WO2022113887A1 - Method for assessing inflammatory retinal disease, inflammatory retinal disease therapeutic, and screening method for inflammatory retinal disease therapeutics - Google Patents

Method for assessing inflammatory retinal disease, inflammatory retinal disease therapeutic, and screening method for inflammatory retinal disease therapeutics Download PDF

Info

Publication number
WO2022113887A1
WO2022113887A1 PCT/JP2021/042479 JP2021042479W WO2022113887A1 WO 2022113887 A1 WO2022113887 A1 WO 2022113887A1 JP 2021042479 W JP2021042479 W JP 2021042479W WO 2022113887 A1 WO2022113887 A1 WO 2022113887A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
fine particles
inflammatory
extracellular
retinal disease
Prior art date
Application number
PCT/JP2021/042479
Other languages
French (fr)
Japanese (ja)
Inventor
淳爾 羽室
千恵 外園
茂 木下
Original Assignee
京都府公立大学法人
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京都府公立大学法人 filed Critical 京都府公立大学法人
Priority to JP2022565291A priority Critical patent/JPWO2022113887A1/ja
Publication of WO2022113887A1 publication Critical patent/WO2022113887A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility

Definitions

  • the present invention relates to a method for determining an inflammatory retinal disease, a method for screening an inflammatory retinal disease therapeutic agent, and a method for screening an inflammatory retinal disease therapeutic agent.
  • Extracellular fine particles such as exosomes secreted from cells contain lipids and proteins derived from cell membranes on the surface, and nucleic acids derived from intracellular substances (microRNA, messenger RNA, DNA, etc.), proteins, etc. inside. Includes.
  • the microRNA (miRNA) contained in the extracellular fine particles is a non-coding RNA consisting of about 17 to 24 nucleotides that is not translated into protein.
  • miRNA Currently, more than 2500 types of human miRNA have been discovered. This miRNA has the function of suppressing the translation of various genes having target sites complementary to itself, and controls basic biological functions such as cell development, differentiation, proliferation, and cell death. .. In this way, since microRNA regulates the expression of many genes in cells, changes in its expression are thought to be related to the development and progression of diseases. Research is also being conducted to use it for discovery.
  • Patent Document 1 describes a method for detecting bladder cancer using 27 types of miRNA whose expression fluctuates in bladder cancer as an index.
  • miRNA is closely related to diseases such as cancer, and it is considered that miRNA may be used for their diagnosis, prognosis prediction, and the like.
  • age-related macular degeneration is one of the chronic inflammatory retinal diseases and is a major cause of blindness in the elderly in developed countries (see Non-Patent Document 3).
  • various abnormalities occur in the macula in the center of the retina, causing a decrease in visual acuity.
  • Dyschromia and drusen (deposits) in the macula are seen in the early stage of the disease, but the detection of the disease is often delayed because there are few subjective symptoms.
  • abnormal angiogenesis occurs in the macula, and the disorder progresses, causing serious deterioration of visual acuity. Therefore, diagnosis and prognosis of age-related macular degeneration should be made easily and with high accuracy in the early stage of the disease. There is a need for a way to do this.
  • the present invention provides a novel determination method capable of early detection of chronic inflammatory retinal disease such as age-related macular degeneration, determination of severity, determination of therapeutic effect, etc. under the above-mentioned circumstances.
  • the purpose is. It is also an object of the present invention to provide a novel therapeutic agent for inflammatory retinal diseases such as age-related macular degeneration. Furthermore, it is also an object to provide a new screening method for a therapeutic agent for inflammatory retinal disease.
  • the gist of the present invention is as follows.
  • [1] A method for determining an inflammatory retinal disease accompanied by tissue inflammation, using extracellular fine particles (EV) produced by the subject's retinal pigment epithelial cells (RPE) as an index.
  • RPE retinal pigment epithelial cells
  • [2] The determination method according to [1], wherein the profile of miRNA contained in the extracellular fine particles (EV) is used as an index.
  • [3] The determination method according to [2], wherein the miRNA contains miR494-3p and / or miR1246.
  • the determination method according to any one of [1] to [4], which is an inflammatory disease.
  • a therapeutic agent for an inflammatory retinal disease accompanied by tissue inflammation which contains a function-regulating molecule of extracellular fine particles (EV) produced by retinal pigment epithelial cells (RPE) as an active ingredient.
  • RPE retinal pigment epithelial cells
  • the inflammation according to [7] or [8], wherein the function-regulating molecule of the extracellular fine particles (EV) is a function-regulating molecule of miR494-3p and / or miR1246 contained in the extracellular fine particles (EV).
  • the function-regulating molecule of the extracellular fine particle (EV) is any one of [7] to [9], which is at least one selected from the group consisting of nucleic acid oligos, small molecule compounds, peptides and antibodies.
  • the described inflammatory retinal disease therapeutic agent is at least one selected from the group consisting of age-related yellow spot degeneration, central serous chorioretinopathy, proliferative vitreous retinopathy, and diabetic retinopathy.
  • the agent for treating an inflammatory retinal disease according to any one of [7] to [10], which is a disease.
  • Inflammation associated with tissue inflammation characterized by variability in the profile of extracellular fine particles (EV) secreted in a co-culture system of retinal pigment epithelial cells (RPE) and monocytes / macrophages.
  • RPE retinal pigment epithelial cells
  • a screening method for therapeutic agents for sexual retinal diseases [13] The screening method according to [12], wherein the extracellular fine particles (EV) are secreted from retinal pigment epithelial cells (RPE).
  • RPE retinal pigment epithelial cells
  • the screening method according to [12] or [13], wherein the variation in the profile of the extracellular fine particles (EV) is a variation in the profile of miRNA contained in the extracellular fine particles (EV).
  • the possibility, severity, therapeutic effect, etc. of an inflammatory retinal disease such as age-related macular degeneration can be easily determined with high accuracy. be able to.
  • Age-related macular degeneration has a problem that early detection is difficult because there are few subjective symptoms in the early stage of the disease in patients, but early detection is possible by the determination method of the present invention.
  • the function-regulating molecule of extracellular fine particles (EV) produced by retinal pigment epithelial cells (RPE), particularly the function-regulating molecule of specific microRNA is a novel therapeutic agent for chronic inflammatory retinal diseases such as age-related macular degeneration. It is effective as.
  • the screening method of the present invention it is possible to easily search for a substance having a therapeutic effect on inflammatory retinal diseases.
  • the method for determining an inflammatory retinal disease associated with tissue inflammation of the present invention uses extracellular fine particles (EV) produced by the retinal pigment epithelial cells (RPE) of a subject as an index.
  • EV extracellular fine particles
  • extracellular fine particles are fine particles released by cells and are vesicles that can be confirmed with an electron microscope.
  • the extracellular fine particles (EV) contain nucleic acids (microRNA, messenger RNA, DNA, etc.) derived from intracellular substances, proteins, etc., and are covered with a lipid double layer composed of cell-derived lipids and proteins. ..
  • Extracellular microparticles (EVs) are their diameter, intracellular origin, density of microparticles in sucrose, shape, sedimentation rate, lipid composition, protein markers and mode of secretion (ie, after signaling (inducible) or spontaneously (ie). It is classified into multiple types based on structural)) and so on.
  • extracellular fine particles examples include membrane particles, membrane vesicles, microvesicles, exosome-like vesicles, exosomes, ectome-like vesicles, ectosomes, exovesicles and the like.
  • exosomes are vesicles contained in blood, lymph, saliva, urine, breast milk, semen, etc., and released by substantially spherical cells distributed around a diameter of about 100 nm.
  • Molecules such as proteins, mRNA, and miRNA are contained inside the vesicle.
  • Exosomes are sometimes referred to as microvesicles or extracellular vesicles, and there are a plurality of names.
  • the particles are fractionated into 1.13 to 1.19 g / mL, and the particle diameter (diameter) by the dynamic light scattering method or the like is contained in the range of about 40 nm to about 150 nm.
  • CD9, CD63, CD81 and the like are expressed on the membrane of exosomes.
  • the amount of extracellular fine particles (EV) such as exosomes released increases, and in particular, the amount of CD63-positive exosomes released increases and specific microRNAs derived from these. Content increases.
  • the amount of extracellular fine particles (EV) released such as exosomes is significantly increased, and in particular, the amount of CD63-positive exosomes released is further increased and specific micros contained therein are further increased.
  • the RNA content is also increased. Therefore, by using the extracellular fine particles (EV) produced by the subject's retinal pigment epithelial cells (RPE) as an index, the possibility, severity, therapeutic effect, etc. of inflammatory retinal diseases such as age-related macular degeneration can be determined. It becomes possible to do.
  • the above-mentioned "using extracellular fine particles (EV) as an index” means the amount of extracellular fine particles (EV) released, the amount of CD63-positive exosomes in the extracellular fine particles (EV), and the extracellular fine particles (EV). It means that the profile of a substance contained in EV), particularly a nucleic acid derived from an intracellular substance, particularly miRNA (microRNA), is used as an index.
  • a substance contained in EV particularly a nucleic acid derived from an intracellular substance, particularly miRNA (microRNA)
  • miRNA miRNA
  • the content, expression level, release amount and the like of miR494-3p, miR1246, miR4741 and / or miR7115-p derived from mitochondria are preferable, and among them, miR494-3p and /
  • the content, expression amount, release amount and the like of miR1246 are mentioned as more preferable, and the content, expression amount, release amount and the like of miR494-3p are further mentioned as more preferable.
  • the amount of the specific miRNA (microRNA) contained in the secreted extracellular fine particles (EV) is increased. Therefore, these can be used as indicators.
  • the biological sample of the subject in the determination method of the present invention is not particularly limited as long as it is a sample containing extracellular fine particles (EV) produced by the subject's retinal pigment epithelial cells (RPE), but for example, the subject's anterior chamber water.
  • EV extracellular fine particles
  • RPE retinal pigment epithelial cells
  • Examples include blood (plasma, serum), tissue fluid and the like.
  • examples of inflammatory retinal diseases associated with tissue inflammation include age-related macular degeneration, central serous chorioretinal disease, proliferative vitreous retinopathy, and diabetic retinopathy.
  • the disease to which the determination method of the present invention is particularly suitable is age-related macular degeneration.
  • the possibility of inflammatory retinal disease, the severity of symptoms, the risk of onset, the risk of aggravation, the therapeutic effect, etc. can be determined.
  • the higher the RNA content than the reference value the higher the possibility, severity, risk of developing, and risk of aggravation of inflammatory retinal disease associated with tissue inflammation in the subject.
  • a reference value for determining the possibility of morbidity an average value, a numerical range, or the like in a healthy person can be used.
  • the value before treatment and the value after treatment are compared, and if the value is low, it is determined that the therapeutic effect was achieved. If the value does not change, it is determined that the therapeutic effect was not seen, and if the value becomes high, it is determined that the treatment has deteriorated.
  • the method for determining an inflammatory retinal disease associated with tissue inflammation of the present invention can also be described as a method including the following steps.
  • Step of preparing a sample from a subject (2) The amount of extracellular fine particles (EV) in the sample of the subject prepared in (1), the amount of CD63-positive exosomes in the extracellular fine particles (EV), substances contained in the extracellular fine particles (EV), particularly.
  • Step of preparing a sample from a subject In this step, a biological sample is collected and prepared from a subject who is judged to have an inflammatory retinal disease accompanied by tissue inflammation.
  • the sample from the subject is not particularly limited as long as it is a sample containing extracellular fine particles (EV) produced by the subject's retinal pigment epithelial cells (RPE), and examples thereof include the subject's anterior chamber water and blood.
  • EV extracellular fine particles
  • RPE retinal pigment epithelial cells
  • miRNA miRNA
  • microRNA miRNA
  • various exosome separation kits pellet down by centrifugation, immunoprecipitation, magnetic
  • Purification with beads, fractionation by particle size, column adsorption, etc. is used to separate extracellular fine particles (EV), and the amount of obtained extracellular fine particles (EV) is measured.
  • the method for separating and recovering extracellular fine particles includes, for example, ultracentrifuging a sample of a subject at about 50,000 to 150,000 G for 0.5 to 2 hours. Prior to ultracentrifugation, the sample can be centrifuged for 0.1-2 hours at about 100-20,000 G. Extracellular fine particles (EV) are freeze-dried at 4 ° C for about 1 week, -20 ° C for about 1 month, and -80 ° C for about 6 months if they are dissolved in a solution such as PBS. If there is, it can be stored at 4 ° C for about 3 years.
  • the method for measuring the amount of extracellular fine particles (EV) is not particularly limited, but for example, a method for measuring the number of particles of extracellular fine particles (EV) in a liquid with a NanoSign LM10V-HS nanoparticle tracking system, Examples include a method for measuring the amount of protein.
  • a method for measuring the amount of CD63-positive exosomes in the obtained extracellular fine particles (EV) for example, protein quantification is performed according to a conventional method, and the amount of protein in each sample is adjusted to be equal to Western blotting. , CD63 is detected, and the amount of CD63 in each sample is analyzed.
  • the profile of the contained microRNA (expression intensity) can be analyzed using 3D-gene human microRNA chips (manufactured by Toray Industries, Inc.) or the like.
  • miRNA As the profile of the microRNA (miRNA), the content, expression level, release amount and the like of miR494-3p, miR1246, miR4741 and / or miR7115-p derived from mitochondria are preferable, and among them, miR494-3p and / Alternatively, the content, expression amount, release amount and the like of miR1246 are mentioned as more preferable, and the content, expression amount, release amount and the like of miR494-3p are further mentioned as more preferable.
  • the numerical value obtained in the step (2) above is compared with the reference value.
  • a reference value for determining the possibility of morbidity an average value, a numerical range, or the like in a healthy person can be used.
  • the value before treatment and the value after treatment are compared, and if the value is low, it is determined that the therapeutic effect was achieved. If the value does not change, it is determined that the therapeutic effect was not seen, and if the value becomes high, it is determined that the treatment has deteriorated.
  • the determination method of the present invention it is possible to easily diagnose and predict the prognosis of age-related macular degeneration in the early stage of the disease with high accuracy.
  • the diagnosis and therapeutic effect of the possibility / risk of developing inflammatory retinal disease and the risk of severe / severe symptoms are determined.
  • the judgment item is not limited to this.
  • Other determination items include determination of pre-illness, initial lesion, or pre-stage (state in which symptoms are not clear) in which a definitive diagnosis can be made for each disease.
  • the condition in which the visual field is lacking on the Amsler examination and new blood vessels are observed on the fluorescence fundus angiography is already severe age-related macular degeneration.
  • the therapeutic agent for inflammatory retinal disease of the present invention contains a function-regulating molecule of extracellular fine particles (EV) produced by retinal pigment epithelial cells (RPE) as an active ingredient.
  • RPE retinal pigment epithelial cells
  • the amount of extracellular fine particles (EV) released and the above-mentioned specific miRNA (microRNA) contained therein Due to the increased amount, molecules that regulate (suppress or promote) these functions are expected to have a therapeutic effect on inflammatory retinal diseases associated with tissue inflammation.
  • the retinal pigment epithelial cells When the amount of the specific miRNA (microRNA) released in the retinal pigment epithelial cells (RPE) of a subject who develops inflammatory retinal disease accompanied by tissue inflammation is increased, the retinal pigment epithelial cells (RPE) are used. While it is possible that the specific amount of miRNA in the tissue is excessive, the amount of the specific miRNA in the retinal pigment epithelial cells (RPE) (including those containing mitochondria) decreases due to the increase in the release amount. It is possible that it is. Therefore, it is considered that regulating (suppressing or promoting) the expression of these miRNAs according to the state of the disease of the subject leads to the treatment of the disease.
  • microRNA specific miRNA released in the retinal pigment epithelial cells
  • the function-regulating molecule of the extracellular fine particles (EV) is not particularly limited as long as it is a molecule that regulates the function of the extracellular fine particles (EV), but the production (release) of the extracellular fine particles (EV) is limited. ) Is a broad concept including molecules that regulate. Further, as a function-regulating molecule of extracellular fine particles (EV), a function-regulating molecule of microRNA (miRNA) contained in extracellular fine particles (EV) is given as a preferable example, and among them, extracellular fine particles (EV) are contained.
  • miRNA microRNA
  • a function-regulating molecule of miR494-3p, miR1246, miR4741 and / or miR7110-5p is more preferably a function-regulating molecule of miR494-3p, miR1246, miR4741 and / or miR7110-5p, further preferably a function-regulating molecule of miR494-3p and / or miR1246, and a function-regulating molecule of miR494-3p.
  • these function-regulating molecules include nucleic acid oligos, small molecule compounds, peptides, antibodies, and the like, and specific examples thereof include nucleic acid oligos that regulate the function of the specific microRNA (miRNA). ..
  • nucleic acid oligo introduction of mimic
  • nucleic acid oligo introduction of inhibitor
  • the nucleic acid oligo is preferably modified for the purpose of suppressing decomposition when administered to a living body and / or for the purpose of specifically binding to a diseased site.
  • siRNA means a double-stranded RNA consisting of short strands in a range that does not show toxicity in cells, for example, 15 to 49 base pairs, preferably 15 to 35 base pairs, and more preferably 21 to 30 base pairs.
  • shRNA is RNA in which a single-stranded RNA constitutes a double strand via a hairpin structure.
  • nucleic acid oligo in the present invention is an oligo composed of natural and unnatural RNA or DNA, and means a nucleic acid oligomer that controls the functions of miR494-3p, miR1246, miR4741 and / or miR7110-5p.
  • Nucleic acid oligos in the present invention include miRNA, siRNA, shRNA, antisense nucleic acid, decoy nucleic acid, and nucleic acid aptamer.
  • SiRNA and shRNA do not have to be exactly the same as the target gene, but have at least 70% or more, preferably 80% or more, more preferably 90% or more, and most preferably 95% or more sequence homology.
  • the portion of double-stranded RNA in which RNAs are paired with each other in siRNA and shRNA is not limited to a completely paired one, but is not limited to a completely paired one, but is a mismatch (corresponding bases are not complementary) and bulge (base corresponding to one strand). It may include a non-matching portion due to (there is no) or the like. In the present invention, both the bulge and the mismatch may be contained in the double-stranded RNA region in which the RNAs in the dsRNA are paired with each other.
  • the therapeutic agent for inflammatory retinal disease in the present invention may contain a pharmaceutically acceptable material such as a preservative or a stabilizer.
  • a pharmaceutically acceptable material such as a preservative or a stabilizer.
  • Acceptable means that the material itself may have the above-mentioned therapeutic effect or may not have the above-mentioned therapeutic effect, and may be the material that can be administered together with the above-mentioned therapeutic agent. Means material. Further, a material having no therapeutic effect and having a synergistic effect or an additive stabilizing effect when used in combination with a therapeutic agent for inflammatory retinal disease may be used.
  • Examples of the material permitted in the formulation include sterile water, physiological saline, preservatives, stabilizers, excipients, buffers, preservatives, surfactants, chelating agents (EDTA, etc.), binders, and the like. Can be done.
  • an isotonic solution containing, for example, physiological saline, glucose and other adjuvants (eg, D-sorbitol, D-mannose, D-mannitol) , Sodium chloride), suitable solubilizers such as alcohols (ethanol, etc.), polyalcohols (propylene glycol, PEG, etc.), nonionic surfactants (polysorbitol 80, HCO-50), etc. May be good.
  • a diluent, a solubilizing agent, a pH adjuster, a pain-relieving agent, a sulfur-containing reducing agent, an antioxidant and the like may be further contained.
  • the therapeutic agent for inflammatory retinal disease of the present invention can be encapsulated in microcapsules (microcapsules such as hydroxymethylcellulose, gelatin, poly [methylmethacrylate]), or a colloidal drug delivery system (liposomes, albumin microspheres). , Microemulsions, nanoparticles and nanocapsules, etc.). Further, a method of making a drug a sustained release drug is also known and can be applied to the present invention.
  • the pharmaceutically acceptable carrier to be used is appropriately selected from the above or in combination depending on the dosage form, but is not limited thereto.
  • the therapeutic agent for inflammatory retinal disease of the present invention is used as a human medicine, it is possible to formulate and administer these substances by a known pharmaceutical method, in addition to directly administering these substances to patients. be.
  • the above-mentioned materials that are acceptable for the formulation may be added.
  • the therapeutic agent for inflammatory retinal disease in the present invention can be administered in the form of a pharmaceutical product, and can be administered orally or parenterally systemically or topically.
  • intravenous injection such as infusion, intramuscular injection, intraperitoneal injection, subcutaneous injection, suppository, enema, oral intestinal solvent, etc. can be selected, and the administration method should be appropriately selected according to the age and symptoms of the patient.
  • the effective dose is selected in the range of 0.000001 mg to 1 g per 1 kg of body weight at a time.
  • a dose of 0.00001 to 100 mg, preferably 0.0001 to 50 mg per patient can be selected.
  • Examples of the inflammatory retinal disease in the therapeutic agent for inflammatory retinal disease of the present invention include age-related yellow spot degeneration, central serous chorioretinopathy, proliferative vitreous retinopathy, diabetic retinopathy and the like.
  • the disease for which the therapeutic agent for inflammatory retinal disease of the present invention is particularly effective is age-related macular degeneration.
  • the method for screening a therapeutic agent for an inflammatory retinal disease associated with tissue inflammation of the present invention is a variation in the profile of extracellular fine particles (EV) secreted in a co-culture system of retinal pigment epithelial cells (RPE) and monocytes / macrophages. Is a feature.
  • RPE retinal pigment epithelial cells
  • monocytes / macrophages constructed by the present inventors as a system for mimicking the state of inflammatory retinal disease accompanied by tissue inflammation, extracellular fine particles secreted.
  • the amount of (EV) increases, and the amount of the specific miRNA (microRNA) contained therein increases.
  • the screening method of the present invention the amount of extracellular fine particles (EV) secreted in the co-culture system of retinal pigment epithelial cells (RPE) and monocytes / macrophages, and the above-mentioned specific miRNA (micro) contained therein.
  • EV extracellular fine particles
  • RPE retinal pigment epithelial cells
  • micro macrophages
  • Substances that are effective in reducing the amount of RNA) can be screened.
  • the substance selected by the screening method of the present invention can be expected to have an effect of improving and treating the symptoms of inflammatory retinal disease accompanied by tissue inflammation.
  • the specific miRNA is preferably mitochondrial-derived miR494-3p, miR1246, miR4741 and / or miR7115-5p, more preferably miR494-3p and / or miR1246p, and miR494-3p. It is even more preferable to have.
  • the screening method of the present invention can also be described as a method including the following steps.
  • Step of preparing a co-culture system of retinal pigment epithelial cells (RPE) and monocytes / macrophages (2) Step of adding a test substance to the co-culture system prepared in (1) and culturing for a certain period of time.
  • RPE retinal pigment epithelial cells
  • a substance contained in EV particularly a nucleic acid derived from an intracellular substance, particularly a profile of miRNA (microRNA), specifically, the content of the above-mentioned specific miRNA (microRNA) derived from mitochondria
  • microRNA miRNA
  • Step of preparing a co-culture system of retinal pigment epithelial cells (RPE) and monocytes / macrophages As the retinal pigment epithelial cell (RPE), a primary cultured cell of retinal pigment epithelial cell (RPE) collected from human retinal tissue, a cell established from these, or the like may be used, or from iPS cells. Retinal pigment epithelial cells (RPE) (iPS-hRPE cells) produced by induction may be used.
  • RPE retinal pigment epithelial cells
  • iPS-hRPE cells Retinal pigment epithelial cells
  • monocytes / macrophages in this step monocytes / macrophages isolated from human blood, tissues, etc. may be used, or THP-1 cells, which are established cells, may be treated with PMA or the like by a conventional method.
  • THP-1 cells which are established cells, may be treated with PMA or the like by a conventional method.
  • Cells differentiated into macrophages may be used.
  • the retinal pigment epithelial cells for example, iPS-hRPE cells
  • monocytes / macrophages for example, PMA-THP-1 cells
  • co-culture both cells may be mixed and cultured in one incubator, or one may be adherently cultured and the other cell may be seeded after a certain period of time has passed.
  • iPS-hRPE cells and iPS-hRPP cells using Transwell (registered trademark) cell culture inserts (manufactured by Corning Inc.), Nico-1 (registered trademark) culture system (Ginreilab Inc., Uchinada, Ishikawa, Japan) and the like. Co-culture may be carried out under the condition that the cells do not come into direct contact with each other.
  • the medium used in the co-culture is not particularly limited as long as it is usually used for general cell culture or culture of the above-mentioned retinal pigment epithelial cells (RPE) and monocytes / macrophages.
  • Serum such as fetal bovine serum may be added to the medium, but a serum-free medium is preferable in order to eliminate the influence of extracellular fine particles brought in from the serum.
  • the conditions for inducing inflammation by adding the above LPS or the like include, for example, LPS of 1 ng to 500 ng / mL, preferably 10 ng to 200 ng / mL, more preferably 50 ng to 150 ng / mL, still more preferably 80 ng to 120 ng / mL.
  • LPS LPS of 1 ng to 500 ng / mL, preferably 10 ng to 200 ng / mL, more preferably 50 ng to 150 ng / mL, still more preferably 80 ng to 120 ng / mL.
  • the conditions added so as to have a concentration can be mentioned.
  • the number of each cell in the co-culture can be appropriately adjusted according to the size, morphology and the like of the incubator.
  • specific co-culture for example, when a 24-well plate is used, 1.0 ⁇ 10 4 cells to 1.0 ⁇ 10 6 cells / well, preferably 5.0 ⁇ 10 4 cells to 5.0 ⁇ .
  • PMA-THP-1 cells of about 10 5 cells, more preferably about 2.5 ⁇ 10 5 cells are seeded, cultured for about 30 minutes to 12 hours, and then 5.0 ⁇ 10 3 cells to 5.0 ⁇ 10 5 IPS-hRPE cells of cells / well, preferably 2.0 ⁇ 10 4 cells to 2.0 ⁇ 10 5 cells, more preferably 1.0 ⁇ 10 5 cells, can be seeded and co-cultured.
  • test substance A step of adding the test substance to the co-culture system prepared in (1) and culturing for a certain period of time: In this step, the test substance is added to the co-culture system prepared in (1), and the culture is carried out for a certain period of time.
  • the test substance include small molecule compounds, natural products, nucleic acid oligos, peptides, antibodies and the like, and the amount of addition can be appropriately adjusted according to the substance.
  • the culture supernatant after adding the test substance and culturing for a certain period in the above step (2) is collected, and the amount of extracellular fine particles (EV) in the culture supernatant and the extracellular fine particles (EV) are collected.
  • the amount of CD63-positive exosomes, substances contained in extracellular microparticles (EV), especially nucleic acids derived from intracellular substances, especially the profile of miRNA (microRNA), specifically specific miRNA (microRNA) derived from mitochondria. ), Etc. are measured.
  • the amount of extracellular fine particles (EV) in the sample of the subject prepared in step (2) "(1) of the determination method of the present invention described above, in the extracellular fine particles (EV)".
  • the “sample of the subject” can be replaced with the "culture supernatant” and applied.
  • Step of determining whether or not the test substance is suitable as a therapeutic agent for inflammatory retinal diseases accompanied by tissue inflammation In this step, the numerical values obtained in the above step (3) and the numerical values of the negative target are compared. At this time, as the negative target, the numerical value obtained in the test to which the test substance is not added can be adopted. Amount of extracellular fine particles (EV) in the culture supernatant and amount of CD63-positive exosomes in the extracellular fine particles (EV) due to the addition of the test substance, as compared with the values obtained in the test without the addition of the test substance.
  • EV extracellular fine particles
  • EV extracellular fine particles
  • nucleic acids derived from intracellular substances especially the profile of miRNA (microRNA), specifically the content of specific miRNA (microRNA) derived from mitochondria is reduced. If so, it is judged to be a substance that can be expected to be effective as a therapeutic agent for inflammatory retinal diseases.
  • the screening method of the present invention it is possible to easily screen substances that are effective in treating inflammatory retinal diseases associated with tissue inflammation such as age-related macular degeneration.
  • RPE retinal pigment epithelial cells
  • hRPE cells the paper by Sugita et al. (Sugita S. et. Al., Lack of T cell response to iPSC-derivated retinal pigment epithelium cells from epithelium cell6 cell16sor6sol6s. The cells prepared by inducing from iPS cells according to the method described in the above were used.
  • HRPE cells produced by inducing from iPS cells (hereinafter, also referred to as "iPS-hRPE cells”) and PMA-treated THP-1 cells (hereinafter, also referred to as “PMA-THP-1 cells”) are serum-free medium.
  • Co-culture was performed in DMEM / F12 in the presence or absence of 100 ng / mL LPS for 24 hours. Specifically, 2.5 ⁇ 10 5 cells / well PMA-THP-1 cells were seeded on a 24-well plate (manufactured by Corning Inc.) and cultured for 4 hours. Then, 1.0 ⁇ 10 5 cells / well iPS-hRPE cells were seeded and co-cultured for 24 hours (T / R).
  • the comparison targets were PMA-THP-1 cells only (T) or iPS-hRPE cells only (R).
  • the culture supernatant of each well was collected, centrifuged at 2000 ⁇ g for 10 minutes, and the obtained supernatant was passed through a 0.22 ⁇ m filter (manufactured by Millipore) to prepare a sample for quantification of various inflammatory cytokines.
  • the concentrations of IL-6, MCP-1, IL-8, VEGF, TNF- ⁇ , and PEDF in each sample were measured using an ELISA kit (manufactured by BD Bioscience). Four points were measured for each sample, and the average value was taken as the concentration of each sample and is shown in FIG.
  • results of this test 1 show that when retinal pigment epithelial cells and macrophages coexist and inflammation is induced by LPS, the inflammatory cytokines IL-6, MCP-1, IL-8, and VEGF are produced. The amount is significantly increased, indicating that it moves in a direction that further exacerbates inflammation.
  • Test 2 Production of CD63 + exosomes in a co-culture system of retinal pigment epithelial cells (RPE) and monocytes / macrophages iPS-hRPE cells and PMA-THP-1 cells were placed in a 24-well plate in a serum-free medium (test 2). The cells were co-cultured in the presence or absence of LPS), and the amount of CD63 + exosomes produced was measured. Specifically, 2.5 ⁇ 10 5 cells / well PMA-THP-1 cells were seeded on a 24-well plate (manufactured by Corning Inc.) and cultured for 4 hours.
  • RPE retinal pigment epithelial cells
  • monocytes / macrophages iPS-hRPE cells and PMA-THP-1 cells were placed in a 24-well plate in a serum-free medium (test 2). The cells were co-cultured in the presence or absence of LPS), and the amount of CD63 + exosomes produced was measured. Specifically, 2.5 ⁇ 10 5 cells
  • 1.0 ⁇ 10 5 cells / well iPS-hRPE cells were seeded and co-cultured for 24 hours (T / R).
  • the comparison targets were PMA-THP-1 cells only (T) or iPS-hRPE cells only (R).
  • the culture supernatant of each well was collected, centrifuged at 2,000 ⁇ g for 10 minutes, and the obtained supernatant was passed through a 0.22 ⁇ m filter (manufactured by Millipore). Then, the pellets were collected by ultracentrifugation (100,000 ⁇ g, 90 minutes) using an MLS50 swing rotor (manufactured by Beckman Coulter).
  • the pellet was suspended in PBS and ultracentrifuged (100,000 ⁇ g, 90 minutes) was performed again.
  • the obtained pellet was suspended in PBS and protein quantification was performed according to a conventional method.
  • Western blotting was performed by adjusting the amount of protein in each sample to be equal, CD63 was detected, and the amount of CD63 in each sample was compared. The results are shown in FIG. 2 (a).
  • co-culture was performed using Transwell (registered trademark) cell culture inserts (manufactured by Corning Inc.) under the condition that iPS-hRPE cells and PMA-THP-1 cells do not come into direct contact with each other. Specifically, 700 ⁇ L of 5.0 ⁇ 10 5 cells / mL PMA-THP-1 cells was seeded in the lower chamber, and 300 ⁇ L of 2.0 ⁇ 10 5 cells / mL iPS-hRPE cells was seeded in the upper chamber. , Was co-cultured for 24 hours. A test was also conducted in which the cells seeded in the upper and lower chambers were replaced.
  • Transwell registered trademark
  • the number of fine particles contained in) was measured using a NanoSigt LM10V-HS nanoparticular tracing system (manufactured by Quantum Design).
  • Western blotting was performed on the sample (CS) of each culture supernatant and the sample (UC) obtained by ultracentrifuging the sample (CS) of each culture supernatant by the same method as in Test 2 above, and CD63 was detected. ..
  • the results are shown in FIG.
  • the number of fine particles secreted by co-culturing iPS-hRPE cells and PMA-THP-1 cells as compared with the case of culturing with only one of the cells. It turned out that it increased significantly.
  • FIG. 3 (b) it was found that the proportion of CD63 + exosomes in the fine particles was significantly increased by co-culture. That is, the co-culture increased the amount of CD63 + exosomes secreted among the fine particles.
  • Test 4 Analysis of microRNA in extracellular fine particles whose production is enhanced in a co-culture system of retinal pigment epithelial cells (RPE) and monocytes / macrophages.
  • the profile of the microRNA contained in the cells was analyzed using 3D-gene human microRNA chips (manufactured by Toray Co., Ltd.).
  • Table 1 below, for each microRNA, the expression intensity (THP-1 + RPE) in the co-cultured sample of iPS-hRPE cells and PMA-THP-1 cells is shown by the expression intensity (RPE) in the iPS-hRPE cell single culture sample. The divided value (ratio) is shown. # 0228, # 0259, and # 0619 are independent test numbers.
  • FIG. 4 a Venn diagram shows a set of microRNAs whose expression was increased by co-culture in each test.
  • miR-494-3p showed the largest increase in the first, second, and fourth place among the three measured values (Table 1). See).
  • the expression of the specific microRNA in the secreted microparticles such as exosomes increases, especially miR-494-3p.
  • miR-494-3p was considered to be usable as a marker for inflammatory diseases of the retina in determining the susceptibility, severity, and therapeutic effect of the disease.
  • miR1246 can also be used as a marker for inflammatory diseases of the retina in determining the susceptibility, severity, and therapeutic effect of the disease.
  • the Transwell (registered trademark) system has some limitations. Since the content of the upper chamber is smaller than that of the lower chamber, fine particles may preferentially settle at the bottom of the lower chamber. Also, a 0.40 ⁇ m filter is not sufficient to block cell penetration into other chambers. Therefore, a Nico-1 (registered trademark) system, which is a horizontally connected double chamber, was used, and a comparison was made between the case where a 0.03 ⁇ m filter was attached and the case where a 0.03 ⁇ m filter was attached between the two chambers. Both chambers each hold a final volume of 1.5 mL.
  • iPS-hRPE using Transwell (registered trademark) cell culture cells (manufactured by Corning) and Nico-1 (registered trademark) culture system (Ginreilab Inc., Uchinada, Ishikawa, Japan) with iPS-hRP. Co-culture was performed under the condition that one cell did not come into direct contact with the cell. Specifically, in Transwell®, 700 ⁇ L of 5.0 ⁇ 10 5 cells / mL PMA-THP-1 cells in the lower chamber and 300 ⁇ L of 2.0 ⁇ 10 5 cells / mL iPS-hRPE cells. was seeded in the upper chamber and co-cultured for 24 hours.
  • Transwell® 700 ⁇ L of 5.0 ⁇ 10 5 cells / mL PMA-THP-1 cells in the lower chamber and 300 ⁇ L of 2.0 ⁇ 10 5 cells / mL iPS-hRPE cells.
  • Nico-1® 1.0 ⁇ 10 5 cells PMA-THP-1 cells were seeded in one chamber and 2.0 ⁇ 10 5 cells iPS-hRPE cells were seeded in the other chamber. Co-culture was performed for 24 hours.
  • Nico-1® as described above, comparison was made with and without a 0.03 ⁇ m filter between the two chambers. Western blotting was performed on the sample obtained by ultracentrifuging each culture supernatant by the same method as in Test 2 above, and CD63 was detected. The results are shown in FIGS. 5 (a) and 5 (b).
  • IPS-hRPE cells and PM cells directly with iPS-hRPE cells using Transwell® cell culture plants (Corning) and Nico-1® culture system (Ginreilab Inc., Uchinada, Ishikawa, Japan). Co-culture was performed under the condition of no contact. Specifically, in Transwell®, 700 ⁇ L of 5.0 ⁇ 10 5 cells / mL PMA-THP-1 cells in the lower chamber and 300 ⁇ L of 2.0 ⁇ 10 5 cells / mL iPS-hRPE cells. was seeded in the upper chamber and co-cultured for 24 hours.
  • the concentrations of IL-6, MCP-1, IL-8, VEGF, TNF- ⁇ , and PEDF in each sample were measured using an ELISA kit (manufactured by BD Bioscience). The ELISA measurement was performed in 3 divided doses and repeated as 3 independent experiments. The average value was calculated for each sample and the concentration of each sample is shown in FIGS. 6 (a) and 6 (b).
  • TNF ⁇ Production of TNF ⁇ from macrophages by exosome stimulation derived from retinal pigment epithelial cells (RPE) and production of MCP-1 and IL-6 from RPE cells Cell-cell interaction considered to be involved in pathogenesis
  • RPE retinal pigment epithelial cells
  • MCP-1 and IL-6 production of MCP-1 and IL-6 from RPE cells
  • the concentrations of TNF- ⁇ , MCP-1, and IL-6 in each sample were measured using an ELISA kit (manufactured by BD Bioscience). Particle concentration was measured with the NanoSigt LM10V-HS nanoparticle tracking system. The results are shown in FIGS. 7 (a) and 7 (b).
  • Exosomes derived from iPS-hRPE cells increased the production of TNF- ⁇ from PMA-THP-1 cells in a concentration-dependent manner.
  • the exosomes derived from the co-culture of iPS-hRPE cells and PMA-THP-1 had a greater effect of promoting the production of TNF- ⁇ from PMA-THP-1 cells than the exosomes derived from iPS-hRPE cells alone.
  • the number of particles in the culture supernatant was 3.5 times, and it was supercentrifuged. The concentrated one was 8.5 times, and the co-culture increased remarkably.
  • TNF- ⁇ showed increased production of MCP-1 and IL-6 in parallel with increased production of CD63 + protein in microparticles from iPS-hRPE cells, but increased production of microparticles was confirmed. It was not done (Fig. 7 (b)).
  • the inflammation exacerbation circuit shown in FIG. 7 (c) is involved in the pathogenesis. That is, when an inflammatory stimulus as symbolized by LPS is applied to the RPE, a signal stimulus is applied to the RPE via a receptor related to natural inflammation such as TLR4 existing on the cell. This is thought to lead to EV (fine particle) production in the presence of RPE alone. When this EV is produced, it acts on macrophages that have infiltrated the inflamed area in the vicinity and induces the production of TNF- ⁇ . TNF- ⁇ production is sufficiently induced even with fine particles concentrated twice by ultracentrifugation from the supernatant of the single culture, but the induction activity of the co-culture supernatant is higher.
  • the amount of fine particles produced is considerably enhanced in the co-culture as described above. It is presumed that some Exosomes in the fine particles are responsible for the TNF- ⁇ production-inducing activity. There is no activity in the culture supernatant or the remaining supernatant after ultracentrifugation of the microparticles. This TNF- ⁇ then acts on the nearby RPE, inflammatory cytocan from the RPE, MCP-1 (has the effect of migrating macrophages to the inflammatory site), IL-6 (involved in choroidal tissue fibrosis). , VEGF (involved in angiogenesis) production is thought to be enhanced and EV production induced.
  • EV production from RPE is not significantly enhanced, but CD63-positive exosomes contained in EV are increased. Similarly, it is considered that this circuit is rotated to enhance EV production, inflammatory cytokine production, and local macrophages migration by MCP-1. That is, it is considered that the coexistence of RPE and macrophages and the cell-cell interaction mediated by microparticles (exosomes) establish an inflammatory exacerbation circuit and are involved in the formation of pathological conditions.
  • Exosome miRNAs in the interaction of retinal pigment epithelial cells (RPE) and macrophages The role of microparticles (exosomes) produced in co-culture of iPS-hRPE cells and PMA-THP-1 cells was analyzed in terms of low molecular weight RNA profile in secreted microparticles (exosomes). Fine particle concentration was measured by nanoparticle follow-up analysis. Table 2 summarizes the concentrations of microparticles released per 106 cells in the three cultures (iPS-hRPE cells, PMA-THP-1 cells, co-culture).
  • the base sequence "UGAAACAUACACGGGAAACCUC” in the above miR494-3p mimic shows the sequence of miR-494-3p (SEQ ID NO: 1)
  • the base sequence "AAUGGAUUUUUGGAGCAGG” in the miR1246 mimic shows the sequence of miR-1246 (SEQ ID NO: 2).
  • FCCP Carbonyl cyanide-p-trifluoromethoxyphrydrazone
  • ROT / AA Rotenone / Antimycin A
  • OCR Oxygen Consumption Rate (pmole / min) (oxygen consumption rate), which is a value indicating the oxygen consumption of cells.
  • ECAR Extracellular Acidification Rate (mpH / min) (extracellular acidification rate), which indicates the rate of extracellular pH production by metabolites excreted extracellularly. Both are widely used as indicators of energy metabolism at the cellular level. The results are shown in FIGS. 8 (a) to 8 (c).
  • Mitochondrial function repair by mimic introduction of miR494-3p and miR1246 (primary cultured HRPE cells vs ARPE19 cell line) Human primary retinal pigment epithelial (HRPE) cells (P3) and ARPE19 cell line (P25) were seeded at 16 ⁇ 10 4 cells / well on a 6-well plate, respectively. The next day, the whole medium was replaced with DMEM (+ 10% FBS), and 1 hour later, miR494-3p mimic or miR1246 mimic was transfected. Twenty-four hours after Transfection, cells were seeded on XFe24 plates at 6 ⁇ 10 4 cells / 100 ⁇ L / well.
  • FIG. 9 (a) and Table 3 below primary cultured human RPE cells
  • FIG. 9 (b) and Table 4 below ARPE 19 cell line
  • miR494-3 pinhibitor Anti-miR TM miRNA hsa-miR-494-3p, MH12409, Thermo Fisher Scientific, Waltham, MA, USA
  • miR1246inhibitor Anti-miR TM miRNA hsa-miR-1246, MH13182, Thermo Fisher Scientific, Waltham, MA, USA
  • FIG. 10 (a) and Table 5 below Nic-ARPE cell line
  • FIG. 10 (b) and Table 6 below ARPE 19 cell line).
  • Plasma 6 control samples 100 ⁇ L each, AMD patient 5 samples 100 ⁇ L each
  • Aqueous humor control 5 samples 50 ⁇ L each, AMD patient 5 samples 50 ⁇ L each
  • miRNA was extracted using miRNeasy Serum / Plasma kit (QIAGEN, Hilden, Germany) (extraction amount 10 ⁇ L). Reverse transcription reaction was performed using primers specific for each miRNA, and quantitative PCR was performed. The relative amount of miRNA was quantified by the ⁇ Ct method from each CT value and the CT value of the control using cel-miR-39 as a control (spire-in control) (the number of cycles of quantitative PCR was 40). The results are shown in FIG. 11 (miR-494-3P) and FIG. 12 (miR-1246).
  • the method for determining an inflammatory retinal disease associated with tissue inflammation of the present invention it is possible to easily determine the susceptibility, severity, therapeutic effect, etc. of a chronic inflammatory retinal disease such as age-related macular degeneration.
  • Age-related macular degeneration has a problem that early detection is difficult because there are few subjective symptoms in the early stage of the disease in patients, but early detection is possible by the determination method of the present invention.
  • the function-regulating molecule of extracellular fine particles (EV) produced by retinal pigment epithelial cells (RPE), particularly the function-regulating molecule of specific microRNA is a novel therapeutic agent for chronic inflammatory retinal diseases such as age-related macular degeneration. It is effective as.
  • the screening method of the present invention it is possible to easily search for a substance having a therapeutic effect on inflammatory retinal diseases.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • General Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Pathology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

A purpose of the present invention is to provide a novel assessment method that enables early detection, assessment of severity, and assessment of therapeutic effect, etc., of chronic inflammatory retinal diseases including age-related macular degeneration. Another purpose is to provide a novel therapeutic for inflammatory retinal diseases including age-related macular degeneration and to provide a novel screening method for inflammatory retinal disease therapeutics. The present invention is a method for assessing inflammatory retinal diseases associated with tissue inflammation, with extracellular vesicles (EV) produced by the retinal pigment epithelial cells (RPE) of a subject being employed as an indicator. This assessment method is characterized in that the profile of miRNA contained in the extracellular vesicles (EV) (especially miR494-3p and/or miR1246) is employed as an indicator.

Description

炎症性網膜疾患の判定方法、炎症性網膜疾患治療剤、及び炎症性網膜疾患治療剤のスクリーニング方法Method for determining inflammatory retinal disease, method for screening inflammatory retinal disease therapeutic agent, and inflammatory retinal disease therapeutic agent
 本発明は、炎症性網膜疾患の判定方法、炎症性網膜疾患治療剤、及び炎症性網膜疾患治療剤のスクリーニング方法に関する。 The present invention relates to a method for determining an inflammatory retinal disease, a method for screening an inflammatory retinal disease therapeutic agent, and a method for screening an inflammatory retinal disease therapeutic agent.
 細胞から分泌されるエクソソーム等の細胞外微粒子(Extracellular vesicle)は、表面に細胞膜由来の脂質、タンパク質を含み、内部には細胞内物質由来の核酸(マイクロRNA、メッセンジャーRNA、DNA等)、タンパク質等を含んでいる。上記細胞外微粒子が含むマイクロRNA(micro RNA;miRNA)は、タンパク質に翻訳されない約17~24ヌクレオチドからなる非コードRNAである。ヒトのmiRNAは、現在2500種類以上が発見されている。このmiRNAは、自分自身と相補的な標的部位をもつ様々な遺伝子の翻訳を抑制する働きがあり、細胞の発生、分化、増殖、細胞死等の基本的な生物学的機能を制御している。このようにマイクロRNAは細胞内の多くの遺伝子の発現制御を行っているため、その発現の変化は疾患の発生や進行等に関連すると考えられており、最近ではマイクロRNAを疾患の診断、早期発見に利用しようという研究も行われている。 Extracellular fine particles such as exosomes secreted from cells contain lipids and proteins derived from cell membranes on the surface, and nucleic acids derived from intracellular substances (microRNA, messenger RNA, DNA, etc.), proteins, etc. inside. Includes. The microRNA (miRNA) contained in the extracellular fine particles is a non-coding RNA consisting of about 17 to 24 nucleotides that is not translated into protein. Currently, more than 2500 types of human miRNA have been discovered. This miRNA has the function of suppressing the translation of various genes having target sites complementary to itself, and controls basic biological functions such as cell development, differentiation, proliferation, and cell death. .. In this way, since microRNA regulates the expression of many genes in cells, changes in its expression are thought to be related to the development and progression of diseases. Research is also being conducted to use it for discovery.
 例えば、癌とmiRNAとの関連について、Calinらは、リンパ性白血病において、miR15及びmiR16が頻繁にダウンレギュレーションしていることを報告している(非特許文献1参照;Calin GA,Dumitru CD,Shimizu Mら,Proc Natl Acad Sci USA,2002,vol.99,p.15524-9)。また、Michaelらは、ヒト大腸癌においてmiR-143及びmiR-145の発現が低下していることを報告している(非特許文献2参照;Michael MZ, SM OC, van Holst Pellekaan NG,Young GP,James RJ,Mol Cancer Res,2003,vol.1,p.882-91)。さらに特許文献1には、膀胱癌において発現変動している27種類のmiRNAを指標とする膀胱癌の検出方法が記載されている。このように、miRNAは、癌等の疾病と深い関わりがあり、それらの診断、予後予測等に利用できる可能性があると考えられている。 For example, regarding the association between cancer and miRNA, Calin et al. Report that miR15 and miR16 are frequently downregulated in lymphocytic leukemia (see Non-Patent Document 1; Calin GA, Dumitru CD, Shimazu). M et al., Proc Natl Acad Sci USA, 2002, vol.99, p.15524-9). In addition, Michael et al. Reported that the expression of miR-143 and miR-145 was decreased in human colorectal cancer (see Non-Patent Document 2; Michael MZ, SM OC, van Holst Pellekaan NG, Young GP. , James RJ, Mol Cancer Res, 2003, vol. 1, p. 882-91). Further, Patent Document 1 describes a method for detecting bladder cancer using 27 types of miRNA whose expression fluctuates in bladder cancer as an index. As described above, miRNA is closely related to diseases such as cancer, and it is considered that miRNA may be used for their diagnosis, prognosis prediction, and the like.
 一方、加齢黄斑変性は慢性の炎症性網膜疾患のひとつであり、先進国において高齢者の失明の主要原因となっている(非特許文献3参照)。加齢にともなって網膜中央の黄斑部に様々な異常が生じ、視力低下を引き起こす疾患である。疾患初期には黄斑部の色素異常、ドルーゼン(沈着物)がみられるが自覚症状が少ないため、疾患の発見が遅くなることが多い。疾患が進行すると黄斑部に異常な血管新生等が起こり、障害が進んで深刻な視力低下を引き起こすことから、疾患の初期に加齢黄斑変性の診断や予後予測等を高い確度で簡便に行うことができる方法が求められている。 On the other hand, age-related macular degeneration is one of the chronic inflammatory retinal diseases and is a major cause of blindness in the elderly in developed countries (see Non-Patent Document 3). With aging, various abnormalities occur in the macula in the center of the retina, causing a decrease in visual acuity. Dyschromia and drusen (deposits) in the macula are seen in the early stage of the disease, but the detection of the disease is often delayed because there are few subjective symptoms. As the disease progresses, abnormal angiogenesis occurs in the macula, and the disorder progresses, causing serious deterioration of visual acuity. Therefore, diagnosis and prognosis of age-related macular degeneration should be made easily and with high accuracy in the early stage of the disease. There is a need for a way to do this.
特開2009-100687号公報Japanese Unexamined Patent Publication No. 2009-100687
 本発明は、上述のような状況の中、加齢黄斑変性を始めとする慢性の炎症性網膜疾患の早期発見、重症度の判定、治療効果等の判定が可能な新規の判定方法を提供することを目的とする。本発明はまた、加齢黄斑変性を始めとする炎症性網膜疾患の新規治療剤を提供することも目的とする。さらに、炎症性網膜疾患治療剤の新規スクリーニング方法を提供することも目的とする。 The present invention provides a novel determination method capable of early detection of chronic inflammatory retinal disease such as age-related macular degeneration, determination of severity, determination of therapeutic effect, etc. under the above-mentioned circumstances. The purpose is. It is also an object of the present invention to provide a novel therapeutic agent for inflammatory retinal diseases such as age-related macular degeneration. Furthermore, it is also an object to provide a new screening method for a therapeutic agent for inflammatory retinal disease.
 前記課題を解決するために、本発明者が種々検討した結果、網膜色素上皮細胞(RPE)と単球/マクロファージの共培養系において、炎症を惹起する培養条件にすると、細胞外微粒子(Extracellular vesicles;EV)の分泌が促進されると共に、分泌されるEV中の特定のマイクロRNAの量が増大することを見出した。そして、これらのマイクロRNAを指標として、慢性の炎症性網膜疾患の罹患可能性、重症度、治療効果等の判定を行う新規の判定方法を完成させた。また、これらの特定のマイクロRNAの阻害剤は、慢性の炎症性網膜疾患の治療に有効であると考えられ、新規治療剤としての可能性が示唆された。さらに、網膜色素上皮細胞(RPE)と、単球/マクロファージとの共培養系において炎症を惹起する条件にすると、実際の炎症に近い状態を構築することができることから、その際に分泌される細胞外微粒子(EV)のプロファイルの変動、特に細胞外微粒子(EV)が含有する上記特定のマイクロRNAのプロファイルの変動を指標として、炎症状態を改善する、即ち炎症性の網膜疾患を治療することが可能な薬剤(炎症性網膜疾患治療剤)をスクリーニングする方法も見出した。すなわち本発明の要旨は、以下の通りである。 As a result of various studies by the present inventor in order to solve the above-mentioned problems, in a co-culture system of retinal pigment epithelial cells (RPE) and monocytes / macrophages, when the culture conditions are set to induce inflammation, extracellular fine particles (Extracellular secretions) It has been found that the secretion of EV) is promoted and the amount of specific microRNA in the secreted EV is increased. Then, using these microRNAs as an index, a new determination method for determining the susceptibility, severity, therapeutic effect, etc. of chronic inflammatory retinal disease has been completed. In addition, these specific microRNA inhibitors are considered to be effective in the treatment of chronic inflammatory retinal diseases, suggesting their potential as new therapeutic agents. Furthermore, if the conditions are such that inflammation is induced in the co-culture system of retinal pigment epithelial cells (RPE) and monospheres / macrophages, a state close to actual inflammation can be constructed, and thus the cells secreted at that time. It is possible to improve the inflammatory state, that is, to treat an inflammatory retinal disease, using the fluctuation of the profile of the external fine particles (EV), particularly the fluctuation of the profile of the specific microRNA contained in the extracellular fine particles (EV) as an index. We have also found a way to screen for possible drugs (therapeutic agents for inflammatory retinal diseases). That is, the gist of the present invention is as follows.
[1]被験者の網膜色素上皮細胞(RPE)が産生する細胞外微粒子(EV)を指標とする、組織炎症を伴う炎症性網膜疾患の判定方法。
[2]上記細胞外微粒子(EV)が含有するmiRNAのプロファイルを指標とすることを特徴とする、[1]に記載の判定方法。
[3]上記miRNAが、miR494-3p及び/又はmiR1246を含む、[2]に記載の判定方法。
[4]上記miRNAが、ミトコンドリア由来である、[2]又は[3]に記載の判定方法。
[5]上記組織炎症を伴う炎症性網膜疾患が、加齢黄斑変性、中心性漿液性脈絡網膜症、増殖性硝子体網膜症および、糖尿病性網膜症からなる群より選択される少なくとも1種の炎症性疾患である、[1]から[4]のいずれかに記載の判定方法。
[6]被験者における炎症性網膜疾患の罹患可能性、重軽度、発症リスク、重症化リスク及び治療効果から成る群より選択される少なくとも1種を判定する、[1]から[5]のいずれかに記載の判定方法。
[7]網膜色素上皮細胞(RPE)が産生する細胞外微粒子(EV)の機能調節分子を有効成分として含有する、組織炎症を伴う炎症性網膜疾患治療剤。
[8]上記細胞外微粒子(EV)の機能調節分子が、細胞外微粒子(EV)が含有するmiRNAの機能調節分子である、[7]に記載の炎症性網膜疾患治療剤。
[9]上記細胞外微粒子(EV)の機能調節分子が、細胞外微粒子(EV)が含有するmiR494-3p及び/又はmiR1246の機能調節分子である、[7]又は[8]に記載の炎症性網膜疾患治療剤。
[10]上記細胞外微粒子(EV)の機能調節分子が、核酸オリゴ、低分子化合物、ペプチド及び抗体から成る群より選択される少なくとも1種である、[7]から[9]のいずれかに記載の炎症性網膜疾患治療剤。
[11]上記組織炎症を伴う炎症性網膜疾患が、加齢黄斑変性、中心性漿液性脈絡網膜症、増殖性硝子体網膜症、及び糖尿病性網膜症からなる群より選択される少なくとも1種の疾患である、[7]から[10]のいずれかに記載の炎症性網膜疾患治療剤。
[12]網膜色素上皮細胞(RPE)と、単球/マクロファージとの共培養系において分泌される細胞外微粒子(EV)のプロファイルの変動を指標とすることを特徴とする、組織炎症を伴う炎症性網膜疾患治療剤のスクリーニング方法。
[13]上記細胞外微粒子(EV)が、網膜色素上皮細胞(RPE)から分泌される、[12]に記載のスクリーニング方法。
[14]上記細胞外微粒子(EV)のプロファイルの変動が、細胞外微粒子(EV)が含有するmiRNAのプロファイルの変動である、[12]又は[13]に記載のスクリーニング方法。
[15]上記miRNAが、miR494-3p及び/又はmiR1246を含む、[14]に記載のスクリーニング方法。
[16]網膜色素上皮細胞(RPE)と、単球/マクロファージとの共培養系において、被験物質の添加により分泌される細胞外微粒子(EV)が含有するmiR494-3p及び/又はmiR1246が抑制された場合に、上記被験物質を有効な組織炎症を伴う炎症性網膜疾患治療剤の候補として選択する、[12]から[15]のいずれかに記載のスクリーニング方法。
[1] A method for determining an inflammatory retinal disease accompanied by tissue inflammation, using extracellular fine particles (EV) produced by the subject's retinal pigment epithelial cells (RPE) as an index.
[2] The determination method according to [1], wherein the profile of miRNA contained in the extracellular fine particles (EV) is used as an index.
[3] The determination method according to [2], wherein the miRNA contains miR494-3p and / or miR1246.
[4] The determination method according to [2] or [3], wherein the miRNA is derived from mitochondria.
[5] At least one inflammatory retinal disease associated with tissue inflammation selected from the group consisting of age-related macular degeneration, central serous chorioretinal disease, proliferative vitreous retinopathy, and diabetic retinopathy. The determination method according to any one of [1] to [4], which is an inflammatory disease.
[6] Any one of [1] to [5], which determines at least one selected from the group consisting of the possibility of inflammatory retinal disease in the subject, the severity of the disease, the risk of developing the disease, the risk of aggravation, and the therapeutic effect. Judgment method described in.
[7] A therapeutic agent for an inflammatory retinal disease accompanied by tissue inflammation, which contains a function-regulating molecule of extracellular fine particles (EV) produced by retinal pigment epithelial cells (RPE) as an active ingredient.
[8] The therapeutic agent for inflammatory retinal disease according to [7], wherein the function-regulating molecule of the extracellular fine particles (EV) is a function-regulating molecule of miRNA contained in the extracellular fine particles (EV).
[9] The inflammation according to [7] or [8], wherein the function-regulating molecule of the extracellular fine particles (EV) is a function-regulating molecule of miR494-3p and / or miR1246 contained in the extracellular fine particles (EV). A therapeutic agent for retinal diseases.
[10] The function-regulating molecule of the extracellular fine particle (EV) is any one of [7] to [9], which is at least one selected from the group consisting of nucleic acid oligos, small molecule compounds, peptides and antibodies. The described inflammatory retinal disease therapeutic agent.
[11] The inflammatory retinal disease associated with the tissue inflammation is at least one selected from the group consisting of age-related yellow spot degeneration, central serous chorioretinopathy, proliferative vitreous retinopathy, and diabetic retinopathy. The agent for treating an inflammatory retinal disease according to any one of [7] to [10], which is a disease.
[12] Inflammation associated with tissue inflammation, characterized by variability in the profile of extracellular fine particles (EV) secreted in a co-culture system of retinal pigment epithelial cells (RPE) and monocytes / macrophages. A screening method for therapeutic agents for sexual retinal diseases.
[13] The screening method according to [12], wherein the extracellular fine particles (EV) are secreted from retinal pigment epithelial cells (RPE).
[14] The screening method according to [12] or [13], wherein the variation in the profile of the extracellular fine particles (EV) is a variation in the profile of miRNA contained in the extracellular fine particles (EV).
[15] The screening method according to [14], wherein the miRNA comprises miR494-3p and / or miR1246.
[16] In a co-culture system of retinal pigment epithelial cells (RPE) and monocytes / macrophages, miR494-3p and / or miR1246 contained in extracellular fine particles (EV) secreted by the addition of the test substance are suppressed. The screening method according to any one of [12] to [15], wherein the test substance is selected as a candidate for an effective therapeutic agent for inflammatory retinal disease associated with tissue inflammation.
 本発明の組織炎症を伴う炎症性網膜疾患の判定方法によると、加齢黄斑変性等の炎症性網膜疾患の罹患可能性、重症度、治療効果等の判定を、高い確度で、かつ容易に行うことができる。加齢黄斑変性は、患者において疾患初期の自覚症状が少ないため早期発見が困難であるという課題があったが、本発明の判定方法により早期発見が可能となる。また、網膜色素上皮細胞(RPE)が産生する細胞外微粒子(EV)の機能調節分子、特に特定のマイクロRNAの機能調節分子は、加齢黄斑変性等の慢性の炎症性網膜疾患の新規治療剤として有効である。さらに、本発明のスクリーニング方法によると、炎症性網膜疾患に対して治療効果を有する物質を簡便に探索することができる。 According to the method for determining an inflammatory retinal disease associated with tissue inflammation of the present invention, the possibility, severity, therapeutic effect, etc. of an inflammatory retinal disease such as age-related macular degeneration can be easily determined with high accuracy. be able to. Age-related macular degeneration has a problem that early detection is difficult because there are few subjective symptoms in the early stage of the disease in patients, but early detection is possible by the determination method of the present invention. In addition, the function-regulating molecule of extracellular fine particles (EV) produced by retinal pigment epithelial cells (RPE), particularly the function-regulating molecule of specific microRNA, is a novel therapeutic agent for chronic inflammatory retinal diseases such as age-related macular degeneration. It is effective as. Furthermore, according to the screening method of the present invention, it is possible to easily search for a substance having a therapeutic effect on inflammatory retinal diseases.
網膜色素上皮細胞(RPE)、単球/マクロファージの単独培養、及びこれらの共培養における炎症性サイトカインの産生Production of inflammatory cytokines in retinal pigment epithelial cells (RPEs), monocytes / macrophages single cultures, and co-cultures of these 網膜色素上皮細胞(RPE)、単球/マクロファージの単独培養、及びこれらの共培養におけるCD63+エクソソームの産生Production of CD63 + exosomes in retinal pigment epithelial cells (RPEs), monocytes / macrophages single cultures, and co-cultures of these 網膜色素上皮細胞(RPE)、単球/マクロファージの単独培養、及びこれらの共培養において産生される細胞外微粒子の解析Analysis of extracellular pigments produced in retinal pigment epithelial cells (RPEs), monocytes / macrophages in single culture, and their co-culture 網膜色素上皮細胞(RPE)と単球/マクロファージの共培養系において発現が増強するマイクロRNAMicroRNA whose expression is enhanced in a co-culture system of retinal pigment epithelial cells (RPE) and monocytes / macrophages Transwell(登録商標)を用いた共培養におけるCD63+エクソソームの産生(a)、Nico‐1(登録商標)を用いた共培養におけるCD63+エクソソームの産生(b)Production of CD63 + exosomes in co-culture using Transwell® (a), production of CD63 + exosomes in co-culture using Nico-1® (b) Transwell(登録商標)及びNico‐1(登録商標)を用いた共培養における炎症性サイトカインの産生(IL-6、MCP-1、IL-8)Production of inflammatory cytokines in co-culture with Transwell® and Nico-1® (IL-6, MCP-1, IL-8) Transwell(登録商標)及びNico‐1(登録商標)を用いた共培養における炎症性サイトカインの産生(VEGF、PEDF、TNF-α)Production of Inflammatory Cytokines in Co-Culture Using Transwell® and Nico-1® (VEGF, PEDF, TNF-α) 網膜色素上皮細胞(RPE)由来のエクソソーム刺激によるマクロファージからのTNF-α産生TNF-α production from macrophages stimulated by exosomes derived from retinal pigment epithelial cells (RPE) 網膜色素上皮細胞(RPE)由来のエクソソーム刺激によるマクロファージからのMCP-1及びIL-6産生Production of MCP-1 and IL-6 from macrophages stimulated by exosomes derived from retinal pigment epithelial cells (RPE) 本研究結果から想定される炎症増悪回路Inflammation exacerbation circuit assumed from the results of this study ARPE19細胞株へのmiR494-3p又はmiR1246のmimic導入によるミトコンドリア機能修復効果(Maximum respiration)Mitochondrial function repair effect by mimic introduction of miR494-3p or miR1246 into ARPE19 cell line (Maximum respiration) ARPE19細胞株へのmiR494-3p又はmiR1246のmimic導入によるミトコンドリア機能修飾効果(ECAR)Mitochondrial function modification effect (ECAR) by mimic introduction of miR494-3p or miR1246 into ARPE19 cell line ARPE19細胞株へのmiR494-3p又はmiR1246のmimic導入によるミトコンドリア機能修復効果(OCR/ECAR)Mitochondrial function repair effect (OCR / EPAR) by mimic introduction of miR494-3p or miR1246 into ARPE19 cell line 初代培養HRPE細胞へのmiR494-3p又はmiR1246のmimic導入によるミトコンドリア機能修復効果(OCR)Mitochondrial function repair effect (OCR) by mimic introduction of miR494-3p or miR1246 into primary cultured HRPE cells ARPE19細胞株へのmiR494-3p又はmiR1246のmimic導入によるミトコンドリア機能修復効果(OCR)Mitochondrial function repair effect (OCR) by mimic introduction of miR494-3p or miR1246 into ARPE19 cell line Nic-ARPE細胞株へのmiR494-3pのinhibitor導入によるミトコンドリア機能低減効果(OCR)Mitochondrial function reduction effect (OCR) by introduction of miR494-3p inhibitor into NIC-ARPE cell line ARPE19細胞株へのmiR494-3pのinhibitor導入によるミトコンドリア機能低減効果(OCR)Mitochondrial function reduction effect (OCR) by introduction of miR494-3p inhibitor into ARPE19 cell line AMD(加齢黄斑変性症)患者の前房水及び血漿中のmiR-494-3Pの定量Quantification of miR-494-3P in anterior aqueous humor and plasma of AMD (age-related macular degeneration) patients AMD(加齢黄斑変性症)患者の前房水及び血漿中のmiR-1246の定量Quantification of miR-1246 in anterior aqueous humor and plasma of AMD (age-related macular degeneration) patients
 以下、本発明について詳細に説明する。なお、本明細書中で使用される用語は、特に言及しない限り、当該技術分野で通常用いられる意味で解釈される。 Hereinafter, the present invention will be described in detail. The terms used herein are to be construed as commonly used in the art, unless otherwise noted.
[組織炎症を伴う炎症性網膜疾患の判定方法]
 本発明の組織炎症を伴う炎症性網膜疾患の判定方法は、被験者の網膜色素上皮細胞(RPE)が産生する細胞外微粒子(EV)を指標とする。
[Method for determining inflammatory retinal disease with tissue inflammation]
The method for determining an inflammatory retinal disease associated with tissue inflammation of the present invention uses extracellular fine particles (EV) produced by the retinal pigment epithelial cells (RPE) of a subject as an index.
 本発明において細胞外微粒子(EV)とは、細胞が放出する微粒子であり、電子顕微鏡で確認することができる小胞である。細胞外微粒子(EV)は、内部に細胞内物質由来の核酸(マイクロRNA、メッセンジャーRNA、DNA等)、タンパク質等を含み、細胞由来の脂質及びタンパク質から構成される脂質二重層で覆われている。細胞外微粒子(EV)は、その直径、細胞内起源、スクロース中での微粒子の密度、形状、沈降速度、脂質組成、タンパク質マーカー及び分泌の様式(即ち、シグナル(誘導性)後又は自発的(構成的))等に基づいて複数の種類に分類される。このような細胞外微粒子の種類としては、例えば、膜粒子、膜小胞、微小胞、エクソソーム様小胞、エクソソーム、エクトソーム様小胞、エクトソーム、エキソベシクル等が挙げられる。 In the present invention, extracellular fine particles (EV) are fine particles released by cells and are vesicles that can be confirmed with an electron microscope. The extracellular fine particles (EV) contain nucleic acids (microRNA, messenger RNA, DNA, etc.) derived from intracellular substances, proteins, etc., and are covered with a lipid double layer composed of cell-derived lipids and proteins. .. Extracellular microparticles (EVs) are their diameter, intracellular origin, density of microparticles in sucrose, shape, sedimentation rate, lipid composition, protein markers and mode of secretion (ie, after signaling (inducible) or spontaneously (ie). It is classified into multiple types based on structural)) and so on. Examples of such extracellular fine particles include membrane particles, membrane vesicles, microvesicles, exosome-like vesicles, exosomes, ectome-like vesicles, ectosomes, exovesicles and the like.
 本発明においてエクソソームは、血液、リンパ液、唾液、尿、母乳、精液等に含まれている、直径100nm程度を中心として分布している概略球形の細胞が放出する小胞である。小胞内部には、タンパク質、mRNA、miRNAなどの分子を内包している。なお、エクソソームは、マイクロベシクル、細胞外小胞と称されることもあり、複数の呼称が存在する。例えば、密度勾配遠心法では1.13~1.19g/mLに分画され、動的光散乱法等による粒子径(直径)が約40nm~約150nmの範囲に含まれる微粒子である。また、エクソソームの膜上にはCD9、CD63、CD81等が発現している。 In the present invention, exosomes are vesicles contained in blood, lymph, saliva, urine, breast milk, semen, etc., and released by substantially spherical cells distributed around a diameter of about 100 nm. Molecules such as proteins, mRNA, and miRNA are contained inside the vesicle. Exosomes are sometimes referred to as microvesicles or extracellular vesicles, and there are a plurality of names. For example, in the density gradient centrifugation method, the particles are fractionated into 1.13 to 1.19 g / mL, and the particle diameter (diameter) by the dynamic light scattering method or the like is contained in the range of about 40 nm to about 150 nm. In addition, CD9, CD63, CD81 and the like are expressed on the membrane of exosomes.
 炎症条件下の網膜色素上皮細胞(RPE)においては、エクソソーム等の細胞外微粒子(EV)の放出量が増大し、特にCD63陽性のエクソソームの放出量が増大すると共にこれらに由来する特定のマイクロRNAの含有量が増大する。特にマクロファージが浸潤している炎症条件においては、エクソソーム等の細胞外微粒子(EV)の放出量が顕著に増大し、特にCD63陽性のエクソソームの放出量がより増大すると共にこれらに含まれる特定のマイクロRNAの含有量もさらに増大する。そのため、被験者の網膜色素上皮細胞(RPE)が産生する細胞外微粒子(EV)を指標とすることで、加齢黄斑変性等の炎症性網膜疾患の罹患可能性、重症度、治療効果等の判定をすることが可能となる。 In retinal pigment epithelial cells (RPE) under inflammatory conditions, the amount of extracellular fine particles (EV) such as exosomes released increases, and in particular, the amount of CD63-positive exosomes released increases and specific microRNAs derived from these. Content increases. Especially in inflammatory conditions infiltrated with macrophages, the amount of extracellular fine particles (EV) released such as exosomes is significantly increased, and in particular, the amount of CD63-positive exosomes released is further increased and specific micros contained therein are further increased. The RNA content is also increased. Therefore, by using the extracellular fine particles (EV) produced by the subject's retinal pigment epithelial cells (RPE) as an index, the possibility, severity, therapeutic effect, etc. of inflammatory retinal diseases such as age-related macular degeneration can be determined. It becomes possible to do.
 本発明の判定方法において上記「細胞外微粒子(EV)を指標とする」とは、細胞外微粒子(EV)の放出量、細胞外微粒子(EV)中のCD63陽性エクソソームの量、細胞外微粒子(EV)が含有する物質、特に細胞内物質由来の核酸、中でもmiRNA(マイクロRNA)のプロファイルを指標とすることをいう。上記マイクロRNA(miRNA)のプロファイルとしては、ミトコンドリア由来のmiR494-3p、miR1246、miR4741及び/又はmiR7110-5pの含有量、発現量、放出量等が好ましいものとして挙げられ、中でもmiR494-3p及び/又はmiR1246の含有量、発現量、放出量等がより好ましいものとして挙げられ、miR494-3pの含有量、発現量、放出量等がさらに好ましいものとして挙げられる。組織炎症を伴う炎症性網膜疾患を発症している被験者の網膜色素上皮細胞(RPE)においては、分泌される細胞外微粒子(EV)が含有する上記特定のmiRNA(マイクロRNA)の量が増加しているため、これらを指標とすることができる。 In the determination method of the present invention, the above-mentioned "using extracellular fine particles (EV) as an index" means the amount of extracellular fine particles (EV) released, the amount of CD63-positive exosomes in the extracellular fine particles (EV), and the extracellular fine particles (EV). It means that the profile of a substance contained in EV), particularly a nucleic acid derived from an intracellular substance, particularly miRNA (microRNA), is used as an index. As the profile of the microRNA (miRNA), the content, expression level, release amount and the like of miR494-3p, miR1246, miR4741 and / or miR7115-p derived from mitochondria are preferable, and among them, miR494-3p and / Alternatively, the content, expression amount, release amount and the like of miR1246 are mentioned as more preferable, and the content, expression amount, release amount and the like of miR494-3p are further mentioned as more preferable. In the retinal pigment epithelial cells (RPE) of subjects developing inflammatory retinal disease with tissue inflammation, the amount of the specific miRNA (microRNA) contained in the secreted extracellular fine particles (EV) is increased. Therefore, these can be used as indicators.
 本発明の判定方法における被験者の生体試料としては、被験者の網膜色素上皮細胞(RPE)が産生する細胞外微粒子(EV)を含む試料であれば特に限定されないが、例えば、被験者の前房水、血液(血漿、血清)、組織液等が挙げられる。 The biological sample of the subject in the determination method of the present invention is not particularly limited as long as it is a sample containing extracellular fine particles (EV) produced by the subject's retinal pigment epithelial cells (RPE), but for example, the subject's anterior chamber water. Examples include blood (plasma, serum), tissue fluid and the like.
 本発明において、組織炎症を伴う炎症性網膜疾患としては、加齢黄斑変性、中心性漿液性脈絡網膜症、増殖性硝子体網膜症、糖尿病性網膜症等が挙げられる。これらのうち、本発明の判定方法が特に適している疾患は加齢黄斑変性である。 In the present invention, examples of inflammatory retinal diseases associated with tissue inflammation include age-related macular degeneration, central serous chorioretinal disease, proliferative vitreous retinopathy, and diabetic retinopathy. Of these, the disease to which the determination method of the present invention is particularly suitable is age-related macular degeneration.
 本発明の判定方法においては、炎症性網膜疾患の罹患可能性、症状の重軽度、発症リスク、重症化リスク、治療効果等を判定することができる。例えば、被験者の網膜色素上皮細胞(RPE)が放出する細胞外微粒子(EV)の量が基準値より多い程、CD63陽性のエクソソームの放出量が基準値より多い程、これらに含まれる特定のマイクロRNAの含有量が基準値よりも多い程、被験者は組織炎症を伴う炎症性網膜疾患の罹患可能性、重軽度、発症リスク、重症化リスクが高いと判断される。ここで、罹患可能性を判断する際の基準値としては、健常人における平均値、数値範囲等を用いることができる。また、組織炎症を伴う炎症性網膜疾患の治療効果を判定する場合には、治療前の値、治療後の値を比較し、その数値が低くなっていれば治療効果があったと判定され、その数値が変化しない場合は治療効果が見られなかったと判定され、その数値が高くなった場合には悪化したと判定される。 In the determination method of the present invention, the possibility of inflammatory retinal disease, the severity of symptoms, the risk of onset, the risk of aggravation, the therapeutic effect, etc. can be determined. For example, the greater the amount of extracellular fine particles (EV) released by the subject's retinal pigment epithelial cells (RPE), the greater the amount of CD63-positive exosomes released, the more specific micros contained in these. The higher the RNA content than the reference value, the higher the possibility, severity, risk of developing, and risk of aggravation of inflammatory retinal disease associated with tissue inflammation in the subject. Here, as a reference value for determining the possibility of morbidity, an average value, a numerical range, or the like in a healthy person can be used. In addition, when determining the therapeutic effect of inflammatory retinal disease accompanied by tissue inflammation, the value before treatment and the value after treatment are compared, and if the value is low, it is determined that the therapeutic effect was achieved. If the value does not change, it is determined that the therapeutic effect was not seen, and if the value becomes high, it is determined that the treatment has deteriorated.
 本発明の組織炎症を伴う炎症性網膜疾患の判定方法は、以下の工程を含む方法として説明することもできる。 The method for determining an inflammatory retinal disease associated with tissue inflammation of the present invention can also be described as a method including the following steps.
(1)被験者からの試料を準備する工程、
(2)(1)で準備された被験者の試料中の細胞外微粒子(EV)の量、細胞外微粒子(EV)中のCD63陽性エクソソームの量、細胞外微粒子(EV)が含有する物質、特に細胞内物質由来の核酸、中でもmiRNA(マイクロRNA)のプロファイル、具体的にはミトコンドリア由来の特定のmiRNA(マイクロRNA)の含有量等を測定する工程、
(3)上記(2)で測定された数値と基準値を比較し、組織炎症を伴う炎症性網膜疾患の罹患可能性、重軽度、発症リスク、重症化リスク、治療効果等を判定する工程。
(1) Step of preparing a sample from a subject,
(2) The amount of extracellular fine particles (EV) in the sample of the subject prepared in (1), the amount of CD63-positive exosomes in the extracellular fine particles (EV), substances contained in the extracellular fine particles (EV), particularly. A step of measuring a nucleic acid derived from an intracellular substance, particularly a profile of miRNA (microRNA), specifically, a content of a specific miRNA (microRNA) derived from mitochondria, etc.
(3) A step of comparing the numerical value measured in (2) above with a reference value to determine the possibility of inflammatory retinal disease accompanied by tissue inflammation, severe / mild, risk of onset, risk of aggravation, therapeutic effect, and the like.
 上記各工程について以下に説明する。 Each of the above processes will be described below.
(1)被験者からの試料を準備する工程:
 本工程においては、組織炎症を伴う炎症性網膜疾患の判定を受ける被験者から、生体試料を採取し、準備する。被験者からの試料としては、被験者の網膜色素上皮細胞(RPE)が産生する細胞外微粒子(EV)を含む試料であれば特に限定されないが、例えば、被験者の前房水、血液等が挙げられる。
(1) Step of preparing a sample from a subject:
In this step, a biological sample is collected and prepared from a subject who is judged to have an inflammatory retinal disease accompanied by tissue inflammation. The sample from the subject is not particularly limited as long as it is a sample containing extracellular fine particles (EV) produced by the subject's retinal pigment epithelial cells (RPE), and examples thereof include the subject's anterior chamber water and blood.
(2)(1)で準備された被験者の試料中の細胞外微粒子(EV)の量、細胞外微粒子(EV)中のCD63陽性エクソソームの量、細胞外微粒子(EV)が含有する物質、特に細胞内物質由来の核酸、中でもmiRNA(マイクロRNA)のプロファイル、具体的にはミトコンドリア由来の特定のmiRNA(マイクロRNA)の含有量等を測定する工程:
 本工程において細胞外微粒子(EV)の量を測定する場合には、試料に対して、例えば、超遠心分離法、密度勾配遠心法、及び各種エクソソーム分離キット(遠心によるペレットダウン、免疫沈降、磁気ビーズによる精製、粒子のサイズによる分画、カラム吸着等)を用いて、細胞外微粒子(EV)を分離し、得られた細胞外微粒子(EV)の量を測定する。
(2) The amount of extracellular fine particles (EV) in the sample of the subject prepared in (1), the amount of CD63-positive exosomes in the extracellular fine particles (EV), substances contained in the extracellular fine particles (EV), particularly. Step of measuring the profile of nucleic acid derived from an intracellular substance, particularly miRNA (microRNA), specifically, the content of a specific miRNA (microRNA) derived from mitochondria:
When measuring the amount of extracellular fine particles (EV) in this step, for example, ultracentrifugation method, density gradient centrifugation method, and various exosome separation kits (pellet down by centrifugation, immunoprecipitation, magnetic) are used for the sample. Purification with beads, fractionation by particle size, column adsorption, etc.) is used to separate extracellular fine particles (EV), and the amount of obtained extracellular fine particles (EV) is measured.
 細胞外微粒子(EV)の分離・回収方法は、例えば、被験者の試料を0.5~2時間、約50,000~150,000Gで超遠心することを含む。超遠心を行う前に、上記試料を0.1~2時間、約100~20,000Gで遠心することを含むことができる。細胞外微粒子(EV)は、PBS等の溶液に溶解した状態であれば、4℃で1週間程度、-20℃で1か月程度、-80℃で6か月程度、凍結乾燥した状態であれば4℃で3年程度保存が可能である。 The method for separating and recovering extracellular fine particles (EV) includes, for example, ultracentrifuging a sample of a subject at about 50,000 to 150,000 G for 0.5 to 2 hours. Prior to ultracentrifugation, the sample can be centrifuged for 0.1-2 hours at about 100-20,000 G. Extracellular fine particles (EV) are freeze-dried at 4 ° C for about 1 week, -20 ° C for about 1 month, and -80 ° C for about 6 months if they are dissolved in a solution such as PBS. If there is, it can be stored at 4 ° C for about 3 years.
 細胞外微粒子(EV)の量を測定する方法は、特に限定されるものではないが、例えばNanoSight LM10V‐HSナノ粒子追跡システムで液体中の細胞外微粒子(EV)の粒子数を測定する方法、タンパク量を測定する方法等が挙げられる。得られた細胞外微粒子(EV)中のCD63陽性エクソソームの量を測定する方法としては、例えば、常法に従ってタンパク定量を行い、各サンプルのタンパク量が等量になるように調整してウェスタンブロッティングを行い、CD63を検出し、各サンプルのCD63量を解析する方法等が挙げられる。また、各サンプルに含まれるマイクロRNAについては、3D-gene human microRNA chips(東レ社製)等を用いて、含まれるマイクロRNA(発現強度)のプロファイルを解析することができる。 The method for measuring the amount of extracellular fine particles (EV) is not particularly limited, but for example, a method for measuring the number of particles of extracellular fine particles (EV) in a liquid with a NanoSign LM10V-HS nanoparticle tracking system, Examples include a method for measuring the amount of protein. As a method for measuring the amount of CD63-positive exosomes in the obtained extracellular fine particles (EV), for example, protein quantification is performed according to a conventional method, and the amount of protein in each sample is adjusted to be equal to Western blotting. , CD63 is detected, and the amount of CD63 in each sample is analyzed. Further, for the microRNA contained in each sample, the profile of the contained microRNA (expression intensity) can be analyzed using 3D-gene human microRNA chips (manufactured by Toray Industries, Inc.) or the like.
 上記マイクロRNA(miRNA)のプロファイルとしては、ミトコンドリア由来のmiR494-3p、miR1246、miR4741及び/又はmiR7110-5pの含有量、発現量、放出量等が好ましいものとして挙げられ、中でもmiR494-3p及び/又はmiR1246の含有量、発現量、放出量等がより好ましいものとして挙げられ、miR494-3pの含有量、発現量、放出量等がさらに好ましいものとして挙げられる。 As the profile of the microRNA (miRNA), the content, expression level, release amount and the like of miR494-3p, miR1246, miR4741 and / or miR7115-p derived from mitochondria are preferable, and among them, miR494-3p and / Alternatively, the content, expression amount, release amount and the like of miR1246 are mentioned as more preferable, and the content, expression amount, release amount and the like of miR494-3p are further mentioned as more preferable.
(3)上記(2)で測定された数値と基準値を比較し、組織炎症を伴う炎症性網膜疾患の罹患可能性、重軽度、発症リスク、重症化リスク、治療効果等を判定する工程:
 本工程においては、上記(2)の工程で得られた数値と基準値を比較する。このとき、罹患可能性を判断する際の基準値としては、健常人における平均値、数値範囲等を用いることができる。また、組織炎症を伴う炎症性網膜疾患の治療効果を判定する場合には、治療前の値、治療後の値を比較し、その数値が低くなっていれば治療効果があったと判定され、その数値が変化しない場合は治療効果が見られなかったと判定され、その数値が高くなった場合には悪化したと判定される。
(3) A step of comparing the numerical value measured in (2) above with a reference value to determine the possibility of inflammatory retinal disease accompanied by tissue inflammation, severe / mild, risk of onset, risk of aggravation, therapeutic effect, etc .:
In this step, the numerical value obtained in the step (2) above is compared with the reference value. At this time, as a reference value for determining the possibility of morbidity, an average value, a numerical range, or the like in a healthy person can be used. In addition, when determining the therapeutic effect of inflammatory retinal disease accompanied by tissue inflammation, the value before treatment and the value after treatment are compared, and if the value is low, it is determined that the therapeutic effect was achieved. If the value does not change, it is determined that the therapeutic effect was not seen, and if the value becomes high, it is determined that the treatment has deteriorated.
 本発明の判定方法によると、疾患の初期の加齢黄斑変性の診断や予後予測等を高い確度で簡便に行うことができる。 According to the determination method of the present invention, it is possible to easily diagnose and predict the prognosis of age-related macular degeneration in the early stage of the disease with high accuracy.
 上述のとおり、前房水や血漿中の上記特定のmiRNAを定量することにより、炎症性網膜疾患の罹患可能性・発症リスク、症状の重軽度・重症化リスクの診断及び治療効果が判定されるが、判定項目はこれに限定されない。その他の判定項目としては、未病、初期病変、あるいは各疾患にて確定診断を下せる前段階(症状が明確ではない状態)であることの判定等が挙げられる。特に、加齢黄斑変性においては、アムスラー検査、眼底検査及び蛍光眼底造影検査の診断方法があり得る。しかし、アムスラー検査で視野が欠けたり、蛍光眼底造影で新生血管が認められたりする状態はすでに重度の加齢黄斑変性である。そこで、加齢黄斑変性のより効果的な治療のためには、脈絡膜浸潤マクロファージが網膜色素上皮細胞と相互作用をすることなどにより惹起される組織炎症に係るより早期の、視野欠損や血管新生がまだない段階での診断方法、判定方法が望まれている。前房水や血漿、組織液中の上記特定のmiRNAを定量することにより、未病、初期病変、あるいは確定診断をまだ下せない早期の段階での予測が可能であり、より効果的な薬剤治療が期待できるだけでなく、加齢黄斑変性の予防のための指標にもなり得る。 As described above, by quantifying the above-mentioned specific miRNA in the anterior aqueous humor or plasma, the diagnosis and therapeutic effect of the possibility / risk of developing inflammatory retinal disease and the risk of severe / severe symptoms are determined. However, the judgment item is not limited to this. Other determination items include determination of pre-illness, initial lesion, or pre-stage (state in which symptoms are not clear) in which a definitive diagnosis can be made for each disease. In particular, in age-related macular degeneration, there may be diagnostic methods of Amsler examination, fundus examination and fluorescence fundus contrast examination. However, the condition in which the visual field is lacking on the Amsler examination and new blood vessels are observed on the fluorescence fundus angiography is already severe age-related macular degeneration. Therefore, for more effective treatment of age-related macular degeneration, earlier-stage visual field defects and angiogenesis related to tissue inflammation caused by the interaction of choroidal infiltrating macrophages with retinal pigment epithelial cells are required. A diagnostic method and a judgment method at a stage that has not yet been achieved are desired. By quantifying the above-mentioned specific miRNAs in anterior aqueous humor, plasma, and tissue fluid, it is possible to predict pre-illness, early lesions, or early stages where a definitive diagnosis cannot be made, and more effective drug treatment. Not only can it be expected, but it can also be an index for the prevention of age-related macular degeneration.
 また、前房水や血漿中の上記特定のmiRNAを定量することは、加齢黄斑変性の罹患前の診断に有益であるだけでなく、疾患分類にも有効である。加齢黄斑変性は滲出型と委縮型に分別される。前駆病変として、脈絡膜新血管異常に基づく脈絡膜血管新生(PNV)などとの関連が議論されているが、これら、多様な後眼部炎症性疾患の各々の表現型や治療方法は大きく異なる。マクロファージなどの炎症性免疫細胞の脈絡膜-網膜組織への浸潤を伴う組織炎症が、中心性漿液性脈絡網膜症(CSC)の急性から慢性への進行を引き起こし得ることが示唆され始めている。しかし、早期に滲出型AMDか委縮型AMDかの診断は現実不可能である。前房水や血漿中、あるいはその他の組織液中の上記特定のmiRNAを定量することにより、加齢黄斑変性の滲出型、委縮型を含む多様な後眼部炎症性疾患の疾患分類や、その診断にも寄与するものと考えられる。 In addition, quantifying the above-mentioned specific miRNA in anterior aqueous humor or plasma is not only useful for pre-diagnosis of age-related macular degeneration, but also for disease classification. Age-related macular degeneration is divided into exudative and atrophic types. As prodromal lesions, the relationship with choroidal neovascularization (PNV) based on choroidal neovascularization has been discussed, but the phenotypes and treatment methods of these various posterior ocular inflammatory diseases differ greatly. It is beginning to be suggested that tissue inflammation with infiltration of inflammatory immune cells such as macrophages into the choroid-retinal tissue can cause the acute to chronic progression of central serous chorioretinal disease (CSC). However, early diagnosis of wet AMD or atrophic AMD is not feasible. By quantifying the above-mentioned specific miRNA in anterior aqueous humor, plasma, or other tissue fluid, various posterior ocular inflammatory diseases including exudative and atrophic types of age-related macular degeneration can be classified and diagnosed. It is thought that it also contributes to.
[炎症性網膜疾患治療剤]
 本発明の炎症性網膜疾患治療剤は、網膜色素上皮細胞(RPE)が産生する細胞外微粒子(EV)の機能調節分子を有効成分として含有する。組織炎症を伴う炎症性網膜疾患を発症している被験者の網膜色素上皮細胞(RPE)においては、放出される細胞外微粒子(EV)の量やそれが含有する上記特定のmiRNA(マイクロRNA)の量が増加しているため、これらの機能を調節(抑制又は促進)する分子が、組織炎症を伴う炎症性網膜疾患の治療効果を奏することが期待される。なお、組織炎症を伴う炎症性網膜疾患を発症している被験者の網膜色素上皮細胞(RPE)において上記特定のmiRNA(マイクロRNA)の放出量が増加している場合、網膜色素上皮細胞(RPE)中の上記特定のmiRNA量が過剰になっていることが考えられる一方で、放出量の増加によって網膜色素上皮細胞(RPE)中の上記特定のmiRNA量(ミトコンドリア含有のものも含む)が減少していることも考え得る。そのため、被験者の疾患の状態に合わせて、これらのmiRNAの発現を調節(抑制又は促進)することが疾患の治療につながると考えられる。
[Therapeutic agent for inflammatory retinal disease]
The therapeutic agent for inflammatory retinal disease of the present invention contains a function-regulating molecule of extracellular fine particles (EV) produced by retinal pigment epithelial cells (RPE) as an active ingredient. In the retinal pigment epithelial cells (RPE) of subjects developing inflammatory retinal disease accompanied by tissue inflammation, the amount of extracellular fine particles (EV) released and the above-mentioned specific miRNA (microRNA) contained therein. Due to the increased amount, molecules that regulate (suppress or promote) these functions are expected to have a therapeutic effect on inflammatory retinal diseases associated with tissue inflammation. When the amount of the specific miRNA (microRNA) released in the retinal pigment epithelial cells (RPE) of a subject who develops inflammatory retinal disease accompanied by tissue inflammation is increased, the retinal pigment epithelial cells (RPE) are used. While it is possible that the specific amount of miRNA in the tissue is excessive, the amount of the specific miRNA in the retinal pigment epithelial cells (RPE) (including those containing mitochondria) decreases due to the increase in the release amount. It is possible that it is. Therefore, it is considered that regulating (suppressing or promoting) the expression of these miRNAs according to the state of the disease of the subject leads to the treatment of the disease.
 ここで、本発明において細胞外微粒子(EV)の機能調節分子とは、細胞外微粒子(EV)が有する機能を調節する分子であれば特に限定されないが、細胞外微粒子(EV)の産生(放出)を調節する分子も含む広い概念である。また、細胞外微粒子(EV)の機能調節分子としては、細胞外微粒子(EV)が含有するマイクロRNA(miRNA)の機能調節分子が好ましい例として挙げられ、中でも細胞外微粒子(EV)が含有するmiR494-3p、miR1246、miR4741及び/又はmiR7110-5pの機能調節分子であることがより好ましく、miR494-3p及び/又はmiR1246の機能調節分子であることがさらに好ましく、miR494-3pの機能調節分子であることが特に好ましい。これらの機能調節分子としては、核酸オリゴ、低分子化合物、ペプチド、抗体等が挙げられ、具体的には、上記特定のマイクロRNA(miRNA)の機能を調節する核酸オリゴ等が好ましいものとして挙げられる。さらに詳細には、上記特定のマイクロRNA(miRNA)の機能を亢進する核酸オリゴ(mimicの導入)、上記特定のマイクロRNA(miRNA)の機能を抑制する核酸オリゴ(inhibitorの導入)である。なお、上記核酸オリゴは、生体に投与された際の分解を抑制する目的、及び/又は疾患部位に特異的に結合させる目的等により、修飾されていることが好ましい。 Here, in the present invention, the function-regulating molecule of the extracellular fine particles (EV) is not particularly limited as long as it is a molecule that regulates the function of the extracellular fine particles (EV), but the production (release) of the extracellular fine particles (EV) is limited. ) Is a broad concept including molecules that regulate. Further, as a function-regulating molecule of extracellular fine particles (EV), a function-regulating molecule of microRNA (miRNA) contained in extracellular fine particles (EV) is given as a preferable example, and among them, extracellular fine particles (EV) are contained. It is more preferably a function-regulating molecule of miR494-3p, miR1246, miR4741 and / or miR7110-5p, further preferably a function-regulating molecule of miR494-3p and / or miR1246, and a function-regulating molecule of miR494-3p. It is particularly preferable to have. Examples of these function-regulating molecules include nucleic acid oligos, small molecule compounds, peptides, antibodies, and the like, and specific examples thereof include nucleic acid oligos that regulate the function of the specific microRNA (miRNA). .. More specifically, it is a nucleic acid oligo (introduction of mimic) that enhances the function of the specific microRNA (miRNA), and a nucleic acid oligo (introduction of inhibitor) that suppresses the function of the specific microRNA (miRNA). The nucleic acid oligo is preferably modified for the purpose of suppressing decomposition when administered to a living body and / or for the purpose of specifically binding to a diseased site.
 本発明における上記核酸オリゴとして、好ましくは、上記特定のマイクロRNA(miRNA)のmimic、siRNA又はshRNAを挙げることができ、より好ましくは、上記特定のマイクロRNA(miRNA)のmimic、siRNAを挙げることができる。siRNAは、細胞で毒性を示さない範囲の短鎖からなる二重鎖RNAを意味し、例えば15~49塩基対と、好適には15~35塩基対と、さらに好適には21~30塩基対とすることが出来る。また、shRNAは、一本鎖のRNAがヘアピン構造を介して二重鎖を構成しているRNAである。 As the nucleic acid oligo in the present invention, preferably, mimic, siRNA or shRNA of the specific microRNA (miRNA) can be mentioned, and more preferably, mimic, siRNA of the specific microRNA (miRNA) can be mentioned. Can be done. SiRNA means a double-stranded RNA consisting of short strands in a range that does not show toxicity in cells, for example, 15 to 49 base pairs, preferably 15 to 35 base pairs, and more preferably 21 to 30 base pairs. Can be. Further, shRNA is RNA in which a single-stranded RNA constitutes a double strand via a hairpin structure.
 本発明における「核酸オリゴ」は、天然及び非天然のRNAまたはDNAからなるオリゴであり、miR494-3p、miR1246、miR4741及び/又はmiR7110-5pの機能を制御する核酸のオリゴマーを意味する。本発明における核酸オリゴとしては、miRNA、siRNA、shRNA、アンチセンス核酸、デコイ核酸、核酸アプタマーが含まれる。 The "nucleic acid oligo" in the present invention is an oligo composed of natural and unnatural RNA or DNA, and means a nucleic acid oligomer that controls the functions of miR494-3p, miR1246, miR4741 and / or miR7110-5p. Nucleic acid oligos in the present invention include miRNA, siRNA, shRNA, antisense nucleic acid, decoy nucleic acid, and nucleic acid aptamer.
 siRNAおよびshRNAは、標的遺伝子と完全に同一である必要はないが、少なくとも70%以上、好ましくは80%以上、さらに好ましくは90%以上、最も好ましくは95%以上の配列の相同性を有する。 SiRNA and shRNA do not have to be exactly the same as the target gene, but have at least 70% or more, preferably 80% or more, more preferably 90% or more, and most preferably 95% or more sequence homology.
 siRNAおよびshRNAにおけるRNA同士が対合した二重鎖RNAの部分は、完全に対合しているものに限らず、ミスマッチ(対応する塩基が相補的でない)、バルジ(一方の鎖に対応する塩基がない)等により不対合部分が含まれていてもよい。本発明においてはdsRNAにおけるRNA同士が対合する二重鎖RNA領域中に、バルジおよびミスマッチの両方が含まれていてもよい。 The portion of double-stranded RNA in which RNAs are paired with each other in siRNA and shRNA is not limited to a completely paired one, but is not limited to a completely paired one, but is a mismatch (corresponding bases are not complementary) and bulge (base corresponding to one strand). It may include a non-matching portion due to (there is no) or the like. In the present invention, both the bulge and the mismatch may be contained in the double-stranded RNA region in which the RNAs in the dsRNA are paired with each other.
 本発明における炎症性網膜疾患治療剤には、保存剤や安定剤等の製剤上許容しうる材料が添加されていてもよい。製剤上許容しうるとは、それ自体は上記治療効果を有する材料であってもよいし、当該治療効果を有さない材料であってもよく、上記治療剤とともに投与可能な製剤上許容される材料を意味する。また、治療効果を有さない材料であって、炎症性網膜疾患治療剤と併用することによって相乗的効果もしくは相加的な安定化効果を有する材料であってもよい。 The therapeutic agent for inflammatory retinal disease in the present invention may contain a pharmaceutically acceptable material such as a preservative or a stabilizer. The term "acceptable" means that the material itself may have the above-mentioned therapeutic effect or may not have the above-mentioned therapeutic effect, and may be the material that can be administered together with the above-mentioned therapeutic agent. Means material. Further, a material having no therapeutic effect and having a synergistic effect or an additive stabilizing effect when used in combination with a therapeutic agent for inflammatory retinal disease may be used.
 製剤上許容される材料としては、例えば滅菌水や生理食塩水、保存剤、安定剤、賦形剤、緩衝剤、防腐剤、界面活性剤、キレート剤(EDTA等)、結合剤等を挙げることができる。 Examples of the material permitted in the formulation include sterile water, physiological saline, preservatives, stabilizers, excipients, buffers, preservatives, surfactants, chelating agents (EDTA, etc.), binders, and the like. Can be done.
 本発明における炎症性網膜疾患治療剤を注射用の水溶液とする場合には、例えば生理食塩水、ブドウ糖やその他の補助薬を含む等張液(例えば、D-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウムが挙げられる)、適当な溶解補助剤、例えばアルコール(エタノール等)、ポリアルコール(プロピレングリコール、PEG等)、非イオン性界面活性剤(ポリソルベート80、HCO-50)等と併用してもよい。所望によりさらに希釈剤、溶解補助剤、pH調整剤、無痛化剤、含硫還元剤、酸化防止剤等を含有してもよい。 When the therapeutic agent for inflammatory retinal disease in the present invention is used as an aqueous solution for injection, an isotonic solution containing, for example, physiological saline, glucose and other adjuvants (eg, D-sorbitol, D-mannose, D-mannitol) , Sodium chloride), suitable solubilizers such as alcohols (ethanol, etc.), polyalcohols (propylene glycol, PEG, etc.), nonionic surfactants (polysorbitol 80, HCO-50), etc. May be good. If desired, a diluent, a solubilizing agent, a pH adjuster, a pain-relieving agent, a sulfur-containing reducing agent, an antioxidant and the like may be further contained.
 また、必要に応じ、本発明における炎症性網膜疾患治療剤をマイクロカプセル(ヒドロキシメチルセルロース、ゼラチン、ポリ[メチルメタクリル酸]等のマイクロカプセル)に封入したり、コロイドドラッグデリバリーシステム(リポソーム、アルブミンミクロスフェア、マイクロエマルジョン、ナノ粒子及びナノカプセル等)としたりすることもできる。さらに、薬剤を徐放性の薬剤とする方法も公知であり、本発明に適用し得る。使用される製剤上許容しうる担体は、剤型に応じて上記の中から適宜あるいは組合せて選択されるが、これらに限定されるものではない。 Further, if necessary, the therapeutic agent for inflammatory retinal disease of the present invention can be encapsulated in microcapsules (microcapsules such as hydroxymethylcellulose, gelatin, poly [methylmethacrylate]), or a colloidal drug delivery system (liposomes, albumin microspheres). , Microemulsions, nanoparticles and nanocapsules, etc.). Further, a method of making a drug a sustained release drug is also known and can be applied to the present invention. The pharmaceutically acceptable carrier to be used is appropriately selected from the above or in combination depending on the dosage form, but is not limited thereto.
 本発明の炎症性網膜疾患治療剤をヒトの医薬として使用する場合には、これらの物質自体を直接患者に投与する以外に、公知の製剤学的方法により製剤化して投与を行うことも可能である。製剤化する場合には上記に記載の製剤上許容される材料を添加しても良い。 When the therapeutic agent for inflammatory retinal disease of the present invention is used as a human medicine, it is possible to formulate and administer these substances by a known pharmaceutical method, in addition to directly administering these substances to patients. be. In the case of formulation, the above-mentioned materials that are acceptable for the formulation may be added.
 本発明における炎症性網膜疾患治療剤は、医薬品の形態で投与することが可能であり、経口的または非経口的に全身あるいは局所的に投与することができる。例えば、点滴等の静脈内注射、筋肉内注射、腹腔内注射、皮下注射、坐薬、注腸、経口性腸溶剤等を選択することができ、患者の年齢、症状により適宜投与方法を選択することができる。有効投与量は、一回につき体重1kgあたり0.000001mgから1gの範囲で選ばれる。あるいは、患者あたり0.00001~100mg、好ましくは0.0001~50mgの投与量を選ぶことができる。 The therapeutic agent for inflammatory retinal disease in the present invention can be administered in the form of a pharmaceutical product, and can be administered orally or parenterally systemically or topically. For example, intravenous injection such as infusion, intramuscular injection, intraperitoneal injection, subcutaneous injection, suppository, enema, oral intestinal solvent, etc. can be selected, and the administration method should be appropriately selected according to the age and symptoms of the patient. Can be done. The effective dose is selected in the range of 0.000001 mg to 1 g per 1 kg of body weight at a time. Alternatively, a dose of 0.00001 to 100 mg, preferably 0.0001 to 50 mg per patient can be selected.
 本発明の炎症性網膜疾患治療剤における炎症性網膜疾患としては、例えば加齢黄斑変性、中心性漿液性脈絡網膜症、増殖性硝子体網膜症、糖尿病性網膜症等が挙げられる。これらのうち、本発明の炎症性網膜疾患治療剤が特に有効である疾患は加齢黄斑変性である。 Examples of the inflammatory retinal disease in the therapeutic agent for inflammatory retinal disease of the present invention include age-related yellow spot degeneration, central serous chorioretinopathy, proliferative vitreous retinopathy, diabetic retinopathy and the like. Of these, the disease for which the therapeutic agent for inflammatory retinal disease of the present invention is particularly effective is age-related macular degeneration.
[組織炎症を伴う炎症性網膜疾患治療剤のスクリーニング方法]
 本発明の組織炎症を伴う炎症性網膜疾患治療剤のスクリーニング方法は、網膜色素上皮細胞(RPE)と、単球/マクロファージとの共培養系において分泌される細胞外微粒子(EV)のプロファイルの変動を指標とすることを特徴とする。組織炎症を伴う炎症性網膜疾患の状態をミミックする系として、本発明者らが構築した網膜色素上皮細胞(RPE)と、単球/マクロファージとの共培養系においては、分泌される細胞外微粒子(EV)の量が増加し、これらが含有する上記特定のmiRNA(マイクロRNA)の量が増加する。本発明のスクリーニング方法によると、網膜色素上皮細胞(RPE)と、単球/マクロファージとの共培養系において分泌される細胞外微粒子(EV)の量や、これらが含有する上記特定のmiRNA(マイクロRNA)の量を減少させる効果のある物質をスクリーニングすることができる。本発明のスクリーニング方法によって選定される物質は、組織炎症を伴う炎症性網膜疾患の症状を改善、治療する効果を奏することが期待できる。
[Screening method for therapeutic agents for inflammatory retinal diseases associated with tissue inflammation]
The method for screening a therapeutic agent for an inflammatory retinal disease associated with tissue inflammation of the present invention is a variation in the profile of extracellular fine particles (EV) secreted in a co-culture system of retinal pigment epithelial cells (RPE) and monocytes / macrophages. Is a feature. In the co-culture system of retinal pigment epithelial cells (RPE) and monocytes / macrophages constructed by the present inventors as a system for mimicking the state of inflammatory retinal disease accompanied by tissue inflammation, extracellular fine particles secreted. The amount of (EV) increases, and the amount of the specific miRNA (microRNA) contained therein increases. According to the screening method of the present invention, the amount of extracellular fine particles (EV) secreted in the co-culture system of retinal pigment epithelial cells (RPE) and monocytes / macrophages, and the above-mentioned specific miRNA (micro) contained therein. Substances that are effective in reducing the amount of RNA) can be screened. The substance selected by the screening method of the present invention can be expected to have an effect of improving and treating the symptoms of inflammatory retinal disease accompanied by tissue inflammation.
 上記特定のmiRNA(マイクロRNA)は、ミトコンドリア由来のmiR494-3p、miR1246、miR4741及び/又はmiR7110-5pであることが好ましく、miR494-3p及び/又はmiR1246であることがより好ましく、miR494-3pであることがさらに好ましい。 The specific miRNA (microRNA) is preferably mitochondrial-derived miR494-3p, miR1246, miR4741 and / or miR7115-5p, more preferably miR494-3p and / or miR1246p, and miR494-3p. It is even more preferable to have.
 本発明のスクリーニング方法は、以下の工程を含む方法として説明することもできる。 The screening method of the present invention can also be described as a method including the following steps.
(1)網膜色素上皮細胞(RPE)と、単球/マクロファージとの共培養系を準備する工程
(2)(1)で準備された共培養系に被験物質を添加し、一定期間培養する工程、
(3)(2)の培養終了後、培養上清を回収し、培養上清中の細胞外微粒子(EV)の量、細胞外微粒子(EV)中のCD63陽性エクソソームの量、細胞外微粒子(EV)が含有する物質、特に細胞内物質由来の核酸、中でもmiRNA(マイクロRNA)のプロファイル、具体的にはミトコンドリア由来の上記特定のmiRNA(マイクロRNA)の含有量等を測定する工程、及び
(4)被験物質が組織炎症を伴う炎症性網膜疾患治療剤として適しているか否かを判定する工程。
(1) Step of preparing a co-culture system of retinal pigment epithelial cells (RPE) and monocytes / macrophages (2) Step of adding a test substance to the co-culture system prepared in (1) and culturing for a certain period of time. ,
(3) After the culture of (2) is completed, the culture supernatant is collected, and the amount of extracellular fine particles (EV) in the culture supernatant, the amount of CD63-positive exosomes in the extracellular fine particles (EV), and the extracellular fine particles ( A step of measuring the content of a substance contained in EV), particularly a nucleic acid derived from an intracellular substance, particularly a profile of miRNA (microRNA), specifically, the content of the above-mentioned specific miRNA (microRNA) derived from mitochondria, and ( 4) A step of determining whether or not the test substance is suitable as a therapeutic agent for inflammatory retinal diseases accompanied by tissue inflammation.
 上記各工程について以下に説明する。 Each of the above processes will be described below.
(1)網膜色素上皮細胞(RPE)と、単球/マクロファージとの共培養系を準備する工程:
 本工程において、網膜色素上皮細胞(RPE)としては、ヒトの網膜組織から採取した網膜色素上皮細胞(RPE)の初代培養細胞、これらから株化した細胞等を用いてもよいし、iPS細胞から誘導して作製された網膜色素上皮細胞(RPE)(iPS-hRPE細胞)を用いてもよい。iPS細胞から網膜色素上皮細胞(RPE)を誘導する方法については、杉田らの論文(Sugita S. et. al., Lack of T cell response to iPSC-derived retinal pigment epithelial cells from HLA homozygous donors. Stem Cel Reports, 2016, vol.7, page619-634)に記載の方法を参考にすることができる。
(1) Step of preparing a co-culture system of retinal pigment epithelial cells (RPE) and monocytes / macrophages:
In this step, as the retinal pigment epithelial cell (RPE), a primary cultured cell of retinal pigment epithelial cell (RPE) collected from human retinal tissue, a cell established from these, or the like may be used, or from iPS cells. Retinal pigment epithelial cells (RPE) (iPS-hRPE cells) produced by induction may be used. For a method of inducing retinal pigment epithelial cells (RPE) from iPS cells, see a paper by Sugita et al. (Sugita S. et. The method described in Reports, 2016, vol. 7, page 619-634) can be referred to.
 本工程において単球/マクロファージとしては、ヒトの血液、組織等から分離した単球/マクロファージを用いてもよいし、株化細胞であるTHP-1細胞を常法によりPMA等で処理することでマクロファージに分化させた細胞(PMA-THP-1細胞)を用いてもよい。 As the monocytes / macrophages in this step, monocytes / macrophages isolated from human blood, tissues, etc. may be used, or THP-1 cells, which are established cells, may be treated with PMA or the like by a conventional method. Cells differentiated into macrophages (PMA-THP-1 cells) may be used.
 本工程においては、上記網膜色素上皮細胞(RPE)(例えばiPS-hRPE細胞)と、単球/マクロファージ(例えばPMA-THP-1細胞)を、LPS等を添加して炎症を惹起した条件下で共培養を行う。共培養としては、両方の細胞を1つの培養器に混合して培養してもよいし、片方を接着培養させ、一定時間が経過した後にもう片方の細胞を播種してもよい。また、Transwell(登録商標)cell culture inserts(コーニング社製)、Nico‐1(登録商標)culture system(GinreilabInc., Uchinada, Ishikawa, Japan)等を用いてiPS-hRPE細胞とPMA-THP-1細胞とが直接接触しない条件で共培養を行ってもよい。 In this step, the retinal pigment epithelial cells (RPE) (for example, iPS-hRPE cells) and monocytes / macrophages (for example, PMA-THP-1 cells) are added under the condition of inducing inflammation by adding LPS or the like. Perform co-culture. As co-culture, both cells may be mixed and cultured in one incubator, or one may be adherently cultured and the other cell may be seeded after a certain period of time has passed. In addition, iPS-hRPE cells and iPS-hRPP cells using Transwell (registered trademark) cell culture inserts (manufactured by Corning Inc.), Nico-1 (registered trademark) culture system (Ginreilab Inc., Uchinada, Ishikawa, Japan) and the like. Co-culture may be carried out under the condition that the cells do not come into direct contact with each other.
 共培養において用いられる培地は、一般的な細胞培養や、上記網膜色素上皮細胞(RPE)と、単球/マクロファージの培養に通常用いられるものであれば、特に限定されない。培地に牛胎児血清等の血清を添加してもよいが、血清から持ち込まれる細胞外微粒子の影響をなくすためには、無血清培地が好ましい。 The medium used in the co-culture is not particularly limited as long as it is usually used for general cell culture or culture of the above-mentioned retinal pigment epithelial cells (RPE) and monocytes / macrophages. Serum such as fetal bovine serum may be added to the medium, but a serum-free medium is preferable in order to eliminate the influence of extracellular fine particles brought in from the serum.
 上記LPS等を添加して炎症を惹起した条件としては、例えばLPSを1ng~500ng/mL、好ましくは10ng~200ng/mL、より好ましくは50ng~150ng/mL、さらに好ましくは80ng~120ng/mLの濃度になるように添加した条件が挙げられる。 The conditions for inducing inflammation by adding the above LPS or the like include, for example, LPS of 1 ng to 500 ng / mL, preferably 10 ng to 200 ng / mL, more preferably 50 ng to 150 ng / mL, still more preferably 80 ng to 120 ng / mL. The conditions added so as to have a concentration can be mentioned.
 共培養におけるそれぞれの細胞の数については、培養器のサイズ、形態などに合わせて適宜調節することができる。具体的な共培養の一例としては、例えば24ウェルプレートを用いる場合、1.0×10cells~1.0×10cells/ウェル、好ましくは5.0×10cells~5.0×10cells、より好ましくは2.5×10cells程度のPMA-THP-1細胞を播種し、30分~12時間程度培養した後、5.0×10cells~5.0×10cells/ウェル、好ましくは2.0×10cells~2.0×10cells、より好ましくは1.0×10cells程度のiPS-hRPE細胞を播種して共培養を行うことができる。 The number of each cell in the co-culture can be appropriately adjusted according to the size, morphology and the like of the incubator. As an example of specific co-culture, for example, when a 24-well plate is used, 1.0 × 10 4 cells to 1.0 × 10 6 cells / well, preferably 5.0 × 10 4 cells to 5.0 ×. PMA-THP-1 cells of about 10 5 cells, more preferably about 2.5 × 10 5 cells are seeded, cultured for about 30 minutes to 12 hours, and then 5.0 × 10 3 cells to 5.0 × 10 5 IPS-hRPE cells of cells / well, preferably 2.0 × 10 4 cells to 2.0 × 10 5 cells, more preferably 1.0 × 10 5 cells, can be seeded and co-cultured.
(2)(1)で準備された共培養系に被験物質を添加し、一定期間培養する工程:
 本工程においては、(1)で準備された共培養系に被験物質を添加して一定期間の培養が行われる。被験物質としては、例えば低分子化合物、天然物、核酸オリゴ、ペプチド、抗体等が挙げられ、添加量は物質に合わせて適宜調整され得る。
(2) A step of adding the test substance to the co-culture system prepared in (1) and culturing for a certain period of time:
In this step, the test substance is added to the co-culture system prepared in (1), and the culture is carried out for a certain period of time. Examples of the test substance include small molecule compounds, natural products, nucleic acid oligos, peptides, antibodies and the like, and the amount of addition can be appropriately adjusted according to the substance.
(3)(2)の培養終了後、培養上清を回収し、培養上清中の細胞外微粒子(EV)の量、細胞外微粒子(EV)中のCD63陽性エクソソームの量、細胞外微粒子(EV)が含有する物質、特に細胞内物質由来の核酸、中でもmiRNA(マイクロRNA)のプロファイル、具体的にはミトコンドリア由来の特定のmiRNA(マイクロRNA)の含有量等を測定する工程:
 本工程においては、上記(2)の工程において被験物質を添加して一定期間培養した後の培養上清を回収し、培養上清中の細胞外微粒子(EV)の量、細胞外微粒子(EV)中のCD63陽性エクソソームの量、細胞外微粒子(EV)が含有する物質、特に細胞内物質由来の核酸、中でもmiRNA(マイクロRNA)のプロファイル、具体的にはミトコンドリア由来の特定のmiRNA(マイクロRNA)の含有量等を測定する。なお、具体的な方法については、上述の本発明の判定方法の工程(2)「(1)で準備された被験者の試料中の細胞外微粒子(EV)の量、細胞外微粒子(EV)中のCD63陽性エクソソームの量、細胞外微粒子(EV)が含有する物質、特に細胞内物質由来の核酸、中でもmiRNA(マイクロRNA)のプロファイル、具体的にはミトコンドリア由来の特定のmiRNA(マイクロRNA)の含有量等を測定する工程」における各物質の測定方法の説明において「被験者の試料」を「培養上清」に置き換えて適用できる。
(3) After the culture of (2) is completed, the culture supernatant is collected, and the amount of extracellular fine particles (EV) in the culture supernatant, the amount of CD63-positive exosomes in the extracellular fine particles (EV), and the extracellular fine particles ( Step of measuring the content of a substance contained in EV), particularly a nucleic acid derived from an intracellular substance, particularly a profile of miRNA (microRNA), specifically, a specific miRNA (microRNA) derived from mitochondria:
In this step, the culture supernatant after adding the test substance and culturing for a certain period in the above step (2) is collected, and the amount of extracellular fine particles (EV) in the culture supernatant and the extracellular fine particles (EV) are collected. ), The amount of CD63-positive exosomes, substances contained in extracellular microparticles (EV), especially nucleic acids derived from intracellular substances, especially the profile of miRNA (microRNA), specifically specific miRNA (microRNA) derived from mitochondria. ), Etc. are measured. Regarding the specific method, the amount of extracellular fine particles (EV) in the sample of the subject prepared in step (2) "(1) of the determination method of the present invention described above, in the extracellular fine particles (EV)". CD63-positive exosomes, substances contained in extracellular microparticles (EV), especially nucleic acids derived from intracellular substances, especially the profile of miRNA (microRNA), specifically of specific miRNA (microRNA) derived from mitochondria. In the description of the method for measuring each substance in the "step of measuring the content and the like", the "sample of the subject" can be replaced with the "culture supernatant" and applied.
(4)被験物質が組織炎症を伴う炎症性網膜疾患治療剤として適しているか否かを判定する工程:
 本工程においては、上記(3)の工程で得られた数値と陰性対象との数値を比較する。このとき、陰性対象としては、被験物質を添加していない試験で得られた数値を採用することができる。被験物質を添加していない試験で得られた数値と比較して、被験物質の添加により培養上清中の細胞外微粒子(EV)の量、細胞外微粒子(EV)中のCD63陽性エクソソームの量、細胞外微粒子(EV)が含有する物質、特に細胞内物質由来の核酸、中でもmiRNA(マイクロRNA)のプロファイル、具体的にはミトコンドリア由来の特定のmiRNA(マイクロRNA)の含有量が低下している場合には、炎症性網膜疾患の治療剤としての効果が期待できる物質であると判断される。
(4) Step of determining whether or not the test substance is suitable as a therapeutic agent for inflammatory retinal diseases accompanied by tissue inflammation:
In this step, the numerical values obtained in the above step (3) and the numerical values of the negative target are compared. At this time, as the negative target, the numerical value obtained in the test to which the test substance is not added can be adopted. Amount of extracellular fine particles (EV) in the culture supernatant and amount of CD63-positive exosomes in the extracellular fine particles (EV) due to the addition of the test substance, as compared with the values obtained in the test without the addition of the test substance. , Substances contained in extracellular fine particles (EV), especially nucleic acids derived from intracellular substances, especially the profile of miRNA (microRNA), specifically the content of specific miRNA (microRNA) derived from mitochondria is reduced. If so, it is judged to be a substance that can be expected to be effective as a therapeutic agent for inflammatory retinal diseases.
 本発明のスクリーニング方法によると、加齢黄斑変性等の組織炎症を伴う炎症性網膜疾患の治療に効果を奏する物質を簡便にスクリーニングすることが可能である。 According to the screening method of the present invention, it is possible to easily screen substances that are effective in treating inflammatory retinal diseases associated with tissue inflammation such as age-related macular degeneration.
 以下に本発明を実施例に基づいて更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be described in more detail below based on examples, but the present invention is not limited to these examples.
[試験1]網膜色素上皮細胞(RPE)と単球/マクロファージとの共培養系における炎症性サイトカインの産生
 ヒト単球様細胞株THP-1を、100ng/mLのPMA存在下で24~48時間培養してマクロファージ様に分化させた。hRPE細胞としては、杉田らの論文(Sugita S. et. al., Lack of T cell response to iPSC-derived retinal pigment epithelial cells from HLA homozygous donors. Stem Cel Reports, 2016, vol.7, page619-634)に記載の方法に従ってiPS細胞から誘導して作製された細胞を用いた。
[Test 1] Production of inflammatory cytokines in a co-culture system of retinal pigment epithelial cells (RPE) and monocytes / macrophages Human monocyte-like cell line THP-1 was used for 24-48 hours in the presence of 100 ng / mL PMA. It was cultured and differentiated into macrophages. As hRPE cells, the paper by Sugita et al. (Sugita S. et. Al., Lack of T cell response to iPSC-derivated retinal pigment epithelium cells from epithelium cell6 cell16sor6sol6s. The cells prepared by inducing from iPS cells according to the method described in the above were used.
 iPS細胞から誘導して作製されたhRPE細胞(以下、「iPS-hRPE細胞」ともいう)と、PMA処理したTHP-1細胞(以下、「PMA-THP-1細胞」ともいう)を無血清培地DMEM/F12中で、100ng/mLのLPS存在下若しくは非存在下で24時間、共培養を行った。具体的には、24ウェルプレート(コーニング社製)に、2.5×10cells/ウェルのPMA-THP-1細胞を播種し、4時間培養した。その後、1.0×10cells/ウェルのiPS-hRPE細胞を播種し、24時間共培養を行った(T/R)。比較対象は、PMA-THP-1細胞のみ(T)、又はiPS-hRPE細胞のみ(R)とした。各ウェルの培養上清を回収し、2000×g、10分遠心し、得られた上清を0.22μmのフィルター(ミリポア社製)を通し、各種炎症性サイトカインの定量用のサンプルとした。各サンプル中のIL-6、MCP-1、IL-8、VEGF、TNF-α、PEDFの濃度をELISAキット(BD Bioscience社製)を用いて測定した。各サンプルにつき4点の測定を行い、平均値を各サンプルの濃度とし、図1に示した。 HRPE cells produced by inducing from iPS cells (hereinafter, also referred to as "iPS-hRPE cells") and PMA-treated THP-1 cells (hereinafter, also referred to as "PMA-THP-1 cells") are serum-free medium. Co-culture was performed in DMEM / F12 in the presence or absence of 100 ng / mL LPS for 24 hours. Specifically, 2.5 × 10 5 cells / well PMA-THP-1 cells were seeded on a 24-well plate (manufactured by Corning Inc.) and cultured for 4 hours. Then, 1.0 × 10 5 cells / well iPS-hRPE cells were seeded and co-cultured for 24 hours (T / R). The comparison targets were PMA-THP-1 cells only (T) or iPS-hRPE cells only (R). The culture supernatant of each well was collected, centrifuged at 2000 × g for 10 minutes, and the obtained supernatant was passed through a 0.22 μm filter (manufactured by Millipore) to prepare a sample for quantification of various inflammatory cytokines. The concentrations of IL-6, MCP-1, IL-8, VEGF, TNF-α, and PEDF in each sample were measured using an ELISA kit (manufactured by BD Bioscience). Four points were measured for each sample, and the average value was taken as the concentration of each sample and is shown in FIG.
 図1に示すとおり、PMA-THP-1細胞のみ(T)、又はiPS-hRPE細胞のみ(R)と比較して、iPS-hRPE細胞とPMA-THP-1細胞とを共培養すること(T/R)により、IL-6、MCP-1、IL-8、VEGFの産生量が顕著に増加した。一方、TNF-αは、PMA-THP-1細胞のみ(T)からの産生量が最も多いところ、iPS-hRPE細胞(R)と共培養(T/R)することにより、その産生量が顕著に抑制された。なお、iPS-hRPE細胞のみ(R)の培養上清中にはTNF-αは検出されなかった。また、PEDFは、iPS-hRPE細胞のみ(R)からの産生量が最も多いところ、PMA-THP-1細胞(T)と共培養すること(T/R)により、その産生量が顕著に抑制された。なお、PMA-THP-1細胞のみ(T)の培養上清中にはPEDFはほとんど検出されなかった。 As shown in FIG. 1, co-culture of iPS-hRPE cells and PMA-THP-1 cells as compared with PMA-THP-1 cells only (T) or iPS-hRPE cells only (R) (T). / R) markedly increased the production of IL-6, MCP-1, IL-8, and VEGF. On the other hand, the amount of TNF-α produced from only PMA-THP-1 cells (T) is the highest, but the amount produced by co-culturing (T / R) with iPS-hRPE cells (R) is remarkable. Was suppressed. In addition, TNF-α was not detected in the culture supernatant of only iPS-hRPE cells (R). In addition, the amount of PEDF produced from only iPS-hRPE cells (R) is the highest, but the amount produced is significantly suppressed by co-culturing with PMA-THP-1 cells (T) (T / R). Was done. In addition, PEDF was hardly detected in the culture supernatant of only PMA-THP-1 cells (T).
 加齢黄斑変性等の網膜の炎症性疾患の初期には、網膜色素上皮細胞周辺にマクロファージが浸潤してくることが確認されている。この試験1の結果は、網膜色素上皮細胞とマクロファージが共存し、LPSによって炎症が惹起されている状態となると、炎症性のサイトカインであるIL-6、MCP-1、IL-8、VEGFの産生量が顕著に増加し、炎症をさらに増悪させる方向に動くことを示している。 It has been confirmed that macrophages infiltrate around retinal pigment epithelial cells in the early stages of retinal inflammatory diseases such as age-related macular degeneration. The results of this test 1 show that when retinal pigment epithelial cells and macrophages coexist and inflammation is induced by LPS, the inflammatory cytokines IL-6, MCP-1, IL-8, and VEGF are produced. The amount is significantly increased, indicating that it moves in a direction that further exacerbates inflammation.
[試験2]網膜色素上皮細胞(RPE)と単球/マクロファージとの共培養系におけるCD63エクソソームの産生
 iPS-hRPE細胞とPMA-THP-1細胞とを、24ウェルプレート中、無血清培地(LPS存在下又は非存在下)にて共培養し、CD63エクソソームの産生量を測定した。具体的には、24ウェルプレート(コーニング社製)に、2.5×10cells/ウェルのPMA-THP-1細胞を播種し、4時間培養した。その後、1.0×10cells/ウェルのiPS-hRPE細胞を播種し、24時間共培養を行った(T/R)。比較対象は、PMA-THP-1細胞のみ(T)、又はiPS-hRPE細胞のみ(R)とした。各ウェルの培養上清を回収し、2,000×g、10分遠心し、得られた上清を0.22μmのフィルター(ミリポア社製)を通した。その後、MLS50スウィングロータ(ベックマン・コールター社製)を用いて超遠心(100,000×g、90分)を行いペレットを回収した。ペレットをPBSに懸濁し、再度超遠心(100,000×g、90分)を行った。得られたペレットをPBSに懸濁し、常法に従ってタンパク定量を行った。各サンプルのタンパク量が等量になるように調整してウェスタンブロッティングを行い、CD63を検出し、各サンプルのCD63量を比較した。結果を図2(a)に示す。
[Test 2] Production of CD63 + exosomes in a co-culture system of retinal pigment epithelial cells (RPE) and monocytes / macrophages iPS-hRPE cells and PMA-THP-1 cells were placed in a 24-well plate in a serum-free medium (test 2). The cells were co-cultured in the presence or absence of LPS), and the amount of CD63 + exosomes produced was measured. Specifically, 2.5 × 10 5 cells / well PMA-THP-1 cells were seeded on a 24-well plate (manufactured by Corning Inc.) and cultured for 4 hours. Then, 1.0 × 10 5 cells / well iPS-hRPE cells were seeded and co-cultured for 24 hours (T / R). The comparison targets were PMA-THP-1 cells only (T) or iPS-hRPE cells only (R). The culture supernatant of each well was collected, centrifuged at 2,000 × g for 10 minutes, and the obtained supernatant was passed through a 0.22 μm filter (manufactured by Millipore). Then, the pellets were collected by ultracentrifugation (100,000 × g, 90 minutes) using an MLS50 swing rotor (manufactured by Beckman Coulter). The pellet was suspended in PBS and ultracentrifuged (100,000 × g, 90 minutes) was performed again. The obtained pellet was suspended in PBS and protein quantification was performed according to a conventional method. Western blotting was performed by adjusting the amount of protein in each sample to be equal, CD63 was detected, and the amount of CD63 in each sample was compared. The results are shown in FIG. 2 (a).
 また、Transwell(登録商標)cell culture inserts(コーニング社製)を用いてiPS-hRPE細胞とPMA-THP-1細胞とが直接接触しない条件で共培養を行った。具体的には、5.0×10cells/mLのPMA-THP-1細胞700μLを下のチャンバーに、2.0×10cells/mLのiPS-hRPE細胞300μLを上のチャンバーに播種し、24時間共培養を行った。上下の各チャンバーに播種する細胞を入れ替えた試験も行った。それぞれのチャンバーから培養上清を回収し、上記と同様に超遠心を行い、サンプルを調整してウェスタンブロッティングを行った。CD63を検出し、各サンプルのCD63量を比較した。結果を図2(b)に示す。 In addition, co-culture was performed using Transwell (registered trademark) cell culture inserts (manufactured by Corning Inc.) under the condition that iPS-hRPE cells and PMA-THP-1 cells do not come into direct contact with each other. Specifically, 700 μL of 5.0 × 10 5 cells / mL PMA-THP-1 cells was seeded in the lower chamber, and 300 μL of 2.0 × 10 5 cells / mL iPS-hRPE cells was seeded in the upper chamber. , Was co-cultured for 24 hours. A test was also conducted in which the cells seeded in the upper and lower chambers were replaced. Culture supernatants were collected from each chamber, ultracentrifuged in the same manner as above, samples were prepared, and Western blotting was performed. CD63 was detected and the amount of CD63 in each sample was compared. The results are shown in FIG. 2 (b).
 図2(a)に示すとおり、iPS-hRPE細胞とPMA-THP-1細胞とを共培養することにより、いずれか一方の細胞のみでの培養の場合と比較して、CD63エクソソームの産生が顕著に増加した。LPS存在下、非存在下の両方で同様の傾向が見られたが、LPS存在下の炎症状態をミミックした条件の方が、CD63エクソソームの産生量が顕著に増大していた。 As shown in FIG. 2 (a), by co-culturing iPS-hRPE cells and PMA-THP-1 cells, the production of CD63 exosomes is remarkable as compared with the case of culturing with only one of the cells. Increased to. Similar tendencies were observed both in the presence and absence of LPS, but the production of CD63 exosomes was significantly increased in the mimic condition of the inflammatory state in the presence of LPS.
 また、図2(b)に示すとおり、iPS-hRPE細胞とPMA-THP-1細胞とが直接接触しない条件で共培養を行ってもCD63エクソソームの産生が顕著に増加した。 Further, as shown in FIG. 2 (b), the production of CD63 exosomes was remarkably increased even when co-culture was performed under the condition that iPS-hRPE cells and PMA-THP-1 cells did not come into direct contact with each other.
 以上の結果から、網膜色素上皮細胞とマクロファージが共存し、LPSによって炎症が惹起された条件においては、CD63エクソソームの産生量が増大することがわかった。また、Transwell(登録商標)cell culture insertsを用いた試験結果から、この共培養によるCD63エクソソームの産生量の増大には、両方の細胞の直接接触によるインターラクションは必要ないこともわかった。 From the above results, it was found that the production amount of CD63 + exosome increases under the condition that retinal pigment epithelial cells and macrophages coexist and inflammation is induced by LPS. In addition, from the test results using Transwell® cell culture inserts, it was found that the increase in the production of CD63 + exosomes by this co-culture does not require interaction by direct contact between both cells.
[試験3]網膜色素上皮細胞(RPE)と単球/マクロファージとの共培養系において産生が増強される細胞外微粒子の解析
 上記試験1で得られた各サンプル(LPS(+)の条件のもの)に含まれる微小粒子数を、NanoSight LM10V-HS nanoparticle tracking system(Quantum Design社製)を用いて測定した。また各培養上清のサンプル(CS)と、各培養上清のサンプル(CS)を上記試験2と同様の方法で超遠心して得られたサンプル(UC)についてウェスタンブロッティングを行い、CD63を検出した。結果を図3に示す。
[Test 3] Analysis of extracellular fine particles whose production is enhanced in a co-culture system of retinal pigment epithelial cells (RPE) and monocytes / macrophages. The number of fine particles contained in) was measured using a NanoSigt LM10V-HS nanoparticular tracing system (manufactured by Quantum Design). In addition, Western blotting was performed on the sample (CS) of each culture supernatant and the sample (UC) obtained by ultracentrifuging the sample (CS) of each culture supernatant by the same method as in Test 2 above, and CD63 was detected. .. The results are shown in FIG.
 図3(a)に示すとおり、iPS-hRPE細胞とPMA-THP-1細胞とを共培養することにより、いずれか一方の細胞のみでの培養の場合と比較して、分泌される微小粒子数自体が顕著に増加することがわかった。また、図3(b)に示すとおり、共培養により微小粒子中にCD63+エクソソームが占める割合も顕著に増加していることがわかった。即ち、共培養により、微小粒子のうち特にCD63+エクソソームの分泌量が増加した。 As shown in FIG. 3 (a), the number of fine particles secreted by co-culturing iPS-hRPE cells and PMA-THP-1 cells as compared with the case of culturing with only one of the cells. It turned out that it increased significantly. In addition, as shown in FIG. 3 (b), it was found that the proportion of CD63 + exosomes in the fine particles was significantly increased by co-culture. That is, the co-culture increased the amount of CD63 + exosomes secreted among the fine particles.
[試験4]網膜色素上皮細胞(RPE)と単球/マクロファージとの共培養系において産生が増強される細胞外微粒子中のマイクロRNAの解析
 上記試験1で得られた各サンプルに含まれる微小粒子について、3D-gene human microRNA chips(東レ社製)を用いて、含まれるマイクロRNAのプロファイルを解析した。下記表1に、各マイクロRNAについて、iPS-hRPE細胞とPMA-THP-1細胞の共培養サンプル中の発現強度(THP-1+RPE)をiPS-hRPE細胞単独培養サンプル中の発現強度(RPE)で除した値(ratio)を示した。#0228、#0529、#0619は、独立して行った試験番号である。また、上記3回の各試験において、それぞれ8個、7個、6個のマイクロRNAが共培養によって有意に発現増加していた。これらの結果を図4にまとめた。図4においては、各試験において共培養で発現増加していたマイクロRNAの集合をベン図で示している。
[Test 4] Analysis of microRNA in extracellular fine particles whose production is enhanced in a co-culture system of retinal pigment epithelial cells (RPE) and monocytes / macrophages. The profile of the microRNA contained in the cells was analyzed using 3D-gene human microRNA chips (manufactured by Toray Co., Ltd.). In Table 1 below, for each microRNA, the expression intensity (THP-1 + RPE) in the co-cultured sample of iPS-hRPE cells and PMA-THP-1 cells is shown by the expression intensity (RPE) in the iPS-hRPE cell single culture sample. The divided value (ratio) is shown. # 0228, # 0259, and # 0619 are independent test numbers. In addition, in each of the above three tests, the expression of 8, 7, and 6 microRNAs was significantly increased by co-culture. These results are summarized in FIG. In FIG. 4, a Venn diagram shows a set of microRNAs whose expression was increased by co-culture in each test.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、iPS-hRPE細胞とPMA-THP-1細胞とを共培養することにより、分泌される微小粒子中のマイクロRNAのうち、特にmiR-494-3pの量が顕著に増加してることが分かった。iPS-hRPE細胞、PMA-THP-1細胞、共培養における両細胞由来の微小粒子中のmiRNA(Exo miR)のプロファイルを検討し、iPS‐hRPE培養におけるそれらの量に関して100の上位ランクのmiRNA(Exo miR)の中から、共培養における上位ランクのmiRを選択した。これらの中で、4つのmiRは、少なくとも2回の反復実験で共培養で増加した(図4;上記3回の反復実験で各実験から選択した8、7、及び6つのmiRを描いたベン図)。図4に示した4つのExo miR候補のうち、miR-494-3pは3つの測定値の中で1位、2位、4位と最大の増加を示していることが立証された(表1を参照)。網膜色素上皮細胞とマクロファージが共存し、LPSによって炎症が惹起されている状態となると、分泌されるエクソソーム等の微小粒子中の上記特定のマイクロRNAの発現が増加し、特にmiR-494-3pが顕著に増加していることから、miR-494-3pは、網膜の炎症性疾患のマーカーとして疾患の罹患可能性、重症度、治療効果の判定に使用できると考えられた。また、総合的に判断してmiR1246も網膜の炎症性疾患のマーカーとして疾患の罹患可能性、重症度、治療効果の判定に使用できると考えられた。 As shown in Table 1, co-culture of iPS-hRPE cells and PMA-THP-1 cells significantly increased the amount of miR-494-3p among the microRNAs in the secreted microparticles. I found out that it was. The profiles of miRNAs (Exo miRs) in microparticles derived from both iPS-hRPE cells, PMA-THP-1 cells, and co-cultures were examined and 100 top-ranked miRNAs (exo miR) in their amount in iPS-hRPE cultures ( From Exo miR), the top-ranked miR in co-culture was selected. Among these, 4 miRs increased in co-culture in at least 2 repeat experiments (Fig. 4; Venn diagram depicting 8, 7, and 6 miRs selected from each experiment in the above 3 repeat experiments. ). Of the four Exo miR candidates shown in FIG. 4, it was proved that miR-494-3p showed the largest increase in the first, second, and fourth place among the three measured values (Table 1). See). When retinal pigment epithelial cells and macrophages coexist and inflammation is induced by LPS, the expression of the specific microRNA in the secreted microparticles such as exosomes increases, especially miR-494-3p. Since there was a marked increase, miR-494-3p was considered to be usable as a marker for inflammatory diseases of the retina in determining the susceptibility, severity, and therapeutic effect of the disease. In addition, it was considered that miR1246 can also be used as a marker for inflammatory diseases of the retina in determining the susceptibility, severity, and therapeutic effect of the disease.
[試験5]網膜色素上皮細胞(RPE)と単球/マクロファージとの共培養系におけるCD63エクソソームの産生(細胞間接触の必要性の検討)
 Transwell(登録商標)系及びNico‐1(登録商標)系におけるhRPE細胞とマクロファージの共培養を比較し、CD63エクソソームの産生における両細胞間の直接的な接触の必要性を検討した。
[Test 5] Production of CD63 + exosomes in a co-culture system of retinal pigment epithelial cells (RPE) and monocytes / macrophages (examination of the need for cell-cell contact)
Co-cultures of hRPE cells and macrophages in Transwell® and Nico-1® systems were compared to examine the need for direct contact between the two cells in the production of CD63 + exosomes.
 Transwell(登録商標)系にはいくつかの限界がある。上部チャンバーの内容量が下部チャンバーより小さいため、微小粒子は下部チャンバーの底部に優先的に沈降する可能性がある。また、0.40μmフィルターでは、他のチャンバーへの細胞浸透を遮断するのに十分ではない。そこで、水平に連結した二重チャンバーであるNico‐1(登録商標)系を用い、2つのチャンバー間に0.03μmのフィルターを装着した場合としなかった場合とを比較した。なお、両チャンバーはそれぞれ1.5mLの最終容積を保持している。 The Transwell (registered trademark) system has some limitations. Since the content of the upper chamber is smaller than that of the lower chamber, fine particles may preferentially settle at the bottom of the lower chamber. Also, a 0.40 μm filter is not sufficient to block cell penetration into other chambers. Therefore, a Nico-1 (registered trademark) system, which is a horizontally connected double chamber, was used, and a comparison was made between the case where a 0.03 μm filter was attached and the case where a 0.03 μm filter was attached between the two chambers. Both chambers each hold a final volume of 1.5 mL.
 具体的には、Transwell(登録商標)cell culture inserts(コーニング社製)及びNico‐1(登録商標)culture system(GinreilabInc., Uchinada, Ishikawa, Japan)を用いてiPS-hRPE細胞とPMA-THP-1細胞とが直接接触しない条件で共培養を行った。具体的には、Transwell(登録商標)では、5.0×10cells/mLのPMA-THP-1細胞700μLを下のチャンバーに、2.0×10cells/mLのiPS-hRPE細胞300μLを上のチャンバーに播種し、24時間共培養を行った。Nico‐1(登録商標)では、1.0×10cellsのPMA-THP-1細胞を一方のチャンバーに、2.0×10cellsのiPS-hRPE細胞をもう一方のチャンバーに播種し、24時間共培養を行った。Nico‐1(登録商標)では、上述のとおり、2つのチャンバー間に0.03μmのフィルターを装着した場合としなかった場合とを比較した。各培養上清を上記試験2と同様の方法で超遠心して得られたサンプルについてウェスタンブロッティングを行い、CD63を検出した。結果を図5(a)及び図5(b)に示す。 Specifically, iPS-hRPE using Transwell (registered trademark) cell culture cells (manufactured by Corning) and Nico-1 (registered trademark) culture system (Ginreilab Inc., Uchinada, Ishikawa, Japan) with iPS-hRP. Co-culture was performed under the condition that one cell did not come into direct contact with the cell. Specifically, in Transwell®, 700 μL of 5.0 × 10 5 cells / mL PMA-THP-1 cells in the lower chamber and 300 μL of 2.0 × 10 5 cells / mL iPS-hRPE cells. Was seeded in the upper chamber and co-cultured for 24 hours. In Nico-1®, 1.0 × 10 5 cells PMA-THP-1 cells were seeded in one chamber and 2.0 × 10 5 cells iPS-hRPE cells were seeded in the other chamber. Co-culture was performed for 24 hours. For Nico-1®, as described above, comparison was made with and without a 0.03 μm filter between the two chambers. Western blotting was performed on the sample obtained by ultracentrifuging each culture supernatant by the same method as in Test 2 above, and CD63 was detected. The results are shown in FIGS. 5 (a) and 5 (b).
 Nico‐1(登録商標)の系において、0.03μmフィルターにより微小粒子の移動が遮断された場合には、iPS‐RPE細胞ではExo関連CD63+蛋白質の産生増加が観察されたが、PMA‐THP‐1細胞では観察されなかった。これは、hRPE細胞とMpsの相互作用におけるEVナノ粒子の関与を支持した。なお、Transwell(登録商標)の系(図5(a))では、iPS-RPEによるExo関連CD63+産生の増加は影響を受けなかった。これらの結果は、0.03μmフィルターを備えたNico‐1(登録商標)系において、iPS‐RPE細胞によるExo関連CD63+蛋白質の産生抑制を支持したが、PMA‐THP‐1による産生抑制は支持せず(図5(b))、これら2つの細胞型におけるCD63+Exoは明確な分子的特徴を有することを示唆した。 In the Nico-1® system, increased production of Exo-related CD63 + protein was observed in iPS-RPE cells when the movement of fine particles was blocked by a 0.03 μm filter, but PMA-THP- Not observed in 1 cell. This supported the involvement of EV nanoparticles in the interaction of hRPE cells with Mps. In the Transwell® system (FIG. 5 (a)), the increase in Exo-related CD63 + production by iPS-RPE was not affected. These results supported the suppression of Exo-related CD63 + protein production by iPS-RPE cells in the Nico-1® system with a 0.03 μm filter, but the suppression of production by PMA-THP-1. (Fig. 5 (b)), it was suggested that CD63 + Exo in these two cell types had distinct molecular characteristics.
[試験6]網膜色素上皮細胞(RPE)と単球/マクロファージとの共培養系における炎症性サイトカインの産生(細胞間接触の必要性の検討)
 Transwell(登録商標)系及びNico‐1(登録商標)系におけるhRPE細胞とマクロファージの共培養を比較し、MCP‐1、Il‐6、IL‐8、TNF‐α、VEGF及びPEDFの産生における両細胞間の直接的な接触の必要性を検討した。
[Test 6] Production of inflammatory cytokines in a co-culture system of retinal pigment epithelial cells (RPE) and monocytes / macrophages (examination of the need for cell-cell contact)
Co-cultures of hRPE cells and macrophages in Transwell® and Nico-1® systems were compared and both in the production of MCP-1, Il-6, IL-8, TNF-α, VEGF and PEDF. The need for direct cell-cell contact was investigated.
 Transwell(登録商標)cell culture inserts(コーニング社製)及びNico‐1(登録商標)culture system(GinreilabInc., Uchinada, Ishikawa, Japan)を用いてiPS-hRPE細胞とPMA-THP-1細胞とが直接接触しない条件で共培養を行った。具体的には、Transwell(登録商標)では、5.0×10cells/mLのPMA-THP-1細胞700μLを下のチャンバーに、2.0×10cells/mLのiPS-hRPE細胞300μLを上のチャンバーに播種し、24時間共培養を行った。Nico‐1(登録商標)では、1.0×10cellsのPMA-THP-1細胞を一方のチャンバーに、2.0×10cellsのiPS-hRPE細胞をもう一方のチャンバーに播種し、24時間共培養を行った。上下の各チャンバーに播種する細胞を入れ替えた試験も行った。各ウェルの培養上清を回収し、2000×g、10分遠心し、得られた上清を0.22μmのフィルター(ミリポア社製)を通し、各種炎症性サイトカインの定量用のサンプルとした。各サンプル中のIL-6、MCP-1、IL-8、VEGF、TNF-α、PEDFの濃度をELISAキット(BD Bioscience社製)を用いて測定した。ELISA測定を3回に分けて行い、3回の独立した実験として繰り返した。各サンプルにつき平均値を算定し各サンプルの濃度として図6(a)及び図6(b)に示した。 IPS-hRPE cells and PM cells directly with iPS-hRPE cells using Transwell® cell culture plants (Corning) and Nico-1® culture system (Ginreilab Inc., Uchinada, Ishikawa, Japan). Co-culture was performed under the condition of no contact. Specifically, in Transwell®, 700 μL of 5.0 × 10 5 cells / mL PMA-THP-1 cells in the lower chamber and 300 μL of 2.0 × 10 5 cells / mL iPS-hRPE cells. Was seeded in the upper chamber and co-cultured for 24 hours. In Nico-1®, 1.0 × 10 5 cells PMA-THP-1 cells were seeded in one chamber and 2.0 × 10 5 cells iPS-hRPE cells were seeded in the other chamber. Co-culture was performed for 24 hours. A test was also conducted in which the cells seeded in the upper and lower chambers were replaced. The culture supernatant of each well was collected, centrifuged at 2000 × g for 10 minutes, and the obtained supernatant was passed through a 0.22 μm filter (manufactured by Millipore) to prepare a sample for quantification of various inflammatory cytokines. The concentrations of IL-6, MCP-1, IL-8, VEGF, TNF-α, and PEDF in each sample were measured using an ELISA kit (manufactured by BD Bioscience). The ELISA measurement was performed in 3 divided doses and repeated as 3 independent experiments. The average value was calculated for each sample and the concentration of each sample is shown in FIGS. 6 (a) and 6 (b).
 0.03μmフィルターを用いないNico‐1(登録商標)系での共培養では、Transwell(登録商標)培養でみられた上昇に匹敵するMCP-1、IL-6、IL-8の産生の著明なアップレギュレーションが認められた(図6(a))が、0.03μmフィルターを設置すると、このアップレギュレーションは完全に消失した(図6(a))。対照的に、VEGFの産生増加は0.03μmフィルターによって部分的に抑制され(図6(b))、iPS-RPE細胞によるPEDF又はPMA-THP-1によるTNFαの産生は、フィルター非存在下のレベルと比較すると抑制されなかった(図6(b))。 Co-cultures in Nico-1® systems without a 0.03 μm filter resulted in significant production of MCP-1, IL-6, IL-8 comparable to the elevation seen in Transwell® cultures. Clear upregulation was observed (FIG. 6 (a)), but this upregulation disappeared completely when the 0.03 μm filter was installed (FIG. 6 (a)). In contrast, increased VEGF production was partially suppressed by a 0.03 μm filter (FIG. 6 (b)), and production of PEDF or TNFα by PMA-THP-1 by iPS-RPE cells was in the absence of the filter. It was not suppressed when compared to the level (Fig. 6 (b)).
[試験7]網膜色素上皮細胞(RPE)由来のエクソソーム刺激によるマクロファージからのTNFαの産生及びRPE細胞からのMCP-1、IL-6の産生
 病態形成に関与していると考えられる細胞間相互作用による炎症増悪回路を明らかにするために、iPS-hRPE細胞単独由来の、又はiPS-hRPE細胞及びPMA‐THP‐1の共培養由来のエクソソームの、マクロファージからのTNF-α産生促進効果を検討した。また、そのTNF-α処理によってiPS-hRPE細胞から産生される各種炎症性サイトカイン、微小粒子を定量した。また、CD63+微小粒子(EXO)量を確認した。各サンプル中のTNF-α、MCP-1、IL-6の濃度は、ELISAキット(BD Bioscience社製)を用いて測定した。粒子濃度はNanoSight LM10V‐HSナノ粒子追跡システムで測定した。結果を図7(a)及び図7(b)に示す。
[Test 7] Production of TNFα from macrophages by exosome stimulation derived from retinal pigment epithelial cells (RPE) and production of MCP-1 and IL-6 from RPE cells Cell-cell interaction considered to be involved in pathogenesis In order to clarify the inflammation exacerbation circuit, the effect of promoting TNF-α production from macrophages of exosomes derived from iPS-hRPE cells alone or from co-culture of iPS-hRPE cells and PMA-THP-1 was investigated. .. In addition, various inflammatory cytokines and fine particles produced from iPS-hRPE cells by the TNF-α treatment were quantified. In addition, the amount of CD63 + fine particles (EXO) was confirmed. The concentrations of TNF-α, MCP-1, and IL-6 in each sample were measured using an ELISA kit (manufactured by BD Bioscience). Particle concentration was measured with the NanoSigt LM10V-HS nanoparticle tracking system. The results are shown in FIGS. 7 (a) and 7 (b).
 iPS-hRPE細胞由来のエクソソームは、濃度依存的にPMA-THP-1細胞からのTNF-αの生産を増加させた。iPS-hRPE細胞及びPMA‐THP‐1の共培養由来のエクソソームの方が、iPS-hRPE細胞単独由来のエクソソームより、PMA-THP-1細胞からのTNF-αの生産促進効果は大きかった。培養上清中のiPS-hRPE細胞由来のエクソソーム、iPS-hRPE細胞及びPMA‐THP‐1の共培養由来のエクソソームの粒子数を比較すると、培養上清で3.5倍、それを超遠心して濃縮したもので8.5倍と、共培養の方が顕著に増加していた。 Exosomes derived from iPS-hRPE cells increased the production of TNF-α from PMA-THP-1 cells in a concentration-dependent manner. The exosomes derived from the co-culture of iPS-hRPE cells and PMA-THP-1 had a greater effect of promoting the production of TNF-α from PMA-THP-1 cells than the exosomes derived from iPS-hRPE cells alone. Comparing the number of particles of iPS-hRPE cell-derived exosomes, iPS-hRPE cells, and PMA-THP-1 co-culture-derived exosomes in the culture supernatant, the number of particles in the culture supernatant was 3.5 times, and it was supercentrifuged. The concentrated one was 8.5 times, and the co-culture increased remarkably.
 TNF‐αは、iPS‐hRPE細胞からの微小粒子中のCD63+蛋白質の産生増加と並行して、MCP‐1とIL‐6の産生増加を示したが、微小粒子の産生量については増大は確認されなかった(図7(b))。 TNF-α showed increased production of MCP-1 and IL-6 in parallel with increased production of CD63 + protein in microparticles from iPS-hRPE cells, but increased production of microparticles was confirmed. It was not done (Fig. 7 (b)).
 これらの結果から、図7(c)に示す炎症増悪回路が病態形成に関与していると考えられる。即ち、RPEに対してLPSで象徴されるような炎症刺激が加わると、その細胞上に存在するTLR4等の自然炎症に係る受容体を介してRPE内に信号刺激が加わる。そのことにより、まず、RPE単独存在下でのEV(微小粒子)産生に繋がると考えられる。このEVが産生されると、それが近傍に存在する炎症局所に浸潤してきたマクロファージに作用し、TNF-αを産生誘導する。単独培養の上清から超遠心2回で濃縮した微小粒子でも十分TNF-α産生は誘導されているが、共培養培養上清のものの方が誘導活性が高い。但し微小粒子の産生量は、上述のとおり共培養においてかなり増強される。おそらく微小粒子の中の一部のExosomeにTNF-α産生誘導活性が担われていると想定される。培養上清や超遠心で微小粒子を遠沈させた残りの上清には活性は全くない。このTNF-αは次に傍にいるRPEに作用し、RPEからの炎症性サイトカン、MCP-1(マクロファージを炎症局所に遊走させる作用を有する)、IL-6(脈絡膜組織線維化に関与)、VEGF(血管新生に関与)の産生を増強するとともにEVの産生を誘導すると考えられる。RPEからのEV産生は有意には増強していないが、EV中に含まれるCD63陽性エクソソームは増加している。以下同様に、この回路が周り、EV産生増強と炎症性サイトカイン産生、MCP-1による局所へのマクロフアージ遊走が増強されると考えられる。即ち、RPEとマクロファージの共存と、微小粒子(エクソソーム)を介する細胞間相互作用により炎症増悪回路が成立し病態形成に関与していると考えられる。 From these results, it is considered that the inflammation exacerbation circuit shown in FIG. 7 (c) is involved in the pathogenesis. That is, when an inflammatory stimulus as symbolized by LPS is applied to the RPE, a signal stimulus is applied to the RPE via a receptor related to natural inflammation such as TLR4 existing on the cell. This is thought to lead to EV (fine particle) production in the presence of RPE alone. When this EV is produced, it acts on macrophages that have infiltrated the inflamed area in the vicinity and induces the production of TNF-α. TNF-α production is sufficiently induced even with fine particles concentrated twice by ultracentrifugation from the supernatant of the single culture, but the induction activity of the co-culture supernatant is higher. However, the amount of fine particles produced is considerably enhanced in the co-culture as described above. It is presumed that some Exosomes in the fine particles are responsible for the TNF-α production-inducing activity. There is no activity in the culture supernatant or the remaining supernatant after ultracentrifugation of the microparticles. This TNF-α then acts on the nearby RPE, inflammatory cytocan from the RPE, MCP-1 (has the effect of migrating macrophages to the inflammatory site), IL-6 (involved in choroidal tissue fibrosis). , VEGF (involved in angiogenesis) production is thought to be enhanced and EV production induced. EV production from RPE is not significantly enhanced, but CD63-positive exosomes contained in EV are increased. Similarly, it is considered that this circuit is rotated to enhance EV production, inflammatory cytokine production, and local macrophages migration by MCP-1. That is, it is considered that the coexistence of RPE and macrophages and the cell-cell interaction mediated by microparticles (exosomes) establish an inflammatory exacerbation circuit and are involved in the formation of pathological conditions.
[試験8]網膜色素上皮細胞(RPE)とマクロファージの相互作用におけるエクソソームmiRNA
 iPS-hRPE細胞とPMA-THP-1細胞との共培養で産生された微小粒子(エクソソーム)の役割を、分泌された微小粒子(エクソソーム)における低分子RNAプロファイルの観点から解析した。微小粒子濃度はナノ粒子追跡分析により測定した。3つの培養(iPS-hRPE細胞、PMA-THP-1細胞、共培養)において、細胞10個あたりに放出される微小粒子の濃度を表2にまとめた。
[Test 8] Exosome miRNAs in the interaction of retinal pigment epithelial cells (RPE) and macrophages
The role of microparticles (exosomes) produced in co-culture of iPS-hRPE cells and PMA-THP-1 cells was analyzed in terms of low molecular weight RNA profile in secreted microparticles (exosomes). Fine particle concentration was measured by nanoparticle follow-up analysis. Table 2 summarizes the concentrations of microparticles released per 106 cells in the three cultures (iPS-hRPE cells, PMA-THP-1 cells, co-culture).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すとおり、共培養では有意な微小粒子濃度の増加は認められなかったが、3回の測定すべてにおいて2種類の細胞に対して相加効果は確認された。10の微小粒子中のmiRNAは、3つの実験間でわずかに変化したが、共培養についての結果は、iPS‐hRPE細胞培養由来の微小粒子中のわずかに低い量を除いて、単一の細胞培養のものと大きな違いは見られなかった。しかし、10細胞あたりのmiRの量は3つの培養間で大きな差が認められ、iPS-RPE細胞単独の培養と比較して共培養では10細胞あたりのmiRの量が約5~9倍と有意に増加していた。 As shown in Table 2, no significant increase in the concentration of fine particles was observed in the co-culture, but the additive effect was confirmed for all two types of cells in all three measurements. The miRNAs in 106 microparticles changed slightly between the three experiments, but the results for co-culture were single except for slightly lower amounts in the microparticles from iPS-hRPE cell culture. No significant difference was seen from that of cell culture. However, the amount of miR per 106 cells was significantly different among the three cultures, and the amount of miR per 106 cells was about 5 to 9 times higher in the co-culture than in the culture of iPS-RPE cells alone. Was significantly increased.
[試験9]miR494-3p及びmiR1246のmimic導入によるミトコンドリア機能修復(ARPE19細胞株)
 ARPE19細胞株(P25)、2.5×10cells/wellを6well plate(2 plate)に播種した。3日後、DMEM(+10%FBS)に培地を全量交換し、1時間後にmiR494-3p mimic(mirVana(商標) miRNA hsa-miR-494-3p UGAAACAUACACGGGAAACCUC、MC12409、Thermo Fisher Scientific, Waltham, MA,USA)またはmiR1246 mimic(mirVana(商標) miRNA hsa-miR-1246 AAUGGAUUUUUGGAGCAGG、MC13182、Thermo Fisher Scientific, Waltham, MA,USA)をTransfectionした。上記のmiR494-3p mimic中の塩基配列「UGAAACAUACACGGGAAACCUC」はmiR-494-3pの配列(配列番号1)を、miR1246 mimic中の塩基配列「AAUGGAUUUUUGGAGCAGG」はmiR-1246の配列(配列番号2)を示している。Transfectionから24時間後、細胞をXFe24 plateへ、6×10cells/100μL/wellで播種した。1時間後にDMEM(+10%FBS)を150μL/well添加した。播種24時間後に、細胞のミトコンドリア機能をFlux analyzer(Agilent Technologies, Santa Clara, CA, USA) にて解析した。また、解析後の細胞をDAPI染色し、Cell insightにて細胞数を測定した。
[Test 9] Mitochondrial function repair by mimic introduction of miR494-3p and miR1246 (ARPE19 cell line)
ARPE 19 cell line (P25), 2.5 × 10 4 cells / well was seeded on 6 well plates (2 plates). After 3 days, the whole medium was replaced with DMEM (+ 10% FBS), and after 1 hour, miR494-3p mimic (mirVana ™ miRNA hsa-miR-494-3p UGAAACAUACACGGGAAACCUC, MC12409, Thermo Fisher Scientific, Waltham, MA, USA) Alternatively, miR1246 mimic (mirVana ™ miRNA hsa-miR-1246 AAUGGAUUUUUGGAGCAGG, MC13182, Thermo Fisher Scientific, Waltham, MA, USA) was transfected. The base sequence "UGAAACAUACACGGGAAACCUC" in the above miR494-3p mimic shows the sequence of miR-494-3p (SEQ ID NO: 1), and the base sequence "AAUGGAUUUUUGGAGCAGG" in the miR1246 mimic shows the sequence of miR-1246 (SEQ ID NO: 2). ing. Twenty-four hours after Transfection, cells were seeded on XFe24 plates at 6 × 10 4 cells / 100 μL / well. After 1 hour, DMEM (+ 10% FBS) was added at 150 μL / well. Twenty-four hours after seeding, cell mitochondrial function was analyzed by Flux analyzer (Agilent Technologies, Santa Clara, CA, USA). In addition, the cells after analysis were stained with DAPI, and the number of cells was measured by Cell insight.
 図中、「FCCP」は、Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone、「ROT/AA」は、Rotenon/AntimycinAである。また、「OCR」はOxygen Consumption Rate(pmole/min)(酸素消費速度)であり、細胞の酸素消費を示す値である。「ECAR」はExtracellular Acidification Rate(mpH/min)(細胞外酸性化速度)であり、細胞外に排出される代謝物による細胞外のpHの産生化速度を示す。いずれも、細胞レベルでのエネルギー代謝状態の指標として広く用いられている。結果を図8(a)~(c)に示す。 In the figure, "FCCP" is Carbonyl cyanide-p-trifluoromethoxyphrydrazone, and "ROT / AA" is Rotenone / Antimycin A. Further, "OCR" is an Oxygen Consumption Rate (pmole / min) (oxygen consumption rate), which is a value indicating the oxygen consumption of cells. "ECAR" is an Extracellular Acidification Rate (mpH / min) (extracellular acidification rate), which indicates the rate of extracellular pH production by metabolites excreted extracellularly. Both are widely used as indicators of energy metabolism at the cellular level. The results are shown in FIGS. 8 (a) to 8 (c).
 miR1246 mimic、miR494-3p mimic導入時において、Maximum respiration(図8(a))、ECARが有意に増加した(図8(b))。また、miR1246導入時においては、OCR/ECARも有意に増加した(図8(c))。miR1246 mimic、miR494-3p mimicの導入により、ミトコンドリア機能の低下しているARPE19細胞株におけるミトコンドリア機能の回復効果が得られた。 At the time of introduction of miR1246 mimic and miR494-3p mimic, Maximum rejection (FIG. 8 (a)) and EPAR increased significantly (FIG. 8 (b)). In addition, OCR / EPAR also increased significantly when miR1246 was introduced (FIG. 8 (c)). By introducing miR1246 mimic and miR494-3p mimic, the effect of restoring mitochondrial function in the ARPE19 cell line with reduced mitochondrial function was obtained.
[試験10]miR494-3p及びmiR1246のmimic導入によるミトコンドリア機能修復(初代培養HRPE細胞 vs ARPE19細胞株)
 ヒト初代網膜色素上皮(HRPE)細胞(P3)、ARPE19細胞株(P25)をそれぞれ16×10cells/wellを6well plateに播種した。翌日、DMEM(+10%FBS)に培地を全量交換し、1時間後にmiR494-3p mimicまたはmiR1246 mimicをTransfectionした。Transfectionから24時間後、細胞をXFe24 plateへ、6×10cells/100μL/wellで播種した。2時間後にDMEM(+10%FBS)を150μL/well添加した。播種24時間後に、細胞のミトコンドリア機能をFlux analyzerにて解析した。結果を図9(a)及び下記表3(初代培養ヒトRPE細胞)、並びに図9(b)及び下記表4(ARPE19細胞株)に示す。
[Test 10] Mitochondrial function repair by mimic introduction of miR494-3p and miR1246 (primary cultured HRPE cells vs ARPE19 cell line)
Human primary retinal pigment epithelial (HRPE) cells (P3) and ARPE19 cell line (P25) were seeded at 16 × 10 4 cells / well on a 6-well plate, respectively. The next day, the whole medium was replaced with DMEM (+ 10% FBS), and 1 hour later, miR494-3p mimic or miR1246 mimic was transfected. Twenty-four hours after Transfection, cells were seeded on XFe24 plates at 6 × 10 4 cells / 100 μL / well. After 2 hours, DMEM (+ 10% FBS) was added at 150 μL / well. Twenty-four hours after sowing, the mitochondrial function of the cells was analyzed by a Lux analyzer. The results are shown in FIG. 9 (a) and Table 3 below (primary cultured human RPE cells), and FIG. 9 (b) and Table 4 below (ARPE 19 cell line).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 miR1246 mimic、miR494-3p mimic導入によって、初代培養HRPE細胞においては、OCR(酸素消費速度)の変化は認められなかった(図9(a))。一方、ARPE19細胞株では、OCR(酸素消費速度)の顕著な回復が認められた(図9(b))。初代培養HRPE細胞と比較するとARPE19細胞株ではOCR(酸素消費速度)の値が、1/4程度まで低下しており、ミトコンドリア機能が低下していると考えられる。miR1246 mimic、miR494-3p mimicの導入により、初代培養HRPE細胞における正常ミトコンドリア機能の亢進は殆ど認められないが、ARPE19細胞株のようにミトコンドリア機能が低下した細胞に対しては顕著な修復効果が得られた。 No change in OCR (oxygen consumption rate) was observed in the primary cultured HRPE cells due to the introduction of miR1246 mimic and miR494-3p mimic (FIG. 9 (a)). On the other hand, in the ARPE19 cell line, a remarkable recovery of OCR (oxygen consumption rate) was observed (FIG. 9 (b)). Compared with the primary cultured HRPE cells, the OCR (oxygen consumption rate) value was reduced to about 1/4 in the ARPE19 cell line, and it is considered that the mitochondrial function was reduced. The introduction of miR1246 mimic and miR494-3p mimic hardly enhances normal mitochondrial function in primary cultured HRPE cells, but a remarkable repair effect is obtained for cells with reduced mitochondrial function such as ARPE19 cell line. Was done.
[試験11]miR494-3pのinhibitor導入によるミトコンドリア機能修復(Nic-ARPE細胞株 vs ARPE19細胞株)
 ARPE-19細胞株をニコチンアミド(Nic)添加MEM培地で2ケ月培養することで細胞分化を進めたNic-ARPE細胞株(MEM-Nicで2カ月培養)、ARPE19細胞株(P25;DMEM+10%FBS+1%P.S.で培養)を用いた。ARPE19細胞株(DMEM+10%FBS)及びNic-ARPE細胞株(P.S.なしの培地に交換)をそれぞれ16×10cells/wellで6well plateに播種した。翌日、miR494-3pinhibitor(Anti-miR(商標) miRNA hsa-miR-494-3p、MH12409、Thermo Fisher Scientific, Waltham, MA,USA)、またはmiR1246inhibitor(Anti-miR(商標) miRNA hsa-miR-1246、 MH13182、Thermo Fisher Scientific, Waltham, MA,USA)をTransfectionした。Transfectionから24時間後、細胞をXFe24 plateへ、6×10cells/100μL/wellで播種した。overnight静置し、細胞のミトコンドリア機能をFlux analyzerにて解析した。結果を図10(a)及び下記表5(Nic-ARPE細胞株)、並びに図10(b)及び下記表6(ARPE19細胞株)に示す。
[Test 11] Mitochondrial function repair by introduction of miR494-3p inhibitor (Nic-ARPE cell line vs ARPE19 cell line)
Nic-ARPE cell line (cultured in MEM-Nic for 2 months), ARPE19 cell line (P25; DMEM + 10% FBS + 1), which promoted cell differentiation by culturing ARPE-19 cell line in nicotine amide (Nic) -added MEM medium for 2 months. % PS) was used. ARPE 19 cell lines (DMEM + 10% FBS) and Nic-ARPE cell lines (replaced in medium without PS) were seeded on 6 well plates at 16 × 10 4 cells / well, respectively. The next day, miR494-3 pinhibitor (Anti-miR ™ miRNA hsa-miR-494-3p, MH12409, Thermo Fisher Scientific, Waltham, MA, USA), or miR1246inhibitor (Anti-miR ™ miRNA hsa-miR-1246, MH13182, Thermo Fisher Scientific, Waltham, MA, USA) was transfected. Twenty-four hours after Transfection, cells were seeded on XFe24 plates at 6 × 10 4 cells / 100 μL / well. Overnight was allowed to stand and the mitochondrial function of the cells was analyzed by the Lux analyzer. The results are shown in FIG. 10 (a) and Table 5 below (Nic-ARPE cell line), and FIG. 10 (b) and Table 6 below (ARPE 19 cell line).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 miR494-3p inhibitor導入によって、Nic-ARPE細胞株においては、OCR(酸素消費速度)の低下が見られ、亢進ミトコンドリア機能の抑制効果が確認できた(図10(a))。一方、ARPE19細胞株では、OCR(酸素消費速度)の変化は認められなかった(図10(b))。Nic-ARPE細胞株と比較するとARPE19細胞株ではOCR(酸素消費速度)の値が1/4程度まで低下しており、ミトコンドリア機能が低下していると考えられる。miR494-3pのinhibitor導入により、Nic-ARPE細胞株における正常ミトコンドリア機能の抑制は認められたが、ARPE19細胞株のようにミトコンドリア機能が低下した細胞に対して更なる抑制効果は認めがたい。 With the introduction of miR494-3p inhibitor, a decrease in OCR (oxygen consumption rate) was observed in the Nick-ARPE cell line, and the effect of suppressing enhanced mitochondrial function was confirmed (FIG. 10 (a)). On the other hand, in the ARPE19 cell line, no change in OCR (oxygen consumption rate) was observed (FIG. 10 (b)). Compared with the Nic-ARPE cell line, the OCR (oxygen consumption rate) value was reduced to about 1/4 in the ARPE19 cell line, and it is considered that the mitochondrial function was reduced. Inhibitor introduction of miR494-3p was observed to suppress normal mitochondrial function in Nic-ARPE cell line, but further inhibitory effect was not observed for cells with reduced mitochondrial function such as ARPE19 cell line.
[試験12]AMD(加齢黄斑変性症)患者の前房水及び血漿中のmiR-494-3PおよびmiR-1246の発現
 血管新生を伴う加齢黄斑変性症患者から、前房水及び血漿を採取した。血管新生を伴う加齢黄斑変性症患者としては、ドルーゼンが関与している未治療症例を選択した。また正常コントロールとしては、角膜、ぶどう膜炎、緑内障、網膜疾患などを有さない白内障症例を選択し、白内障手術時に前房水及び血漿を採取した。前房水は採取後早急に-80℃で保管した。血液サンプルは一時的に冷蔵保存し、遠心分離により血漿を分離し-80℃で保管した。
[Test 12] Expression of miR-494-3P and miR-1246 in anterior aqueous humor and plasma of AMD (age-related macular degeneration) patients. Collected. As a patient with age-related macular degeneration with angiogenesis, an untreated case involving drusen was selected. As normal control, cataract cases without cornea, uveitis, glaucoma, retinal disease, etc. were selected, and anterior chamber water and plasma were collected at the time of cataract surgery. The anterior aqueous humor was stored at -80 ° C immediately after collection. Blood samples were temporarily refrigerated, plasma separated by centrifugation and stored at -80 ° C.
 使用した検体は以下のとおりである。
 血漿:コントロール 6検体 各100μL、AMD患者5検体 各100μL
 前房水:コントロール 5検体 各50μL、AMD患者5検体 各50μL
The samples used are as follows.
Plasma: 6 control samples 100 μL each, AMD patient 5 samples 100 μL each
Aqueous humor: control 5 samples 50 μL each, AMD patient 5 samples 50 μL each
 各検体から、miRNeasy Serum/Plasma kit(QIAGEN, Hilden, Germany)を用いてmiRNAを抽出した(抽出量10μL)。それぞれmiRNAに特異的なプライマーを用いて逆転写反応し、定量PCRを行った。miRNA相対量は、cel-miR-39をコントロール(spike-in control)として、各CT値及びコントロールのCT値からΔCt法にて数値化した(定量PCRのCycle数は40とした)。結果を図11(miR-494-3P)、図12(miR-1246)に示す。 From each sample, miRNA was extracted using miRNeasy Serum / Plasma kit (QIAGEN, Hilden, Germany) (extraction amount 10 μL). Reverse transcription reaction was performed using primers specific for each miRNA, and quantitative PCR was performed. The relative amount of miRNA was quantified by the ΔCt method from each CT value and the CT value of the control using cel-miR-39 as a control (spire-in control) (the number of cycles of quantitative PCR was 40). The results are shown in FIG. 11 (miR-494-3P) and FIG. 12 (miR-1246).
 図11及び12に示すとおり、加齢黄斑変性症患者の前房水において、コントロールと比較して、miR-494-3P及びmiR-1246の増加が確認できた。なお、血漿検体での明確な傾向は確認されなかった。 As shown in FIGS. 11 and 12, in the anterior chamber water of patients with age-related macular degeneration, an increase in miR-494-3P and miR-1246 was confirmed as compared with the control. No clear tendency was confirmed in plasma samples.
 本発明の組織炎症を伴う炎症性網膜疾患の判定方法によると、加齢黄斑変性等の慢性の炎症性網膜疾患の罹患可能性、重症度、治療効果等の判定を容易に行うことができる。加齢黄斑変性は、患者において疾患初期の自覚症状が少ないため早期発見が困難であるという課題があったが、本発明の判定方法により早期発見が可能となる。また、網膜色素上皮細胞(RPE)が産生する細胞外微粒子(EV)の機能調節分子、特に特定のマイクロRNAの機能調節分子は、加齢黄斑変性等の慢性の炎症性網膜疾患の新規治療剤として有効である。さらに、本発明のスクリーニング方法によると、炎症性網膜疾患に対して治療効果を有する物質を簡便に探索することができる。 According to the method for determining an inflammatory retinal disease associated with tissue inflammation of the present invention, it is possible to easily determine the susceptibility, severity, therapeutic effect, etc. of a chronic inflammatory retinal disease such as age-related macular degeneration. Age-related macular degeneration has a problem that early detection is difficult because there are few subjective symptoms in the early stage of the disease in patients, but early detection is possible by the determination method of the present invention. In addition, the function-regulating molecule of extracellular fine particles (EV) produced by retinal pigment epithelial cells (RPE), particularly the function-regulating molecule of specific microRNA, is a novel therapeutic agent for chronic inflammatory retinal diseases such as age-related macular degeneration. It is effective as. Furthermore, according to the screening method of the present invention, it is possible to easily search for a substance having a therapeutic effect on inflammatory retinal diseases.

Claims (16)

  1.  被験者の網膜色素上皮細胞(RPE)が産生する細胞外微粒子(EV)を指標とする、組織炎症を伴う炎症性網膜疾患の判定方法。 A method for determining inflammatory retinal disease accompanied by tissue inflammation, using extracellular fine particles (EV) produced by the subject's retinal pigment epithelial cells (RPE) as an index.
  2.  上記細胞外微粒子(EV)が含有するmiRNAのプロファイルを指標とすることを特徴とする、請求項1に記載の判定方法。 The determination method according to claim 1, wherein the profile of miRNA contained in the extracellular fine particles (EV) is used as an index.
  3.  上記miRNAが、miR494-3p及び/又はmiR1246を含む、請求項2に記載の判定方法。 The determination method according to claim 2, wherein the miRNA comprises miR494-3p and / or miR1246.
  4.  上記miRNAが、ミトコンドリア由来である、請求項2又は3に記載の判定方法。 The determination method according to claim 2 or 3, wherein the miRNA is derived from mitochondria.
  5.  上記組織炎症を伴う炎症性網膜疾患が、加齢黄斑変性、中心性漿液性脈絡網膜症、増殖性硝子体網膜症および、糖尿病性網膜症からなる群より選択される少なくとも1種の炎症性疾患である、請求項1から4のいずれか1項に記載の判定方法。 The inflammatory retinal disease associated with the above-mentioned tissue inflammation is at least one inflammatory disease selected from the group consisting of age-related yellow spot degeneration, central serous chorioretinosis, proliferative vitreous retinopathy, and diabetic retinopathy. The determination method according to any one of claims 1 to 4.
  6.  被験者における炎症性網膜疾患の罹患可能性、重軽度、発症リスク、重症化リスク及び治療効果から成る群より選択される少なくとも1種を判定する、請求項1から5のいずれか1項に記載の判定方法。 The invention according to any one of claims 1 to 5, wherein at least one selected from the group consisting of susceptibility, severity, risk of onset, risk of aggravation and therapeutic effect of inflammatory retinal disease in a subject is determined. Judgment method.
  7.  網膜色素上皮細胞(RPE)が産生する細胞外微粒子(EV)の機能調節分子を有効成分として含有する、組織炎症を伴う炎症性網膜疾患治療剤。 A therapeutic agent for inflammatory retinal diseases accompanied by tissue inflammation, which contains a function-regulating molecule of extracellular fine particles (EV) produced by retinal pigment epithelial cells (RPE) as an active ingredient.
  8.  上記細胞外微粒子(EV)の機能調節分子が、細胞外微粒子(EV)が含有するmiRNAの機能調節分子である、請求項7に記載の炎症性網膜疾患治療剤。 The therapeutic agent for inflammatory retinal disease according to claim 7, wherein the function-regulating molecule of the extracellular fine particles (EV) is a function-regulating molecule of miRNA contained in the extracellular fine particles (EV).
  9.  上記細胞外微粒子(EV)の機能調節分子が、細胞外微粒子(EV)が含有するmiR494-3p及び/又はmiR1246の機能調節分子である、請求項7又は8に記載の炎症性網膜疾患治療剤。 The therapeutic agent for inflammatory retinal disease according to claim 7 or 8, wherein the function-regulating molecule of the extracellular fine particles (EV) is a function-regulating molecule of miR494-3p and / or miR1246 contained in the extracellular fine particles (EV). ..
  10.  上記細胞外微粒子(EV)の機能調節分子が、核酸オリゴ、低分子化合物、ペプチド及び抗体から成る群より選択される少なくとも1種である、請求項7から9のいずれか1項に記載の炎症性網膜疾患治療剤。 The inflammation according to any one of claims 7 to 9, wherein the function-regulating molecule of the extracellular fine particle (EV) is at least one selected from the group consisting of nucleic acid oligos, small molecule compounds, peptides and antibodies. A therapeutic agent for sexual retinal diseases.
  11.  上記組織炎症を伴う炎症性網膜疾患が、加齢黄斑変性、中心性漿液性脈絡網膜症、増殖性硝子体網膜症、および、糖尿病性網膜症 からなる群より選択される少なくとも1種の疾患である、請求項7から10のいずれか1項に記載の炎症性網膜疾患治療剤。 The inflammatory retinal disease associated with the tissue inflammation is at least one disease selected from the group consisting of age-related yellow spot degeneration, central serous chorioretinopathy, proliferative vitreous retinopathy, and diabetic retinopathy. The inflammatory retinal disease therapeutic agent according to any one of claims 7 to 10.
  12.  網膜色素上皮細胞(RPE)と、単球/マクロファージとの共培養系において分泌される細胞外微粒子(EV)のプロファイルの変動を指標とすることを特徴とする、組織炎症を伴う炎症性網膜疾患治療剤のスクリーニング方法。 Inflammatory retinal disease with tissue inflammation, characterized by variability in the profile of extracellular microparticles (EV) secreted in a co-culture system of retinal pigment epithelial cells (RPE) and monocytes / macrophages. A method for screening therapeutic agents.
  13.  上記細胞外微粒子(EV)が、網膜色素上皮細胞(RPE)から分泌される、請求項12に記載のスクリーニング方法。 The screening method according to claim 12, wherein the extracellular fine particles (EV) are secreted from retinal pigment epithelial cells (RPE).
  14.  上記細胞外微粒子(EV)のプロファイルの変動が、細胞外微粒子(EV)が含有するmiRNAのプロファイルの変動である、請求項12又は13に記載のスクリーニング方法。 The screening method according to claim 12 or 13, wherein the variation in the profile of the extracellular fine particles (EV) is a variation in the profile of miRNA contained in the extracellular fine particles (EV).
  15.  上記miRNAが、miR494-3p及び/又はmiR1246を含む、請求項14に記載のスクリーニング方法。 The screening method according to claim 14, wherein the miRNA comprises miR494-3p and / or miR1246.
  16.  網膜色素上皮細胞(RPE)と、単球/マクロファージとの共培養系において、被験物質の添加により分泌される細胞外微粒子(EV)が含有するmiR494-3p及び/又はmiR1246が抑制された場合に、上記被験物質を有効な組織炎症を伴う炎症性網膜疾患治療剤の候補として選択する、請求項12から15のいずれか1項に記載のスクリーニング方法。 When miR494-3p and / or miR1246 contained in extracellular fine particles (EV) secreted by the addition of the test substance are suppressed in a co-culture system of retinal pigment epithelial cells (RPE) and monocytes / macrophages. The screening method according to any one of claims 12 to 15, wherein the test substance is selected as a candidate for an effective therapeutic agent for inflammatory retinal disease associated with tissue inflammation.
PCT/JP2021/042479 2020-11-27 2021-11-18 Method for assessing inflammatory retinal disease, inflammatory retinal disease therapeutic, and screening method for inflammatory retinal disease therapeutics WO2022113887A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022565291A JPWO2022113887A1 (en) 2020-11-27 2021-11-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020196778 2020-11-27
JP2020-196778 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022113887A1 true WO2022113887A1 (en) 2022-06-02

Family

ID=81754574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042479 WO2022113887A1 (en) 2020-11-27 2021-11-18 Method for assessing inflammatory retinal disease, inflammatory retinal disease therapeutic, and screening method for inflammatory retinal disease therapeutics

Country Status (2)

Country Link
JP (1) JPWO2022113887A1 (en)
WO (1) WO2022113887A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014028861A1 (en) * 2012-08-17 2014-02-20 Apellis Pharmaceuticals, Inc. Detection of high risk drusen
US20140322720A1 (en) * 2013-04-26 2014-10-30 Konkuk University Industrial Cooperation Corp. Composition for diagnosing, treating, and preventing age-related macular degeneration and method for diagnosing age-related macular degeneration
JP2016513095A (en) * 2013-02-12 2016-05-12 リニューロン・リミテッドReNeuron Limited Stem cell microparticles and miRNA
JP2019521963A (en) * 2016-05-10 2019-08-08 ソルボンヌ ウニベルシテ Agents that activate CD47 and their use in treating inflammation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014028861A1 (en) * 2012-08-17 2014-02-20 Apellis Pharmaceuticals, Inc. Detection of high risk drusen
JP2016513095A (en) * 2013-02-12 2016-05-12 リニューロン・リミテッドReNeuron Limited Stem cell microparticles and miRNA
US20140322720A1 (en) * 2013-04-26 2014-10-30 Konkuk University Industrial Cooperation Corp. Composition for diagnosing, treating, and preventing age-related macular degeneration and method for diagnosing age-related macular degeneration
JP2019521963A (en) * 2016-05-10 2019-08-08 ソルボンヌ ウニベルシテ Agents that activate CD47 and their use in treating inflammation

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AHN J.Y., DATTA S., BANDEIRA E., CANO M., MALLICK E., RAI U., POWELL B., TIAN J., WITWER K.W., HANDA J.T., PAULAITIS M.E.: "Release of extracellular vesicle miR-494-3p by ARPE-19 cells with impaired mitochondria", BIOCHIMICA ET BIOPHYSICA ACTA, ELSEVIER, AMSTERDAM, NL, vol. 1865, no. 4, 1 April 2021 (2021-04-01), AMSTERDAM, NL , pages 129598, XP055932654, ISSN: 0304-4165, DOI: 10.1016/j.bbagen.2020.129598 *
GUM-YONG KANG, JOO YOUNG BANG, AE JIN CHOI, JEEHYUN YOON, WON-CHUL LEE, SOYOUNG CHOI, SOOJIN YOON, HYUNG CHAN KIM, JE-HYUN BAEK, H: "Exosomal Proteins in the Aqueous Humor as Novel Biomarkers in Patients with Neovascular Age-related Macular Degeneration", JOURNAL OF PROTEOME RESEARCH, AMERICAN CHEMICAL SOCIETY, vol. 13, no. 2, 7 February 2014 (2014-02-07), pages 581 - 595, XP055581283, ISSN: 1535-3893, DOI: 10.1021/pr400751k *
MUKAI ATSUSHI; OTSUKI YOHEI; ITO EIKO; FUJITA TOMOKO; UENO MORIO; MAEDA TADAO; KINOSHITA SHIGERU; SOTOZONO CHIE; HAMURO JUNJI: "Mitochondrial miRNA494-3p in extracellular vesicles participates in cellular interplay of iPS-Derived human retinal pigment epithelium with macrophages", EXPERIMENTAL EYE RESEARCH, ACADEMIC PRESS LTD., LONDON., vol. 208, 14 May 2021 (2021-05-14), LONDON. , XP086628025, ISSN: 0014-4835, DOI: 10.1016/j.exer.2021.108621 *
YAMAWAKI TAKAHIRO, ITO EIKO, MUKAI ATSUSHI, UENO MORIO, YAMADA JUN, SOTOZONO CHIE, KINOSHITA SHIGERU, HAMURO JUNJI: "The Ingenious Interactions Between Macrophages and Functionally Plastic Retinal Pigment Epithelium Cells", INVESTIGATIVE OPTHALMOLOGY & VISUAL SCIENCE, ASSOCIATION FOR RESEARCH IN VISION AND OPHTHALMOLOGY, US, vol. 57, no. 14, 7 November 2016 (2016-11-07), US , pages 5945, XP055932658, ISSN: 1552-5783, DOI: 10.1167/iovs.16-20604 *

Also Published As

Publication number Publication date
JPWO2022113887A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
Chang et al. Bone marrow mesenchymal stem cell-derived exosomal microRNA-125a promotes M2 macrophage polarization in spinal cord injury by downregulating IRF5
Matsuda et al. Vascular endothelial growth factor reduced and connective tissue growth factor induced by triamcinolone in ARPE19 cells under oxidative stress
Wang et al. Protecting neurons from cerebral ischemia/reperfusion injury via nanoparticle-mediated delivery of an siRNA to inhibit microglial neurotoxicity
Tang et al. Lipocalin 2 suppresses ocular inflammation by inhibiting the activation of NF-κβ pathway in endotoxin-induced uveitis
CN109762903B (en) Application of miR-1246 and/or TERF2IP in diagnosis and treatment of glioma
US11040071B2 (en) Anti-angiogenic therapy based on exosomes derived from menstrual stem cells
JP5766221B2 (en) Method for detecting and modulating the sensitivity of tumor cells to mitotic inhibitors
Liu et al. lncRNA ZFAS1 Positively Facilitates Endothelial Ferroptosis via miR‐7‐5p/ACSL4 Axis in Diabetic Retinopathy
Jeong et al. Exosome-based antisense locked nucleic acid delivery for inhibition of type II collagen degradation in chondrocyte
Liao et al. Morphine-mediated release of astrocyte-derived extracellular vesicle miR-23a induces loss of pericyte coverage at the blood-brain barrier: Implications for neuroinflammation
Bai et al. Platelet-derived extracellular vesicles encapsulate microRNA-34c-5p to ameliorate inflammatory response of coronary artery endothelial cells via PODXL-mediated P38 MAPK signaling pathway
WO2022113887A1 (en) Method for assessing inflammatory retinal disease, inflammatory retinal disease therapeutic, and screening method for inflammatory retinal disease therapeutics
Xiaoying et al. Resistin-inhibited neural stem cell-derived astrocyte differentiation contributes to permeability destruction of the blood–brain barrier
CN110106248B (en) Application of circular RNA hsa _ circ _0001543 in preparation of retinal degeneration disease diagnostic reagent
TWI421084B (en) A new use of microrna let-7g
KR101541974B1 (en) Composition and method for enhancing differentiation of neuronal stem cells comprising miR29b
KR101384360B1 (en) Composition for preventing or treating vascular permeability disease comprising inhibitors of stem cell factor or a receptor thereof
Dong et al. ASIC1a-CMPK2-mediated M1 macrophage polarization exacerbates chondrocyte senescence in osteoarthritis through IL-18
Jia et al. Mechanism of circular RNA-mediated regulation of L-DOPA to improve wet age-related macular degeneration
Zhang et al. Selective microRNA expression of exosomes from retinal pigment epithelial cells by oxidative stress
WO2019171386A1 (en) Compositions and methods for treating age-related macular degeneration
Huang et al. Microarray expression profile and functional analysis of circular RNAs in choroidal neovascularization
WO2019139351A1 (en) Pharmaceutical composition for preventing or treating muscular disease or cachexia comprising, as active ingredient, mirna located in dlk1 -dio3 cluster or variant thereof
US20220280473A1 (en) Compositions and methods for modulating epithelial-mesenchymal transition
WO2013036031A2 (en) Pharmaceutical composition including a microrna486 expression inhibitor as an active ingredient for preventing and treating neurological disorders

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565291

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897861

Country of ref document: EP

Kind code of ref document: A1