WO2022114686A1 - 풍력추진 시스템 및 이를 구비한 선박 - Google Patents

풍력추진 시스템 및 이를 구비한 선박 Download PDF

Info

Publication number
WO2022114686A1
WO2022114686A1 PCT/KR2021/017096 KR2021017096W WO2022114686A1 WO 2022114686 A1 WO2022114686 A1 WO 2022114686A1 KR 2021017096 W KR2021017096 W KR 2021017096W WO 2022114686 A1 WO2022114686 A1 WO 2022114686A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
rotor
stator
propulsion system
wind power
Prior art date
Application number
PCT/KR2021/017096
Other languages
English (en)
French (fr)
Inventor
유승재
박윤기
김연태
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210097912A external-priority patent/KR102552707B1/ko
Priority claimed from KR1020210097966A external-priority patent/KR102673890B1/ko
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Priority to JP2023511656A priority Critical patent/JP2023537639A/ja
Priority to CN202180058020.2A priority patent/CN116157322A/zh
Publication of WO2022114686A1 publication Critical patent/WO2022114686A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H9/00Marine propulsion provided directly by wind power
    • B63H9/02Marine propulsion provided directly by wind power using Magnus effect

Definitions

  • the present invention relates to a wind power propulsion system and a ship having the same.
  • Ships are usually powered by fossil fuels for propulsion. Ships are equipped with high-power engines to drive thrusters, etc. It is known that large ships consume hundreds of tons of fuel during long-distance sailing. The operation of these ships is very expensive, and the emission of pollutants due to fuel consumption is also a very serious problem.
  • a rotor facility eg, a magnus rotor
  • Such a rotor facility is composed of a stator fixed to the deck, and a rotor that is provided in a cylindrical shape to surround the surface and the upper surface of the stator and whose rotational speed or direction is adjusted.
  • the present invention was created to solve the problems of the prior art as described above, and an object of the present invention is to improve the structural performance and manufacture of the rotor, secure the structural stability of the driving unit that drives the rotor, and An object of the present invention is to provide a wind power propulsion system that facilitates securing and maintaining the structural stability of a lower bearing installed between an electron and a stator, and securing structural stability through weight reduction of an end plate, and a ship having the same.
  • the stator is provided perpendicular to the deck; a rotor provided in a cylindrical shape to surround the outside of the stator; a driving unit for transmitting rotational power to the rotor through a disk connected to the rotor; and a lower bearing part installed under the rotor to suppress lateral movement of the rotor, wherein the lower bearing part is composed of an assembly of bearing units, and at least a portion of the bearing unit is located inside the stator. It is installed along the edge of the window provided at a predetermined interval at the installation position, and may include a joint part for supporting a guide bearing for guiding the rotation of the rotor to the stator.
  • the joint portion consisting of a pair, a first joint plate coupled to both ends of the bearing shaft of the guide bearing; and a second joint plate installed along the edge of the window from the inside of the stator and coupled to the first joint plate.
  • the first joint plate extends horizontally to one side of the guide bearing in a state coupled to the bearing shaft, has a vertically bent shape at the extended end, and is a first joint plate for bolting coupling with the second joint plate.
  • a plurality of first bolting holes are provided
  • the second joint plate has a shape protruding at least with a radius of the guide bearing or less, and a plurality of second bolting holes corresponding to the first bolting holes are provided.
  • the joint part may include a joint box installed along the edge of the window from the inside of the stator and fixing the guide bearing in a state in which a part of the guide bearing protrudes to the outside.
  • the driving unit includes a driving shaft rotated by a motor, a driving gear provided on the driving shaft, a driven gear that meshes with the driving gear, and a first coupled to the driven gear to support rotation of the driven gear.
  • a gearbox having a built-in driven shaft and installed inside the stator; and a bearing housing connected to the first driven shaft by a coupling member to hold a second driven shaft that transmits a rotational force to the disk.
  • the bearing housing may be installed inside the upper surface of the stator or installed outside the upper surface of the stator.
  • the drive shaft has an upper portion rotatably coupled to the upper surface of the gearbox by a first bearing, and a lower portion rotatably coupled to the lower surface of the gearbox by a second bearing, and the first and second bearings
  • the bearing may be a bearing that prevents a lateral force of the driving shaft or a lateral movement of the driving shaft.
  • the first driven shaft has an upper portion rotatably coupled to the upper surface of the gearbox by a third bearing, and a lower portion rotatably coupled to the lower surface of the gearbox by a fourth bearing, and the second Bearings 3 and 4 may be bearings that prevent a lateral force of the first driven shaft.
  • the second driven shaft is rotatably coupled to the upper surface of the stator by a fifth bearing and a sixth bearing arranged in series, and the fifth bearing is to prevent the axial force of the second driven shaft.
  • a bearing, and the sixth bearing may be a bearing that prevents a lateral force of the second driven shaft.
  • the rotor may include: a lower rotor provided with a ring-shaped first edge panel extending inwardly by a predetermined length at an upper end and having a space for accommodating the disk; an upper rotor extending inward by a predetermined length at the lower end and provided with a ring-shaped second edge panel having a space for accommodating the disk; and a coupling member for coupling the lower rotor, the upper rotor, and the disk.
  • the coupling member may include: a first clamping plate holding a lower surface of the first edge panel and a lower surface of the disk; a second clamping plate holding the upper surface of the first edge panel and the upper surface of the disk; a first bolting member for fixing the first and second clamping plates and the disk; and a second bolting member for fixing the first edge panel and the second edge panel.
  • the coupling member may include: a first bonding member provided between the first edge panel and the second clamping plate; and a second bonding member provided between the second edge panel and the second clamping plate.
  • the base structure of the land is mounted on the deck using a lifting device
  • the disk and the driving unit are installed on the upper part of the stator on the land
  • the lower rotor is lifted by the lifting device to the inside.
  • the stator is accommodated, the lower rotor and the disk are coupled using the coupling member, the lower rotor in which the stator is accommodated is mounted on the base structure using the lifting device, and the upper circuit of the land
  • the former may be aligned on the upper part of the lower rotor mounted on the basic structure using the lifting device, and the lower rotor and the upper rotor may be coupled using the coupling member.
  • a ship according to another aspect of the present invention may include the wind power propulsion system described above.
  • Wind power propulsion system it is possible to improve the structural performance and manufacture of the rotor, it is possible to secure the structural stability of the driving unit for driving the rotor, the lower bearing portion installed between the rotor and the stator Structural stability can be secured and maintenance can be facilitated, and structural stability can be secured through weight reduction of the end plate.
  • FIG. 1 is a view showing a ship equipped with a wind power propulsion system according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining a wind power propulsion system according to an embodiment of the present invention.
  • FIG. 3 is a view for explaining the first embodiment of the rotor shown in FIG.
  • FIG. 4 is a view for explaining a unit panel constituting the rotor of the first embodiment.
  • FIG. 5 is a view for explaining a second embodiment of the rotor shown in FIG.
  • FIG. 6 is a view for explaining a coupling member for connecting the lower rotor and the upper rotor constituting the rotor of the second embodiment.
  • FIGS. 7A to 7D are diagrams for explaining the mounting process of the rotor according to the second embodiment.
  • FIG. 8 is a view for explaining a first embodiment of the end plate shown in FIG.
  • FIG. 9 is a view for explaining a first embodiment of the driving unit shown in FIG.
  • FIG. 10 is a view for explaining a second embodiment of the driving unit shown in FIG. 2 .
  • FIG. 11 is a view for explaining a third embodiment of the driving unit shown in FIG.
  • FIG. 12 is a partial view of a wind power propulsion system for explaining the first embodiment of the lower bearing shown in FIG.
  • FIG. 13 is a view taken along line A-A' of FIG. 12 .
  • FIG. 14 is a view taken along line B-B' of FIG. 13 .
  • FIG. 15 is a partial view of a wind power propulsion system for explaining a second embodiment of the lower bearing shown in FIG.
  • FIG. 16 is a view taken along line A-A' of FIG. 15 .
  • 17 is a view taken along line B-B' of FIG. 16 .
  • FIG. 18 is a partial view of a wind power propulsion system for explaining a third embodiment of the lower bearing shown in FIG.
  • 19 is a view for explaining the bearing unit constituting the lower bearing part of the third embodiment.
  • FIG. 20 (a) to (c) are views illustrating a state in which the bearing unit of FIG. 19 is installed in the stator.
  • FIG. 21 is a partial view of a wind power propulsion system for explaining a fourth embodiment of the lower bearing shown in FIG.
  • 22 is a view for explaining the bearing unit constituting the lower bearing part of the fourth embodiment.
  • FIG. 23 is a partial view of a wind power propulsion system for explaining a fifth embodiment of the lower bearing shown in FIG.
  • FIG. 24 is a view taken along line A-A' of FIG. 23 .
  • 25 is a view taken along line B-B' of FIG. 24 .
  • 26 is a partial view of the wind power propulsion system for explaining the sixth embodiment of the lower bearing shown in FIG.
  • FIG. 27 is a view taken along line A-A' of FIG. 26 .
  • FIG. 1 is a view showing a ship (S) having a wind power propulsion system (1) according to an embodiment of the present invention
  • Figure 2 is to explain the wind power propulsion system (1) according to an embodiment of the present invention is a drawing for
  • the wind power propulsion system 1 is provided on the deck of the ship (S) at least one or more, while directly rotating using power, the wind power in the desired direction It can be converted into propulsion, and may include a basic structure 10, a stator 20, a rotor 30, an end plate 40, a disk 50, a driving unit 60, a lower bearing unit 70 have.
  • the basic structure 10 is fixedly installed on the deck, and the stator 20 may be installed thereon.
  • the stator 20 may be provided vertically on the base structure 10 fixed on the deck, and may form an axis of the rotor 30 .
  • the stator 20 may be a cylindrical structure with an empty interior, and the driving unit 60 may be mounted thereon.
  • the rotor 30 is a structure provided in a cylindrical shape to surround the outside of the stator 20, and the stator 20 installed/fixed on the deck of the ship S as an axis, and power by the driving unit 60 With this addition, it can rotate 360 degrees. At this time, due to the hydrodynamic interference between the wind around the ship (S) and the cylindrical rotor 30, the wind may be converted into the propulsion force of the ship (S).
  • the rotor 30 may be rotated by transmitting the power of the driving unit 60 through the disk 50 .
  • the rotor 30 is rotated based on the stator 20, which is a central axis in the vertical direction, increased pressure is generated on one side and decreased pressure/suction is generated on the opposite side, so that one side of the rotor 30 and Positive pressure and negative pressure are generated on each of the opposite sides to generate a propulsive force as a force to move the vessel 100 .
  • the direction in which the positive pressure and the negative pressure are formed according to the direction of the rotor 30 may be made differently, so that the direction of the rotor 30 is rotated in a clockwise or counterclockwise direction through the conversion of the vessel (S) operation You can also control the direction.
  • the ship of this embodiment is not limited to that the propulsion force is formed by the driving of the rotor 30, and may be combined with the conventional embodiment, of course.
  • the rotor 30 may perform an auxiliary role.
  • the driving of the rotor 30 is performed according to need in various situations. can be performed.
  • the rotor 30 is a disk that is rotatably connected to a lower bearing part 70 installed in the lower part, and receives power from the driving part 60 installed in the upper part of the stator 20 to provide rotational force ( 50) can be connected.
  • the rotor 30 may have an open upper end, and an end plate 40 may be installed in the opened portion.
  • the disk 50 may have a shape corresponding to the inner circumferential surface of the rotor 30 , for example, a disk shape, and the outer circumferential surface may be fixedly connected to the inner circumferential surface of the rotor 30 .
  • the disk 50 and the driving unit 60 may be connected to receive power from the driving unit 60 to provide rotational force to the rotor 30 .
  • the driving unit 60 may be installed on the stator 20 and connected to the disk 50 .
  • the driving unit 60 may generate power to rotate the rotor 30 and transmit the rotational force to the rotor 30 through the disk 50 .
  • the lower bearing part 70 may be installed under the rotor 30 .
  • the lower bearing unit 70 may be configured to suppress lateral movement when the rotor 30 rotates with the power of the driving unit 60 .
  • the wind power propulsion system 1 of this embodiment includes the stator 20 , the rotor 30 , the end plate 40 , the disk 50 , the driving unit 60 , and the lower bearing unit 70 . Including, below, each configuration of the wind power propulsion system 1 will be described in detail with reference to FIGS. 3 to 27 .
  • the rotor 30 shown in FIG. 2 is a structure of a cylindrical shape with an empty inside, and can be implemented in various embodiments.
  • the rotor 30a of the first embodiment is illustrated in FIGS. 3 to 4 It will be described with reference, and the rotor 30a of the second embodiment will be described with reference to FIGS. 5 to 7 .
  • FIG. 3 is a view for explaining a first embodiment of the rotor 30 shown in FIG. 2
  • FIG. 4 is a view for explaining a unit panel 31a constituting the rotor 30a of the first embodiment to be.
  • the rotor 30a of the first embodiment may be configured by combining a plurality of unit panels 31a.
  • the unit panel 31a may be formed to have a predetermined width, length, and thickness by pultrusion molding using glass fiber, carbon fiber, or various composite materials.
  • the unit panel 31a may be configured to enable interference fit with another neighboring unit panel 31a.
  • the unit panel 31a has a curved surface shape in the width direction and extends in the length direction, and a female connector 31a2 provided along one edge of the curved surface plate 31a1. ) and a male connector 31a3 provided along the other edge of the curved plate 31a1.
  • the thickness of each of the curved plate 31a1, the female connector 31a2, and the male connector 31a3 constituting the unit panel 31a may be the same or similar.
  • the curved plate 31a1 may have a curved surface corresponding to the radius of the rotor 30a.
  • the female connector 31a2 and the male connector 31a3 may have various structures capable of being press-fitted between adjacent unit panels 31a.
  • the female connector 31a2 includes a first plate 31a21 bent and extended in an inward direction of the rotor 30a from one end of the curved plate 31a1, and an extended end of the first plate 31a21.
  • a 'L'-shaped fitting space 31a4 corresponding to the shape of the male connector 31a3 may be formed.
  • the male connector 31a3 is bent in the inner direction of the rotor 30a from the other end of the curved plate 31a1 so as to correspond to the 'L'-shaped fitting space 31a4 of the female connector 31a2. It may include a fifth plate 31a31 and a sixth plate 31a32 extending from the extended end of the fifth plate 31a31 to the curved plate 31a1 in an inward direction.
  • the rotor 30a of this embodiment can be formed in a cylindrical shape with an empty inside by a force fitting method using the unit panel 31a configured as described above, compared to an adhesive bonding method or a bolting bonding method.
  • the process can be simplified.
  • the rotor 30a of this embodiment uses glass fiber, carbon fiber, or various composite materials for the unit panel 31a, and is produced by pultrusion, thereby reducing the manufacturing cost through the simplification of the manufacturing process as well as reducing the weight. can be achieved
  • the interference fitting portion of the female connector 31a2 and the male connector 31a3 is thicker than the curved plate 31a1, so it can naturally serve as a reinforcing agent in the longitudinal direction. For this purpose, it can be more economical than the existing sandwich manufacturing method in which resin is injected inside.
  • FIG. 5 is a view for explaining a second embodiment of the rotor 30 shown in FIG. 2, and FIG. 6 is a lower rotor 31b and an upper rotor constituting the rotor 30b of the second embodiment.
  • (32b) is a view for explaining the coupling member (33b) for connecting
  • Figure 7 (a) to (d) is a view for explaining the mounting process of the rotor (30b) of the second embodiment.
  • the rotor 30b of the second embodiment has a two-stage assembly structure in which a lower rotor 31b and an upper rotor 32b are assembled by a coupling member 33b. can be configured.
  • Each of the lower rotor 31b and the upper rotor 32b may be a cylindrical structure with an empty interior, and may be formed of the same material and shape.
  • the lower rotor 31b may have a size that can accommodate the stator 20 , the disk 50 , the driving unit 60 , and the lower bearing unit 70 .
  • a ring-shaped first edge panel 31b1 having a space for accommodating the disk 50 is provided at the upper end of the lower rotor 31b inward by a predetermined length, and the lower end of the upper rotor 32b inwardly
  • a ring-shaped second edge panel 32b1 extending a certain length and having a space for accommodating the disk 50 may be provided.
  • the coupling member 33b accommodates the stator 20 having the disk 50 and the driving unit 60 installed thereon in the lower rotor 31b to match the first edge panel 31b1 and the disk 50 In this state, the lower rotor 31b and the disk 50 can be coupled, and in a state in which the lower rotor 31b and the disk 50 are coupled, the first edge panel 31b1 of the lower rotor 31b and the second edge panel 32b1 of the upper rotor 32b may be coupled.
  • the coupling member 33b includes a first clamping plate 33b1 for holding the lower surface of the first edge panel 31b1 and the lower surface of the disk 50, the upper surface of the first edge panel 31b1, and the disk ( 50), a second clamping plate (33b2) for holding the upper surface, a first bolting member (33b3) for fixing the first and second clamping plates (33b1, 33b2) and the disk (50), and a lower rotor (31b) It may include a second bolting member (33b4) for fixing the second edge panel (32b1) of the upper rotor (32b) on the first edge panel (31b1) of the.
  • the first bolting member 33b3 fixes the first clamping plate 33b1, the disk 50, and the second clamping plate 33b2 to couple the lower rotor 31b and the disk 50
  • the second bolting member (33b4) is a lower rotor (31b) by fixing the first clamping plate (33b1), the first edge panel (31b1), the second clamping plate (33b2), the second edge panel (32b1) and The upper rotor 32b may be coupled.
  • the coupling member 33b includes a first bonding member 33b5 provided between the first edge panel 31b1 and the second clamping plate 33b2 of the lower rotor 31b, and the upper rotor 32b. It may further include a second bonding member (33b6) provided between the second edge panel (32b1) and the second clamping plate (33b2) of the.
  • the first and second bonding members 33b5 and 33b6 may be various adhesives or adhesive films of a coating method or an attachment method.
  • the base structure (10) on land is mounted on the deck of the ship (S) using the lifting device (L).
  • the lifting device L here may be a tower crane, a gantry crane or any suitable lifting means known to the person skilled in the art.
  • the disk 50 and the drive unit 60 are installed on the upper part of the stator 20 on land, and the lower rotor 31b is lifted with a lifting device (L) to lift the inside
  • the stator 20 is accommodated in the , and the lower rotor 31b and the disk 50 are coupled using the coupling member 33b.
  • the lower rotor 31b in which the stator 20 is accommodated is mounted on the base structure 10 fixed to the deck using the lifting device L.
  • the upper rotor (32b) of the land is aligned on the upper portion of the lower rotor (31b) mounted on the base structure (10) using the lifting device (L), The lower rotor 31b and the upper rotor 32b are coupled by using the coupling member 33b.
  • the rotor 30b of this embodiment is configured in a two-stage assembly structure in which the lower rotor 31b and the upper rotor 32b are assembled by the coupling member 33b, thereby assembling through the implementation of the two-stage connection structure. In addition to simplifying the process, it can improve the weight and height requirements of the crane.
  • the end plate 40 shown in FIG. 2 is installed on the open upper end of the rotor 30 and can be implemented in various embodiments.
  • the end plate 40a of the first embodiment is illustrated in FIG. 8 . will be described with reference to
  • FIG. 8 is a view for explaining the first embodiment of the end plate 40 shown in FIG.
  • the end plate 40a of the first embodiment may be made of a disk 41a and a stiffener 42a, and is formed of glass fiber reinforced plastic (GFRP) or carbon fiber reinforced plastic (CFRP).
  • GFRP glass fiber reinforced plastic
  • CFRP carbon fiber reinforced plastic
  • the disk 41a may be divided into a central region 43a and an outer region 44a.
  • the central region 43a may be a region corresponding to the opened upper end of the rotor 30
  • the outer region 44a may be a region extending to the outside of the rotor 30 , but is not limited thereto.
  • the central region 43a and the outer region 44a of the disk 41a may not be the same.
  • the central region 43a of the disk 41a may be GFRP-2AXIS 10t in the radial direction
  • the outer region 44a of the disk 41a may be 30t in the radial direction GFRP-UD.
  • the stiffeners 42a are for reinforcing the central region 43a of the circular plate 41a, and a plurality of stiffeners 42a may be formed extending from the center of the circular plate 41a to the edge of the central region 43a in a radial form, and the length The direction can be GFRP-UD 10t.
  • the fiber direction and thickness values of the disk 41a and the stiffener 42a are only examples, and it goes without saying that various lamination patterns and thicknesses can be applied.
  • the end plate 40a of this embodiment is made of glass fiber reinforced plastic (GFRP) or carbon fiber reinforced plastic (CFRP), thereby improving the structural performance of the wind power propulsion system 1 through weight reduction of the end plate 40a can do it
  • the driving unit 60 shown in FIG. 2 is installed on the upper portion of the stator 20 to generate power to rotate the rotor 30, and may be implemented in various embodiments.
  • the first The driving unit 60a of the embodiment will be described with reference to FIG. 9
  • the driving unit 60b of the second embodiment will be described with reference to FIG. 10
  • the driving unit 60c of the third embodiment will be described with reference to FIG. 11 .
  • FIG. 9 is a view for explaining a first embodiment of the driving unit 60 shown in FIG. 2 .
  • the driving unit 60a of the first embodiment includes a motor 61a, a gearbox 62a, a driving shaft 63a, a driving gear 64a, a driven gear 65a, and a driven shaft 66a. ), it may include a bearing housing (67a).
  • the motor 61a generates a driving force and transmits it to the gearbox 62a, and may be installed inside the stator 20 .
  • the gearbox 62a is coupled to the motor 61a and various gears for transmitting a driving force required to rotate the drive shaft 63a are built-in, and may be installed inside the stator 20 .
  • the gearbox 62a may be a speed reducer.
  • the drive shaft 63a coupled to the motor 61a and rotated by the motor 61a, the drive gear 64a provided on the drive shaft 63a, and the drive gear 64a
  • a driven gear 65a that meshes with and a driven shaft 66a coupled to the driven gear 65a to support rotation of the driven gear 65a may be provided.
  • the driving gear 64a and the driven gear 65a may be reduction gears having a reduction ratio of 6:1, and of course, reduction gears having various reduction ratios may be applied without being limited thereto.
  • the driven shaft 66a may include a first driven shaft 66a1 and a second driven shaft 66a2.
  • the first driven shaft 66a1 is installed inside the gearbox 62a, the lower part is rotatably coupled to the lower surface of the gearbox 62a, and the upper part penetrates the upper surface of the gearbox 62a to the outside. It can be installed to protrude to be coupled to the second driven shaft (66a2).
  • the second driven shaft 66a2 is installed outside the gearbox 62a, the lower part is coupled to the upper part of the first driven shaft 66a1 by the coupling member 68a, and the upper part of the stator 20 It may be installed to be coupled to the disk 50 through the upper surface.
  • the second driven shaft 66a2 may be connected to the first driven shaft 66a1 to transmit rotational force to the disk 50 .
  • Each of the driving shaft 63a, the first driven shaft 66a1, and the second driven shaft 66a2 may be rotated by various bearings.
  • the drive shaft 63a may be rotatably coupled to the upper surface of the gearbox 62a by the first bearing B1, and the lower gearbox 62a by the second bearing B2. may be rotatably coupled to the lower surface of the
  • the driving shaft 63a is a shaft that rotates with the driving force of the motor 61a and is not a shaft to which a large amount of axial force is applied.
  • the first and second bearings B1 and B2 are the driving shaft 63a. ) of a lateral force or a bearing capable of preventing the lateral movement of the drive shaft 63a, for example, a self-aligning bearing can be applied.
  • the first driven shaft 66a1 may be rotatably coupled to the upper surface of the gearbox 62a by the third bearing B3, and the lower gearbox 62a by the fourth bearing B4. may be rotatably coupled to the lower surface of the
  • the first driven shaft 66a1 is not an axis to which a large amount of axial force is applied because a driving force is directly transmitted from the motor 61a or a driving force is not directly transmitted to the disk 50.
  • Bearings 3 and 4 (B3, B4) can be applied to a bearing capable of preventing the lateral force of the first driven shaft 66a1, for example, self-aligning bearings.
  • the second driven shaft 66a2 may be rotatably coupled to the upper surface of the stator 20 by a fifth bearing B5 and a sixth bearing B6 arranged in series.
  • the second driven shaft 66a2 is a shaft that directly transmits a driving force to the disk 50, and is an axis to which a lot of axial force and lateral force are applied.
  • the fifth bearing B5 can be applied to a bearing capable of preventing the axial force of the second driven shaft 66a2, for example, a thrust bearing
  • the sixth bearing B6 is the lateral force of the second driven shaft 66a2 (
  • a bearing that can prevent lateral force for example, a self-aligning bearing such as a spherical roller bearing (SRB) can be applied.
  • SRB spherical roller bearing
  • the fifth bearing B5 and the sixth bearing B6 arranged in series can withstand the axial and lateral forces of the stator 20. It is difficult to tightly bind to
  • the bearing housing 67a may be fixedly installed inside the upper surface of the stator 20 as a means for holding the second driven shaft 66a2.
  • the bearing housing 67a, through which the second driven shaft 66a2 passes, can accommodate the fifth and sixth bearings B5 and B6.
  • the second driven shaft 66a2 can withstand axial and lateral forces by the bearing housing 67a.
  • FIG. 10 is a view for explaining a second embodiment of the driving unit 60 shown in FIG. 2 .
  • the driving unit 60b of the second embodiment includes a motor 61a, a gearbox 62a, a driving shaft 63a, a driving gear 64a, a driven gear 65a, first and second It may include a driven shaft (66a) composed of the driven shaft (66a1, 66a2), a bearing housing (67b), and a coupling member (68a).
  • the driving part 60b of the second embodiment is different from the driving part 60a of the first embodiment described above in the installation position of the bearing housing 67b.
  • the bearing housing 67b of this embodiment is installed outside the upper surface of the stator 20, and the bearing housing 67a of the first embodiment is installed inside the upper surface of the stator 20.
  • the elements are structurally identical.
  • FIG. 11 is a view for explaining a third embodiment of the driving unit 60 shown in FIG. 2 .
  • the driving unit 60c of the third embodiment includes a motor 61c, a gearbox 62c, a driving shaft 63c, a driving gear 64c, a driven gear 65c, and a driven shaft 66c. ) may be included.
  • the motor 61c generates a driving force and transmits it to the gearbox 62c, and may be installed inside the upper surface of the stator 20 .
  • the gearbox 62c is coupled to the motor 61c and includes various gears for transmitting a driving force required to rotate the driving shaft 63c, and may be installed outside the upper surface of the stator 20 .
  • the gearbox 62c may be a speed reducer.
  • a driven gear 65c that meshes with and a driven shaft 66c that is coupled to the driven gear 65c to support the rotation of the driven gear 65c and transmits rotational force to the disk 50 may be provided.
  • the driving gear 64c and the driven gear 65c may be reduction gears having a reduction ratio of 6:1, and of course, reduction gears having various reduction ratios may be applied without being limited thereto.
  • Each of the driving shaft 63c and the driven shaft 66c may be rotated by various bearings.
  • the drive shaft 63c can be rotatably coupled to the upper surface of the gearbox 62c by the seventh bearing B7, and the lower gearbox 62c by the eighth bearing B8. may be rotatably coupled to the lower surface of the
  • the driving shaft 63c is a shaft that rotates with the driving force of the motor 61c and is not a shaft to which a large amount of axial force is applied.
  • the 7th and 8th bearings B7 and B8 are ) of a lateral force or a bearing capable of preventing the lateral movement of the drive shaft 63c, for example, a self-aligning bearing can be applied.
  • the driven shaft 66c can be rotatably coupled to the upper surface of the gearbox 62c by the ninth bearing B9, and the tenth bearing B10 and the eleventh bearing B11 are arranged in series.
  • the lower part may be rotatably coupled to the lower surface of the gearbox 62c.
  • the driven shaft 66c is a shaft that directly transmits a driving force to the disk 50, and is an axis to which a lot of axial force and lateral force are applied.
  • the tenth bearing B10 is A bearing capable of preventing the axial force of the driven shaft 66c, for example, a thrust bearing may be applied, and the eleventh bearing B11 may prevent the lateral force of the driven shaft 66c. possible bearings, for example self-aligning bearings, can be applied.
  • the thickness of the lower surface of the gearbox (62c) is made relatively thicker than the other surfaces of the 10th, 11
  • the bearings (B10, B11) can be installed.
  • the bearing housing 67a of the first embodiment is fixed inside the gearbox 62c to install the 10th and 11th bearings B10 and B11. Of course you can.
  • the driven shaft 66c directly transmits the driving force to the disk 50, and a lot of axial force and lateral force are applied, but the axial force and lateral force are applied by the tenth and eleventh bearings B10 and B11.
  • the ninth bearing B9 can be applied as a bearing that can prevent the lateral force of the driven shaft 66c, for example, as a self-aligning bearing.
  • the lower bearing part 70 shown in FIG. 2 is to suppress the lateral motion of the rotor 30 rotating by the power of the driving part 60, and can be implemented in various embodiments.
  • the first The lower bearing part 70a of the embodiment will be described with reference to FIGS. 12 to 14
  • the lower bearing part 70b of the second embodiment will be described with reference to FIGS. 15 to 17
  • the lower bearing part 70b of the third embodiment ( 70c) will be described with reference to FIGS. 18 to 20
  • the lower bearing part 70d of the fourth embodiment will be described with reference to FIGS. 21 to 22
  • the lower bearing part 70e of the fifth embodiment will be described with reference to FIGS. 23 to 23 .
  • the description will be made with reference to FIG. 25
  • the lower bearing part 70f of the sixth embodiment will be described with reference to FIGS. 26 to 27 .
  • FIG. 12 is a partial view of the wind power propulsion system 1 for explaining the first embodiment of the lower bearing part 70 shown in FIG. 2, and FIG. 13 is a view cut along the line A-A' in FIG. and FIG. 14 is a view cut along the line B-B' of FIG. 13 .
  • the lower bearing part 70a of the first embodiment may be configured as an assembly of the bearing unit 71a and may be installed on the basic structure 10 .
  • the bearing unit 71a may be installed on the basic structure 10 and may include a guide bearing 71a1 and a bearing support 71a2.
  • the guide bearing (71a1) may be installed on the upper end of the bearing support (71a2), and may guide the rotation of the rotor (30).
  • the bearing support (71a2) supports the guide bearing (71a1) installed on the upper end, and may be installed on the base structure (10).
  • the above-described bearing unit 71a is arranged in plurality at regular intervals along the inner circumferential surface of the rotor 30 to form a lower bearing portion 70a, at this time the guide bearing 71a1 is the rotor 30 of Adhering to the inner circumferential surface, the bearing support 71a2 may be installed on the base structure 10 without overlapping the rotor 30 and the stator 20 .
  • a passage 81 may be provided between the lower bearing portion 70a and the stator 20 so that maintenance of the bearing unit 71a can be easily performed.
  • the passage 81 can be secured by making the diameter of the stator 20 smaller than before. For example, when the diameter of the existing stator is 4 to 4.5 m, the passage 81 may be secured by reducing the diameter of the stator 20 of this embodiment to a level of 2 to 2.5 m.
  • the diameter of the upper portion where the driving unit 60 is provided is as shown in FIG. 12 so that a space in which the driving unit 60 is installed is provided. Enlarging may be desirable.
  • the lower bearing part 70a of this embodiment is easy to manufacture the bearing unit 71a, and the installation man-hour can be reduced by directly installing the bearing support 71a2 to the base structure 10, and the passageway 81 ), it is possible to facilitate maintenance and reduce the weight of the stator 20 by securing.
  • FIG. 15 is a partial view of the wind power propulsion system 1 for explaining the second embodiment of the lower bearing part 70 shown in FIG. 2, and FIG. 16 is a view cut along the line A-A' in FIG. and FIG. 17 is a view cut along the line B-B' of FIG. 16 .
  • the lower bearing part 70b of the second embodiment may be configured as an assembly of the bearing unit 71b and may be installed on the basic structure 10 .
  • the bearing unit 71b may be installed on the basic structure 10 and may include a guide bearing 71b1 and a bearing support 71b2.
  • the guide bearing (71b1) may be installed on the upper end of the bearing support (71b2), and may guide the rotation of the rotor (30).
  • the bearing support (71b2) supports the guide bearing (71b1) installed on the upper end, and may be installed on the base structure (10).
  • the above-described bearing unit 71b is arranged in plurality at regular intervals along the inner circumferential surface of the rotor 30 to form a lower bearing portion 70b.
  • the guide bearing 71b1 is the rotor 30 of Adhering to the inner circumferential surface
  • the bearing support 71b2 may be installed on the base structure 10 so as to overlap the stator 20 .
  • openings 82 at regular intervals are formed at the lower end, and by installing the bearing unit 71b in the opening 82, the bearing unit 71b overlaps the stator 20. can be installed as much as possible.
  • the lower bearing part 70b of this embodiment is easy to manufacture the bearing unit 71b, and the installation man-hour can be reduced by directly installing the bearing support 71b2 on the base structure 10, and the open part ( 82), it is possible to facilitate maintenance of the bearing unit (71b).
  • FIG. 18 is a partial view of the wind power propulsion system 1 for explaining the third embodiment of the lower bearing part 70 shown in FIG. 2, and FIG. 19 is a lower bearing part 70c of the third embodiment. It is a view for explaining the bearing unit 71c, and FIGS. 20 (a) to (c) are views showing a state in which the bearing unit 71c of FIG. 19 is installed on the stator 20, where (a) is It is a top view, (b) is a front view, (c) is a rear view.
  • the lower bearing part 70c of the third embodiment may be configured as an assembly of the bearing unit 71c and may be installed on the stator 20 .
  • the bearing unit 71c may be installed on the stator 20 and may include a guide bearing 71c1 , a first joint plate 71c2 , and a second joint plate 71c3 .
  • the stator 20 may be provided with a window 83 at a predetermined interval at a position where the bearing unit 71c is installed.
  • the guide bearing 71c1 may be installed on the first joint plate 71c2 and may guide the rotation of the rotor 30 .
  • the first joint plate 71c2 may be formed as a pair, and may be coupled to both ends of the bearing shaft 71c11 of the guide bearing 71c1.
  • the pair of first joint plates 71c2 may horizontally extend to one side of the guide bearing 71c1 in a state coupled to the bearing shaft 71c11, and may have a vertically bent shape at the extended end.
  • a plurality of first bolting holes 71c21 for bolting coupling with the second joint plate 71c3 may be provided in the pair of first joint plates 71c2.
  • the second joint plate 71c3 may be installed along the edge of the window 83 from the inside of the stator 20, and a first bolting hole 71c21 for coupling with the pair of first joint plates 71c2.
  • a plurality of second bolting holes 71c31 corresponding to may be provided.
  • the second joint plate 71c3 may have a protruding shape with a radius of at least the radius of the guide bearing 71c1 or less.
  • the bearing unit 71c is installed in the stator 20 through bolting of the first and second joint plates 71c2 and 71c3, and is arranged in plurality at regular intervals along the inner circumferential surface of the rotor 30.
  • the lower bearing portion 70c is formed, in which case the guide bearing 71c1 is fixed by the first and second joint plates 71c2 and 71c3 as shown in (a) to (c) of FIG. 20 .
  • a part of the stator 20 may protrude outward through the window 83 of the stator 20 and be in close contact with the inner circumferential surface of the rotor 30 .
  • the lower bearing part 70c of this embodiment is easy to manufacture as the bearing unit 71c is modularized, and the installation man-hours can be reduced, and structural safety can be secured as it is installed on the stator 20. can
  • FIG. 21 is a partial view of the wind power propulsion system 1 for explaining the fourth embodiment of the lower bearing part 70 shown in FIG. 2, and FIG. 22 is a lower bearing part 70d of the fourth embodiment. It is a view for explaining the bearing unit (71d).
  • the lower bearing part 70d of the fourth embodiment may be configured as an assembly of the bearing unit 71d and may be installed on the stator 20 .
  • the bearing unit 71d may be installed on the stator 20 and may include a guide bearing 71d1 and a joint box 71d2.
  • the stator 20, the window 84 may be provided at a predetermined interval at a position where the bearing unit 71d is installed.
  • the guide bearing (71d1) may be installed in the joint box (71d2), and may guide the rotation of the rotor (30).
  • the joint box 71d2 may be installed along the edge of the window 84 from the inside of the stator 20, and the guide bearing 71d1 can be fixed in a state where a part of the guide bearing 71d1 protrudes to the outside. have.
  • a plurality of first bolting holes 71d21 for bolting coupling with the stator 20 may be provided in the joint box 71d2.
  • the stator 20 may be provided with a window 84 at a predetermined interval at a position where the bearing unit 71d is installed, and the first along the edge of the window 84 for bolting coupling with the joint box 71d2.
  • a second bolting hole 71d22 corresponding to the bolting hole 71d21 may be provided.
  • the above-described bearing unit (71d) is installed in the stator 20 through the bolting of the joint box (71d2), arranged in plurality at regular intervals along the inner circumferential surface of the rotor (30), the lower bearing portion (70d)
  • the guide bearing 71d1 is partially protruded outward through the window 84 of the stator 20 in a state in which the joint box 71d2 is fixed to the stator 20 of the rotor 30. It can be adhered to the inner circumferential surface.
  • the lower bearing part 70d of this embodiment is easy to manufacture as the bearing unit 71d is modularized, and the installation man-hours can be reduced, and structural safety can be secured as it is installed on the stator 20. can
  • FIG. 23 is a partial view of the wind power propulsion system 1 for explaining the fifth embodiment of the lower bearing part 70 shown in FIG. 2, and FIG. 24 is a view cut along the line A-A' in FIG. and FIG. 25 is a view cut along the line B-B' of FIG. 24 .
  • the lower bearing part 70e of the fifth embodiment may be configured as a single body of the bearing unit 71e and may be installed on the stator 20 .
  • the bearing unit 71e may be installed on the stator 20 and may include a guide bearing 71e1 and a guide rail 71e2.
  • the guide bearing 71e1 may be installed along the outer circumferential surface of the stator 20 , and may guide the rotation of the rotor 30 .
  • the guide bearing 71e1 may be a single ring-shaped bearing, for example, a journal type or ball/roller type bearing.
  • the stator 20 may be smaller than a diameter of at least 2.5 m.
  • the stator 20 may have a diameter of 2.5 m or less as a whole, but the diameter of the upper part where the driving part 60 is provided as shown in FIG. 23 is such that a space in which the driving part 60 is installed is provided. It may be desirable to make it as large as a conventional diameter (eg, 4 to 4.5 m).
  • the guide rail 71e2 may be formed along the inner circumferential surface of the rotor 30 at a position corresponding to the annular guide bearing 71e1, and may guide the guide bearing 71e1.
  • the guide rail 71e2 may have various protrusion heights, and the protrusion height may be determined according to the diameter of the rotor 30 .
  • the minimum diameter of the rotor 30 may correspond to the diameter of the guide bearing 71e1 installed on the outer peripheral surface of the stator 20, and the guide rail 71e2.
  • the maximum diameter of the rotor 30 may be determined according to the protrusion height of the .
  • the wind power propulsion ability is improved. Therefore, in this embodiment, even if the diameter of the rotor 30 is increased as much as desired, the lower bearing part by adjusting the protrusion height of the guide rail 71e2 (70e) to be able to perform the function.
  • the guide rail 71e2 may be separately manufactured and installed on the inner circumferential surface of the rotor 30 , or may be manufactured integrally with the rotor 30 .
  • the lower bearing part 70e of this embodiment can secure structural safety by applying a single bearing in an annular shape as the guide bearing 71e1 and installing it on the stator 20, and the height of the guide rail 71e2.
  • the size of the rotor 30 can be changed to a desired size and manufactured, so that the wind power propulsion performance can be easily improved.
  • FIG. 26 is a partial view of the wind power propulsion system 1 for explaining the sixth embodiment of the lower bearing part 70 shown in FIG. 2, and FIG. 27 is a view cut along the line A-A' in FIG. to be.
  • the lower bearing part 70f of the sixth embodiment may be configured as an assembly of the bearing unit 71f and may be installed on the rotor 30 .
  • the bearing unit 71f may be installed on the rotor 30 , and may include a guide bearing 71f1 , an arm 71f2 , and a guide rail 71f3 .
  • the guide bearing 71f1, the arm 71f2 may be installed on one side, and may guide the rotation of the rotor 30.
  • the arm 71f2 may be installed on the inner circumferential surface of the rotor 30 .
  • the arm 71f2 may be of a variable length, foldable, or fixed type.
  • the arm (71f2) can be adjusted in length manually like a telescopic or tent pole when the length is variable.
  • the guide rail 71f3 may be formed along the outer circumferential surface of the stator 20 and may guide the guide bearing 71f1.
  • the guide rail 71f3 may have various protruding heights, and the protruding height may be determined according to the diameter of the stator 20 or the rotor 30 .
  • the diameter of the stator 20 when the diameter of the stator 20 is changed in a state in which the diameter of the rotor 30 is determined, by adjusting the protrusion height of the guide rail 71f3 according to the changed diameter of the lower bearing part 70f make it possible to perform the function.
  • the diameter of the rotor 30 when the diameter of the rotor 30 is changed in a state in which the diameter of the stator 20 is determined, it is the same.
  • the guide rail 71f3 may be separately manufactured and installed on the outer circumferential surface of the stator 20 , or may be manufactured integrally with the stator 20 .
  • the lower bearing part 70f of the present embodiment can make the size of the rotor 30 or the stator 20 to a desired size by adjusting the height of the guide rail 71f3, so that the wind power propulsion performance is easily improved. can do it
  • the wind power propulsion system 1 of the present invention as described above, the stator 20, the rotor 30, the end plate 40, the disk 50, the driving unit 60, the lower bearing shown in FIG.
  • Each of the parts 70 has been described in various embodiments with reference to FIGS. 3 to 27 , but it is not limited to the embodiment for each configuration, and a combination of the embodiments or at least one of the embodiments and known techniques A combination of may be included as another embodiment.
  • Wind power propulsion system 10 Basic structure
  • stator 30, 30a, 30b rotor
  • unit panel 31a1 unit panel 31a1: curved plate
  • 60, 60a, 60b, 60c driving unit 61a, 61c: motor
  • 71c11 bearing shaft 71a2
  • 71b2 bearing support
  • passageway 82 opening

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Wind Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

본 발명은 풍력추진 시스템 및 이를 구비한 선박에 관한 것으로서, 본 발명의 풍력추진 시스템은, 갑판에 수직하게 마련되는 고정자; 상기 고정자의 외측을 두르도록 원기둥 형태로 마련되는 회전자; 상기 회전자에 연결되는 디스크를 통해 상기 회전자에 회전 동력을 전달하는 구동부; 및 상기 회전자의 하부에 설치되어 상기 회전자의 횡방향 운동을 억제하는 하부베어링부를 포함하고, 상기 하부베어링부는, 베어링유닛의 집합체로 구성되며, 적어도 일부분이 상기 고정자의 내측에서 상기 베어링유닛이 설치되는 위치에 일정 간격을 두고 마련되는 창의 가장자리를 따라 설치되며, 상기 회전자의 회전을 가이드 하는 가이드베어링을 상기 고정자에 지지하는 조인트부를 포함한다.

Description

풍력추진 시스템 및 이를 구비한 선박
본 발명은 풍력추진 시스템 및 이를 구비한 선박에 관한 것이다.
선박들은 대개 화석연료를 사용하여 추진력을 얻고 있다. 선박에는 스러스터 등을 구동하기 위한 대출력의 엔진이 장착되어 있으며 장거리 운항 시에 대형 선박이 소비하는 연료의 양은 수백 톤에 달하는 것으로 알려져 있다. 이러한 선박들을 운용하는 데는 엄청난 비용이 들며 연료 소비로 인한 오염물질의 배출도 매우 심각한 문제가 되고 있다.
이러한 문제를 해결하기 위해서는 선박의 동력원을 다변화하는 것이 바람직하다. 예를 들어, 추진력의 일부를 전기모터로부터 얻는 전기추진선박 기술이 개발되어 적용되고 있으며, 그 밖에도 선박이 해상에서 경험하는 다양한 환경조건을 이용하여 전기를 얻는 기술들이 개발되고 있다.
더 나아가, 배기를 전혀 발생시키지 않는 자연 에너지로서 태양광, 풍력 등의 활용도 주목을 받고 있다. 특히 풍력의 경우 갑판 상에 돛(Sail) 등과 같은 설비를 설치하여 풍력을 간단하게 추진력으로 바꿀 수 있다는 점에서, 구조가 간단하고 유지 비용이 저렴하다는 장점이 있다.
또한, 최근에는 일반적으로 알려져 있는 돛과 달리, 동력을 이용해 직접 회전하면서 풍력을 원하는 방향의 추진력으로 변환할 수 있는 로터 설비(일례로 magnus rotor)가 실선에 탑재된 바 있다. 이러한 로터 설비는 갑판에 고정되는 고정자(stator)와, 고정자의 표면과 상면을 두르도록 원기둥 형태로 마련되며 회전속도나 방향이 조절되는 회전자(rotor)로 구성된다.
이러한 로터 설비는 돛과 다르게 풍력을 원하는 추진력으로 가공할 수 있다는 점에서 최근 많은 연구 및 개발이 이루어지고 있다. 다만 로터 설비는 수 미터의 직경을 갖고 수십 미터의 높이로 이루어지는 대형 기둥 형태인 바, 갑판 내에서의 설치, 선박 움직임에 따른 내구성, 전방 시야 간섭, 제어 등의 관점에서, 아직 해결/개선해야 할 문제들이 상당 수 남아있다.
본 발명은 상기와 같은 종래기술의 문제점을 해결하고자 창출된 것으로서, 본 발명의 목적은, 회전자의 구조적 성능 향상 및 제작을 용이하게 하고, 회전자를 구동시키는 구동부의 구조적 안정성을 확보하고, 회전자와 고정자 사이에 설치되는 하부베어링부의 구조적 안정성 확보 및 유지보수를 용이하게 하고, 엔드플레이트의 경량화를 통한 구조적 안정성 확보할 수 있도록 하는 풍력추진 시스템 및 이를 구비한 선박을 제공하는 것이다.
본 발명의 일 측면에 따른 풍력추진 시스템은, 갑판에 수직하게 마련되는 고정자; 상기 고정자의 외측을 두르도록 원기둥 형태로 마련되는 회전자; 상기 회전자에 연결되는 디스크를 통해 상기 회전자에 회전 동력을 전달하는 구동부; 및 상기 회전자의 하부에 설치되어 상기 회전자의 횡방향 운동을 억제하는 하부베어링부를 포함하고, 상기 하부베어링부는, 베어링유닛의 집합체로 구성되며, 적어도 일부분이 상기 고정자의 내측에서 상기 베어링유닛이 설치되는 위치에 일정 간격을 두고 마련되는 창의 가장자리를 따라 설치되며, 상기 회전자의 회전을 가이드 하는 가이드베어링을 상기 고정자에 지지하는 조인트부를 포함할 수 있다.
구체적으로, 상기 조인트부는, 한 쌍으로 이루어지며, 상기 가이드베어링의 베어링축의 양단에 결합되는 제1조인트플레이트; 및 상기 고정자의 내측에서 상기 창의 가장자리를 따라 설치되며, 상기 제1조인트플레이트와 결합되는 제2조인트플레이트를 포함할 수 있다.
구체적으로, 상기 제1조인트플레이트는, 상기 베어링축에 결합된 상태에서 상기 가이드베어링의 일측으로 수평 연장되고, 연장된 단부에서 수직 절곡된 형태를 가지며, 상기 제2조인트플레이트와 볼팅 결합을 위한 제1볼팅구멍이 복수 개 마련되고, 상기 제2조인트플레이트는, 적어도 상기 가이드베어링의 반지름 또는 그 이하의 크기로 돌출된 형태를 가지며, 상기 제1볼팅구멍에 대응되는 제2볼팅구멍이 복수 개 마련될 수 있다.
구체적으로, 상기 조인트부는, 상기 고정자의 내측에서 상기 창의 가장자리를 따라 설치되며, 상기 가이드베어링의 일부가 외부로 돌출된 상태로 상기 가이드베어링을 고정하는 조인트박스를 포함할 수 있다.
구체적으로, 상기 구동부는, 모터에 의해 회전하는 구동축과, 상기 구동축에 구비되는 구동기어와, 상기 구동기어와 맞물려 돌아가는 피동기어와, 상기 피동기어와 결합되어 상기 피동기어의 회전을 지지하는 제1피동축이 내장되며, 상기 고정자의 내측에 설치되는 기어박스; 및 커플링부재에 의해 상기 제1피동축과 연결되어 상기 디스크에 회전력을 전달하는 제2피동축을 잡아주는 베어링하우징을 포함할 수 있다.
구체적으로, 상기 베어링하우징은, 상기 고정자의 상면 내측에 설치되거나, 상기 고정자의 상면 외측에 설치될 수 있다.
구체적으로, 상기 구동축은, 제1베어링에 의해 상부가 상기 기어박스의 상면에 회전 가능하게 결합되고, 제2베어링에 의해 하부가 상기 기어박스의 하면에 회전 가능하게 결합되고, 상기 제1,2베어링은, 상기 구동축의 횡력 또는 상기 구동축의 횡진을 방지하는 베어링일 수 있다.
구체적으로, 상기 제1피동축은, 제3베어링에 의해 상부가 상기 기어박스의 상면에 회전 가능하게 결합되고, 제4베어링에 의해 하부가 상기 기어박스의 하면에 회전 가능하게 결합되고, 상기 제3,4베어링은, 상기 제1피동축의 횡력을 방지하는 베어링일 수 있다.
구체적으로, 상기 제2피동축은, 직렬로 배치되는 제5베어링 및 제6베어링에 의해 상기 고정자의 상면에 회전 가능하게 결합되고, 상기 제5베어링은, 상기 제2피동축의 축력을 방지하는 베어링이고, 상기 제6베어링은, 상기 제2피동축의 횡력을 방지하는 베어링일 수 있다.
구체적으로, 상기 회전자는, 상단에 내측으로 일정 길이 연장되며 상기 디스크를 수용하는 공간을 갖는 링 형상의 제1엣지패널이 마련되는 하부회전자; 하단에 내측으로 일정 길이 연장되며 상기 디스크를 수용하는 공간을 갖는 링 형상의 제2엣지패널이 마련되는 상부회전자; 및 상기 하부회전자, 상기 상부회전자, 상기 디스크를 결합하는 결합부재를 포함할 수 있다.
구체적으로, 상기 결합부재는, 상기 제1엣지패널의 하면과 상기 디스크의 하면을 잡아주는 제1클램핑플레이트; 상기 제1엣지패널의 상면과 상기 디스크의 상면을 잡아주는 제2클램핑플레이트; 상기 제1,2클램핑플레이트와 상기 디스크를 고정하는 제1볼팅부재; 및 상기 제1엣지패널와 상기 제2엣지패널을 고정하는 제2볼팅부재를 포함할 수 있다.
구체적으로, 상기 결합부재는, 상기 제1엣지패널과 상기 제2클램핑플레이트 사이에 마련되는 제1본딩부재; 및 상기 제2엣지패널과 상기 제2클램핑플레이트 사이에 마련되는 제2본딩부재를 더 포함할 수 있다.
구체적으로, 육상의 상기 기초구조물을 리프팅장치를 이용하여 상기 갑판 상에 탑재하고, 육상에서 상기 고정자의 상부에 상기 디스크와 상기 구동부를 설치하고, 상기 하부회전자를 상기 리프팅장치로 리프팅하여 내부에 상기 고정자를 수용시키고, 상기 결합부재를 이용하여 상기 하부회전자와 상기 디스크를 결합시키고, 상기 고정자가 수용된 상기 하부회전자를 상기 리프팅장치를 이용하여 상기 기초구조물 상에 탑재하고, 육상의 상부회전자를 상기 리프팅장치를 이용하여 상기 기초구조물 상에 탑재된 상기 하부회전자의 상부에 정렬시키고, 상기 결합부재를 이용하여 상기 하부회전자와 상기 상부회전자를 결합시킬 수 있다.
본 발명의 다른 측면에 따른 선박은, 상기에 기재된 풍력추진 시스템을 포함할 수 있다.
본 발명에 따른 풍력추진 시스템은, 회전자의 구조적 성능 향상 및 제작을 용이하게 할 수 있고, 회전자를 구동시키는 구동부의 구조적 안정성을 확보할 수 있고, 회전자와 고정자 사이에 설치되는 하부 베어링부의 구조적 안정성 확보 및 유지보수를 용이하게 할 수 있고, 엔드플레이트의 경량화를 통한 구조적 안정성 확보할 수 있다.
도 1은 본 발명의 일 실시예에 따른 풍력추진 시스템을 구비한 선박을 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 풍력추진 시스템을 설명하기 위한 도면이다.
도 3은 도 2에 도시된 회전자의 제1실시예를 설명하기 위한 도면이다.
도 4는 제1실시예의 회전자를 구성하는 단위패널을 설명하기 위한 도면이다.
도 5는 도 2에 도시된 회전자의 제2실시예를 설명하기 위한 도면이다.
도 6은 제2실시예의 회전자를 구성하는 하부회전자와 상부회전자를 연결하는 결합부재를 설명하기 위한 도면이다.
도 7의 (a) 내지 (d)는 제2실시예의 회전자의 탑재 공정을 설명하기 위한 도면이다.
도 8은 도 2에 도시된 엔드플레이트의 제1실시예를 설명하기 위한 도면이다.
도 9는 도 2에 도시된 구동부의 제1실시예를 설명하기 위한 도면이다.
도 10은 도 2에 도시된 구동부의 제2실시예를 설명하기 위한 도면이다.
도 11은 도 2에 도시된 구동부의 제3실시예를 설명하기 위한 도면이다.
도 12는 도 2에 도시된 하부베어링부의 제1실시예를 설명하기 위한 풍력추진 시스템의 일부 도면이다.
도 13은 도 12의 A-A'선을 따라 절단한 도면이다.
도 14는 도 13의 B-B'선을 따라 절단한 도면이다.
도 15는 도 2에 도시된 하부베어링부의 제2실시예를 설명하기 위한 풍력추진 시스템의 일부 도면이다.
도 16은 도 15의 A-A'선을 따라 절단한 도면이다.
도 17은 도 16의 B-B'선을 따라 절단한 도면이다.
도 18은 도 2에 도시된 하부베어링부의 제3실시예를 설명하기 위한 풍력추진 시스템의 일부 도면이다.
도 19는 제3실시예의 하부베어링부를 구성하는 베어링유닛을 설명하기 위한 도면이다.
도 20의 (a) 내지 (c)는 도 19의 베어링유닛이 고정자에 설치된 상태를 도시한 도면이다.
도 21은 도 2에 도시된 하부베어링부의 제4실시예를 설명하기 위한 풍력추진 시스템의 일부 도면이다.
도 22는 제4실시예의 하부베어링부를 구성하는 베어링유닛을 설명하기 위한 도면이다.
도 23은 도 2에 도시된 하부베어링부의 제5실시예를 설명하기 위한 풍력추진 시스템의 일부 도면이다.
도 24는 도 23의 A-A'선을 따라 절단한 도면이다.
도 25는 도 24의 B-B'선을 따라 절단한 도면이다.
도 26은 도 2에 도시된 하부베어링부의 제6실시예를 설명하기 위한 풍력추진 시스템의 일부 도면이다.
도 27은 도 26의 A-A'선을 따라 절단한 도면이다.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되는 이하의 상세한 설명과 바람직한 실시예로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 풍력추진 시스템(1)을 구비한 선박(S)을 도시한 도면이고, 도 2는 본 발명의 일 실시예에 따른 풍력추진 시스템(1)을 설명하기 위한 도면이다.
도 1 및 도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 풍력추진 시스템(1)은 선박(S)의 갑판에 적어도 하나 이상 구비되어, 동력을 이용해 직접 회전하면서 풍력을 원하는 방향의 추진력으로 변환할 수 있으며, 기초구조물(10), 고정자(20), 회전자(30), 엔드플레이트(40), 디스크(50), 구동부(60), 하부베어링부(70)를 포함할 수 있다.
기초구조물(10)은, 갑판 상에 고정 설치되며, 상부에 고정자(20)가 설치될 수 있다.
고정자(20)는, 갑판 상에 고정되는 기초구조물(10) 상에 수직하게 마련될 수 있으며, 회전자(30)의 축을 이룰 수 있다.
이러한 고정자(20)는, 내부가 비어있는 원기둥 형태의 구조물일 수 있으며, 상부에 구동부(60)가 탑재될 수 있다.
회전자(30)는, 고정자(20)의 외측을 두르도록 원기둥 형태로 마련된 구조물로서, 선박(S)의 갑판에 설치/고정되는 고정자(20)를 축으로 하고, 구동부(60)에 의해 동력이 부가되어 360도 회전할 수 있다. 이때, 선박(S) 주변의 바람과 원기둥 형태의 회전자(30) 간의 유체역학적 간섭으로 인하여, 바람이 선박(S)의 추진력으로 전환될 수 있다.
즉, 회전자(30)는, 구동부(60)의 동력이 디스크(50)를 통해 전달되어 회전될 수 있다. 이때 회전자(30)는, 수직 방향의 중심축인 고정자(20)을 기준으로 회전되면서 일측에서는 증가된 압력이 발생되고 반대측에서는 감소된 압력/흡입이 발생되어, 회전자(30)의 일측과 반대측 각각에 양압과 음압이 발생되어 선박(100)을 이동시키는 힘으로써 추진력을 발생시킬 수 있다.
또한, 회전자(30)의 방향에 따라 양압과 음압이 형성되는 방향은 상이하게 이루어질 수 있으므로, 회전자(30)의 방향이 시계 또는 반시계 방향으로 회전되는 변환을 통해 선박(S)의 운항 방향을 제어할 수도 있다.
물론, 본 실시예의 선박은 회전자(30)의 구동에 의해 추진력이 형성되는 것으로 한정되지 않으며, 종래의 실시예와 조합될 수도 있음은 물론이다. 예를 들어 메인 엔진(도시하지 않음)과 러더 등에 의한 선박(S)의 운항이 메인을 이루는 경우, 회전자(30)가 보조 역할을 수행할 수 있다. 이와 달리 회전자(30)에 의한 작동이 메인으로 이루어지고 메인 엔진과 러더에 의한 선박(S)의 운항이 보조를 이룰 수도 있는 바와 같이, 회전자(30)의 구동은 다양한 상황에서 필요에 따라 수행될 수 있다.
상기한 회전자(30)는, 하부에 설치되는 하부베어링부(70)에 회전 가능하게 연결되고, 고정자(20)의 상부에 설치되는 구동부(60)의 동력을 전달받아 회전력을 부여하는 디스크(50)에 연결될 수 있다.
이러한 회전자(30)는, 상단부가 개구될 수 있으며, 개구된 부분에 엔드플레이트(40)가 설치될 수 있다.
디스크(50)는, 회전자(30)의 내주면에 대응되는 형태, 예를 들어 원판 형태일 수 있으며, 외주면이 회전자(30)의 내주면에 고정 연결될 수 있다. 이러한 디스크(50), 구동부(60)에 연결되어 구동부(60)의 동력을 전달받아 회전자(30)에 회전력을 부여할 수 있다.
구동부(60)는, 고정자(20)의 상부에 설치되고, 디스크(50)에 연결될 수 있다. 이러한 구동부(60)는, 회전자(30)를 회전시킬 수 있는 동력을 발생시켜 디스크(50)를 통해 회전자(30)에 회전력을 전달할 수 있다.
하부베어링부(70)는, 회전자(30)의 하부에 설치될 수 있다. 하부베어링부(70)는, 회전자(30)가 구동부(60)의 동력으로 회전할 때, 횡방향 운동을 억제할 수 있도록 구성될 수 있다.
상기한 바와 같이, 본 실시예의 풍력추진 시스템(1)은, 고정자(20), 회전자(30), 엔드플레이트(40), 디스크(50), 구동부(60), 하부베어링부(70)를 포함하는데, 이하에서는 이러한 풍력추진 시스템(1)의 각 구성에 대해 도 3 내지 도 27을 참고하여 구체적으로 설명한다.
상기한 도 2에 도시된 회전자(30)는, 내부가 비어있는 원기둥 형태의 구조물로서, 다양한 실시예로 구현할 수 있는데, 이하에서는 제1실시예의 회전자(30a)를 도 3 내지 도 4를 참고하여 설명하고, 제2실시예의 회전자(30a)를 도 5 내지 도 7을 참고하여 설명한다.
도 3은 도 2에 도시된 회전자(30)의 제1실시예를 설명하기 위한 도면이고, 도 4는 제1실시예의 회전자(30a)를 구성하는 단위패널(31a)을 설명하기 위한 도면이다.
도 3 내지 도 4에 도시된 바와 같이, 제1실시예의 회전자(30a)는, 복수 개의 단위패널(31a)의 결합으로 구성될 수 있다.
단위패널(31a)은, 유리섬유, 탄소섬유, 또는 다양한 복합소재를 이용한 인발성형으로 일정 폭, 길이, 두께를 갖도록 형성될 수 있다.
단위패널(31a)은, 이웃하는 다른 단위패널(31a)과 억지끼움 결합이 가능하도록 구성될 수 있다.
단위패널(31a)은, 도 4에 도시된 바와 같이, 폭방향으로 곡면 형태를 가지며 길이 방향으로 연장되는 곡면판(31a1)와, 곡면판(31a1)의 일측 가장자리를 따라 마련되는 암커넥터(31a2)와, 곡면판(31a1)의 타측 가장자리를 따라 마련되는 수커넥터(31a3)로 이루어질 수 있다. 단위패널(31a)을 이루는 곡면판(31a1), 암커넥터(31a2), 수커넥터(31a3) 각각의 두께는 동일 또는 유사할 수 있다.
곡면판(31a1)은, 회전자(30a)의 반지름에 대응되는 곡면을 가질 수 있다.
암커넥터(31a2)와 수커넥터(31a3)는, 이웃하는 단위패널(31a) 간 억지끼움 결합 가능한 다양한 구조를 가질 수 있다.
일례로, 암커넥터(31a2)는, 곡면판(31a1)의 일측 단부로부터 회전자(30a)의 내측 방향으로 절곡되어 연장되는 제1판(31a21)과, 제1판(31a21)의 연장된 단부로부터 곡면판(31a1)의 외측 방향으로 절곡되어 연장되는 제2판(31a22)과, 제2판(31a22)의 연장된 단부로부터 회전자(30a)의 외측 방향으로 절곡되어 연장되는 제3판(31a23)과, 제3판(31a23)의 연장된 단부로부터 곡면판(31a1)의 내측 방향으로 절곡되어 연장되는 제4판(31a24)으로 이루어질 수 있으며, 제1 내지 제4판(31a24)에 의해 수커넥터(31a3)의 형상에 대응되는 'ㄱ'자형 끼움공간(31a4)이 형성될 수 있다. 이때, 수커넥터(31a3)는, 암커넥터(31a2)의 'ㄱ'자형 끼움공간(31a4)에 대응되도록, 곡면판(31a1)의 타측 단부로부터 회전자(30a)의 내측 방향으로 절곡되어 연장되는 제5판(31a31)과, 제5판(31a31)의 연장된 단부로부터 곡면판(31a1)의 내측 방향으로 절곡되어 연장되는 제6판(31a32)으로 이루어질 수 있다.
이를 통해 본 실시예의 회전자(30a)는, 상기와 같이 구성되는 단위패널(31a)을 이용한 억지끼움 결합방식으로 내부가 비어있는 원기둥 형태로 형성할 수 있어, 접착제 결합방식이나 볼팅 결합방식 대비 결합 공정을 간소화할 수 있다.
또한, 본 실시예의 회전자(30a)는, 단위패널(31a)을 유리섬유, 탄소섬유, 또는 다양한 복합소재를 이용하고, 인발성형으로 제작함으로써, 제작 공정의 간소화를 통한 제작비 절감은 물론 경량화를 이룰 수 있다.
또한, 본 실시예의 회전자(30a)는, 암커넥터(31a2)와 수커넥터(31a3)의 억지끼움 결합 부분이 곡면판(31a1)보다 두껍게 되어 자연스럽게 길이 방향으로의 보강제 역할을 할 수 있어, 보강을 위해 내부에 수지 등을 주입하는 기존의 샌드위치 제작방식보다 경제적일 수 있다.
도 5는 도 2에 도시된 회전자(30)의 제2실시예를 설명하기 위한 도면이고, 도 6은 제2실시예의 회전자(30b)를 구성하는 하부회전자(31b)와 상부회전자(32b)를 연결하는 결합부재(33b)를 설명하기 위한 도면이고, 도 7의 (a) 내지 (d)는 제2실시예의 회전자(30b)의 탑재 공정을 설명하기 위한 도면이다.
도 5 내지 도 7에 도시된 바와 같이, 제2실시예의 회전자(30b)는, 하부회전자(31b)와 상부회전자(32b)가 결합부재(33b)에 의해 조립되는 2단 조립 구조로 구성될 수 있다.
하부회전자(31b)와 상부회전자(32b) 각각은, 내부가 비어있는 원기둥 형태의 구조물일 수 있으며, 동일 재질 및 형상으로 형성될 수 있다.
하부회전자(31b)는, 고정자(20), 디스크(50), 구동부(60), 하부베어링부(70)를 수용할 수 있는 크기로 형성될 수 있다.
하부회전자(31b)의 상단에는 내측으로 일정 길이 연장되며 디스크(50)를 수용하는 공간을 갖는 링 형상의 제1엣지패널(31b1)이 마련되고, 상부회전자(32b)의 하단에는 내측으로 일정 길이 연장되며 디스크(50)를 수용하는 공간을 갖는 링 형상의 제2엣지패널(32b1)이 마련될 수 있다.
결합부재(33b)는, 상부에 디스크(50)와 구동부(60)가 설치된 고정자(20)를 하부회전자(31b)의 내부에 수용하여 제1엣지패널(31b1)과 디스크(50)를 일치시킨 상태에서 하부회전자(31b)와 디스크(50)를 결합시킬 수 있고, 하부회전자(31b)와 디스크(50)가 결합된 상태에서 하부회전자(31b)의 제1엣지패널(31b1)과 상부회전자(32b)의 제2엣지패널(32b1)을 결합시킬 수 있다.
구체적으로, 결합부재(33b)는, 제1엣지패널(31b1)의 하면과 디스크(50)의 하면을 잡아주는 제1클램핑플레이트(33b1)와, 제1엣지패널(31b1)의 상면과 디스크(50)의 상면을 잡아주는 제2클램핑플레이트(33b2)와, 제1,2클램핑플레이트(33b1, 33b2)와 디스크(50)를 고정하는 제1볼팅부재(33b3)와, 하부회전자(31b)의 제1엣지패널(31b1) 상에 상부회전자(32b)의 제2엣지패널(32b1)을 고정하는 제2볼팅부재(33b4)를 포함할 수 있다.
상기에서, 제1볼팅부재(33b3)는 제1클램핑플레이트(33b1), 디스크(50), 제2클램핑플레이트(33b2)를 고정하여 하부회전자(31b)와 디스크(50)를 결합시킬 수 있고, 제2볼팅부재(33b4)은 제1클램핑플레이트(33b1), 제1엣지패널(31b1), 제2클램핑플레이트(33b2), 제2엣지패널(32b1)을 고정하여 하부회전자(31b)와 상부회전자(32b)를 결합시킬 수 있다.
또한, 결합부재(33b)는, 하부회전자(31b)의 제1엣지패널(31b1)과 제2클램핑플레이트(33b2) 사이에 마련되는 제1본딩부재(33b5)와, 상부회전자(32b)의 제2엣지패널(32b1)과 제2클램핑플레이트(33b2) 사이에 마련되는 제2본딩부재(33b6)를 더 포함할 수 있다. 여기서, 제1,2본딩부재(33b5, 33b6)는, 도포 방식 또는 부착 방식의 다양한 접착제 또는 접착 필름일 수 있다.
상기와 같이 결합부재(33b)를 이용하여 조립하는 하부회전자(31b)와 상부회전자(32b)의 탑재 공정은, 도 7의 (a) 내지 (d)을 참고하여 설명한다.
먼저, 도 7의 (a)에 도시된 바와 같이, 육상의 기초구조물(10)을 리프팅장치(L)를 이용하여 선박(S)의 갑판 상에 탑재한다. 여기서 리프팅장치(L)는, 타워 크레인, 갠트리 크레인 또는 당업자에게 공지된 임의의 적절한 리프팅 수단일 수 있다.
도 7의 (b)에 도시된 바와 같이, 육상에서 고정자(20)의 상부에 디스크(50)와 구동부(60)를 설치하고, 하부회전자(31b)를 리프팅장치(L)로 리프팅하여 내부에 고정자(20)를 수용시키고, 결합부재(33b)를 이용하여 하부회전자(31b)와 디스크(50)를 결합시킨다.
도 7의 (c)에 도시된 바와 같이, 고정자(20)가 수용된 하부회전자(31b)를 리프팅장치(L)를 이용하여 갑판에 고정 설치된 기초구조물(10) 상에 탑재한다.
도 7의 (d)에 도시된 바와 같이, 육상의 상부회전자(32b)를 리프팅장치(L)를 이용하여 기초구조물(10) 상에 탑재된 하부회전자(31b)의 상부에 정렬시키고, 결합부재(33b)를 이용하여 하부회전자(31b)와 상부회전자(32b)를 결합시킨다.
이를 통해 본 실시예의 회전자(30b)는 하부회전자(31b)와 상부회전자(32b)가 결합부재(33b)에 의해 조립되는 2단 조립 구조로 구성함으로써, 2단 연결구조 구현을 통한 조립 공정 간소화는 물론, 크레인의 중량 및 높이 요구를 개선할 수 있다.
상기한 도 2에 도시된 엔드플레이트(40)는, 회전자(30)의 개구된 상단부에 설치되는 것으로서, 다양한 실시예로 구현할 수 있는데, 이하에서는 제1실시예의 엔드플레이트(40a)를 도 8을 참고하여 설명한다.
도 8은 도 2에 도시된 엔드플레이트(40)의 제1실시예를 설명하기 위한 도면이다.
도 8에 도시된 바와 같이, 제1실시예의 엔드플레이트(40a)는, 원판(41a)과 스티프너(42a)로 이루어질 수 있으며, 유리섬유강화플라스틱(GFRP) 또는 탄소섬유강화플라스틱(CFRP)으로 형성될 수 있다.
원판(41a)은, 중앙영역(43a)과 외곽영역(44a)으로 나누어 질 수 있다. 중앙영역(43a)은 회전자(30)의 개구된 상단부에 대응되는 영역일 수 있고, 외곽영역(44a)은 회전자(30)의 외측으로 연장되는 영역일 수 있으며, 이에 한정되는 것은 아니다.
원판(41a)의 중앙영역(43a)과 외곽영역(44a)은 동일하지 않을 수 있다. 예를 들어, 원판(41a)의 중앙영역(43a)은 반지름 방향 GFRP-2AXIS 10t일 수 있고, 원판(41a)의 외곽영역(44a)은 반지름 방향 GFRP-UD 30t일 수 있다.
스티프너(42a)는, 원판(41a)의 중앙영역(43a)을 보강하기 위한 것으로, 원판(41a)의 중심으로부터 중앙영역(43a)의 가장자리까지 복수 개가 방사상 형태로 연장되어 형성될 수 있으며, 길이 방향 GFRP-UD 10t일 수 있다.
상기에서, 원판(41a)과 스티프너(42a)의 섬유방향 및 두께 수치는 예시일 뿐이고, 다양한 적층패턴 및 두께를 적용할 수 있음은 물론이다.
이를 통해 본 실시예의 엔드플레이트(40a)는 유리섬유강화플라스틱(GFRP) 또는 탄소섬유강화플라스틱(CFRP)으로 제작함으로써, 엔드플레이트(40a)의 경량화를 통한 풍력추진시스템(1)의 구조적 성능을 향상시킬 수 있다.
상기한 도 2에 도시된 구동부(60)는, 고정자(20)의 상부에 설치되어 회전자(30)를 회전시킬 수 있는 동력을 발생시키는 것으로, 다양한 실시예로 구현할 수 있는데, 이하에서는 제1실시예의 구동부(60a)를 도 9를 참고하여 설명하고, 제2실시예의 구동부(60b)를 도 10을 참고하여 설명하고, 제3실시예의 구동부(60c)를 도 11을 참고하여 설명한다.
도 9는 도 2에 도시된 구동부(60)의 제1실시예를 설명하기 위한 도면이다.
도 9에 도시된 바와 같이, 제1실시예의 구동부(60a)는, 모터(61a), 기어박스(62a), 구동축(63a), 구동기어(64a), 피동기어(65a), 피동축(66a), 베어링하우징(67a)을 포함할 수 있다.
모터(61a)는, 구동력을 발생시켜 기어박스(62a)에 전달하며, 고정자(20)의 내측에 설치될 수 있다.
기어박스(62a)는, 모터(61a)와 결합하며 구동축(63a)을 회전시키는데 필요한 구동력을 전달하기 위한 각종 기어가 내장되며, 고정자(20)의 내측에 설치될 수 있다. 기어박스(62a)는 감속기일 수 있다.
본 실시예의 기어박스(62a) 내부에는 모터(61a)에 결합되어 모터(61a)에 의해 회전하는 구동축(63a)과, 구동축(63a)에 구비되는 구동기어(64a)와, 구동기어(64a)와 맞물려 돌아가는 피동기어(65a)와, 피동기어(65a)와 결합되어 피동기어(65a)의 회전을 지지하는 피동축(66a)이 마련될 수 있다.
구동기어(64a)와 피동기어(65a)는 감속 비율이 6:1인 감속기어일 수 있으며, 이에 한정하지 않고 다양한 감속 비율을 갖는 감속기어를 적용할 수 있음은 물론이다.
피동축(66a)은, 제1피동축(66a1)과 제2피동축(66a2)으로 이루어질 수 있다.
이경우 제1피동축(66a1)은, 기어박스(62a)의 내부에 설치되며, 하부가 기어박스(62a)의 하면에 회전 가능하게 결합되고, 상부가 기어박스(62a)의 상면을 관통하여 외부로 돌출되어 제2피동축(66a2)과 결합되도록 설치될 수 있다.
제2피동축(66a2)은, 기어박스(62a)의 외부에 설치되며, 하부가 제1피동축(66a1)의 상부와 커플링부재(68a)에 의해 결합되고, 상부가 고정자(20)의 상면을 관통하여 디스크(50)에 결합되도록 설치될 수 있다. 제2피동축(66a2)은, 제1피동축(66a1)과 연결되어 디스크(50)에 회전력을 전달할 수 있다.
상기한 구동축(63a), 제1피동축(66a1), 제2피동축(66a2) 각각은 다양한 베어링에 의해 회전할 수 있다.
구체적으로, 구동축(63a)은, 제1베어링(B1)에 의해 상부가 기어박스(62a)의 상면에 회전 가능하게 결합될 수 있고, 제2베어링(B2)에 의해 하부가 기어박스(62a)의 하면에 회전 가능하게 결합될 수 있다.
본 실시예에서 구동축(63a)은 모터(61a)의 구동력으로 회전하는 축으로서 축력(axial force)이 많이 가해지는 축이 아니므로, 이 경우 제1,2베어링(B1, B2)은 구동축(63a)의 횡력(lateral force) 또는 구동축(63a)의 횡진을 방지할 수 있는 베어링, 예를 들어 자동조심베어링을 적용할 수 있다.
제1피동축(66a1)은, 제3베어링(B3)에 의해 상부가 기어박스(62a)의 상면에 회전 가능하게 결합될 수 있고, 제4베어링(B4)에 의해 하부가 기어박스(62a)의 하면에 회전 가능하게 결합될 수 있다.
본 실시예에서 제1피동축(66a1)은 모터(61a)로부터 직접 구동력이 전달되거나 디스크(50)에 직접 구동력을 전달하지 않아 축력(axial force)이 많이 가해지는 축이 아니므로, 이 경우 제3,4베어링(B3, B4)은 제1피동축(66a1)의 횡력(lateral force)을 방지할 수 있는 베어링, 예를 들어 자동조심베어링을 적용할 수 있다.
제2피동축(66a2)은, 직렬로 배치되는 제5베어링(B5) 및 제6베어링(B6)에 의해 고정자(20)의 상면에 회전 가능하게 결합될 수 있다.
본 실시예에서 제2피동축(66a2)은 디스크(50)에 직접 구동력을 전달하는 축으로서, 축력(axial force)과 횡력(lateral force)이 많이 가해지는 축이므로, 이 경우 제5베어링(B5)은 제2피동축(66a2)의 축력을 방지할 수 있는 베어링, 예를 들어 추력베어링(thrust bearing)을 적용할 수 있고, 제6베어링(B6)은 제2피동축(66a2)의 횡력(lateral force)을 방지할 수 있는 베어링, 예를 들어 구면롤러베어링(SRB)과 같은 자동조심베어링을 적용할 수 있다.
상기한 바와 같이, 제2피동축(66a2)은 축력 및 횡력이 많이 가해지므로, 직렬로 배치되는 제5베어링(B5) 및 제6베어링(B6)을 축력 및 횡력을 견딜 수 있도록 고정자(20)에 단단하게 결합하기에는 어려움이 있다.
이에 본 실시예는 제2피동축(66a2)을 잡아주는 수단으로 베어링하우징(67a)을 고정자(20)의 상면 내측에 고정 설치할 수 있다. 베어링하우징(67a)은, 제2피동축(66a2)이 관통되며 제5,6베어링(B5, B6)을 수용할 수 있다. 베어링하우징(67a)을 고정자(20)의 상면 내측에 고정 설치함으로써, 베어링하우징(67a)에 의해 제2피동축(66a2)이 축력 및 횡력에 견딜 수 있다.
도 10는 도 2에 도시된 구동부(60)의 제2실시예를 설명하기 위한 도면이다.
도 10에 도시된 바와 같이, 제2실시예의 구동부(60b)는, 모터(61a), 기어박스(62a), 구동축(63a), 구동기어(64a), 피동기어(65a), 제1,2피동축(66a1, 66a2)으로 구성되는 피동축(66a), 베어링하우징(67b), 커플링부재(68a)를 포함할 수 있다.
제2실시예의 구동부(60b)는, 상기한 제1실시예의 구동부(60a)와 대비할 때, 베어링하우징(67b)의 설치 위치가 다르다.
즉, 본 실시예의 베어링하우징(67b)은 고정자(20)의 상면 외측에 설치되는 고, 상기한 제1실시예의 베어링하우징(67a)은 고정자(20)의 상면 내측에 설치되는 것이 다르며, 나머지 구성 요소들은 구성적으로 동일하다.
나머지 구성 요소들은 제1실시예와 구성적으로 동일하여 동일한 도면부호를 사용하였고, 이에 따라 중복 설명을 회피하기 위해 여기서는 동일한 구성에 대해 설명을 생략한다.
도 11은 도 2에 도시된 구동부(60)의 제3실시예를 설명하기 위한 도면이다.
도 11에 도시된 바와 같이, 제3실시예의 구동부(60c)는, 모터(61c), 기어박스(62c), 구동축(63c), 구동기어(64c), 피동기어(65c), 피동축(66c)을 포함할 수 있다.
모터(61c)는, 구동력을 발생시켜 기어박스(62c)에 전달하며, 고정자(20)의 상면 내측에 설치될 수 있다.
기어박스(62c)는, 모터(61c)와 결합하며 구동축(63c)을 회전시키는데 필요한 구동력을 전달하기 위한 각종 기어가 내장되며, 고정자(20)의 상면 외측에 설치될 수 있다. 기어박스(62c)는 감속기일 수 있다.
본 실시예의 기어박스(62c) 내부에는 모터(61c)에 결합되어 모터(61c)에 의해 회전하는 구동축(63c)과, 구동축(63c)에 구비되는 구동기어(64c)와, 구동기어(64c)와 맞물려 돌아가는 피동기어(65c)와, 피동기어(65c)와 결합되어 피동기어(65c)의 회전을 지지하며 디스크(50)에 회전력을 전달하는 피동축(66c)이 마련될 수 있다.
구동기어(64c)와 피동기어(65c)는 감속 비율이 6:1인 감속기어일 수 있으며, 이에 한정하지 않고 다양한 감속 비율을 갖는 감속기어를 적용할 수 있음은 물론이다.
상기한 구동축(63c), 피동축(66c) 각각은 다양한 베어링에 의해 회전할 수 있다.
구체적으로, 구동축(63c)은, 제7베어링(B7)에 의해 상부가 기어박스(62c)의 상면에 회전 가능하게 결합될 수 있고, 제8베어링(B8)에 의해 하부가 기어박스(62c)의 하면에 회전 가능하게 결합될 수 있다.
본 실시예에서 구동축(63c)은 모터(61c)의 구동력으로 회전하는 축으로서 축력(axial force)이 많이 가해지는 축이 아니므로, 이 경우 제7,8베어링(B7, B8)은 구동축(63c)의 횡력(lateral force) 또는 구동축(63c)의 횡진을 방지할 수 있는 베어링, 예를 들어 자동조심베어링을 적용할 수 있다.
피동축(66c)은, 제9베어링(B9)에 의해 상부가 기어박스(62c)의 상면에 회전 가능하게 결합될 수 있고, 직렬로 배치되는 제10베어링(B10) 및 제11베어링(B11)에 의해 하부가 기어박스(62c)의 하면에 회전 가능하게 결합될 수 있다.
본 실시예에서 피동축(66c)은 디스크(50)에 직접 구동력을 전달하는 축으로서, 축력(axial force)과 횡력(lateral force)이 많이 가해지는 축이므로, 이 경우 제10베어링(B10)은 피동축(66c)의 축력을 방지할 수 있는 베어링, 예를 들어 추력베어링(thrust bearing)을 적용할 수 있고, 제11베어링(B11)은 피동축(66c)의 횡력(lateral force)을 방지할 수 있는 베어링, 예를 들어 자동조심베어링을 적용할 수 있다.
또한, 제10,11베어링(B10, B11)은 기어박스(62c)의 하면에서 피동축(66c)에 직렬로 배치되므로, 기어박스(62c)의 하면 두께를 다른 면보다 상대적으로 두껍게 하여 제10,11베어링(B10, B11)이 설치되도록 할 수 있다. 기어박스(62c)의 하면 두께를 기존과 같은 두께로 할 경우 상기한 제1실시예의 베어링하우징(67a)을 기어박스(62c) 내부에 고정 설치하여 제10,11베어링(B10, B11)을 설치할 수 있음은 물론이다.
상기한 바와 같이, 본 실시예에서 피동축(66c)은 디스크(50)에 직접 구동력을 전달하는 축으로 축력과 횡력이 많이 가해지지만, 제10,11베어링(B10, B11)에 의해 축력 및 횡력을 방지할 수 있음은 물론, 피동축(66c) 자체의 길이가 짧으므로, 제9베어링(B9)을 피동축(66c)의 횡력을 방지할 수 있는 베어링, 예를 들어 자동조심베어링으로 적용할 수 있다.
상기한 도 2에 도시된 하부베어링부(70)는, 구동부(60)의 동력으로 회전하는 회전자(30)의 횡방향 운동을 억제하는 것으로서, 다양한 실시예로 구현할 수 있는데, 이하에서는 제1실시예의 하부베어링부(70a)를 도 12 내지 도 14를 참고하여 설명하고, 제2실시예의 하부베어링부(70b)를 도 15 내지 도 17을 참고하여 설명하고, 제3실시예의 하부베어링부(70c)를 도 18 내지 도 20을 참고하여 설명하고, 제4실시예의 하부베어링부(70d)를 도 21 내지 도 22를 참고하여 설명하고, 제5실시예의 하부베어링부(70e)를 도 23 내지 도 25를 참고하여 설명하고, 제6실시예의 하부베어링부(70f)를 도 26 내지 도 27을 참고하여 설명 설명한다.
도 12는 도 2에 도시된 하부베어링부(70)의 제1실시예를 설명하기 위한 풍력추진 시스템(1)의 일부 도면이고, 도 13은 도 12의 A-A'선을 따라 절단한 도면이고, 도 14는 도 13의 B-B'선을 따라 절단한 도면이다.
도 12 내지 도 14에 도시된 바와 같이, 제1실시예의 하부베어링부(70a)는, 베어링유닛(71a)의 집합체로 구성될 수 있으며, 기초구조물(10)에 설치될 수 있다.
베어링유닛(71a)은, 기초구조물(10)에 설치될 수 있으며, 가이드베어링(71a1), 베어링지지대(71a2)로 이루어질 수 있다.
가이드베어링(71a1)은, 베어링지지대(71a2)의 상단에 설치될 수 있으며, 회전자(30)의 회전을 가이드 할 수 있다.
베어링지지대(71a2)는, 상단에 설치되는 가이드베어링(71a1)을 지지하며, 기초구조물(10)에 설치될 수 있다.
상기한 베어링유닛(71a)은, 회전자(30)의 내주면을 따라 일정 간격을 두고 복수 개로 배치되어 하부베어링부(70a)를 이루게 되는데, 이때, 가이드베어링(71a1)은 회전자(30)의 내주면에 밀착되고, 베어링지지대(71a2)는 회전자(30) 및 고정자(20)에 중첩없이 기초구조물(10) 상에 설치될 수 있다.
본 실시예에서는 베어링유닛(71a)의 유지보수를 용이하게 수행할 수 있도록, 하부베어링부(70a)와 고정자(20) 사이에 통행로(81)가 마련될 수 있다.
통행로(81)는, 고정자(20)의 직경을 기존 대비 작게 함에 의해 확보할 수 있다. 예를 들어, 기존의 고정자의 직경이 4 내지 4.5m일 경우, 본 실시예의 고정자(20)는 직경을 2 내지 2.5m 수준으로 작게 함에 의해 통행로(81)가 확보될 수 있다.
고정자(20)는, 전체적으로 직경을 작게 할 수 있으나, 상부에 구동부(60)가 설치되는 공간이 마련되도록, 도 12에 도시된 바와 같이 구동부(60)가 마련되는 상부의 직경은 기존의 직경처럼 크게하는 것이 바람직할 수 있다.
이를 통해 본 실시예의 하부베어링부(70a)은 베어링유닛(71a)의 제작이 용이하고, 베어링지지대(71a2)를 기초구조물(10)에 직접 설치함에 의해 설치 공수를 절감할 수 있고, 통행로(81)를 확보함에 의해 유지보수를 용이하게 할 수 있고, 고정자(20)를 경량화시킬 수 있다.
도 15는 도 2에 도시된 하부베어링부(70)의 제2실시예를 설명하기 위한 풍력추진 시스템(1)의 일부 도면이고, 도 16은 도 15의 A-A'선을 따라 절단한 도면이고, 도 17은 도 16의 B-B'선을 따라 절단한 도면이다.
도 15 내지 도 17에 도시된 바와 같이, 제2실시예의 하부베어링부(70b)는, 베어링유닛(71b)의 집합체로 구성될 수 있으며, 기초구조물(10)에 설치될 수 있다.
베어링유닛(71b)은, 기초구조물(10)에 설치될 수 있으며, 가이드베어링(71b1), 베어링지지대(71b2)로 이루어질 수 있다.
가이드베어링(71b1)은, 베어링지지대(71b2)의 상단에 설치될 수 있으며, 회전자(30)의 회전을 가이드 할 수 있다.
베어링지지대(71b2)는, 상단에 설치되는 가이드베어링(71b1)을 지지하며, 기초구조물(10)에 설치될 수 있다.
상기한 베어링유닛(71b)은, 회전자(30)의 내주면을 따라 일정 간격을 두고 복수 개로 배치되어 하부베어링부(70b)를 이루게 되는데, 이때, 가이드베어링(71b1)은 회전자(30)의 내주면에 밀착되고, 베어링지지대(71b2)는 고정자(20)에 중첩되도록 기초구조물(10) 상에 설치될 수 있다.
본 실시예의 고정자(20)는 하단부에 일정 간격의 개방부(82)가 형성되고, 개방부(82)에 베어링유닛(71b)을 설치함으로써, 베어링유닛(71b)이 고정자(20)에 중첩되되도록 설치될 수 있다.
이를 통해 본 실시예의 하부베어링부(70b)은 베어링유닛(71b)의 제작이 용이하고, 베어링지지대(71b2)를 기초구조물(10)에 직접 설치함에 의해 설치 공수를 절감할 수 있고, 개방부(82)를 통해 베어링유닛(71b)의 유지보수를 용이하게 할 수 있다.
도 18은 도 2에 도시된 하부베어링부(70)의 제3실시예를 설명하기 위한 풍력추진 시스템(1)의 일부 도면이고, 도 19는 제3실시예의 하부베어링부(70c)를 구성하는 베어링유닛(71c)을 설명하기 위한 도면이고, 도 20의 (a) 내지 (c)는 도 19의 베어링유닛(71c)이 고정자(20)에 설치된 상태를 도시한 도면으로, 여기서 (a)는 평면도이고, (b)는 정면도이고, (c)는 배면도이다.
도 18 내지 도 20에 도시된 바와 같이, 제3실시예의 하부베어링부(70c)는, 베어링유닛(71c)의 집합체로 구성될 수 있으며, 고정자(20)에 설치될 수 있다.
베어링유닛(71c)은, 고정자(20)에 설치될 수 있으며, 가이드베어링(71c1), 제1조인트플레이트(71c2), 제2조인트플레이트(71c3)로 이루어질 수 있다. 본 실시예에서, 고정자(20)는 베어링유닛(71c)이 설치되는 위치에 일정 간격을 두고 창(83)이 마련될 수 있다.
가이드베어링(71c1)은, 제1조인트플레이트(71c2)에 설치될 수 있으며, 회전자(30)의 회전을 가이드 할 수 있다.
제1조인트플레이트(71c2)는, 한 쌍으로 이루어질 수 있으며, 가이드베어링(71c1)의 베어링축(71c11)의 양단에 결합될 수 있다. 한 쌍의 제1조인트플레이트(71c2)는, 베어링축(71c11)에 결합된 상태에서 가이드베어링(71c1)의 일측으로 수평 연장되고, 연장된 단부에서 수직 절곡된 형태를 가질 수 있다. 한 쌍의 제1조인트플레이트(71c2)에는 제2조인트플레이트(71c3)와 볼팅 결합을 위한 제1볼팅구멍(71c21)이 복수 개 마련될 수 있다.
제2조인트플레이트(71c3)는, 고정자(20)의 내측에서 창(83)의 가장자리를 따라 설치될 수 있으며, 한 쌍의 제1조인트플레이트(71c2)와 결합을 위해 제1볼팅구멍(71c21)에 대응되는 제2볼팅구멍(71c31)이 복수 개 마련될 수 있다. 제2조인트플레이트(71c3)는 적어도 가이드베어링(71c1)의 반지름 또는 그 이하의 크기로 돌출된 형태를 가질 수 있다.
상기한 베어링유닛(71c)은, 제1,2조인트플레이트(71c2, 71c3)의 볼팅 결합을 통해 고정자(20)에 설치되고, 회전자(30)의 내주면을 따라 일정 간격을 두고 복수 개로 배치되어 하부베어링부(70c)를 이루게 되는데, 이때 가이드베어링(71c1)은, 도 20의 (a) 내지 (c)에 도시된 바와 같이, 제1,2조인트플레이트(71c2, 71c3)에 의해 고정된 상태에서 일부가 고정자(20)의 창(83)을 통해 외측으로 돌출되어 회전자(30)의 내주면에 밀착될 수 있다.
이를 통해 본 실시예의 하부베어링부(70c)은 베어링유닛(71c)을 모듈화로 제작함에 따라 제작이 용이할 뿐만 아니라 설치 공수를 절감할 수 있으며, 고정자(20)에 설치됨에 따라 구조적 안전성을 확보할 수 있다.
도 21은 도 2에 도시된 하부베어링부(70)의 제4실시예를 설명하기 위한 풍력추진 시스템(1)의 일부 도면이고, 도 22는 제4실시예의 하부베어링부(70d)를 구성하는 베어링유닛(71d)을 설명하기 위한 도면이다.
도 21 내지 도 22에 도시된 바와 같이, 제4실시예의 하부베어링부(70d)는, 베어링유닛(71d)의 집합체로 구성될 수 있으며, 고정자(20)에 설치될 수 있다.
베어링유닛(71d)은, 고정자(20)에 설치될 수 있으며, 가이드베어링(71d1), 조인트박스(71d2)로 이루어질 수 있다. 본 실시예에서, 고정자(20)는, 베어링유닛(71d)이 설치되는 위치에 일정 간격을 두고 창(84)이 마련될 수 있다.
가이드베어링(71d1)은, 조인트박스(71d2)에 설치될 수 있으며, 회전자(30)의 회전을 가이드 할 수 있다.
조인트박스(71d2)는, 고정자(20)의 내측에서 창(84)의 가장자리를 따라 설치될 수 있으며, 가이드베어링(71d1)의 일부가 외부로 돌출된 상태에서 가이드베어링(71d1)을 고정할 수 있다. 조인트박스(71d2)에는 고정자(20)와의 볼팅 결합을 위한 제1볼팅구멍(71d21)이 복수 개 마련될 수 있다.
고정자(20)는, 베어링유닛(71d)이 설치되는 위치에 일정 간격을 두고 창(84)이 마련될 수 있으며, 조인트박스(71d2)와의 볼팅 결합을 위해 창(84)의 가장자리를 따라 제1볼팅구멍(71d21)에 대응되는 제2볼팅구멍(71d22)이 마련될 수 있다.
상기한 베어링유닛(71d)은, 조인트박스(71d2)의 볼팅 결합을 통해 고정자(20)에 설치되고, 회전자(30)의 내주면을 따라 일정 간격을 두고 복수 개로 배치되어 하부베어링부(70d)를 이루게 되는데, 이때 가이드베어링(71d1)은, 조인트박스(71d2)가 고정자(20)에 고정된 상태에서 일부가 고정자(20)의 창(84)을 통해 외측으로 돌출되어 회전자(30)의 내주면에 밀착될 수 있다.
이를 통해 본 실시예의 하부베어링부(70d)은 베어링유닛(71d)을 모듈화로 제작함에 따라 제작이 용이할 뿐만 아니라 설치 공수를 절감할 수 있으며, 고정자(20)에 설치됨에 따라 구조적 안전성을 확보할 수 있다.
도 23은 도 2에 도시된 하부베어링부(70)의 제5실시예를 설명하기 위한 풍력추진 시스템(1)의 일부 도면이고, 도 24는 도 23의 A-A'선을 따라 절단한 도면이고, 도 25는 도 24의 B-B'선을 따라 절단한 도면이다.
도 23 내지 도 25에 도시된 바와 같이, 제5실시예의 하부베어링부(70e)는, 베어링유닛(71e)의 단일체로 구성될 수 있으며, 고정자(20)에 설치될 수 있다.
베어링유닛(71e)은, 고정자(20)에 설치될 수 있으며, 가이드베어링(71e1), 가이드레일(71e2)로 이루어질 수 있다.
가이드베어링(71e1)은, 고정자(20)의 외주면을 따라 설치될 수 있으며, 회전자(30)의 회전을 가이드 할 수 있다.
가이드베어링(71e1)은, 환 형태의 단일 베어링일 수 있으며, 예를 들어 저널 타입(journal type) 또는 볼/롤러 타입(ball/roller type) 베어링일 수 있다.
환 형태의 가이드베어링(71e1)은 2.5m의 직경을 가지는 구조물에 설치 가능한 것이 현재 최대 크기의 베어링인 점을 고려하여, 고정자(20)는 적어도 2.5m의 직경보다 작을 수 있다. 이러한 고정자(20)는, 전체적으로 2.5m 이하의 직경을 가질 수 있으나, 상부에 구동부(60)가 설치되는 공간이 마련되도록, 도 23에 도시된 바와 같이 구동부(60)가 마련되는 상부의 직경은 기존의 직경(예를 들어, 4 내지 4.5m)처럼 크게하는 것이 바람직할 수 있다.
가이드레일(71e2)은, 환 형태의 가이드베어링(71e1)에 대응되는 위치의 회전자(30)의 내주면을 따라 형성될 수 있으며, 가이드베어링(71e1)을 가이드 할 수 있다. 이때, 가이드레일(71e2)은 돌출되는 높이를 다양하게 구현할 수 있는데, 돌출 높이는 회전자(30)의 직경에 따라 결정될 수 있다.
즉, 고정자(20)의 직경이 2.5m일 때, 회전자(30)의 최소 직경은 고정자(20)의 외주면에 설치되는 가이드베어링(71e1)의 직경에 대응될 수 있으며, 가이드레일(71e2)의 돌출 높이에 따라 회전자(30)의 최대 직경이 결정될 수 있다.
일반적으로, 회전자(30)는 직경이 클수록 풍력추진 능력이 향상되므로, 본 실시예는 회전자(30)의 직경을 원하는 만큼 크게 하더라도 가이드레일(71e2)의 돌출 높이를 조절함에 의해 하부베어링부(70e)의 기능을 수행할 수 있게 한다.
이러한 가이드레일(71e2)은, 별도 제작하여 회전자(30)의 내주면에 설치되거나, 회전자(30)와 일체형으로 제조될 수 있다.
이를 통해 본 실시예의 하부베어링부(70e)은, 가이드베어링(71e1)으로 환 형태의 단일 베어링을 적용하여 고정자(20)에 설치함에 따라 구조적 안전성을 확보할 수 있고, 가이드레일(71e2)의 높이를 조절함에 따라 회전자(30)의 크기를 원하는 크기로 변경 제작할 수 있어 풍력추진 성능을 용이하게 향상시킬 수 있다.
도 26은 도 2에 도시된 하부베어링부(70)의 제6실시예를 설명하기 위한 풍력추진 시스템(1)의 일부 도면이고, 도 27은 도 26의 A-A'선을 따라 절단한 도면이다.
도 26 내지 도 27에 도시된 바와 같이, 제6실시예의 하부베어링부(70f)는, 베어링유닛(71f)의 집합체로 구성될 수 있으며, 회전자(30)에 설치될 수 있다.
베어링유닛(71f)은, 회전자(30)에 설치될 수 있으며, 가이드베어링(71f1), 아암(71f2), 가이드레일(71f3)로 이루어질 수 있다.
가이드베어링(71f1)은, 아암(71f2)이 일측에 설치될 수 있으며, 회전자(30)의 회전을 가이드 할 수 있다.
아암(71f2)은, 회전자(30)의 내주면에 설치될 수 있다. 아암(71f2)은, 길이 가변형, 접이식, 또는 고정식일 수 있다. 아암(71f2)은, 길이 가변형일 경우 텔레스코픽 또는 텐트폴처럼 수동식으로 길이를 조절할 수 있다.
가이드레일(71f3)은, 고정자(20)의 외주면을 따라 형성될 수 있으며, 가이드베어링(71f1)을 가이드 할 수 있다. 이때, 가이드레일(71f3)은 돌출되는 높이를 다양하게 구현할 수 있는데, 돌출 높이는 고정자(20) 또는 회전자(30)의 직경에 따라 결정될 수 있다.
예를 들어, 회전자(30)의 직경이 결정된 상태에서, 고정자(20)의 직경을 변경할 때, 변경되는 직경에 따라 가이드레일(71f3)의 돌출 높이를 조절함에 의해 하부베어링부(70f)의 기능을 수행할 수 있게 한다. 또한, 고정자(20)의 직경이 결정된 상태에서, 회전자(30)의 직경을 변경할 때도 마찬가지이다.
이러한 가이드레일(71f3)은, 별도 제작하여 고정자(20)의 외주면에 설치되거나, 고정자(20)와 일체형으로 제조될 수 있다.
이를 통해 본 실시예의 하부베어링부(70f)은, 가이드레일(71f3)의 높이를 조절함에 따라 회전자(30) 또는 고정자(20)의 크기를 원하는 크기로 제작할 수 있어 풍력추진 성능을 용이하게 향상시킬 수 있다.
본 발명의 풍력추진 시스템(1)은, 상기한 바와 같이, 도 2에 도시된 고정자(20), 회전자(30), 엔드플레이트(40), 디스크(50), 구동부(60), 하부베어링부(70) 각각에 대해 도 3 내지 도 27을 참고하여 다양한 실시예로 설명하였는 바, 각 구성에 대한 실시예에 한정되지 않으며, 상기 실시예들의 조합 또는 상기 실시예 중 적어도 어느 하나와 공지 기술의 조합을 또 다른 실시예로서 포함할 수 있다.
이상에서는 본 발명의 실시예들을 중심으로 본 발명을 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 기술내용을 벗어나지 않는 범위에서 실시예에 예시되지 않은 여러 가지의 조합 또는 변형과 응용이 가능함을 알 수 있을 것이다. 따라서, 본 발명의 실시예들로부터 용이하게 도출 가능한 변형과 응용에 관계된 기술내용들은 본 발명에 포함되는 것으로 해석되어야 할 것이다.
[부호의 설명]
1: 풍력추진 시스템 10: 기초구조물
20: 고정자 30, 30a, 30b: 회전자
31a: 단위패널 31a1: 곡면판
31a2: 암커넥터 31a21: 제1판
31a22: 제2판 31a23: 제3판
31a21: 제4판 31a3: 수커넥터
31a31: 제5판 31a32: 제6판
31a4: 끼움공간 31b: 하부회전자
31b1: 제1엣지패널 32b: 상부회전자
32b1: 제2엣지패널 33b: 결합부재
33b1: 제1클램핑플레이트 33b2: 제2클램핑플레이트
33b3: 제1볼팅부재 33b4: 제2볼팅부재
33b5: 제1본딩부재 33b6: 제2본딩부재
40, 40a: 엔드플레이트 41a: 원판
42a: 스티프너 43a: 중앙영역
44a: 외곽영역 50: 디스크
60, 60a, 60b, 60c: 구동부 61a, 61c: 모터
62a, 62c: 기어박스 63a, 63c: 구동축
64a, 64c: 구동기어 65a, 65c: 피동기어
66a, 66c: 피동축 66a1: 제1피동축
66a2: 제2피동축 67a, 67b: 베어링하우징
68a: 커플링부재
70, 70a, 70b, 70c, 70d, 70e, 70f: 하부베어링부
71a, 71b, 71c, 71d, 71e, 71f: 베어링유닛
71a1, 71b1, 71c1, 71d1, 71e1, 71f1: 가이드베어링
71c11: 베어링축 71a2, 71b2: 베어링지지대
71c2: 제1조인트플레이트 71c21: 제1볼팅구멍
71c3: 제2조인트플레이트 71c31: 제2볼팅구멍
71d2: 조인트박스 71d21: 제1볼팅구멍
71d22: 제2볼팅구멍 71e2: 가이드레일
71f2: 아암 71f3 가이드레일
81: 통행로 82: 개방부
83, 84: 창 B1 내지 B11: 제1 내지 제11베어링
S: 선박 L: 리프팅장치

Claims (14)

  1. 갑판에 수직하게 마련되는 고정자;
    상기 고정자의 외측을 두르도록 원기둥 형태로 마련되는 회전자;
    상기 회전자에 연결되는 디스크를 통해 상기 회전자에 회전 동력을 전달하는 구동부; 및
    상기 회전자의 하부에 설치되어 상기 회전자의 횡방향 운동을 억제하는 하부베어링부를 포함하고,
    상기 하부베어링부는,
    베어링유닛의 집합체로 구성되며, 적어도 일부분이 상기 고정자의 내측에서 상기 베어링유닛이 설치되는 위치에 일정 간격을 두고 마련되는 창의 가장자리를 따라 설치되며, 상기 회전자의 회전을 가이드 하는 가이드베어링을 상기 고정자에 지지하는 조인트부를 포함하는 풍력추진 시스템.
  2. 제1항에 있어서, 상기 조인트부는,
    한 쌍으로 이루어지며, 상기 가이드베어링의 베어링축의 양단에 결합되는 제1조인트플레이트; 및
    상기 고정자의 내측에서 상기 창의 가장자리를 따라 설치되며, 상기 제1조인트플레이트와 결합되는 제2조인트플레이트를 포함하는 풍력추진 시스템.
  3. 제2항에 있어서, 상기 제1조인트플레이트는,
    상기 베어링축에 결합된 상태에서 상기 가이드베어링의 일측으로 수평 연장되고, 연장된 단부에서 수직 절곡된 형태를 가지며, 상기 제2조인트플레이트와 볼팅 결합을 위한 제1볼팅구멍이 복수 개 마련되고,
    상기 제2조인트플레이트는,
    적어도 상기 가이드베어링의 반지름 또는 그 이하의 크기로 돌출된 형태를 가지며, 상기 제1볼팅구멍에 대응되는 제2볼팅구멍이 복수 개 마련되는 풍력추진 시스템.
  4. 제1항에 있어서, 상기 조인트부는,
    상기 고정자의 내측에서 상기 창의 가장자리를 따라 설치되며, 상기 가이드베어링의 일부가 외부로 돌출된 상태로 상기 가이드베어링을 고정하는 조인트박스를 포함하는 풍력추진 시스템.
  5. 제1항에 있어서, 상기 구동부는,
    모터에 의해 회전하는 구동축과, 상기 구동축에 구비되는 구동기어와, 상기 구동기어와 맞물려 돌아가는 피동기어와, 상기 피동기어와 결합되어 상기 피동기어의 회전을 지지하는 제1피동축이 내장되며, 상기 고정자의 내측에 설치되는 기어박스; 및
    커플링부재에 의해 상기 제1피동축과 연결되어 상기 디스크에 회전력을 전달하는 제2피동축을 잡아주는 베어링하우징을 포함하는 풍력추진 시스템.
  6. 제5항에 있어서, 상기 베어링하우징은,
    상기 고정자의 상면 내측에 설치되거나, 상기 고정자의 상면 외측에 설치되는 풍력추진 시스템.
  7. 제5항에 있어서, 상기 구동축은,
    제1베어링에 의해 상부가 상기 기어박스의 상면에 회전 가능하게 결합되고,
    제2베어링에 의해 하부가 상기 기어박스의 하면에 회전 가능하게 결합되고,
    상기 제1,2베어링은,
    상기 구동축의 횡력 또는 상기 구동축의 횡진을 방지하는 베어링인 풍력추진 시스템.
  8. 제5항에 있어서, 상기 제1피동축은,
    제3베어링에 의해 상부가 상기 기어박스의 상면에 회전 가능하게 결합되고,
    제4베어링에 의해 하부가 상기 기어박스의 하면에 회전 가능하게 결합되고,
    상기 제3,4베어링은,
    상기 제1피동축의 횡력을 방지하는 베어링인 풍력추진 시스템.
  9. 제5항에 있어서, 상기 제2피동축은,
    직렬로 배치되는 제5베어링 및 제6베어링에 의해 상기 고정자의 상면에 회전 가능하게 결합되고,
    상기 제5베어링은,
    상기 제2피동축의 축력을 방지하는 베어링이고,
    상기 제6베어링은,
    상기 제2피동축의 횡력을 방지하는 베어링인 풍력추진 시스템.
  10. 제1항에 있어서, 상기 회전자는,
    상단에 내측으로 일정 길이 연장되며 상기 디스크를 수용하는 공간을 갖는 링 형상의 제1엣지패널이 마련되는 하부회전자;
    하단에 내측으로 일정 길이 연장되며 상기 디스크를 수용하는 공간을 갖는 링 형상의 제2엣지패널이 마련되는 상부회전자; 및
    상기 하부회전자, 상기 상부회전자, 상기 디스크를 결합하는 결합부재를 포함하는 풍력추진 시스템.
  11. 제10항에 있어서, 상기 결합부재는,
    상기 제1엣지패널의 하면과 상기 디스크의 하면을 잡아주는 제1클램핑플레이트;
    상기 제1엣지패널의 상면과 상기 디스크의 상면을 잡아주는 제2클램핑플레이트;
    상기 제1,2클램핑플레이트와 상기 디스크를 고정하는 제1볼팅부재; 및
    상기 제1엣지패널와 상기 제2엣지패널을 고정하는 제2볼팅부재를 포함하는 풍력추진 시스템.
  12. 제11항에 있어서, 상기 결합부재는,
    상기 제1엣지패널과 상기 제2클램핑플레이트 사이에 마련되는 제1본딩부재; 및
    상기 제2엣지패널과 상기 제2클램핑플레이트 사이에 마련되는 제2본딩부재를 더 포함하는 풍력추진 시스템.
  13. 제10항에 있어서,
    육상의 상기 기초구조물을 리프팅장치를 이용하여 상기 갑판 상에 탑재하고,
    육상에서 상기 고정자의 상부에 상기 디스크와 상기 구동부를 설치하고,
    상기 하부회전자를 상기 리프팅장치로 리프팅하여 내부에 상기 고정자를 수용시키고,
    상기 결합부재를 이용하여 상기 하부회전자와 상기 디스크를 결합시키고,
    상기 고정자가 수용된 상기 하부회전자를 상기 리프팅장치를 이용하여 상기 기초구조물 상에 탑재하고,
    육상의 상부회전자를 상기 리프팅장치를 이용하여 상기 기초구조물 상에 탑재된 상기 하부회전자의 상부에 정렬시키고,
    상기 결합부재를 이용하여 상기 하부회전자와 상기 상부회전자를 결합시키는 풍력추진 시스템.
  14. 제1항 내지 제13항 중 어느 한 항에 따른 상기 풍력추진 시스템이 구비되는 선박.
PCT/KR2021/017096 2020-11-26 2021-11-19 풍력추진 시스템 및 이를 구비한 선박 WO2022114686A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023511656A JP2023537639A (ja) 2020-11-26 2021-11-19 風力推進システム及びそれを備えた船舶
CN202180058020.2A CN116157322A (zh) 2020-11-26 2021-11-19 风力推进系统及具有其的船舶

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
KR20200161287 2020-11-26
KR10-2020-0161287 2020-11-26
KR1020210097912A KR102552707B1 (ko) 2020-11-26 2021-07-26 풍력추진 시스템 및 이를 구비한 선박
KR10-2021-0097912 2021-07-26
KR10-2021-0097936 2021-07-26
KR10-2021-0097993 2021-07-26
KR1020210098006A KR102552704B1 (ko) 2020-11-26 2021-07-26 풍력추진 시스템 및 이를 구비한 선박
KR10-2021-0098006 2021-07-26
KR1020210097993A KR102630854B1 (ko) 2020-11-26 2021-07-26 풍력추진 시스템 및 이를 구비한 선박
KR10-2021-0097966 2021-07-26
KR1020210097936A KR102552705B1 (ko) 2020-11-26 2021-07-26 풍력추진 시스템 및 이를 구비한 선박
KR1020210097966A KR102673890B1 (ko) 2020-11-26 2021-07-26 풍력추진 시스템 및 이를 구비한 선박

Publications (1)

Publication Number Publication Date
WO2022114686A1 true WO2022114686A1 (ko) 2022-06-02

Family

ID=81756197

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2021/017094 WO2022114684A1 (ko) 2020-11-26 2021-11-19 풍력추진 시스템 및 이를 구비한 선박
PCT/KR2021/017096 WO2022114686A1 (ko) 2020-11-26 2021-11-19 풍력추진 시스템 및 이를 구비한 선박

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017094 WO2022114684A1 (ko) 2020-11-26 2021-11-19 풍력추진 시스템 및 이를 구비한 선박

Country Status (3)

Country Link
JP (2) JP7427843B2 (ko)
CN (2) CN116157322A (ko)
WO (2) WO2022114684A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4602584A (en) * 1984-06-12 1986-07-29 Henry North Propulsion device for a ship
JP2005225271A (ja) * 2004-02-10 2005-08-25 Mitsui Eng & Shipbuild Co Ltd 船舶の補助推進力を発生させるドジャー支持体構造
KR20090016607A (ko) * 2006-05-31 2009-02-16 워벤 알로이즈 매그너스 로터
KR20130052024A (ko) * 2010-09-16 2013-05-21 보벤 프로퍼티즈 게엠베하 마그누스 로터
WO2013110695A1 (en) * 2012-01-24 2013-08-01 Winkler Joern Paul Magnus-effect rotor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2514867B (en) 2013-11-17 2015-08-05 Norsepower Oy Propulsion systems for aquatic vessels
US9694889B2 (en) 2015-03-04 2017-07-04 Magnuss Services, Inc. Methods and systems for a vertically variable ocean sail system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4602584A (en) * 1984-06-12 1986-07-29 Henry North Propulsion device for a ship
JP2005225271A (ja) * 2004-02-10 2005-08-25 Mitsui Eng & Shipbuild Co Ltd 船舶の補助推進力を発生させるドジャー支持体構造
KR20090016607A (ko) * 2006-05-31 2009-02-16 워벤 알로이즈 매그너스 로터
KR20130052024A (ko) * 2010-09-16 2013-05-21 보벤 프로퍼티즈 게엠베하 마그누스 로터
WO2013110695A1 (en) * 2012-01-24 2013-08-01 Winkler Joern Paul Magnus-effect rotor

Also Published As

Publication number Publication date
CN116075465A (zh) 2023-05-05
JP2023537640A (ja) 2023-09-04
WO2022114684A1 (ko) 2022-06-02
CN116157322A (zh) 2023-05-23
JP7427843B2 (ja) 2024-02-05
JP2023537639A (ja) 2023-09-04

Similar Documents

Publication Publication Date Title
WO2016099023A1 (ko) 치차 결합 방식의 조타 장치 및 이를 이용한 조타 방법
WO2010104320A2 (ko) 유성기어를 이용한 동력 전달 장치
WO2009096754A2 (ko) 태양 위치 추적 장치
WO2022114686A1 (ko) 풍력추진 시스템 및 이를 구비한 선박
WO2016036107A1 (ko) 자속 집중형 폴 피스를 갖는 마그네틱 기어 및 폴 피스가 로터들의 외측에 구비되는 마그네틱 기어
WO2019190263A1 (ko) 개량형 하이브리드 드론
WO2012044089A2 (ko) 수직축 터빈 및 이를 구비하는 양방향 적층식 수직축 터빈
WO2021177803A1 (ko) 자기기어용 회전자, 그 제조방법, 그를 포함하는 자기기어 및 그를 포함하는 추진모듈
WO2014088167A1 (ko) 선박용 추진장치, 이의 설치방법 및 설치해체방법
WO2021118054A1 (ko) 하이브리드 구동 모듈
WO2021010556A1 (ko) 태양광 모듈이 장착 가능한 루버 조립체
WO2013165225A1 (ko) 선박용 추진장치
WO2015182997A1 (ko) 선박 부양 또는 침수용 보트리프트 장치
WO2011090244A1 (ko) 전기자동차의 발전제어시스템
WO2014003366A1 (ko) 부유식 구조물
WO2021125526A1 (ko) 2중 및 다중 공극 회전기기
WO2020153521A1 (ko) 디스플레이 디바이스
WO2016108299A1 (ko) 무단 변속장치
WO2022010020A1 (ko) 자기기어용 폴피스, 그 제조방법, 그를 포함하는 자기기어 및 그를 포함하는 추진모듈
WO2020204296A1 (ko) 전기 자동차용 건식 토크 컨버터 및 그 제어방법
WO2020091134A1 (ko) 모션 시스템
WO2018221887A1 (ko) 증력기를 이용한 증강자가발전기
WO2019045511A1 (ko) 간만 발전기
WO2022010251A1 (ko) 트롤리 및 이를 구비하는 해양 구조물
WO2023128213A1 (ko) 토셔널 댐퍼 및 이를 구비한 하이브리드 구동 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511656

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21898512

Country of ref document: EP

Kind code of ref document: A1