WO2013036031A2 - Pharmaceutical composition including a microrna486 expression inhibitor as an active ingredient for preventing and treating neurological disorders - Google Patents

Pharmaceutical composition including a microrna486 expression inhibitor as an active ingredient for preventing and treating neurological disorders Download PDF

Info

Publication number
WO2013036031A2
WO2013036031A2 PCT/KR2012/007112 KR2012007112W WO2013036031A2 WO 2013036031 A2 WO2013036031 A2 WO 2013036031A2 KR 2012007112 W KR2012007112 W KR 2012007112W WO 2013036031 A2 WO2013036031 A2 WO 2013036031A2
Authority
WO
WIPO (PCT)
Prior art keywords
mir486
expression
neurod6
disease
spinal cord
Prior art date
Application number
PCT/KR2012/007112
Other languages
French (fr)
Korean (ko)
Other versions
WO2013036031A3 (en
Inventor
강수경
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Publication of WO2013036031A2 publication Critical patent/WO2013036031A2/en
Publication of WO2013036031A3 publication Critical patent/WO2013036031A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • C12N2310/113Antisense targeting other non-coding nucleic acids, e.g. antagomirs

Definitions

  • composition for preventing and treating neurological diseases including microRNA486 expression inhibitors as an active ingredient
  • the present invention relates to a pharmaceutical composition for preventing and treating neurological diseases, including miRNA486 expression inhibitors as an active ingredient.
  • RNAs small, unencoded RNAs (microRNAs, miRNAs), a novel class of regulatory molecules as factors involved in gene expression, are known to be involved in tissue regeneration. miRNAs are emerging as important factors in translational regulation, involved in regulating the function of cell fate, and alterations in functional gene expression have been shown to play an important role in the secondary damage process in some disease models.
  • miRNAs can regulate the expression of a specific set of functional genes, they are useful candidates as regulators upstream of the secondary spinal cord injury process among disease model miRNAs signaling mediators. Many miRNAs play an important role in neurodevelopment and are believed to be important mediators of cell differentiation. Based on the specific interaction of miRNAs with their target genes, RNA-based techniques have potential as therapeutic strategies. miRNAs expression will be a novel therapeutic target for the treatment of various diseases, including cancer, cardiovascular disease and wounded invasion. As one of the diseases, neurodestruction is due to various factors that depend on the inherent properties of the underlying neurodestructive disorder. This indicates the homeostasis of unstable cells along with the cytotoxicity of by-products mediated by overloaded immune cells. In particular, previous studies have explored the potential for miRNAs in neurodestruction. It has been shown that altered expression of miRNAs contributes to secondary damage following trauma to the central nervous system.
  • NeuroD6 is a factor associated with nerve regeneration.
  • NeuroD6 is known to have a neuroprotective role in the central nervous system against R0S-mediated secondary injury.
  • the NeuroD6 protein promotes neuronal differentiation and survival in the pathological microenvironment and stimulates the biomass of the mitochondria to initiate anti-apoptosis and chaperone responses.
  • the NeuroD6 expression interference is associated with the induction of motor neuron apoptosis initiated by actively proliferating macrophages and the secretion of pro-inflammatory factors mediating apoptosis and myelin destruction of motor neurons. These successive pathological events result in secondary damage for a long time after traumatic primary injury to the spinal cord.
  • NeuroD6 promotes neuronal survival through expression of anti-apoptotic regulators that maintain mitochondrial preservation.
  • miR miR-133b a miRNA during spinal cord regeneration of zebrafish, has been studied, and an increase in miR-133b expression in brain regeneration has been identified.
  • MiR-486 has been reported to be ubiquitous in rat brain, spinal cord, liver and heart. And identifying miR-486 or miR-422a, which regulates cell survival in the heart, and treating or preventing cardiac hypertrophy, heart failure, or myocardial infarction following increased expression of miR-486 and / or miR-422a in heart tissue.
  • miR486 motor neurons related to pathophysiology mediated by reactive oxygen species (ROS) in sustained nerve injury Since miR486 was specifically overexpressed in the eye, miR486 inhibitor expression interference was found to induce spinal cord injury (SCI) improvement by restoring the inhibition of NeuroD6.
  • SCI spinal cord injury
  • An object of the present invention is a pharmaceutical composition for preventing and treating neurological diseases, a method for treating neurological diseases, a method for screening candidate substances for preventing and treating neurological diseases, a kit for diagnosing neurological diseases, and a diagnostic for neurological diseases. It provides a gene detection method and a neurological disease diagnosis method for providing information.
  • the present invention provides a pharmaceutical composition for preventing and treating neurological diseases, comprising miR486 expression inhibitor as an active ingredient.
  • the present invention also provides a method for preventing and treating cancer, comprising administering a pharmaceutically effective amount of a miR486 expression inhibitor to an individual suffering from a neurological disease.
  • the present invention provides a pharmaceutical composition for preventing and treating neurological diseases, comprising miR486 expression inhibitor as an active ingredient.
  • the present invention also provides a method for preventing and treating cancer, comprising administering a pharmaceutically effective amount of a miR486 expression inhibitor to an individual suffering from a neurological disease.
  • It provides a method for screening a candidate substance for preventing and treating neurological diseases, comprising selecting a test substance whose NeuroD6 expression amount is increased compared to a control group not treated with the test substance.
  • the present invention also provides a kit for diagnosing a neurological disease, comprising a nucleotide of the miR486 gene, a nucleotide having a sequence complementary to the nucleotide, or a fragment thereof.
  • step 2) comparing the expression level of miR486 of step 1) with the expression level of miR486 of a sample derived from a normal individual as a control;
  • step 3 Provides a gene detection method for providing information for diagnosing neurological disease, comprising determining that the miR486 expression level of step 2) is higher than that of the control group.
  • step 2) comparing the expression level of miR486 of step 1) and the expression level of miR486 of a sample derived from a normal individual as a control;
  • step 3 When the miR486 expression level of step 2) is increased compared to the control group provides a method for diagnosing a neurological disease comprising the step of determining that the subject has a neurological disease.
  • the present invention also provides a pharmaceutical composition for the prevention and treatment of neurological diseases containing NeuroD6 as an active ingredient.
  • Advantageous Effects In the present invention, expression interference of miR486 using miR486 expression inhibitor
  • the niiR486 inhibitor can be used as an active ingredient of a pharmaceutical composition for preventing and treating neurological diseases, and miR486 expresses NeuroD6.
  • Mechanism to control the can be used to screen for candidates for the prevention and treatment of neurological diseases, can be used as a marker for diagnosing neurological diseases.
  • FIG. 1A shows the expression of NeuroD6, a miR486 target gene, before spinal cord injury and after 7 days of injection of miR486 or scrambled RNA;
  • FIG. 1C shows miR486 region ⁇ “in motor neurons in injured lesions in spinal cord tissue
  • FIG. 1D shows immunohistochemical images of NeuroD6 expression of NF160 + motor neurons in spinal cord injury lesions (T10), and arrows represent NeuroD6 expressing in NF160 + motor neurons;
  • FIG. 1E shows a schematic flow diagram of an experimental procedure for treating and evaluating spinal cord injury.
  • FIG. 2 (a) shows the functional outcome of antisense ⁇ m iR486 (antisense TM miR486) treatment in the injured spinal cord assessed with Beattie and Bresnahan (BBB);
  • FIG. 2 (b) shows antisense-injured spinal cord in the damaged spinal cord assessed on the Basso mouse scale (BMS). miR486 treatment results are shown;
  • Figure 2 (c) shows the induction of traumatic spinal cord injury symptoms when injecting miR486
  • Figure 2 (d) shows histological analysis and apoptotic cell death evaluation of neuronal destruction when miR486 or scrambled RNA treated normal and damaged spinal cord;
  • FIG. 2 shows normal spinal cord (Normal SC), spinal cord treated with scrambled RNA (scramRNA SO, damaged spinal cord (SCI), damaged spinal cord treated with scrambled RNA (SCI / scramRNA), normal spinal cord treated with miR486 ( comparison of TUNEL-positive populations in injured spinal cords treated with itiiR486 / SC) and antisense_1 13 ⁇ 486 (3 (: 1 / ⁇ ⁇ 111? 486);
  • FIG. 2 (f) shows caspase-3 (caspase) in the normal spinal cord, spinal cord treated with scrambled RNA, damaged spinal cord, damaged spinal cord treated with scrambled RNA, normal spinal cord treated with miR486, and damaged spinal cord treated with antisense miR486. -3) express expression;
  • Figure 2 (g) shows ATP production in normal spinal cord, spinal cord treated with scrambled RNA, damaged spinal cord, damaged spinal cord treated with scrambled RNA, normal spinal cord treated with miR486 and damaged spinal cord treated with antisense-miR486;
  • Figure 2 (h) shows immunohistochemical analysis of neurodestructive phenotypes in spinal cord injury and miR486 interference in spinal cord injury mice 5 and 10 days after antisense miR486 or scrambled RNA treatment;
  • FIG. 2 (i) shows the evaluation of myelin destruction and neurodestruction by Luxal Fast Blue (LFB) staining of damaged spinal cord tissue
  • FIG. 2 (j) shows the expression of TuJ, MBP and GFAP of neuronal markers NeuroD6 and NF160 after post-treatment on days 0, 2 and 7 of miR486 expression interference in injured spinal cord tissue.
  • 3 shows that miR486 expression interference markedly inhibited pro-inflammatory factor secretion and also induced R0SVIII gene expression in spinal cord injury:
  • 3 (a) and 3 (b) show real-time RT-PCR analysis and histochemical analysis of other pro-inflammatory cytokine expression before interference with the damaged spinal cord and after 7 days of miR486 expression interference or scramble A treatment. Represents;
  • FIG. 3D shows real-time RT-PCR analysis of SEPN1, TXNL1, GPxl and GPx3, genes involved in the R0S-elimination system 7 days after interference or expression of miR486 on medullary spinal cord lesions;
  • FIG. 3 (f) shows an immunohistochemical analysis of the expression of the redox removal protein TXNL1 in motor neurons of injured spinal cord tissue (T10);
  • Figure 3 (g) shows an immunohistochemical analysis of the expression of the redox protein GPx3 in motor neurons of injured spinal cord tissue (T10);
  • Figure 3 (h) shows an immunohistochemical analysis of the expression of SEPN1, a redox removal protein in motor neurons of injured spinal cord tissue (T10).
  • FIG. 4 (a) shows a schematic flow chart of an experimental procedure for i R486 and miR486 expression interference and functional analysis
  • Figure 4 (b) shows the expression of Tuj, NF160, MBP and GFAP when injected miR486 and scrambled RNA into normal spinal cord, damaged spinal cord, normal spinal cord;
  • FIG. 4 (e) shows R0S expression levels in spinal cord lesions, the group injected with scrambled R A to the normal spinal cord, the group injected with miR486 to the normal spinal cord, and the group injected with miR486 and antisense -miR486 to the normal spinal cord;
  • Figure 4 (g) shows the expression of P-P13K, p-Akt, p-p38, p-JNK, Bax, caspase-3 and cytochrome C when treated with scrambled RNA and miR486 in the normal and damaged spinal cord ;
  • Figure 4 (h) shows the flow cytometry results and TUNEL analysis results when the scrambled RNA and miR486 injected into the cultured NPC;
  • FIG. 5 shows knockdown of NeuroD6 expression leading to traumatic spinal cord injury-like phenotype
  • Figure 5 shows the miR486-binding site of 3UTR of the ⁇ u-NeuroD6 gene of chromosome 6 and the base sequence complementary between NeuroD6 and the miR486 gene;
  • FIG. 5 shows the chip (CHIP) -PCR results for miR486 expression interference inducing NeuroD6 binding to regulatory sites of GPx3 and TXNL1 genes;
  • Figure 5 (c) shows the result of traumatic spinal cord injury-like symptoms such as hind limb paralysis in mice 1 day after injection of NeuroD6 into the normal spinal cord;
  • FIG. 5D shows in situ analysis (day 7) of NeuroD6 expression in spinal cord injury, miR486-implanted normal spinal cord and iniR486 / simiR486-implanted normal spinal cord;
  • FIG. 5 (e) shows Reactive Oxygen Species (ROS) expression in 7-day spinal cord tissue when NeuroD6 is knocked down in normal spinal cord tissue;
  • Figure 5 (g) shows the expression of inflammatory factors EDI, Cox2, iNOS and eNOS when NeuroD6 knocked down in normal spinal cord, 1 day after NeuroD6 injection;
  • Figure 5 (h) is the day of NeuroD6 injection when knocked down NeuroD6 in normal spinal cord Later IL-I ⁇ IL-6 and TNFa expression;
  • FIG. 5 (i) shows that NeuroD6 expression interference in normal spinal cord expresses SEPN1, TXNL1, TXNL2, Gpxl and Gpx3, factors related to the R0SVIII deletion system, compared to control (scrambled RNA in normal spinal cord);
  • FIG. 5 (q) shows a schematic flow chart of R0S / miR486-mediated neurodestruction of motor neurons after traumatic injury in the spinal cord.
  • Figure 6 shows the expression of R0S-removing enzymes and neurodegeneration of motor neurons when restoring NeuroD6 expression in spinal cord injury:
  • FIG. 6A is a flow chart illustrating an experimental procedure for processing miR486, antisense -miR486, siNeuroD6 and NeuroD6 and functional judgment;
  • Figure 6 (g) shows co-expression of NF160 and Cox2, co-expression of ED1 and GFAP, co-expression of NF160 and NeuroD6 when treated with scrambled RNA, NeuroD6, miR486, mir486 and NeuroD6, siNeuroD6 or siNeuroD6 and NeuroD6 in the injured spinal cord Expression;
  • the present invention prevents neurological diseases comprising miR486 expression inhibitor as an active ingredient And pharmaceutical compositions for treatment.
  • the present invention also provides a method of treating a neurological disorder comprising administering a pharmaceutically effective amount of a miR486 expression inhibitor to a subject suffering from the neurological disorder.
  • the present invention also provides a method for preventing a nervous system disease comprising administering to a subject a pharmaceutically effective amount of a miR486 expression inhibitor.
  • the present invention also provides a use of miR486 expression inhibitor in the manufacture of a pharmaceutical composition for preventing and treating neurological diseases.
  • the miR486 expression inhibitor may be selected from the group consisting of antisense oligonucleotides complementary to the miR486 gene, small interfering RNA (siRNA), short hairpin A and ribozyme, but are antisense nucleotides But may not be limited thereto.
  • antisense nucleotides as defined in the Watson-click base pair, bind (combine) to the complementary sequencing of DNA, immature -mR A or mature mR A to disrupt the flow of genetic information as a protein in DNA.
  • the nature of antisense nucleotides specific to the target sequence makes them exceptionally multifunctional. Since antisense nucleotides are long chains of monomeric units they can be easily synthesized for the target RNA sequence. Many recent studies have demonstrated the utility of antisense nucleotides as biochemical means for studying target proteins (Rothenberg et al., J. Natl. Cancer Inst., 81: 1539-1544, 1999).
  • antisense nucleotides can be considered as a novel form of inhibitor because of recent advances in nucleotide synthesis and in the field of nucleotide synthesis that exhibit improved cell adsorption, target binding affinity and nuclease resistance.
  • the siRNA is composed of a 15-30 mer sense sequence selected from the base sequence of the miR486 gene and an antisense sequence complementarily binding to the sense sequence, wherein the sense sequence is not particularly limited thereto. It may be composed of 25 bases, but is not limited thereto.
  • the miR486 expression inhibitor may be to increase the expression of NeuroD6, but is not limited thereto.
  • the neurological diseases include spinal cord injury, Parkinson's disease, stroke, muscular dystrophy, scoliosis, motor nerve injury, peripheral nerve injury due to trauma, ischemic brain injury, neonatal hypoxic ischemic brain injury, cerebral palsy, epilepsy, refractory epilepsy, Al Sheimer's disease, congenital metabolic neurological disease and traumatic brain injury may be any one selected from the group 5, but may be more specifically spinal cord injury, but not limited to this, may occur due to nerve damage Applicable to all neurological diseases present.
  • the present inventors have identified the effect of miR486 overexpression on neuronal destruction of R0S mediated spinal cord injury in motor neurons. It was found that most target genes of miR486 were downregulated, including overexpression of miR486 10 and NeuroD6 in spinal cord injury tissues (see FIGS. La and lb). In spinal cord injury lesions, only miR486 was expressed in NF160 + motor neurons, and 2 ', 7'-dichlorodihydrofluorescein diacetate (2 ⁇ , 7'-dichlorodihydrof kiorescein diacetate, DCFDA) was produced in the cytoplasm and reactive oxygen species (Reactive) oxygen species (R0S) was confirmed to accumulate (see FIG. 15). NeuroD6 expression was detected in the nucleus and cytoplasm of lesions of spinal cord injury and motor neurons of normal spinal cord tissue. In addition, only ED1 + macrophages produced R0S, but did not express miR486 (see FIG. ID).
  • miR486 is a result of confirming the recovery of motor function according to the interference of miR486 expression.
  • Expression interfered spinal cord injury animals showed improved motor function. Three days after spinal cord injury, • 20 miR486 expression interference spinal cord injury animals despite the 'most there was a part that rotates during their feet walking, and parallel to the walking continued their were weighed maintained during the arrest phenotype was gradually restored to . In contrast, injured animals injected only with scrambled siRNA had limited joint movement (see FIGS. 2A and 2B).
  • miR486 interference effectively expressed the expression of i R486 and Cox2, EDI, ⁇ IL6 and TNFCL.
  • FIG. 3a the expression of redox-causing factors MP0 and eNOS was reduced, and the R0S-removing enzymes SEPNl, TXNLl, GPxl and GPx3 were significantly increased (FIGS. 3c, 3d, 3f and 3h).
  • the GPx3, TXNLl and SEPNl expression was detected in NF160 + motor neurons in normal spinal cord tissue (see FIG. 3E).
  • the number of ED1-positive inflammatory cells, macrophages, microglial cells was significantly reduced (see FIG. 3B).
  • NPC neural progenitor cells
  • knockdown of miR486 expression effectively induced p-PI3K / p-Akt expression, improved NPC survival, and allowed cells to escape neuronal cell death. It was. Interference with miR486 expression after antisense -miR486 injection in spinal cord injury mice resulted in increased target gene expression.
  • the present inventors confirmed that miR486 expression in the injured spinal cord and the initiation of anti-oxidative reaction through GPx3 and TXNL1 ol by insufficient NeuroD6 resulted in interference of miR486 expression induced NeuroD6 binding to the regulatory sites of GPx3 and TXNL1 (see FIG. 5B). ). It was confirmed that R0S accumulated significantly in spinal cord injury and miR486-injected spinal cord tissue and siNeuroD6-injected spinal cord tissue (see FIG. 5E). It was confirmed that in vivo expression of the motor neuron markers NF160, Tuj and MBP were downregulated in spinal cord tissue after siNeuroD6 injection (see FIG. 5F).
  • NeuroD6 expression knockdown in the intact spinal cord has cytotoxic effects on motor neurons, increased expression of TNF ⁇ , ⁇ , IL6, C0X2, iNOS and eNOS, and expression of the R0S clearance factors SEPNl, TXNL2, GPxl and GPx3 was down-regulated (see FIGS. 5G-5I).
  • NeuroD6 or R0S regulated miR486 expression As a result of confirming ATP expression, NeuroD6-mediated neuronal protection in spinal cord or cultured NPCs was also associated with caspase-3 downregulation and normalized ATP synthesis ability (see FIG. 5J). In particular, miR486 expression increased more than 3-fold (320%) in hydrogen peroxide treatment and NeuroD6 or ascorbic acid treatment significantly reduced hydrogen peroxide-mediated miR486 increase (194% and 132%, respectively) (see FIG. 5K). Hydrogen peroxide-induced R0S production was significantly inhibited by the expression of NeuroD6 (53%), SEPNl (37%), TXNL1 (23%) and GPx3 (40%).
  • NeuroD6 or ascorbic acid (5 / zg / ml) treatment significantly upregulated SEPN1, TXNL1 and GPx3 compared to the exposure effect with hydrogen peroxide alone (see FIGS. 51-5O).
  • exogenous NeuroD6 protected neurons from ROS-mediated neurotoxicity (see Figure 5p).
  • the composition containing the miR486 expression inhibitor of the present invention as an active ingredient may include, but is not limited to, the active ingredient in an amount of 0.0001 to 50 weight 3 ⁇ 4> based on the total weight of the composition.
  • composition of the present invention may contain one or more active ingredients exhibiting the same or similar function in addition to the miR486 expression inhibitor.
  • composition of the present invention may be prepared by including one or more pharmaceutically acceptable carriers in addition to the above-described active ingredients for administration.
  • Pharmaceutically acceptable carriers may be used in combination with saline, sterile water, Ringer's solution, saturated saline, textose solution, maltodextrin solution, glycerol, ethanol, liposomes, and one or more of these components.
  • other conventional additives such as buffers and bacteriostatic agents can be added.
  • diluents, dispersants, surfactants, binders and lubricants can be additionally added to formulate injectable formulations such as aqueous solutions, suspensions, emulsions, pills, capsules, granules or tablets, and can act specifically on target organs.
  • injectable formulations such as aqueous solutions, suspensions, emulsions, pills, capsules, granules or tablets, and can act specifically on target organs.
  • Target organ specific antibodies or other ligands may be used in combination with the carriers so as to be used.
  • it can be formulated according to each disease or component using an appropriate method in the art or using the method disclosed in Remington's Pharmaceutical Science (Recent Edition, Mack Publishing Company, Easton PA). ⁇
  • Nucleotides or nucleic acids used in the present invention can be prepared for oral, topical, parenteral, nasal, intravenous, intramuscular, subcutaneous, intraocular, transdermal and the like. More specifically, nucleic acids or vectors are used in injectable forms. Thus, in particular the area to be treated may be combined with any pharmaceutically acceptable vehicle for injectable compositions for direct infusion.
  • the compositions of the present invention may in particular comprise isotonic sterile solutions or lyophilized compositions which allow the composition of injectable solutions upon the addition of dry, in particular sterile water or appropriate physiological saline. Direct injection of nucleic acid into a patient's tumor is advantageous because it allows the treatment efficiency to be focused on the infected tissue.
  • the dosage of nucleic acid used can be adjusted by various parameters, in particular by gene, vector, mode of administration used, disease in question or alternatively desired duration of treatment. In addition, the range varies depending on the patient's weight, age, sex, health status, diet, administration time, administration method, excretion rate and the severity of the disease.
  • the daily dosage is specifically about 0.0001 to 100 mg / kg, more specifically 0.001 to 10 mg / kg, and may be administered once to several times a day.
  • the present invention also provides a method for preventing or treating a neurological disease, comprising administering to a subject a pharmaceutically effective amount of the composition.
  • the neurological disorders specifically include spinal cord injury, Parkinson's disease, stroke, muscular dystrophy, scoliosis, motor neuron injury, peripheral nerve injury due to trauma, ischemic brain injury, neonatal hypoxic ischemic brain injury, cerebral palsy, epilepsy, refractory epilepsy, Al-Hymer's disease, congenital metabolic nervous system disease and traumatic brain injury may be any one selected from the group, and more specifically, spinal cord injury, but not limited thereto, but may be caused by nerve injury. Applicable to all possible neurological diseases.
  • the pharmaceutically effective amount is 0.0001 to 100 mg / kg, 0.001 to 10 mg / kg, but is not limited thereto. Dosage may vary depending on the weight, age, sex, health status, diet, duration of administration, rate of administration, elimination rate, and severity of the particular patient.
  • composition can be administered orally or parenterally during clinical administration and intraperitoneal injection, rectal injection, subcutaneous injection, intravenous injection, intramuscular injection, intrauterine dural injection, cerebrovascular injection or intrathoracic injection during parenteral administration.
  • the subject is a spinal cord animal, specifically a mammal, more specifically an experimental object such as a rat, a rabbit, a guinea pig, a hamster, a dog or a cat, and more specifically, an ape-like animal such as a chimpanzee or a gorilla. Can be.
  • the pharmaceutical composition comprising the m iR486 inhibitor as an active ingredient can be usefully used for preventing or treating neurological diseases.
  • the present invention
  • 3) provides a method for screening a candidate substance for preventing and treating neurological diseases, including selecting a test substance whose expression level is reduced compared to a control group that does not process the test substance.
  • It provides a method for screening a candidate substance for preventing and treating neurological diseases, comprising selecting a test substance whose NeuroD6 expression amount is increased compared to a control group not treated with the test substance.
  • Expression measurement of step 2) is RT-PCR, Quantitative or semi-Quentitative RT-PCR, Quantitative or semi-Quentitative real-time RT-PCR -PCR), Northern blot, and DNA or RNA chip may be measured using any one method selected from the group consisting of, but is not limited thereto.
  • miR486 gene is overexpressed in the spinal cord injury and miR486 is overexpressed to inhibit the expression of NeuroD6, the miR486 and NeuroD6 prevent neurological diseases and 1 can be used for screening therapeutic candidates.
  • the present invention also provides a kit for diagnosing a neurological disease comprising a nucleotide of the miR486 gene, a nucleotide having a sequence complementary to the nucleotide, or a fragment thereof.
  • step 2) comparing the expression level of miR486 of step 1) with the expression level of n] iR486 in a sample isolated from normal individuals as a control;
  • step 3 Provides a gene detection method for providing information for diagnosing neurological disease, comprising determining that the miR486 expression level of step 2) is higher than that of the control group.
  • step 2) comparing the expression level of miR486 of step 1) with the expression level of miR486 of a sample isolated from a normal individual as a control;
  • step 2) When the miR486 expression level of step 2) is increased compared to the control group provides a method for diagnosing a neurological disease comprising the step of determining that the subject has a neurological disease.
  • the nervous system diseases include spinal cord injury, Parkinson's disease, stroke, muscular dystrophy, scoliosis, motor nerve injury, peripheral nerve injury due to trauma, ischemic brain injury, neonatal hypoxic ischemic brain injury, cerebral palsy, epilepsy, refractory epilepsy, Alzheimer's disease.
  • the disease may be one selected from the group consisting of congenital metabolic neurological disease and traumatic brain injury, but is not limited thereto.
  • the miR486 and NeuroD6 can be used in kits for providing information for diagnosing neurological disease, gene detection and diagnosing neurological disease.
  • the present invention also provides a pharmaceutical composition for preventing and treating neurological diseases, including NeuroD6 as an active ingredient.
  • the present invention also provides a method of treating a neurological disease, comprising administering a pharmaceutically effective amount of NeuroD6 to a subject having a neurological disease.
  • the present invention also provides a method for preventing neurological disease, comprising administering to a subject a pharmaceutically effective amount of NeuroD6.
  • the present invention also provides the use of NeuroD6 in the manufacture of a pharmaceutical composition for preventing and treating neurological diseases.
  • the nervous system diseases include spinal cord injury, Parkinson's disease, stroke, muscular dystrophy, scoliosis, motor nerve injury, peripheral nerve injury due to trauma, ischemic brain injury, neonatal hypoxic ischemic brain injury, cerebral palsy, epilepsy, intractable epilepsy, Alzheimer's disease.
  • the disease may be one selected from the group consisting of congenital metabolic neurological disease and traumatic brain injury, but is not limited thereto.
  • the present invention provides a vector comprising a polynucleotide encoding NeuroD6, or a pharmaceutical composition for preventing and treating neurological diseases containing the cells containing the vector as an active ingredient.
  • the nervous system diseases include spinal cord injury, Parkinson's disease, stroke, muscular dystrophy, scoliosis, motor neuron injury, peripheral nerve injury due to trauma, ischemic brain injury, neonatal hypoxic ischemic brain injury, cerebral palsy, epilepsy, intractable epilepsy, Alpheimer's disease.
  • the disease may be one selected from the group consisting of congenital metabolic. Nervous system disease and traumatic brain injury, but is not limited thereto.
  • the nervous system diseases include spinal cord injury, Parkinson's disease, stroke, muscular dystrophy, scoliosis, motor neuron injury, peripheral nerve injury due to trauma, ischemic brain injury, neonatal hypoxic ischemic brain injury, cerebral palsy, epileptic refractory epilepsy, Alpheimer's disease. It may be any one selected from the group consisting of congenital metabolic neurological disease and traumatic brain injury, but is not limited thereto.
  • a method for screening a candidate substance for preventing and treating neurological diseases comprising selecting a test compound or composition in which the activity of the NeuroD6 protein of step 2) is increased compared to the activity of the NeuroD6 protein untreated with the test compound or composition.
  • the neurological disorders include spinal cord injury, Parkinson's disease, stroke, muscular dystrophy, scoliosis, motor neuron injury, peripheral nerve injury due to trauma, ischemic brain injury, neonatal hypoxic ischemic brain injury, cerebral palsy, epilepsy, refractory epilepsy, egg ⁇ Hemer's disease, congenital metabolic nervous system disease and traumatic brain injury may be any one selected from the group consisting of, but is not limited thereto.
  • 3) Provides a protein detection method for providing information of neurological disease diagnosis, comprising the step of determining that the risk of neurological disease is high when the expression level of NeuroD6 protein is reduced compared to the control group.
  • the nervous system diseases include spinal cord injury, Parkinson's disease, stroke, muscular dystrophy, scoliosis, motor neuron injury, peripheral nerve injury due to trauma, ischemic brain injury, neonatal hypoxic ischemic brain injury, cerebral palsy, epilepsy, refractory epilepsy, Alzheimer's disease. It may be one selected from the group consisting of a disease, congenital metabolic nervous system disease and traumatic brain injury, but is not limited thereto.
  • NeuroD6 can be usefully used as an active ingredient in pharmaceutical compositions for preventing and treating neurological diseases.
  • the present invention will be described in detail by way of examples.
  • mice were intraperitoneally administered in an amount of 25 ⁇ / g using 1.25% avertin and then anesthetized, and the back skin of the mouse was incised. ), The spinal cord at the T10 region was damaged to a size of about 1 mm deep in the dorsal direction and about 2 mm wide, and then sutured to receive antibiotics (amicin). Antibiotics were administered intramuscularly every two days.
  • mice were fixed with stereotaxic instruments under anesthesia.
  • DharmaFECT Dermata Inc., Chicago Antisense miR486 (anti _miR486 or anti miR; 20 ⁇ stock solution, Dhamacon) diluted with IL) was injected once 2 days after SCI with a 25 ⁇ Hamilton syringe with 26 gauge needles.
  • the antisense -miR486 injection dose finally used 10 ⁇ .
  • the rate of microinjector in the stereosuspension instrument was 1 / min.
  • the syringe was secured at an angle of about 90 degrees above the spinal cord of the stereosuspension instrument.
  • NeuroD6 (0pen Biosystems) was injected once 2 days after spinal cord injury. NeuroD6 infusion doses were 100, 200 and 400 ng. NeuroD6 was diluted with lipofectamin (Klinvitrogen, Carlsbad, Calif.) And NeuroD6 Vector DNA constructs were obtained from Open Biosystems (Thermo Scientific Co.). NeuroD6 injection method was carried out according to the same method as the antisense -miR486 injection method of Example ⁇ 1-2>. Under anesthesia by intravenous anesthesia (Avert in), the rat spinal cord was opened using a surgical knife, and the spinal cord bone was removed using surgical scissors and bone tongs. ⁇ 1-4> Infusion of miR486
  • miR486 (Dharmcon) was injected only once into the Hamilton syringe with a 26-gauge needle with a microinjector into the T11-L1 site.
  • concentration of miR486 stock solution was 20 ⁇ , which was diluted with DharmaFECTCDharmacon Inc., Chicago, IL).
  • the miR486 injection dose was finally 10 ⁇ and the total injection volume of miR486 was 5 per rat.
  • the miR486 injection rate of the microinjector was 1 ⁇ / tnin.
  • the syringe was fixed to a stereosuspension instrument 90 degrees above the spinal cord. The needle was injected into the T11-L1 site of the spinal cord and the syringe was left in the site for 3 minutes to prevent leakage after miR486 injection.
  • NeuroD6 siRNAs siNeuroD6; Dharmcon
  • mice were fixed in stereosuspension instruments under anesthesia via intravenous anesthesia injection.
  • NeuroD6 siRNAs were administered once by injection dose of NeuroD6 siRNAs (10 ⁇ ), and the 20 ⁇ stock solution of NeuroD6 siRNAs was also diluted with the same volume of DharmaFECT (Dharaacon Inc., Chicago, IL).
  • NeuroD6 siRNAs (10 ⁇ ) injection into the normal spinal cord NeuroD6 (100 ng) was injected once a day at the same site of NeuroD6 siRNAs injection.
  • NeuroD6 100 ng was injected once a day at the same site of NeuroD6 siRNAs injection.
  • PC Neural progenitor cells
  • NPCs Spinal cord-derived neural progenitor cells
  • the tissue was crushed into small pieces ( ⁇ 1 1 ⁇ 3 ) and digested with 0.025% trypsin at 371: for 30 minutes.
  • the enzyme activity of the trypsin was neutralized with DMEM containing 10% FBS, and the sample was centrifuged at 1500 rpm for 5 minutes to obtain a high concentration of cell pellet.
  • the NPC pellets were incubated overnight at 37 ° C.
  • DMEM containing 10% FBS fetal bovine serum
  • the medium was changed 48 hours and then every 4 days. After 2 or 3 passages, cells were used to characterize their differentiation capacity. The cells were placed in differentiation conditions to confirm the neural differentiation capacity of the cultured cells.
  • the cultured NPCs formed globular clumps of cells and floating neurospheres in the culture medium. Transfer the cells to a petri dish and add Neurobasal neuron-specific medium (B27 (Invitrogen, Gaithersburg, MD), 20 ng / ml bFGF and 20 ng / ml BDNF (Sigma, St Louis, M0)) NB, Invitrogen, Gaithersburg, MD) was incubated for 3 days.
  • Neurobasal neuron-specific medium B27 (Invitrogen, Gaithersburg, MD), 20 ng / ml bFGF and 20 ng / ml BDNF (Sigma, St Louis, M0)
  • the culture concentration of the spheres was maintained at 1 20 cells / cm 2 to prevent self-counseling.
  • neuron-derived neurospheres were placed in a cover-slip double-coated with PDL-laminin. During differentiation, 70% of the medium every 4 days Replaced. All data presented were run at least three times.
  • ⁇ 3-1> Confirmation of expression of miR486 and its target genes following spinal cord injury Extract RNA of whole cells with TrizoKLife Technologies, Frederick, Mass., USA), and PCR by using 20 pni specific oligo—dT primers. Amplified by cycle (95 ° C. 1 minute; 55 ° C. 1 minute; 72 ° C. 1 minute) and reverse transcribed into first strand cDNA.
  • the PCR reaction was performed using ABI 7700 Prism Sequence Detection System and SYBER green detection kit (Applied Biosystems, Foster, CA, USA).
  • the primer sequence was designed with Primer Express software (PE-Ai Bio Bios, Warrington, UK) using the gene sequence obtained from the GeneBank database (Table 1). For PCR product labeling, the SYBER green detection kit (Applied Biosystems) was used.
  • the labeled oligonucleotides were diluted in a shake buffer containing 50% ion free formamide, 4X SSC and sodium pyrophosphate and covered with parafilm.
  • the reaction was carried out in a humidified bath at 45 ° C for 12 hours. After reaction, the sections were washed with IX SSC for 10 minutes at room temperature, washed with IX SSC for 20 minutes at 60 t, and distilled water for 5 minutes at room temperature. It was washed, dehydrated with 70%, 95% and 100% isopropanol and finally dried in air. Controls missing specific probes did not have detectable staining.
  • the samples were evaluated by Leica fluorescence microscopy (Leica Microsystems, Exon, PA, USA). This test was repeated at least three times.
  • the sections were fixed for 30 minutes in 43 ⁇ 4 paraformaldehyde for immunohistochemical analysis of spinal cord tissue. The sections were then washed three times in PBS and the nonspecific binding was blocked with normal horse serum. The cut sections were reacted with the following antibodies at 4 ° C. for 12 hours; Anti-GFAP (1: 2000; Dako), anti-EDI (1: 1000; Cell Signal), anti-Tuj (1: 250; Sigma) and anti-NF160 (1: 250; Sigma). After washing off the primary antibody, the cut sections were incubated for 1 hour. After strong washing in PBS, the cells were reacted with FITC or Texas-red conjugated secondary antibody (1: 250; Molecular Probe; and 1: 250; Jackson Laboratory, respectively) for 30 minutes.
  • Controls using IgG with or without irrelevant primary antibody were not stained.
  • the samples were evaluated using a Leica fluorescence microscope (Leica Microsystems, Exon, PA, USA). Immunocytochemical analysis was repeated at least three times. Double-labeled cells were identified through 1 iffli cutting plane collection through the sample.
  • miR486 was expressed only in NF160 + motor nerve, and cytoplasm was accumulated in R0S by producing 2 ', 7'-dichlorodihydrofluorescein diacetate (2', 7'-dichlorodihydrof luorescein diacetate, DCFDA). It was confirmed (Fig. Lc). NeuroD6 expression was also detected at high levels in the nucleus and cytoplasm of motor neurons in lesions of spinal cord injury and in normal spinal cord tissue, and R0S in ED1 + macrophages. Produced, but did not express miR486 (FIG. Id).
  • BBB Beat tie and Bresnahan locomotor rating scale and Basso mouse scale
  • TdT in situ apoptosis detector kit (Roche, USA) according to the manufacturer's instructions. After the damaged spinal cord tissue is fixed, the damaged tissue. Sections were placed in 4% paraformaldehyde, 90% at 37 ° C with TUNEL reaction mixture containing deoxynucleot idyl transferase (TdT) buffer and biotinylated dUTP. Reaction in humid environment for minutes. Then, the secondary antibody bound to the fluorescent label After reaction, the results were analyzed using a fluorescence microscope (Leica Microsystem, PA).
  • TUNEL-positive apoptotic cells and cells at spinal cord lesion sites were quantified by counting positively stained cells. Three 100-fold microscopic images were randomly captured in the range where the positive cells were abundant around the lesion site for each cut. The number of positively stained cells of the three images was averaged. The results are expressed as relative cell ratios per field of view under the microscope.
  • caspase 3 activity was measured in traumatic spinal cord tissue 1 week after antisense-miR486 treatment.
  • caspase-3 activity analysis 10 proteins in a total 50 ⁇ volume were mixed with the equilibrated caspase-3 reagent (Promega). After reacting at room temperature for 1 hour, luminescence was measured using a TD 20/20 luminometer (LuminoiTieter) (Turner Designs, Sunnyvale, CA). Blank values were excluded and fold increase in activity was calculated based on activity measured from untreated cells. Each sample was measured three times.
  • the amount of protein was confirmed using the Protein Assay Kit (Bio-Rad, Hercules, CA, USA) according to the manufacturer's instructions.
  • Cells were 150 mmol / 1 KC1, 25 mmol / 1 Tris-HCl; pH 7.6, 2 mmol / 1 EDTA pH 7.4, 10 mmol / 1 KP0 4 pH 7.4, 0.1 ⁇ ol / l MgCl 2 and 1 mg protein concentration per ml of 0.1% (w / v) buffer Bovine Serum Albumin (BSA) Suspended in the containing buffer.
  • BSA Bovine Serum Albumin
  • ATP synthesis was carried out in substrate buffer 750 ⁇ ⁇ 10 mmol / 1 malate, 10 mmol / 1 pyruvate, 1 mmol / 1 ADP, 40 zg / ml digitonin and 0.15 mmol / 1 adenosine pentaphosphate.
  • the cell suspension was added to add 250 ⁇ . Cells were reacted at 37 ° C for 10 minutes. 50 ⁇ of the reaction mixture was removed at 0 and 10 minutes, and 100 mmol / 1 Tris-HCl, 4 mmol / 1 EDTA (pH 7.75) boiling for 2 minutes was removed. Digestion and the digested buffer were diluted to 1/10.
  • the amount of ATP was measured with an ATP Bioluminescence Assay Kit (Roche Diagnostics, Basel, Switzerland) according to the manufacturer's instructions on a luminometer (Berthold, Detection Systems, Pforzheim, Germany).
  • miR486 expression interference from spinal cord injury animals sikyeotgo significantly improved motor function, through the cascaded L-rise eu 3 activation, and ATP production dysfunction showed that protect the TU EL- positive cell death (Fig. 2f and 2g) .
  • LFB staining was performed as follows to confirm morphological changes.
  • the frozen section was first placed overnight in 1: 1 alcohol / chloroform and dehydrated using 93 ⁇ 4 ethyl alcohol.
  • the dehydrated sections were reacted overnight at 56 ° C. with 0.1% luxal fast blue solution (up to 16 hours).
  • excess dye was washed off with 95% ethyl alcohol and then washed with distilled water.
  • the slide was reacted with 0.05% Lithium carbonate solution for 30 seconds and then reacted with 70% ethyl alcohol for 30 seconds to distinguish between tissues. After washing with distilled water, it was dyed with cresyl violet solution for counterstaining.
  • miR486 interference effectively inhibited the expression of miR486 (88% of miR486 expression was downregulated) and the expression of the proinflammatory factors Cox2, EDI, ⁇ IL6 and TNF ⁇ (FIG. 3A).
  • miR486 expression interference After 7 days of miR486 expression interference, myeloperoxidase (MP0) and nitric oxide synthase (eNOS) expressions were markedly reduced, while 3 and 7 days after miR486 expression interference in spinal cord injury.
  • MP0 myeloperoxidase
  • eNOS nitric oxide synthase
  • TXNL1 and selenoprotein (Selenoprotein Nl, SEPN1) were induced.
  • P13k and p-Akt expression was induced when interference with ⁇ !? 486 expression in the injured spinal cord, but the expression of caspase-3 and cytochrome-C was reduced ( 3e).
  • CHIP chip analysis was performed to confirm NeuroD6 expression after miR486 interference.
  • the monoclonal antibody, anti-NeuroD6, was purchased from Santa Cruze and rabbit IgG (PP64B) antibody was purchased from Upstate.
  • the cells were centrifuged to make cell pellets and cryopreserved in liquid nitrogen.
  • the pellet was pre-IP lime buffer (10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl 2 , 1 mM CaCl 2> 4% GEPAL, 1 mM PMSF), 60 mL PMSF and additional components (100 mM PMSF, 256 Protease inhibitor, 20% SDS, 5 M NaCl, 3 ⁇ 40 2 ).
  • Cells were sonicated with a 1261 minute wave at 50% amplitude using a Branson Sonifier 450D and placed in ice water after 1 minute. Sonicated fractions ranged in size from 200-1000 bp.
  • Chip analysis after interference with miR486 expression confirmed the induction of NeuroD6 binding to regulatory sites of GPx3 and TXNL1 (FIG. 5B).
  • React ive oxygen species (ROS) accumulated significantly in spinal cord injury and miR486—injected spinal cord tissue and siNeuroD6-injected spinal cord tissue (FIG. 5E).
  • ROS React ive oxygen species
  • FIG. 5E After 48 hours of siNeuroD6 injection, protein expression levels were confirmed and in vivo expression of the motor neuron markers NF160, Tuj and MBP in spinal cord tissues was downregulated (FIG. 50.
  • NeuroD6 expression knockdown in intact spinal cord cells in motor neurons It has a toxic effect, increased the expression of TNFa, ⁇ , IL6, C0X2, iNOS and eNOS (FIG.) And confirmed gene expression.Knockdown of NeuroD6 expression in the intact spinal cord has a cytotoxic effect on motor neurons.
  • TNFa, ⁇ , IL6, C0X2, iNOS and eNOS and down-regulated expression of SEPNl, TXNL2, GPxl and GPx3, which are factors that eliminate R0S, and the composition of pathological microenvironment according to tissue R0S accumulation.
  • Fig. 5g-i NeuroD6-mediated neuronal protection in spinal cord or cultured NPCs was also associated with caspase-3 downregulation and normalized ATP synthesis ability (FIG. 5J).
  • m iR486 expression increased more than 3-fold (320%) in hydrogen peroxide treatment and NeuroD6 or ascorbic acid markedly decreased hydrogen peroxide-mediated miR486 increase (194% and 133 ⁇ 4 respectively) (FIG. 5K).
  • Hydrogen peroxide-induced R0S production was markedly inhibited by the expression of NeuroD6 (53%), SEPNl (37%), TXNL1 (23%) and GPx3 (40%).
  • NeuroD6 or ascorbic acid (5 ug / ml) treatment significantly upregulated SEPN1, TXNL1 and GPx3 compared to the exposure effect with hydrogen peroxide alone (FIGS. 51-5O).
  • exogenous NeuroD6 protected neurons from R0S-mediated neurotoxicity (FIG. 5P).
  • Example 7 Confirmation of neuroprotective effect of exogenous NeuroD6 in the damaged spinal cord
  • the expression of SEPNl, TX L1 and GPx3 and BBS and BMS were confirmed.
  • NeuroD6 overexpression significantly increased SEPN1, TXNL1 and GPx3 expression (FIGS. 6B-E).
  • NeuroD6-injected animals recovered from paralysis, maintained their weight consistently during parallel gait, and exhibited a mainly rotated foot position while walking.
  • injured animals injected with scrambled siRNA only had limited joint mobility (FIGS. 6H and 6I).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to a pharmaceutical composition including a miRNA486 expression inhibitor as an active ingredient for preventing and treating neurological disorders. More particularly, since it has been verified that interference with the expression of miR486 using an miR486 inhibitor overcomes the inhibition of NeuroD6, thereby inducing improvements in spinal cord injuries (SCI), the miR486 inhibitor can be used as an active ingredient in a pharmaceutical composition for preventing and treating neurological disorders, and further, the mechanism by which miR486 controls the expression of NeuroD6 can be applied in screening for candidate materials for preventing and treating neurological disorders.

Description

【명세서】  【Specification】
【발명의 명칭】 [Name of invention]
microRNA486 발현 억제제를 유효성분으로 포함하는 신경계 질환 예방 및 치 료용 약학적 조성물  Pharmaceutical composition for preventing and treating neurological diseases, including microRNA486 expression inhibitors as an active ingredient
【기술분야】 Technical Field
본 발명은 miRNA486 발현 억제제를 유효성분으로 포함하는 신경계 질환 예 방 및 치료용 약학적 조성물에 관한 것이다.  The present invention relates to a pharmaceutical composition for preventing and treating neurological diseases, including miRNA486 expression inhibitors as an active ingredient.
【배경기술】 줄기세포 및 체세포의 자가증식 및 분화는 세포내 및 세포간 기작에 의해 조절된다. 세포간 기작은 후생적, 전사, 번역 및 번역 후 수준에서 조절되는 차별적인 유전자 발현을 포함한다. 유전자 발현에 관여하는 인자로서 조절 분자의 신규한 종류인 작은 암호화되지 않은 RNA(microRNAs, miRNAs)는 조직 재생에 연관되는 것으로 알려져 있다. miRNAs는 번역 조절에서 중요한 인자로서 부각되고, 세포 운명의 기능을 조절하는 것에 관련되며, 기능적 유전자 발현의 변형은 몇몇의 질환 모델에서 2차 손상 과정에서 중요한 역할을 하는 것으로 나타났다. miRNAs는 기능적 유전자의 특정 세트의 발현을 조절할 수 있으므로, 질환 모델 miRNAs 신호 중개자 중에서 2차 척수 손상 과정의 상류의 조절자로서 유용한 후보 물질이다. 다수의 miRNAs가 신경발달에서 중요한 역할을 가지며, 세포 분화능의 중요한 매개자인 것으로 여겨진다. 그들의 표적 유전자와 miRNAs의 특이적 상호작용에 기초하여, RNA-기반의 기술은 치료 전략으로서 가능성을 가진다. miRNAs 발현은 암, 심혈관계 질환 및 상처가 있는 침해를 포함하여 다양한 질환의 치료에 대한 신규한 치료 표적이 될 것이다. 질환 중의 하나로써 신경파괴는 근본적인 신경파괴적 이상의 고유한 특성에 의존하는 각가지 요소에 의한 것이다. 이것은 과부하된 면역세포가 중개하는 부산물의 세포독성과 함께 불안한 세포의 항상성을 나타낸다. 특히, 기존의 연구는 신경파괴에서 miRNAs 관련 가능성을 제시하며, miRNAs의 변경된 발현이 상기 중추 신경계에 외상에 의한 손상 후에 이차적 손상에 기여하는 것으로 나타났다. BACKGROUND OF THE INVENTION Self-proliferation and differentiation of stem cells and somatic cells are regulated by intracellular and intercellular mechanisms. Intercellular mechanisms include differential gene expression that is regulated at epigenetic, transcriptional, translational and posttranslational levels. Small, unencoded RNAs (microRNAs, miRNAs), a novel class of regulatory molecules as factors involved in gene expression, are known to be involved in tissue regeneration. miRNAs are emerging as important factors in translational regulation, involved in regulating the function of cell fate, and alterations in functional gene expression have been shown to play an important role in the secondary damage process in some disease models. Since miRNAs can regulate the expression of a specific set of functional genes, they are useful candidates as regulators upstream of the secondary spinal cord injury process among disease model miRNAs signaling mediators. Many miRNAs play an important role in neurodevelopment and are believed to be important mediators of cell differentiation. Based on the specific interaction of miRNAs with their target genes, RNA-based techniques have potential as therapeutic strategies. miRNAs expression will be a novel therapeutic target for the treatment of various diseases, including cancer, cardiovascular disease and wounded invasion. As one of the diseases, neurodestruction is due to various factors that depend on the inherent properties of the underlying neurodestructive disorder. This indicates the homeostasis of unstable cells along with the cytotoxicity of by-products mediated by overloaded immune cells. In particular, previous studies have explored the potential for miRNAs in neurodestruction. It has been shown that altered expression of miRNAs contributes to secondary damage following trauma to the central nervous system.
이러한 연구는 모든 유전자 조절이 조직 재생에 대한 양성 및 음성 조절자 둘 모두의 적절한 조절을 요구한다는 사실을 강조한다. miRNAs의 특이적 역할에 대한 새로운 발견은 miRNAs가 신경 기능의 다양성에 대한 중요한 기여자임을 나타낸다. 신경파괴 질환의 병생 동안, 상기 miRNA 패러다임은 유전자 발현의 조절에 밀접하게 관련되어 있고, 신호 경로에 영향을 준다.  This study highlights the fact that all gene regulation requires proper regulation of both positive and negative regulators for tissue regeneration. New findings on the specific role of miRNAs indicate that miRNAs are important contributors to the diversity of nerve function. During the pathogenesis of neurodestructive disease, the miRNA paradigm is closely related to the regulation of gene expression and influences signaling pathways.
신경 재생과 관련된 인자로써 NeuroD6이 있다. 상기 NeuroD6은 R0S-매개 2차 손상에 대한 상기 중추 신경계에서 신경보호적 역할을 갖는다고 알려져 있다. 상기 NeuroD6 단백질은 병리학상의 미세환경에서 신경 분화 및 생존을 증진하고, 항-세포사멸 및 샤페론 반응을 개시하는 상기 미토콘드리아의 바이오매스 (biomass)를 자극한다. 상기 NeuroD6 발현 간섭은 활발히 증식하는 대식세포에 의해 개시되는 운동신경 세포사멸의 유도 및 운동 신경의 세포사멸 및 미엘린 파괴를 매개하는 전 -염증 인자의 분비와 관련있다. 이러한 연속적인 병리학적 사건은 결과적으로 척수에 대해 외상적 1차 손상 후 오랜 기간 동안 2차 손상을 야기한다. 신경 분화 개시외에도, NeuroD6은 미토콘드리아 보존을 유지하는 항―세포사멸 조절자의 발현을 통해 신경 생존을 촉진시킨다. 기존에 지브라 피쉬의 척수 재생 동안 miRNA인 miR-133b의 기능이 연구되었고, 뇌간의 신경 재생에서 miR-133b의 발현의 증가가 확인된 바있다. miR— 486이 쥐의 뇌, 척수, 간, 심장에서 편재하게 발현을 확인한 연구가 보고된 바 있었다. 또한 심장에서 세포 생존을 조절하는 miR-486 또는 miR-422a을 동정하고, 심장조직에서 miR-486 및 /또는 miR-422a의 발현 증가에 따른 심장 비대, 심부전 또는 심근경색을 치료 또는 예방하는 방법과 안티센스 을리고뉴클레오티드와 같은 miR-486 저해제와 평활근세포의 접촉을 통하여 평활근 세포 증식을 저해하는 방법으로 포함하는 방법이 보고된 바 있다. 또한 안티센스 -miR486과 같은 miRNAs의 억제제를 투여함으로써, miR-486 발현을 간섭하여, 심부전을 치료 또는 예방하는 방법이 알려진 바 있다. 그러나, 현재 안티센스 -miR486을 이용하여 miR- 486의 발현을 간섭함으로써 과발현된 miR-486을 억제하였을 때, 척수손상모델에서 신경보호적 기능과 질병의 회복에 기능을 가지는 것에 대해서는 연구된 바 없다. 이에 본 발명자들은 척수 손상에 대한 miR As의 관련성과 이를 이용한 치료 적 표적을 확인하기 위하여 연구한 결과, 지속적인 신경손상에서 활성 산소종 (reactive oxygen species, R0S)이 중재하는 병리생리학에 관련있는 운동 뉴런 안 에서 특이적으로 과발현하는 miR486을 확인하였고, miR486 억제제를 이용한 miR486 의 발현 간섭이 NeuroD6의 억제를 회복함으로써 척수 손상 (spinal cord injury, SCI) 개선을 유도하는 것을 확인하였으므로, 상기 miR486 억제제는 신경계 질환 예 방 및 치료용 약학적 조성물의 유효성분으로 사용이 가능하며, miR486가 NeuroD6의 발현을 조절하는 기작을 신경계 질환 예방 및 치료용 후보물질을 스크리닝하는데 사용할 수 있음을 확인함으로써 본 발명을 완성하였다. NeuroD6 is a factor associated with nerve regeneration. NeuroD6 is known to have a neuroprotective role in the central nervous system against R0S-mediated secondary injury. The NeuroD6 protein promotes neuronal differentiation and survival in the pathological microenvironment and stimulates the biomass of the mitochondria to initiate anti-apoptosis and chaperone responses. The NeuroD6 expression interference is associated with the induction of motor neuron apoptosis initiated by actively proliferating macrophages and the secretion of pro-inflammatory factors mediating apoptosis and myelin destruction of motor neurons. These successive pathological events result in secondary damage for a long time after traumatic primary injury to the spinal cord. In addition to initiation of neuronal differentiation, NeuroD6 promotes neuronal survival through expression of anti-apoptotic regulators that maintain mitochondrial preservation. Previously, the function of miR miR-133b, a miRNA during spinal cord regeneration of zebrafish, has been studied, and an increase in miR-133b expression in brain regeneration has been identified. MiR-486 has been reported to be ubiquitous in rat brain, spinal cord, liver and heart. And identifying miR-486 or miR-422a, which regulates cell survival in the heart, and treating or preventing cardiac hypertrophy, heart failure, or myocardial infarction following increased expression of miR-486 and / or miR-422a in heart tissue. It has been reported to include a method of inhibiting smooth muscle cell proliferation through contact of a smooth muscle cell with a miR-486 inhibitor such as antisense oligonucleotide. In addition, a method of treating or preventing heart failure by interfering with miR-486 expression by administering an inhibitor of miRNAs such as antisense -miR486 has been known. However, in the spinal cord injury model, the antisense miR-486 was suppressed by interfering with the expression of miR-486. Neuroprotective function and function in recovery of disease have not been studied. Therefore, the present inventors have studied to identify the relationship between miR As and the therapeutic target using spinal cord injury. As a result, motor neurons related to pathophysiology mediated by reactive oxygen species (ROS) in sustained nerve injury Since miR486 was specifically overexpressed in the eye, miR486 inhibitor expression interference was found to induce spinal cord injury (SCI) improvement by restoring the inhibition of NeuroD6. The present invention was completed by confirming that miR486 can be used as an active ingredient for prevention and treatment, and miR486 can be used for screening candidates for preventing and treating neurological diseases.
【발명의 상세한 설명】 【기술적 과제】 [Detailed Description of the Invention] [Technical Issues]
본 발명의 목적은 miR486 발현 억제제를 유효성분으로 포함하는 신경계 질 환 예방 및 치료용 약학적 조성물, 신경계 질환 치료 방법, 신경계 질환 예방 및 치료용 후보물질 스크리닝 방법, 신경계 질환 진단용 키트, 신경계 질환 진단의 정 보를 제공하기 위한 유전자 검출 방법 및 신경계 질환 진단 방법을 제공하는 것이 다.  An object of the present invention is a pharmaceutical composition for preventing and treating neurological diseases, a method for treating neurological diseases, a method for screening candidate substances for preventing and treating neurological diseases, a kit for diagnosing neurological diseases, and a diagnostic for neurological diseases. It provides a gene detection method and a neurological disease diagnosis method for providing information.
【기술적 해결방법】 상기 목적을 달성하기 위하여, 본 발명은 miR486 발현 억제제를 유효성분으로 포함하는 신경계 질환 예방 및 치료용 약학적 조성물을 제공한다. 또한 본 발명은 약학적으로 유효한 양의 miR486 발현 억제제를 신경계 질환에 걸린 개체에게 투여하는 단계를 포함하는 암 예방 및 치료 방법을 제공한다. 또한, 본 발명은 Technical Solution In order to achieve the above object, the present invention provides a pharmaceutical composition for preventing and treating neurological diseases, comprising miR486 expression inhibitor as an active ingredient. The present invention also provides a method for preventing and treating cancer, comprising administering a pharmaceutically effective amount of a miR486 expression inhibitor to an individual suffering from a neurological disease. In addition, the present invention
1) miR486 발현 세포주에 피검물질을 처리하는 단계;  1) treating the test substance to miR486 expressing cell line;
2) 상기 세포주의 miR486의 발현량을 측정하는 단계;및 3) 상기 miR486의 발현량이 피검물질을 처리하지 않는 대조군에 비해 감소한 피검물질을 선별하는 단계를 포함하는, 신경계 질환 예방 및 치료용 후보물질 스크리닝 방법을 제공한다. 2) measuring the expression level of miR486 of the cell line; and 3) provides a method for screening a candidate substance for preventing and treating neurological diseases, including selecting a test substance whose expression level is reduced compared to a control group that does not process the test substance.
또한, 본 발명은  In addition, the present invention
1) miR486 및 NeuroD6 발현 세포주에 피검물질을 처리하는 단계 ;  1) treating the test substance to miR486 and NeuroD6 expressing cell line;
2) 상기 세포주의 NeuroD6 발현량을 측정하는 단계;및  2) measuring the amount of NeuroD6 expression in said cell line; and
3) 상기 NeuroD6 발현량이 피검물질을 처리하지 않은 대조군에 비해 증가한 피검물질을 선별하는 단계를 포함하는 신경계 질환 예방 및 치료용 후보물질 스크리닝 방법을 제공한다.  3) It provides a method for screening a candidate substance for preventing and treating neurological diseases, comprising selecting a test substance whose NeuroD6 expression amount is increased compared to a control group not treated with the test substance.
또한, 본 발명은 miR486 유전자의 뉴클레오티드, 상기 뉴클레오티드에 상보적인 서열을 가지는 뉴클레오티드, 또는 이들의 파편을 포함하는 신경계 질환 진단용 키트를 제공한다.  The present invention also provides a kit for diagnosing a neurological disease, comprising a nucleotide of the miR486 gene, a nucleotide having a sequence complementary to the nucleotide, or a fragment thereof.
아울러, 본 발명은  In addition, the present invention
1) 실험군으로서 피검체 유래 시료에서 miR486의 발현 수준을 측정하는 단계;  1) measuring the expression level of miR486 in a sample derived from the subject as an experimental group;
2) 단계 1)의 miR486의 발현수준과 대조군으로서 정상 개체 유래 시료의 miR486의 발현 수준을 비교하는 단계; 및  2) comparing the expression level of miR486 of step 1) with the expression level of miR486 of a sample derived from a normal individual as a control; And
3) 단계 2)의 miR486 발현 수준이 대조군에 비해 증가한 경우 신경계질환에 걸릴 위험이 높은 것으로 판정하는 단계를 포함하는 신경계 질환 진단의 정보를 제공하기 위한 유전자 검출 방법을 제공한다.  3) Provides a gene detection method for providing information for diagnosing neurological disease, comprising determining that the miR486 expression level of step 2) is higher than that of the control group.
또한, 본 발명은  In addition, the present invention
1) 실험군으로서 피검체 유래 시료에서 miR486의 발현 수준을 측정하는 단계;  1) measuring the expression level of miR486 in the subject-derived sample as an experimental group;
2) 단계 1)의 miR486의 발현수준과 대조군으로서 정상 개체 유래 시료의 miR486의 발현 수준을 비교하는 단계 ; 및  2) comparing the expression level of miR486 of step 1) and the expression level of miR486 of a sample derived from a normal individual as a control; And
3) 단계 2)의 miR486 발현 수준이 대조군에 비해 증가한 경우 신경계질환에 걸린 개체로 판정하는 단계를 포함하는 신경계 질환의 진단 방법을 제공한다. 또한 본 발명은 NeuroD6를 유효성분으로 함유하는 신경계 질환의 예방 및 치료용 약학적 조성물을 제공한다. 【유리한 효과】 본 발명에서, miR486 발현 억제제를 이용한 miR486의 발현 간섭이3) When the miR486 expression level of step 2) is increased compared to the control group provides a method for diagnosing a neurological disease comprising the step of determining that the subject has a neurological disease. The present invention also provides a pharmaceutical composition for the prevention and treatment of neurological diseases containing NeuroD6 as an active ingredient. Advantageous Effects In the present invention, expression interference of miR486 using miR486 expression inhibitor
NeuroD6의 억제를 회복함으로써 척수 손상 (spinal cord injury, SCI) 개선을 유도하는 것을 확인하였으므로, 상기 niiR486 억제제는 신경계 질환 예방 및 치료용 약학적 조성물의 유효성분으로 사용이 가능하고, miR486이 NeuroD6의 발현을 조절하는 기작을 신경계 질환 예방 및 치료용 후보물질을 스크리닝하는데 사용할 수 있으며, 신경계 질환 진단용 마커로 사용할 수 있다. 【도면의 간단한 설명】 Since it was confirmed that induction of spinal cord injury (SCI) is improved by restoring the inhibition of NeuroD6, the niiR486 inhibitor can be used as an active ingredient of a pharmaceutical composition for preventing and treating neurological diseases, and miR486 expresses NeuroD6. Mechanism to control the can be used to screen for candidates for the prevention and treatment of neurological diseases, can be used as a marker for diagnosing neurological diseases. [Brief Description of Drawings]
도 1은 외상적 손상 후 운동 신경에서 miR486의 과발현 및 척수 조직에서 표적 유전자의 저해를 나타낸 도이다:  1 shows overexpression of miR486 in motor neurons after traumatic injury and inhibition of target genes in spinal cord tissue:
도 1의 (a)는 척수 손상에서 miR486 또는 스크램블 RNA(scrambled RNA) 주입 전 및 주입 7일 후 miR486 표적 유전자인 NeuroD6의 발현을 나타낸다;  FIG. 1A shows the expression of NeuroD6, a miR486 target gene, before spinal cord injury and after 7 days of injection of miR486 or scrambled RNA;
도 1의 (b)는 miR486 또는 스크램블 RNA 주입 전 및 주입 7일 후 척수 손상 병변에서 miR486 발현의 현장 흔성화 (/ situ hybridization) 분석을 나타낸다; 도 1의 (c)는 척수 조직에서의 손상 병변에서 운동 신경 안의 miR486 부위 ί "나타낸다;  (B) shows in situ hybridization analysis of miR486 expression in spinal cord injury lesions before and after 7 days of miR486 or scrambled RNA injection; FIG. 1C shows miR486 region ί “in motor neurons in injured lesions in spinal cord tissue;
도 1의 (d)는 척수 손상 병변 (T10)에서 NF160+ 운동신경의 NeuroD6 발현을 나타내는 면역조직학적 이미지를 나타내고, 화살표는 NF160+ 운동신경에서 발현하는 NeuroD6을 나타낸다;및  FIG. 1D shows immunohistochemical images of NeuroD6 expression of NF160 + motor neurons in spinal cord injury lesions (T10), and arrows represent NeuroD6 expressing in NF160 + motor neurons; and
도 1의 (e)는 척수 손상 치료 및 평가에 대한 실험적 절차의 도해 흐름도를나타낸다.  FIG. 1E shows a schematic flow diagram of an experimental procedure for treating and evaluating spinal cord injury.
도 2는 miR486 간섭의 치료적 적용 및 외상적으로 손상된 척수의 평가를 나타낸 도이다:  2 shows the therapeutic application of miR486 interference and evaluation of traumatically injured spinal cord:
도 2의 (a)는 BBB(Beattie and Bresnahan)로 평가된 손상 척수안에서 안티센스 -miR486(antisenseᅳ miR486) 치료의 기능적인 결과를 나타낸다; 2 (a) shows the functional outcome of antisense −m iR486 (antisense ™ miR486) treatment in the injured spinal cord assessed with Beattie and Bresnahan (BBB);
도 2의 (b)는 BMS(Basso mouse scale)로 평가된 손상 척수안에서 안티센스- miR486 치료 결과를 나타낸다; FIG. 2 (b) shows antisense-injured spinal cord in the damaged spinal cord assessed on the Basso mouse scale (BMS). miR486 treatment results are shown;
도 2의 (c)는 miR486를 주입하였을 때, 외상적인 척수손상 증상을 유도하는 것을 나타낸다;  Figure 2 (c) shows the induction of traumatic spinal cord injury symptoms when injecting miR486;
도 2의 (d)는 정상 및 손상된 척수에 miR486 또는 스크램블 RNA를 처리하였을 때, 신경파괴의 조직학적 분석 및 세포사멸적 세포 사멸 평가를 나타낸다;  Figure 2 (d) shows histological analysis and apoptotic cell death evaluation of neuronal destruction when miR486 or scrambled RNA treated normal and damaged spinal cord;
도 2의 (e)는 정상 척수 (Normal SC), 스크램블 RNA를 처리한 척수 (scramRNA SO, 손상된 척수 (SCI), 스크램블 RNA를 처리한 손상된 척수 (SCI/scramRNA), miR486을 처리한 정상 척수 (itiiR486/SC) 및 안티센스_1 1¾86(3(:1/^^ᅳ111 ?486)을 처리한 손상된 척수에서 TUNEL-양성 개체군의 비교를 나타낸다;  2 (e) shows normal spinal cord (Normal SC), spinal cord treated with scrambled RNA (scramRNA SO, damaged spinal cord (SCI), damaged spinal cord treated with scrambled RNA (SCI / scramRNA), normal spinal cord treated with miR486 ( comparison of TUNEL-positive populations in injured spinal cords treated with itiiR486 / SC) and antisense_1 1¾86 (3 (: 1 / ^^ ᅳ 111? 486);
도 2의 (f)는 정상 척수, 스크램블 RNA를 처리한 척수, 손상된 척수, 스크램블 RNA를 처리한 손상된 척수, miR486을 처리한 정상 척수 및 안티센스- miR486을 처리한 손상된 척수에서 캐스페이즈 -3(caspase-3) 발현을 나타낸다;  FIG. 2 (f) shows caspase-3 (caspase) in the normal spinal cord, spinal cord treated with scrambled RNA, damaged spinal cord, damaged spinal cord treated with scrambled RNA, normal spinal cord treated with miR486, and damaged spinal cord treated with antisense miR486. -3) express expression;
도 2의 (g)는 정상 척수, 스크램블 RNA를 처리한 척수, 손상된 척수, 스크램블 RNA를 처리한 손상된 척수, miR486을 처리한 정상 척수 및 안티센스- miR486을 처리한손상된 척수에서 ATP 생산을 나타낸다;  Figure 2 (g) shows ATP production in normal spinal cord, spinal cord treated with scrambled RNA, damaged spinal cord, damaged spinal cord treated with scrambled RNA, normal spinal cord treated with miR486 and damaged spinal cord treated with antisense-miR486;
도 2의 (h)는 안티센스 miR486 또는 스크램블 RNA 처리 후 5일 및 10일의 척수 손상 쥐에서 척수 손상 및 miR486 간섭에서 신경파괴적인 표현형의 면역조직화학적 분석을 나타낸다;  Figure 2 (h) shows immunohistochemical analysis of neurodestructive phenotypes in spinal cord injury and miR486 interference in spinal cord injury mice 5 and 10 days after antisense miR486 or scrambled RNA treatment;
도 2의 (i)는 손상된 척수 조직의 Luxal Fast Blue (LFB) 염색에 의한 미엘린 파괴 및 신경파괴의 평가를 나타낸다; 및  2 (i) shows the evaluation of myelin destruction and neurodestruction by Luxal Fast Blue (LFB) staining of damaged spinal cord tissue; And
도 2의 (j)는 손상된 척수 조직에 miR486 발현 간섭 0일, 2일 및 7일에 후처리 후 신경 마커인 NeuroD6 및 NF160의 TuJ, MBP 및 GFAP의 발현을 나타낸다. 도 3은 miR486 발현 간섭이 현저하게 전 -염증 인자 분비를 저해하였고, 또한 척수 손상에서 R0Sᅳ제거 유전자 발현을 유도한 것을 나타낸다:  FIG. 2 (j) shows the expression of TuJ, MBP and GFAP of neuronal markers NeuroD6 and NF160 after post-treatment on days 0, 2 and 7 of miR486 expression interference in injured spinal cord tissue. 3 shows that miR486 expression interference markedly inhibited pro-inflammatory factor secretion and also induced R0SVIII gene expression in spinal cord injury:
도 3의 (a)및 (b)는 각각 손상된 척수에 간섭 전 및 miR486 발현 간섭 또는 스크램블 A 처리의 7일 후의 다른 전 -염증 사이토카인 (cytokine)발현의 실시간 RT-PCR 분석 및 조직화학적 분석 결과를 나타낸다;  3 (a) and 3 (b) show real-time RT-PCR analysis and histochemical analysis of other pro-inflammatory cytokine expression before interference with the damaged spinal cord and after 7 days of miR486 expression interference or scramble A treatment. Represents;
도 3의 (c)는 척수 손상 병변에서 MPO, iNOS 및 eNOS 발현의 실시간 RT-PCR 분석을 나타낸 도이다; 3 (c) shows real-time RT-PCR of MPO, iNOS and eNOS expression in spinal cord injury lesions. Is a diagram showing the analysis;
도 3의 (d)는 척수 병변에 miR486의 간섭된 발현 또는 스크램블 R A 처리 7일 후 R0S-제거 시스템에 관련된 유전자인 SEPN1, TXNL1, GPxl 및 GPx3에 대한 실시간 RT-PCR분석을 나타낸다;  FIG. 3D shows real-time RT-PCR analysis of SEPN1, TXNL1, GPxl and GPx3, genes involved in the R0S-elimination system 7 days after interference or expression of miR486 on medullary spinal cord lesions;
도 3의 (e)는 손상된 척수 조직에 안티센스 _miR486 및 스크램블 RNA를 처리하였을 때 P13K, p-Akt, 백스 (Bax), 캐스패이즈 -3 및 사이토크름 CCcytochrome C, Cytoch C) 발현을 나타낸다;  3 (e) shows the expression of P13K, p-Akt, Bax, Caspase-3 and cytokine CCcytochrome C, Cytoch C) when treated with antisense _miR486 and scrambled RNA in injured spinal cord tissues;
도 3의 (f)는 손상된 척수 조직 (T10)의 운동 신경에서 산화환원 제거 단백질인 TXNL1의 발현에 대한 면역조직화학적 분석을 나타낸다;  3 (f) shows an immunohistochemical analysis of the expression of the redox removal protein TXNL1 in motor neurons of injured spinal cord tissue (T10);
도 3의 (g)는 손상된 척수 조직 (T10)의 운동 신경에서 산화환원 제거 단백질인 GPx3의 발현에 대한 면역조직화학적 분석을 나타낸다;및  Figure 3 (g) shows an immunohistochemical analysis of the expression of the redox protein GPx3 in motor neurons of injured spinal cord tissue (T10); and
도 3의 (h)는 손상된 척수 조직 (T10)의 운동 신경에서 산화환원 제거 단백질인 SEPN1의 발현에 대한 면역조직화학적 분석을 나타낸다.  Figure 3 (h) shows an immunohistochemical analysis of the expression of SEPN1, a redox removal protein in motor neurons of injured spinal cord tissue (T10).
도 4는 손상된 척수에서 2차 손상 과정에서 miR486의 잠재적인 역할을 나타낸 도이다:  4 shows the potential role of miR486 in the secondary injury process in the injured spinal cord:
도 4의 (a)는 i R486 및 miR486 발현 간섭 및 기능적인 분석에 대한 실험적 절차의 도해 흐름도를 나타낸다;  4 (a) shows a schematic flow chart of an experimental procedure for i R486 and miR486 expression interference and functional analysis;
도 4의 (b)는 정상 척수, 손상된 척수, 정상척수에 miR486 및 스크램블 RNA를 주입하였을 때 Tuj, NF160, MBP및 GFAP의 발현을 나타낸다;  Figure 4 (b) shows the expression of Tuj, NF160, MBP and GFAP when injected miR486 and scrambled RNA into normal spinal cord, damaged spinal cord, normal spinal cord;
도 4의 (c)는 정상 척수 및 손상된 척수에 따로 또는 함께 스크램블 R A, miR486 및 안티센스 -miR486을 주입하였을 때 miR486, NeuroD6, Cox2, IL-Ιβ , IL-6 및 TNFci 발현올 나타낸다;  4 (c) shows miR486, NeuroD6, Cox2, IL-Ιβ, IL-6 and TNFci expression when scrambled R A, miR486 and antisense-miR486 were injected separately or together with normal and injured spinal cord;
도 4의 (d)는 정상 척수, 손상된 척수 및 정상 척수에 miR486을 주입한 군에 대해서 NeuroD6, EDI, MPO, iNOS및 eNOS발현을 나타낸다;  4 (d) shows NeuroD6, EDI, MPO, iNOS and eNOS expression in the group injected with miR486 in the normal spinal cord, the damaged spinal cord and the normal spinal cord;
도 4의 (e)는 척수병변, 정상 척수에 스크램블 R A를 주입한 군, 정상 척수에 miR486을 주입한 군, 정상척수에 miR486 및 안티센스 -miR486을 함께 주입한 군에서 R0S발현수준을 나타낸다;  4 (e) shows R0S expression levels in spinal cord lesions, the group injected with scrambled R A to the normal spinal cord, the group injected with miR486 to the normal spinal cord, and the group injected with miR486 and antisense -miR486 to the normal spinal cord;
도 4의 (f)는 정상 척수 및 손상된 척수에 따로 또는 함께 스크램블 RNA, miR486 및 안티센스— miR486을 주입하였을 때 SEPNl, TX L1, Gpxl 및 Gpx3 발현을 나타낸다; 4 (f) shows SEPNl, TX L1, Gpxl and Gpx3 expression when scrambled RNA, miR486 and antisense—miR486 were injected separately or together with normal and injured spinal cord. Represents;
도 4의 (g)는 정상 척수 및 손상된 척수에 스크램블 RNA및 miR486을 처리하였을 때, P-P13K, p-Akt, p-p38, p-JNK, Bax, caspase-3 및 사이토크롬 C 발현을 나타낸다;  Figure 4 (g) shows the expression of P-P13K, p-Akt, p-p38, p-JNK, Bax, caspase-3 and cytochrome C when treated with scrambled RNA and miR486 in the normal and damaged spinal cord ;
도 4의 (h)는 배양된 NPC에 스크램블 RNA 및 miR486을 주입하였을 때 유세포 분석 결과와 TUNEL 분석 결과를 나타낸다;  Figure 4 (h) shows the flow cytometry results and TUNEL analysis results when the scrambled RNA and miR486 injected into the cultured NPC;
도 4의 (i)는 배양된 NPC에 스크램블 RNA, mi 486 또는 miR486 및 안티센스 miR486을 함께 처리한 군에서 C0X2, MPO, iNOS, eNOS, p-p38, p-JNK, Bax 캐스패이즈 3 및 사이토크름 C의 발현을 나타낸다;및 4 (i) shows C0X2, MPO, iNOS, eNOS, p-p38, p-JNK, Bax caspase 3, in the group treated with scrambled RNA, mi 486 or miR486 and antisense m iR486 in cultured NPCs. Expression of cytokine C; and
도 4의 (j)는 배양된 NPC에 스크램블 R A, 안티센스 -miR486 또는 miR486을 처리하였을 때, NeuroD6 발현을 나타낸다.  4 (j) shows NeuroD6 expression when treated with scrambled R A, antisense -miR486 or miR486 in cultured NPC.
도 5는 외상적인 척수손상 -같은 표현형을 유도하는 NeuroD6 발현의 녹다운 (Knockdown)을 나타낸 도이다:  FIG. 5 shows knockdown of NeuroD6 expression leading to traumatic spinal cord injury-like phenotype:
도 5의 (a)는 염색체 6번의 상기 醒 u-NeuroD6 유전자의 3UTR의 miR486- 결합하는 부위 및 NeuroD6 및 상기 miR486 유전자 사이의 상보성이 있는 염기 서열을 나타낸다;  Figure 5 (a) shows the miR486-binding site of 3UTR of the 醒 u-NeuroD6 gene of chromosome 6 and the base sequence complementary between NeuroD6 and the miR486 gene;
도 5의 (b)는 miR486 발현 간섭이 NeuroD6가 GPx3 및 TXNL1 유전자의 조절 부위에 결합을 유도하는 것에 대한 칩 (CHIP)-PCR 결과를 나타낸다;  5 (b) shows the chip (CHIP) -PCR results for miR486 expression interference inducing NeuroD6 binding to regulatory sites of GPx3 and TXNL1 genes;
도 5의 (c)는 정상 척수에 NeuroD6의 주입 1일 후에 쥐에서 뒷다리 마비와 같은 외상적인 척수손상 -같은 증상을 유도한 결과를 나타낸다;  Figure 5 (c) shows the result of traumatic spinal cord injury-like symptoms such as hind limb paralysis in mice 1 day after injection of NeuroD6 into the normal spinal cord;
도 5의 (d)는 척수 손상, miR486-주입된 정상 척수 및 iniR486/simiR486- 주입된 정상 척수에서 NeuroD6 발현의 현장 분석 (7 일차)을 나타낸다;  FIG. 5D shows in situ analysis (day 7) of NeuroD6 expression in spinal cord injury, miR486-implanted normal spinal cord and iniR486 / simiR486-implanted normal spinal cord;
도 5의 (e)는 정상 척수 조직에서 NeuroD6의 녹다운하였을 때, 7 일차 척수 조직에서 활성산소종 (Reactive Oxygen Species, R0S) 발현을 나타낸다; 및  FIG. 5 (e) shows Reactive Oxygen Species (ROS) expression in 7-day spinal cord tissue when NeuroD6 is knocked down in normal spinal cord tissue; And
도 5의 (f)는 정상 척수에서 NeuroD6의 녹다운하였을 때, NeuroD6 주입 1일 후에 NF160, Tuj 및 MBP 발현을 나타낸다;  5 (f) shows NF160, Tuj and MBP expression 1 day after NeuroD6 injection when NeuroD6 knocked down in normal spinal cord;
도 5의 (g)는 정상 척수에서 NeuroD6의 녹다운하였을 때, NeuroD6 주입 1일 후에 염증 인자인 EDI, Cox2, iNOS 및 eNOS의 발현을 나타낸다;  Figure 5 (g) shows the expression of inflammatory factors EDI, Cox2, iNOS and eNOS when NeuroD6 knocked down in normal spinal cord, 1 day after NeuroD6 injection;
도 5의 (h)는 정상 척수에서 NeuroD6의 녹다운하였을 때, NeuroD6 주입 1일 후에 IL-Ιβ IL-6 및 TNFa 발현을 나타낸다; Figure 5 (h) is the day of NeuroD6 injection when knocked down NeuroD6 in normal spinal cord Later IL-Iβ IL-6 and TNFa expression;
도 5의 (i)는 정상 척수에서 NeuroD6 발현 간섭은 대조군 (정상 척수에 스크램블 RNA)에 비해 R0Sᅳ제거 시스템에 관련된 인자인 SEPNl, TXNL1, TXNL2, Gpxl 및 Gpx3을 발현을 나타낸다;  FIG. 5 (i) shows that NeuroD6 expression interference in normal spinal cord expresses SEPN1, TXNL1, TXNL2, Gpxl and Gpx3, factors related to the R0SVIII deletion system, compared to control (scrambled RNA in normal spinal cord);
도 5의 (j)는 NeuroD6의 녹다운 및 miR486 주입에 대한 ATP 활성 수준 및 캐스패이즈 -3활성을 나타낸다;  5 (j) shows ATP activity levels and caspase-3 activity for knockdown and miR486 injection of NeuroD6;
도 5의 (k) 및 (1)은 배양된 NPC에 과산화 수소를 처리하였을 때, miR486 및 NeuroD6발현 수준을 나타낸다;  5 (k) and (1) show miR486 and NeuroD6 expression levels when hydrogen peroxide was treated to cultured NPCs;
도 5의 (m) 내지 (p)는 배양된 NPC에 과산화 수소를 처리하였을 때, SEPN1, TXNL1, GPx3 및 NF160발현 수준을 나타낸다; 및  5 (m) to (p) show the expression levels of SEPN1, TXNL1, GPx3 and NF160 when treated with hydrogen peroxide in cultured NPCs; And
도 5의 (q)는 척수 안에 외상적인 손상 후에 운동 신경의 R0S/miR486- 매개하는 신경파괴의 도해 흐름도를 나타낸다.  FIG. 5 (q) shows a schematic flow chart of R0S / miR486-mediated neurodestruction of motor neurons after traumatic injury in the spinal cord.
도 6은 척수손상에서 NeuroD6 발현을 회복하였을 때 , R0S-제거 효소의 발현 및 운동 신경의 신경파괴를 나타낸다:  Figure 6 shows the expression of R0S-removing enzymes and neurodegeneration of motor neurons when restoring NeuroD6 expression in spinal cord injury:
도 6의 (a)는 miR486, 안티센스 -miR486, siNeuroD6 및 NeuroD6처리 및 기능적인 판단에 대한 실험적 절차 도해 흐름도이다;  FIG. 6A is a flow chart illustrating an experimental procedure for processing miR486, antisense -miR486, siNeuroD6 and NeuroD6 and functional judgment; FIG.
도 6의 (b) 내지 (f)는 각각 정상 척수 또는 손상된 척수에 스크램블 RNA, miR486, siNeuroD6 또는 NeuroD6을 처리하였을 때, NeuroD6, SEPNl, TXNL1, GPx3 및 NF160의 발현을 나타낸다;  6 (b) to (f) show the expression of NeuroD6, SEPNl, TXNL1, GPx3 and NF160 when treated with scrambled RNA, miR486, siNeuroD6 or NeuroD6 to normal or damaged spinal cord, respectively;
도 6의 (g)는 손상된 척수에 스크램블 RNA, NeuroD6, miR486, mir486 및 NeuroD6, siNeuroD6 또는 siNeuroD6 및 NeuroD6을 처리하였을 때, NF160 및 Cox2의 공동 발현, ED1 및 GFAP의 공동 발현, NF160 및 NeuroD6의 공동 발현을 나타낸다;및  Figure 6 (g) shows co-expression of NF160 and Cox2, co-expression of ED1 and GFAP, co-expression of NF160 and NeuroD6 when treated with scrambled RNA, NeuroD6, miR486, mir486 and NeuroD6, siNeuroD6 or siNeuroD6 and NeuroD6 in the injured spinal cord Expression; and
도 6의 (h) 및 (i)는 각각 정상 척수, 손상된 척수, 손상된 척수에 스크램블 RNA를 처리한 군, 손상된 척수에 안티센스 _miR486을 처리한 군에 대해 BBS 및 BMS를 수행한 결과를 나타낸다.  6 (h) and (i) show the results of BBS and BMS for the normal spinal cord, the damaged spinal cord, and the damaged spinal cord treated with scrambled RNA and the damaged spinal cord treated with antisense _miR486.
【발명의 실시를 위한 최선의 형태】 [Best form for implementation of the invention]
본 발명은 miR486 발현 억제제를 유효성분으로 포함하는 신경계 질환 예방 및 치료용 약학적 조성물을 제공한다. The present invention prevents neurological diseases comprising miR486 expression inhibitor as an active ingredient And pharmaceutical compositions for treatment.
또한 본 발명은 약학적으로 유효한 양의 miR486 발현 억제제를 신경계 질환에 걸린 개체에 투여하는 단계를 포함하는 신경계 질환의 치료 방법을 제공한다.  The present invention also provides a method of treating a neurological disorder comprising administering a pharmaceutically effective amount of a miR486 expression inhibitor to a subject suffering from the neurological disorder.
또한 본 발명은 약학적으로 유효한 양의 miR486 발현 억제제를 개체에 투여하는 단계를 포함하는 신경계 질환의 예방 방법을 제공한다.  The present invention also provides a method for preventing a nervous system disease comprising administering to a subject a pharmaceutically effective amount of a miR486 expression inhibitor.
또한 본 발명은 miR486 발현 억제제를 신경계 질환 예방 및 치료용 약학적 조성물의 제조에 이용하는 용도를 제공한다.  The present invention also provides a use of miR486 expression inhibitor in the manufacture of a pharmaceutical composition for preventing and treating neurological diseases.
상기 miR486 발현 억제제는 miR486 유전자에 상보적으로 결합하는 안티센스 올리고뉴클레오티드, 작은 간섭 RNA(small interfering RNA, siRNA), 짧은 헤어핀 A 및 리보자임 (ribozyme)으로 이루어진 군으로부터 선택되는 것이 될 수 있으나, 안티센스 뉴클레오티드일 수 있으나ᅳ 이에 한정하지 않는다.  The miR486 expression inhibitor may be selected from the group consisting of antisense oligonucleotides complementary to the miR486 gene, small interfering RNA (siRNA), short hairpin A and ribozyme, but are antisense nucleotides But may not be limited thereto.
상기 안티센스 뉴클레오티드는 왓슨 -클릭 염기쌍에 정의된 바에 따라, DNA, 미성숙 -mR A 또는 성숙된 mR A의 상보적 염기서열에 결합 (흔성화)하여 DNA에서 단백질로서 유전정보의 흐름을 방해하는 것이다. 표적 서열에 특이성이 있는 안티센스 뉴클레오티드의 성질은 그것들을 예외적으로 다기능이 되도록 한다. 안티센스 뉴클레오티드는 모노머 단위의 긴 사슬이기 때문에 이들은 표적 RNA 서열에 대해 쉽게 합성될 수 있다. 최근 많은 연구들은 표적 단백질을 연구하기 위한 생화학적 수단으로 안티센스 뉴클레오티드의 유용성을 증명하였다 (Rothenberg et al., J. Natl. Cancer Inst., 81:1539-1544, 1999). 올리고뉴클레오티드 화학 및 향상된 세포흡착, 표적결합 친화도 및 뉴클레아제 내성을 나타내는 뉴클레오티드 합성 분야에서 최근 많은 진보가 있었으므로 안티센스 뉴클레오티드의 사용은 새로운 형태의 억제제로 고려될 수 있다.  The antisense nucleotides, as defined in the Watson-click base pair, bind (combine) to the complementary sequencing of DNA, immature -mR A or mature mR A to disrupt the flow of genetic information as a protein in DNA. The nature of antisense nucleotides specific to the target sequence makes them exceptionally multifunctional. Since antisense nucleotides are long chains of monomeric units they can be easily synthesized for the target RNA sequence. Many recent studies have demonstrated the utility of antisense nucleotides as biochemical means for studying target proteins (Rothenberg et al., J. Natl. Cancer Inst., 81: 1539-1544, 1999). The use of antisense nucleotides can be considered as a novel form of inhibitor because of recent advances in nucleotide synthesis and in the field of nucleotide synthesis that exhibit improved cell adsorption, target binding affinity and nuclease resistance.
상기 siRNA는 miR486 유전자의 염기서열 내에서 선택되는 15 내지 30머 (mer)의 센스 서열 및 상기 센스 서열에 상보적으로 결합하는 안티센스 서열로 구성되고, 이때, 상기 센스 서열은 특별히 이에 제한되는 것은 아니며, 25개의 염기로 구성되는 것일 수 있으나, 이에 한정되지 않는다.  The siRNA is composed of a 15-30 mer sense sequence selected from the base sequence of the miR486 gene and an antisense sequence complementarily binding to the sense sequence, wherein the sense sequence is not particularly limited thereto. It may be composed of 25 bases, but is not limited thereto.
상기 miR486 발현 억제제는 NeuroD6의 발현을 증가시키는 것일 수 있으나, 이에 한정하지 않는다. 상기 신경계 질환은 구체적으로 척수 손상, 파킨슨병, 뇌졸중, 근위축성 척수측색경화증, 운동신경손상, 외상에 의한 말초신경손상, 허혈성 뇌손상, 신생아 저산소성 허혈성 뇌손상, 뇌성마비, 간질, 난치성 간질, 알 S하이머병, 선천성 대사성 신경계질환 및 외상성 뇌손상 (traumatic brain injury)으로 이루어진 5 군으로부터 선택된 어느 하나인 것일 수 있으나, 보다구체적으로 척수 손상일 수 있으나, 이에 한정하지 않으며, 신경 손상으로 인해 발생할 수 있는 모든 신경계 질환에 적용가능하다. The miR486 expression inhibitor may be to increase the expression of NeuroD6, but is not limited thereto. The neurological diseases include spinal cord injury, Parkinson's disease, stroke, muscular dystrophy, scoliosis, motor nerve injury, peripheral nerve injury due to trauma, ischemic brain injury, neonatal hypoxic ischemic brain injury, cerebral palsy, epilepsy, refractory epilepsy, Al Sheimer's disease, congenital metabolic neurological disease and traumatic brain injury may be any one selected from the group 5, but may be more specifically spinal cord injury, but not limited to this, may occur due to nerve damage Applicable to all neurological diseases present.
본 발명자들은, 운동 뉴런에서 miR486 과발현이 R0S가 매개하는 척수 손상의 신경파괴에 주는 영향을 확인하였다. 척수 손상 조직에서 miR486을 과발현 10 및 NeuroD6을 포함하여 miR486의 대부분의 표적 유전자는 하향조절된 것을 확인하였다 (도 la 및 lb 참조). 척수 손상 병변에서 NF160+ 운동신경에서 miR486만 발현되었고, 세포질에 2',7'-디클로로디하이드로플루오레세인 디아세테이트 (2ᅳ ,7'-dichlorodihydrof kiorescein diacetate, DCFDA)를 생산하고 활성산소종 (Reactive oxygen species, R0S)이 축적된 것을 확인하였으며 (도 lc 15 참조), NeuroD6 발현이 척수 손상의 병변 및 정상적인 척수 조직의 운동 신경의 핵 및 세포질에서 탐지되었다. 또한 ED1+ 대식세포만이 R0S를 생산했으나, miR486은 발현하지 않았다 (도 Id 참조).  The present inventors have identified the effect of miR486 overexpression on neuronal destruction of R0S mediated spinal cord injury in motor neurons. It was found that most target genes of miR486 were downregulated, including overexpression of miR486 10 and NeuroD6 in spinal cord injury tissues (see FIGS. La and lb). In spinal cord injury lesions, only miR486 was expressed in NF160 + motor neurons, and 2 ', 7'-dichlorodihydrofluorescein diacetate (2 ᅳ, 7'-dichlorodihydrof kiorescein diacetate, DCFDA) was produced in the cytoplasm and reactive oxygen species (Reactive) oxygen species (R0S) was confirmed to accumulate (see FIG. 15). NeuroD6 expression was detected in the nucleus and cytoplasm of lesions of spinal cord injury and motor neurons of normal spinal cord tissue. In addition, only ED1 + macrophages produced R0S, but did not express miR486 (see FIG. ID).
. 또한, miR486 발현 간섭에 따른 운동 기능 회복을 확인한 결과, miR486. In addition, as a result of confirming the recovery of motor function according to the interference of miR486 expression, miR486
. 발현 간섭된 척수 손상 동물은 개선된 운동 기능을 보였다. 척수 손상 3일 후에, 20 miR486 발현 간섭된 척수 손상 동물은 그들의 발이 걷는 동안에 회전하는 부위에 ' 대부분 있었음에도 불구하고, 평행 보행 동안 지속적으로 그들의 몸무게가 유지되었고, 마비된 표현형이 점차적으로 회복하였다. 대조적으로, 스크램블 siRNA(scrambled siRNA)만이 주입된 손상된 동물은 관절 운동이 제한되었다 (도 2a 및 2b 참조). . Expression interfered spinal cord injury animals showed improved motor function. Three days after spinal cord injury, 20 miR486 expression interference spinal cord injury animals despite the 'most there was a part that rotates during their feet walking, and parallel to the walking continued their were weighed maintained during the arrest phenotype was gradually restored to . In contrast, injured animals injected only with scrambled siRNA had limited joint movement (see FIGS. 2A and 2B).
25 정상 척수로 miR486만 주입하였을 때, 척수손상과 같은 표현형을 보이는 것을 확인하였으며 (도 2d 참조), 이것은 특이적 기능 이상, 운동 신경 세포사멸 (TU EL -양성 ) 및 세포 생존 방해를 포함하였다 (도 2e 참조). 척수 손상 동물에서 miR486 발현 간섭은 현저하게 운동기능을 개선하였고, 캐스패이즈 -3 활성화 및 ATP 생산 기능장애를 통한 TUNEL-양성 세포사멸적 세포 사멸을 보호하는 것을 보였다 (도 2f 및 2g 참조). 척수 조직 병변의 잘 발달된 운동 신경 (NF 160+)이 안티센스 -miR486을 처리한 척수 손상 조직에서 두드러진 것을 나타냈으며 (도 2h 참조), miR486 발현 간섭된 척수 손상 동물 모델에서 운동 신경안의 미엘린의 생존 및 보존을 현저하게 증가시키는 것을 확인하였다 (도 2j 참조). 정상 척수 및 손상된 척수에 스크램블 RNA 또는 안티센스 -miR486을 처리하였을 때, 안티센스 -miR486을 처리한 군에서 강한 LFB염색을 확인하였다 (도 2i 참조). When only miR486 was injected into 25 normal spinal cords, it was confirmed to show a spinal cord-like phenotype (see FIG. 2D), which included specific dysfunction, motor neuron death (TU EL-positive), and cell survival inhibition ( 2e). Interference with miR486 expression in spinal cord injured animals markedly improved motor function and protected TUNEL-positive apoptotic cell death through caspase-3 activation and ATP production dysfunction (See FIGS. 2F and 2G). Well-developed motor neurons (NF 160+) of spinal cord tissue lesions were prominent in spinal cord injured tissues treated with antisense -miR486 (see FIG. 2H) and survival of myelin in motor neurons in miR486 expressing interfering spinal cord injury animal models And significantly increased preservation (see FIG. 2J). When scrambled RNA or antisense -miR486 was treated to the normal and damaged spinal cord, strong LFB staining was observed in the antisense -miR486 treated group (see FIG. 2I).
또한, miR486 발현 간섭의 GPx3, TXNLl 및 SEPNl 상향조절을 통한 NeuroD6 매개신경 보호 유도에 대한 결과를 확인한 결과, miR486 간섭은 효과적으로 i R486의 발현 및 상기 전염증성 인자인 Cox2, EDI, ΙΙΙβ IL6 및 TNFCL를 저해하였고 (도 3a 참조), 산화환원을 발생시키는 인자인 MP0 및 eNOS의 발현이 감소되었으며, R0S-제거하는 효소인 SEPNl, TXNLl, GPxl 및 GPx3는 현저하게 증가하였다 (도 3c, 3d, 3f 및 3h 참조). 증가한 miR486 발현은 NF160-양성 운동 뉴런안의 NeuroD6ᅳ GPx3, TXNLl 및 SEPNl의 하향조절된 발현을 유도하였다. 또한, 상기 GPx3, TXNLl 및 SEPNl 발현이 정상 척수 조직 안의 NF160+ 운동 뉴런에서 탐지되었다 (도 3e 참조). 척수 손상에서 miR486 발현 간섭 후에 ED1-양성 염증 세포, 대식세포, 마이크로글리알 세포의 수는 현저하게 감소하였다 (도 3b 참조). 배양된 신경전구세포 (neural progenitor cells, NPC)에서, miR486 발현의 녹다운 (knockdown)은 효과적으로 p-PI3K/p-Akt 발현을 유도하였고, NPC의 생존을 개선시켰으며, 세포들이 신경 세포 사멸에서 벗어나게 하였다. 척수 손상 쥐에 안티센스 -miR486 주입 후에 miR486 발현 간섭은 증가된 표적 유전자 발현을 야기하였다. 이것은 치명적인 신경 파괴 및 미엘린 파괴 수준을 높이는 것을 야기하였다 (도 4b 참조). miR486-주입 동물에서 산화환원을 발생시키는 인자인 EDI, MP0, iNOS 및 eNOS의 높은 수준의 발현을 보였다 (도 4d 참조). 척수 손상 및 miR486-주입된 정상 척수에서 높은 R0S생산을 확인하였다 (도 4e 참조).  In addition, as a result of neuroD6-mediated neuroprotective induction through the GPx3, TXNLl and SEPNl upregulation of miR486 expression interference, miR486 interference effectively expressed the expression of i R486 and Cox2, EDI, ΙΙβ IL6 and TNFCL. Inhibition (see FIG. 3a), the expression of redox-causing factors MP0 and eNOS was reduced, and the R0S-removing enzymes SEPNl, TXNLl, GPxl and GPx3 were significantly increased (FIGS. 3c, 3d, 3f and 3h). Increased miR486 expression induced downregulated expression of NeuroD6 ᅳ GPx3, TXNLl and SEPNl in NF160-positive motor neurons. In addition, the GPx3, TXNLl and SEPNl expression was detected in NF160 + motor neurons in normal spinal cord tissue (see FIG. 3E). After interference with miR486 expression in spinal cord injury, the number of ED1-positive inflammatory cells, macrophages, microglial cells was significantly reduced (see FIG. 3B). In cultured neural progenitor cells (NPC), knockdown of miR486 expression effectively induced p-PI3K / p-Akt expression, improved NPC survival, and allowed cells to escape neuronal cell death. It was. Interference with miR486 expression after antisense -miR486 injection in spinal cord injury mice resulted in increased target gene expression. This resulted in elevated levels of lethal neuronal destruction and myelin destruction (see FIG. 4B). High levels of expression of EDI, MP0, iNOS and eNOS, which cause redox factors, were seen in miR486-injected animals (see FIG. 4D). Spinal cord injury and high R0S production in miR486-injected normal spinal cord were confirmed (see FIG. 4E).
정상 척수에 miR486 및 안티센스 -miR486을 도입한 후, Cox2, IL-Ιβ, IL-6 및 TNFc와 같은 전염증 인자들의 발현 수준이 낮아지는 것을 확인하였다 (도 4c 참조)ᅳ 이와는 대조적으로, miR486의 주입 후에 산화환원-제거하는 SEPNl, TXNL1 및 GPx3 발현은 현저하게 하향조절되었고, miR486 발현 간섭 후 이것의 발현은 회복된 것을 확인하였다 (도 4f 참조). NeuroD6의 상기 조절 부위의 상기 DNA-결합 빈도는 i R486발현의 간섭으로 인해 증가되었지만, miR486-과발현 NPC는 현저하게 감소하였다 (도 4i 참조). NPC에서 miR486 발현의 유도는 효과적으로 NeuroD6의 발현 및 R0S과 전염증 인자 생산을 저해하였고, 결과적으로 세포 생존은 현저하게 감소된 반면에, 세포사멸적 세포 신호는 증가되었다 (도 4h 참조). 배양된 NPC에 각각 스크램블 RNA, 안티센스 -miR486 및 miR486을 처리하였을 때, 안티센스ᅳ miR486을 주입한 군의 NeuroD6의 발현이 증가된 것을 확인하였다 (도 4j 참조). 또한 본 발명자들은 손상된 척수에서 miR486 발현 및 부족한 NeuroD6에 의한 GPx3 및 TXNL1올 통한 산화 방지 반웅 유도 개시에 대하여 확인한 결과, miR486 발현 간섭은 GPx3 및 TXNL1의 조절 부위에 결합하는 NeuroD6를 유도하였다 (도 5b 참조). R0S가 척수 손상 및 miR486-주입된 척수 조직 및 siNeuroD6-주입된 척수 조직에서 현저하게 축적된 것을 확인하였다 (도 5e 참조). siNeuroD6 주입 후에 척수 조직에서 상기 운동 뉴런 마커인 NF160, Tuj 및 MBP의 생체 내 발현이 하향조절된 것을 확인하였다 (도 5f 참조). 손상되지 않은 척수 안의 NeuroD6 발현 녹다운은 운동 뉴런에 세포 독성 효과를 가지며, TNF α, ΙΙΛβ, IL6, C0X2, iNOS 및 eNOS의 발현을 증가시켰으며, R0S 제거 인자인 SEPNl, TXNL2, GPxl 및 GPx3의 발현을 하향조절 하였다 (도 5g 내지 5i 참조). After introducing miR486 and antisense-miR486 into the normal spinal cord, it was confirmed that expression levels of proinflammatory factors such as Cox2, IL-Ιβ, IL-6, and TNFc were lowered (see FIG. 4C). In contrast, m iR486 After injection of redox-removing SEPNl, TXNL1 and GPx3 expression were significantly downregulated and its expression after miR486 expression interference Confirmed recovery (see FIG. 4F). The DNA-binding frequency of the regulatory site of NeuroD6 was increased due to the interference of i R486 expression, but miR486-overexpressing NPCs were markedly reduced (see FIG. 4I). Induction of miR486 expression in NPCs effectively inhibited NeuroD6 expression and R0S and proinflammatory factor production, resulting in a markedly decreased cell survival, while an apoptotic cell signal was increased (see FIG. 4H). When cultured NPCs were treated with scrambled RNA, antisense -miR486 and miR486, respectively, it was confirmed that the expression of NeuroD6 of the group injected with antisense ᅳ miR486 was increased (see FIG. 4J). In addition, the present inventors confirmed that miR486 expression in the injured spinal cord and the initiation of anti-oxidative reaction through GPx3 and TXNL1 ol by insufficient NeuroD6 resulted in interference of miR486 expression induced NeuroD6 binding to the regulatory sites of GPx3 and TXNL1 (see FIG. 5B). ). It was confirmed that R0S accumulated significantly in spinal cord injury and miR486-injected spinal cord tissue and siNeuroD6-injected spinal cord tissue (see FIG. 5E). It was confirmed that in vivo expression of the motor neuron markers NF160, Tuj and MBP were downregulated in spinal cord tissue after siNeuroD6 injection (see FIG. 5F). NeuroD6 expression knockdown in the intact spinal cord has cytotoxic effects on motor neurons, increased expression of TNF α, ΙΙΛβ, IL6, C0X2, iNOS and eNOS, and expression of the R0S clearance factors SEPNl, TXNL2, GPxl and GPx3 Was down-regulated (see FIGS. 5G-5I).
NeuroD6 또는 R0S가 miR486발현을 조절하였는지 확인하였다. ATP 발현을 확인한 결과, 또한 척수 또는 배양된 NPC에서 NeuroD6-매개 신경세포 보호는 캐스패이즈 -3 하향조절 및 정상화된 ATP 합성 능력과 관련있었다 (도 5j 참조). 특히, miR486 발현은 과산화수소 처리에서 3-배 이상 (320%) 증가하였으며, NeuroD6 또는 아스코르브산 처리는 과산화수소 -매개 miR486 증가를 (각 194% 및 132%)을 현저하게 감소하였다 (도 5k 참조). 과산화수소 -유도 R0S 생산은 상기 NeuroD6 (53%), SEPNl (37%) , TXNL1 (23%) 및 GPx3 (40%)발현으로 현저하게 저해되었다. NPC에 과산화 수소 노출 전에, NeuroD6 또는 아스코르브산 (5 /zg/ml) 처리는 과산화 수소 단독으로 노출 효과에 비해 상당히 SEPNl, TXNL1 및 GPx3를 상향조절하였다 (도 51 내지 5o 참조). 또한, 외인성의 NeuroD6은 R0Sᅳ매개 신경독성으로부터 신경세포를 보호하였다 (도 5p 참조).  It was confirmed whether NeuroD6 or R0S regulated miR486 expression. As a result of confirming ATP expression, NeuroD6-mediated neuronal protection in spinal cord or cultured NPCs was also associated with caspase-3 downregulation and normalized ATP synthesis ability (see FIG. 5J). In particular, miR486 expression increased more than 3-fold (320%) in hydrogen peroxide treatment and NeuroD6 or ascorbic acid treatment significantly reduced hydrogen peroxide-mediated miR486 increase (194% and 132%, respectively) (see FIG. 5K). Hydrogen peroxide-induced R0S production was significantly inhibited by the expression of NeuroD6 (53%), SEPNl (37%), TXNL1 (23%) and GPx3 (40%). Prior to hydrogen peroxide exposure to NPC, NeuroD6 or ascorbic acid (5 / zg / ml) treatment significantly upregulated SEPN1, TXNL1 and GPx3 compared to the exposure effect with hydrogen peroxide alone (see FIGS. 51-5O). In addition, exogenous NeuroD6 protected neurons from ROS-mediated neurotoxicity (see Figure 5p).
아을러, 손상된 척수에서 외인성의 NeuroD6에 의한 신경 보호 효과를 확인한 결과, NeuroD6 과발현은 SEPNl, TXNL1 및 GPx3 발현을 현저하게 증가시켰으며 (도 6b 내지 6e 참조), 척수손상 4주 후에 NeuroD6-주입된 동물은 마비가 회복되으나, 스크램블 siRNA만 주입된 손상된 동물은 관절 운동능력이 제한되었다 (도 6h 및 6i 참조). In addition, the neuroprotective effect of exogenous NeuroD6 in the injured spinal cord NeuroD6 overexpression significantly increased SEPNl, TXNL1 and GPx3 expression (see Figures 6B-6E). After 4 weeks of spinal cord injury, NeuroD6-injected animals recovered from paralysis but damaged with scrambled s iRNA. Animals had limited joint mobility (see FIGS. 6H and 6I).
따라서, miR486 발현 억제제를 이용한 miR486의 발현 간섭이 NeuroD6의 억제를 회복함으로써 척수 손상 (spinal cord injury, SCI) 개선을 유도하는 것을 확인하였으므로, 상기 miR486 억제제는 신경계 질환 예방 및 치료용 약학적 조성물의 유효성분으로 유용하게 사용할 수 있다. 본 발명의 miR486 발현 억제제를 유효성분으로 함유하는 조성물은, 조성물 총 중량에 대하여 상기 유효성분을 0.0001 내지 50 중량 ¾>로 포함하는 것일 수 있으나 이에 한정되지 않는다.  Therefore, it was confirmed that the expression interference of miR486 using miR486 expression inhibitors induces improvement of spinal cord injury (SCI) by restoring the inhibition of NeuroD6. Thus, the miR486 inhibitors are effective in preventing and treating neurological diseases. It can be usefully used as a component. The composition containing the miR486 expression inhibitor of the present invention as an active ingredient may include, but is not limited to, the active ingredient in an amount of 0.0001 to 50 weight ¾> based on the total weight of the composition.
본 발명의 조성물은 상기 miR486 발현 억제제에 추가로 동일 또는 유사한 기능을 나타내는 유효성분을 1종 이상 함유할 수 있다.  The composition of the present invention may contain one or more active ingredients exhibiting the same or similar function in addition to the miR486 expression inhibitor.
본 발명의 조성물은, 투여를 위해서 상기 기재한 유효성분 이외에 추가로 약제학적으로 허용 가능한 담체를 1종 이상 포함하여 제조할 수 있다. 약제학적으로 허용 가능한 담체는 식염수, 멸균수, 링거액, 완층 식염수, 텍스트로즈 용액, 말토 덱스트린 용액, 글리세를, 에탄올, 리포좀 및 이들 성분 중 1 성분 이상을 흔합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있으며, 표적 기관에 특이적으로 작용할 수 있도록 표적 기관 특이적 항체 또는 기타 리간드를 상기 담체와 결합시켜 사용할 수 있다. 더 나아가 당해 기술분야의 적정한 방법으로 또는 레밍턴의 문헌 (Remington's Pharmaceutical Science (최근판), Mack Publishing Company, Easton PA)에 개시되어 있는 방법을 이용하여 각 질환에 따라 또는 성분에 따라 제제화할 수 있다. ·  The composition of the present invention may be prepared by including one or more pharmaceutically acceptable carriers in addition to the above-described active ingredients for administration. Pharmaceutically acceptable carriers may be used in combination with saline, sterile water, Ringer's solution, saturated saline, textose solution, maltodextrin solution, glycerol, ethanol, liposomes, and one or more of these components. And other conventional additives such as buffers and bacteriostatic agents can be added. In addition, diluents, dispersants, surfactants, binders and lubricants can be additionally added to formulate injectable formulations such as aqueous solutions, suspensions, emulsions, pills, capsules, granules or tablets, and can act specifically on target organs. Target organ specific antibodies or other ligands may be used in combination with the carriers so as to be used. Furthermore, it can be formulated according to each disease or component using an appropriate method in the art or using the method disclosed in Remington's Pharmaceutical Science (Recent Edition, Mack Publishing Company, Easton PA). ·
본 발명에서 사용되는 뉴클레오티드 또는 핵산은, 경구, 국소, 비경구, 비 내, 정맥 내, 근육 내, 피하, 안 내, 경피 등의 투여를 목적으로 제조될 수 있다. 보다 구체적으로, 핵산 또는 백터가 주사가능한 형태로 사용된다. 이에 따라서 특히 처리될 영역으로는 직접적인 주입을 위하여 주사 가능한 조성물을 위한 임의의 약학적으로 허용되는 매개체와 흔합될 수 있다. 본 발명의 조성물은 특히 등장 멸균 용액 또는 건조 특히 멸균수 또는 적절한 생리 식염수의 첨가에 따라 주사 가능한 용액의 조성을 가능하게 하는 동결건조 조성물을 포함할 수 있다. 환자의 종양으로의 핵산의 직접적인 주입은 치료 효율을 감염된 조직에 집중시키도록 하므로 유리하다. 사용되는 핵산의 투여량은 다양한 파라미터, 특히 유전자, 백터, 사용되는 투여 방식, 문제시되는 질병 또는 대안적으로 요구되는 치료기간에 의해 조절될 수 있다. 또한, 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설율 및 질환의 중증도 등에 따라 그 범위가 다양하다. 일일 투여량은 구체적으로 약 0.0001 내지 100 mg/kg이고, 보다 구체적으로 0.001 내지 10 mg/kg이며, 하루 1회 내지 수회 나누어 투여할 수 있다. 또한, 본 발명은 약학적으로 유효한 양의 상기 조성물을 개체에 투여하는 단계를 포함하는 신경계 질환 예방또는 치료 방법을 제공한다. Nucleotides or nucleic acids used in the present invention can be prepared for oral, topical, parenteral, nasal, intravenous, intramuscular, subcutaneous, intraocular, transdermal and the like. More specifically, nucleic acids or vectors are used in injectable forms. Thus, in particular the area to be treated may be combined with any pharmaceutically acceptable vehicle for injectable compositions for direct infusion. The compositions of the present invention may in particular comprise isotonic sterile solutions or lyophilized compositions which allow the composition of injectable solutions upon the addition of dry, in particular sterile water or appropriate physiological saline. Direct injection of nucleic acid into a patient's tumor is advantageous because it allows the treatment efficiency to be focused on the infected tissue. The dosage of nucleic acid used can be adjusted by various parameters, in particular by gene, vector, mode of administration used, disease in question or alternatively desired duration of treatment. In addition, the range varies depending on the patient's weight, age, sex, health status, diet, administration time, administration method, excretion rate and the severity of the disease. The daily dosage is specifically about 0.0001 to 100 mg / kg, more specifically 0.001 to 10 mg / kg, and may be administered once to several times a day. The present invention also provides a method for preventing or treating a neurological disease, comprising administering to a subject a pharmaceutically effective amount of the composition.
상기 신경계 질환은 구체적으로 척수 손상, 파킨슨병, 뇌졸중, 근위축성 척수측색경화증, 운동신경손상, 외상에 의한 말초신경손상, 허혈성 뇌손상, 신생아 저산소성 허혈성 뇌손상, 뇌성마비, 간질, 난치성 간질, 알 하이머병, 선천성 대사성 신경계질환 및 외상성 뇌손상 (traumatic brain injury)으로 이루어진 군으로부터 선택된 어느 하나인 것일 수 있고, 보다 구체적으로는 척수 손상인 것일 수 있으나, 이에 한정하지 않으며, 신경 손상으로 인해 발생할 수 있는 모든 신경계 질환에 적용가능하다.  The neurological disorders specifically include spinal cord injury, Parkinson's disease, stroke, muscular dystrophy, scoliosis, motor neuron injury, peripheral nerve injury due to trauma, ischemic brain injury, neonatal hypoxic ischemic brain injury, cerebral palsy, epilepsy, refractory epilepsy, Al-Hymer's disease, congenital metabolic nervous system disease and traumatic brain injury may be any one selected from the group, and more specifically, spinal cord injury, but not limited thereto, but may be caused by nerve injury. Applicable to all possible neurological diseases.
상기 약학적으로 유효한 양이란 0.0001 내지 100 mg/kg이고, 0.001 내지 10 mg/kg이며, 이에 한정되는 것은 아니다. 투여량은 특정 환자의 체중, 연령, 성별, 건강상태, 식이, 투여기간, 투여방법, 제거율, 질환의 증증도 등에 따라 변화될 수 있다.  The pharmaceutically effective amount is 0.0001 to 100 mg / kg, 0.001 to 10 mg / kg, but is not limited thereto. Dosage may vary depending on the weight, age, sex, health status, diet, duration of administration, rate of administration, elimination rate, and severity of the particular patient.
상기 조성물은 임상 투여 시에 경구 또는 비경구로 투여가 가능하며 비경구 투여시 복강내주사, 직장내주사, 피하주사, 정맥주사, 근육내주사, 자궁내 경막주사, 뇌혈관내 주사 또는 흉부내 주사에 의해 투여될 수 있고, 일반적인 의약품 계제의 형태로 사용될 수 있다. ' The composition can be administered orally or parenterally during clinical administration and intraperitoneal injection, rectal injection, subcutaneous injection, intravenous injection, intramuscular injection, intrauterine dural injection, cerebrovascular injection or intrathoracic injection during parenteral administration. Can be administered by the general It can be used in the form of a pharmaceutical system. '
상기 개체는 척수동물이고, 구체적으로는 포유동물이고, 더 구체적으로는 쥐, 토끼, 기니아피그, 햄스터, 개, 고양이와 같은 실험등물이며, 보다 구체적으로는 침팬지 , 고릴라와 같은 유인원류 동물일 수 있다.  The subject is a spinal cord animal, specifically a mammal, more specifically an experimental object such as a rat, a rabbit, a guinea pig, a hamster, a dog or a cat, and more specifically, an ape-like animal such as a chimpanzee or a gorilla. Can be.
miR486 발현 억제제를 이용한 miR486의 발현 간섭이 NeuroD6의. 억제를 회복함으로써 척수 손상 개선을 유도하는 것을 확인하였으므로, 상기 miR486 억제제를 유효성분으로 포함하는 약학적 조성물을 신경계 질환 예방 또는 치료에 유용하게 사용할 수 있다. 또한, 본 발명은 Interference of expression of miR486 with miR486 expression inhibitors was demonstrated in NeuroD6. Since it was confirmed to induce improvement in spinal cord injury by restoring inhibition, the pharmaceutical composition comprising the m iR486 inhibitor as an active ingredient can be usefully used for preventing or treating neurological diseases. In addition, the present invention
1) miR486 발현 세포주에 피검물질을 처리하는 단계;  1) treating the test substance to miR486 expressing cell line;
2) 상기 세포주의 miR486의 발현량을 측정하는 단계;및  2) measuring the expression level of miR486 of the cell line; and
3) 상기 miR486의 발현량이 피검물질을 처리하지 않는 대조군에 비해 감소한 피검물질을 선별하는 단계를 포함하는, 신경계 질환 예방 및 치료용 후보물질 스크리닝 방법을 제공한다.  3) provides a method for screening a candidate substance for preventing and treating neurological diseases, including selecting a test substance whose expression level is reduced compared to a control group that does not process the test substance.
또 다른 방법으로서,  As another way,
1) miR486 및 NeuroD6 발현 세포주에 피검물질을 처리하는 단계 ;  1) treating the test substance to miR486 and NeuroD6 expressing cell line;
2) 상기 세포주의 NeuroD6 발현량을 측정하는 단계;및  2) measuring the amount of NeuroD6 expression in said cell line; and
3) 상기 NeuroD6 발현량이 피검물질을 처리하지 않은 대조군에 비해 증가한 피검물질을 선별하는 단계를 포함하는 신경계 질환 예방 및 치료용 후보물질 스크리닝 방법을 제공한다.  3) It provides a method for screening a candidate substance for preventing and treating neurological diseases, comprising selecting a test substance whose NeuroD6 expression amount is increased compared to a control group not treated with the test substance.
상기 단계 2)의 발현량 측정은 RT-PCR, 정량적 또는 반정량적 RT- PCR(Quentitative or semi-Quentitative RT-PCR) , 정량적 또는 반정량적 리얼 타임 RT-PCR(Quentitative or semi-Quentitative real-time RT-PCR) , 노던 블롯 (northern blot), 및 DNA 또는 RNA 칩 (chip)으로 이루어지는 군으로부터 선택되는 어느 하나의 방법을 이용하여 측정되는 것일 수 있으나, 이에 한정하지 않는다.  Expression measurement of step 2) is RT-PCR, Quantitative or semi-Quentitative RT-PCR, Quantitative or semi-Quentitative real-time RT-PCR -PCR), Northern blot, and DNA or RNA chip may be measured using any one method selected from the group consisting of, but is not limited thereto.
척수 손상에 있어서 miR486 유전자가 과발현되고, miR486이 과발현됨으로써 NeuroD6의 발현을 저해하므로, 상기 miR486 및 NeuroD6은 신경계 질환 예방 및 1 치료용 후보물질을 스크리닝하는데 사용할 수 있다. Since miR486 gene is overexpressed in the spinal cord injury and miR486 is overexpressed to inhibit the expression of NeuroD6, the miR486 and NeuroD6 prevent neurological diseases and 1 can be used for screening therapeutic candidates.
또한, 본 발명은 miR486 유전자의 뉴클레오티드, 상기 뉴클레오티드에 상보적인 서열을 가지는 뉴클레오티드, 또는 이들의 단편을 포함하는 신경계 질환 진단용 키트를 제공한다. The present invention also provides a kit for diagnosing a neurological disease comprising a nucleotide of the miR486 gene, a nucleotide having a sequence complementary to the nucleotide, or a fragment thereof.
아울러 , 본 발명은  In addition, the present invention
1) 실험군으로서 피검체로부터 분리된 시료에서 miR486의 발현 수준을 측정하는 단계 ;  1) measuring the expression level of miR486 in a sample separated from the subject as an experimental group;
2) 단계 1)의 miR486의 발현 수준과 대조군으로서 정상 개체로부터 분리된 시료의 n]iR486의 발현 수준을 비교하는 단계; 및  2) comparing the expression level of miR486 of step 1) with the expression level of n] iR486 in a sample isolated from normal individuals as a control; And
3) 단계 2)의 miR486 발현 수준이 대조군에 비해 증가한 경우 신경계질환에 걸릴 위험이 높은 것으로 판정하는 단계를 포함하는 신경계 질환 진단의 정보를 제공하기 위한 유전자 검출 방법을 제공한다.  3) Provides a gene detection method for providing information for diagnosing neurological disease, comprising determining that the miR486 expression level of step 2) is higher than that of the control group.
또한, 본 발명은  In addition, the present invention
1) 실험군으로서 피검체로부터 분리된 시료에서 miR486의 발현 수준을 측정하는 단계 ;  1) measuring the expression level of miR486 in a sample separated from the subject as an experimental group;
2) 단계 1)의 miR486의 발현 수준과 대조군으로서 정상 개체로부터 분리된 시료의 miR486의 발현 수준을 비교하는 단계 ; 및  2) comparing the expression level of miR486 of step 1) with the expression level of miR486 of a sample isolated from a normal individual as a control; And
3) 단계 2)의 miR486 발현 수준이 대조군에 비해 증가한 경우 신경계질환에 걸린 개체로 판정하는 단계를 포함하는 신경계 질환의 진단 방법을 제공한다. 상기 신경계 질환은 척수 손상, 파킨슨병, 뇌졸중, 근위축성 척수측색경화증, 운동신경손상, 외상에 의한 말초신경손상, 허혈성 뇌손상, 신생아 저산소성 허혈성 뇌손상, 뇌성마비, 간질, 난치성 간질, 알쓰하이머병, 선천성 대사성 신경계질환 및 외상성 뇌손상으로 이루어진 군으로부터 선택된 어느 하나일 수 있으나, 이에 한정하지 않는다.  3) When the miR486 expression level of step 2) is increased compared to the control group provides a method for diagnosing a neurological disease comprising the step of determining that the subject has a neurological disease. The nervous system diseases include spinal cord injury, Parkinson's disease, stroke, muscular dystrophy, scoliosis, motor nerve injury, peripheral nerve injury due to trauma, ischemic brain injury, neonatal hypoxic ischemic brain injury, cerebral palsy, epilepsy, refractory epilepsy, Alzheimer's disease. The disease may be one selected from the group consisting of congenital metabolic neurological disease and traumatic brain injury, but is not limited thereto.
척수 손상에 있어서 itiiR486 유전자가 과발현되고, miR486이 과발현됨으로써 NeuroD6의 발현을 저해하므로, 상기 miR486 및 NeuroD6은 신경계 질환 진단의 정보를 제공하기 위한 키트, 유전자 검출 및 신경계 질환의 진단방법에 사용할 수 있다. 또한, 본 발명은 NeuroD6를 유효성분으로 포함하는 신경계 질환 예방 및 치료용 약학적 조성물을 제공한다. Since itiiR486 gene is overexpressed in the spinal cord injury and miR486 is overexpressed to inhibit NeuroD6 expression, the miR486 and NeuroD6 can be used in kits for providing information for diagnosing neurological disease, gene detection and diagnosing neurological disease. The present invention also provides a pharmaceutical composition for preventing and treating neurological diseases, including NeuroD6 as an active ingredient.
또한 본 발명은 약학적으로 유효한 양의 NeuroD6를 신경계 질환에 걸린 개체에 투여하는 단계를 포함하는 신경계 질환의 치료 방법을 제공한다.  The present invention also provides a method of treating a neurological disease, comprising administering a pharmaceutically effective amount of NeuroD6 to a subject having a neurological disease.
또한 본 발명은 약학적으로 유효한 양의 NeuroD6를 개체에 투여하는 단계를 포함하는 신경계 질환의 예방 방법을 제공한다.  The present invention also provides a method for preventing neurological disease, comprising administering to a subject a pharmaceutically effective amount of NeuroD6.
또한 본 발명은 NeuroD6를 신경계 질환 예방 및 치료용 약학적 조성물의 제조에 이용하는 용도를 제공한다. 상기 신경계 질환은 척수 손상, 파킨슨병, 뇌졸중, 근위축성 척수측색경화증, 운동신경손상, 외상에 의한 말초신경손상, 허혈성 뇌손상, 신생아 저산소성 허혈성 뇌손상, 뇌성마비, 간질, 난치성 간질, 알쓰하이머병 선천성 대사성 신경계질환 및 외상성 뇌손상 (traumatic brain injury)으로 이루어진 군으로부터 선택된 어느 하나인 것일 수 있으나, 이에 한정하지 않는다.  The present invention also provides the use of NeuroD6 in the manufacture of a pharmaceutical composition for preventing and treating neurological diseases. The nervous system diseases include spinal cord injury, Parkinson's disease, stroke, muscular dystrophy, scoliosis, motor nerve injury, peripheral nerve injury due to trauma, ischemic brain injury, neonatal hypoxic ischemic brain injury, cerebral palsy, epilepsy, intractable epilepsy, Alzheimer's disease. The disease may be one selected from the group consisting of congenital metabolic neurological disease and traumatic brain injury, but is not limited thereto.
또한, 본 발명은 상기 NeuroD6를 암호화하는 폴리뉴클레오티드를 포함하는 백터 , 또는 상기 백터를 포함하는 세포를 유효성분으로 함유하는 신경계 질환 예방 및 치료용 약학적 조성물을 제공한다.  In addition, the present invention provides a vector comprising a polynucleotide encoding NeuroD6, or a pharmaceutical composition for preventing and treating neurological diseases containing the cells containing the vector as an active ingredient.
상기 신경계 질환은 척수 손상, 파킨슨병, 뇌졸중, 근위축성 척수측색경화증, 운동신경손상, 외상에 의한 말초신경손상, 허혈성 뇌손상, 신생아 저산소성 허혈성 뇌손상, 뇌성마비, 간질, 난치성 간질, 알프하이머병, 선천성 대사성 .신경계질환 및 외상성 뇌손상 (traumatic brain injury)으로 이루어진 군으로부터 선택된 어느 하나인 것일 수 있으나, 이에 한정하지 않는다.  The nervous system diseases include spinal cord injury, Parkinson's disease, stroke, muscular dystrophy, scoliosis, motor neuron injury, peripheral nerve injury due to trauma, ischemic brain injury, neonatal hypoxic ischemic brain injury, cerebral palsy, epilepsy, intractable epilepsy, Alpheimer's disease. The disease may be one selected from the group consisting of congenital metabolic. Nervous system disease and traumatic brain injury, but is not limited thereto.
또한, 본 발명은  In addition, the present invention
1) NeuroD6 발현 세포주에 피검물질을 처리하는 단계;  1) treating the test substance to the NeuroD6 expressing cell line;
2) 상기 세포주의 NeuroD6 발현량을 측정하는 단계 ;및  2) measuring the amount of NeuroD6 expression in said cell line; and
3) 상기 NeuroD6 발현량이 피검물질을 처리하지 않은 대조군에 비해 증가된 피검물질을 선별하는 단계를 포함하는 신경계 질환 예방 및 치료용 후보물질 스크리닝 방법을 제공한다. 상기 신경계 질환은 척수 손상, 파킨슨병, 뇌졸중, 근위축성 척수측색경화증, 운동신경손상, 외상에 의한 말초신경손상, 허혈성 뇌손상, 신생아 저산소성 허혈성 뇌손상, 뇌성마비, 간질 난치성 간질, 알프하이머병, 선천성 대사성 신경계질환 및 외상성 뇌손상 (traumatic brain injury)으로 이루어진 군으로부터 선택된 어느 하나인 것일 수 있으나, 이에 한정하지 않는다. 3) provides a method for screening a candidate substance for preventing and treating neurological diseases, the method comprising selecting a test substance in which the amount of NeuroD6 expression is increased compared to a control group not treated with the test substance. The nervous system diseases include spinal cord injury, Parkinson's disease, stroke, muscular dystrophy, scoliosis, motor neuron injury, peripheral nerve injury due to trauma, ischemic brain injury, neonatal hypoxic ischemic brain injury, cerebral palsy, epileptic refractory epilepsy, Alpheimer's disease. It may be any one selected from the group consisting of congenital metabolic neurological disease and traumatic brain injury, but is not limited thereto.
또한, 본 발명은  In addition, the present invention
1) 피검 화합물 또는 조성물올 NeuroD6 단백질에 처리하는 단계 ;  1) treating the test compound or composition to NeuroD6 protein;
2) 단계 1)의 NeuroD6 단백질의 활성을 측정하는 단계; 및  2) measuring the activity of the NeuroD6 protein of step 1); And
3) 단계 2)의 NeuroD6 단백질의 활성이 피검 화합물 또는 조성물을 무처리한 NeuroD6 단백질의 활성과 비교하여 증가된 피검 화합물 또는 조성물을 선별하는 단계를 포함하는 신경계 질환 예방 및 치료용 후보물질 스크리닝 방법. 상기 신경계 질환은 척수 손상, 파킨슨병, 뇌졸증, 근위축성 척수측색경화증, 운동신경손상, 외상에 의한 말초신경손상, 허혈성 뇌손상, 신생아 저산소성 허혈성 뇌손상, 뇌성마비, 간질, 난치성 간질, 알^하이머병, 선천성 대사성 신경계질환 및 외상성 뇌손상 (traumatic brain injury)으로 이루어진 군으로부터 선택된 어느 하나인 것일 수 있으나, 이에 한정하지 않는다.  3) A method for screening a candidate substance for preventing and treating neurological diseases, comprising selecting a test compound or composition in which the activity of the NeuroD6 protein of step 2) is increased compared to the activity of the NeuroD6 protein untreated with the test compound or composition. The neurological disorders include spinal cord injury, Parkinson's disease, stroke, muscular dystrophy, scoliosis, motor neuron injury, peripheral nerve injury due to trauma, ischemic brain injury, neonatal hypoxic ischemic brain injury, cerebral palsy, epilepsy, refractory epilepsy, egg ^ Hemer's disease, congenital metabolic nervous system disease and traumatic brain injury may be any one selected from the group consisting of, but is not limited thereto.
아울러, 본 발명은  In addition, the present invention
1) 실험군으로서 피검체 유래 시료에서 NeuroD6단백질 발현량을 측정하는 단계;  1) measuring NeuroD6 protein expression in a sample derived from the subject as an experimental group;
2) 단계 1)의 NeuroD6단백질 발현량과 대조군으로서 정상 개체 유래 시료의 2) NeuroD6 protein expression level of step 1) and control samples
NeuroD6단백질 발현량을 비교하는 단계; 및 Comparing NeuroD6 protein expression levels; And
3) NeuroD6단백질 발현량이 대조군에 비해 감소하는 경우 신경계 질환에 걸릴 위험이 높은 것으로 판정하는 단계를 포함하는, 신경계 질환 진단의 정보를 제공하기 위한 단백질 검출 방법을 제공한다.  3) Provides a protein detection method for providing information of neurological disease diagnosis, comprising the step of determining that the risk of neurological disease is high when the expression level of NeuroD6 protein is reduced compared to the control group.
또한, 본 발명은  In addition, the present invention
1) 실험군으로서 피검체 유래 시료에서 NeuroD6단백질 발현량을 측정하는 단계;  1) measuring NeuroD6 protein expression in a sample derived from the subject as an experimental group;
2) 단계 1)의 NeuroD6단백질 발현량과 대조군으로서 정상 개체 유래 시료의 NeuroD6단백질 발현량을 비교하는 단계; 및 3) NeuroD6단백질 발현량이 대조군에 비해 감소하는 경우 신경계 질환에 걸린 개체로 판정하는 단계를 포함하는, 신경계 질환의 진단 방법을 제공한다. 상기 신경계 질환은 척수 손상, 파킨슨병, 뇌졸중, 근위축성 척수측색경화증, 운동신경손상, 외상에 의한 말초신경손상, 허혈성 뇌손상, 신생아 저산소성 허혈성 뇌손상, 뇌성마비, 간질, 난치성 간질, 알쓰하이머병, 선천성 대사성 신경계질환 및 외상성 뇌손상 (traumatic brain injury)으로 이루어진 군으로부터 선택된 어느 하나인 것일 수 있으나, 이에 한정하지 않는다. 2) comparing the NeuroD6 protein expression level of step 1) with the NeuroD6 protein expression level of a normal subject-derived sample as a control; And 3) When the expression level of NeuroD6 protein is reduced compared to the control group, it provides a method for diagnosing a neurological disease, comprising the step of determining that the subject has a neurological disease. The nervous system diseases include spinal cord injury, Parkinson's disease, stroke, muscular dystrophy, scoliosis, motor neuron injury, peripheral nerve injury due to trauma, ischemic brain injury, neonatal hypoxic ischemic brain injury, cerebral palsy, epilepsy, refractory epilepsy, Alzheimer's disease. It may be one selected from the group consisting of a disease, congenital metabolic nervous system disease and traumatic brain injury, but is not limited thereto.
miR486 발현 억제제를 이용한 miR486의 발현 간섭이 NeuroD6의 억제를 회복함으로써 척수 손상 개선을 유도하는 것을 확인하였으므로, 상기 NeuroD6을 신경계 질환 예방 및 치료용 약학적 조성물의 유효성분으로 유용하게 사용할 수 있고, NeuroD6을 신경계 질환 예방 및 치료용 후보물질 스크리닝 방법, 신경계 질환 진단의 정보를 제공하기 위한 단백질 검출 방법 및 신경계 질환 진단 방법에 사용할 수 있다. 이하, 본 발명을 실시예에 의하여 상세히 설명한다. Since interference of miR486 expression with miR486 expression inhibitors has been shown to induce improvement in spinal cord injury by restoring inhibition of NeuroD6, NeuroD6 can be usefully used as an active ingredient in pharmaceutical compositions for preventing and treating neurological diseases. Candidate screening methods for preventing and treating neurological diseases, protein detection methods for providing information on neurological disease diagnosis, and neurological disease diagnostic methods. Hereinafter, the present invention will be described in detail by way of examples.
단, 하기 실시예는 본 발명을 구체적으로 예시하는 것이며, 본 발명의 내용이 실시예에 의해 한정되는 것은 아니다.  However, the following examples illustrate the present invention in detail, and the content of the present invention is not limited to the examples.
<실시예 1> 척수 손상 모델에 대한 miR486발현 간섭 Example 1 miR486 Expression Interference on Spinal Cord Injury Model
<1-1> 척수 손상 (Spinal cord injury, SCI) 유도 방법  <1-1> Induction of Spinal Cord Injury (SCI)
마우스를 1.25% 애버틴 (avert in)을 이용하여 25 ^/g의 양으로 복강 투여하여 마취시킨 후 마우스의 등 부위 피부를 절개하고, T9ᅳ T11 정도의 척수뼈를 제거 후 드릴 (직경 1 mm)을 이용하여 T10 부위의 척수를 등에서 배 방향으로 약 1 mm 깊이, 가로 2 mm 정도의 크기로 손상시킨 후 봉합시켜 항생제 (아미카신)를 투여하였다. 항생제는 2일 간격으로 근육주사로 투여하였다.  The mice were intraperitoneally administered in an amount of 25 ^ / g using 1.25% avertin and then anesthetized, and the back skin of the mouse was incised. ), The spinal cord at the T10 region was damaged to a size of about 1 mm deep in the dorsal direction and about 2 mm wide, and then sutured to receive antibiotics (amicin). Antibiotics were administered intramuscularly every two days.
<1-2> miR486 발현 간섭 <1-2> miR486 expression interference
생체 내 miR486 발현 간섭 연구를 위해, 쥐는 마취상태에서 스테레오탁식 (stereotaxic) 기구로 고정하였다. DharmaFECT(Dharma Inc. , Chicago IL)로 희석된 안티센스 miR486(안티 _miR486 또는 안티 miR; 20 μΜ 저장용액, Dhamacon)을 26게이지 바늘을 가진 25 μί 해밀턴 주사기 (Hamilton syringe)로 SCI 후 2일 뒤에 1회 주입하였다. 그리고 안티센스 -miR486 주입 용량은 최종적으로 10 μΜ을 이용하였다. 스테레오탁식 기구에서 미세주입 (micr으 injector)의 속도는 1 /min였다. 상기 주사기는 스테레오탁식 기구의 상기 척수 위에 약 90도의 각도로 고정되었다. 상기 니들 (needle)을 손상 부위로 주입하고, 주사기는 주입 종료 후 3분 동안손상 부위에 두었으며, 안티센스 -miR486의 유출을 방지하기 위해 느리게 제거하였다. <1-3> NeuroD6 발현 유도 For in vivo miR486 expression interference studies, mice were fixed with stereotaxic instruments under anesthesia. DharmaFECT (Dharma Inc., Chicago Antisense miR486 (anti _miR486 or anti miR; 20 μΜ stock solution, Dhamacon) diluted with IL) was injected once 2 days after SCI with a 25 μί Hamilton syringe with 26 gauge needles. The antisense -miR486 injection dose finally used 10 μΜ. The rate of microinjector in the stereosuspension instrument was 1 / min. The syringe was secured at an angle of about 90 degrees above the spinal cord of the stereosuspension instrument. The needle was injected into the site of injury, the syringe was left at the site of injury for 3 minutes after the end of the injection, and slowly removed to prevent the outflow of antisense -miR486. <1-3> Induction of NeuroD6 Expression
NeuroD6(0pen Biosystems)은 쥐꾀 척수 손상 후 2일 후에 1회 주입되었다. NeuroD6 주입 투여량은 100, 200 및 400ng 였다. NeuroD6은 리포펙타민 (lipofectaminKlnvitrogen, Carlsbad, CA)으로 희석하였고, NeuroD6 Vector DNA 구성체는 Open Biosystems (Thermo Scientific Co.)에서 수득하였다. NeuroD6의 주입 방법은 상기 실시예 <1-2>의 안티센스 -miR486 주입 방법과 같은 방법을 따라 실시하였다. 정맥마취제 (Avert in)에 의한 마취하에, 쥐의 등 척수를 수술칼을 이용하여 열었고, 상기 척수 뼈는 수술적 가위와 뼈집게를 이용하여 제거하였다. <1-4> miR486의 주입  NeuroD6 (0pen Biosystems) was injected once 2 days after spinal cord injury. NeuroD6 infusion doses were 100, 200 and 400 ng. NeuroD6 was diluted with lipofectamin (Klinvitrogen, Carlsbad, Calif.) And NeuroD6 Vector DNA constructs were obtained from Open Biosystems (Thermo Scientific Co.). NeuroD6 injection method was carried out according to the same method as the antisense -miR486 injection method of Example <1-2>. Under anesthesia by intravenous anesthesia (Avert in), the rat spinal cord was opened using a surgical knife, and the spinal cord bone was removed using surgical scissors and bone tongs. <1-4> Infusion of miR486
miR486(Dharmcon)은 T11-L1 부위에 미세주입기로 26-게이지 니들인 해밀턴 실린지로 한 번만 주입되었다. miR486 저장 용액의 농도는 20 μΜ였으며, 이는 DharmaFECTCDharmacon Inc., Chicago, IL)로 희석되었다. miR486 주입 용량은 최종적으로 10 μΜ였고, miR486의 총 주입 부피는 쥐 당 5 였다. 미세주입기의 miR486 주입속도는 1 ^/tnin였다. 상기 주사기는 척수 위에 90도로 스테레오탁식 기구에 고정되었다. 상기 니들을 척수의 T11-L1 부위에 주입하고, miR486 주입후에 유출을 방지하기 위해, 상기 주사기는 3분 동안 상기 부위에 두었다.  miR486 (Dharmcon) was injected only once into the Hamilton syringe with a 26-gauge needle with a microinjector into the T11-L1 site. The concentration of miR486 stock solution was 20 μΜ, which was diluted with DharmaFECTCDharmacon Inc., Chicago, IL). The miR486 injection dose was finally 10 μΜ and the total injection volume of miR486 was 5 per rat. The miR486 injection rate of the microinjector was 1 ^ / tnin. The syringe was fixed to a stereosuspension instrument 90 degrees above the spinal cord. The needle was injected into the T11-L1 site of the spinal cord and the syringe was left in the site for 3 minutes to prevent leakage after miR486 injection.
<1-5> NeuroD6 발현 억제 정상 척수로 NeuroD6 siRNAs(siNeuroD6; Dharmcon)의 주입을 수행하기 위하여, 상기 실시예 <1-2>의 miR486 주입 방법과 같은 방법으로 준비하였다. 쥐는 정맥마취제 주입을 통한 마취 하에 스테레오탁식 기구에 고정되었다. NeuroD6 siRNAs 는 NeuroD6 siRNAs(10 μΜ) 주입 용량에 의해 1회 투여되었고, NeuroD6 siRNAs의 20 μΜ 저장 용액은 같은 부피의 DharmaFECT(Dharaacon Inc., Chicago, IL)로 역시 희석되었다. 정상 척수로의 NeuroD6 siRNAs (10 μΜ) 주입 후에, NeuroD6(100ng)은 NeuroD6 siRNAs 주입의 같은 부위에 하루 후에 1회 주입되었다. <실시예 2> 척수유래 신경 전구세포 배양 및 신경발생 유도 <1-5> Inhibition of NeuroD6 Expression In order to perform injection of NeuroD6 siRNAs (siNeuroD6; Dharmcon) into the normal spinal cord, it was prepared in the same manner as the miR486 injection method of Example <1-2>. Mice were fixed in stereosuspension instruments under anesthesia via intravenous anesthesia injection. NeuroD6 siRNAs were administered once by injection dose of NeuroD6 siRNAs (10 μΜ), and the 20 μΜ stock solution of NeuroD6 siRNAs was also diluted with the same volume of DharmaFECT (Dharaacon Inc., Chicago, IL). After NeuroD6 siRNAs (10 μΜ) injection into the normal spinal cord, NeuroD6 (100 ng) was injected once a day at the same site of NeuroD6 siRNAs injection. Example 2 Spinal Cord-derived Neuronal Progenitor Cell Culture and Neurogenesis Induction
신경전구세포 (neural progenitor cells, PC)는 하기와 같은 방법으로 배양하였다. 척수 -유래 신경전구세포 (neural progenitor cells ,NPCs)는 5-6주된 성체 ICR 쥐에서 분리되었다. 성체 쥐 척수로부터 신경 세포를 분리하기위해, Ca2 + 또는 Mg2 +이 없는 같은 부피의 4°C HBSS로 강하게 세척하였다. 상기 조직은 작은 조각 (~1 1丽 3)으로 분쇄하였고, 0.025% 트립신으로 371:에서 30분 동안 소화하였다. 상기 트립신의 효소 활성은 10% FBS가 포함된 DMEM으로 중화시켰고, 높은 농도의 세포 펠렛 (pel let)을 수득하기 위해 상기 시료를 1500 rpm에서 5분 동안 원심분리하였다. 상기 NPC 펠렛을 10% FBS가 포함된 DMEM에서 37°C, 5% C02 조건에서 하룻밤 동안 배양하였다. 상기 배지는 48시간 및 그 후에 4일 마다 교체해주었다. 2 또는 3 계대 후에 세포를 그들의 분화 능력의 특성 확인을 위해 사용하였다. 배양된 세포들의 신경 분화능을 확인하고자 세포를 분화 조건에 두었다. 상기 배양된 NPCs는 상기 배양 배지에서 세포의 구형 덩어리 및 부유하는 신경구 (neurospheres)를 형성하였다. 상기 세포구를 페트리 디쉬 (petri dish)로 옮기고 B27 (Invitrogen, Gaithersburg, MD), 20 ng/ml bFGF 및 20 ng/ml BDNF (Sigma, St Louis, M0)가 첨가된 Neurobasal신경세포 특이적인 배지 (NB, Invitrogen, Gaithersburg, MD)에서 3일 동안 배양하였다. 상기 구체의 배양 농도는 자기-웅집을 예방하기 위해 1으 20 세포 /cm2로 유지하였다. 신경 분화를 위해, 신경 세포 유래 신경구는 PDL-라미닌 (PDL-laminin)이 이중-코팅된 커버슬립 (cover-slip)에 놓았다. 분화 동안에, 상기 배지의 70%를 4일 마다 교체하였다. 나타낸 모든 데이터는 적어도 3회 실시하였다. Neural progenitor cells (PC) were cultured as follows. Spinal cord-derived neural progenitor cells (NPCs) were isolated from 5-6 week old adult ICR mice. To separate the nerve cells from the adult rat spinal cord, and washed with a strong Ca 2 + or Mg 2 + volume of 4 ° C HBSS as no. The tissue was crushed into small pieces (~ 1 1 丽3 ) and digested with 0.025% trypsin at 371: for 30 minutes. The enzyme activity of the trypsin was neutralized with DMEM containing 10% FBS, and the sample was centrifuged at 1500 rpm for 5 minutes to obtain a high concentration of cell pellet. The NPC pellets were incubated overnight at 37 ° C. and 5% CO 2 conditions in DMEM containing 10% FBS. The medium was changed 48 hours and then every 4 days. After 2 or 3 passages, cells were used to characterize their differentiation capacity. The cells were placed in differentiation conditions to confirm the neural differentiation capacity of the cultured cells. The cultured NPCs formed globular clumps of cells and floating neurospheres in the culture medium. Transfer the cells to a petri dish and add Neurobasal neuron-specific medium (B27 (Invitrogen, Gaithersburg, MD), 20 ng / ml bFGF and 20 ng / ml BDNF (Sigma, St Louis, M0)) NB, Invitrogen, Gaithersburg, MD) was incubated for 3 days. The culture concentration of the spheres was maintained at 1 20 cells / cm 2 to prevent self-counseling. For neuronal differentiation, neuron-derived neurospheres were placed in a cover-slip double-coated with PDL-laminin. During differentiation, 70% of the medium every 4 days Replaced. All data presented were run at least three times.
<실시예 3> 운동 뉴런에서 miR486 과발현이 R0S—매개 척수 손상의 신경파괴에 주는 영향 확인 Example 3 Identification of miR486 overexpression on neurodestruction of R0S-mediated spinal cord injury in motor neurons
<3-1>척수 손상에 따른 miR486 및 이의 표적유전자의 발현 확인 전체 세포의 RNA를 TrizoKLife Technologies, Frederick, MA, USA)로 추출하고, 20 pni의 특이적 oligo— dT 프라이머를 이용하여 PCR의 35 사이클 (95°C 1분; 55°C 1분; 72°C 1분)로 증폭하여 첫번째 가닥 cDNA으로 역전사하였다. 상기 PCR 반응은 ABI 7700 Prism Sequence Detection System 및 SYBER green detection kit (Applied Biosystems, Foster, CA, USA)를 이용하여 수행하였다. 상기 프라이머 서열은 상기 GeneBank database로부터 얻어진 유전자 서열을 이용하여 Primer Express software (PE-Ap l ied Biosystems, Warrington, UK)로 설계하였다 (표 1). PCR 생산물 표지를 위해, SYBER green detection kit (Applied Biosystems)를 사용하였다. <3-1> Confirmation of expression of miR486 and its target genes following spinal cord injury Extract RNA of whole cells with TrizoKLife Technologies, Frederick, Mass., USA), and PCR by using 20 pni specific oligo—dT primers. Amplified by cycle (95 ° C. 1 minute; 55 ° C. 1 minute; 72 ° C. 1 minute) and reverse transcribed into first strand cDNA. The PCR reaction was performed using ABI 7700 Prism Sequence Detection System and SYBER green detection kit (Applied Biosystems, Foster, CA, USA). The primer sequence was designed with Primer Express software (PE-Ai Bio Bios, Warrington, UK) using the gene sequence obtained from the GeneBank database (Table 1). For PCR product labeling, the SYBER green detection kit (Applied Biosystems) was used.
【표 1】 Table 1
Figure imgf000025_0001
또한, 척수 조직에서 miR486 및 NeuroD6 발현 확인을 위한 전 조직 표본 현장 (/2 situ) 분석하였다. miR486 및 NeuroD6의 현장 흔성화는 척수 손상 조직 또는 정상 척수 조직에서 수행되었다. 몇몇 유형의 유전자 올리고뉴클레오티드 탐침을 합성하였다 (Dharmacon RNA Technologies, USA) . 조직 슬라이드를 공기중에서 건조시켰고 상온의 0.1 mg/ml proteinase K (Sigma Aldrich)을 포함하는 살린 사이트레이트 (saline citrate) (pH 7.0)에서 15분 동안 준비하였다. 절단면들을 IX SSC 에서 5분 동안 2회 세척하였다. 표지된 올리고뉴클레오티드를 50%의 이온이 없는 포름아마이드 (formamide), 4X SSC 및 소듐 파이로포스패이트 (sodi菌 pyrophosphate)를 포함하는 흔성화 완충용액에 희석하였고, 파라필름 (parafilm) 에 덮은 후에 45°C의 항습조에서 12시간 동안 반응하였다. 반웅 후, 절단면들을 상온에서 10분 동안 IX SSC로 세척하였고, 60 t에서 20분 동안 IX SSC로 세척하였고, 상온에서 5분 동안 증류수로 세척하였으며, 70%, 95% 및 100% 아이소프로판올 (isopropanol)로 탈수한 후 마지막으로 공기중에서 건조하였다. 특이적 탐침이 빠진 대조군은 탐지가능한 염색이 없었다. 상기 시료를 레이카 형광 현미경 (Leica Microsystems, Exon, PA, USA)로 평가하였다. 이러한 시험을 적어도 3회 반복하였다.
Figure imgf000025_0001
In addition, whole tissue specimen sites (/ 2 situ) were analyzed to confirm miR486 and NeuroD6 expression in spinal cord tissue. In situ rocking of miR486 and NeuroD6 was performed in spinal cord injury tissue or normal spinal cord tissue. Several types of gene oligonucleotide probes were synthesized (Dharmacon RNA Technologies, USA). Tissue slides were dried in air and prepared for 15 minutes in saline citrate (pH 7.0) containing 0.1 mg / ml proteinase K (Sigma Aldrich) at room temperature. Sections were washed twice for 5 minutes in IX SSC. The labeled oligonucleotides were diluted in a shake buffer containing 50% ion free formamide, 4X SSC and sodium pyrophosphate and covered with parafilm. The reaction was carried out in a humidified bath at 45 ° C for 12 hours. After reaction, the sections were washed with IX SSC for 10 minutes at room temperature, washed with IX SSC for 20 minutes at 60 t, and distilled water for 5 minutes at room temperature. It was washed, dehydrated with 70%, 95% and 100% isopropanol and finally dried in air. Controls missing specific probes did not have detectable staining. The samples were evaluated by Leica fluorescence microscopy (Leica Microsystems, Exon, PA, USA). This test was repeated at least three times.
그 결과, 척수 손상 7일 후 또는 손상된 척수에 miR486 간섭 6일 후에 손상된 척수 조직이 정상 척수 조직에 비해 현저하게 miR486이 과발현한 것을 확인하였다. 척수 손상 병변에서, 하향조절된 NeuroD6을 포함한 miR486의 표적 유전자인 Dicer, RxR (Retinoic Acid Receptor) y , EphrinAl 및 Enoxl이 저발현된 것으로 나타났다 (도 la 및 lb).  As a result, it was confirmed that the damaged spinal cord tissues overexpressed miR486 significantly compared to normal spinal cord tissues 7 days after spinal cord injury or 6 days after miR486 interference with the damaged spinal cord. In spinal cord injury lesions, the target genes of miR486, including downregulated NeuroD6, Dicer, RxR (Retinoic Acid Receptor) y, EphrinAl and Enoxl were shown to be low expression (FIGs. La and lb).
<3-2>면역조직화학적 분석을 통한 R0S-관련 신경파괴 유도 확인 <3-2> Confirmation of R0S-related neurodestruction induced by immunohistochemical analysis
척수 조직의 면역조직화학적 분석을 위해 상기 절단면들을 4¾ 파라포름알데히드에서 30분 동안 고정하였다. 그 다음에 상기 절단면들은 PBS에서 3회 세척한 후에 비특이적 결합은 정상 호스 세럼 (horse serum)으로 차단하였다. 상기 절단면들을 4°C에서 12시간 동안 하기의 항체들과 반응시켰다; 항 -GFAP (1:2000; Dako), 항 -EDI (1: 1000; Cell Signal), 항 -Tuj (1:250; Sigma) 및 항- NF160 (1:250; Sigma). 1차 항체를 씻어낸 후, 상기 절단면들을 1시간 동안 배양하였다. PBS에서 강하게 세척한 후에, 상기 세포들을 30분 동안 FITC 또는 Texas-red가 접합된 2차 항체 (1:250; Molecular Probe; 및 1:250; Jackson Laboratory, 각각)와 함께 반웅시켰다. 상기 1차 항체가 제외되거나 또는 무관한 IgG를 사용한 대조군은 염색되지 않았다. 상기 시료들을 Leica fluorescence microscope (Leica Microsystems, Exon, PA, USA)를 이용하여 평가하였다. 면역세포화학적 분석은 적어도 3회 반복되었다. 이중-표지된 세포는 상기 시료를 통해 1 iffli 절단면 수집을 통해 확인되었다. The sections were fixed for 30 minutes in 4¾ paraformaldehyde for immunohistochemical analysis of spinal cord tissue. The sections were then washed three times in PBS and the nonspecific binding was blocked with normal horse serum. The cut sections were reacted with the following antibodies at 4 ° C. for 12 hours; Anti-GFAP (1: 2000; Dako), anti-EDI (1: 1000; Cell Signal), anti-Tuj (1: 250; Sigma) and anti-NF160 (1: 250; Sigma). After washing off the primary antibody, the cut sections were incubated for 1 hour. After strong washing in PBS, the cells were reacted with FITC or Texas-red conjugated secondary antibody (1: 250; Molecular Probe; and 1: 250; Jackson Laboratory, respectively) for 30 minutes. Controls using IgG with or without irrelevant primary antibody were not stained. The samples were evaluated using a Leica fluorescence microscope (Leica Microsystems, Exon, PA, USA). Immunocytochemical analysis was repeated at least three times. Double-labeled cells were identified through 1 iffli cutting plane collection through the sample.
그 결과, NF160+ 운동신경에서만 miR486이 발현되었고, 세포질은 2',7'- 디클로로디하이드로플루오레세인 디아세테이트 (2 ', 7 ' -dichlorodihydrof luorescein diacetate, DCFDA)를 생산하는 것을 통해 R0S가 축적된 것을 확인하였다 (도 lc). 또한, NeuroD6 발현이 척수 손상의 병변 및 정상적인 척수 조직의 운동 신경의 핵 및 세포질 안에서 강한 수준에서 탐지되었으며, ED1+ 대식세포의 경우에는 R0S는 생산했으나, miR486은 발현하지 않았다 (도 Id). As a result, miR486 was expressed only in NF160 + motor nerve, and cytoplasm was accumulated in R0S by producing 2 ', 7'-dichlorodihydrofluorescein diacetate (2', 7'-dichlorodihydrof luorescein diacetate, DCFDA). It was confirmed (Fig. Lc). NeuroD6 expression was also detected at high levels in the nucleus and cytoplasm of motor neurons in lesions of spinal cord injury and in normal spinal cord tissue, and R0S in ED1 + macrophages. Produced, but did not express miR486 (FIG. Id).
<실시예 4> miR486발현 간섭에 따른 운동 기능 회복 확인 Example 4 Confirmation of recovery of motor function due to miR486 expression interference
<4-1> miR486 발현 간섭에 따른 운동 기능 회복 확인  <4-1> Confirmation of motor function recovery by interference with miR486 expression
miR486 발현 간섭에 의한 척수 손상 회복 확인을 위해 변형된 Basso, modified Basso, to confirm the recovery of spinal cord injury by interference with miR486 expression
Beat tie 및 Bresnahan(BBB) 이동평가척도 (locomotor rating scale) 및 Basso mouse scale(BMS)를 통해 30일 동안 운동 기능을 측정하였다. BBB 및 BMS는 각각 하기 표Motor function was measured for 30 days through Beat tie and Bresnahan (BBB) locomotor rating scale and Basso mouse scale (BMS). BBB and BMS are shown in the table below, respectively.
2 및 표 3에 따라 측정하였다. It measured according to 2 and Table 3.
【표 2】 Table 2
Figure imgf000027_0001
Figure imgf000028_0001
Figure imgf000027_0001
Figure imgf000028_0001
Figure imgf000029_0001
Figure imgf000029_0001
그 결과, 척수 손상과 비교하여 , 척수 손상 동물에서 miR486 발현 간섭은 운동 기능을 향상시키는 것으로 나타났다. 손상되지 않은 동물과 비교하여 척수 손상 동물은 손상 유도 후에 운동 기능이 심각하게 저하되었다. 척수 손상 후에, 그들의 발이 걷는 동안에 회전하는 부위에서 대부분 있었음에도 불구하고, 평면 보행시 마비된 표현형이 지속적으로 회복되었고, 그들의 몸무게가. 일정하게 유지되었다. 대조적으로, 스크램블 siRNA 만이 주입된 손상된 동물은 관절 운동이 제한되었다 (도 2a 및 2b).  As a result, interference with miR486 expression in spinal cord injury animals has been shown to improve motor function as compared to spinal cord injury. Compared to uninjured animals, spinal cord injured animals severely degraded motor function after induction of injury. After spinal cord injury, the paralyzed phenotypes on flat walking continued to recover, even though they were mostly in the rotating area while their feet were walking. Stayed constant. In contrast, injured animals injected with only scrambled siRNA had limited joint movement (FIGS. 2A and 2B).
<4-2> miR486 주입에 의한 세포사멸 확인 <4-2> Apoptosis by miR486 injection
miR486 주입 후 세포사멸 양성 세포 확인을 위하여 , 척수 조직 및 배양된 To identify apoptosis-positive cells after injection of miR486, spinal cord tissue and culture
NPC의 세포사멸 유도에 대한 외상적인 손상의 효과는 제조자의 설명서에 따라 TdT in situ apoptosis detector kit (Roche, USA)를 이용하여 확인되었다. 손상된 척수조직은 고정한 후에, 손상된 조직 . 절단면들을 4% 파라포름알데하이드 (paraformaldehyde)에 두었고, 디옥시뉴클레오티딜 트랜스퍼라제 (deoxynucleot idyl transferase, TdT) 버퍼 및 바이오티닐레이티드 (biotinylated) dUTP를 함유하는 TUNEL반웅 흔합물과 37°C에서 90분 동안 습한 환경에서 반웅시켰다. 그 후에 형광 표지가 결합된 2차 항체를 반웅시킨 후, 결과는 형광 현미경 (Leica Microsystem, PA)를 이용하여 분석하였다. 척수 병변 부위의 TUNEL-양성 세포사멸적 세포 및 세포는 양성적으로 염색된 세포의 계수를 통해 정량화되었다. 세 개의 100배 현미경 이미지는 각 절단면에 대한 병변 부위 주변에 풍부하였던 상기 양성 세포가 있는 범위에서 무작위적으로 포착되었다. 상기 세 개의 이미지의 양성적으로 염색된 세포의 수를 평균을 계산하였다. 상기 결과는 상기 현미경 하에서 시야당 상대적인 세포 비율로 표현하였다. The effect of traumatic injury on induction of apoptosis of NPCs was confirmed using the TdT in situ apoptosis detector kit (Roche, USA) according to the manufacturer's instructions. After the damaged spinal cord tissue is fixed, the damaged tissue. Sections were placed in 4% paraformaldehyde, 90% at 37 ° C with TUNEL reaction mixture containing deoxynucleot idyl transferase (TdT) buffer and biotinylated dUTP. Reaction in humid environment for minutes. Then, the secondary antibody bound to the fluorescent label After reaction, the results were analyzed using a fluorescence microscope (Leica Microsystem, PA). TUNEL-positive apoptotic cells and cells at spinal cord lesion sites were quantified by counting positively stained cells. Three 100-fold microscopic images were randomly captured in the range where the positive cells were abundant around the lesion site for each cut. The number of positively stained cells of the three images was averaged. The results are expressed as relative cell ratios per field of view under the microscope.
그 결과, 정상 척수로 miR486만 주입하였을 때, 척수손상과 같은 표현형을 보이는 것을 확인하였고 (도 2d), 이는 특이적 기능 이상, 운동 신경 세포사멸 (TUNEL -양성) 및 세포 생존 억제를 나타냈다 (도 2e).  As a result, when only miR486 was injected into the normal spinal cord, it was confirmed that the spinal cord showed the same phenotype (FIG. 2D), which showed specific dysfunction, motor neuron death (TUNEL-positive), and cell survival inhibition (FIG. 2e).
<4-3> miR486 간섭 후 캐스패이즈 -3(caspase-3) 및 ATP분석 <4-3> Caspase-3 and ATP Analysis after miR486 Interference
본 발명자들은 안티센스 -miR486 처리 1주 후에 외상적인 척수 조직에서의 캐스페이즈 3 활성을 측정하였다. 캐스페이즈 -3 활성 분석을 위해, 총 50 ^ 부피 안에 10 단백질을 평형화된 캐스페이즈 -3 시약 (Promega)과 흔합하였다. 1시간 동안 상온에서 반응시킨 후 발광 (luminescence)은 TD 20/20 루미노미터 (LuminoiTieter) (Turner Designs, Sunnyvale, CA)를 이용하여 측정하였다. 공백 값은 제외하였고, 활성에서 배로 증가는 처리되지 않은 세포로부터 측정된 활성을 기초로 하여 계산하였다. 각 시료는 세 번 측정하였다.  We measured caspase 3 activity in traumatic spinal cord tissue 1 week after antisense-miR486 treatment. For caspase-3 activity analysis, 10 proteins in a total 50 ^ volume were mixed with the equilibrated caspase-3 reagent (Promega). After reacting at room temperature for 1 hour, luminescence was measured using a TD 20/20 luminometer (LuminoiTieter) (Turner Designs, Sunnyvale, CA). Blank values were excluded and fold increase in activity was calculated based on activity measured from untreated cells. Each sample was measured three times.
또한, 단백질의 양을 상기 Protein Assay Kit(Bio-Rad, Hercules, CA, USA) 을 이용하여 제조자의 지시에 따라 확인하였다. 세포를 150 mmol/1 KC1 , 25 mmol/1 Tris-HCl; pH 7.6, 2 mmol/1 EDTA pH 7.4, 10 mmol/1 KP04 pH 7.4, 0.1 醒 ol/l MgCl2 및 0.1%(w/v) 버퍼 ml당 1 mg의 단백질 농도 Bovine Serum Albumin(BSA)를 포함하는 버퍼에 현탁하였다. ATP 합성은 기질 버퍼 750 βί{10 mmol/1 malate, 10 mmol/1 pyruvate, 1 mmol/1 ADP, 40 zg/ml 디지토닌 (digitonin) 및 0.15 mmol/1 아데노신 펜타포스패이트 (adenosine pentaphosphate)에 상기 세포 부유액 250 ^를 더하여 개시하였다. 세포는 37°C에서 10분간 반웅시켰다. 0분 및 10분에 상기 반웅 흔합물 50 μί를 제거하였고, 2분 동안 끓고 있는 100 mmol/1 Tris-HCl, 4 mmol/1 EDTA (pH 7.75)를 소화하고, 소화된 버퍼를 1/10로 희석하였다. 상기 ATP의 양은 luminometer(Berthold, Detection Systems, Pforzheim, Germany)에서 제조자의 지시에 따라 ATP Bioluminescence Assay Kit (Roche Diagnostics, Basel , Switzerland)와 함께 측정하였다. In addition, the amount of protein was confirmed using the Protein Assay Kit (Bio-Rad, Hercules, CA, USA) according to the manufacturer's instructions. Cells were 150 mmol / 1 KC1, 25 mmol / 1 Tris-HCl; pH 7.6, 2 mmol / 1 EDTA pH 7.4, 10 mmol / 1 KP0 4 pH 7.4, 0.1 醒 ol / l MgCl 2 and 1 mg protein concentration per ml of 0.1% (w / v) buffer Bovine Serum Albumin (BSA) Suspended in the containing buffer. ATP synthesis was carried out in substrate buffer 750 βί {10 mmol / 1 malate, 10 mmol / 1 pyruvate, 1 mmol / 1 ADP, 40 zg / ml digitonin and 0.15 mmol / 1 adenosine pentaphosphate. The cell suspension was added to add 250 ^. Cells were reacted at 37 ° C for 10 minutes. 50 μί of the reaction mixture was removed at 0 and 10 minutes, and 100 mmol / 1 Tris-HCl, 4 mmol / 1 EDTA (pH 7.75) boiling for 2 minutes was removed. Digestion and the digested buffer were diluted to 1/10. The amount of ATP was measured with an ATP Bioluminescence Assay Kit (Roche Diagnostics, Basel, Switzerland) according to the manufacturer's instructions on a luminometer (Berthold, Detection Systems, Pforzheim, Germany).
그 결과, 척수 손상 동물에서 miR486 발현 간섭은 현저하게 운동기능을 개선시켰고, 캐스패이즈ᅳ 3 활성화 '및 ATP 생산 기능장애를 통해 TU EL-양성 세포사멸 을 보호하는 것을 나타냈다 (도 2f 및 2g). As a result, miR486 expression interference from spinal cord injury animals sikyeotgo significantly improved motor function, through the cascaded L-rise eu 3 activation, and ATP production dysfunction showed that protect the TU EL- positive cell death (Fig. 2f and 2g) .
<4-4>운동 신경의 확인 <4-4> Confirmation of motor nerve
상기에 기재한 방법에 따라, NF160 단백질 발현 변화를 확인하였다.  According to the method described above, changes in NF160 protein expression were confirmed.
그 결과, 척수 조직 병변의 면역화학적 분석은 역시 잘 발달된 운동 신경 (NF 160+)이 안티센스— miR486을 처리한 척수 손상 조직에서 두드러진 것을 나타냈다 (도 2h). 척수 손상에서 miR486 발현 간섭은 대조군 동물과 비교하였을 때, 운동 신경안의 미엘린의 생존 및 보존을 현저하게 증가시키는 것으로 나타났다 (도 2j).  As a result, immunochemical analysis of spinal cord tissue lesions also showed that well-developed motor neurons (NF 160+) were prominent in spinal cord injury tissues treated with antisense—miR486 (FIG. 2H). Interference with miR486 expression in spinal cord injury has been shown to significantly increase the survival and preservation of myelin in motor neurons compared to control animals (FIG. 2J).
또한, 형태학적 변화를 확인하고자 하기와 같이 LFB 염색을 실시하였다. 동결 절단면 (flozen section)을 먼저 1:1 알콜 /클로로폼 (alchol/chloroform)으로 하룻밤 동안 두었고, 9¾ 에틸 알콜 (ethyl alcohol)을 이용하여 탈수하였다. 탈수한 절단면을 56°C에서 0.1% 룩솔 패스트 블루 (luxal fast blue)용액으로 하룻밤 (16시간 이하)동안 반웅시켰다. 다음으로, 95% 에틸 알콜로 과도한 염색을 씻어낸 다음 증류수를 이용하여 씻었다. 상기 슬라이드를 0.05%탄산리튬 (Lithium carbonate)용액으로 30초 동안 반웅시킨 다음, 70% 에틸 알콜로 30초 반응시킴으로써 조직들 간의 구별이 가능하도록 하였다. 그리고 증류수로 씻어낸 다음 대비염색을 위해 크레실 바이을렛 (cresyl violet)용액으로 염색하였다. 다시 증류수로 씻어낸 후 염색들 간의 구분을 용이하게 하고자 95% 에틸 알콜에 5분간 방치한 후, 100% 알콜로 5분씩 2번 처리하고 자일렌 (xylene)으로 5분씩 2번 처리한 다음 마운팅 (mounting)하였다. 이 염색을 통해서 미엘린 (myelin)은 파란색으로, 신경 (neuron)은 분흥색이나보라색으로 염색이 된다. In addition, LFB staining was performed as follows to confirm morphological changes. The frozen section was first placed overnight in 1: 1 alcohol / chloroform and dehydrated using 9¾ ethyl alcohol. The dehydrated sections were reacted overnight at 56 ° C. with 0.1% luxal fast blue solution (up to 16 hours). Next, excess dye was washed off with 95% ethyl alcohol and then washed with distilled water. The slide was reacted with 0.05% Lithium carbonate solution for 30 seconds and then reacted with 70% ethyl alcohol for 30 seconds to distinguish between tissues. After washing with distilled water, it was dyed with cresyl violet solution for counterstaining. After rinsing with distilled water again, in order to facilitate differentiation between the dyes, it was left for 5 minutes in 95% ethyl alcohol, treated twice with 5% of 100% alcohol, twice with 5 minutes of xylene, and then mounted. mounting). Through this staining, the myelin is colored blue and the nerve is colored in red or purple.
그 결과, 정상 척수 및 손상된 척수에 스크램블 RNA 또는 안티센스ᅳ miR486을 처리하였을 때, 안티센스 -miR486을 처리한 군에서 강한 LFB염색을 확인하였다 (도 2i). As a result, scrambled RNA or antisense ᅳ in normal and damaged spinal cord When treated with miR486, strong LFB staining was observed in the group treated with antisense -miR486 (FIG. 2I).
<실시예 5> miR486 발현 간섭의 GPx3, TXNLl 및 SEPNl 상향조절을 통한 NeuroD6 매개신경 보호 유도 확인 Example 5 Confirmation of Induction of NeuroD6 Mediated Neuroprotection by GPx3, TXNLl and SEPNl Upregulation of miR486 Expression Interference
<5-1> miR486 발현 간섭에 의한 전염증 인자인 Cox2, EDI, ΙΙΙβ IL6 및 TNFa, 및 ROS제거 효소인 SEPNl, TXNLl, GPxl 및 GPx3의 발현 확인  <5-1> Confirmation of Cox2, EDI, ΙΙβ IL6 and TNFa, ROS-removing enzymes SEPNl, TXNLl, GPxl and GPx3
miR486 발현 간섭에 의한 영향을 확인하고자, miR486 발현 간섭 후에 전염증 인자인 Cox2, EDI, ΙΙΙβ IL6 및 TNF a, 및 ROS제거 효소인 SEPNl, TXNLl, GPxl 및 GPx3의 발현 확인하였다.  In order to confirm the effect of miR486 expression interference, the expression of proinflammatory factors Cox2, EDI, ΙΙβ IL6 and TNF a, and ROS scavenging enzymes SEPNl, TXNLl, GPxl and GPx3 were confirmed after miR486 expression interference.
그 결과, 척수 손상 쥐에서 miR486 발현 간섭은 안티센스 -miR486 및 리포펙타민 (lipofectamine) 흔합물의 직접적인 주입 이를 후에 증가된 표적 유전자 발현을 야기하였다. 주로, miR486 간섭은 효과적으로 miR486의 발현 (miR486 발현의 88%가 하향조절됨 ) 및 전염증성 인자인 Cox2, EDI, ΙΙΙβ IL6 및 TNF α의 발현을 저해하였다 (도 3a). miR486 발현 간섭 7일 후에, 마이엘로퍼옥시다제 (myeloperoxidase, MP0) 및 나이트릭옥사이드신데아제 (nitric oxide synthase, eNOS) 발현은 현저하게 감소된 반면, 척수 손상 안의 miR486 발현 간섭 후 3일 및 7일에 상기 R0S-제거하는 효소인 SEPNl, TXNLl, GPxl 및 GPx3는 현저하게 증가하였다 (도 3c 및 3d). 또한 단백질 발현을 확인한 결과, 척수 손상에서 miR486 발현 간섭 7일 후에 ED1-양성 염증 세포, 대식세포, 마이크로글리알 세포의 수는 현저하게 감소하였다 (도 3b). 척수 손상 동물에 simiR486 주입 7일 후에, 정상 척수 조직 안의 NF160+ 운동 뉴런에서 상기 GPx3, TXNLl 및 SEPNl 발현이 탐지되었다 (도 3 f 및 3h). <5-2>웨스턴 블랏 (western blot)을 통한 단백질 발현 확인  As a result, interference with miR486 expression in spinal cord injury rats resulted in increased target gene expression following direct injection of antisense -miR486 and lipofectamine combinations. Mainly, miR486 interference effectively inhibited the expression of miR486 (88% of miR486 expression was downregulated) and the expression of the proinflammatory factors Cox2, EDI, ΙΙΙβ IL6 and TNF α (FIG. 3A). After 7 days of miR486 expression interference, myeloperoxidase (MP0) and nitric oxide synthase (eNOS) expressions were markedly reduced, while 3 and 7 days after miR486 expression interference in spinal cord injury. SEPNl, TXNLl, GPxl and GPx3, which are the enzymes depleting R0S, were significantly increased (FIGS. 3C and 3D). In addition, as a result of confirming the protein expression, the number of ED1-positive inflammatory cells, macrophages, microglyal cells significantly decreased after 7 days of miR486 expression interference in spinal cord injury (Fig. 3b). Seven days after simiR486 injection in spinal cord injured animals, the GPx3, TXNLl and SEPNl expression was detected in NF160 + motor neurons in normal spinal cord tissue (FIGS. 3 f and 3h). <5-2> Confirmation of protein expression through western blot
척수 조직 또는 배양된 NPC에서 발현되는 단백질의 확인을 위해 웨스턴 블랏 (western blot)을 실시하였다. NPC 또는 조직은 1 mM 페닐메탄설포닐플루오라이드 (phenylmethanesulfonylfluoride, PMSF)를 포함하는 용해 버퍼 500 ^에서 용해되었다. 상기 용해물을 15,000 g 에서 10분 동안 원심분리하였고, 상기 전체 단백질 함유물을 으 Rad(Millan, Italy) protein assay kit로 확인하였다. 웨스턴 블랏팅을 위해, 용해 버퍼 안의 단백질 추출물의 동일한 양 (40 )을 10% SDS-PAGE 분석하였고 나이트로셀를로스 막 (nitrocel lulose membrane)에 옮겨졌다. 그 후에 항— pᅳ PI3K (1:1000, Cell Signaling), 항 -p-Rac (1:1000, Cell Signaling), 항 -p-c-Raf (1:1000, Cell Signaling), 항 -p-MEK (1:1000, Cell Signaling), 항 -p-ERK (1:1000, Cell Signaling), 항 -Akt (1:1000, Cell Signaling), 항 -p-SAPK/JNK (1:1000, Cell Signaling), 항ᅳ JAK2 (1:1000, Cell signaling), 항 -p21 (1:200, Santa Cruz Biotechnology), 항 -p53 (1:200, Santa Cruz Biotechnology) , 항— p— c一 Myc (1:200, Santa Cruz Biotechnology) , 항 一 MAP2ab (1:500, Sigma) , 항— NF160 (1:40, Sigma), 항 -Nestin (1:500, BD Biosciences), 항ᅳ GFAP (1:3000, Dakocytomat ion) , 항 -NeuroD6 (1:3000), 항— Tuj (1:400, Sigma) 또는 항 -pActin (1:500, Sigma) 항체를 막과 반웅시켰다. 상대적인 밴드 강도를 Quality-one 1-D 분석 소프트웨어 (Bio-Rad, USA)로 확인하였다. Western blots were performed to identify proteins expressed in spinal cord tissue or cultured NPCs. NPCs or tissues were dissolved in lysis buffer 500 ^ containing 1 mM phenylmethanesulfonylfluoride (PMSF). The lysate at 15,000 g for 10 minutes After centrifugation, the total protein content was confirmed by Rad (Millan, Italy) protein assay kit. For Western blotting, the same amount of protein extract (40) in lysis buffer was analyzed by 10% SDS-PAGE and transferred to nitrocel lulose membrane. Then—p ᅳ PI3K (1: 1000, Cell Signaling), anti-p-Rac (1: 1000, Cell Signaling), anti-pc-Raf (1: 1000, Cell Signaling), anti-p-MEK ( 1: 1000, Cell Signaling), anti-p-ERK (1: 1000, Cell Signaling), anti-Akt (1: 1000, Cell Signaling), anti-p-SAPK / JNK (1: 1000, Cell Signaling), Anti-JAK2 (1: 1000, Cell signaling), anti-p21 (1: 200, Santa Cruz Biotechnology), anti-p53 (1: 200, Santa Cruz Biotechnology), anti— p— c 一 Myc (1: 200, Santa Cruz Biotechnology), Anti-MAP2ab (1: 500, Sigma), Anti-NF160 (1:40, Sigma), Anti-Nestin (1: 500, BD Biosciences), Anti-GFGF (1: 3000, Dakocytomat ion) , Anti-NeuroD6 (1: 3000), anti-Tuj (1: 400, Sigma) or anti-pActin (1: 500, Sigma) antibodies were reacted with the membrane. Relative band intensities were confirmed with Quality-one 1-D analysis software (Bio-Rad, USA).
그 결과, 증가한 miR486 발현은 NF160-양성 운동 뉴런안의 NeuroD6, GPx3, As a result, increased miR486 expression was found in NeuroD6, GPx3, NF160-positive motor neurons.
TXNL1 및 셀레노프로테인 (Selenoprotein Nl, SEPN1)의 하향조절된 발현을 유도하였다. 또한, 손상된 척수에 ^!?486 발현을 간섭하였을 때, P13k 및 p-Akt의 발현이 유도 되었으나, 캐스패이즈 -3 및 싸이토크름 C(cytochrome-C)의 발현이 저하되는 것을 확인하였다 (도 3e). Downregulated expression of TXNL1 and selenoprotein (Selenoprotein Nl, SEPN1) was induced. In addition, P13k and p-Akt expression was induced when interference with ^ !? 486 expression in the injured spinal cord, but the expression of caspase-3 and cytochrome-C was reduced ( 3e).
<5-3> NPC에서의 miR486 발현 간섭 효과 <5-3> Effect of miR486 expression interference on NPC
상기 <실시예 2>에서 제조한 NPC에서, miR486 발현 녹다운 (knockdo皿)의 효과를 확인한 결과, 효과적으로 p-PI3K/p-Akt 발현을 유도하였고, 배양된 NPC의 생존을 개선시켰고, 세포들이 신경 세포 사멸에서 벗어나게 하였다. 또한, 척수 손상 쥐에 안티센스 -miR486 및 리포펙타민 ( lipofectamine) 흔합물의 직접적인 주입 이를 후에 miR486 발현 간섭은 증가된 표적 유전자 발현을 야기하였다. 이것은 치명적인 신경 파괴 및 미엘린 파괴 수준올 높이는 것을 야기하였다 (도 4b). 척수 손상 동물에 비해, miR486—주입 동물은 산화환원을 발생시키는 인자인 EDI, MP0, iNOS 및 eNOS의 높은 수준의 발현을 보였다 (도 4d) . 생체내에서, 척수손상 및 miR486-주입된 정상 척수는 효과적으로 높은 R0S 생산을 유도하였다 (도 4e) . In the NPC prepared in Example 2, as a result of confirming the effect of miR486 expression knockdown, effectively induced p-PI3K / p-Akt expression, improved the survival of cultured NPCs, Freed from cell death. In addition, direct injection of antisense-miR486 and lipofectamine combinations into spinal cord injury mice followed by miR486 expression interference resulted in increased target gene expression. This resulted in elevated levels of lethal neuronal and myelin destruction (FIG. 4B). Compared to spinal cord injured animals, miR486—injected animals showed higher levels of expression of redox-causing factors, EDI, MP0, iNOS and eNOS (FIG. 4D). In vivo, spinal cord injury and miR486-injected normal spinal cord effectively induced high R0S production (FIG. 4E).
정상 척수에 miR486 및 안티센스 -miR486을 도입한 결과, Cox2, IL-Ιβ, IL- 6 및 TNFa와 같은 전염증 인자들의 발현 수준이 낮아지는 것을 확인하였다 (도 4c) · 이와는 대조적으로, miR486의 주입 후에 산화환원-제거하는 SEPN1, TXNL1 및 GPx3와 같은 기작 발현은 현저하게 하향조절되었고, miR486 발현 간섭 후 이것의 발현은 회복되었다 (도 4f). NeuroD6의 상기 조절 부위의 상기 DNA-결합 빈도는 miR486발현의 간섭으로 인해 증가되었지만, miR486-과발현 NPCs는 현저하게 감소하였다 (도 4i).  Induction of miR486 and antisense-miR486 into the normal spinal cord revealed that expression levels of proinflammatory factors such as Cox2, IL-β, IL-6, and TNFa were reduced (FIG. 4C). In contrast, injection of miR486 Later, mechanism expression such as redox-removing SEPN1, TXNL1 and GPx3 was significantly downregulated and its expression recovered after miR486 expression interference (FIG. 4F). The DNA-binding frequency of the regulatory site of NeuroD6 was increased due to interference of miR486 expression, but miR486-overexpressing NPCs were significantly reduced (FIG. 4I).
세포 생존능은 트리판 블루 염색과 관련한 가시적인 세포 계수로 평가하였다. 미토콘드리아 활성은 3, 4, 5— dimethyl t h i azo 1 -2-y 1 -2 , 5-d i pheny 1 tetrazolium bromide (MTT; Sigma, St. Louis, MO, USA)이 염색된 포마잔 (formazan)으로 감소하는 상기 피질 배양의 능력을 평가함으로써 플레이트 리더를 이용하여 평가하였다. 모든 생존능 분석에서, 세 번의 웰은 각 실험 조건하에 수립되었고, 각 실험은 적어도 3회 반복되었다. 각 실험의 상기 원본 데이터는 Fisher's 또는 t_tests의 변화 분석을 통해 분석되었다. 또한, 유세포분석을 위해, 세포를 100-隱 디쉬 (dish)에서 수확할 때에 지수성장이 보장된 농도로 배양하였다. 수확 및 시험 프로토콜을 프로피디움 아이오다이드 (propidium iodide)과 함께 유세포분석을 통해 DNA를 탐지하기 위해 사용하였다. 상기 세포를 BD Biosciences FACScan system (San Jose, CA, USA)로 분석하였다. 세포사이클의 G0/G1, S 및 G2/M 단계의 상기 세포의 비율을 DNA histogram fitting program (MODFIT; Verity Software, Topsham, ME, USA) 를 이용하여 확인하였다. 그 결과, 척수 조직에서 분리된 NPC 배양에서 miR486 발현의 유도는 효과적으로 NeuroD6의 발현 및 R0S와 전염증 인자 생산을 저해하였고, 결과적으로 세포 생존은 현저하게 감소된 반면에, 세포사멸적 세포 신호는 증가되었다 (도 4h).  Cell viability was assessed by visible cell counts associated with trypan blue staining. Mitochondrial activity is formazan stained with 3, 4, 5—dimethyl thi azo 1-2-y 1 -2, 5-di pheny 1 tetrazolium bromide (MTT; Sigma, St. Louis, MO, USA). Evaluation was made using a plate reader by evaluating the ability of the cortical culture to decrease. In all viability assays, three wells were established under each experimental condition and each experiment was repeated at least three times. The original data of each experiment was analyzed through change analysis of Fisher's or t_tests. In addition, for flow cytometry, the cells were incubated at concentrations that ensured exponential growth when harvested in 100-mm dishes. Harvest and test protocols were used with propidium iodide to detect DNA via flow cytometry. The cells were analyzed with a BD Biosciences FACScan system (San Jose, CA, USA). The proportion of these cells at the G0 / G1, S and G2 / M stages of the cell cycle was confirmed using a DNA histogram fitting program (MODFIT; Verity Software, Topsham, ME, USA). As a result, induction of miR486 expression in NPC cultures isolated from spinal cord tissues effectively inhibited NeuroD6 expression and production of R0S and proinflammatory factors, resulting in a markedly decreased cell survival, while increased apoptotic cell signaling. (FIG. 4H).
아울러ᅳ miR486 간섭 후 NeuroD6 발현을 확인하기 위해 칩 (CHIP)분석을 하였다. 상기 모노클로날 항체, 항 -NeuroD6은 Santa Cruze에서 구입하였고, 토끼 IgG (PP64B)항체는 Upstate에서 구입하였다. 배양된 NPC를 수확하였고, 화학적으로 포름알데히드와 4°C에서 20시간 동안 교차결합시켰다. 고정은 상온에서 5분 동안 1/20 부피 2.5 M 글리신 (glycine)을 추가함으로써 제지하였다. 세포는 4°C에서 500 g 조건에서 원심분리하였고, 저온의 PBS로 세척하였으며, 용해 버퍼 (10 mM Tris-HCl, 10 mM NaCl , 3 mM MgCl2, 0.5% GEPAL, 1 mM PMSF)로 두 번 세척 한 다음, 원심분리하여 세포 펠뻣을 만들고 액체질소에 동결 보존하였다. 펠렛을 pre-IP 회석 버퍼 (10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2, 1 mM CaCl2> 4% GEPAL, 1 mM PMSF) , 60 mL PMSF 및 부가적인 구성물 (100 mM PMSF, 256프로테아제 저해제, 20% SDS, 5 M NaCl, ¾02)안에서 부유시켰다. 세포를 Branson Sonifier 450D를 이용하여 50% 진폭에서, 1261분 파동으로 초음파처리하였고, 1분 후에 얼음물에 두었다. 초음파처리된 분획물은 200-1000 bp로부터 사이즈 범위를 포함하였다. 초음파 처리 후, 시료를 4°C에서 14,000 rpm, 10분 동안 원심분리하였고, 분주하였으며, 액체 질소에서 급속냉동하였다. 2 X 106 세포와 동등한 초음파처리된 세포 추출물을 그 다음의 면역침강에 이용하였다. 시료를 protein G Dynabeads (Dynal)와 1000 mL 희석 버퍼 (0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl (pH 8.1), 167 mM NaCl, 5 mL Upstate protease inhibitor cocktail Π)에서 먼저 세척하였다. In addition, chip (CHIP) analysis was performed to confirm NeuroD6 expression after miR486 interference. The monoclonal antibody, anti-NeuroD6, was purchased from Santa Cruze and rabbit IgG (PP64B) antibody was purchased from Upstate. Cultured NPCs were harvested and chemically crosslinked with formaldehyde for 20 hours at 4 ° C. Fixation was restrained by adding 1/20 volume 2.5 M glycine at room temperature for 5 minutes. Cells were centrifuged at 500 g at 4 ° C., washed with cold PBS and twice with lysis buffer (10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl 2 , 0.5% GEPAL, 1 mM PMSF). After washing, the cells were centrifuged to make cell pellets and cryopreserved in liquid nitrogen. The pellet was pre-IP lime buffer (10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl 2 , 1 mM CaCl 2> 4% GEPAL, 1 mM PMSF), 60 mL PMSF and additional components (100 mM PMSF, 256 Protease inhibitor, 20% SDS, 5 M NaCl, ¾0 2 ). Cells were sonicated with a 1261 minute wave at 50% amplitude using a Branson Sonifier 450D and placed in ice water after 1 minute. Sonicated fractions ranged in size from 200-1000 bp. After sonication, the samples were centrifuged at 14,000 rpm for 10 minutes at 4 ° C, aliquoted and rapidly frozen in liquid nitrogen. Ultrasonicated cell extracts equivalent to 2 × 10 6 cells were used for the next immunoprecipitation. Samples were prepared with protein G Dynabeads (Dynal) and 1000 mL dilution buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl, pH 8.1), 167 mM NaCl, 5 mL Upstate protease inhibitor cocktail Π First).
그 결과, NPC에 각각 스크램블 RNA, 안티센스 -miR486 및 miR486을 처리하였을 때, 안티센스 _miR486을 주입한 군의 NeuroD6의 발현이 증가된 것을 확인하였다 (도 4j).  As a result, when NPCs were treated with scrambled RNA, antisense -miR486 and miR486, it was confirmed that the expression of NeuroD6 of the group injected with antisense _miR486 was increased (FIG. 4J).
<실시예 6> 손상된 척수에서 miR486 발현 및 부족한 NeuroD6에 의한 GPx3 및 TXNL1을 통한 항산화 반웅 유도 개시에 대한 확인 Example 6 Confirmation of Initiation of Antioxidant Response Induced by GPx3 and TXNL1 by MiR486 Expression and Deficient NeuroD6 in the Injured Spinal Cord
miR486 발현 간섭 후 칩 분석을 한 결과, GPx3 및 TXNL1의 조절 부위에 결합하는 NeuroD6의 유도를 확인하였다 (도 5b). 활성산소종 (React ive oxygen species, R0S)는 척수 손상 및 miR486—주입된 척수 조직 및 siNeuroD6-주입된 척수 조직에서 현저하게 축적되었다 (도 5e). siNeuroD6 주입 48시간 후에 단백질 발현 수준을 확인한 결과, 척수 조직에서 상기 운동 뉴런 마커인 NF160, Tuj 및 MBP의 생체 내 발현은 하향조절되었다 (도 50. 손상되지 않은 척수 안의 NeuroD6 발현 녹다운은 운동 뉴런에 세포 독성 효과를 가지며, TNFa, ΙΙΙβ , IL6, C0X2, iNOS 및 eNOS의 발현을 증가시켰으며 (도 ), 유전자 발현을 확인하였다. 손상되지 않은 척수 안의 NeuroD6 발현 녹다운 (Knockdown)은 운동 뉴런에 세포 독성 효과를 보였고, TNFa, Ιίΐβ , IL6, C0X2, iNOS 및 eNOS의 발현을 증가시켰으며, R0S 제거하는 인자인 SEPNl, TXNL2, GPxl 및 GPx3의 발현 하향조절 및 조직의 R0S 축적에 따라 병리학적 미세환경의 조성을 조성하였다 (도 5g 내지 i). 또한 척수 또는 배양된 NPC에서 NeuroD6-매개 신경세포 보호는 캐스패이즈 -3 하향조절 및 정상화된 ATP합성 능력과 관련있었다 (도 5j). Chip analysis after interference with miR486 expression confirmed the induction of NeuroD6 binding to regulatory sites of GPx3 and TXNL1 (FIG. 5B). React ive oxygen species (ROS) accumulated significantly in spinal cord injury and miR486—injected spinal cord tissue and siNeuroD6-injected spinal cord tissue (FIG. 5E). After 48 hours of siNeuroD6 injection, protein expression levels were confirmed and in vivo expression of the motor neuron markers NF160, Tuj and MBP in spinal cord tissues was downregulated (FIG. 50. NeuroD6 expression knockdown in intact spinal cord cells in motor neurons It has a toxic effect, increased the expression of TNFa, ΙΙΙβ, IL6, C0X2, iNOS and eNOS (FIG.) And confirmed gene expression.Knockdown of NeuroD6 expression in the intact spinal cord has a cytotoxic effect on motor neurons. To Increased the expression of TNFa, Ιίΐβ, IL6, C0X2, iNOS and eNOS, and down-regulated expression of SEPNl, TXNL2, GPxl and GPx3, which are factors that eliminate R0S, and the composition of pathological microenvironment according to tissue R0S accumulation. (Fig. 5g-i). NeuroD6-mediated neuronal protection in spinal cord or cultured NPCs was also associated with caspase-3 downregulation and normalized ATP synthesis ability (FIG. 5J).
NeuroD6 또는 R0S가 miR486발현을 조절하였는지 확인하기 위해, 본 발명자들은 miR486발현 수준을 배양된 척수 -유래 분화된 신경 세포에 NeuroD6, 과산화수소 (¾ ), 과산화수소 /NeuroD6 및 과산화수소 /아스코빅 액시드 (Ascorbic Acid) (5 yg/ml)처리 전과 후에 분석하였다.  In order to determine whether NeuroD6 or R0S regulated miR486 expression, we determined that miD486 expression levels in neuroD6, hydrogen peroxide (¾), hydrogen peroxide / NeuroD6 and hydrogen peroxide / ascorbic acid in cultured spinal cord-derived differentiated neurons. (5 yg / ml) before and after treatment.
그 결과, miR486 발현은 과산화수소 처리에서 3-배 이상 (320%) 증가하였으며, NeuroD6 또는 아스코브르산 처리는 과산화수소 -매개 miR486 증가를 (각 194% 및 13¾ )을 현저하게 감소하였다 (도 5k). 과산화수소 -유도 R0S 생산은 상기 NeuroD6 (53%) , SEPNl (37%) , TXNL1 (23%) 및 GPx3 (40%)발현으로 현저하게 저해되었다. NPC에 과산화 수소 노출 전에, NeuroD6 또는 아스코브르산 (5 ug/ml) 처리는 과산화 수소 단독으로 노출 효과에 비해 상당히 SEPNl, TXNL1 및 GPx3를 상향조절하였다 (도 51 내지 5o). 또한, 외인성의 NeuroD6은 R0S-매개 신경독성으로부터 신경세포를 보호하였다 (도 5p). As a result, m iR486 expression increased more than 3-fold (320%) in hydrogen peroxide treatment and NeuroD6 or ascorbic acid markedly decreased hydrogen peroxide-mediated miR486 increase (194% and 13¾ respectively) (FIG. 5K). . Hydrogen peroxide-induced R0S production was markedly inhibited by the expression of NeuroD6 (53%), SEPNl (37%), TXNL1 (23%) and GPx3 (40%). Prior to hydrogen peroxide exposure to NPC, NeuroD6 or ascorbic acid (5 ug / ml) treatment significantly upregulated SEPN1, TXNL1 and GPx3 compared to the exposure effect with hydrogen peroxide alone (FIGS. 51-5O). In addition, exogenous NeuroD6 protected neurons from R0S-mediated neurotoxicity (FIG. 5P).
<실시예 7>손상된 척수에서 외인성의 NeuroD6에 의한신경 보호 효과 확인 척수 손상에서 NeuroD6에 의한 신경보호 효과를 알아보기 위해 R0S 제거 효소인 SEPNl, TX L1 및 GPx3의 발현 및 BBS 및 BMS확인을 하였다. <Example 7> Confirmation of neuroprotective effect of exogenous NeuroD6 in the damaged spinal cord In order to determine the neuroprotective effect of NeuroD6 in spinal cord injury, the expression of SEPNl, TX L1 and GPx3 and BBS and BMS were confirmed.
그 결과, NeuroD6 과발현은 SEPNl, TXNL1 및 GPx3 발현을 현저하게 증가시켰다 (도 6b 내지 e). 척수손상 후 4 주, NeuroD6-주입된 동물은 마비가 회복되었고, 평행 보행 동안 일관되게 그들의 몸무게를 유지하였으며, 걷는 동안 주로 회전되는 발 위치를 나타냈다. 대조적으로, 스크램블 siRNA만 주입된 손상된 동물은 관절 운동능력이 제한되었다 (도 6h 및 6i).  As a result, NeuroD6 overexpression significantly increased SEPN1, TXNL1 and GPx3 expression (FIGS. 6B-E). Four weeks after spinal cord injury, NeuroD6-injected animals recovered from paralysis, maintained their weight consistently during parallel gait, and exhibited a mainly rotated foot position while walking. In contrast, injured animals injected with scrambled siRNA only had limited joint mobility (FIGS. 6H and 6I).

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
miR486 발현 억제제를 유효성분으로 포함하는 신경계 질환 예방 및 치료용 약학적 조성물.  Pharmaceutical composition for preventing and treating neurological diseases, including miR486 expression inhibitors as an active ingredient.
【청구항 2] [Claim 2]
제 1항에 있어서, 상기 miR486 발현 억제제는 miR486 유전자에 상보적으로 결합하는 안티센스 올리고뉴클레오티드, 작은 간섭 RNA(small interfering RNA, siRNA), 짧은 헤어핀 RNA 및 리보자임 (r ibozyme)으로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 신경계 질환 예방 및 치료용 약학적 조성물.  The method of claim 1, wherein the miR486 expression inhibitor is selected from the group consisting of antisense oligonucleotides that bind complementarily to the miR486 gene, small interfering RNA (siRNA), short hairpin RNA, and ribozyme (r ibozyme) Pharmaceutical composition for the prevention and treatment of diseases of the nervous system, characterized in that any one.
【청구항 3】 [Claim 3]
제 1항에 있어서, 상기 miR486 발현 억제제는 NeuroD6의 발현을 증가시키는 것을 특징으로 하는 신경계 질환 예방 및 치료용 약학적 조성물.  The pharmaceutical composition for preventing and treating neurological diseases according to claim 1, wherein the miR486 expression inhibitor increases the expression of NeuroD6.
【청구항 4】 [Claim 4]
제 1항에 있어세 상기 신경계 질환은 척수 손상, 파킨슨병, 뇌졸중, 근위축성 척수측색경화증, 운동신경손상, 외상에 의한 말초신경손상, 허혈성 뇌손상, 신생아 저산소성 허혈성 뇌손상 , 뇌성마비, 간질, 난치성 간질, 알≥하이머병, 선천성 대사성 신경계질환 및 외상성 뇌손상 (traumatic brain injury)으로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는 신경계 질환 예방 및 치료용 약학적 조성물.  According to claim 1, wherein the neurological disease is spinal cord injury, Parkinson's disease, stroke, muscular dystrophy myocardial sclerosis, motor nerve injury, peripheral nerve injury due to trauma, ischemic brain injury, neonatal hypoxic ischemic brain injury, cerebral palsy, epilepsy , The pharmaceutical composition for preventing and treating neurological diseases, characterized in that any one selected from the group consisting of refractory epilepsy, egg ≥heimer's disease, congenital metabolic nervous system disease and traumatic brain injury.
【청구항 5】 [Claim 5]
1) miR486 발현세포주에 피검물질을 처리하는 단계;  1) treating the test substance to miR486-expressing cell line;
2) 상기 세포주의 miR486의 발현량올 측정하는 단계;및  2) measuring the expression level of miR486 of the cell line; and
3) 상기 miR486의 발현량이 피검물질을 처리하지 않는 대조군에 비해 감소한 피검물질을 선별하는 단계를 포함하는, 신경계 질환 예방 및 치료용 후보물질 스크리닝 방법 3) selecting the test material, the expression of the miR486 expression is reduced compared to the control group does not process the test substance, for preventing and treating neurological diseases Candidate Screening Methods
【청구항 6] [Claim 6]
1) miR486 및 NeuroD6 발현 세포주에 피검물질을 처리하는 단계;  1) treating the test substance to miR486 and NeuroD6 expressing cell line;
2) 상기 세포주의 NeuroD6 발현량을 측정하는 단계;및  2) measuring the amount of NeuroD6 expression in said cell line; and
3) 상기 NeuroD6 발현량이 피검물질을 처리하지 않은 대조군에 비해 증가한 피검물질을 선별하는 단계를 포함하는 신경계 질환 예방 및 치료용 후보물질 스크리닝 방법 . .  3) A method for screening candidate substances for preventing and treating neurological diseases, comprising selecting a test substance whose NeuroD6 expression amount is increased compared to a control group not treated with the test substance. .
【청구항 7】 [Claim 7]
제 5항 및 제 6항 중 어느 한 항에 있어서, 상기 단계 2)의 miR486 발현량 측정은 RT-PCR, 정량적 또는 반정량적 RT-PCR(Quentitative or semi— Quentitative RT-PCR) , 정량적 또는 반정량적 리얼 타임 RT-PCR(Quentitative or semi- Quentitative real-time RT-PCR) , 노던 블롯 (northern blot), 및 DNA 또는 RNA 칩 (chip)으로 이루어지는 군으로부터 선택되는 어느 하나의 방법을 이용하여 측정되는 것을 특징으로 하는 스크리닝 방법.  The method of any one of claims 5 and 6, wherein the measurement of miR486 expression in step 2) is RT-PCR, quantitative or semi-quantitative RT-PCR, quantitative or semi-quantitative. What is measured using any one method selected from the group consisting of real-time or semi-Quentitative real-time RT-PCR, Northern blot, and DNA or RNA chip Screening method characterized by.
【청구항 8] [Claim 8]
miR486 유전자의 뉴클레오티드, 상기 뉴클레오티드에 상보적인 서열을 가지는 뉴클레오티드, 또는 이들의 단편을 포함하는 신경계 질환 진단용 키트.  A kit for diagnosing a nervous system disease comprising a nucleotide of a miR486 gene, a nucleotide having a sequence complementary to the nucleotide, or a fragment thereof.
【청구항 9] [Claim 9]
1) 실험군으로서 피검체로부터 분리된 시료에서 miR486의 발현 수준을 측정하는 단계 ;  1) measuring the expression level of miR486 in a sample separated from the subject as an experimental group;
2) 단계 1)의 miR486 발현 수준과 대조군으로서 정상 개체로부터 분리된 시료의 miR486의 발현 수준을 비교하는 단계; 및  2) comparing the expression level of miR486 in step 1) with the expression level of miR486 in a sample isolated from normal individuals as a control; And
3) 단계 2)의 miR486 발현 수준이 대조군에 비해 증가한 경우 신경계질환에 걸릴 위험이 높은 것으로 판정하는 단계를 포함하는 신경계 질환 진단의 정보를 제공하기 위한 유전자 검출 방법 . 3) A gene detection method for providing information for diagnosing a neurological disease, comprising determining that the miR486 expression level of step 2) is higher than that of the control group, and thus, the risk of developing the neurological disease is high.
【청구항 10】 [Claim 10]
제 9항에 있어서, 신경계 질환은 척수 손상, 파킨슨병, 뇌졸중, 근위축성 척수측색경화증, 운동신경손상, 외상에 의한 말초신경손상, 허혈성 뇌손상, 신생아 저산소성 허혈성 뇌손상, 뇌성마비, 간질, 난치성 간질, 알쓰하이머병, 선천성 대사성 신경계질환 및 외상성 뇌손상 (traumatic brain injury)으로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는 신경계 질환 진단의 정보를 제공하기 위한 유전자 검출 방법.  10. The neurological disorders of claim 9, wherein the neurological disorders include spinal cord injury, Parkinson's disease, stroke, amyotrophic lateral sclerosis, motor neuron injury, peripheral nerve injury by trauma, ischemic brain injury, neonatal hypoxic ischemic brain injury, cerebral palsy, epilepsy, A gene detection method for providing information for diagnosing a neurological disease, wherein the disease is any one selected from the group consisting of refractory epilepsy, Alzheimer's disease, congenital metabolic nervous system disease, and traumatic brain injury.
【청구항 11】 [Claim 11]
NeuroD6를 유효성분으로 포함하는 신경계 질환 예방 및 치료용 약학적 조성물. -  Pharmaceutical composition for preventing and treating neurological diseases, including NeuroD6 as an active ingredient. -
【청구항 12] [Claim 12]
제 11항에 있어서, 상기 신경계 질환은 척수 손상, 파킨슨병, 뇌졸중, 근위축성 척수측색경화증, 운동신경손상, 외상에 의한 말초신경손상, 허혈성 뇌손상, 산생아 저산소성 허혈성 뇌손상, 뇌성마비, 간질, 난치성 간질, 알프하이머병, 선천성 대사성 신경계질환 및 외상성 뇌손상 (traumatic brain injury)으로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는 신경계 질환 예방 및 치료용 약학적 조성물.  The method of claim 11, wherein the neurological disorders include spinal cord injury, Parkinson's disease, stroke, amyotrophic lateral sclerosis, motor neuron injury, peripheral nerve injury due to trauma, ischemic brain injury, hypoxic ischemic brain injury, cerebral palsy, Epilepsy, refractory epilepsy, Alpheimer's disease, congenital metabolic neurological disease and traumatic brain injury (traumatic brain injury), characterized in that any one selected from the group consisting of a pharmaceutical composition for preventing and treating neurological diseases.
【청구항 13] [Claim 13]
제 11항의 NeuroD6를 암호화하는 폴리뉴클레오티드를 포함하는 백터, 또는 상기 백터를 포함하는 세포를 유효성분으로 함유하는 신경계 질환 예방 및 치료용 약학적 조성물.  A vector comprising a polynucleotide encoding NeuroD6 according to claim 11, or a pharmaceutical composition for preventing and treating neurological diseases containing the cell containing the vector as an active ingredient.
【청구항 14】 [Claim 14]
제 13항에 있어세 상기 신경계 질환은 척수 손상, 파킨슨병, 뇌졸중, 근위축성 척수측색경화증, 운동신경손상, 외상에 의한 말초신경손상, 허혈성 뇌손상, 신생아 저산소성 허혈성 뇌손상, 뇌성마비, 간질 난치성 간질, 알 하이머병, 선천성 대사성 신경계질환 및 외상성 뇌손상으로 이루어진 According to claim 13, wherein the neurological disease is spinal cord injury, Parkinson's disease, stroke, muscular dystrophy myocardial sclerosis, motor neuron injury, peripheral nerve injury due to trauma, ischemic Brain injury, neonatal hypoxic ischemic brain injury, cerebral palsy, epileptic refractory epilepsy, Alheimer's disease, congenital metabolic neurological disease and traumatic brain injury
군으로부터 선택된 어느 하나인 것을 특징으로 하는 신경계 질환 예방 및 치료용 약학적 조성물. Pharmaceutical composition for the prevention and treatment of diseases of the nervous system, characterized in that any one selected from the group.
【청구항 15】 [Claim 15]
1) NeuroD6 발현 세포주에 피검물질을 처리하는 단계 ;  1) treating the test substance to the NeuroD6 expressing cell line;
2) 상기 세포주의 NeuroD6 발현량을 측정하는 단계 ;및  2) measuring the amount of NeuroD6 expression in said cell line; and
3) 상기 NeuroD6 발현량이 피검물질을 처리하지 않은 대조군에 비해 증가된 피검물질을 선별하는 단계를 포함하는 신경계 질환 예방 및 치료용 후보물질 스크리닝 방법 .  3) A method for screening candidate substances for preventing and treating neurological diseases, comprising selecting a test substance whose NeuroD6 expression amount is increased compared to a control group not treated with the test substance.
【청구항 16】 [Claim 16]
제 15항에 있어서, 상기 신경계 질환은 척수 손상, 파킨슨병, 뇌졸중, 근위축성 척수측색경화증, 운동신경손상, 외상에 의한 말초신경손상, 허혈성 뇌손상, 신생아 저산소성 허혈성 뇌손상, 뇌성마비, 간질, 난치성 간질, 알쓰하이머병, 선천성 대사성 신경계질환 및 외상성 뇌손상으로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는 신경계 질환 예방 및 치료용' 후보물질 스크리닝 방법 . 16. The neurological disorder of claim 15, wherein the neurological disorder includes spinal cord injury, Parkinson's disease, stroke, muscular dystrophy, lateral sclerosis, motor neuron injury, peripheral nerve injury due to trauma, ischemic brain injury, neonatal hypoxic ischemic brain injury, cerebral palsy, epilepsy. ' Candidate screening method for the prevention and treatment of neurological diseases, characterized in that any one selected from the group consisting of refractory epilepsy, Alzheimer's disease, congenital metabolic neurological disease and traumatic brain injury.
【청구항 17】 [Claim 17]
1) 피검 화합물 또는 조성물을 NeuroD6 단백질에 처리하는 단계 ;  1) treating the test compound or composition to the NeuroD6 protein;
2) 단계 1)의 NeuroD6 단백질의 활성을 측정하는 단계; 및  2) measuring the activity of the NeuroD6 protein of step 1); And
3) 단계 2)의 NeuroD6 단백질의 활성이 피검 화합물 또는 조성물을 무처리한 NeuroD6 단백질의 활성과 비교하여 증가된 피검 화합물 또는 조성물을 선별하는 단계를 포함하는 신경계 질환 예방 및 치료용 후보물질 스크리닝 방법.  3) A method for screening a candidate substance for preventing and treating neurological diseases, comprising selecting a test compound or composition in which the activity of the NeuroD6 protein of step 2) is increased compared to the activity of the NeuroD6 protein untreated with the test compound or composition.
【청구항 18】 [Claim 18]
제 17항에 있어서, 상기 신경계 질환은 척수 손상, 파킨슨병, 뇌졸중 근위축성 척수측색경화증, 운동신경손상, 외상에 의한 말초신경손상, 허혈성 뇌손상, 신생아 저산소성 허혈성 뇌손상, 뇌성마비, 간질 , 난치성 간질, 18. The method of claim 17, wherein the neurological disease is spinal cord injury, Parkinson's disease, stroke Amyotrophic spinal lateral sclerosis, motor nerve injury, peripheral nerve injury due to trauma, ischemic brain injury, neonatal hypoxic ischemic brain injury, cerebral palsy, epilepsy, refractory epilepsy
알쓰하이머병, 선천성 대사성 신경계질환 및 외상성 뇌손상으로 이루어진 Alzheimer's disease, congenital metabolic nervous system disease and traumatic brain injury
군으로부터 선택된 어느 하나인 것을 특징으로 하는 신경계 질환 예방 및 치료용 후보물질 스크리닝 방법 . Candidate screening method for preventing and treating neurological diseases, characterized in that any one selected from the group.
【청구항 19] [Claim 19]
1) 실험군으로서 피검체 유래 시료에서 NeuroD6단백질 발현량을 측정하는 단계;  1) measuring NeuroD6 protein expression in a sample derived from the subject as an experimental group;
2) 단계 1)의 NeuroD6단백질 발현량과 대조군으로서 정상 개체 유래 시료의 2) NeuroD6 protein expression level of step 1) and control samples
NeuroD6단백질 발현량을 비교하는 단계; 및 Comparing NeuroD6 protein expression levels; And
3) NeuroD6단백질 발현량이 대조군에 비해 감소하는 경우 신경계 질환에 걸릴 위험이 높은 것으로 판정하는 단계를 포함하는, 신경계 질환 진단의 정보를 제공하기 위한 단백질 검출 방법.  3) A method for detecting a protein for providing information for diagnosing a neurological disease, comprising determining that the risk of developing the nervous system disease is high when the expression level of NeuroD6 protein is decreased compared to the control group.
【청구항 20】 [Claim 20]
제 19항에 있어서, 상기 신경계 질환은 척수 손상, 파킨슨병, 뇌졸중 근위축성 척수측색경화증, 운동신경손상, 외상에 의한 말초신경손상, 허혈성 뇌손상, 신생아 저산소성 허혈성 뇌손상ᅳ 뇌성마비, 간질, 난치성 간질, 알쓰하이머병, 선천성 대사성 신경계질환 및 외상성 뇌손상으로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는 신경계 질환 진단의 정보를 제공하기 위한 단백질 검출 방법. ' 20. The method of claim 19, wherein the neurological disorders include spinal cord injury, Parkinson's disease, stroke atrophic spinal sclerosis, motor neuron injury, peripheral nerve injury due to trauma, ischemic brain injury, neonatal hypoxic ischemic brain injury, cerebral palsy, epilepsy, A protein detection method for providing information for diagnosing a neurological disease, characterized in that it is any one selected from the group consisting of refractory epilepsy, Alzheimer's disease, congenital metabolic neurological disease and traumatic brain injury. '
【청구항 21】 [Claim 21]
약학적으로 유효한 양의 miR486 발현 억제제를 신경계 질환에 걸린 개체에게 투여하는 단계를 포함하는 암 예방 및 치료 방법.  A method of preventing and treating cancer comprising administering a pharmaceutically effective amount of a miR486 expression inhibitor to an individual suffering from a neurological disease.
【청구항 22] [Claim 22]
miR486 발현 억제제를 신경계 질환 예방 및 치료용 약학적 조성물의 제조에 이용하는 용도. miR486 expression inhibitors for the preparation of pharmaceutical compositions for the prevention and treatment of diseases of the nervous system Use to use.
【청구항 23】 [Claim 23]
1) 실험군으로서 피검체로부터 분리된 시료에서 miR486의 발현 수준을 측정하는 단계 ;  1) measuring the expression level of miR486 in a sample separated from the subject as an experimental group;
2) 단계 1)의 miR486 발현 수준과 대조군으로서 정상 개체로부터 분리된 ' 시료의 miR486의 발현 수준을 비교하는 단계; 및  2) comparing the expression level of miR486 in step 1) with the expression level of miR486 in a sample isolated from normal individuals as a control; And
3) 단계 2)의 miR486 발현 수준이 대조군에 비해 증가한 경우 신경계질환에 걸린 개체로 판정하는 단계를 포함하는 신경계 질환의 진단 방법.  3) A method for diagnosing a neurological disease, comprising determining that the miR486 expression level of step 2) is higher than that of a control group.
【청구항 24】 [Claim 24]
약학적으로 유효한 양의 NeuroD6를 신경계 질환에 걸린 개체에게 투여하는 단계를 포함하는 암 예방 및 치료 방법.  A method of preventing and treating cancer comprising administering a pharmaceutically effective amount of NeuroD6 to an individual suffering from a neurological disease.
【청구항 25】 [Claim 25]
NeuroD6를 신경계 질환 예방 및 치료용 약학적 조성물의 제조에 이용하는 용도.  Use of NeuroD6 in the manufacture of a pharmaceutical composition for the prevention and treatment of neurological diseases.
【청구항 26] [Claim 26]
1) 실험군으로서 피검체 유래 시료에서 NeuroD6단백질 발현량을 측정하는 단계;  1) measuring NeuroD6 protein expression in a sample derived from the subject as an experimental group;
2) 단계 1)의 NeuroD6단백질 발현량과 대조군으로서 정상 개체 유래 시료의 NeuroD6단백질 발현량을 비교하는 단계; 및  2) comparing NeuroD6 protein expression level of step 1) and NeuroD6 protein expression level of a sample derived from a normal individual as a control; And
3) NeuroD6단백질 발현량이 대조군에 비해 감소하는 경우 신경계 질환에 걸린 개체로 판정하는 단계를 포함하는 신경계 질환의 진단 방법.  3) A method for diagnosing a neurological disease, comprising determining that the individual has a neurological disease when the expression level of NeuroD6 protein is decreased compared to the control group.
PCT/KR2012/007112 2011-09-06 2012-09-05 Pharmaceutical composition including a microrna486 expression inhibitor as an active ingredient for preventing and treating neurological disorders WO2013036031A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110090424A KR20130026950A (en) 2011-09-06 2011-09-06 Pharmaceutical composition comprising inhibitors of mir486 for the prevention and treatment of neuropathic disease
KR10-2011-0090424 2011-09-06

Publications (2)

Publication Number Publication Date
WO2013036031A2 true WO2013036031A2 (en) 2013-03-14
WO2013036031A3 WO2013036031A3 (en) 2013-07-11

Family

ID=47832704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007112 WO2013036031A2 (en) 2011-09-06 2012-09-05 Pharmaceutical composition including a microrna486 expression inhibitor as an active ingredient for preventing and treating neurological disorders

Country Status (2)

Country Link
KR (1) KR20130026950A (en)
WO (1) WO2013036031A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102304041B1 (en) 2019-12-24 2021-09-24 경북대학교 산학협력단 Composition for preventing or treating inflammatory diseases comprising microrna inhibitors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100049079A (en) * 2007-07-18 2010-05-11 더 리젠트스 오브 더 유니버시티 오브 콜로라도 Differential expression of micrornas in nonfailing versus failing human hearts
WO2010054386A2 (en) * 2008-11-10 2010-05-14 Battelle Memorial Institute Methods, compositions, and devices utilizing microrna to determine physiological conditions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100049079A (en) * 2007-07-18 2010-05-11 더 리젠트스 오브 더 유니버시티 오브 콜로라도 Differential expression of micrornas in nonfailing versus failing human hearts
WO2010054386A2 (en) * 2008-11-10 2010-05-14 Battelle Memorial Institute Methods, compositions, and devices utilizing microrna to determine physiological conditions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOHAMMAD M. GHAHRAMANI SENO ET AL.: 'Gene and miRNA expression profiles in autism spectrum disorders' BRAIN RESEARCH vol. 1380, 22 March 2011, pages 85 - 97, XP028161669 *

Also Published As

Publication number Publication date
KR20130026950A (en) 2013-03-14
WO2013036031A3 (en) 2013-07-11

Similar Documents

Publication Publication Date Title
Liu et al. Extracellular vesicles derived from melatonin‐preconditioned mesenchymal stem cells containing USP29 repair traumatic spinal cord injury by stabilizing NRF2
Xie et al. miR-145-5p/Nurr1/TNF-α signaling-induced microglia activation regulates neuron injury of acute cerebral ischemic/reperfusion in rats
Miyazaki et al. Targeting 5-HT1A receptors in astrocytes to protect dopaminergic neurons in parkinsonian models
Zhao et al. Hypoxia‐driven proliferation of embryonic neural stem/progenitor cells–role of hypoxia‐inducible transcription factor‐1α
TWI761444B (en) Application of hexokinase 2 specific inhibitor in acute central nervous system injury disease
Wu et al. Chloroquine promotes the recovery of acute spinal cord injury by inhibiting autophagy-associated inflammation and endoplasmic reticulum stress
Chen et al. Hydrogen sulfide protects against TNF-α induced neuronal cell apoptosis through miR-485-5p/TRADD signaling
Wang et al. Astrocytic CCAAT/Enhancer-binding protein delta contributes to reactive oxygen species formation in neuroinflammation
Xiao et al. Reduction of lactoferrin aggravates neuronal ferroptosis after intracerebral hemorrhagic stroke in hyperglycemic mice
Zhu et al. Higd1a facilitates exercise-mediated alleviation of fatty liver in diet-induced obese mice
Zhou et al. Targeting RPTPσ with lentiviral shRNA promotes neurites outgrowth of cortical neurons and improves functional recovery in a rat spinal cord contusion model
Huang et al. Expression of peroxiredoxin 1 after traumatic spinal cord injury in rats
CN110592222B (en) Application of TRIML1 as molecular marker of liver cancer
Li et al. Secreted phosphoprotein 1 slows neurodegeneration and rescues visual function in mouse models of aging and glaucoma
Zhao et al. NIPA2 regulates osteoblast function via its effect on apoptosis pathways in type 2 diabetes osteoporosis
Zhang et al. Long non-coding RNA KCNQ1OT1 promotes hydrogen peroxide-induced lens epithelial cell apoptosis and oxidative stress by regulating miR-223-3p/BCL2L2 axis
Gong et al. Downregulation of Nogo-B ameliorates cerebral ischemia/reperfusion injury in mice through regulating microglia polarization via TLR4/NF-kappaB pathway
WO2017182580A1 (en) Methods for the diagnosis and the treatment of reproduction-related disorders and methods for contraception
Wu et al. The role of FoxO1 in interleukin-1β-induced autostimulation in retina endothelial cells and retinas of diabetic rats
WO2013036031A2 (en) Pharmaceutical composition including a microrna486 expression inhibitor as an active ingredient for preventing and treating neurological disorders
Yang et al. Vasoactive intestinal peptide in rats with focal cerebral ischemia enhances angiogenesis
Hao et al. Tetramethylpyrazine promotes angiogenesis and nerve regeneration and nerve defect repair in rats with spinal cord injury
KR101384360B1 (en) Composition for preventing or treating vascular permeability disease comprising inhibitors of stem cell factor or a receptor thereof
JP2007517498A (en) Bone morphogenic protein (BMP) 2A and uses thereof
KR20210069626A (en) Compositions comprising intermediate non-coding RNA modulators regulating expression of ETV6 or FOXO1 and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829806

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 12829806

Country of ref document: EP

Kind code of ref document: A2