WO2022113971A1 - Substrate processing apparatus and substrate processing method - Google Patents

Substrate processing apparatus and substrate processing method Download PDF

Info

Publication number
WO2022113971A1
WO2022113971A1 PCT/JP2021/042906 JP2021042906W WO2022113971A1 WO 2022113971 A1 WO2022113971 A1 WO 2022113971A1 JP 2021042906 W JP2021042906 W JP 2021042906W WO 2022113971 A1 WO2022113971 A1 WO 2022113971A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
fluid
space
flow path
substrate
Prior art date
Application number
PCT/JP2021/042906
Other languages
French (fr)
Japanese (ja)
Inventor
周武 墨
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2022113971A1 publication Critical patent/WO2022113971A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention relates to a substrate processing apparatus that processes a substrate with a processing fluid in a processing container.
  • the specification, drawings and claims of the Japanese application shown below are incorporated herein by reference in their entirety: Japanese Patent Application No. 2020-194879 (filed on November 25, 2020).
  • the processing process of various substrates such as semiconductor substrates and glass substrates for display devices includes processing the surface of the substrate with various processing fluids.
  • Treatments using liquids such as chemicals and rinsing fluids as treatment fluids have been widely performed, but in recent years, treatments using supercritical fluids have also been put into practical use.
  • a supercritical fluid having a lower surface tension than a liquid penetrates deep into the gaps of the pattern, so that the treatment can be performed efficiently and during drying. The risk of pattern collapse due to surface tension can be reduced.
  • Patent Document 1 describes a substrate processing apparatus that dries a substrate using a supercritical fluid.
  • a processing container is configured in which two plate-shaped members are arranged facing each other and the gap thereof functions as a processing space.
  • a wafer (board) placed on a thin plate-shaped holding plate is carried in from one end of the processing space, and carbon dioxide in a supercritical state is introduced from the other end.
  • a fluid discharge header is provided in the processing container.
  • a discharge port is connected to the fluid discharge header, and the supercritical fluid is discharged from the processing space to the outside of the processing container via the fluid discharge header and the discharge port.
  • the configuration for discharging the supercritical fluid from the processing space is also described in detail in Patent Document 2, Patent Document 3, Patent Document 4, and the like.
  • the fluid discharge header and the discharge port form an exhaust flow path for supercritical fluid from the processing space, but the exhaust is not balanced in the exhaust flow path, and the following problems may occur. .. That is, on the inlet side of the exhaust flow path, the fluid discharge header extends in the width direction of the substrate, and the supercritical fluid flows into the fluid discharge header from a relatively wide range in the width direction. On the other hand, on the outlet side of the exhaust flow path, the supercritical fluid flowing inside the fluid discharge header is discharged from a part of the fluid discharge header to the outside of the processing container. For example, in the apparatus described in Patent Document 1, the fluid is discharged out of the processing container from the discharge ports connected to both ends of the fluid discharge header.
  • the exhaust gas becomes unbalanced on the inlet side and the outlet side of the exhaust flow path, and the backflow of the supercritical fluid to the processing space may occur particularly on the inlet side of the exhaust flow path.
  • components and particles eluted in the treated supercritical fluid may reattach to the substrate and cause contamination of the substrate.
  • the present invention has been made in view of the above problems, and in a substrate processing technique for treating a substrate with a processing fluid in the processing space of a processing container, it is effective that the treated processing fluid flows back into the processing space and contaminates the substrate.
  • the purpose is to prevent it.
  • One aspect of the present invention is a substrate processing apparatus, which is a processing container for accommodating a substrate in a processing space, a fluid supply unit for supplying a processing fluid for supercritical processing to the processing space, and a processing space in the processing container. It is provided with a fluid discharge unit that discharges the processing fluid from the processing space via an exhaust flow path formed in communication with the exhaust flow path, and a rectifying unit provided at a rectifying position of the exhaust flow path.
  • the rectifying unit is a fluid discharging unit.
  • another aspect of the present invention is a substrate processing method, in which a processing fluid for supercritical processing is supplied to the processing space of the processing container to supercritically process the substrate accommodated in the processing space. It is provided with a discharge step of discharging the processing fluid from the treatment space by the fluid discharge section via an exhaust flow path formed in the treatment container in communication with the treatment space.
  • a processing fluid for supercritical processing is supplied to the processing space of the processing container to supercritically process the substrate accommodated in the processing space. It is provided with a discharge step of discharging the processing fluid from the treatment space by the fluid discharge section via an exhaust flow path formed in the treatment container in communication with the treatment space.
  • the processing fluid in the processing space is discharged to the outside of the apparatus via the exhaust flow path by the fluid discharge section, but the inlet side (treatment space side) and the outlet side of the exhaust flow path are discharged. If the exhaust balance is lost on the (fluid discharge part side), backflow of the processing fluid from the exhaust flow path to the processing space may occur. Therefore, in the present invention, a rectifying unit is provided in the exhaust flow path, and the processing fluid flowing into the rectified position is rectified when the processing fluid is discharged by the fluid discharge unit.
  • the balance between the flow of the processing fluid on the processing space side (inlet side of the exhaust flow path) with respect to the rectification position and the flow of the processing fluid on the fluid discharge part side (outlet side of the exhaust flow path) with respect to the rectification position is balanced. It will be adjusted.
  • the plurality of components of each aspect of the present invention described above are not all essential, and may be used to solve some or all of the above-mentioned problems, or part or all of the effects described herein. In order to achieve the above, it is possible to change, delete, replace a part of the plurality of components with new other components, and partially delete the limited contents, as appropriate.
  • the exhaust balance in the exhaust flow path is adjusted, it is possible to effectively prevent the treated processing fluid from flowing back into the processing space and contaminating the substrate.
  • FIG. 1 shows the schematic structure of the 1st Embodiment of the substrate processing apparatus which concerns on this invention.
  • It is a schematic diagram which shows the outline of the flow path of a processing fluid. It is a top view of the flow path of a processing fluid. It is a figure which illustrates the structure around the opening of the processing chamber, and the rectifying part. It is a figure which illustrates the structure around the opening of the processing chamber, and the rectifying part. It is a figure which shows typically the flow of the processing fluid around the opening of the processing chamber. It is sectional drawing which shows typically the flow of the processing fluid in the vicinity of the notch part of a partition wall.
  • FIG. 1 It is sectional drawing which shows typically the flow of the processing fluid near the end part in the X direction of a partition wall. It is a figure which illustrates the structure around the opening of the processing chamber, and the rectifying part in the 2nd Embodiment of the substrate processing apparatus which concerns on this invention. It is a figure which illustrates the structure around the opening of the processing chamber and the rectifying part in the 3rd Embodiment of the substrate processing apparatus which concerns on this invention. It is a figure which illustrates the structure around the opening of the processing chamber and the rectifying part in 4th Embodiment of the substrate processing apparatus which concerns on this invention. It is a top view of the flow path of the processing fluid in 5th Embodiment of the substrate processing apparatus which concerns on this invention.
  • FIG. 1 It is a perspective view which shows an example of the rectifying part used in 5th Embodiment. It is sectional drawing which shows typically the flow of the processing fluid near the central part in the width direction. It is sectional drawing which shows typically the flow of the processing fluid near the end in the width direction. It is a figure which illustrates the structure around the opening of the processing chamber and the rectifying part in the 6th Embodiment of the substrate processing apparatus which concerns on this invention.
  • FIG. 1 is a diagram showing a schematic configuration of a first embodiment of the substrate processing apparatus according to the present invention.
  • the substrate processing device 1 is a device for treating the surface of various substrates such as a semiconductor substrate with a supercritical fluid.
  • the XYZ Cartesian coordinate system is set as shown in FIG.
  • the XY plane is a horizontal plane
  • the Z direction represents a vertical direction. More specifically, the (-Z) direction represents a vertical downward direction.
  • the "board" in the present embodiment includes a semiconductor wafer, a glass substrate for a photomask, a glass substrate for a liquid crystal display, a glass substrate for a plasma display, a substrate for a FED (Field Emission Display), a substrate for an optical disk, and a magnetic disk.
  • Various substrates such as substrates and substrates for optomagnetic disks can be applied.
  • a substrate processing apparatus mainly used for processing a semiconductor wafer will be described with reference to the drawings, but the present invention can be similarly applied to the processing of various substrates exemplified above.
  • the board processing device 1 includes a processing unit 10, a supply unit 50, and a control unit 90.
  • the treatment unit 10 is the main execution body of the supercritical drying treatment, and the supply unit 50 supplies the chemical substances and power required for the treatment to the treatment unit 10.
  • the control unit 90 controls each part of these devices to realize a predetermined process.
  • the control unit 90 includes a CPU 91 that executes various control programs, a memory 92 that temporarily stores processing data, a storage 93 that stores control programs executed by the CPU 91, and a user or an external device. It is equipped with an interface 94 for exchanging information.
  • the operation of the device which will be described later, is realized by the CPU 91 executing a control program written in the storage 93 in advance and causing each part of the device to perform a predetermined operation.
  • the processing unit 10 includes a processing chamber 100.
  • the processing chamber 100 includes a first member 11, a second member 12, and a third member 13, which are formed of metal blocks, respectively.
  • the first member 11 and the second member 12 are vertically connected by a coupling member (not shown), and the third member 13 is coupled to the (+ Y) side surface thereof by a coupling member (not shown) to form a hollow inside.
  • the processing chamber 100 of the structure is configured.
  • the internal space of this cavity is the processing space SP in which the processing for the substrate S is executed.
  • the substrate S to be processed is carried into the processing space SP and undergoes processing.
  • a slit-shaped opening 101 extending in the X direction is formed on the ( ⁇ Y) side surface of the processing chamber 100, and the processing space SP and the external space communicate with each other through the opening 101.
  • a lid member 14 is provided on the ( ⁇ Y) side side surface of the processing chamber 100 so as to close the opening 101.
  • a flat plate-shaped support tray 15 is attached to the (+ Y) side side surface of the lid member 14 in a horizontal posture, and the upper surface of the support tray 15 is a support surface on which the substrate S can be placed. More specifically, the support tray 15 has a structure in which a recess 152 formed slightly larger than the plane size of the substrate S is provided on a substantially flat upper surface 151. By accommodating the substrate S in the recess 152, the substrate S is held in a predetermined position on the support tray 15. The substrate S is held with the surface to be processed (hereinafter, may be simply referred to as “substrate surface”) Sa facing upward. At this time, it is preferable that the upper surface 151 of the support tray 15 and the surface Sa of the substrate are flush with each other.
  • the lid member 14 is supported so as to be horizontally movable in the Y direction by a support mechanism (not shown). Further, the lid member 14 can be moved back and forth with respect to the processing chamber 100 by the advancing / retreating mechanism 53 provided in the supply unit 50.
  • the advancing / retreating mechanism 53 has a linear motion mechanism such as a linear motor, a linear motion guide, a ball screw mechanism, a solenoid, and an air cylinder, and such a linear motion mechanism causes the lid member 14 to move in the Y direction. Move to.
  • the advancing / retreating mechanism 53 operates in response to a control command from the control unit 90.
  • the support tray 15 When the support tray 15 is pulled out from the processing space SP through the opening 101 by moving the lid member 14 in the ( ⁇ Y) direction, the support tray 15 can be accessed from the outside. That is, the substrate S can be placed on the support tray 15 and the substrate S mounted on the support tray 15 can be taken out. On the other hand, as the lid member 14 moves in the (+ Y) direction, the support tray 15 is accommodated in the processing space SP. When the substrate S is placed on the support tray 15, the substrate S is carried into the processing space SP together with the support tray 15.
  • the substrate S prevents the surface Sa from being exposed and the pattern collapse from occurring. Therefore, the surface Sa is carried in a state of being covered with a liquid film.
  • a liquid film for example, an organic solvent having a relatively low surface tension such as isopropyl alcohol (IPA) and acetone can be preferably used.
  • the processing space SP is sealed by the lid member 14 moving in the (+ Y) direction and closing the opening 101.
  • a seal member 16 is provided between the (+ Y) side side surface of the lid member 14 and the ( ⁇ Y) side side surface of the processing chamber 100, and the airtight state of the processing space SP is maintained.
  • the sealing member 16 an elastic resin material, for example, an annular material formed of rubber can be used.
  • the lid member 14 is fixed to the processing chamber 100 by a locking mechanism (not shown). In the state where the airtight state of the processing space SP is secured in this way, the processing for the substrate S is executed in the processing space SP.
  • a fluid of a substance that can be used for supercritical processing for example, carbon dioxide
  • a fluid of a substance that can be used for supercritical processing for example, carbon dioxide
  • Carbon dioxide is a chemical substance suitable for supercritical drying treatment because it is in a supercritical state at a relatively low temperature and low pressure and has a property of well dissolving an organic solvent often used for substrate treatment.
  • the fluid supply unit 57 is supplied as a processing fluid for processing the substrate S in a supercritical state, or in a gaseous or liquid state, and is given a predetermined temperature and pressure to be supercritical. Outputs a fluid that is in a critical state. For example, gaseous or liquid carbon dioxide is output under pressure.
  • the fluid is pumped to the input ports 102 and 103 provided on the (+ Y) side side surface of the processing chamber 100 via the pipe 571 and the valves 572 and 573 inserted in the middle thereof. That is, the valves 572 and 573 are opened in response to the control command from the control unit 90, so that the fluid is sent from the fluid supply unit 57 to the processing chamber 100 (supply step).
  • FIGS. 1, 2A and 2B are diagrams schematically showing the flow path of the processing fluid. More specifically, FIG. 2A is a schematic view showing the outline of the flow path, and FIG. 2B is a plan view thereof.
  • FIGS. 1, 2A and 2B are diagrams schematically showing the flow path of the processing fluid. More specifically, FIG. 2A is a schematic view showing the outline of the flow path, and FIG. 2B is a plan view thereof.
  • FIGS. 1, 2A and 2B are diagrams schematically showing the flow path of the processing fluid. More specifically, FIG. 2A is a schematic view showing the outline of the flow path, and FIG. 2B is a plan view thereof.
  • FIGS. 1, 2A and 2B are diagrams schematically showing the flow path of the processing fluid. More specifically, FIG. 2A is a schematic view showing the outline of the flow path, and FIG. 2B is a plan view thereof.
  • the fluid flow path 17 from the input ports 102 and 103 to the processing space SP functions as an introduction flow path for introducing the processing fluid supplied from the fluid supply unit 57 into the processing space SP.
  • the flow path 171 is connected to the input port 102.
  • a buffer space 172 formed so that the cross-sectional area of the flow path rapidly expands is provided.
  • a flow path 173 is further provided so as to connect the buffer space 172 and the processing space SP.
  • the flow path 173 has a wide cross-sectional shape that is narrow in the vertical direction (Z direction) and long in the horizontal direction (X direction), and the cross-sectional shape is substantially constant in the flow direction of the processing fluid.
  • the end of the flow path 171 on the opposite side of the buffer space 172 is a discharge port 174 that opens facing the processing space SP, and the processing fluid is introduced into the processing space SP from this discharge port 174.
  • the height of the flow path 173 is equal to the distance between the ceiling surface of the processing space SP and the substrate surface Sa in the state where the support tray 15 is housed in the processing space SP.
  • the discharge port 174 is open facing the gap between the ceiling surface of the processing space SP and the upper surface 151 of the support tray 15.
  • the ceiling surface of the flow path 173 and the ceiling surface of the processing space SP can be made to form the same plane.
  • the discharge port 174 is opened in a horizontally elongated slit shape facing the processing space SP.
  • a flow path for the processing fluid is formed below the support tray 15.
  • the flow path 175 is connected to the input port 103.
  • a buffer space 176 formed so that the cross-sectional area of the flow path rapidly expands is provided.
  • the flow path 177 has a wide cross-sectional shape that is narrow in the vertical direction (Z direction) and long in the horizontal direction (X direction), and the cross-sectional shape is substantially constant in the flow direction of the processing fluid.
  • the end of the flow path 177 on the opposite side of the buffer space 176 is a discharge port 178 that opens facing the processing space SP, and the processing fluid is introduced into the processing space SP from this discharge port 178.
  • the height of the flow path 177 is equal to the distance between the bottom surface of the processing space SP and the bottom surface of the support tray 15.
  • the discharge port 178 is open facing the gap between the bottom surface of the processing space SP and the bottom surface of the support tray 15.
  • the bottom surface of the flow path 177 and the bottom surface of the processing space SP can be formed on the same plane. That is, the discharge port 178 is opened in a horizontally elongated slit shape facing the processing space SP.
  • the arrangement position of the flow path 171 and the arrangement position of the flow path 173 are different in the Z direction.
  • a part of the processing fluid flowing from the flow path 171 into the buffer space 172 goes straight and flows into the flow path 173.
  • the width direction of the flow path orthogonal to the flow direction that is, in the X direction
  • This causes non-uniformity in the X direction in the flow of the processing fluid flowing from the flow path 173 into the processing space SP, which causes turbulence.
  • the straight flow of the processing fluid from the flow path 171 to the flow path 173 does not occur, and the processing fluid is treated as a uniform laminar flow in the width direction. Can be introduced into the processing space SP.
  • the processing fluid introduced from the introduction flow path 17 configured in this way flows along the upper surface and the lower surface of the support tray 15 in the processing space SP, and is processed through the exhaust flow path 18 configured as follows. It is discharged to the outside of the container (discharge process).
  • the ceiling surface of the processing space SP and the upper surface 151 of the support tray 15 both form a horizontal plane, and both face each other in parallel with a constant gap. ..
  • This gap functions as an upstream region 181 of the exhaust flow path 18 that guides the processing fluid flowing along the upper surface 151 of the support tray 15 and the surface Sa of the substrate S to the fluid discharge portion 55.
  • the upstream region 181 has a wide cross-sectional shape that is narrow in the vertical direction (Z direction) and long in the horizontal direction (X direction).
  • the buffer space 182 is a space surrounded by the processing chamber 100, the lid member 14, and the seal member 16.
  • the width of the buffer space 182 in the X direction is equal to or larger than the width of the upstream region 181 and the height of the buffer space 182 in the Z direction is larger than the height of the upstream region 181. Therefore, the buffer space 182 has a flow path cross section larger than that of the upstream region 181.
  • the downstream area 183 is connected to the upper part of the buffer space 182.
  • the downstream region 183 is a through hole provided through the first member 11 which is an upper block constituting the processing chamber 100.
  • the upper end constitutes an output port 104 that opens to the upper surface of the processing chamber 100, and the lower end thereof faces the buffer space 182.
  • the exhaust flow path 18 on the upper surface side of the support tray 15 has the following three regions, that is, An upstream region 181 formed between the upper surface 151 of the support tray 15 and the lower surface of the first member 11 and A downstream region 183 connected to the fluid discharge unit 55, An intermediate region (buffer space 182) communicating the upstream region 181 and the downstream region 183, have.
  • the upstream region 181 and the buffer space 182 have a width wider than the diameter of the substrate S in the X direction orthogonal to the flow direction Y of the processing fluid from the processing space SP, as shown in FIGS. 2A and 2B. It is provided over (corresponding to the "first width" of the present invention).
  • the width of the downstream region 183 in the X direction (corresponding to the "second width" of the present invention) is significantly narrowed. Therefore, as in the prior art, if no special device is applied to the exhaust flow path 18, backflow of the processing fluid occurs on the inlet side of the exhaust flow path 18, that is, in the upstream region 181 and the treated processing fluid is processed. May flow from the upstream region 181 into the processing space SP. Therefore, in the present embodiment, as shown in FIGS. 2A and 2B, a part of the first member 11 (partition wall 112 described later) is extended to the buffer space 182 and the end portion on the (-Y) direction side. Is finished in an uneven shape and functions as the "rectifying section" of the present invention. These points will be described in detail later.
  • the bottom surface of the processing space SP and the bottom surface of the support tray 15 both form a horizontal flat surface, and both face each other in parallel while maintaining a constant gap.
  • This gap functions as an upstream region 185 of the exhaust flow path 18 that guides the processing fluid flowing along the lower surface of the support tray 15 to the fluid discharge portion 55.
  • the upstream region 185 on the lower surface side of the support tray 15 is connected to the downstream region 187 via the buffer space 186, similarly to the upper surface side of the support tray 15.
  • the exhaust flow path 18 on the lower surface side of the support tray 15 has the following three regions, that is, An upstream region 185 formed between the lower surface of the support tray 15 and the upper surface of the second member 12 and A downstream region 187 connected to the fluid discharge unit 55, An intermediate region (buffer space 186) communicating the upstream region 185 and the downstream region 187, have.
  • the upstream region 185 and the buffer space 186 are also provided over a width wider than the diameter of the substrate S in the X direction (corresponding to the “first width” of the present invention), similarly to the upper surface side of the support tray 15. .
  • the width of the downstream region 187 in the X direction is significantly narrowed.
  • a part of the second member 12 (partition wall 122 described later) is extended to the buffer space 186 and the left end portion is finished in an uneven shape, according to the present invention. It functions as a "rectifying unit”.
  • the processing fluid flowing above the support tray 15 in the processing space SP is sent to the output port 104 via the upstream region 181 and the buffer space 182 and the downstream region 183.
  • the output port 104 is connected to the fluid discharge portion 55 by a pipe 551, and a valve 552 is inserted in the middle of the pipe 551.
  • the processing fluid flowing below the support tray 15 in the processing space SP is sent to the output port 105 via the upstream region 185, the buffer space 186, and the downstream region 187.
  • the output port 105 is connected to the fluid discharge portion 55 by a pipe 553, and a valve 554 is inserted in the middle of the pipe 553.
  • valves 552 and 554 are controlled by the control unit 90.
  • the valves 552 and 554 are opened in response to the control command from the control unit 90, the processing fluid in the processing space SP is collected by the fluid discharge unit 55 via the pipes 551 and 555.
  • FIGS. 3A, 3B, 4, 5A and 5B are diagrams illustrating the structure and rectifying section around the opening of the processing chamber. More specifically, FIG. 3A is an external view showing an opening 101 of the processing chamber 100. Further, FIG. 3B omits the illustration of the sealing member 16 and the boundary line between the first member 11 and the second member 12 from FIG. 3A in order to show the internal structure of the processing chamber 100 in an easy-to-see manner, and instead hides in FIG. 3A. The existing structure is shown by a hidden line (dotted line).
  • an annular seal member 16 is attached to the ( ⁇ Y) side end surface of the processing chamber 100, and an opening 101 is provided in an internal region surrounded by the seal member 16. More specifically, recesses 111 and 121 whose surfaces are retracted to the (+ Y) side are provided on the ( ⁇ Y) side end faces of the first member 11 and the second member 12 constituting the processing chamber 100. At the lower end of the recess 111 of the first member 11, a flange-shaped partition wall 112 having a width in the X direction equal to or slightly larger than the width of the processing space SP and thin in the vertical direction (Z direction) is formed (-. It is provided so as to project in the Y) direction.
  • the partition wall 112 is a lower end portion on the ( ⁇ Y) side of the first member 11 extending in the ( ⁇ Y) direction while facing the support tray 15, and partially comprises the upstream region 181 and the buffer space 182 as shown in FIG. It is divided into. Therefore, the processing fluid (dotted line) flowing through the upstream region 181 passes through the ( ⁇ Y) side of the partition wall 112, and further turns in the (+ Z) direction and flows into the buffer space 182. Further, in the present embodiment, the partition wall 112 is provided with two notch portions 112a at a substantially central portion in the X direction.
  • the partition wall 112 is finished in an uneven shape, and the flow rate of the processing fluid at the central portion in the X direction is increased, while the flow rate of the processing fluid at both ends in the X direction is suppressed. That is, the partition wall 112 having the uneven portion functions as the "rectifying portion" of the present invention.
  • a flange-shaped partition wall 122 having a width in the X direction equal to or slightly larger than the width of the processing space SP and thin in the vertical direction (Z direction) is (-. It is provided so as to project in the Y) direction.
  • the partition wall 122 is the upper end portion on the ( ⁇ Y) side of the second member 12 extending in the ( ⁇ Y) direction while facing the support tray 15, and partially partitions the upstream region 185 and the buffer space 186. Therefore, the processing fluid flowing through the upstream region 185 passes through the ( ⁇ Y) side of the partition wall 122, further turns in the (—Z) direction, and flows into the buffer space 186. Further, in the present embodiment, as shown in FIGS. 3A and 3B, two notch portions 122a are provided at a substantially central portion in the X direction with respect to the partition wall 122.
  • the partition wall 122 is finished in an uneven shape, and the flow rate of the processing fluid at the central portion in the X direction is increased, while the flow rate of the processing fluid at both ends in the X direction is suppressed. That is, the partition wall 122 having the uneven portion functions as the "rectifying portion" of the present invention in the same manner as the partition wall 112.
  • the upper space above the partition wall 112 functions as a buffer space 182 by closing the ( ⁇ Y) side opening with the lid member 14. Further, the lower space below the partition wall 122 functions as a buffer space 186 by closing the ( ⁇ Y) side opening thereof with the lid member 14.
  • Downstream regions 183 and 183 are connected to the upper surface of the recess 111 in the vicinity of both ends in the X direction.
  • the downstream regions 183 and 183 communicate with the output ports 104 and 104 provided on the upper surface of the first member 11.
  • downstream regions 187 and 187 are connected to the lower surface of the recess 121 in the vicinity of both ends in the X direction.
  • the downstream regions 187 and 187 communicate with the output ports 105 and 105 provided on the lower surface of the second member 12. Then, the fluid discharge unit 55 is connected to the output ports 104, 104, 105, 105 to collect the processing fluid.
  • the treatment fluid treated in a wide range in the X direction can flow into the inlet side of the exhaust flow path 18, that is, the upstream regions 181 and 185, while the exhaust flow path 18 is configured.
  • the outlet side of the above that is, in the downstream regions 183 and 187, it is necessary to let the processing fluid flow out in a narrow range in the X direction. Therefore, although the above-mentioned problems are concerned, in the first embodiment, since the partition walls 112 and 122 functioning as the rectifying unit are provided, the exhaust balance in the exhaust flow path 18 is satisfactorily adjusted. This point will be described with reference to FIGS. 4, 5A and 5B.
  • FIG. 5A is a cross-sectional view schematically showing the flow of the processing fluid in the vicinity of the notch portion of the partition wall.
  • FIG. 5B is a cross-sectional view schematically showing the flow of the processing fluid in the vicinity of the end portion in the X direction of the partition wall.
  • the partition walls 112 and 122 are retracted to the (+ Y) side and correspond to the recessed position.
  • the partition walls 112 and 122 project from the upstream region 185 toward the processing fluid flowing into the buffer space 186 and correspond to the convex portions.
  • the processing fluid flows from the upstream region 185 into the buffer space 186 at a relatively large flow rate and reaches both ends in the X direction. It is distributed to.
  • the flow rate of the processing fluid flowing from the upstream region 185 into the buffer space 186 is suppressed as compared with the central portion.
  • the partition walls 112 and 122 are provided with concave portions and convex portions corresponding to the provision of downstream regions 183 and 187 at both ends in the X direction in the exhaust flow path 18.
  • the partition walls 112 and 122 function as a rectifying unit. That is, when the processed fluid is discharged by the fluid discharge unit 55, the processed fluid flowing into the rectified position RP (FIGS. 2B and 4) provided with the partition walls 112 and 122 in the exhaust flow path 18 is rectified.
  • the balance between the flow of the processing fluid on the processing space SP side with respect to the rectification position RP and the flow of the processing fluid on the fluid discharge portion side with respect to the rectification position RP is adjusted. That is, the balance of the exhaust gas in the exhaust flow path 18 is ensured. As a result, it is possible to effectively prevent the treated processing fluid from flowing back into the processing space SP and contaminating the substrate S.
  • FIG. 6 is a diagram illustrating a structure around an opening of a processing chamber and a rectifying unit in the second embodiment of the substrate processing apparatus according to the present invention.
  • structures having substantially the same functions as those shown in FIGS. 3A and 3B are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the major difference between the second embodiment and the first embodiment is the configuration of the rectifying unit. That is, in the first embodiment, a part of the first member 11 (partition wall 112) and a part of the second member 12 (partition wall 122) function as the "rectifying unit" of the present invention. On the other hand, in the second embodiment, the independent partition wall rectifying members 191 and 192 are detachable from the first member 11 and the second member 12, respectively.
  • the partition wall rectifying member 191 is an angle-shaped member having a substantially L-shaped cross section.
  • two notched portions 191a and 191a are provided at the central portion in the width direction of the blade portion extending in the (-Y) direction.
  • the other wing portion is fixed to the first member 11 by the fixing screw 113a in a state of being in close contact with the recess 101a of the first member 11.
  • the partition wall rectifying member 191 exhibits a partition wall function and a rectifying function, similarly to the partition wall 112 of the first embodiment.
  • a partition wall rectifying member 192 is consolidated at the lower portion of the opening 101b by a fixing screw 123a to exhibit a partition wall function.
  • the partition wall rectifying members 191 and 192 are detachable, the partition wall rectifying members 191 and 192 corresponding to the type and processing conditions of the substrate S can be used. For example, it is possible to prepare a plurality of partition wall rectifying members 191 and 192 having different numbers, shapes and sizes of the cutout portions 191a and 192a in advance. Then, among them, the partition wall rectifying members 191 and 192 suitable for the type of the substrate S, the processing conditions, and the like can be selected and mounted on the processing chamber 100, respectively. This makes it possible to deal with a wide variety of substrates S, processing conditions, and the like, and enhances the versatility of the substrate processing apparatus 1.
  • the processing chamber 100 mainly composed of the first to third members 11 to 13 functions as the "container body" of the present invention.
  • the lid member 14 corresponds to an example of the “cover portion” of the present invention.
  • the processing chamber 100 and the lid member 14 constitute the “processing container” of the present invention.
  • the opening 101 corresponds to the "opening" of the present invention.
  • the Y direction, the X direction and the Z direction correspond to the "first direction", the "second direction” and the "third direction” of the present invention, respectively.
  • the peripheral regions of the output ports 104 and 105 are strongly exhausted by the fluid discharge unit 55, and the (+ X) direction side and ( ⁇ X) of the exhaust flow path 18 are exhausted.
  • the end range on the directional side corresponds to an example of the "strong exhaust range” of the present invention.
  • the central range in the X direction away from the output ports 104 and 105 corresponds to an example of the "weak exhaust range" of the present invention.
  • the present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention.
  • two output ports 104, 104 (105, 105) are provided separately in the X direction, and the central range is a weak exhaust range. Therefore, the cutout portions 112a, 122a, 191a, and 192a are provided in the central portion in the X direction.
  • the arrangement position of the notch portion is not limited to this, and is arbitrary. For example, as shown in FIG.
  • the partition wall 112 (121) and the partition wall rectifying member 191 (192) are provided between the upstream region 181 (185) constituting the exhaust flow path 18 and the buffer space 182 (186).
  • the application of the present invention is not limited to this.
  • the present invention can be applied to the substrate processing apparatus shown in FIGS. 8A, 8B, 9A and 9B.
  • FIG. 8A is a plan view of the flow path of the processing fluid according to the fifth embodiment of the substrate processing apparatus according to the present invention. Further, FIG. 8B is a perspective view showing an example of a rectifying unit used in the fifth embodiment. Further, FIG. 9A is a cross-sectional view schematically showing the flow of the processing fluid in the vicinity of the central portion in the width direction. Further, FIG. 9B is a cross-sectional view schematically showing the flow of the processing fluid in the vicinity of the end portion in the width direction.
  • the partition wall and the partition wall rectifying member are not provided, and the processing fluid flowing in the ( ⁇ Y) direction from the processing space SP passes through the upstream regions 181 and 185.
  • the rectifying unit 20 is attached to the lower surface of the first member 11 so that the uneven surface (lower surface) of the rectifying unit 20 shown in FIG. 8B faces the upstream region 181.
  • the upstream region 185 is similarly configured. That is, the rectifying unit 21 configured in the same manner as the rectifying unit 20 is attached to the upper surface of the second member 12 so that its uneven surface (upper surface) faces the upstream region 185.
  • the rectifying units 20 and 21 have a plate shape extending in the X direction.
  • the rectifying unit 20 has a concavo-convex shape in which notch portions 201 and 201 are formed in the center of the lower surface, and rectifies the processing fluid flowing from the upstream region 181 to the buffer space 182 at the outlet position (rectifying position RP) of the upstream region 181. do.
  • the rectifying unit 21 has a concavo-convex shape in which cutout portions 211 and 211 are formed in the center of the upper surface, and allows the processing fluid flowing from the upstream region 185 to the buffer space 186 at the outlet position (rectifying position RP) of the upstream region 185. Rectify. Therefore, the same effect as that of the above embodiment can be obtained.
  • the present invention is applied to an apparatus in which the output ports 104 and 105 are provided on both sides in the X direction, only on the (+ X) direction side, and only on the ( ⁇ X) direction side, but the output port 104 , 105 can also be applied to the device provided in the central portion in the X direction.
  • the output ports 104 and 105 when the output ports 104 and 105 are provided in the central portion in the X direction, it is desirable that the cutout portions 112a, 122a, 191a and 192a are provided at both ends in the X direction (sixth embodiment). ).
  • the central range in the X direction corresponds to the "strong exhaust range” of the present invention
  • the end range is “weak exhaust”.
  • range corresponds to "range”. Therefore, by providing the cutout portions 112a, 122a, 191a, and 192a, the processing fluid flows from the upstream region into the buffer space at a relatively large flow rate in the end range.
  • the partition walls 112 and 122 are not provided with notched portions in the central range, the flow rate of the processing fluid flowing into the buffer space from the upstream region is suppressed as compared with the end portions.
  • the partition walls 112, 122 in which the uneven portions are formed by the cutout portions 112a, 122a, 191a, 192a provided at the end portions function as the "rectifying portion" of the present invention.
  • the inlet side (processing space SP side) of the exhaust flow path 18 is opened in a slit shape extending in the X direction, so that the processing fluid flowing through the processing space SP can be efficiently taken in. It has become.
  • the configuration of the exhaust flow path 18 on the inlet side is not limited to this, and the exhaust flow path is configured to take in the processing fluid through, for example, a punching plate in which a plurality of through holes are arranged in the X direction.
  • the present invention can be applied to a substrate processing apparatus having the above. That is, the present invention can also be applied to the devices described in Patent Documents 1 to 4, and the same effects as those of the above-described embodiment can be obtained.
  • the exhaust flow path 18 is composed of three types of regions, that is, an upstream region, an intermediate region (buffer space), and a downstream region.
  • the present invention can be applied to a substrate processing apparatus in which the exhaust flow path 18 is composed of an upstream region and a downstream region.
  • the present invention can be applied to all substrate processing techniques for processing a substrate with a processing fluid in a processing container.
  • it can be applied to a process using a high-pressure fluid, for example, a substrate drying process for drying a substrate such as a semiconductor substrate with a supercritical fluid.
  • Substrate processing device 14 ... Cover member 15 ... Support tray 18 ... Exhaust flow path 20, 21 ... Rectifying unit 55 ... Fluid discharge unit 100 ... Processing chamber (container body) 112, 122 ... partition wall (rectifying part) 181 185 ... upstream area 182, 186 ... buffer space (intermediate area) 183, 187 ... Downstream area 191, 192 ... Bulkhead rectifying member (rectifying unit) RP ... Rectification position S ... Board SP ... Processing space X ... Second direction Y ... First direction Z ... Third direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Cleaning In General (AREA)

Abstract

The present invention provides a substrate processing apparatus comprising: a processing container in which a substrate is accommodated in a processing space, a fluid supply unit that supplies a processing fluid for supercritical processing to the processing space, a fluid discharge unit that discharges the processing fluid from the processing space through a discharge flow path formed in the processing container in communication with the processing space, and a flow adjustment unit provided at a flow adjustment position of the discharge flow path, wherein the flow adjustment unit adjusts the balance between the flow of the processing fluid on the processing space side with respect to the flow adjustment position and the flow of the processing fluid on the fluid discharge unit side with respect to the flow adjustment position by adjusting the flow of the processing fluid that flows to the flow adjustment position when the processing fluid is discharged by the fluid discharge unit.

Description

基板処理装置および基板処理方法Board processing equipment and board processing method
 この発明は、処理容器内で基板を処理流体によって処理する基板処理装置に関するものである。
 以下に示す日本出願の明細書、図面および特許請求の範囲における開示内容は、参照によりその全内容が本書に組み入れられる:
 特願2020-194879(2020年11月25日出願)。
The present invention relates to a substrate processing apparatus that processes a substrate with a processing fluid in a processing container.
The specification, drawings and claims of the Japanese application shown below are incorporated herein by reference in their entirety:
Japanese Patent Application No. 2020-194879 (filed on November 25, 2020).
 半導体基板、表示装置用ガラス基板等の各種基板の処理工程には、基板の表面を各種の処理流体によって処理するものが含まれる。処理流体として薬液やリンス液などの液体を用いる処理は従来から広く行われているが、近年では超臨界流体を用いた処理も実用化されている。特に、表面に微細パターンが形成された基板の処理においては、液体に比べて表面張力が低い超臨界流体はパターンの隙間の奥まで入り込むため効率よく処理を行うことが可能であり、また乾燥時において表面張力に起因するパターン倒壊の発生リスクを低減することができる。 The processing process of various substrates such as semiconductor substrates and glass substrates for display devices includes processing the surface of the substrate with various processing fluids. Treatments using liquids such as chemicals and rinsing fluids as treatment fluids have been widely performed, but in recent years, treatments using supercritical fluids have also been put into practical use. In particular, in the treatment of a substrate having a fine pattern formed on the surface, a supercritical fluid having a lower surface tension than a liquid penetrates deep into the gaps of the pattern, so that the treatment can be performed efficiently and during drying. The risk of pattern collapse due to surface tension can be reduced.
 例えば特許文献1には、超臨界流体を用いて基板の乾燥処理を行う基板処理装置が記載されている。この装置では、2つの板状部材が対向配置されてその隙間が処理空間として機能する処理容器が構成されている。処理空間の一方端部から薄板状の保持板に載置されたウエハ(基板)が搬入され、他方端部から超臨界状態の二酸化炭素が導入される。また、処理容器内には、流体排出ヘッダーが設けられる。この流体排出ヘッダーには、排出ポートが接続されており、流体排出ヘッダーおよび排出ポートを介して処理空間から超臨界流体が処理容器の外に排出される。なお、処理空間から超臨界流体を排出する構成については、特許文献2、特許文献3および特許文献4などにも、詳しく記載されている。 For example, Patent Document 1 describes a substrate processing apparatus that dries a substrate using a supercritical fluid. In this device, a processing container is configured in which two plate-shaped members are arranged facing each other and the gap thereof functions as a processing space. A wafer (board) placed on a thin plate-shaped holding plate is carried in from one end of the processing space, and carbon dioxide in a supercritical state is introduced from the other end. In addition, a fluid discharge header is provided in the processing container. A discharge port is connected to the fluid discharge header, and the supercritical fluid is discharged from the processing space to the outside of the processing container via the fluid discharge header and the discharge port. The configuration for discharging the supercritical fluid from the processing space is also described in detail in Patent Document 2, Patent Document 3, Patent Document 4, and the like.
特開2018-082043号公報Japanese Unexamined Patent Publication No. 2018-082043 特開2013-033963号公報Japanese Unexamined Patent Publication No. 2013-033963 特開2017-157745号公報JP-A-2017-157745 特開2019-091772号公報JP-A-2019-091772
 流体排出ヘッダーおよび排出ポートは処理空間からの超臨界流体の排気流路を形成しているが、排気流路において排気のバランスが取れておらず、次のような問題が発生することがあった。つまり、排気流路のインレット側では、流体排出ヘッダーが基板の幅方向に延設されており、幅方向において比較的広い範囲から超臨界流体が流体排出ヘッダーに流入する。これに対し、排気流路のアウトレット側では、流体排出ヘッダーの内部を流通する超臨界流体が流体排出ヘッダーの一部から処理容器の外に排出される。例えば特許文献1に記載の装置では、流体排出ヘッダーの両端部に接続された排出ポートから処理容器の外に排出される。このため、排気流路のインレット側とアウトレット側とで排気がアンバランスとなり、特に排気流路のインレット側で処理空間への超臨界流体の逆流が発生することがあった。その結果、処理済の超臨界流体に溶出した成分やパーティクルなどが基板に再付着し、基板の汚染を引き起こすことがあった。 The fluid discharge header and the discharge port form an exhaust flow path for supercritical fluid from the processing space, but the exhaust is not balanced in the exhaust flow path, and the following problems may occur. .. That is, on the inlet side of the exhaust flow path, the fluid discharge header extends in the width direction of the substrate, and the supercritical fluid flows into the fluid discharge header from a relatively wide range in the width direction. On the other hand, on the outlet side of the exhaust flow path, the supercritical fluid flowing inside the fluid discharge header is discharged from a part of the fluid discharge header to the outside of the processing container. For example, in the apparatus described in Patent Document 1, the fluid is discharged out of the processing container from the discharge ports connected to both ends of the fluid discharge header. For this reason, the exhaust gas becomes unbalanced on the inlet side and the outlet side of the exhaust flow path, and the backflow of the supercritical fluid to the processing space may occur particularly on the inlet side of the exhaust flow path. As a result, components and particles eluted in the treated supercritical fluid may reattach to the substrate and cause contamination of the substrate.
 この発明は上記課題に鑑みなされたものであり、処理容器の処理空間で基板を処理流体によって処理する基板処理技術において、処理済の処理流体が処理空間に逆流して基板を汚染するのを効果的に防止することを目的とする。 The present invention has been made in view of the above problems, and in a substrate processing technique for treating a substrate with a processing fluid in the processing space of a processing container, it is effective that the treated processing fluid flows back into the processing space and contaminates the substrate. The purpose is to prevent it.
 この発明の一の態様は、基板処理装置であって、基板を処理空間に収容する処理容器と、処理空間に超臨界処理用の処理流体を供給する流体供給部と、処理容器内で処理空間と連通して形成される排気流路を経由して処理空間から処理流体を排出する流体排出部と、排気流路の整流位置に設けられる整流部と、を備え、整流部は、流体排出部による処理流体の排出時において整流位置に流れ込む処理流体を整流することで、整流位置に対する処理空間側での処理流体の流れと、整流位置に対する流体排出部側での処理流体の流れとのバランスを調整することを特徴としている。 One aspect of the present invention is a substrate processing apparatus, which is a processing container for accommodating a substrate in a processing space, a fluid supply unit for supplying a processing fluid for supercritical processing to the processing space, and a processing space in the processing container. It is provided with a fluid discharge unit that discharges the processing fluid from the processing space via an exhaust flow path formed in communication with the exhaust flow path, and a rectifying unit provided at a rectifying position of the exhaust flow path. The rectifying unit is a fluid discharging unit. By rectifying the processing fluid that flows into the rectified position when the processed fluid is discharged, the balance between the flow of the processed fluid on the processing space side with respect to the rectified position and the flow of the processed fluid on the fluid discharge part side with respect to the rectified position is balanced. It is characterized by adjusting.
 また、この発明の他の態様は、基板処理方法であって、処理容器の処理空間に超臨界処理用の処理流体を供給して処理空間に収容される基板を超臨界処理する供給工程と、処理容器内で処理空間と連通して形成される排気流路を経由して流体排出部により処理空間から処理流体を排出する排出工程と、を備え、排出工程では、整流部を排気流路の整流位置に設けて整流位置に流れ込む処理流体を整流することで、整流位置に対する処理空間側での処理流体の流れと、整流位置に対する流体排出部側での処理流体の流れとのバランスを調整することを特徴としている。 Further, another aspect of the present invention is a substrate processing method, in which a processing fluid for supercritical processing is supplied to the processing space of the processing container to supercritically process the substrate accommodated in the processing space. It is provided with a discharge step of discharging the processing fluid from the treatment space by the fluid discharge section via an exhaust flow path formed in the treatment container in communication with the treatment space. By rectifying the processing fluid that is provided at the rectification position and flows into the rectification position, the balance between the flow of the processing fluid on the processing space side with respect to the rectification position and the flow of the processing fluid on the fluid discharge section side with respect to the rectification position is adjusted. It is characterized by that.
 このように構成された発明では、流体排出部により処理空間内の処理流体が排気流路を経由して装置外部に排出されるが、排気流路のインレット側(処理空間側)と、アウトレット側(流体排出部側)とで排気のバランスが崩れると、排気流路から処理空間への処理流体の逆流が発生することがある。そこで、本発明では、排気流路に整流部が設けられ、流体排出部による処理流体の排出時において整流位置に流れ込む処理流体を整流される。その結果、整流位置に対する処理空間側(排気流路のインレット側)での処理流体の流れと、整流位置に対する流体排出部側(排気流路のアウトレット側)での処理流体の流れとのバランスが調整される。
 上述した本発明の各態様の有する複数の構成要素はすべてが必須のものではなく、上述の課題の一部又は全部を解決するため、あるいは、本明細書に記載された効果の一部又は全部を達成するために、適宜、前記複数の構成要素の一部の構成要素について、その変更、削除、新たな他の構成要素との差し替え、限定内容の一部削除を行うことが可能である。また、上述の課題の一部又は全部を解決するため、あるいは、本明細書に記載された効果の一部又は全部を達成するために、上述した本発明の一態様に含まれる技術的特徴の一部又は全部を上述した本発明の他の態様に含まれる技術的特徴の一部又は全部と組み合わせて、本発明の独立した一形態とすることも可能である。
In the invention configured in this way, the processing fluid in the processing space is discharged to the outside of the apparatus via the exhaust flow path by the fluid discharge section, but the inlet side (treatment space side) and the outlet side of the exhaust flow path are discharged. If the exhaust balance is lost on the (fluid discharge part side), backflow of the processing fluid from the exhaust flow path to the processing space may occur. Therefore, in the present invention, a rectifying unit is provided in the exhaust flow path, and the processing fluid flowing into the rectified position is rectified when the processing fluid is discharged by the fluid discharge unit. As a result, the balance between the flow of the processing fluid on the processing space side (inlet side of the exhaust flow path) with respect to the rectification position and the flow of the processing fluid on the fluid discharge part side (outlet side of the exhaust flow path) with respect to the rectification position is balanced. It will be adjusted.
The plurality of components of each aspect of the present invention described above are not all essential, and may be used to solve some or all of the above-mentioned problems, or part or all of the effects described herein. In order to achieve the above, it is possible to change, delete, replace a part of the plurality of components with new other components, and partially delete the limited contents, as appropriate. Further, in order to solve a part or all of the above-mentioned problems, or to achieve a part or all of the effects described in the present specification, the technical features included in the above-mentioned aspect of the present invention. It is also possible to combine some or all with some or all of the technical features contained in the other aspects of the invention described above to form an independent form of the invention.
 上記のように、本発明によれば、排気流路における排気バランスが調整されるため、処理済の処理流体が処理空間に逆流して基板を汚染するのを効果的に防止することができる。 As described above, according to the present invention, since the exhaust balance in the exhaust flow path is adjusted, it is possible to effectively prevent the treated processing fluid from flowing back into the processing space and contaminating the substrate.
本発明に係る基板処理装置の第1実施形態の概略構成を示す図である。It is a figure which shows the schematic structure of the 1st Embodiment of the substrate processing apparatus which concerns on this invention. 処理流体の流路の輪郭を示す模式図である。It is a schematic diagram which shows the outline of the flow path of a processing fluid. 処理流体の流路の平面図である。It is a top view of the flow path of a processing fluid. 処理チャンバの開口部周辺の構造および整流部を例示する図である。It is a figure which illustrates the structure around the opening of the processing chamber, and the rectifying part. 処理チャンバの開口部周辺の構造および整流部を例示する図である。It is a figure which illustrates the structure around the opening of the processing chamber, and the rectifying part. 処理チャンバの開口部周辺における処理流体の流れを模式的に示す図である。It is a figure which shows typically the flow of the processing fluid around the opening of the processing chamber. 隔壁の切欠部位近傍での処理流体の流れを模式的に示す断面図である。It is sectional drawing which shows typically the flow of the processing fluid in the vicinity of the notch part of a partition wall. 隔壁のX方向端部近傍での処理流体の流れを模式的に示す断面図である。It is sectional drawing which shows typically the flow of the processing fluid near the end part in the X direction of a partition wall. 本発明に係る基板処理装置の第2実施形態における処理チャンバの開口部周辺の構造および整流部を例示する図である。It is a figure which illustrates the structure around the opening of the processing chamber, and the rectifying part in the 2nd Embodiment of the substrate processing apparatus which concerns on this invention. 本発明に係る基板処理装置の第3実施形態における処理チャンバの開口部周辺の構造および整流部を例示する図である。It is a figure which illustrates the structure around the opening of the processing chamber and the rectifying part in the 3rd Embodiment of the substrate processing apparatus which concerns on this invention. 本発明に係る基板処理装置の第4実施形態における処理チャンバの開口部周辺の構造および整流部を例示する図である。It is a figure which illustrates the structure around the opening of the processing chamber and the rectifying part in 4th Embodiment of the substrate processing apparatus which concerns on this invention. 本発明に係る基板処理装置の第5実施形態における処理流体の流路の平面図である。It is a top view of the flow path of the processing fluid in 5th Embodiment of the substrate processing apparatus which concerns on this invention. 第5実施形態において用いられる整流部の一例を示す斜視図である。It is a perspective view which shows an example of the rectifying part used in 5th Embodiment. 幅方向中央部近傍での処理流体の流れを模式的に示す断面図である。It is sectional drawing which shows typically the flow of the processing fluid near the central part in the width direction. 幅方向端部近傍での処理流体の流れを模式的に示す断面図である。It is sectional drawing which shows typically the flow of the processing fluid near the end in the width direction. 本発明に係る基板処理装置の第6実施形態における処理チャンバの開口部周辺の構造および整流部を例示する図である。It is a figure which illustrates the structure around the opening of the processing chamber and the rectifying part in the 6th Embodiment of the substrate processing apparatus which concerns on this invention.
 図1は、本発明に係る基板処理装置の第1実施形態の概略構成を示す図である。この基板処理装置1は、例えば半導体基板のような各種基板の表面を超臨界流体により処理するための装置である。以下の各図における方向を統一的に示すために、図1に示すようにXYZ直交座標系を設定する。ここで、XY平面は水平面であり、Z方向は鉛直方向を表す。より具体的には、(-Z)方向が鉛直下向きを表す。 FIG. 1 is a diagram showing a schematic configuration of a first embodiment of the substrate processing apparatus according to the present invention. The substrate processing device 1 is a device for treating the surface of various substrates such as a semiconductor substrate with a supercritical fluid. In order to show the directions in each of the following figures in a unified manner, the XYZ Cartesian coordinate system is set as shown in FIG. Here, the XY plane is a horizontal plane, and the Z direction represents a vertical direction. More specifically, the (-Z) direction represents a vertical downward direction.
 ここで、本実施形態における「基板」としては、半導体ウエハ、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板などの各種基板を適用可能である。以下では主として半導体ウエハの処理に用いられる基板処理装置を例に採って図面を参照して説明するが、上に例示した各種の基板の処理にも同様に適用可能である。 Here, the "board" in the present embodiment includes a semiconductor wafer, a glass substrate for a photomask, a glass substrate for a liquid crystal display, a glass substrate for a plasma display, a substrate for a FED (Field Emission Display), a substrate for an optical disk, and a magnetic disk. Various substrates such as substrates and substrates for optomagnetic disks can be applied. In the following, a substrate processing apparatus mainly used for processing a semiconductor wafer will be described with reference to the drawings, but the present invention can be similarly applied to the processing of various substrates exemplified above.
 基板処理装置1は、処理ユニット10、供給ユニット50および制御ユニット90を備えている。処理ユニット10は、超臨界乾燥処理の実行主体となるものであり、供給ユニット50は、処理に必要な化学物質および動力を処理ユニット10に供給する。 The board processing device 1 includes a processing unit 10, a supply unit 50, and a control unit 90. The treatment unit 10 is the main execution body of the supercritical drying treatment, and the supply unit 50 supplies the chemical substances and power required for the treatment to the treatment unit 10.
 制御ユニット90は、これら装置の各部を制御して所定の処理を実現する。この目的のために、制御ユニット90には、各種の制御プログラムを実行するCPU91、処理データを一時的に記憶するメモリ92、CPU91が実行する制御プログラムを記憶するストレージ93、およびユーザや外部装置と情報交換を行うためのインターフェース94などを備えている。後述する装置の動作は、CPU91が予めストレージ93に書き込まれた制御プログラムを実行し装置各部に所定の動作を行わせることにより実現される。 The control unit 90 controls each part of these devices to realize a predetermined process. For this purpose, the control unit 90 includes a CPU 91 that executes various control programs, a memory 92 that temporarily stores processing data, a storage 93 that stores control programs executed by the CPU 91, and a user or an external device. It is equipped with an interface 94 for exchanging information. The operation of the device, which will be described later, is realized by the CPU 91 executing a control program written in the storage 93 in advance and causing each part of the device to perform a predetermined operation.
 処理ユニット10は、処理チャンバ100を備えている。処理チャンバ100は、それぞれ金属ブロックにより形成された第1部材11、第2部材12および第3部材13を備えている。第1部材11と第2部材12とが図示しない結合部材により上下方向に結合され、その(+Y)側側面に、図示しない結合部材により第3部材13が結合されて、内部が空洞となった構造の処理チャンバ100が構成される。この空洞の内部空間が、基板Sに対する処理が実行される処理空間SPとなっている。処理対象の基板Sは処理空間SP内に搬入されて処理を受ける。処理チャンバ100の(-Y)側側面には、X方向に細長く延びるスリット状の開口部101が形成されており、開口部101を介して処理空間SPと外部空間とが連通している。 The processing unit 10 includes a processing chamber 100. The processing chamber 100 includes a first member 11, a second member 12, and a third member 13, which are formed of metal blocks, respectively. The first member 11 and the second member 12 are vertically connected by a coupling member (not shown), and the third member 13 is coupled to the (+ Y) side surface thereof by a coupling member (not shown) to form a hollow inside. The processing chamber 100 of the structure is configured. The internal space of this cavity is the processing space SP in which the processing for the substrate S is executed. The substrate S to be processed is carried into the processing space SP and undergoes processing. A slit-shaped opening 101 extending in the X direction is formed on the (−Y) side surface of the processing chamber 100, and the processing space SP and the external space communicate with each other through the opening 101.
 処理チャンバ100の(-Y)側側面には、開口部101を閉塞するように蓋部材14が設けられている。蓋部材14の(+Y)側側面には平板状の支持トレイ15が水平姿勢で取り付けられており、支持トレイ15の上面は基板Sを載置可能な支持面となっている。より具体的には、支持トレイ15は、略平坦な上面151に基板Sの平面サイズより少し大きく形成された凹部152が設けられた構造を有している。この凹部152に基板Sが収容されることで、基板Sは支持トレイ15上で所定位置に保持される。基板Sは、処理対象となる表面(以下、単に「基板表面」ということがある)Saを上向きにして保持される。このとき、支持トレイ15の上面151と基板表面Saとが同一平面をなしていることが好ましい。 A lid member 14 is provided on the (−Y) side side surface of the processing chamber 100 so as to close the opening 101. A flat plate-shaped support tray 15 is attached to the (+ Y) side side surface of the lid member 14 in a horizontal posture, and the upper surface of the support tray 15 is a support surface on which the substrate S can be placed. More specifically, the support tray 15 has a structure in which a recess 152 formed slightly larger than the plane size of the substrate S is provided on a substantially flat upper surface 151. By accommodating the substrate S in the recess 152, the substrate S is held in a predetermined position on the support tray 15. The substrate S is held with the surface to be processed (hereinafter, may be simply referred to as “substrate surface”) Sa facing upward. At this time, it is preferable that the upper surface 151 of the support tray 15 and the surface Sa of the substrate are flush with each other.
 蓋部材14は図示を省略する支持機構により、Y方向に水平移動自在に支持されている。また、蓋部材14は、供給ユニット50に設けられた進退機構53により、処理チャンバ100に対して進退移動可能となっている。具体的には、進退機構53は、例えばリニアモータ、直動ガイド、ボールねじ機構、ソレノイド、エアシリンダ等の直動機構を有しており、このような直動機構が蓋部材14をY方向に移動させる。進退機構53は制御ユニット90からの制御指令に応じて動作する。 The lid member 14 is supported so as to be horizontally movable in the Y direction by a support mechanism (not shown). Further, the lid member 14 can be moved back and forth with respect to the processing chamber 100 by the advancing / retreating mechanism 53 provided in the supply unit 50. Specifically, the advancing / retreating mechanism 53 has a linear motion mechanism such as a linear motor, a linear motion guide, a ball screw mechanism, a solenoid, and an air cylinder, and such a linear motion mechanism causes the lid member 14 to move in the Y direction. Move to. The advancing / retreating mechanism 53 operates in response to a control command from the control unit 90.
 蓋部材14が(-Y)方向に移動することにより、支持トレイ15が処理空間SPから開口部101を介して外部へ引き出されると、外部から支持トレイ15へのアクセスが可能となる。すなわち、支持トレイ15への基板Sの載置、および支持トレイ15に載置されている基板Sの取り出しが可能となる。一方、蓋部材14が(+Y)方向に移動することにより、支持トレイ15は処理空間SP内へ収容される。支持トレイ15に基板Sが載置されている場合、基板Sは支持トレイ15とともに処理空間SPに搬入される。 When the support tray 15 is pulled out from the processing space SP through the opening 101 by moving the lid member 14 in the (−Y) direction, the support tray 15 can be accessed from the outside. That is, the substrate S can be placed on the support tray 15 and the substrate S mounted on the support tray 15 can be taken out. On the other hand, as the lid member 14 moves in the (+ Y) direction, the support tray 15 is accommodated in the processing space SP. When the substrate S is placed on the support tray 15, the substrate S is carried into the processing space SP together with the support tray 15.
 液体の表面張力に起因するパターン倒壊を防止しつつ基板を乾燥させることを主たる目的とする超臨界乾燥処理においては、基板Sは、その表面Saが露出してパターン倒壊が発生するのを防止するために、表面Saが液膜で覆われた状態で搬入される。液膜を構成する液体としては、例えばイソプロピルアルコール(IPA)、アセトン等の表面張力が比較的低い有機溶剤を好適に用いることができる。 In the supercritical drying process whose main purpose is to dry the substrate while preventing the pattern collapse due to the surface tension of the liquid, the substrate S prevents the surface Sa from being exposed and the pattern collapse from occurring. Therefore, the surface Sa is carried in a state of being covered with a liquid film. As the liquid constituting the liquid film, for example, an organic solvent having a relatively low surface tension such as isopropyl alcohol (IPA) and acetone can be preferably used.
 蓋部材14が(+Y)方向に移動し開口部101を塞ぐことにより、処理空間SPが密閉される。蓋部材14の(+Y)側側面と処理チャンバ100の(-Y)側側面との間にはシール部材16が設けられ、処理空間SPの気密状態が保持される。シール部材16としては、弾性樹脂材料、例えばゴムにより形成された環状のものを用いることができる。また、図示しないロック機構により、蓋部材14は処理チャンバ100に対して固定される。このようにして処理空間SPの気密状態が確保された状態で、処理空間SP内で基板Sに対する処理が実行される。 The processing space SP is sealed by the lid member 14 moving in the (+ Y) direction and closing the opening 101. A seal member 16 is provided between the (+ Y) side side surface of the lid member 14 and the (−Y) side side surface of the processing chamber 100, and the airtight state of the processing space SP is maintained. As the sealing member 16, an elastic resin material, for example, an annular material formed of rubber can be used. Further, the lid member 14 is fixed to the processing chamber 100 by a locking mechanism (not shown). In the state where the airtight state of the processing space SP is secured in this way, the processing for the substrate S is executed in the processing space SP.
 この実施形態では、供給ユニット50に設けられた流体供給部57から、超臨界処理に利用可能な物質の流体、例えば二酸化炭素が、気体または液体の状態で処理ユニット10に供給される。二酸化炭素は比較的低温、低圧で超臨界状態となり、また基板処理に多用される有機溶剤をよく溶かす性質を有するという点で、超臨界乾燥処理に好適な化学物質である。 In this embodiment, a fluid of a substance that can be used for supercritical processing, for example, carbon dioxide, is supplied to the processing unit 10 in a gas or liquid state from the fluid supply unit 57 provided in the supply unit 50. Carbon dioxide is a chemical substance suitable for supercritical drying treatment because it is in a supercritical state at a relatively low temperature and low pressure and has a property of well dissolving an organic solvent often used for substrate treatment.
 より具体的には、流体供給部57は、基板Sを処理する処理流体として、超臨界状態の流体、または、ガス状もしくは液状で供給され所定の温度・圧力が与えられることで事後的に超臨界状態となる流体を出力する。例えば、ガス状もしくは液状の二酸化炭素が加圧状態で出力される。流体は配管571およびその途中に介挿されたバルブ572、573を介して、処理チャンバ100の(+Y)側側面に設けられた入力ポート102、103に圧送される。すなわち、制御ユニット90からの制御指令に応じてバルブ572、573が開成されることで、流体は流体供給部57から処理チャンバ100へ送られる(供給工程)。 More specifically, the fluid supply unit 57 is supplied as a processing fluid for processing the substrate S in a supercritical state, or in a gaseous or liquid state, and is given a predetermined temperature and pressure to be supercritical. Outputs a fluid that is in a critical state. For example, gaseous or liquid carbon dioxide is output under pressure. The fluid is pumped to the input ports 102 and 103 provided on the (+ Y) side side surface of the processing chamber 100 via the pipe 571 and the valves 572 and 573 inserted in the middle thereof. That is, the valves 572 and 573 are opened in response to the control command from the control unit 90, so that the fluid is sent from the fluid supply unit 57 to the processing chamber 100 (supply step).
 図2Aおよび図2Bは処理流体の流路を模式的に示す図である。より具体的には、図2Aは流路の輪郭を示す模式図であり、図2Bはその平面図である。以下、図1、図2Aおよび図2Bを参照しながら、処理流体の流路の構造について説明する。 2A and 2B are diagrams schematically showing the flow path of the processing fluid. More specifically, FIG. 2A is a schematic view showing the outline of the flow path, and FIG. 2B is a plan view thereof. Hereinafter, the structure of the flow path of the processing fluid will be described with reference to FIGS. 1, 2A and 2B.
 入力ポート102、103から処理空間SPに至る流体の流路17は、流体供給部57から供給される処理流体を処理空間SPに導入する導入流路として機能する。具体的には、入力ポート102には、流路171が接続されている。入力ポート102とは反対側の流路171の端部には、流路断面積が急激に拡大するように形成されたバッファ空間172が設けられている。 The fluid flow path 17 from the input ports 102 and 103 to the processing space SP functions as an introduction flow path for introducing the processing fluid supplied from the fluid supply unit 57 into the processing space SP. Specifically, the flow path 171 is connected to the input port 102. At the end of the flow path 171 on the opposite side of the input port 102, a buffer space 172 formed so that the cross-sectional area of the flow path rapidly expands is provided.
 バッファ空間172と処理空間SPとを接続するように、流路173がさらに設けられている。流路173は、上下方向(Z方向)に狭く、水平方向(X方向)に長い幅広の断面形状を有しており、その断面形状は、処理流体の流通方向において略一定である。バッファ空間172とは反対側の流路171の端部は、処理空間SPに臨んで開口する吐出口174となっており、この吐出口174から処理流体が処理空間SP内に導入される。 A flow path 173 is further provided so as to connect the buffer space 172 and the processing space SP. The flow path 173 has a wide cross-sectional shape that is narrow in the vertical direction (Z direction) and long in the horizontal direction (X direction), and the cross-sectional shape is substantially constant in the flow direction of the processing fluid. The end of the flow path 171 on the opposite side of the buffer space 172 is a discharge port 174 that opens facing the processing space SP, and the processing fluid is introduced into the processing space SP from this discharge port 174.
 望ましくは、流路173の高さは、支持トレイ15が処理空間SPに収容された状態で、処理空間SPの天井面と基板表面Saとの距離と等しい。そして、吐出口174は、処理空間SPの天井面と支持トレイ15の上面151との間のギャップに臨んで開口している。例えば、流路173の天井面と処理空間SPの天井面とが同一平面をなすようにすることができる。このように、吐出口174は、処理空間SPに臨んで水平方向に細長いスリット状に開口している。 Desirably, the height of the flow path 173 is equal to the distance between the ceiling surface of the processing space SP and the substrate surface Sa in the state where the support tray 15 is housed in the processing space SP. The discharge port 174 is open facing the gap between the ceiling surface of the processing space SP and the upper surface 151 of the support tray 15. For example, the ceiling surface of the flow path 173 and the ceiling surface of the processing space SP can be made to form the same plane. As described above, the discharge port 174 is opened in a horizontally elongated slit shape facing the processing space SP.
 支持トレイ15の下方にも同様にして処理流体の流路が形成される。具体的には、入力ポート103には流路175が接続されている。入力ポート103とは反対側の流路175の端部には、流路断面積が急激に拡大するように形成されたバッファ空間176が設けられている。 Similarly, a flow path for the processing fluid is formed below the support tray 15. Specifically, the flow path 175 is connected to the input port 103. At the end of the flow path 175 on the opposite side of the input port 103, a buffer space 176 formed so that the cross-sectional area of the flow path rapidly expands is provided.
 そして、バッファ空間176と処理空間SPとは流路177を介して連通している。流路177は、上下方向(Z方向)に狭く、水平方向(X方向)に長い幅広の断面形状を有しており、その断面形状は、処理流体の流通方向において略一定である。バッファ空間176とは反対側の流路177の端部は、処理空間SPに臨んで開口する吐出口178となっており、この吐出口178から処理流体が処理空間SP内に導入される。 Then, the buffer space 176 and the processing space SP communicate with each other via the flow path 177. The flow path 177 has a wide cross-sectional shape that is narrow in the vertical direction (Z direction) and long in the horizontal direction (X direction), and the cross-sectional shape is substantially constant in the flow direction of the processing fluid. The end of the flow path 177 on the opposite side of the buffer space 176 is a discharge port 178 that opens facing the processing space SP, and the processing fluid is introduced into the processing space SP from this discharge port 178.
 望ましくは、流路177の高さは、処理空間SPの底面と支持トレイ15の下面との距離と同等とされる。そして、吐出口178は、処理空間SPの底面と支持トレイ15の下面との間のギャップに臨んで開口している。例えば、流路177の底面と処理空間SPの底面とが同一平面をなすようにすることができる。つまり、吐出口178は、処理空間SPに臨んで水平方向に細長いスリット状に開口している。 Desirably, the height of the flow path 177 is equal to the distance between the bottom surface of the processing space SP and the bottom surface of the support tray 15. The discharge port 178 is open facing the gap between the bottom surface of the processing space SP and the bottom surface of the support tray 15. For example, the bottom surface of the flow path 177 and the bottom surface of the processing space SP can be formed on the same plane. That is, the discharge port 178 is opened in a horizontally elongated slit shape facing the processing space SP.
 Z方向において、流路171の配設位置と流路173の配設位置とが異なっていることが望ましい。両者が同一高さにあるとき、流路171からバッファ空間172に流入した処理流体の一部がそのまま直進して流路173に流入することになる。そうすると、流通方向に直交する流路の幅方向、つまりX方向においては、流路171に対応する位置とそれ以外の位置とで、流路173に流れ込む処理流体の流量や流速に差が生じるおそれがある。このことは、流路173から処理空間SPに流れ込む処理流体の流れにX方向の不均一性を生じさせ、乱流の原因となる。 It is desirable that the arrangement position of the flow path 171 and the arrangement position of the flow path 173 are different in the Z direction. When both are at the same height, a part of the processing fluid flowing from the flow path 171 into the buffer space 172 goes straight and flows into the flow path 173. Then, in the width direction of the flow path orthogonal to the flow direction, that is, in the X direction, there is a possibility that the flow rate and the flow velocity of the processing fluid flowing into the flow path 173 differ between the position corresponding to the flow path 171 and the position other than that. There is. This causes non-uniformity in the X direction in the flow of the processing fluid flowing from the flow path 173 into the processing space SP, which causes turbulence.
 流路171と流路173とをZ方向に異ならせて配置することにより、このような流路171から流路173への処理流体の直進は生じなくなり、幅方向において均一な層流として処理流体を処理空間SPに導入することが可能となる。 By arranging the flow path 171 and the flow path 173 so as to be different in the Z direction, the straight flow of the processing fluid from the flow path 171 to the flow path 173 does not occur, and the processing fluid is treated as a uniform laminar flow in the width direction. Can be introduced into the processing space SP.
 このように構成された導入流路17から導入される処理流体は、処理空間SP内で支持トレイ15の上面および下面に沿って流れ、以下のように構成される排気流路18を介して処理容器外へ排出される(排出工程)。基板Sよりも(-Y)側において、処理空間SPの天井面と支持トレイ15の上面151とはいずれも水平な平面をなしており、両者は一定のギャップを保って平行に対向している。このギャップが、支持トレイ15の上面151および基板Sの表面Saに沿って流れた処理流体を流体排出部55に導く排気流路18の上流領域181として機能する。この上流領域181は上下方向(Z方向)に狭く、水平方向(X方向)に長い幅広の断面形状を有している。 The processing fluid introduced from the introduction flow path 17 configured in this way flows along the upper surface and the lower surface of the support tray 15 in the processing space SP, and is processed through the exhaust flow path 18 configured as follows. It is discharged to the outside of the container (discharge process). On the (-Y) side of the substrate S, the ceiling surface of the processing space SP and the upper surface 151 of the support tray 15 both form a horizontal plane, and both face each other in parallel with a constant gap. .. This gap functions as an upstream region 181 of the exhaust flow path 18 that guides the processing fluid flowing along the upper surface 151 of the support tray 15 and the surface Sa of the substrate S to the fluid discharge portion 55. The upstream region 181 has a wide cross-sectional shape that is narrow in the vertical direction (Z direction) and long in the horizontal direction (X direction).
 上流領域181の処理空間SPとは反対側の端部はバッファ空間182に接続している。詳しい構造については後述するが、バッファ空間182は、処理チャンバ100と、蓋部材14と、シール部材16とで囲まれた空間である。X方向におけるバッファ空間182の幅は上流領域181の幅と同等またはこれより大きく、Z方向におけるバッファ空間182の高さは上流領域181の高さよりも大きい。したがって、バッファ空間182は上流領域181より大きな流路断面積を有している。 The end of the upstream area 181 opposite to the processing space SP is connected to the buffer space 182. Although the detailed structure will be described later, the buffer space 182 is a space surrounded by the processing chamber 100, the lid member 14, and the seal member 16. The width of the buffer space 182 in the X direction is equal to or larger than the width of the upstream region 181 and the height of the buffer space 182 in the Z direction is larger than the height of the upstream region 181. Therefore, the buffer space 182 has a flow path cross section larger than that of the upstream region 181.
 バッファ空間182の上部に下流領域183が接続されている。下流領域183は処理チャンバ100を構成する上部ブロックである第1部材11を貫通して設けられた貫通孔である。その上端は処理チャンバ100の上面に開口する出力ポート104を構成し、下端はバッファ空間182に臨んで開口している。 The downstream area 183 is connected to the upper part of the buffer space 182. The downstream region 183 is a through hole provided through the first member 11 which is an upper block constituting the processing chamber 100. The upper end constitutes an output port 104 that opens to the upper surface of the processing chamber 100, and the lower end thereof faces the buffer space 182.
 このように、本実施形態では、支持トレイ15の上面側における排気流路18は、以下の3つの領域、つまり、
 ・支持トレイ15の上面151と第1部材11の下面との間に形成される上流領域181と、
 ・流体排出部55と繋がる下流領域183と、
 ・上流領域181と下流領域183とを連通する中間領域(バッファ空間182)と、
を有している。これらのうち上流領域181およびバッファ空間182は、図2Aおよび図2Bに示すように、処理空間SPからの処理流体の流れ方向Yに対して直交するX方向において基板Sの直径よりも広い幅(本発明の「第1幅」に相当)にわたって設けられている。これに対し、X方向における下流領域183の幅(本発明の「第2幅」に相当)は大幅に狭まっている。このため、従来技術と同様に排気流路18に対して特段の工夫を施さない場合には、排気流路18のインレット側、つまり上流領域181で処理流体の逆流が生じ、処理済の処理流体が上流領域181から処理空間SPに流れ込むことがある。そこで、本実施形態では、図2Aおよび図2Bに示すように、第1部材11の一部(後で説明する隔壁112)をバッファ空間182に延設するとともに(-Y)方向側の端部を凹凸形状に仕上げ、本発明の「整流部」として機能させている。なお、これらの点については、後で詳述する。
As described above, in the present embodiment, the exhaust flow path 18 on the upper surface side of the support tray 15 has the following three regions, that is,
An upstream region 181 formed between the upper surface 151 of the support tray 15 and the lower surface of the first member 11 and
A downstream region 183 connected to the fluid discharge unit 55,
An intermediate region (buffer space 182) communicating the upstream region 181 and the downstream region 183,
have. Of these, the upstream region 181 and the buffer space 182 have a width wider than the diameter of the substrate S in the X direction orthogonal to the flow direction Y of the processing fluid from the processing space SP, as shown in FIGS. 2A and 2B. It is provided over (corresponding to the "first width" of the present invention). On the other hand, the width of the downstream region 183 in the X direction (corresponding to the "second width" of the present invention) is significantly narrowed. Therefore, as in the prior art, if no special device is applied to the exhaust flow path 18, backflow of the processing fluid occurs on the inlet side of the exhaust flow path 18, that is, in the upstream region 181 and the treated processing fluid is processed. May flow from the upstream region 181 into the processing space SP. Therefore, in the present embodiment, as shown in FIGS. 2A and 2B, a part of the first member 11 (partition wall 112 described later) is extended to the buffer space 182 and the end portion on the (-Y) direction side. Is finished in an uneven shape and functions as the "rectifying section" of the present invention. These points will be described in detail later.
 同様に、処理空間SPの底面と支持トレイ15の下面とはいずれも水平な平面をなしており、両者は一定のギャップを保って平行に対向している。このギャップが、支持トレイ15の下面に沿って流れる処理流体を流体排出部55に導く排気流路18の上流領域185として機能する。また、支持トレイ15の下面側の上流領域185は、支持トレイ15の上面側と同様に、バッファ空間186を介して下流領域187と接続されている。すなわち、支持トレイ15の下面側における排気流路18は、以下の3つの領域、つまり、
 ・支持トレイ15の下面と第2部材12の上面との間に形成される上流領域185と、
 ・流体排出部55と繋がる下流領域187と、
 ・上流領域185と下流領域187とを連通する中間領域(バッファ空間186)と、
を有している。これらのうち上流領域185およびバッファ空間186も、支持トレイ15の上面側と同様に、X方向において基板Sの直径よりも広い幅(本発明の「第1幅」に相当)にわたって設けられている。これに対し、X方向における下流領域187の幅(本発明の「第2幅」に相当)は大幅に狭められている。したがって、上記逆流を防止するために本実施形態では、第2部材12の一部(後で説明する隔壁122)をバッファ空間186に延設するとともに左側端部を凹凸形状に仕上げ、本発明の「整流部」として機能させている。なお、これらの点についても、後で詳述する。
Similarly, the bottom surface of the processing space SP and the bottom surface of the support tray 15 both form a horizontal flat surface, and both face each other in parallel while maintaining a constant gap. This gap functions as an upstream region 185 of the exhaust flow path 18 that guides the processing fluid flowing along the lower surface of the support tray 15 to the fluid discharge portion 55. Further, the upstream region 185 on the lower surface side of the support tray 15 is connected to the downstream region 187 via the buffer space 186, similarly to the upper surface side of the support tray 15. That is, the exhaust flow path 18 on the lower surface side of the support tray 15 has the following three regions, that is,
An upstream region 185 formed between the lower surface of the support tray 15 and the upper surface of the second member 12 and
A downstream region 187 connected to the fluid discharge unit 55,
An intermediate region (buffer space 186) communicating the upstream region 185 and the downstream region 187,
have. Of these, the upstream region 185 and the buffer space 186 are also provided over a width wider than the diameter of the substrate S in the X direction (corresponding to the “first width” of the present invention), similarly to the upper surface side of the support tray 15. .. On the other hand, the width of the downstream region 187 in the X direction (corresponding to the "second width" of the present invention) is significantly narrowed. Therefore, in order to prevent the backflow, in the present embodiment, a part of the second member 12 (partition wall 122 described later) is extended to the buffer space 186 and the left end portion is finished in an uneven shape, according to the present invention. It functions as a "rectifying unit". These points will be described in detail later.
 処理空間SPにおいて支持トレイ15の上方を流れた処理流体は、上流領域181、バッファ空間182および下流領域183を介して出力ポート104へ送出される。出力ポート104は、配管551によって流体排出部55に接続されており、配管551の途中にはバルブ552が介挿されている。 The processing fluid flowing above the support tray 15 in the processing space SP is sent to the output port 104 via the upstream region 181 and the buffer space 182 and the downstream region 183. The output port 104 is connected to the fluid discharge portion 55 by a pipe 551, and a valve 552 is inserted in the middle of the pipe 551.
 同様に、処理空間SPにおいて支持トレイ15の下方を流れた処理流体は、上流領域185、バッファ空間186および下流領域187を介して出力ポート105へ送出される。出力ポート105は、配管553によって流体排出部55に接続されており、配管553の途中にはバルブ554が介挿されている。 Similarly, the processing fluid flowing below the support tray 15 in the processing space SP is sent to the output port 105 via the upstream region 185, the buffer space 186, and the downstream region 187. The output port 105 is connected to the fluid discharge portion 55 by a pipe 553, and a valve 554 is inserted in the middle of the pipe 553.
 バルブ552、554は制御ユニット90により制御されている。制御ユニット90からの制御指令に応じてバルブ552、554が開成すると、処理空間SP内の処理流体が配管551、553を介して流体排出部55に回収される。 The valves 552 and 554 are controlled by the control unit 90. When the valves 552 and 554 are opened in response to the control command from the control unit 90, the processing fluid in the processing space SP is collected by the fluid discharge unit 55 via the pipes 551 and 555.
 次に、整流部の構成および動作について、図3A、図3B、図4、図5Aおよび図5Bを参照しつつ説明する。図3Aおよび図3Bは処理チャンバの開口部周辺の構造および整流部を例示する図である。より具体的には、図3Aは処理チャンバ100の開口部101を示す外観図である。また、図3Bは、処理チャンバ100の内部構造を見やすく示すために、図3Aからシール部材16および第1部材11と第2部材12との境界線の図示を省き、代わりに図3Aでは隠れている構造を隠れ線(点線)によって示したものである。 Next, the configuration and operation of the rectifying unit will be described with reference to FIGS. 3A, 3B, 4, 5A and 5B. 3A and 3B are diagrams illustrating the structure and rectifying section around the opening of the processing chamber. More specifically, FIG. 3A is an external view showing an opening 101 of the processing chamber 100. Further, FIG. 3B omits the illustration of the sealing member 16 and the boundary line between the first member 11 and the second member 12 from FIG. 3A in order to show the internal structure of the processing chamber 100 in an easy-to-see manner, and instead hides in FIG. 3A. The existing structure is shown by a hidden line (dotted line).
 これらの図に示されるように、処理チャンバ100の(-Y)側端面には、環状のシール部材16が取り付けられ、シール部材16に囲まれた内部領域に開口部101が設けられている。より具体的には、処理チャンバ100を構成する第1部材11、第2部材12の(-Y)側端面に、表面が(+Y)側に後退した凹部111、121が設けられている。そして、第1部材11の凹部111の下端には、X方向における幅が処理空間SPの幅と同じかこれよりも少し大きく、かつ上下方向(Z方向)に薄い鍔状の隔壁112が(-Y)方向に突出して設けられている。 As shown in these figures, an annular seal member 16 is attached to the (−Y) side end surface of the processing chamber 100, and an opening 101 is provided in an internal region surrounded by the seal member 16. More specifically, recesses 111 and 121 whose surfaces are retracted to the (+ Y) side are provided on the (−Y) side end faces of the first member 11 and the second member 12 constituting the processing chamber 100. At the lower end of the recess 111 of the first member 11, a flange-shaped partition wall 112 having a width in the X direction equal to or slightly larger than the width of the processing space SP and thin in the vertical direction (Z direction) is formed (-. It is provided so as to project in the Y) direction.
 隔壁112は、支持トレイ15と対向しながら(-Y)方向に延びる第1部材11の(-Y)側下端部であり、図4に示すように上流領域181とバッファ空間182とを部分的に仕切っている。したがって、上流領域181を流れてくる処理流体(点線)は隔壁112の(-Y)側を通過し、さらに(+Z)方向に向きを変えてバッファ空間182に流れ込む。また、本実施形態では、隔壁112に対し、X方向における略中央部に2つの切欠部位112aが設けられている。これにより、隔壁112は凹凸形状に仕上げられ、X方向における中央部での処理流体の流量が高められる一方、X方向における両端部での処理流体の流量が抑制される。つまり、凹凸部を有する隔壁112が本発明の「整流部」として機能する。 The partition wall 112 is a lower end portion on the (−Y) side of the first member 11 extending in the (−Y) direction while facing the support tray 15, and partially comprises the upstream region 181 and the buffer space 182 as shown in FIG. It is divided into. Therefore, the processing fluid (dotted line) flowing through the upstream region 181 passes through the (−Y) side of the partition wall 112, and further turns in the (+ Z) direction and flows into the buffer space 182. Further, in the present embodiment, the partition wall 112 is provided with two notch portions 112a at a substantially central portion in the X direction. As a result, the partition wall 112 is finished in an uneven shape, and the flow rate of the processing fluid at the central portion in the X direction is increased, while the flow rate of the processing fluid at both ends in the X direction is suppressed. That is, the partition wall 112 having the uneven portion functions as the "rectifying portion" of the present invention.
 また、第2部材12の凹部121の上端にも、X方向における幅が処理空間SPの幅と同じかこれよりも少し大きく、かつ上下方向(Z方向)に薄い鍔状の隔壁122が(-Y)方向に突出して設けられている。 Further, at the upper end of the recess 121 of the second member 12, a flange-shaped partition wall 122 having a width in the X direction equal to or slightly larger than the width of the processing space SP and thin in the vertical direction (Z direction) is (-. It is provided so as to project in the Y) direction.
 隔壁122は、支持トレイ15と対向しながら(-Y)方向に延びる第2部材12の(-Y)側上端部であり、上流領域185とバッファ空間186とを部分的に仕切っている。したがって、上流領域185を流れてくる処理流体は隔壁122の(-Y)側を通過し、さらに(-Z)方向に向きを変えてバッファ空間186に流れ込む。また、本実施形態では、図3Aおよび図3Bに示すように、隔壁122に対し、X方向における略中央部に2つの切欠部位122aが設けられている。これにより、隔壁122は凹凸形状に仕上げられ、X方向における中央部での処理流体の流量が高められる一方、X方向における両端部での処理流体の流量が抑制される。つまり、凹凸部を有する隔壁122は、隔壁112と同様に、本発明の「整流部」として機能する。 The partition wall 122 is the upper end portion on the (−Y) side of the second member 12 extending in the (−Y) direction while facing the support tray 15, and partially partitions the upstream region 185 and the buffer space 186. Therefore, the processing fluid flowing through the upstream region 185 passes through the (−Y) side of the partition wall 122, further turns in the (—Z) direction, and flows into the buffer space 186. Further, in the present embodiment, as shown in FIGS. 3A and 3B, two notch portions 122a are provided at a substantially central portion in the X direction with respect to the partition wall 122. As a result, the partition wall 122 is finished in an uneven shape, and the flow rate of the processing fluid at the central portion in the X direction is increased, while the flow rate of the processing fluid at both ends in the X direction is suppressed. That is, the partition wall 122 having the uneven portion functions as the "rectifying portion" of the present invention in the same manner as the partition wall 112.
 隔壁112上方の上部空間は、その(-Y)側開口部を蓋部材14により閉塞されることによってバッファ空間182として機能する。また、隔壁122下方の下部空間は、その(-Y)側開口部を蓋部材14により閉塞されることによってバッファ空間186として機能する。凹部111の上面には、そのX方向両端部近傍に下流領域183、183が接続されている。下流領域183、183は、第1部材11の上面に設けられた出力ポート104、104に連通している。また凹部121の下面には、そのX方向両端部近傍に下流領域187、187が接続されている。下流領域187、187は、第2部材12の下面に設けられた出力ポート105、105に連通している。そして、出力ポート104、104、105、105に流体排出部55が接続されて処理流体を回収する。 The upper space above the partition wall 112 functions as a buffer space 182 by closing the (−Y) side opening with the lid member 14. Further, the lower space below the partition wall 122 functions as a buffer space 186 by closing the (−Y) side opening thereof with the lid member 14. Downstream regions 183 and 183 are connected to the upper surface of the recess 111 in the vicinity of both ends in the X direction. The downstream regions 183 and 183 communicate with the output ports 104 and 104 provided on the upper surface of the first member 11. Further, downstream regions 187 and 187 are connected to the lower surface of the recess 121 in the vicinity of both ends in the X direction. The downstream regions 187 and 187 communicate with the output ports 105 and 105 provided on the lower surface of the second member 12. Then, the fluid discharge unit 55 is connected to the output ports 104, 104, 105, 105 to collect the processing fluid.
 このように第1実施形態では、排気流路18のインレット側、つまり上流領域181、185ではX方向に幅広な範囲で処理済の処理流体が流入可能に構成される一方で、排気流路18のアウトレット側、つまり下流領域183、187ではX方向に幅狭な範囲で処理流体を流出させる必要がある。したがって、既述した問題が懸念されるが、第1実施形態では、整流部として機能する隔壁112、122が設けられているため、排気流路18での排気バランスが良好に調整される。この点について、図4、図5Aおよび図5Bを参照しつつ説明する。 As described above, in the first embodiment, the treatment fluid treated in a wide range in the X direction can flow into the inlet side of the exhaust flow path 18, that is, the upstream regions 181 and 185, while the exhaust flow path 18 is configured. On the outlet side of the above, that is, in the downstream regions 183 and 187, it is necessary to let the processing fluid flow out in a narrow range in the X direction. Therefore, although the above-mentioned problems are concerned, in the first embodiment, since the partition walls 112 and 122 functioning as the rectifying unit are provided, the exhaust balance in the exhaust flow path 18 is satisfactorily adjusted. This point will be described with reference to FIGS. 4, 5A and 5B.
 図5Aは隔壁の切欠部位近傍での処理流体の流れを模式的に示す断面図である。また、図5Bは隔壁のX方向端部近傍での処理流体の流れを模式的に示す断面図である。隔壁112、122の切欠部位112a、122a近傍では、図4に示すように、隔壁112、122は(+Y)側に後退しており、凹部位に相当している。一方、切欠部位112a、122a以外においては、隔壁112、122は、上流領域185からバッファ空間186に流れる処理流体に向かって突出しており、凸部位に相当している。このため、X方向において下流領域183、187から離れた中央部では、図4および図5Aに示すように、比較的大きな流量で処理流体が上流領域185からバッファ空間186に流れ込み、X方向両端に向けて流通される。一方、X方向両端部では、図4および図5Bに示すように、中央部に比べて上流領域185からバッファ空間186に流れ込む処理流体の流量が抑制される。 FIG. 5A is a cross-sectional view schematically showing the flow of the processing fluid in the vicinity of the notch portion of the partition wall. Further, FIG. 5B is a cross-sectional view schematically showing the flow of the processing fluid in the vicinity of the end portion in the X direction of the partition wall. In the vicinity of the cutout portions 112a and 122a of the partition walls 112 and 122, as shown in FIG. 4, the partition walls 112 and 122 are retracted to the (+ Y) side and correspond to the recessed position. On the other hand, except for the notch portions 112a and 122a, the partition walls 112 and 122 project from the upstream region 185 toward the processing fluid flowing into the buffer space 186 and correspond to the convex portions. Therefore, in the central portion away from the downstream regions 183 and 187 in the X direction, as shown in FIGS. 4 and 5A, the processing fluid flows from the upstream region 185 into the buffer space 186 at a relatively large flow rate and reaches both ends in the X direction. It is distributed to. On the other hand, at both ends in the X direction, as shown in FIGS. 4 and 5B, the flow rate of the processing fluid flowing from the upstream region 185 into the buffer space 186 is suppressed as compared with the central portion.
 以上のように、第1実施形態によれば、排気流路18において下流領域183、187をX方向両端部に設けたことに対応して隔壁112、122に凹部位と凸部位とを設け、隔壁112、122を整流部として機能させている。すなわち、流体排出部55により処理済の処理流体を排出する際に、排気流路18のうち隔壁112、122を設けた整流位置RP(図2B、図4)に流れ込む処理流体を整流する。これにより、整流位置RPに対する処理空間SP側での処理流体の流れと、整流位置RPに対する前記流体排出部側での前記処理流体の流れとのバランスが調整される。つまり、排気流路18における排気のバランスが確保される。その結果、処理済の処理流体が処理空間SPに逆流して基板Sを汚染するのを効果的に防止することができる。 As described above, according to the first embodiment, the partition walls 112 and 122 are provided with concave portions and convex portions corresponding to the provision of downstream regions 183 and 187 at both ends in the X direction in the exhaust flow path 18. The partition walls 112 and 122 function as a rectifying unit. That is, when the processed fluid is discharged by the fluid discharge unit 55, the processed fluid flowing into the rectified position RP (FIGS. 2B and 4) provided with the partition walls 112 and 122 in the exhaust flow path 18 is rectified. As a result, the balance between the flow of the processing fluid on the processing space SP side with respect to the rectification position RP and the flow of the processing fluid on the fluid discharge portion side with respect to the rectification position RP is adjusted. That is, the balance of the exhaust gas in the exhaust flow path 18 is ensured. As a result, it is possible to effectively prevent the treated processing fluid from flowing back into the processing space SP and contaminating the substrate S.
 図6は、本発明に係る基板処理装置の第2実施形態における処理チャンバの開口部周辺の構造および整流部を例示する図である。なお、図6およびその説明において、実質的に図3Aおよび図3Bに記載のものと同様の機能を有する構造には同一符号を付して、詳しい説明を省略する。 FIG. 6 is a diagram illustrating a structure around an opening of a processing chamber and a rectifying unit in the second embodiment of the substrate processing apparatus according to the present invention. In FIG. 6 and its description, structures having substantially the same functions as those shown in FIGS. 3A and 3B are designated by the same reference numerals, and detailed description thereof will be omitted.
 第2実施形態が第1実施形態と大きく相違する点は、整流部の構成である。つまり、第1実施形態では、第1部材11の一部(隔壁112)および第2部材12の一部(隔壁122)を本発明の「整流部」として機能させている。これに対し、第2実施形態では、独立した隔壁整流部材191、192がそれぞれ第1部材11および第2部材12に対して着脱自在となっている。 The major difference between the second embodiment and the first embodiment is the configuration of the rectifying unit. That is, in the first embodiment, a part of the first member 11 (partition wall 112) and a part of the second member 12 (partition wall 122) function as the "rectifying unit" of the present invention. On the other hand, in the second embodiment, the independent partition wall rectifying members 191 and 192 are detachable from the first member 11 and the second member 12, respectively.
 隔壁整流部材191は、図6に示すように、断面が略L字型のアングル状部材である。この隔壁整流部材191を構成する2つの翼部位のうち(-Y)方向に延びる翼部位の幅方向中央部に2つの切欠部位191a、191aが設けられている。そして、もう一方の翼部位が、第1部材11の凹部101aに密接された状態で、固定ねじ113aにより第1部材11に固定される。これによって、隔壁整流部材191は第1実施形態の隔壁112と同様に、隔壁機能と整流機能とを発揮する。また同様に、開口部101bの下部には、隔壁整流部材192が固定ねじ123aにより固結され、隔壁機能を発揮する。また同時に、幅方向中央部に設けられた2つの切欠部位192a、192aを有する隔壁整流部材192が整流機能を発揮する。 As shown in FIG. 6, the partition wall rectifying member 191 is an angle-shaped member having a substantially L-shaped cross section. Of the two blade portions constituting the partition wall rectifying member 191, two notched portions 191a and 191a are provided at the central portion in the width direction of the blade portion extending in the (-Y) direction. Then, the other wing portion is fixed to the first member 11 by the fixing screw 113a in a state of being in close contact with the recess 101a of the first member 11. As a result, the partition wall rectifying member 191 exhibits a partition wall function and a rectifying function, similarly to the partition wall 112 of the first embodiment. Similarly, a partition wall rectifying member 192 is consolidated at the lower portion of the opening 101b by a fixing screw 123a to exhibit a partition wall function. At the same time, the partition wall rectifying member 192 having two notched portions 192a and 192a provided in the central portion in the width direction exerts a rectifying function.
 このように第2実施形態では、隔壁整流部材191、192が着脱自在であるため、基板Sの種類や処理条件などに対応した隔壁整流部材191、192を用いることができる。例えば、予め切欠部位191a、192aの数、形状および大きさなどが互い異なる複数の隔壁整流部材191、192を準備することができる。そして、それらのうち基板Sの種類や処理条件などに適合する隔壁整流部材191、192をそれぞれ選択して処理チャンバ100に装着することができる。これによって、多種多様な基板Sや処理条件などに対応することができ、基板処理装置1の汎用性を高めることができる。 As described above, in the second embodiment, since the partition wall rectifying members 191 and 192 are detachable, the partition wall rectifying members 191 and 192 corresponding to the type and processing conditions of the substrate S can be used. For example, it is possible to prepare a plurality of partition wall rectifying members 191 and 192 having different numbers, shapes and sizes of the cutout portions 191a and 192a in advance. Then, among them, the partition wall rectifying members 191 and 192 suitable for the type of the substrate S, the processing conditions, and the like can be selected and mounted on the processing chamber 100, respectively. This makes it possible to deal with a wide variety of substrates S, processing conditions, and the like, and enhances the versatility of the substrate processing apparatus 1.
 以上説明したように、第1実施形態および第2実施形態においては、主として第1ないし第3部材11~13により構成される処理チャンバ100が本発明の「容器本体」として機能している。また、蓋部材14が本発明の「蓋部」の一例に相当している。そして、これら処理チャンバ100と蓋部材14とにより本発明の「処理容器」が構成されている。また、開口部101が本発明の「開口部」に相当している。また、Y方向、X方向およびZ方向がそれぞれ本発明の「第1方向」、「第2方向」および「第3方向」に相当している。 As described above, in the first embodiment and the second embodiment, the processing chamber 100 mainly composed of the first to third members 11 to 13 functions as the "container body" of the present invention. Further, the lid member 14 corresponds to an example of the "cover portion" of the present invention. The processing chamber 100 and the lid member 14 constitute the "processing container" of the present invention. Further, the opening 101 corresponds to the "opening" of the present invention. Further, the Y direction, the X direction and the Z direction correspond to the "first direction", the "second direction" and the "third direction" of the present invention, respectively.
 また、第1実施形態および第2実施形態では、出力ポート104、105の周辺領域は、流体排出部55により強く排気されており、排気流路18のうち(+X)方向側および(-X)方向側の端部範囲が本発明の「強排気範囲」の一例に相当している。一方、出力ポート104、105から離れたX方向における中央範囲が本発明の「弱排気範囲」の一例に相当している。 Further, in the first embodiment and the second embodiment, the peripheral regions of the output ports 104 and 105 are strongly exhausted by the fluid discharge unit 55, and the (+ X) direction side and (−X) of the exhaust flow path 18 are exhausted. The end range on the directional side corresponds to an example of the "strong exhaust range" of the present invention. On the other hand, the central range in the X direction away from the output ports 104 and 105 corresponds to an example of the "weak exhaust range" of the present invention.
 なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態の基板処理装置1では、2つの出力ポート104、104(105、105)がX方向において振り分けて設けられており、上記中央範囲が弱排気範囲となっている。このため、切欠部位112a、122a、191a、192aがX方向における中央部に設けられている。しかしながら、切欠部位の配設位置はこれに限定されるものではなく、任意である。例えば図7Aに示すように、(-X)方向側のみに出力ポート104、105が設けられている場合、(+X)方向側に切欠部位112a、122a(191a、192a)を設けてもよい(第3実施形態)。逆に、図7Bに示すように、(+X)方向側のみに出力ポート104、105が設けられている場合、(-X)方向側に切欠部位112a、122a(191a、192a)を設けてもよい(第4実施形態)。 It should be noted that the present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention. For example, in the substrate processing apparatus 1 of the above embodiment, two output ports 104, 104 (105, 105) are provided separately in the X direction, and the central range is a weak exhaust range. Therefore, the cutout portions 112a, 122a, 191a, and 192a are provided in the central portion in the X direction. However, the arrangement position of the notch portion is not limited to this, and is arbitrary. For example, as shown in FIG. 7A, when the output ports 104 and 105 are provided only on the (-X) direction side, the notch portions 112a and 122a (191a and 192a) may be provided on the (+ X) direction side (+ X). Third embodiment). On the contrary, as shown in FIG. 7B, when the output ports 104 and 105 are provided only on the (+ X) direction side, the cutout portions 112a and 122a (191a and 192a) may be provided on the (-X) direction side. Good (4th embodiment).
 また、上記実施形態では、排気流路18を構成する上流領域181(185)とバッファ空間182(186)との間に隔壁112(121)や隔壁整流部材191(192)を設けているが、本発明の適用対象はこれに限定されるものではない。例えば図8A、図8B、図9Aおよび図9Bに示す基板処理装置に対しても本発明を適用可能である。 Further, in the above embodiment, the partition wall 112 (121) and the partition wall rectifying member 191 (192) are provided between the upstream region 181 (185) constituting the exhaust flow path 18 and the buffer space 182 (186). The application of the present invention is not limited to this. For example, the present invention can be applied to the substrate processing apparatus shown in FIGS. 8A, 8B, 9A and 9B.
 図8Aは、本発明に係る基板処理装置の第5実施形態における処理流体の流路の平面図である。また、図8Bは、第5実施形態において用いられる整流部の一例を示す斜視図である。また、図9Aは、幅方向中央部近傍での処理流体の流れを模式的に示す断面図である。さらに、図9Bは、幅方向端部近傍での処理流体の流れを模式的に示す断面図である。第5実施形態では、図9Aおよび図9Bに示すように、隔壁や隔壁整流部材が設けられず、処理空間SPから(-Y)方向に流れてくる処理流体が上流領域181、185を通過し、そのままバッファ空間182に流入する。一方、第5実施形態では、図8Bに示す整流部20の凹凸面(下面)が上流領域181を臨むように整流部20が第1部材11の下面に取り付けられている。なお、上流領域185についても同様に構成されている。つまり、整流部20と同様に構成された整流部21は、その凹凸面(上面)が上流領域185を臨むように、第2部材12の上面に取り付けられている。 FIG. 8A is a plan view of the flow path of the processing fluid according to the fifth embodiment of the substrate processing apparatus according to the present invention. Further, FIG. 8B is a perspective view showing an example of a rectifying unit used in the fifth embodiment. Further, FIG. 9A is a cross-sectional view schematically showing the flow of the processing fluid in the vicinity of the central portion in the width direction. Further, FIG. 9B is a cross-sectional view schematically showing the flow of the processing fluid in the vicinity of the end portion in the width direction. In the fifth embodiment, as shown in FIGS. 9A and 9B, the partition wall and the partition wall rectifying member are not provided, and the processing fluid flowing in the (−Y) direction from the processing space SP passes through the upstream regions 181 and 185. , As it is, flows into the buffer space 182. On the other hand, in the fifth embodiment, the rectifying unit 20 is attached to the lower surface of the first member 11 so that the uneven surface (lower surface) of the rectifying unit 20 shown in FIG. 8B faces the upstream region 181. The upstream region 185 is similarly configured. That is, the rectifying unit 21 configured in the same manner as the rectifying unit 20 is attached to the upper surface of the second member 12 so that its uneven surface (upper surface) faces the upstream region 185.
 整流部20、21は、図8Aおよび図8Bに示すように、X方向に延設されたプレート形状を有している。この整流部20は、下面中央部に切欠部位201、201が形成された凹凸形状を有し、上流領域181のアウトレット位置(整流位置RP)で上流領域181からバッファ空間182に流れる処理流体を整流する。また、整流部21は、上面中央部に切欠部位211、211が形成された凹凸形状を有し、上流領域185のアウトレット位置(整流位置RP)で上流領域185からバッファ空間186に流れる処理流体を整流する。このため、上記実施形態と同様の作用効果が得られる。 As shown in FIGS. 8A and 8B, the rectifying units 20 and 21 have a plate shape extending in the X direction. The rectifying unit 20 has a concavo-convex shape in which notch portions 201 and 201 are formed in the center of the lower surface, and rectifies the processing fluid flowing from the upstream region 181 to the buffer space 182 at the outlet position (rectifying position RP) of the upstream region 181. do. Further, the rectifying unit 21 has a concavo-convex shape in which cutout portions 211 and 211 are formed in the center of the upper surface, and allows the processing fluid flowing from the upstream region 185 to the buffer space 186 at the outlet position (rectifying position RP) of the upstream region 185. Rectify. Therefore, the same effect as that of the above embodiment can be obtained.
 また、上記実施形態では、出力ポート104、105がX方向の両側、(+X)方向側のみ、(-X)方向側のみに設けられた装置に本発明を適用しているが、出力ポート104、105がX方向における中央部に設けられた装置に対しても本発明を適用することができる。例えば図10に示すように、出力ポート104、105がX方向中央部に設けられる場合、切欠部位112a、122a、191a、192aをX方向における両端部に振り分けて設けるのが望ましい(第6実施形態)。この第6実施形態では、X方向における中央部に出力ポート104、105が設けられていると、X方向における中央範囲が本発明の「強排気範囲」に相当し、端部範囲が「弱排気範囲」に相当する。したがって、切欠部位112a、122a、191a、192aが設けられていることによって、端部範囲では比較的大きな流量で処理流体が上流領域からバッファ空間に流れ込む。一方で、中央範囲には、隔壁112、122に切欠部位が設けられていないため、端部に比べて上流領域からバッファ空間に流れ込む処理流体の流量が抑制される。このように、端部に設けられた切欠部位112a、122a、191a、192aによって凹凸部が形成された隔壁112、122が、本発明の「整流部」として機能する。 Further, in the above embodiment, the present invention is applied to an apparatus in which the output ports 104 and 105 are provided on both sides in the X direction, only on the (+ X) direction side, and only on the (−X) direction side, but the output port 104 , 105 can also be applied to the device provided in the central portion in the X direction. For example, as shown in FIG. 10, when the output ports 104 and 105 are provided in the central portion in the X direction, it is desirable that the cutout portions 112a, 122a, 191a and 192a are provided at both ends in the X direction (sixth embodiment). ). In the sixth embodiment, when the output ports 104 and 105 are provided in the central portion in the X direction, the central range in the X direction corresponds to the "strong exhaust range" of the present invention, and the end range is "weak exhaust". Corresponds to "range". Therefore, by providing the cutout portions 112a, 122a, 191a, and 192a, the processing fluid flows from the upstream region into the buffer space at a relatively large flow rate in the end range. On the other hand, since the partition walls 112 and 122 are not provided with notched portions in the central range, the flow rate of the processing fluid flowing into the buffer space from the upstream region is suppressed as compared with the end portions. As described above, the partition walls 112, 122 in which the uneven portions are formed by the cutout portions 112a, 122a, 191a, 192a provided at the end portions function as the "rectifying portion" of the present invention.
 また、上記実施形態では、排気流路18のインレット側(処理空間SP側)は、X方向に延びるスリット状に開口されており、処理空間SPを流れてくる処理流体を効率的に取り込み可能となっている。ただし、インレット側の排気流路18の構成については、これに限定されるものではなく、例えば複数の貫通孔をX方向に配列したパンチングプレートを介して処理流体を取り込むように構成した排気流路を有する基板処理装置に対して本発明を適用することができる。すなわち、本発明については、特許文献1~4に記載された装置に対しても適用することができ、上記実施形態と同様の作用効果が得られる。 Further, in the above embodiment, the inlet side (processing space SP side) of the exhaust flow path 18 is opened in a slit shape extending in the X direction, so that the processing fluid flowing through the processing space SP can be efficiently taken in. It has become. However, the configuration of the exhaust flow path 18 on the inlet side is not limited to this, and the exhaust flow path is configured to take in the processing fluid through, for example, a punching plate in which a plurality of through holes are arranged in the X direction. The present invention can be applied to a substrate processing apparatus having the above. That is, the present invention can also be applied to the devices described in Patent Documents 1 to 4, and the same effects as those of the above-described embodiment can be obtained.
 また、上記実施形態では、排気流路18は、3種類の領域、つまり上流領域、中間領域(バッファ空間)および下流領域で構成されている。しかしながら、本発明については、排気流路18が上流領域と下流領域とで構成される基板処理装置に対して適用することができる。 Further, in the above embodiment, the exhaust flow path 18 is composed of three types of regions, that is, an upstream region, an intermediate region (buffer space), and a downstream region. However, the present invention can be applied to a substrate processing apparatus in which the exhaust flow path 18 is composed of an upstream region and a downstream region.
 また、上記実施形態の処理で使用される各種の化学物質は一部の例を示したものであり、上記した本発明の技術思想に合致するものであれば、これに代えて種々のものを使用することが可能である。
 以上、特定の実施例に沿って発明を説明したが、この説明は限定的な意味で解釈されることを意図したものではない。発明の説明を参照すれば、本発明のその他の実施形態と同様に、開示された実施形態の様々な変形例が、この技術に精通した者に明らかとなるであろう。故に、添付の特許請求の範囲は、発明の真の範囲を逸脱しない範囲内で、当該変形例または実施形態を含むものと考えられる。
In addition, the various chemical substances used in the treatment of the above-mentioned embodiments show some examples, and if they are in conformity with the above-mentioned technical idea of the present invention, various chemical substances may be used instead. It is possible to use.
Although the invention has been described above with reference to specific embodiments, this description is not intended to be construed in a limited sense. With reference to the description of the invention, as with other embodiments of the invention, various variations of the disclosed embodiments will be apparent to those familiar with the art. Therefore, the appended claims are considered to include such modifications or embodiments without departing from the true scope of the invention.
 この発明は、処理容器内で基板を処理流体によって処理する基板処理技術全般に適用することができる。特に、高圧流体を用いた処理、例えば半導体基板等の基板を超臨界流体によって乾燥させる基板乾燥処理に適用することができる。 The present invention can be applied to all substrate processing techniques for processing a substrate with a processing fluid in a processing container. In particular, it can be applied to a process using a high-pressure fluid, for example, a substrate drying process for drying a substrate such as a semiconductor substrate with a supercritical fluid.
 1…基板処理装置
 14…蓋部材
 15…支持トレイ
 18…排気流路
 20,21…整流部
 55…流体排出部
 100…処理チャンバ(容器本体)
 112、122…隔壁(整流部)
 181、185…上流領域
 182、186…バッファ空間(中間領域)
 183、187…下流領域
 191、192…隔壁整流部材(整流部)
 RP…整流位置
 S…基板
 SP…処理空間
 X…第2方向
 Y…第1方向
 Z…第3方向
 
1 ... Substrate processing device 14 ... Cover member 15 ... Support tray 18 ... Exhaust flow path 20, 21 ... Rectifying unit 55 ... Fluid discharge unit 100 ... Processing chamber (container body)
112, 122 ... partition wall (rectifying part)
181 185 ... upstream area 182, 186 ... buffer space (intermediate area)
183, 187 ... Downstream area 191, 192 ... Bulkhead rectifying member (rectifying unit)
RP ... Rectification position S ... Board SP ... Processing space X ... Second direction Y ... First direction Z ... Third direction

Claims (7)

  1.  基板を処理空間に収容する処理容器と、
     前記処理空間に超臨界処理用の処理流体を供給する流体供給部と、
     前記処理容器内で前記処理空間と連通して形成される排気流路を経由して前記処理空間から前記処理流体を排出する流体排出部と、
     前記排気流路の整流位置に設けられる整流部と、を備え、
     前記整流部は、前記流体排出部による前記処理流体の排出時において前記整流位置に流れ込む前記処理流体を整流することで、前記整流位置に対する前記処理空間側での前記処理流体の流れと、前記整流位置に対する前記流体排出部側での前記処理流体の流れとのバランスを調整することを特徴とする基板処理装置。
    A processing container that houses the substrate in the processing space,
    A fluid supply unit that supplies a processing fluid for supercritical processing to the processing space,
    A fluid discharge unit that discharges the treatment fluid from the treatment space via an exhaust flow path formed in the treatment container in communication with the treatment space.
    A rectifying unit provided at a rectifying position of the exhaust flow path is provided.
    The rectifying unit rectifies the processing fluid that flows into the rectifying position when the processing fluid is discharged by the fluid discharging unit, whereby the flow of the processing fluid on the processing space side with respect to the rectifying position and the rectification. A substrate processing apparatus characterized in that the balance with the flow of the processing fluid on the fluid discharge portion side with respect to the position is adjusted.
  2.  請求項1に記載の基板処理装置であって、
     前記排気流路は、
     前記処理空間から前記排気流路に前記処理流体が流れる第1方向に対して直交する第2方向において第1幅にわたって設けられる上流領域と、
     前記第2方向において前記第1幅よりも狭い第2幅を有し、前記流体排出部と接続されて前記上流領域を介して流れ込む前記処理流体を前記流体排出部に流通させる下流領域とを有し、
     前記整流部は、前記第2方向において前記下流領域に対応する強排気範囲での前記処理流体の流量と、前記第2方向において前記下流領域以外の領域に対応する弱排気範囲での前記処理流体の流量と、を相違させる基板処理装置。
    The substrate processing apparatus according to claim 1.
    The exhaust flow path is
    An upstream region provided over the first width in the second direction orthogonal to the first direction in which the processing fluid flows from the processing space to the exhaust flow path, and
    It has a second width narrower than the first width in the second direction, and has a downstream region in which the treated fluid connected to the fluid discharge portion and flowing through the upstream region is circulated to the fluid discharge portion. death,
    The rectifying unit includes the flow rate of the processing fluid in the strong exhaust range corresponding to the downstream region in the second direction and the processing fluid in the weak exhaust range corresponding to the region other than the downstream region in the second direction. A substrate processing device that differs from the flow rate of.
  3.  請求項2に記載の基板処理装置であって、
     前記整流部は、前記第2方向に延設して設けられ、前記強排気範囲において前記排気流路に沿って流れる前記処理流体に向かって突出して設けられる凸部位と、前記弱排気範囲において前記排気流路に沿って流れる前記処理流体から後退して設けられる凹部位と、を有する基板処理装置。
    The substrate processing apparatus according to claim 2.
    The rectifying portion is provided so as to extend in the second direction, and has a convex portion provided so as to project toward the processing fluid flowing along the exhaust flow path in the strong exhaust range, and the rectifying portion in the weak exhaust range. A substrate processing apparatus having a recessed position provided retreating from the processing fluid flowing along an exhaust flow path.
  4.  請求項2または3に記載の基板処理装置であって、
     前記排気流路は、前記上流領域と前記下流領域との間に設けられ、前記上流領域を前記第1方向に流れる前記処理流体の流れ方向を前記第1方向および前記第2方向の両方と直交する第3方向に変化させながら前記下流領域に案内する中間領域をさらに有し、
     前記整流部は、前記上流領域と前記中間領域との間で前記処理流体を整流する基板処理装置。
    The substrate processing apparatus according to claim 2 or 3.
    The exhaust flow path is provided between the upstream region and the downstream region, and the flow direction of the processing fluid flowing in the upstream region in the first direction is orthogonal to both the first direction and the second direction. Further has an intermediate region that guides to the downstream region while changing in the third direction.
    The rectifying unit is a substrate processing device that rectifies the processing fluid between the upstream region and the intermediate region.
  5.  請求項2または3に記載の基板処理装置であって、
     前記整流部は、前記上流領域で前記処理流体を整流する基板処理装置。
    The substrate processing apparatus according to claim 2 or 3.
    The rectifying unit is a substrate processing device that rectifies the processing fluid in the upstream region.
  6.  請求項2ないし5のいずれか一項に記載の基板処理装置であって、
     前記基板を支持しながら前記処理空間に収容可能な支持トレイをさらに備え、
     前記処理容器は、前記処理空間および前記処理空間に連通し前記支持トレイを通過させるための開口部が設けられた容器本体と、前記開口部を閉塞可能な蓋部とを有し、
     上記上流領域は、前記容器本体の前記処理空間に前記第1方向から前記支持トレイが収容されて前記容器本体と前記支持トレイとの間に形成される空間であり、
     前記整流部は、前記容器本体のうち前記支持トレイと対向しながら前記第1方向側の端部に設けられる基板処理装置。
    The substrate processing apparatus according to any one of claims 2 to 5.
    Further provided with a support tray that can be accommodated in the processing space while supporting the substrate.
    The processing container has a container body provided with an opening for communicating with the processing space and passing the support tray, and a lid portion capable of closing the opening.
    The upstream region is a space in which the support tray is housed in the processing space of the container body from the first direction and is formed between the container body and the support tray.
    The rectifying unit is a substrate processing device provided at an end portion of the container body on the first direction side while facing the support tray.
  7.  処理容器の処理空間に超臨界処理用の処理流体を供給して前記処理空間に収容される基板を超臨界処理する供給工程と、
     前記処理容器内で前記処理空間と連通して形成される排気流路を経由して流体排出部により前記処理空間から前記処理流体を排出する排出工程と、を備え、
     前記排出工程では、整流部を前記排気流路の整流位置に設けて前記整流位置に流れ込む前記処理流体を整流することで、前記整流位置に対する前記処理空間側での前記処理流体の流れと、前記整流位置に対する前記流体排出部側での前記処理流体の流れとのバランスを調整することを特徴とする基板処理方法。
    A supply process in which a processing fluid for supercritical processing is supplied to the processing space of the processing container to supercritically process the substrate accommodated in the processing space.
    A discharge step of discharging the treatment fluid from the treatment space by a fluid discharge portion via an exhaust flow path formed in the treatment container in communication with the treatment space is provided.
    In the discharge step, a rectifying unit is provided at the rectifying position of the exhaust flow path to rectify the processing fluid flowing into the rectifying position, whereby the flow of the processing fluid on the processing space side with respect to the rectifying position and the said. A substrate processing method comprising adjusting the balance with the flow of the processing fluid on the fluid discharge portion side with respect to the rectified position.
PCT/JP2021/042906 2020-11-25 2021-11-24 Substrate processing apparatus and substrate processing method WO2022113971A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-194879 2020-11-25
JP2020194879A JP2022083526A (en) 2020-11-25 2020-11-25 Substrate processing device and substrate processing method

Publications (1)

Publication Number Publication Date
WO2022113971A1 true WO2022113971A1 (en) 2022-06-02

Family

ID=81754824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042906 WO2022113971A1 (en) 2020-11-25 2021-11-24 Substrate processing apparatus and substrate processing method

Country Status (3)

Country Link
JP (1) JP2022083526A (en)
TW (1) TWI814148B (en)
WO (1) WO2022113971A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036109A (en) * 2005-07-29 2007-02-08 Dainippon Screen Mfg Co Ltd High pressure processor
JP2008073611A (en) * 2006-09-21 2008-04-03 Dainippon Screen Mfg Co Ltd High pressure treating device
JP2018147945A (en) * 2017-03-02 2018-09-20 東京エレクトロン株式会社 Substrate processing apparatus
JP2018207076A (en) * 2017-06-09 2018-12-27 東京エレクトロン株式会社 Substrate treatment apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6970515B2 (en) * 2017-03-08 2021-11-24 株式会社Screenホールディングス Board processing equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036109A (en) * 2005-07-29 2007-02-08 Dainippon Screen Mfg Co Ltd High pressure processor
JP2008073611A (en) * 2006-09-21 2008-04-03 Dainippon Screen Mfg Co Ltd High pressure treating device
JP2018147945A (en) * 2017-03-02 2018-09-20 東京エレクトロン株式会社 Substrate processing apparatus
JP2018207076A (en) * 2017-06-09 2018-12-27 東京エレクトロン株式会社 Substrate treatment apparatus

Also Published As

Publication number Publication date
TW202228228A (en) 2022-07-16
TWI814148B (en) 2023-09-01
JP2022083526A (en) 2022-06-06

Similar Documents

Publication Publication Date Title
WO2022113971A1 (en) Substrate processing apparatus and substrate processing method
KR102439644B1 (en) Substrate processing apparatus
KR102500483B1 (en) Substrate processing apparatus
TWI754309B (en) Substrate processing apparatus
JP2024045870A (en) Substrate processing equipment
WO2023119964A1 (en) Substrate processing apparatus and substrate processing method
TWI758758B (en) Substrate processing apparatus
WO2021171810A1 (en) Substrate treatment device and substrate treatment method
US20230066729A1 (en) Substrate processing method and substrate processing apparatus
TWI834176B (en) Substrate processing method and substrate processing apparatus
JP7458267B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE TRANSFER METHOD
JP2024042637A (en) Drying device and substrate processing device
JP2022104883A (en) Substrate processing device and substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897943

Country of ref document: EP

Kind code of ref document: A1