의 크기를 동일하게 구획한다. 물론, 이에 한정되지 않고, 다양한 형태의 셀 영역으로 구획이 가능하다.
셀 구획부(210)에 의해 구획된 정보를 바탕으로 경계 산출부(220)는 객체의 경계를 산출하고, 이와 동시에 객체 구분부(230)는 객체가 무엇인지 구분하여 객체를 정의한다.
경계 산출부(220)는 다수의 경계 박스를 생성하되, 셀 영역의 2배에 해당하는 경계 박스를 생성하는 것이 효과적이다. 하지만, 이에 한정되지 않고, 더 많은 수의경계 박스를 생성하는 것이 가능하다. 그리고, 경계 박스는 그 사이즈가 일정하지 않는 것이 바람직하다. 이는 영상 정보내의 객체의 경계가 일정하지 않기 때문이다.
경계 산출부(220)는 경계 박스 내의 객체가 위치할 확률 분포에 따라 박스 영역에 가중치를 부여한다. 가중치 값을 검토하여 가충지 값이 작을 경우 박스 영역을 삭제한다. 이를 통해 객체가 위치하는 것으로 추정되는 후보 박스 영역을 선정하고, 비 최대값 억제(Non-maximum suppression: NMS) 알고리즘을 통해 객체 경계를 산출할 수 있다.
이때, 객체 구분부(230)는 후보 박스 영역 내에 대한 객체 구분을 위해 저장된 구분 클래스 값을 부여하고, 이 값중 가장 높은 값의 구분 클래스에 해당하는 클래스를 객체로 구분한다. 이때, 구분 클래스는 다양한 값을 가질 수 있기 때문에 본 실시예에서는 한정하지 않고, 이또한, 딥러닝 기술등을 활용하여 생성하는 것이 바람직하다. 바람직하게는 본 실시예에서는 사람을 기준으로 사물로 분리하되, 사물의 경우, 동물류, 차량류 등으로 분리하는 것이 효과적이다. 또한, 본 시스템이 사용되는 상황에 따라 다양한 클래스 구분이 가능하다.
도시되지 않았지만, 본 실시예에서는 후보 박스 영역의 색깔을 바탕으로 박스 영역 내의 객체를 구분한다.
좀더 구체적으로 영상 정보는 7*7 셀 영역으로 분할되어 총 49개의 셀이 만들어 진 경우, 해당 영역에서 제안한 박스 영역의 객체가 어떠한 클래스인지를 색깔로 표현하는 것이 가능하다. 본 시스템이 만드는 박스 영역은 총 49개가 되고, 이들의 가중치 값이 0.5보다 작을 경우에는 이 영역을 삭제한다. 이를 위해 GoogleLeNet이 변경된 특징 추출기를 사용하는 것이 가능하다.
이후에 컨볼루션 층4회와, 풀 커넥션층 2회를 하여 7*7*30으로 조정하여 예측 결과를 추출한다. 객체의 중앙에 해당하는 부분을 제1 색으로 표시하고, 이보다 큰 전체 객체 구분 영역을 제2 색으로 표시하는 것이 효과적이다. 30개의 채널은 박스 영역 정보 4개(x,y,w,h)와 해당 영역에 객체가 있을 확률에 따라 어떤 클래스 값을 갖을지에 관한 확률 20개로 구성된다. 여기서, 박스 영역 정보의 x,y는 객체 전체 경계 값의 중심 위치를 지칭하고, w,h는 객체의 가로, 세로 길이 전체 이미지 크기를 지칭한다. 30개의 채널의 앞은 첫번째 박스 영역 정보가 다음에는 두번째 박스 영역 정보가 위치한다. 30개의 채널의 뒷부분은 해당 셀 영역에 객체가 있다면 어떠한 객체가 있는지에 관한 클래스 확률이 저장되어 잇는 것이 효과적이다. 여기에 스칼라 값은 셀의 클래스 분류 확률과 곱하여 경계 영역 내의 클래스 즉, 객체가 무엇인지에 관한 분류 확률을 구할 수 있다. 이후에, 클래스 확률 값을 높은 값에서 부터 낮은 값으로 정렬하여, 높은 확률의 클래스를 경계 영역 내의 객체가 무엇인지로 판단할 수 있다.
본 실시예에 따른 객체 검출부(200)는 영상 정보를 변환하여 경계 정보와 객체 구분 정보를 동시에 산출한다. 이를 위해 사용되는 일 채널 데이터 내에 영상 내에 객체 위치를 확인하기 위한 박스 영역 정보와 객체 구분을 위한 객체 구분 정보 그리고, 이들의 확률 값 정보가 저장된다. 그리고, 이 단일 채널 데이터 복수개를 이용하여 객체 구분과 객체 영역 설정이 가능하게 된다.
객체 인식부(300)는 객체 검출부(200)를 통해 영상 정보 내의 객체의 경계 정보와 객체 구분 정보를 바탕으로 해당 객체를 인식한다. 즉, 객체 인식부(300)를 통해 영상 정보내에서 검출된 객체가 누구인지를 특정할 수 있다.
객체 인식부(300)는 영상 정보 비교를 통해 객체를 인식하거나, 딥러닝 기술을 이용하여 객체를 인식하는 것이 가능하다. 물론, 이 두가지를 모두 수행하여 그 정확성을 향상시키는 것이 효과적이다.
객체 인식부(300)는 객체 검출부(200)에 의해 구분된 객체 경계를 바탕으로 객체 이미지 정보를 추출 변경하는 인식 정보 입력부(310)와, 변경된 객체 이미지 정보와 저장된 객체 정보를 비교하여 다수의 후보 객체를 선정하는 인식 후보 산출부(320)와, 변경된 객체 이미지 정보와 후보 이미지 정보간의 인식 특징점을 산출하고, 이를 통해 객체 이미지 정보 내의 객체를 특정하는 객체 특정부(330)를 포함한다.
인식 정보 입력부(310)는 영상 편집 모듈을 포함하여, 영상을 절단 및 사이즈 조절들을 수행할 수 있다. 이를 통해 객체 검출부(200)에서 사용되는 영상 정보를 가공 편집하는 것이 가능할 수 있다. 이는 객체 검출부(200)에서 사용하는 영상 정보 상에는 적어도 하나의 객체가 있을 수 있고, 이 객체의 크기가 서로 다를 수 있기 때문에, 후속 네트워크에서 사용하는 데이터를 통일화하여 분석 및 인식 능력을 향상시킬 수 있다.
인식 후보 산출부(320)는 기 저장된 객체 영상 정보와, 편집된 입력 객체 영상 정보를 비교하여 그 비교 값에 따라 1 내지 10개의 후로 객체를 선정한다. 이를 통해 후속 객체 특정부(330)의 부하를 줄일 수 있어, 반응 속도를 크게 향상시킬 수 있다.
객체 특정부(330)는 후보 영상 정보와 편집된 입력 객체 영상 정보를 딥러닝 기술로 유사성 여부를 판단하여 최종 객체를 특정한다. 이를 위해 영상 정보내의 인식 특징을 산출하고, 이 산출된 특징을 바탕으로 특징 맵등을 만들고 클래스를 구분하여 이들 간의 유사도를 확율로 검출하여 객체를 특정한다.
객체가 특정되는 입력된 영상 정보 내의 객체에 기 저장된 객체 정보의 고유 ID를 부여한다.
감정 분석부(400)는 객체 검출부(200)에 의해 구분된 객체 경계를 바탕으로 객체 영상 정보를 추출 변경하는 감정 정보 입력부(410)와, 변경된 객체 영상 정보에서 얼굴을 인식하는 얼굴 인식부(420)와, 인식된 얼굴 정보에서 특징을 추출하여 매핑하는 특징 추출부(430)와, 추출된 특징을 이용하여 감정을 분석하는 객체 감정 분석부(440)를 포함한다.
감정 분석부(400)는 객체 인식부(300)의 인식 정보 입력부(310)에서 변경한 변경된 객체 영상 정보를 사용하는 것이 가능하다.
물론, 별도의 객체 영상 정보 편집부를 구비하여 이 편집부에서 위의 기능을 수행하는 것도 가능하다. 이를 통해 각부들의 유기적 동작 관계가 가능하다. 하지만, 각부가 서버 형태로 분리되는 경우에는 앞서와 같이 간부내에 이를 수용하여 속도를 증대시킬 수 있다.
본 실시예에 따른 감정 분석부(400)는 CNN(convolution neural networks)모델을 사용하여 영상 정보를 바탕으로 객체의 7가지 감정을 분석한다. 이때, 데이터 셋으로 KFERC(Kaggle Facial Expression Recognition Challenge)를 사용할 수 있다.
얼굴 인식부(420)는 감정 정보 입력부(410)로 부터 제공된 변경된 객체 영상 정보에서 얼굴을 인식한다. 이때, OpenCV의 Harr 케스케이드 알고리즘을 사용하는 것이 효과적이다. 이를 통해 검색된 얼굴 정보를 특정 사이즈 크기로 변환이 가능하다. 본 예시에서는 48x48 크기의 흑백 이미지로 크기를 조정하는 것이 효과적이다.
특징 추출부(430)는 인식된 얼굴 정보에서 특징을 추출하기 위해 커널 크기를 3*3으로 하고, 원 이미지를 커널과 계속 겹쳐가면서 특징 맵을 구성한다. 256개의 특징맵을 만들고, ReLU 함수를 사용하여 특징맵의 차원을 줄이기 위해 MAX Pooling을 사용할 수 있다.
객체 감정 분석부(440)는 인식된 얼굴 영상 정보를 다양한 클래스로 구분할 수 있고, 활성함수로 소프트 맥스를 사용하여 7개의 감정 요소를 확률 분포 형태로 나타낼 수 있다. 이때, 객체 감정 분석부(440)는 KFERC로 부터 학습된 데이터를 사용한다.
관리부(500)는 정보 수집부(100)의 영상정보, 장치 정보 및 위치 정보와, 객체 인식부(300)의 객체 인식 정보 그리고, 감정 분석부(400)의 감정 분석 정보를 활용하여 개별 사용자 맞춤형 컨텐츠를 제공할 수 있다.
관리부(500)는 인식 객체의 위치 및 위치별 제공되는 컨텐츠를 파악하는 객체 추적부(510)와, 객체의 감정 변화를 파악하고, 객체 위치별 제공되는 컨텐츠 정보와 감정 변화를 매핑하여 선호도를 산출하는 선호도 측정부(520)와, 선호도가 높은 컨텐츠를 객체에게 제공하는 컨텐츠 제공부(530)를 포함한다.
객체 추적부(510)는 정보 수집부(100)를 통해 제공된 위치 정보와 객체 인식부(300)를 통해 제공되는 객체 인식 정보를 시간을 기준으로 매핑하여 인식된 객체의 위치와 이동을 확인하는 것이 가능하다. 이를 통해 관리부(500)는 해당 객체가 어느 위치를 지나고 있는지에 관한 인식이 가능할 수 있다.
선호도 측정부(520)는 위치 정보와, 객체 인식 정보 그리고, 시간별 객체의 감정 정보를 바탕으로 객체의 감정 변화를 파악한다. 이때, 감정 분석부(400)를 통해 분석된 7가지 감정의 프레임별 변화를 측정하여 그 변화의 흐름을 파악하는 것이 가능하다.
선호도 측정부(520)는 검출된 7가지 감정을 5가지로 그룹화하고, 이 그룹화된 감정에 가중치를 다르게 부여하고, 이 가중치 값을 감정의 노출 시간으로 나누어 위치별 감정 변화를 산출할 수 있다.
여기서, 그룹화는 화남, 싫음, 공포를 제1 감정 그룹, 슬픔을 제2 감정 그룹, 차분함을 제3 감정 그룹, 놀람을 제4 감정 그룹 그리고, 행복을 제5 감정 그룹으로 분류한다. 이 그룹마다 가중치를 부여하되, 제1 감정 그룹에서 제5 감정 그룹으로 갈수록 가중치가 증가되는 것이 효과적이다. 정확한 감정 변화를 위해서 다양한 설문 조사들을 통한 결과에 따라 가중치의 증가는 전 단계그룹의 가중치값 대비 0.5 내지 0.7배씩 증가하는 것이 효과적이다. 이를 위치별 제공되는 컨텐츠와 매핑하여 컨텐츠별 선호도를 정량화된 수치로의 측정이 가능할 수 있다.
컨텐츠 제공부(530)는 선호도가 높게 측정된 위치와 시간에 제공되거나 표시 및 전시된 컨텐츠를 저장하고, 이 저장된 컨텐츠와 동일하거나 유사한 컨텐츠를 지속적으로 객체에게 제공할 수 있다.
이를 통해 객체가 영상을 시청하는 경우, 시청 영상에 관한 고객의 감정 변화를 분석하고, 그 결과를 통해 영상에 관한 선호도를 판단하고, 판단된 선호도를 바탕으로 해당 객체가 추가적인 영상 컨텐츠를 제공 받고자 할때, 선호도가 높은 영상과 유사한 영상 정보를 지속적으로 제공하는 것이 가능해진다.
또한, 객체가 쇼핑 공간을 이동하면서 쇼핑을 진행하는 경우, 지나는 매장마다의 위치 정보와 감정 분석에 따른 선호도 판단 정보에 따라 객체의 선호 매장을 선출하는 것이 가능하고, 해당 선호 매장과 유사한 매장의 위치를 객체의 단말이나 쇼핑 공간내의 표시 장치를 통해 표시하여 주는 것이 가능하다. 이를 위해 선호도 측정부(520)는 시간별 위치 정보를 반영하여 해당 위치에 머무는 시간이 많은 경우, 선호도 측정시 가산점을 부여하는 것이 가능하다. 그리고, 관리부(500)가 객체의 단말 정보를 저장하고 있고, 이 저장된 정보를 통해 앞서 언급한 유사 매장의 유치 정보를 제공하는 것이 가능하다.
본 발명은 이에 한정되지 않고, 다양한 변형이 가능하고, 그 일예로, 객체 즉, 직원(회원, 사용자)의 감정 분석 결과를 바탕으로 직원의 감정을 변화시켜 능률을 향상시킬 수도 있다.
하기에서는 이와 같은 변형예에 관하여 설명한다. 후술되는 설명중 상술한 설명과 중복되는 설명은 생략한다.
도 6은 본 발명의 제1 변형예에 따른 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템의 개념도이다. 도 7은 제1 변형예에 따른 관리부의 블록도이다.
도 6 및 도 7에 도시된 바와 같이 본 변형예에 따른 맞춤형 컨텐츠 서비스 제공 시스템은 지정된 위치에서 영상 정보를 수집하는 정보 수집부(100)와, 수집된 영상 정보에서 객체를 검출하고 인식하는 객체 인식부(300)와, 검출된 객체의 감정을 분석하는 감정 분석부(400)와, 분석된 감정 결과에 따라 객체의 감정 조절을 수행하는 관리부(500)와, 정보가 저장된 저장부(600)를 포함한다.
본 변형예에서는 영상 정보의 수집이 고정된 위치의 영상 수집 장치인 CCTV에 의해서 수집되는 것이 효과적이다. 이를 통해 정보 수집부(100)를 통해 제공된 영상 정보는 고유한 CCTV 정보를 포함하고 있고, 이를 통해 영상 정보를 수집한 위치를 파악하는 것이 용이해질 수 있다.
본 변형예에서는 객체 인식부(300)를 통해 영상 정보 내에서 수집된 객체의 얼굴 이미지를 추출하고, 추출된 얼굴 이미지를 특징화한다. 본 변형예에서는 저장부(600)에 직원, 사용자, 회원 등과 같이 기 등록된 객체 정보가 존재하고, 이 객체 정보를 바탕으로 입력된 영상 정보내의 객체가 누구인지를 인식하는 것이 가능해진다. 영상 정보내의 객체가 누구인지가 인식된 이후에 감정 분석부(400)를 통해 영상 정보내 객체의 감정을 7단계로 분류한다.
관리부(500)는 객체의 이동을 추적하는 추적부(510-1)와, 객체의 감정 평가를 통해 감정 조정이 필요한지 여부를 판단하는 감정 측정부(520-1)와, 객체의 감정을 조정하는 감정 조정부(530-1)와, 객체의 감정 결과를 관리자에게 제공하는 감정 알림부(540-1)를 포함한다.
여기서, 감정 측정부(520-1)는 객체의 이동 위치별 감정을 측정하고, 감정 조정이 필요한지 여부를 판단한다. 감정 분석부(400)를 통해 7가지 감정 단계의 확률 분포값을 제공 받고, 이 제공 받은 결과를 수치화 한다. 7가지 감정에 대한 감정 값이 산출되고, 산출된 감정 값을 정량화하고, 가장 높은 값이 나온 감정을 현재 상태의 감정으로 선정한다. 이때, 선정된 감정이 행복이나 차분함일 경우에는 감정 조정 대상이 아님으로 판단한다. 그리고, 선정된 감정이 이외에 화남, 싫음, 공포, 슬픔, 놀람일 경우에는 감정 값이 평균 값보다 상회하는 경우에는 감정 조정 대상으로 분류한다. 이때, 평균 값으로는 감정 분석을 통해 산출될 수 있는 최대 값의 40 내지 60%의 값을 평균 값으로 하는 것이 효과적이다. 본 변형예에서는 50%를 평균 값으로 하여 선정된 감정 중에서 최대 값의 50%가 넘는 감정 값이 나온 감정이 있는 경우에 해당 감정(화남, 싫음, 공포, 슬픔, 놀람)에 대한 감정 조정이 필요한 것으로 판단한다.
감정 측정부(520-1)는 1분 내지 100분 단위로 객체의 감정 변화를 측정하는 것이 효과적이다. 즉, 이 시간동안의 평균 값을 측정하는 것이 바람직하다. 이때, 사람의 감정 변화가 5분 이상 동일 감정을 유지하는 경우에는 감정의 이상이 발생할 수 있는 것으로 인지하기 때문에 5분 내지 30분 단위로 감정을 측정하는 것이 효과적이다. 30분이 넘어가는 경우에는 다양한 감정 변화로 인해 구체적인 감정의 파악이 어려울 수 있다.
감정 조정이 필요한 경우 감정 조정부(530-1)는 객체가 이동하는 경로를 예측하고, 이 이동 경로에 감정 조정을 위한 음악이나, 향기를 분산시킨다. 또는 감정 조정부(530-1)는 객체가 자신의 단말이 위치한 공간에 있는 경우에는 단말을 통해 영상이나, 음악을 제공하여 객체의 감정을 조정하도록 한다.
또한 감정 알림부(540-1)는 선정된 감정 중에서 상위 평균값이 나온 경우에 이를 관리자에게 통지하여 객체의 감정 이상 유무를 통지할 수 있다. 이때, 상위 평균 값은 최대 값은 70 내지 90%의 값의 감정 값을 사용하는 것이 효과적이다.
이와 같이, 본 변형예에서는 감정 분석부(400)를 통해 도출될 수 있는 감정 값의 최대치를 기준으로 평균 값과, 이보다 높은 상위 평균 값으로 분리하여, 1차로 음향, 향기, 영상은 물론 격려 메시지를 통해 객체의 감정을 조정하고, 2차로 관리자에게 이를 통지하여 객체의 감정 이상을 알림으로 인해 객체의 능률을 향상시킬 수 있다. 즉, 화남, 싫음, 공포, 슬픔, 놀람의 감정이 일정 시간(약 5 내지 30분) 측정한 감정 분석에서 지속적으로 발생하는 경우에는 이를 조정할 수 있도록 관리자에게 제공하는 것이 바람직하다.
본 발명의 시스템은 인식된 단일 객체 각각에 관한 감정을 분석하지 않고, 수집된 영상 내의 전체 객체의 감정을 분석하여 그 결과를 제공할 수 있다. 이를 통해 강연이나 강의, 지역별 선호도를 평가하는 것이 가능할 수 있다.
하기에서는 이와 같은 본 발명의 제2 변형예에 관하여 설명한다. 후술되는 설명중 상술한 설명과 중복되는 설명은 생략한다.
도 8은 본 발명의 제2 변형예에 따른 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템의 개념도이다.
도 8에 도시된 바와 같이 본 변형예에 따른 맞춤형 컨텐츠 서비스 제공 시스템은 영상 정보를 수집하는 정보 수집부(100)와, 수집된 영상 정보에서 다수의 객체를 각기 검출하는 객체 검출부(200)와, 검출된 객체의 감정을 분석하는 감정 분석부(400)와, 분석된 감정을 바탕으로 전체 감정 결과를 산출하는 관리부(500)와, 정보가 저장된 저장부(600)를 포함한다.
객체 검출부(200)는 검출된 객체에 관하여 각기 고유 ID를 부여하고, 감정 분석부(400)는 부여된 고유 ID별 객체의 감정 변화를 분석하는 것이 가능하다. 물론, 이에 한정되지 않고, 객체 검출부(200)는 프레임별로 객체를 분리하고, 감정 분석부(400)는 일 프래임 별 객체의 감정을 분석하고, 그 분석 값을 평균화하여 프래임별 감정값을 검출하는 것이 가능하다.
본 변형예에서는 다수의 감정을 분석하기 위해 프레임별의 감정값을 검출하는 것이 효과적이다. 감정 분석부(400)는 객체 검출부(200)를 통해 제공된 객체의 얼굴 이미지에서 특징부를 추출하고, 이를 바탕으로 각 객체의 감정 값을 산출하고, 이를 평균화하여 프레임 감정 값을 설정한다. 즉, 각 객체의 감정 값이 확률 분포화된 값으로 측정되고, 이들 개개 객체의 확률 분포값을 합함으로인해 프레임 감정값의 산출이 가능하게된다.
관리부(500)는 분석된 프레임별 감정값을 바탕으로 전체 감정 결과를 산출하되, 감정을 3가지로 그룹으로 구분하여 그 결과를 산출한다. 이때, 1그룹은 화남, 싫은, 공포 감정으로, 2그룹은 차분함으로, 3그룹은 행복, 슬픔, 놀람으로 분류하는 것이 가능하다.
이를 통해 관리부(500)는 강연, 강의나 해당 지역에서의 객체들의 감정이 1그룹인 경우에는 선호도가 낮음으로 판단하고, 2그룹인 경우에는 선호도가 보통이고, 3그룹인 경우에는 선호도가 높음으로 판단하는 것이 가능하다. 이와 같은 피드백을 통해, 강연자나 지역 관리자가 자신의 강연이나 지역을 변화시키는 것 또한 가능해질 수 있다.
본 발명은 분석된 객체의 프레임 감정 값에 따라 범죄의 예방이나 위급 사항의 판단이 가능할 수 있다.
하기에서는 이와 같은 본 발명의 제3 변형예에 관하여 설명한다. 후술되는 설명중 상술한 설명과 중복되는 설명은 생략한다.
본 변형예에 따른 맞춤형 컨텐츠 서비스 제공 시스템은 위치 정보와 영상 정보를 수집하는 정보 수집부(100)와, 수집된 영상 정보에서 다수의 객체를 각기 검출하는 객체 검출부(200)와, 검출된 객체의 감정을 분석하는 감정 분석부(400)와, 분석된 감정을 바탕으로 위급 상황 여부를 판단하고, 이를 관리자에게 통지하는 관리부(500)와, 정보가 저장된 저장부(600)를 포함한다.
본 변형예의 관리부(500)는 감정 분석부(400)를 통해 제공된 프레임 감정 값을 판단하여, 공포, 화남, 놀람 감정 값이 평균 값 이상인 경우에는 많은 객체들이 공포스럽거나, 화나거나 놀라는 감정을 보이는 것이기 때문에, 이를 경고 수준으로 관리자에게 통지한다. 그리고, 판단 결과 공포, 화남, 놀람 감정 값이 상위 평균 값 이상인 경우에는 관리자에게 위험으로 통지하고, 해당 영상이 제공된 위치에 관리자가 출동을 요청하는 것이 가능하다. 이와같이, 본 변형예에서는 객체들의 감정변화를 통해 해당 지역의 위험이나 범죄등의 발생 유무를 판단하는 것이 가능할 수 있다.
본 발명은 상술한 설명에 한정되지 않고, 객체 추적이 가능할 수 있다.
하기에서는 발명의 다른 실시예에 관하여 설명한다. 후술되는 설명중 상술한 설명과 중복되는 설명은 생략하고, 후술되는 실시예의 기술은 앞의 기술에 적용 될 수 있다.
도 9는 본 발명의 다른 실시예에 따른 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템을 설명하기 위한 개념도이다.
도 9에 도시된 바와 같이 본 실시예에 따른 맞춤형 컨텐츠 서비스 제공 시스템은 영상 정보를 수집하는 다수의 정보 수집부(1100)와, 영상 정보 내의 객체를 인식하고 분류하는 객체 분류부(1200)와, 분류된 객체를 추적하는 객체 추적부(1300)와, 추적된 객체 정보를 편집하여 제공하는 관리부(1400)와, 정보들을 저장하는 저장부(1500)를 포함한다.
다수의 정보 수집부(1100)는 영상 촬영 장치로부터 촬영 장치의 고유 정보와, 영상 정보와 촬영 장치의 위치 정보를 제공 받는다.
객체 분류부(1200)는 객체 검출 기능을 통해 프레임 단위로, 영상 정보 내에 객체를 검출하고, 검출된 객체를 각기 분류하여 각 객체에 고유 정보를 부여한다.
객체 추적부(1300)는 찰영 장치의 고유 정보에 따른 영상 정보와 위치 정보 그리고, 검출된 객체 정보와 객체 고유 정보를 통해 프레임의 앞뒤 단위의 객체 정보를 비교 분석하여 동일 객체일 경우에는 객체 고유 정보를 유지 또는 이전 고유 정보로 변경한다. 이를 통해 서로 다른 촬영 장치를 통해 제공된 영상 정보내의 객체는 프레임 단위로 볼때 서로 다른 객체 고유 정보를 가질 수 있지만, 객체 영상 정보 비교를 통해 뒷단의 프레임 단위 객체 영상 정보가 앞단 프레임 단위 객체 영상 정보와 동일할 경우에는 뒷단의 정보에 부여된 고유 정보를 앞단 정보의 고유 정보로 변경한다. 이를 통해 객체가 일 촬영 장치에서 타 촬영 장치로 이동하더라도 그 추적이 가능해진다.
관리부(1400)는 프레임 단위로 추적된 객체 영상 정보를 프레임 단위로 취합하고, 이 취합한 객체 영상 정보에 위치 정보를 추가하여 객체 추적 영상을 편집하여 이를 제공한다.
이를 통해 영상 촬영 장치를 통해 촬영된 영상 정보내의 객체가 이동하는 이동 동선의 추적이 가능하게되고, 프레임 단위로 이를 편집함으로 인해 편집이 용이해질 수 있다.
본 실시예에서는 앞서 언급한 바와 같이, 영상 정보내의 객체 인식을 각기 다른 장치로 분류하여 진행할 수 있다. 즉, 클래스 별로 영상 내의 객체 인식을 다르게할 수 있다. 즉, 일 객체 분류부에서는 사람에 관한 객체만 인식 분류하고, 다른 객체에서는 차량, 다른 객체에서는 동물 등과 같이 서로 분리할 수 있다. 이때, 이들은 각기 다른 서버나, 단말과 같이 완전히 독립된 장치로 구현이 가능할 수 있다. 프로그램적으로 구획되는 것도 가능하다. 이를 통해 객체의 인식 속도의 향상은 물론, 객체 추적 영상의 편집도 용이할 수 있다.
하기에서는 상술한 본 발명에 따른 영상 정보를 활용한 컨텐츠 서비스 제공 방법에 관하여 설명한다.
도 10은 본 발명의 일 실시예에 따른 영상 정보를 활용한 컨텐츠 서비스 제공 방법을 설명하기 위한 흐름도이다.
도 10에 도시된 바와 같이, 영상 정보 및 위치 정보 그리고, 영상 촬영 장치 정보를 제공 받는다(S110).
제공 받은 영상 정보를 정형화하고, 정형화된 영상 정보 내에서 객체를 검출하고, 객체를 구분 인식하여 객체의 위치 영역을 영상에 표시하고(S120), 동시에 객체에서 얼굴 영상 정보를 추출하고, 추출된 얼굴 영상 정보에서 감정을 7단계로 분석한다(S130).
인식된 객체가 기 저장된 객체 정보와 일치하는지 여부를 판단하여 일치하는 경우에는 기 저장된 저장 정보를 추가하고, 일치하지 않는 경우에는 랜덤 고유 정보를 추가한다.
인식 객체의 위치 또는 제공되는 컨텐츠에 따라 감정 변화를 분석하고, 분석 결과를 이용하여 인식 객체의 선호도를 판단한다(S140).
선호도 판단에 따라 행복함을 느끼는 컨텐츠와 유사한 컨텐츠를 추가 제공하거나, 해당 위치의 컨텐츠와 유사한 컨텐츠가 있는 위치 정보를 객체에 제공할 수 있다(S150).
또한, 위 설명에 한정되지 않고, 객체 정보별 감성 상태를 분석하고, 7가지 감정 단계의 확률 분포값을 산출하고, 산출된 결과에 따라 화남, 싫음, 공포, 슬픔, 놀람 중 하나가 평균 값인 이상인 경우에는 감정 조정을 위한 조명, 영상, 음악 및 메시지 중 어느하나를 제공하고, 상위 평균 값일 이상인 경우에는 관리자에게 통지할 수 있다.
도 11는 본 발명의 변형예에 따른 영상 정보를 활용한 컨텐츠 서비스 제공 방법을 설명하기 위한 흐름도이다.
도 11에 도시된 바와 같이, 촬영 장치로 부터 영상 정보를 제공 받는다(S210).
제공 받은 영상 정보 내에서 객체를 검출하고, 각 객체의 얼굴 영상 정보를 추출한다(S220).
추출된 객체들의 얼굴 영상 정보를 이용하여 각 프레임별 객체의 감정을 분석한다(S230).
분석된 프레임별 각 객체의 감정 값의 합을 바탕으로 전체 감정 결과를 산출하되(S240), 결과가 화남, 싫음, 공포 감정인 경우에는 선호도나 나쁨으로, 차분한 감정인 경우에는 선호도가 보통으로, 행복, 슬픔, 놀라움의 감정인 경우에는 선호도가 좋음으로 판단하고, 이를 관리자에게 제공한다(S250).
또한, 이에 한정되지 않고, 분석된 프레임별 각 객체의 감정 값의 합을 바탕으로 전체 감정 결과를 산출하되, 공포, 화남, 놀람의 감정 값이 평균 값 이상인 경우에는 경고를, 상위 평균 값 이상인 경우에능 위험을 통지하되, 해당 위치 정보도 함께 관리자에게 통지하는 것이 가능하다.
도 12는 본 발명의 다른 실시예에 따른 영상 정보를 활용한 컨텐츠 서비스 제공 방법을 설명하기 위한 흐름도이다.
도 12에 도시된 바와 같이, 각각의 영상 촬영 장치로 부터 다수의 영상 정보와 위치 정보를 수집한다(S310).
영상 정보에 대한 객체 검출을 실시하여 영상 정보 내의 객체를 검출한다(S320).
촬영 장치의 고유 정보에 따른 영상 정보와 위치 정보 그리고, 검출된 객체 정보와 객체 고유 정보를 통해 프레임 단위로 앞뒤의 객체 정보를 비교 분석하여 동일 객체일 경우에는 객체 고유 정보를 유지하거나 이전 고유 정보로 변경한다(S330).
고유 정보를 바탕으로 객체가 위치한 프레임 단위 영상 정보를 하나의 정보로 편집하고, 편집된 영상 정보내에 위치 정보를 부가한다(S340).
이를 통해 객체에 관한 추적은 물론, 객체의 이동을 하나의 영상 형태로의 편집이 가능해 질 수 있다.
상기에서 설명한 본 발명의 기술적 사상은 바람직한 실시예에서 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명은 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술적 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.
** 도면 부호의 설명 **
100, 1100: 정보 수집부 200: 객체 검출부
300: 객체 인식부 400: 감정 분석부
500, 1400: 관리부 600, 1500: 저장부
1200: 객체 분류부 1300: 객체 추적부
Claims (9)
- 영상 정보를 수집하는 정보 수집부;영상 정보내에서 객체를 인식하고 객체의 클래스를 분류하는 객체 검출부;객체를 개별 사용자로 인식하는 객체 인식부;개별 사용자 객체의 감정을 분석하는 감정 분석부;개별 사용자 맞춤형 컨텐츠를 제공하는 관리부; 및시스템 내의 정보들을 저장하는 저장부를 포함하며,상기 객체 검출부는,정형화된 영상 정보를 다수의 셀 영역으로 구분하는 셀 구획부와, 구획된 셀 영역을 기반으로 영상 정보 내의 객체의 경계를 산출하는 경계 산출부와, 산출된 객체를 구분하는 객체 구분부를 포함하며,상기 감정 분석부는,객체 검출부에 의해 구분된 객체 경계를 바탕으로 객체 영상 정보를 추출 변경하는 감정 정보 입력부와, 변경된 객체 영상 정보에서 얼굴을 인식하는 얼굴 인식부와, 인식된 얼굴 정보에서 특징을 추출하여 매핑하는 특징 추출부와, 추출된 특징을 이용하여 감정을 분석하는 감정 분석부를 포함하는 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템.
- 제1항에 있어서,셀 영역은 동일 사이즈로 구획되고, 경계 산출부를 통해 다양한 사이즈의 경계 박스를 생성하고, 경계 박스 내에 객체가 위치할 확률 분포에 따라 박스 영역에 가중치를 부여하고, 가중치 값이 큰 후보 박스를 선정한 다음 비 최대값 억제 알고리즘을 통해 객체 경계를 산출하고,객체 구분을 위해 저장된 구분 클래스 값을 부여하고, 부여 값 중에서 가장 높은 값을 구분 클래스에 해당하는 클래스 객체로 구분하는 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템.
- 제2항에 있어서,다수의 채널을 생성하고, 각각의 채널의 앞쪽에는 박스 영역 정보가 위치하고, 뒷쪽에는 셀 영역의 객체 클래스 정보가 저장되어, 객체의 구획과 객체의 구분을 동시에 실시하는 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템.
- 제1항에 있어서,상기 감정 분석부는 CNN 모델을 사용하여 화남, 싫음, 공포, 행복, 슬픔, 놀람, 차분함의 7가지 감정을 분석하되, 7개의 감정 요소를 확률 분포 형태로 분석하는 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템.
- 제1항에 있어서,상기 객체 인식부는 객체 검출부에 의해 구분된 객체 경계를 바탕으로 객체 이미지 정보를 추출 변경하는 인식 정보 입력부와, 변경된 객체 이미지 정보와 저장된 객체 정보를 비교하여 다수의 후보 객체를 선정하는 인식 후보 산출부와, 변경된 객체 이미지 정보와 후보 이미지 정보간의 인식 특징점을 산출하고, 이를 통해 객체 이미지 정보 내의 객체를 특정하는 객체 특정부를 포함하는 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템.
- 제1항에 있어서,상기 관리부는 정보 수집부의 영상정보, 장치 정보 및 위치 정보와, 객체 인식부의 객체 인식 정보 그리고, 감정 분석부의 감정 분석 정보를 활용하여 개별 사용자 맞춤형 컨텐츠를 제공하되, 인식 객체의 위치 및 위치별 제공되는 컨텐츠를 파악하는 객체 추적부와, 객체의 감정 변화를 파악하고, 객체 위치별 제공되는 컨텐츠 정보와 감정 변화를 매핑하여 선호도를 산출하는 선호도 측정부와, 선호도가 높은 컨텐츠를 객체에게 제공하는 컨텐츠 제공부를 포함하는 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템.
- 제6항에 있어서,상기 객체 추적부는 정보 수집부를 통해 제공된 위치 정보와 객체 인식부를 통해 제공되는 객체 인식 정보를 시간을 기준으로 매핑하여 인식된 객체의 위치와 이동을 확인하고, 상기 선호도 측정부는 위치 정보와, 객체 인식 정보 그리고, 시간별 객체의 감정 정보를 바탕으로 객체의 감정 변화를 파악하고, 상기 선호도 특정부는 검출된 7가지 감정을 5가지로 그룹화하고, 이 그룹화된 감정에 가중치를 다르게 부여하고, 이 가중치 값을 감정의 노출 시간으로 나누어 위치별 감정 변화를 산출하고, 컨텐츠 제공부는 선호도가 높게 측정된 위치와 시간에 제공되거나 표시 및 전시된 컨텐츠를 저장하고, 이 저장된 컨텐츠와 동일하거나 유사한 컨텐츠를 지속적으로 객체에게 제공하는 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템.
- 제7항에 있어서,상기 그룹화는 화남, 싫음, 공포를 제1 감정 그룹, 슬픔을 제2 감정 그룹, 차분함을 제3 감정 그룹, 놀람을 제4 감정 그룹 그리고, 행복을 제5 감정 그룹으로 분류하고, 제1 감정 그룹에서 제5 감정 그룹으로 갈수록 가중치가 증가하되, 전 단계그룹의 가중치값 대비 0.5 내지 0.7배씩 증가하는 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템.
- 제1항 내지 제8항 중 어느 한 항에 따른 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템을 이용한 영상 정보를 활용한 컨텐츠 서비스 제공 방법으로서,영상 정보 및 위치 정보 그리고, 영상 촬영 장치 정보를 제공 받는단계;제공 받은 영상 정보를 정형화하고, 정형화된 영상 정보 내에서 객체를 검출하고, 객체를 구분 인식하여 객체의 위치 영역을 영상에 표시하고, 동시에 객체에서 얼굴 영상 정보를 추출하고, 추출된 얼굴 영상 정보에서 감정을 7단계로 분석하는 단계;인식된 객체가 기저장된 객체 정보와 일치하는지 여부를 판단하여 일치하는 경우에는 기 저장된 저장 정보를 추가하고, 일치하지 않는 경우에는 랜덤 고유 정보를 추가하는 단계;인식 객체의 위치 또는 제공되는 컨텐츠에 따라 감정 변화를 분석하고, 분석 결과를 이용하여 인식 객체의 선호도를 판단하는 단계; 및선호도 판단에 따라 행복함을 느끼는 컨텐츠와 유사한 컨텐츠를 추가 제공하거나, 해당 위치의 컨텐츠와 유사한 컨텐츠가 있는 위치 정보를 객체에 제공하는 단계를 포함하는 영상 정보를 활용한 컨텐츠 서비스 제공 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2020-0162973 | 2020-11-27 | ||
KR1020200162973A KR102275741B1 (ko) | 2020-11-27 | 2020-11-27 | 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템 및 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022114895A1 true WO2022114895A1 (ko) | 2022-06-02 |
Family
ID=76864973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/017769 WO2022114895A1 (ko) | 2020-11-27 | 2021-11-29 | 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템 및 방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102275741B1 (ko) |
WO (1) | WO2022114895A1 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102275741B1 (ko) * | 2020-11-27 | 2021-07-09 | 주식회사 지미션 | 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템 및 방법 |
KR20240016815A (ko) * | 2022-07-29 | 2024-02-06 | 주식회사 마블러스 | 얼굴 인식 기반 상호작용 상대방에 대한 사용자의 관계 감정 지수를 측정하는 시스템 및 방법 |
KR102671284B1 (ko) * | 2022-12-27 | 2024-06-03 | 주식회사 큐랩 | 댄스 서비스 시스템 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100023787A (ko) * | 2008-08-22 | 2010-03-04 | 정태우 | 영상에 포함된 객체를 식별하는 방법 |
KR20150137307A (ko) * | 2014-05-29 | 2015-12-09 | 경북대학교 산학협력단 | 사용자 맞춤형 정보를 제공하는 방법 및 시스템, 이를 수행하기 위한 기록매체 |
KR20170136538A (ko) * | 2015-03-18 | 2017-12-11 | 아바타 머저 서브 Ii, 엘엘씨 | 비디오 회의에서의 감정 인식 |
KR20200060942A (ko) * | 2018-11-23 | 2020-06-02 | 주식회사 리얼타임테크 | 연속된 촬영 영상에서의 궤적기반 얼굴 분류 방법 |
KR102275741B1 (ko) * | 2020-11-27 | 2021-07-09 | 주식회사 지미션 | 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템 및 방법 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100995569B1 (ko) | 2010-03-24 | 2010-11-19 | 주식회사 시큐인포 | 범죄예방 지능형 씨씨티브이 시스템 및 이를 이용한 범죄예방 시스템 및 방법 |
KR101771652B1 (ko) | 2015-08-27 | 2017-08-28 | (주)지비유 데이터링크스 | 주차 관제 시스템 |
-
2020
- 2020-11-27 KR KR1020200162973A patent/KR102275741B1/ko active IP Right Grant
-
2021
- 2021-11-29 WO PCT/KR2021/017769 patent/WO2022114895A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100023787A (ko) * | 2008-08-22 | 2010-03-04 | 정태우 | 영상에 포함된 객체를 식별하는 방법 |
KR20150137307A (ko) * | 2014-05-29 | 2015-12-09 | 경북대학교 산학협력단 | 사용자 맞춤형 정보를 제공하는 방법 및 시스템, 이를 수행하기 위한 기록매체 |
KR20170136538A (ko) * | 2015-03-18 | 2017-12-11 | 아바타 머저 서브 Ii, 엘엘씨 | 비디오 회의에서의 감정 인식 |
KR20200060942A (ko) * | 2018-11-23 | 2020-06-02 | 주식회사 리얼타임테크 | 연속된 촬영 영상에서의 궤적기반 얼굴 분류 방법 |
KR102275741B1 (ko) * | 2020-11-27 | 2021-07-09 | 주식회사 지미션 | 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템 및 방법 |
Also Published As
Publication number | Publication date |
---|---|
KR102275741B1 (ko) | 2021-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022114895A1 (ko) | 영상 정보를 활용한 맞춤형 컨텐츠 서비스 제공 시스템 및 방법 | |
CN110738127B (zh) | 基于无监督深度学习神经网络算法的安全帽识别方法 | |
CN109858365B (zh) | 一种特殊人群聚集行为分析方法、装置及电子设备 | |
CN109644255B (zh) | 标注包括一组帧的视频流的方法和装置 | |
JP6474919B2 (ja) | 混雑状況監視システム及び混雑状況監視方法 | |
CN110826538A (zh) | 一种用于电力营业厅的异常离岗识别系统 | |
WO2014092446A1 (ko) | 객체 기반 영상 검색시스템 및 검색방법 | |
WO2021100919A1 (ko) | 행동 시퀀스 기반으로 이상행동 여부를 판단하는 방법, 프로그램 및 시스템 | |
WO2013048159A1 (ko) | 아다부스트 학습 알고리즘을 이용하여 얼굴 특징점 위치를 검출하기 위한 방법, 장치, 및 컴퓨터 판독 가능한 기록 매체 | |
KR102391853B1 (ko) | 영상 정보 처리 시스템 및 방법 | |
CN111814510B (zh) | 一种遗留物主体检测方法及装置 | |
JP4667508B2 (ja) | 移動体情報検出装置、移動体情報検出方法および移動体情報検出プログラム | |
WO2022213540A1 (zh) | 目标检测、属性识别与跟踪方法及系统 | |
CN111914649A (zh) | 人脸识别的方法及装置、电子设备、存储介质 | |
KR101413620B1 (ko) | 영상 분석을 통한 영상 텍스트화 장치 | |
CN113920585A (zh) | 行为识别方法及装置、设备和存储介质 | |
Laptev et al. | Visualization system for fire detection in the video sequences | |
CN113255549A (zh) | 一种狼群围猎行为状态智能识别方法及系统 | |
CN110502967B (zh) | 基于人员大数据的目标场景人工智能匹配方法和装置 | |
Park et al. | Intensity classification background model based on the tracing scheme for deep learning based CCTV pedestrian detection | |
WO2023158205A1 (ko) | Ai 기반 객체인식을 통한 감시 카메라 영상의 노이즈 제거 | |
KR102428955B1 (ko) | 딥 러닝을 이용한 인공지능 기반 3d 디스플레이 광고 영상 제공방법 및 시스템 | |
CN114511817A (zh) | 面向微空间的人员行为全景画像智能监管系统 | |
CN112115870A (zh) | 一种基于YOLOv3的考试作弊小抄识别方法 | |
CN114445766B (zh) | 一种人流量的检测管理方法、装置及机器人 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21898720 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21898720 Country of ref document: EP Kind code of ref document: A1 |