WO2022113503A1 - Vehicle control device and vehicle control method - Google Patents

Vehicle control device and vehicle control method Download PDF

Info

Publication number
WO2022113503A1
WO2022113503A1 PCT/JP2021/034896 JP2021034896W WO2022113503A1 WO 2022113503 A1 WO2022113503 A1 WO 2022113503A1 JP 2021034896 W JP2021034896 W JP 2021034896W WO 2022113503 A1 WO2022113503 A1 WO 2022113503A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
wheel side
regenerative torque
vehicle control
control device
Prior art date
Application number
PCT/JP2021/034896
Other languages
French (fr)
Japanese (ja)
Inventor
航太 渡邊
正悟 宮本
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to JP2022565087A priority Critical patent/JPWO2022113503A1/ja
Publication of WO2022113503A1 publication Critical patent/WO2022113503A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle control device and a vehicle control method.
  • a vehicle driven by a motor is equipped with a motor for traveling and a speed reducer for decelerating the motor.
  • the reducer has a built-in gear in contact with the oil medium and transmits power between the motor and the wheels of the vehicle.
  • the viscosity of the oil medium changes depending on the temperature. For example, when the vehicle is operated in a low temperature environment, the viscosity increases due to the low temperature and the rotational resistance of gears and the like increases, so that the efficiency of the speed reducer decreases. Therefore, the regenerative torque during braking of the vehicle also changes depending on the operating temperature environment.
  • Patent Document 1 by adding an additional torque command to the torque command when driving a normal motor, the current flowing through the motor is increased to increase the heat generation of the inverter and the motor, and the temperature of the oil medium is raised. Have been described.
  • Patent Document 1 it is necessary to raise the temperature of the oil medium, and there is a problem that the fluctuation of the regenerative force cannot be suppressed without raising the temperature of the oil medium.
  • the vehicle control device is a vehicle control device including a motor and an electric mechanism having a speed reducer having a built-in gear in contact with an oil medium and transmitting power between the motor and the wheels of the vehicle.
  • the regenerative torque command value for the motor is corrected according to the current temperature of the oil medium.
  • the vehicle control method according to the present invention is a vehicle control method in a vehicle control device including an electric mechanism having a motor and a speed reducer having a built-in gear in contact with an oil medium and transmitting power between the motor and the wheels of the vehicle. Therefore, when the vehicle is braking, the regenerative torque command value for the motor is corrected according to the current temperature of the oil medium.
  • a process performed by executing a program may be described, but the program is executed by a processor (for example, CPU, GPU) to appropriately store a predetermined process as a storage resource (a storage resource (for example). Since it is performed using, for example, a memory) and / or an interface device (for example, a communication port), the main body of processing may be a processor. Similarly, the main body of the process of executing the program may be a controller having a processor, an apparatus, a system, a computer, or a node. The main body of the processing performed by executing the program may be any arithmetic unit, and may include a dedicated circuit (for example, FPGA or ASIC) that performs a specific processing.
  • a dedicated circuit for example, FPGA or ASIC
  • the program may be installed in a device such as a calculator from the program source.
  • the program source may be, for example, a program distribution server or a computer-readable storage medium.
  • the program distribution server includes a processor and a storage resource for storing the program to be distributed, and the processor of the program distribution server may distribute the program to be distributed to other computers.
  • two or more programs may be realized as one program, or one program may be realized as two or more programs.
  • FIG. 1 is a configuration diagram of a vehicle 1000 according to the first embodiment.
  • the vehicle 1000 is an electric vehicle and includes an electric mechanism 100, a control unit 200, front wheels 300F, rear wheels 300R, and a battery 400.
  • the configuration including the electric mechanism 100 and the control unit 200 is referred to as a vehicle control device.
  • the electric mechanism 100 includes an inverter 110, a motor 120, and a speed reducer 130, and is provided on the front wheel 300F side. That is, the vehicle 1000 is a front wheel drive driven by an electric mechanism 100 provided on the front wheel side.
  • the inverter 110 converts the DC power supplied from the battery 400 into AC power and drives the motor 120. Further, when the vehicle 1000 is braked, the motor 120 is rotated by an external force, the motor 120 functions as a generator by the regenerative torque, and the inverter 110 converts AC power into DC power to charge the battery 400, so-called. Regenerate.
  • the rotating shaft of the motor 120 is connected to the front wheel 300F via the speed reducer 130.
  • the speed reducer 130 has a built-in gear in contact with the oil medium and transmits power between the motor 120 and the front wheel 300F of the vehicle 1000.
  • a temperature sensor 131 for detecting the temperature of the oil medium is provided in the speed reducer 130, and the temperature detected by the temperature sensor 131 is input to the control unit 200.
  • the regenerative torque is the torque generated on the rotating shaft 123 (see FIG. 2) of the motor 120.
  • the regenerative torque of the rotary shaft 123 is such that the efficiency loss of the speed reducer 130 is added to the regenerative torque of the rotary shaft 123. Therefore, when the efficiency of the speed reducer 130 is low, the regenerative torque is reduced.
  • the control unit 200 includes a braking force calculation unit 210 and a torque distribution command unit 220.
  • the braking force calculation unit 210 inputs vehicle information such as road surface condition a, vehicle weight b, brake pedaling force c, and speed d, and when regeneration is started, the target braking force based on the input information is input. Is calculated. Then, the regenerative torque command value for the motor 120 is corrected according to the current temperature of the oil medium detected by the temperature sensor 131. That is, the difference between the efficiency of the speed reducer 130 corresponding to the current temperature of the oil medium and the efficiency of the reference speed reducer 130 is calculated, and the regenerative torque command value is corrected based on the difference.
  • the torque distribution command unit 220 distributes the torque on the front wheel side and the rear wheel side of the vehicle 1000 based on the deceleration of the vehicle 1000 during braking.
  • the electric mechanism 100 is provided on the front wheel side as in the present embodiment, the regenerative torque based on the regenerative torque command value corrected by the braking force calculation unit 210 on the front wheel side of the vehicle 1000 based on the deceleration Change the allocation.
  • the front wheel 300F is equipped with a disc brake 300D, and the rear wheel 300R is equipped with an electric actuator 300E.
  • the electric actuator 300E applies a braking force to the rear wheel 300R based on a braking command from the control unit 200.
  • FIG. 2 is a cross-sectional view of the electric mechanism 100.
  • the motor 120 includes a stator 121, a coil 122 wound around the stator 121, and a rotor 124 that rotates about a rotation shaft 123.
  • An inverter 110 is installed in the housing of the motor 120, and AC wiring (not shown) is connected from the inverter 110 to the coil 122.
  • the speed reducer 130 incorporates a plurality of gears 132 directly or indirectly connected to the rotating shaft 123, and finally power is transmitted to the output shaft 134 pivotally supported by the bearing 133.
  • An oil medium 135, which is lubricating oil, is stored in the bottom of the speed reducer 130, and the gear 132 is in contact with the oil medium 135.
  • the viscosity of the oil medium 135 changes depending on the temperature. For example, when the vehicle is operated in a low temperature environment, the viscosity increases due to the low temperature and the rotational resistance of the gear 132 or the like increases, so that the efficiency of the speed reducer 130 decreases. ..
  • a temperature sensor 131 for detecting the temperature of the oil medium 135 is provided inside the speed reducer 130.
  • the temperature of the motor 120 or the inverter 110 may be detected and the temperature of the oil medium 135 may be estimated from the detected temperature.
  • FIG. 3 is a graph showing the relationship between the efficiency of the speed reducer 130 and the temperature of the oil medium 135.
  • the horizontal axis is the temperature of the oil medium 135 ° C.
  • the vertical axis is the efficiency% of the speed reducer 130.
  • the efficiency of the speed reducer 130 decreases.
  • the speed reducer 130 drops to an efficiency e0.
  • the efficiency of the speed reducer 130 is e1 and is almost constant.
  • Data showing the relationship between the efficiency of the speed reducer 130 and the temperature of the oil medium 135 as shown in FIG. 3 is stored in advance in a storage unit (not shown).
  • the control unit 200 refers to the data in the storage unit and executes the process shown in the flowchart described later.
  • This storage unit may be inside the control unit 200 or outside the control unit 200. If it is outside the control unit 200, it is referred to via the network.
  • FIG. 4 is a flowchart showing the processing operation of the control unit 200 in the front wheel drive.
  • the flowchart shown in FIG. 4 shows the processing at the time of braking of the vehicle 1000.
  • the control unit 200 acquires vehicle information such as the road surface condition a, the vehicle weight b, the brake pedal force c, and the speed d, and recognizes the state of the vehicle 1000.
  • vehicle information includes the temperature of the oil medium 135, the temperature of the motor 120, the temperature of the inverter 110, the temperature of the battery 400, the remaining amount of the battery 400, and the accelerator. It contains information such as operation, the current number of gears 132, and whether regeneration is restricted.
  • step S402 the control unit 200 determines whether regeneration can be started. That is, based on the vehicle information acquired in step S401, the vehicle 1000 determines whether the conditions for starting regeneration are satisfied. If it is not possible to start regeneration, the process returns to step S401. If regeneration can be started, the process proceeds to step S403.
  • the control unit 200 calculates the target braking force of the vehicle 1000 based on the vehicle information acquired in step S401.
  • the target braking force is set to be weaker than usual.
  • the slip ratio may be calculated to estimate the slipperiness.
  • the heavier the vehicle weight b the stronger the target braking force is set.
  • the vehicle weight b may be calculated based on the number of occupants detected by the seating sensor, or may be calculated from the displacement amount of the suspension.
  • the target braking force may be set based on the information from the acceleration sensor (not shown), or may be estimated from the brake depression allowance and the brake depression speed in addition to the information from the acceleration sensor.
  • step S404 the control unit 200 calculates the regenerative torque command value based on the target braking force calculated in step S403. That is, the portion of the target braking force used as the regenerative torque is calculated.
  • step S405 the control unit 200 calculates the difference between the current efficiency of the speed reducer 130 and the reference efficiency. Specifically, referring to the data showing the relationship between the efficiency of the speed reducer 130 and the temperature of the oil medium 135 shown in FIG. 3, for example, the speed reducer 130 corresponding to the current temperature t0 of the oil medium 135. Find the current efficiency e0. Then, when the reference efficiency of the speed reducer 130 is e1, the difference between the efficiency e1 and the efficiency e0 is calculated.
  • step S406 the control unit 200 corrects the regenerative torque command value based on the difference calculated in step S405.
  • the relationship between the difference of the speed reducer 130 and the correction value of the regenerative torque command value is stored in a storage unit (not shown) in advance, and the correction value corresponding to the difference calculated in step S405 is read out. Then, the correction value is subtracted from the regenerative torque command value. That is, the amount of torque generated in the rotating shaft 123 of the motor 120 is corrected so as to be equivalent to the case of the reference efficiency e1 regardless of the temperature of the oil medium 135. In the example shown in FIG.
  • the correction value is subtracted from the regenerative torque command value, but the reference efficiency is set low. In that case, a correction value may be added to the regenerative torque command value.
  • the corrected regenerative torque command value is the command value of the regenerative torque in the front wheels in the case of front wheel drive.
  • step S407 the control unit 200 determines whether the deceleration of the vehicle 1000 during braking is smaller than a predetermined value.
  • the deceleration of the vehicle 1000 is obtained from the target braking force calculated in step S403 and the vehicle weight b. If the deceleration of the vehicle 1000 is smaller than the predetermined value, the process proceeds to step S408, and if the deceleration of the vehicle 1000 is greater than or equal to the predetermined value, the process proceeds to step S409. Then, by the process described below, the regenerative torque or the braking force is distributed on the front wheel side and the rear wheel side of the vehicle 1000 based on the deceleration of the vehicle 1000.
  • step S408 the control unit 200 makes the braking force on the rear wheel side larger than the regenerative torque on the front wheel side. As a result, when the deceleration of the vehicle 1000 is small, the braking of the vehicle 1000 is stably performed by applying a larger braking to the rear wheel side.
  • step S409 the control unit 200 makes the braking force on the rear wheel side smaller than the regenerative torque on the front wheel side.
  • the braking of the vehicle 1000 is stably performed by applying a larger braking to the front wheel side. That is, when the deceleration is large, it corresponds to the case where strong braking is performed, and the load on the rear wheel side is reduced. If the braking force on the rear wheel side is increased in this state, the tire on the rear wheel side is locked and dangerous. Therefore, the braking force on the front wheel side is larger than that on the rear wheel side.
  • the regenerative torque command value is corrected according to the temperature of the oil medium 135, so that the pitch angle of the vehicle 1000 can be made closer to a flat state by accurately distributing the braking force. Is.
  • steps S408 and S409 since the corrected regenerative torque command value is used, the pitching behavior at the time of braking of the vehicle 1000 is stable regardless of the temperature of the oil medium 135 of the speed reducer 130. After steps S408 and S409, the process proceeds to step S410.
  • step S410 the control unit 200 determines whether the ABS (anti-lock braking system) is in a non-operating state. If it is in the non-operating state, the process proceeds to step S411, and if it is in the operating state, the process proceeds to step S412.
  • ABS anti-lock braking system
  • step S411 the control unit 200 continues regeneration and ends the process.
  • step S412 the control unit 200 determines whether the ABS is operating on one of the front wheels and the rear wheels, and if it is operating, goes to step S413, if it is operating on both the front wheels and the rear wheels. , Step S414.
  • step S413 the control unit 200 reduces the torque of the front wheel or the rear wheel on which the ABS is operating.
  • the regenerative torque of the front wheels is reduced.
  • the control unit 200 stops regeneration. After the regeneration is stopped, braking may be started by friction braking. Alternatively, the ABS may be returned to non-operation. Further, the process may return to the process of step S402.
  • the braking force calculation unit 210 of the control unit 200 executes the processes of steps S403 to S406, and the torque distribution command unit 220 executes the processes of steps S407 to S414.
  • FIG. 5 is a flowchart showing the processing operation of the control unit 200 in the rear wheel drive.
  • the flowchart shown in FIG. 5 shows the processing at the time of braking of the vehicle 1000.
  • the configuration diagram of the vehicle 1000 in the case of rear wheel drive is the configuration diagram of the vehicle 1000 in the case of front wheel drive shown in FIG. 1 in which the electric mechanism 100 is arranged on the rear wheel side, and thus the illustration is omitted. Further, the electric mechanism 100 is the same as the cross-sectional view shown in FIG. 2, and the relationship between the efficiency of the speed reducer 130 and the temperature of the oil medium 135 is the same as the graph shown in FIG.
  • steps S401 to S407 are the same as steps S401 to S407 in the flowchart of FIG.
  • step S406 of FIG. 5 the corrected regenerative torque command value becomes the command value of the regenerative torque in the rear wheels in the case of rear wheel drive.
  • step S408'in FIG. 5 the control unit 200 makes the braking force on the front wheel side smaller than the regenerative torque on the rear wheel side. As a result, when the deceleration of the vehicle 1000 is small, the braking of the vehicle 1000 is stably performed by applying a larger braking to the rear wheel side.
  • step S409' the control unit 200 makes the braking force on the front wheel side larger than the regenerative torque on the rear wheel side.
  • step S408'and S409' the corrected regenerative torque command value is used, so that the pitching behavior during braking of the vehicle 1000 is stable regardless of the temperature of the oil medium 135 of the speed reducer 130.
  • steps S410 to S414 are the same as steps S410 to S414 in the flowchart of FIG.
  • the control unit 200 reduces the torque of the front wheels or the rear wheels on which the ABS is operating.
  • the braking force on the front wheels is reduced.
  • ABS is operating on the rear wheels, the regenerative torque of the rear wheels is reduced.
  • the efficiency of the speed reducer 130 is obtained from the temperature of the oil medium 135, and the regenerative torque of the front wheels or the rear wheels is corrected so as to compensate for the difference from the reference efficiency. , The fluctuation of the regenerative force due to the temperature change of the oil medium 135 can be suppressed. Further, since it is controlled by the regenerative torque based on the corrected regenerative torque command value, it is possible to accurately distribute the braking of the front wheels or the rear wheels, the pitching behavior of the vehicle can be suppressed, and the riding comfort can be improved.
  • FIG. 6 is a block diagram of the vehicle 1000'related to the second embodiment.
  • the vehicle 1000' is an electric vehicle as in the first embodiment shown in FIG. 1, but in the second embodiment, the electric mechanism 100 is provided on the front wheel side and the rear wheel side, so-called four-wheel drive. The difference is that.
  • Other configurations are the same as those of the first embodiment described with reference to FIG.
  • the braking force calculation unit 210 of the control unit 200 calculates the difference between the efficiency of the speed reducer 130 corresponding to the current temperature of the oil medium of the electric mechanism 100 on the front wheel side and the rear wheel side and the efficiency of the reference speed reducer 130. Then, the regenerative torque command values on the front wheel side and the rear wheel side are corrected based on the difference.
  • the torque distribution command unit 220 changes the distribution of regenerative torque based on the regenerative torque command value corrected by the braking force calculation unit 210 on the front wheel side and the rear wheel side of the vehicle 1000'based on the deceleration of the vehicle 1000'. ..
  • FIG. 7 is a flowchart showing the processing operation of the control unit 200 in the four-wheel drive.
  • the flowchart shown in FIG. 7 shows the processing at the time of braking of the vehicle 1000'.
  • the same processes as those in the steps of the flowchart of the first embodiment shown in FIG. 4 are designated by the same reference numerals, and the description thereof will be simplified.
  • steps S401 to S407 are the same as steps S401 to S407 in the flowchart of FIG.
  • the corrected regenerative torque command value becomes the command value of the regenerative torque on the front wheel side and the rear wheel side.
  • step S408 the control unit 200 makes the regenerative torque on the front wheel side smaller than the regenerative torque on the rear wheel side. By applying it, the vehicle 1000'is braked stably.
  • step S409 the control unit 200 increases the regenerative torque on the front wheel side to be larger than the regenerative torque on the rear wheel side. Stable braking of vehicle 1000'.
  • steps S408 “and S409” the regenerative torque is controlled using the corrected regenerative torque command value, so that the pitching behavior during braking of the vehicle 1000'is stable regardless of the temperature of the oil medium 135 of the speed reducer 130. do.
  • steps S410 to S414 are the same as steps S410 to S414 in the flowchart of FIG.
  • the control unit 200 reduces the torque of the front wheels or the rear wheels on which the ABS is operating.
  • the regenerative torque of the front wheels is reduced.
  • the regenerative torque of the rear wheels is reduced.
  • the riding comfort deteriorates due to the pitching of the vehicle that occurs.
  • the distribution of braking force of the brakes on the front and rear wheels is adjusted to suppress the pitching behavior of the vehicle.
  • this is achieved by the regenerative braking of an electric vehicle, it is difficult to appropriately control the regenerative torque of the front wheels and the rear wheels because the efficiency of the reducer differs depending on the temperature of the oil medium in the reducer. Therefore, in the electric vehicle, pitching behavior occurs during braking depending on the operating temperature environment, and the riding comfort is deteriorated.
  • the efficiency of the speed reducer 130 is obtained from the temperature of the oil medium 135, and the regenerative torque of the front wheels and the rear wheels is corrected so as to compensate for the difference from the reference efficiency, so that the regenerative torque of the front wheels and the rear wheels is corrected during braking of the vehicle.
  • the fluctuation of the regenerative force due to the temperature change of the oil medium 135 can be suppressed.
  • it is controlled by the regenerative torque based on the corrected regenerative torque command value it is possible to accurately distribute the braking of the front wheels and the rear wheels, the pitching behavior of the vehicle can be suppressed, and the riding comfort can be improved.
  • the vehicle control device incorporates a motor 120 and a gear 132 in contact with the oil medium 135 to transmit power between the motor 120 and the wheels of the vehicles 1000 and 1000'.
  • An electric mechanism 100 having a speed reducer 130 is provided, and when braking the vehicles 1000 and 1000', the regenerative torque command value for the motor 120 is corrected according to the current temperature of the oil medium 135. As a result, it is possible to suppress fluctuations in the regenerative force due to changes in the temperature of the oil medium during braking of the vehicle.
  • the vehicle control method is an electric mechanism 100 having a motor 120 and a speed reducer 130 having a built-in gear 132 in contact with the oil medium 135 and transmitting power between the motor 120 and the wheels of the vehicles 1000 and 1000'. It is a vehicle control method in the vehicle control device (electric mechanism 100 and control unit 200) provided with the above, and when braking the vehicles 1000 and 1000', the regenerative torque command value for the motor 120 is set according to the current temperature of the oil medium 135. to correct. As a result, it is possible to suppress fluctuations in the regenerative force due to changes in the temperature of the oil medium during braking of the vehicle.
  • the present invention is not limited to the above-described embodiment, and other embodiments considered within the scope of the technical idea of the present invention are also included within the scope of the present invention as long as the features of the present invention are not impaired. .. Further, the configuration may be a combination of the above-described embodiments.

Abstract

This vehicle control device is provided with an electric mechanism having a motor and a decelerator that includes a gear making contact with an oil medium and transmits power between the motor and vehicle wheels. During braking of the vehicle, the vehicle control device corrects a regenerative torque command value for the motor in accordance with the current temperature of the oil medium.

Description

車両制御装置および車両制御方法Vehicle control device and vehicle control method
 本発明は、車両制御装置および車両制御方法に関する。 The present invention relates to a vehicle control device and a vehicle control method.
 モータを駆動源にした車両では、走行用のモータとその減速を行う減速機とを備えている。減速機は、油媒体に接するギアを内蔵し、モータと車両の車輪との間で動力を伝達する。油媒体の粘度は温度によって変化し、例えば、車両を温度の低い環境で運用する場合は、低温により粘度が上がり、ギアなどの回転抵抗が増加するため、減速機の効率が低下する。このため、車両の制動時における回生トルクも運用する温度環境で変化する。 A vehicle driven by a motor is equipped with a motor for traveling and a speed reducer for decelerating the motor. The reducer has a built-in gear in contact with the oil medium and transmits power between the motor and the wheels of the vehicle. The viscosity of the oil medium changes depending on the temperature. For example, when the vehicle is operated in a low temperature environment, the viscosity increases due to the low temperature and the rotational resistance of gears and the like increases, so that the efficiency of the speed reducer decreases. Therefore, the regenerative torque during braking of the vehicle also changes depending on the operating temperature environment.
 特許文献1には、通常のモータ駆動を行う場合のトルク指令に、付加トルク指令を加えることにより、モータを流れる電流を増加させてインバータやモータの発熱を増やして油媒体の温度を上げることが記載されている。 In Patent Document 1, by adding an additional torque command to the torque command when driving a normal motor, the current flowing through the motor is increased to increase the heat generation of the inverter and the motor, and the temperature of the oil medium is raised. Have been described.
日本国特開2014-75933号公報Japanese Patent Application Laid-Open No. 2014-75933
 特許文献1では、油媒体の温度を上げることが必要であり、油媒体の温度を上げることなく、回生力の変動を抑制することができない課題があった。 In Patent Document 1, it is necessary to raise the temperature of the oil medium, and there is a problem that the fluctuation of the regenerative force cannot be suppressed without raising the temperature of the oil medium.
 本発明による車両制御装置は、モータと、油媒体に接するギアを内蔵して前記モータと車両の車輪との間で動力を伝達する減速機とを有する電動機構を備える車両制御装置であって、前記車両の制動時において、前記油媒体の現在の温度に応じて前記モータに対する回生トルク指令値を補正する。
 本発明による車両制御方法は、モータと、油媒体に接するギアを内蔵して前記モータと車両の車輪との間で動力を伝達する減速機とを有する電動機構を備える車両制御装置における車両制御方法であって、前記車両の制動時において、前記油媒体の現在の温度に応じて前記モータに対する回生トルク指令値を補正する。
The vehicle control device according to the present invention is a vehicle control device including a motor and an electric mechanism having a speed reducer having a built-in gear in contact with an oil medium and transmitting power between the motor and the wheels of the vehicle. When braking the vehicle, the regenerative torque command value for the motor is corrected according to the current temperature of the oil medium.
The vehicle control method according to the present invention is a vehicle control method in a vehicle control device including an electric mechanism having a motor and a speed reducer having a built-in gear in contact with an oil medium and transmitting power between the motor and the wheels of the vehicle. Therefore, when the vehicle is braking, the regenerative torque command value for the motor is corrected according to the current temperature of the oil medium.
 本発明によれば、車両の制動時において、油媒体の温度変化による回生力の変動を抑制することができる。 According to the present invention, it is possible to suppress fluctuations in regenerative force due to temperature changes in the oil medium during braking of the vehicle.
第1の実施形態に係わる車両の構成図である。It is a block diagram of the vehicle which concerns on 1st Embodiment. 電動機構の断面図である。It is sectional drawing of the electric mechanism. 減速機の効率と油媒体の温度との関係を示すグラフである。It is a graph which shows the relationship between the efficiency of a speed reducer and the temperature of an oil medium. 前輪駆動における制御部の処理動作を示すフローチャートである。It is a flowchart which shows the processing operation of the control part in front-wheel drive. 後輪駆動における制御部の処理動作を示すフローチャートである。It is a flowchart which shows the processing operation of the control part in the rear wheel drive. 第2の実施形態に係わる車両の構成図である。It is a block diagram of the vehicle which concerns on 2nd Embodiment. 四輪駆動における制御部の処理動作を示すフローチャートである。It is a flowchart which shows the processing operation of the control part in four-wheel drive.
 以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description and drawings are examples for explaining the present invention, and are appropriately omitted and simplified for the sake of clarification of the description. The present invention can also be implemented in various other forms. Unless otherwise specified, each component may be singular or plural.
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。 The position, size, shape, range, etc. of each component shown in the drawings may not represent the actual position, size, shape, range, etc. in order to facilitate understanding of the invention. Therefore, the present invention is not necessarily limited to the position, size, shape, range and the like disclosed in the drawings.
 同一あるいは同様な機能を有する構成要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。ただし、これらの複数の構成要素を区別する必要がない場合には、添字を省略して説明する場合がある。 If there are multiple components with the same or similar functions, the same code may be described with different subscripts. However, if it is not necessary to distinguish between these plurality of components, the subscripts may be omitted for explanation.
 また、以下の説明では、プログラムを実行して行う処理を説明する場合があるが、プログラムは、プロセッサ(例えばCPU、GPU)によって実行されることで、定められた処理を、適宜に記憶資源(例えばメモリ)および/またはインターフェースデバイス(例えば通信ポート)等を用いながら行うため、処理の主体がプロセッサとされてもよい。同様に、プログラムを実行して行う処理の主体が、プロセッサを有するコントローラ、装置、システム、計算機、ノードであってもよい。プログラムを実行して行う処理の主体は、演算部であれば良く、特定の処理を行う専用回路(例えばFPGAやASIC)を含んでいてもよい。 Further, in the following description, a process performed by executing a program may be described, but the program is executed by a processor (for example, CPU, GPU) to appropriately store a predetermined process as a storage resource (a storage resource (for example). Since it is performed using, for example, a memory) and / or an interface device (for example, a communication port), the main body of processing may be a processor. Similarly, the main body of the process of executing the program may be a controller having a processor, an apparatus, a system, a computer, or a node. The main body of the processing performed by executing the program may be any arithmetic unit, and may include a dedicated circuit (for example, FPGA or ASIC) that performs a specific processing.
 プログラムは、プログラムソースから計算機のような装置にインストールされてもよい。プログラムソースは、例えば、プログラム配布サーバまたは計算機が読み取り可能な記憶メディアであってもよい。プログラムソースがプログラム配布サーバの場合、プログラム配布サーバはプロセッサと配布対象のプログラムを記憶する記憶資源を含み、プログラム配布サーバのプロセッサが配布対象のプログラムを他の計算機に配布してもよい。また、以下の説明において、2以上のプログラムが1つのプログラムとして実現されてもよいし、1つのプログラムが2以上のプログラムとして実現されてもよい。 The program may be installed in a device such as a calculator from the program source. The program source may be, for example, a program distribution server or a computer-readable storage medium. When the program source is a program distribution server, the program distribution server includes a processor and a storage resource for storing the program to be distributed, and the processor of the program distribution server may distribute the program to be distributed to other computers. Further, in the following description, two or more programs may be realized as one program, or one program may be realized as two or more programs.
[第1の実施形態]
 図1は、第1の実施形態に係わる車両1000の構成図である。
 車両1000は、電気自動車であり、電動機構100、制御部200、前輪300F、後輪300R、バッテリ400を備える。なお、電動機構100および制御部200を含む構成を車両制御装置と称する。
[First Embodiment]
FIG. 1 is a configuration diagram of a vehicle 1000 according to the first embodiment.
The vehicle 1000 is an electric vehicle and includes an electric mechanism 100, a control unit 200, front wheels 300F, rear wheels 300R, and a battery 400. The configuration including the electric mechanism 100 and the control unit 200 is referred to as a vehicle control device.
 電動機構100は、インバータ110、モータ120、減速機130を備え、前輪300F側に設けられる。すなわち、車両1000は、前輪側に設けた電動機構100で駆動される前輪駆動である。 The electric mechanism 100 includes an inverter 110, a motor 120, and a speed reducer 130, and is provided on the front wheel 300F side. That is, the vehicle 1000 is a front wheel drive driven by an electric mechanism 100 provided on the front wheel side.
 インバータ110は、バッテリ400より供給される直流電力を交流電力に変換し、モータ120を駆動する。また、車両1000の制動時には、モータ120が外力により回転されて、回生トルクによりモータ120は発電機として機能し、インバータ110は、交流電力を直流電力に変換してバッテリ400を充電する、所謂、回生を行う。 The inverter 110 converts the DC power supplied from the battery 400 into AC power and drives the motor 120. Further, when the vehicle 1000 is braked, the motor 120 is rotated by an external force, the motor 120 functions as a generator by the regenerative torque, and the inverter 110 converts AC power into DC power to charge the battery 400, so-called. Regenerate.
 モータ120の回転軸は、減速機130を介して前輪300Fに連結される。減速機130は、油媒体に接するギアを内蔵してモータ120と車両1000の前輪300Fとの間で動力を伝達する。減速機130内には油媒体の温度を検出する温度センサ131が設けられ、温度センサ131により検出された温度は、制御部200へ入力される。 The rotating shaft of the motor 120 is connected to the front wheel 300F via the speed reducer 130. The speed reducer 130 has a built-in gear in contact with the oil medium and transmits power between the motor 120 and the front wheel 300F of the vehicle 1000. A temperature sensor 131 for detecting the temperature of the oil medium is provided in the speed reducer 130, and the temperature detected by the temperature sensor 131 is input to the control unit 200.
 ここで、回生トルクとは、モータ120の回転軸123(図2参照)に発生するトルクである。回生の場合に、回転軸123の回生トルクは、減速機130の効率損失分が回転軸123の回生トルク分に上乗せされるため、減速機130の効率が低い場合は、回生トルクを減らす。 Here, the regenerative torque is the torque generated on the rotating shaft 123 (see FIG. 2) of the motor 120. In the case of regeneration, the regenerative torque of the rotary shaft 123 is such that the efficiency loss of the speed reducer 130 is added to the regenerative torque of the rotary shaft 123. Therefore, when the efficiency of the speed reducer 130 is low, the regenerative torque is reduced.
 制御部200は、制動力算出部210、トルク配分指令部220を備える。
 制動力算出部210は、路面状況a、車両重量b、ブレーキ踏力c、速度dなどの車両情報が入力され、回生が開始された場合に、入力された情報をもとに目標とする制動力を算出する。そして、温度センサ131により検出された油媒体の現在の温度に応じてモータ120に対する回生トルク指令値を補正する。すなわち、油媒体の現在の温度に対応する減速機130の効率と基準となる減速機130の効率との差分を算出し、差分に基づいて回生トルク指令値を補正する。
The control unit 200 includes a braking force calculation unit 210 and a torque distribution command unit 220.
The braking force calculation unit 210 inputs vehicle information such as road surface condition a, vehicle weight b, brake pedaling force c, and speed d, and when regeneration is started, the target braking force based on the input information is input. Is calculated. Then, the regenerative torque command value for the motor 120 is corrected according to the current temperature of the oil medium detected by the temperature sensor 131. That is, the difference between the efficiency of the speed reducer 130 corresponding to the current temperature of the oil medium and the efficiency of the reference speed reducer 130 is calculated, and the regenerative torque command value is corrected based on the difference.
 トルク配分指令部220は、車両1000の制動時における減速度に基づいて、車両1000の前輪側と後輪側のトルクの配分を行う。本実施形態のように、前輪側に電動機構100を設けている場合は、減速度に基づいて、車両1000の前輪側において、制動力算出部210で補正した回生トルク指令値に基づく回生トルクの配分を変更する。 The torque distribution command unit 220 distributes the torque on the front wheel side and the rear wheel side of the vehicle 1000 based on the deceleration of the vehicle 1000 during braking. When the electric mechanism 100 is provided on the front wheel side as in the present embodiment, the regenerative torque based on the regenerative torque command value corrected by the braking force calculation unit 210 on the front wheel side of the vehicle 1000 based on the deceleration Change the allocation.
 前輪300Fには、ディスクブレーキ300Dが、後輪300Rには、電動アクチュエータ300Eが備えられている。電動アクチュエータ300Eは、制御部200からの制動指令に基づいて制動力を後輪300Rに加える。 The front wheel 300F is equipped with a disc brake 300D, and the rear wheel 300R is equipped with an electric actuator 300E. The electric actuator 300E applies a braking force to the rear wheel 300R based on a braking command from the control unit 200.
 図2は、電動機構100の断面図である。
 モータ120は、ステータ121、ステータ121に巻回されたコイル122、回転軸123を中心に回転するロータ124を備える。そして、モータ120の筐体には、インバータ110が設置され、インバータ110よりコイル122へ図示省略した交流配線が接続されている。
FIG. 2 is a cross-sectional view of the electric mechanism 100.
The motor 120 includes a stator 121, a coil 122 wound around the stator 121, and a rotor 124 that rotates about a rotation shaft 123. An inverter 110 is installed in the housing of the motor 120, and AC wiring (not shown) is connected from the inverter 110 to the coil 122.
 減速機130は、回転軸123に直接的に或いは間接的に連結された複数のギア132を内蔵し、最終的に軸受133に軸支された出力軸134に動力が伝達される。減速機130の底部には潤滑油である油媒体135が貯められ、ギア132は油媒体135に接している。油媒体135の粘度は温度によって変化し、例えば、車両を温度の低い環境で運用する場合は、低温により粘度が上がり、ギア132などの回転抵抗が増加するため、減速機130の効率は低下する。 The speed reducer 130 incorporates a plurality of gears 132 directly or indirectly connected to the rotating shaft 123, and finally power is transmitted to the output shaft 134 pivotally supported by the bearing 133. An oil medium 135, which is lubricating oil, is stored in the bottom of the speed reducer 130, and the gear 132 is in contact with the oil medium 135. The viscosity of the oil medium 135 changes depending on the temperature. For example, when the vehicle is operated in a low temperature environment, the viscosity increases due to the low temperature and the rotational resistance of the gear 132 or the like increases, so that the efficiency of the speed reducer 130 decreases. ..
 減速機130の内部には、油媒体135の温度を検出する温度センサ131が設けられている。なお、油媒体135の温度を温度センサ131で直接検出する以外にも、モータ120やインバータ110の温度を検出して、検出した温度より油媒体135の温度を推定してもよい。 Inside the speed reducer 130, a temperature sensor 131 for detecting the temperature of the oil medium 135 is provided. In addition to directly detecting the temperature of the oil medium 135 with the temperature sensor 131, the temperature of the motor 120 or the inverter 110 may be detected and the temperature of the oil medium 135 may be estimated from the detected temperature.
 図3は、減速機130の効率と油媒体135の温度との関係を示すグラフである。横軸は油媒体135の温度℃、縦軸は減速機130の効率%である。
 図3に示す例では、油媒体135の温度がt1より低い場合には、減速機130の効率は低下する。例えば、油媒体135の温度がt1より低い温度t0では、減速機130は効率e0に低下する。油媒体135の温度がt1より高い場合には、減速機130の効率はe1となり、ほぼ一定である。図3に示すような、減速機130の効率と油媒体135の温度との関係を示すデータを、図示省略した記憶部に予め記憶する。制御部200は、この記憶部内のデータを参照して後述のフローチャートで示す処理を実行する。この記憶部は、制御部200内にあってもよく、制御部200外にあってもよい。制御部200外にある場合は、ネットワークを介してこれを参照する。
FIG. 3 is a graph showing the relationship between the efficiency of the speed reducer 130 and the temperature of the oil medium 135. The horizontal axis is the temperature of the oil medium 135 ° C., and the vertical axis is the efficiency% of the speed reducer 130.
In the example shown in FIG. 3, when the temperature of the oil medium 135 is lower than t1, the efficiency of the speed reducer 130 decreases. For example, at a temperature t0 where the temperature of the oil medium 135 is lower than t1, the speed reducer 130 drops to an efficiency e0. When the temperature of the oil medium 135 is higher than t1, the efficiency of the speed reducer 130 is e1 and is almost constant. Data showing the relationship between the efficiency of the speed reducer 130 and the temperature of the oil medium 135 as shown in FIG. 3 is stored in advance in a storage unit (not shown). The control unit 200 refers to the data in the storage unit and executes the process shown in the flowchart described later. This storage unit may be inside the control unit 200 or outside the control unit 200. If it is outside the control unit 200, it is referred to via the network.
 図4は、前輪駆動における制御部200の処理動作を示すフローチャートである。図4に示すフローチャートは、車両1000の制動時の処理を示す。
 図4のステップS401では、制御部200は、路面状況a、車両重量b、ブレーキ踏力c、速度dなどの車両情報を取得し、車両1000の状態を認識する。車両情報は、路面状況a、車両重量b、ブレーキ踏力c、速度dの他に、油媒体135の温度、モータ120の温度、インバータ110の温度、バッテリ400の温度、バッテリ400の残量、アクセル操作、ギア132の現在の段数、回生の制限がなされているか、などの情報を含む。
FIG. 4 is a flowchart showing the processing operation of the control unit 200 in the front wheel drive. The flowchart shown in FIG. 4 shows the processing at the time of braking of the vehicle 1000.
In step S401 of FIG. 4, the control unit 200 acquires vehicle information such as the road surface condition a, the vehicle weight b, the brake pedal force c, and the speed d, and recognizes the state of the vehicle 1000. In addition to the road surface condition a, vehicle weight b, brake pedal effort c, and speed d, vehicle information includes the temperature of the oil medium 135, the temperature of the motor 120, the temperature of the inverter 110, the temperature of the battery 400, the remaining amount of the battery 400, and the accelerator. It contains information such as operation, the current number of gears 132, and whether regeneration is restricted.
 次のステップS402では、制御部200は、回生の開始が可能かを判断する。すなわち、ステップS401で取得した車両情報をもとに、車両1000は回生を開始してもよい条件が整っているかを判断する。回生の開始が可能でなければ、ステップS401に戻る。回生の開始が可能であれば、ステップS403へ進む。 In the next step S402, the control unit 200 determines whether regeneration can be started. That is, based on the vehicle information acquired in step S401, the vehicle 1000 determines whether the conditions for starting regeneration are satisfied. If it is not possible to start regeneration, the process returns to step S401. If regeneration can be started, the process proceeds to step S403.
 ステップS403で、制御部200は、ステップS401で取得した車両情報をもとに、車両1000の目標制動力を算出する。例えば、路面状況aが滑りやすい路面であった場合は、目標制動力を通常より弱く設定する。なお、路面状況aはスリップ率を算出して、滑りやすさを推定してもよい。また、例えば、車両重量bが重くなるほど目標制動力を強く設定する。車両重量bは、着座センサにより検出した乗員数に基づいて算出してもよく、サスペンションの変位量から算出してもよい。なお、目標制動力は、図示省略した加速度センサからの情報をもとに設定してもよく、加速度センサからの情報以外にも、ブレーキの踏み代、ブレーキの踏み込み速度から推定しても良い。 In step S403, the control unit 200 calculates the target braking force of the vehicle 1000 based on the vehicle information acquired in step S401. For example, if the road surface condition a is a slippery road surface, the target braking force is set to be weaker than usual. For the road surface condition a, the slip ratio may be calculated to estimate the slipperiness. Further, for example, the heavier the vehicle weight b, the stronger the target braking force is set. The vehicle weight b may be calculated based on the number of occupants detected by the seating sensor, or may be calculated from the displacement amount of the suspension. The target braking force may be set based on the information from the acceleration sensor (not shown), or may be estimated from the brake depression allowance and the brake depression speed in addition to the information from the acceleration sensor.
 次に、ステップS404で、制御部200は、ステップS403で算出した目標制動力をもとに、回生トルク指令値を算出する。すなわち、目標制動力のうち、回生トルクとして用いる分を算出する。 Next, in step S404, the control unit 200 calculates the regenerative torque command value based on the target braking force calculated in step S403. That is, the portion of the target braking force used as the regenerative torque is calculated.
 ステップS405で、制御部200は、減速機130の現在の効率と基準の効率との差分を算出する。具体的には、図3に示した、減速機130の効率と油媒体135の温度との関係を示すデータを参照して、例えば、現在の油媒体135の温度t0に対応する減速機130の現在の効率e0を求める。そして、減速機130の基準の効率をe1とした場合は、効率e1と効率e0の差分を算出する。 In step S405, the control unit 200 calculates the difference between the current efficiency of the speed reducer 130 and the reference efficiency. Specifically, referring to the data showing the relationship between the efficiency of the speed reducer 130 and the temperature of the oil medium 135 shown in FIG. 3, for example, the speed reducer 130 corresponding to the current temperature t0 of the oil medium 135. Find the current efficiency e0. Then, when the reference efficiency of the speed reducer 130 is e1, the difference between the efficiency e1 and the efficiency e0 is calculated.
 次に、ステップS406で、制御部200は、ステップS405で算出した差分をもとに、回生トルク指令値を補正する。具体的には、減速機130の差分と回生トルク指令値の補正値の関係を予め図示省略した記憶部に記憶しておき、ステップS405で算出した差分に対応した補正値を読み出す。そして、回生トルク指令値から補正値を減算する。すなわち、モータ120の回転軸123に発生するトルク量が油媒体135の温度に関わらず、基準の効率e1の場合と同等になるように補正する。なお、図3に示した例では、基準の効率e1を減速機130の効率の上限に設定しているので、回生トルク指令値から補正値を減算しているが、基準の効率を低く設定した場合は、回生トルク指令値に補正値を加算する場合もある。補正した回生トルク指令値は、前輪駆動の場合は前輪における回生トルクの指令値となる。 Next, in step S406, the control unit 200 corrects the regenerative torque command value based on the difference calculated in step S405. Specifically, the relationship between the difference of the speed reducer 130 and the correction value of the regenerative torque command value is stored in a storage unit (not shown) in advance, and the correction value corresponding to the difference calculated in step S405 is read out. Then, the correction value is subtracted from the regenerative torque command value. That is, the amount of torque generated in the rotating shaft 123 of the motor 120 is corrected so as to be equivalent to the case of the reference efficiency e1 regardless of the temperature of the oil medium 135. In the example shown in FIG. 3, since the reference efficiency e1 is set as the upper limit of the efficiency of the speed reducer 130, the correction value is subtracted from the regenerative torque command value, but the reference efficiency is set low. In that case, a correction value may be added to the regenerative torque command value. The corrected regenerative torque command value is the command value of the regenerative torque in the front wheels in the case of front wheel drive.
 ステップS407で、制御部200は、車両1000の制動時における減速度が所定値より小さいかを判定する。車両1000の減速度は、ステップS403で算出した目標制動力と車両重量bから求められる。車両1000の減速度が所定値より小さい場合は、ステップS408へ進み、車両1000の減速度が所定値以上である場合は、ステップS409へ進む。そして、以下に述べる処理により、車両1000の減速度に基づいて、車両1000の前輪側と後輪側において、回生トルクまたは制動力を配分する。 In step S407, the control unit 200 determines whether the deceleration of the vehicle 1000 during braking is smaller than a predetermined value. The deceleration of the vehicle 1000 is obtained from the target braking force calculated in step S403 and the vehicle weight b. If the deceleration of the vehicle 1000 is smaller than the predetermined value, the process proceeds to step S408, and if the deceleration of the vehicle 1000 is greater than or equal to the predetermined value, the process proceeds to step S409. Then, by the process described below, the regenerative torque or the braking force is distributed on the front wheel side and the rear wheel side of the vehicle 1000 based on the deceleration of the vehicle 1000.
 ステップS408では、制御部200は、後輪側の制動力を前輪側の回生トルクより大きくする。これにより、車両1000の減速度が小さい場合に、後輪側により大きな制動を掛けることにより、車両1000の制動を安定して行う。 In step S408, the control unit 200 makes the braking force on the rear wheel side larger than the regenerative torque on the front wheel side. As a result, when the deceleration of the vehicle 1000 is small, the braking of the vehicle 1000 is stably performed by applying a larger braking to the rear wheel side.
 ステップS409では、制御部200は、後輪側の制動力を前輪側の回生トルクより小さくする。これにより、車両1000の減速度が大きい場合に、前輪側により大きな制動を掛けることにより、車両1000の制動を安定して行う。すなわち、減速度が大きい場合は、強い制動を行った場合に該当し、後輪側の荷重が少なくなり、この状態で後輪側の制動力を大きくすると後輪側のタイヤがロックして危険なため後輪側より前輪側の制動力を大きくする。この場合も油媒体135の温度に応じて回生トルク指令値の補正が行われているので、制動力の配分を正確に行うことにより、車両1000のピッチ角がよりフラットな状態に近づけることが可能である。 In step S409, the control unit 200 makes the braking force on the rear wheel side smaller than the regenerative torque on the front wheel side. As a result, when the deceleration of the vehicle 1000 is large, the braking of the vehicle 1000 is stably performed by applying a larger braking to the front wheel side. That is, when the deceleration is large, it corresponds to the case where strong braking is performed, and the load on the rear wheel side is reduced. If the braking force on the rear wheel side is increased in this state, the tire on the rear wheel side is locked and dangerous. Therefore, the braking force on the front wheel side is larger than that on the rear wheel side. In this case as well, the regenerative torque command value is corrected according to the temperature of the oil medium 135, so that the pitch angle of the vehicle 1000 can be made closer to a flat state by accurately distributing the braking force. Is.
 更に、ステップS408、S409では、補正した回生トルク指令値を用いているので、減速機130の油媒体135の温度にかかわらず、車両1000の制動時におけるピッチング挙動が安定する。ステップS408、S409の次に、ステップS410の処理に進む。 Further, in steps S408 and S409, since the corrected regenerative torque command value is used, the pitching behavior at the time of braking of the vehicle 1000 is stable regardless of the temperature of the oil medium 135 of the speed reducer 130. After steps S408 and S409, the process proceeds to step S410.
 ステップS410では、制御部200は、ABS(アンチロック・ブレーキ・システム)が非作動の状態にあるかを判定する。非作動の状態であれば、ステップS411へ進み、作動の状態であれば、ステップS412へ進む。 In step S410, the control unit 200 determines whether the ABS (anti-lock braking system) is in a non-operating state. If it is in the non-operating state, the process proceeds to step S411, and if it is in the operating state, the process proceeds to step S412.
 ステップS411では、制御部200は、回生を継続して処理を終了する。ステップS412では、制御部200は、前輪、後輪の一方でABSが作動しているかを判定し、作動している場合は、ステップS413へ、前輪、後輪の両方で作動している場合は、ステップS414へ進む。 In step S411, the control unit 200 continues regeneration and ends the process. In step S412, the control unit 200 determines whether the ABS is operating on one of the front wheels and the rear wheels, and if it is operating, goes to step S413, if it is operating on both the front wheels and the rear wheels. , Step S414.
 ステップS413では、制御部200は、ABSが作動している前輪または後輪のトルクを減少する。前輪にABSが作動している場合は、前輪の回生トルクを減少する。後輪にABSが作動している場合は、後輪の制動力を減少する。ステップS414では、制御部200は、回生を中止する。なお、回生を中止した後は、摩擦ブレーキによる制動に移行してもよい。もしくは、ABSを非作動に戻してもよい。また、ステップS402の処理へ戻ってもよい。 In step S413, the control unit 200 reduces the torque of the front wheel or the rear wheel on which the ABS is operating. When ABS is operating on the front wheels, the regenerative torque of the front wheels is reduced. When ABS is operating on the rear wheels, the braking force on the rear wheels is reduced. In step S414, the control unit 200 stops regeneration. After the regeneration is stopped, braking may be started by friction braking. Alternatively, the ABS may be returned to non-operation. Further, the process may return to the process of step S402.
 なお、制御部200の制動力算出部210は、ステップS403~ステップS406の処理を、トルク配分指令部220は、ステップS407~ステップS414の処理を実行する。 The braking force calculation unit 210 of the control unit 200 executes the processes of steps S403 to S406, and the torque distribution command unit 220 executes the processes of steps S407 to S414.
 図5は、後輪駆動における制御部200の処理動作を示すフローチャートである。図5に示すフローチャートは、車両1000の制動時の処理を示す。
 後輪駆動の場合の車両1000の構成図は、図1に示した前輪駆動の場合の車両1000の構成図において、電動機構100を後輪側に配置した構成であるので、図示を省略する。また、電動機構100は、図2に示した断面図と同様であり、減速機130の効率と油媒体135の温度との関係は、図3に示したグラフと同様である。
FIG. 5 is a flowchart showing the processing operation of the control unit 200 in the rear wheel drive. The flowchart shown in FIG. 5 shows the processing at the time of braking of the vehicle 1000.
The configuration diagram of the vehicle 1000 in the case of rear wheel drive is the configuration diagram of the vehicle 1000 in the case of front wheel drive shown in FIG. 1 in which the electric mechanism 100 is arranged on the rear wheel side, and thus the illustration is omitted. Further, the electric mechanism 100 is the same as the cross-sectional view shown in FIG. 2, and the relationship between the efficiency of the speed reducer 130 and the temperature of the oil medium 135 is the same as the graph shown in FIG.
 図5に示すフローチャートにおいて、図4に示したフローチャートのステップと同一の処理には同一の符号を付してその説明を簡略に行う。
 図5において、ステップS401~ステップS407は、図4のフローチャートのステップS401~ステップS407と同様である。なお、図5のステップS406では、補正した回生トルク指令値は、後輪駆動の場合は後輪における回生トルクの指令値となる。
In the flowchart shown in FIG. 5, the same processes as those in the steps of the flowchart shown in FIG. 4 are designated by the same reference numerals, and the description thereof will be simplified.
In FIG. 5, steps S401 to S407 are the same as steps S401 to S407 in the flowchart of FIG. In step S406 of FIG. 5, the corrected regenerative torque command value becomes the command value of the regenerative torque in the rear wheels in the case of rear wheel drive.
 図5のステップS408’では、制御部200は、前輪側の制動力を後輪側の回生トルクより小さくする。これにより、車両1000の減速度が小さい場合に、後輪側により大きな制動を掛けることにより、車両1000の制動を安定して行う。 In step S408'in FIG. 5, the control unit 200 makes the braking force on the front wheel side smaller than the regenerative torque on the rear wheel side. As a result, when the deceleration of the vehicle 1000 is small, the braking of the vehicle 1000 is stably performed by applying a larger braking to the rear wheel side.
 ステップS409’では、制御部200は、前輪側の制動力を後輪側の回生トルクより大きくする。これにより、車両1000の減速度が大きい場合に、前輪側により大きな制動を掛けることにより、車両1000の制動を安定して行う。 In step S409', the control unit 200 makes the braking force on the front wheel side larger than the regenerative torque on the rear wheel side. As a result, when the deceleration of the vehicle 1000 is large, the braking of the vehicle 1000 is stably performed by applying a larger braking to the front wheel side.
 ステップS408’、S409’では、補正した回生トルク指令値を用いているので、減速機130の油媒体135の温度にかかわらず、車両1000の制動時におけるピッチング挙動が安定する。 In steps S408'and S409', the corrected regenerative torque command value is used, so that the pitching behavior during braking of the vehicle 1000 is stable regardless of the temperature of the oil medium 135 of the speed reducer 130.
 図5において、ステップS410~ステップS414は、図4のフローチャートのステップS410~ステップS414と同様である。なお、図5において、ステップS413では、制御部200は、ABSが作動している前輪または後輪のトルクを減少する。前輪にABSが作動している場合は、前輪の制動力を減少する。後輪にABSが作動している場合は、後輪の回生トルクを減少する。 In FIG. 5, steps S410 to S414 are the same as steps S410 to S414 in the flowchart of FIG. In FIG. 5, in step S413, the control unit 200 reduces the torque of the front wheels or the rear wheels on which the ABS is operating. When ABS is operating on the front wheels, the braking force on the front wheels is reduced. When ABS is operating on the rear wheels, the regenerative torque of the rear wheels is reduced.
 第1の実施形態によれば、油媒体135の温度から減速機130の効率を求め、基準の効率との差分を補うように前輪または後輪の回生トルクを補正するので、車両の制動時において、油媒体135の温度変化による回生力の変動を抑制することができる。さらに、補正した回生トルク指令値に基づく回生トルクにより制御するので、前輪または後輪の制動を正確に配分することも可能になり、車両のピッチング挙動を抑制でき、乗り心地を改善できる。 According to the first embodiment, the efficiency of the speed reducer 130 is obtained from the temperature of the oil medium 135, and the regenerative torque of the front wheels or the rear wheels is corrected so as to compensate for the difference from the reference efficiency. , The fluctuation of the regenerative force due to the temperature change of the oil medium 135 can be suppressed. Further, since it is controlled by the regenerative torque based on the corrected regenerative torque command value, it is possible to accurately distribute the braking of the front wheels or the rear wheels, the pitching behavior of the vehicle can be suppressed, and the riding comfort can be improved.
[第2の実施形態]
 図6は、第2の実施形態に係わる車両1000’の構成図である。
 車両1000’は、図1に示した第1の実施形態と同様に電気自動車であるが、第2の実施形態では、電動機構100を前輪側および後輪側に設けた、所謂、四輪駆動である点が相違する。その他の構成は図1を参照して説明した第1の実施形態と同様である。
[Second embodiment]
FIG. 6 is a block diagram of the vehicle 1000'related to the second embodiment.
The vehicle 1000'is an electric vehicle as in the first embodiment shown in FIG. 1, but in the second embodiment, the electric mechanism 100 is provided on the front wheel side and the rear wheel side, so-called four-wheel drive. The difference is that. Other configurations are the same as those of the first embodiment described with reference to FIG.
 制御部200の制動力算出部210は、前輪側および後輪側の電動機構100の油媒体の現在の温度に対応する減速機130の効率と基準となる減速機130の効率との差分を算出し、差分に基づいて前輪側および後輪側の回生トルク指令値を補正する。トルク配分指令部220は、車両1000’の減速度に基づいて、車両1000’の前輪側および後輪側において、制動力算出部210で補正した回生トルク指令値に基づく回生トルクの配分を変更する。 The braking force calculation unit 210 of the control unit 200 calculates the difference between the efficiency of the speed reducer 130 corresponding to the current temperature of the oil medium of the electric mechanism 100 on the front wheel side and the rear wheel side and the efficiency of the reference speed reducer 130. Then, the regenerative torque command values on the front wheel side and the rear wheel side are corrected based on the difference. The torque distribution command unit 220 changes the distribution of regenerative torque based on the regenerative torque command value corrected by the braking force calculation unit 210 on the front wheel side and the rear wheel side of the vehicle 1000'based on the deceleration of the vehicle 1000'. ..
 電動機構100は、図2に示した第1の実施形態の断面図と同様であり、減速機130の効率と油媒体135の温度との関係は、図3に示した第1の実施形態のグラフと同様である。
 図7は、四輪駆動における制御部200の処理動作を示すフローチャートである。図7に示すフローチャートは、車両1000’の制動時の処理を示す。
 図7に示すフローチャートにおいて、図4に示した第1の実施形態のフローチャートのステップと同一の処理には同一の符号を付してその説明を簡略に行う。
The electric mechanism 100 is the same as the cross-sectional view of the first embodiment shown in FIG. 2, and the relationship between the efficiency of the speed reducer 130 and the temperature of the oil medium 135 is the same as that of the first embodiment shown in FIG. Similar to the graph.
FIG. 7 is a flowchart showing the processing operation of the control unit 200 in the four-wheel drive. The flowchart shown in FIG. 7 shows the processing at the time of braking of the vehicle 1000'.
In the flowchart shown in FIG. 7, the same processes as those in the steps of the flowchart of the first embodiment shown in FIG. 4 are designated by the same reference numerals, and the description thereof will be simplified.
 図7において、ステップS401~ステップS407は、図4のフローチャートのステップS401~ステップS407と同様である。なお、図7のステップS406では、補正した回生トルク指令値は、前輪側および後輪側における回生トルクの指令値となる。 In FIG. 7, steps S401 to S407 are the same as steps S401 to S407 in the flowchart of FIG. In step S406 of FIG. 7, the corrected regenerative torque command value becomes the command value of the regenerative torque on the front wheel side and the rear wheel side.
 図7のステップS408”では、制御部200は、前輪側の回生トルクを後輪側の回生トルクより小さくする。これにより、車両1000’の減速度が小さい場合に、後輪側により大きな制動を掛けることにより、車両1000’の制動を安定して行う。 In step S408 "in FIG. 7, the control unit 200 makes the regenerative torque on the front wheel side smaller than the regenerative torque on the rear wheel side. By applying it, the vehicle 1000'is braked stably.
 ステップS409”では、制御部200は、前輪側の回生トルクを後輪側の回生トルクより大きくする。これにより、車両1000’の減速度が大きい場合に、前輪側により大きな制動を掛けることにより、車両1000’の制動を安定して行う。 In step S409, the control unit 200 increases the regenerative torque on the front wheel side to be larger than the regenerative torque on the rear wheel side. Stable braking of vehicle 1000'.
 ステップS408”、S409”では、補正した回生トルク指令値を用いて回生トルクを制御しているので、減速機130の油媒体135の温度にかかわらず、車両1000’の制動時におけるピッチング挙動が安定する。 In steps S408 "and S409", the regenerative torque is controlled using the corrected regenerative torque command value, so that the pitching behavior during braking of the vehicle 1000'is stable regardless of the temperature of the oil medium 135 of the speed reducer 130. do.
 図7において、ステップS410~ステップS414は、図4のフローチャートのステップS410~ステップS414と同様である。なお、図7において、ステップS413では、制御部200は、ABSが作動している前輪または後輪のトルクを減少する。前輪にABSが作動している場合は、前輪の回生トルクを減少する。後輪にABSが作動している場合は、後輪の回生トルクを減少する。 In FIG. 7, steps S410 to S414 are the same as steps S410 to S414 in the flowchart of FIG. In FIG. 7, in step S413, the control unit 200 reduces the torque of the front wheels or the rear wheels on which the ABS is operating. When ABS is operating on the front wheels, the regenerative torque of the front wheels is reduced. When ABS is operating on the rear wheels, the regenerative torque of the rear wheels is reduced.
 一般に、車両の制動時には、発生する車両のピッチングにより乗り心地が悪化する。電気自動車ではない車両では、前輪と後輪のブレーキの制動力の配分を調整して車両のピッチング挙動を抑制している。しかし、電気自動車の回生ブレーキでこれを実現する場合、減速機内の油媒体の温度によって減速機の効率が異なるため、前輪と後輪の回生トルクを適切に制御することが困難であった。そのため、電気自動車では、運用する温度環境によって制動時にピッチング挙動が発生してしまい乗り心地が悪化していた。 Generally, when the vehicle is braked, the riding comfort deteriorates due to the pitching of the vehicle that occurs. In vehicles that are not electric vehicles, the distribution of braking force of the brakes on the front and rear wheels is adjusted to suppress the pitching behavior of the vehicle. However, when this is achieved by the regenerative braking of an electric vehicle, it is difficult to appropriately control the regenerative torque of the front wheels and the rear wheels because the efficiency of the reducer differs depending on the temperature of the oil medium in the reducer. Therefore, in the electric vehicle, pitching behavior occurs during braking depending on the operating temperature environment, and the riding comfort is deteriorated.
 第2の実施形態によれば、油媒体135の温度から減速機130の効率を求め、基準の効率との差分を補うように前輪および後輪の回生トルクを補正するので、車両の制動時において、油媒体135の温度変化による回生力の変動を抑制することができる。さらに、補正した回生トルク指令値に基づく回生トルクにより制御するので、前輪、後輪の制動を正確に配分することも可能になり、車両のピッチング挙動を抑制でき、乗り心地を改善できる。 According to the second embodiment, the efficiency of the speed reducer 130 is obtained from the temperature of the oil medium 135, and the regenerative torque of the front wheels and the rear wheels is corrected so as to compensate for the difference from the reference efficiency, so that the regenerative torque of the front wheels and the rear wheels is corrected during braking of the vehicle. , The fluctuation of the regenerative force due to the temperature change of the oil medium 135 can be suppressed. Further, since it is controlled by the regenerative torque based on the corrected regenerative torque command value, it is possible to accurately distribute the braking of the front wheels and the rear wheels, the pitching behavior of the vehicle can be suppressed, and the riding comfort can be improved.
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)車両制御装置(電動機構100および制御部200)は、モータ120と、油媒体135に接するギア132を内蔵してモータ120と車両1000、1000’の車輪との間で動力を伝達する減速機130とを有する電動機構100を備え、車両1000、1000’の制動時において、油媒体135の現在の温度に応じてモータ120に対する回生トルク指令値を補正する。これにより、車両の制動時において、油媒体の温度変化による回生力の変動を抑制することができる。
According to the embodiment described above, the following effects can be obtained.
(1) The vehicle control device (electric mechanism 100 and control unit 200) incorporates a motor 120 and a gear 132 in contact with the oil medium 135 to transmit power between the motor 120 and the wheels of the vehicles 1000 and 1000'. An electric mechanism 100 having a speed reducer 130 is provided, and when braking the vehicles 1000 and 1000', the regenerative torque command value for the motor 120 is corrected according to the current temperature of the oil medium 135. As a result, it is possible to suppress fluctuations in the regenerative force due to changes in the temperature of the oil medium during braking of the vehicle.
(2)車両制御方法は、モータ120と、油媒体135に接するギア132を内蔵してモータ120と車両1000、1000’の車輪との間で動力を伝達する減速機130とを有する電動機構100を備える車両制御装置(電動機構100および制御部200)における車両制御方法であって、車両1000、1000’の制動時において、油媒体135の現在の温度に応じてモータ120に対する回生トルク指令値を補正する。これにより、車両の制動時において、油媒体の温度変化による回生力の変動を抑制することができる。 (2) The vehicle control method is an electric mechanism 100 having a motor 120 and a speed reducer 130 having a built-in gear 132 in contact with the oil medium 135 and transmitting power between the motor 120 and the wheels of the vehicles 1000 and 1000'. It is a vehicle control method in the vehicle control device (electric mechanism 100 and control unit 200) provided with the above, and when braking the vehicles 1000 and 1000', the regenerative torque command value for the motor 120 is set according to the current temperature of the oil medium 135. to correct. As a result, it is possible to suppress fluctuations in the regenerative force due to changes in the temperature of the oil medium during braking of the vehicle.
 本発明は、上述の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の実施形態を組み合わせた構成としてもよい。 The present invention is not limited to the above-described embodiment, and other embodiments considered within the scope of the technical idea of the present invention are also included within the scope of the present invention as long as the features of the present invention are not impaired. .. Further, the configuration may be a combination of the above-described embodiments.
 100・・・電動機構、110・・・インバータ、120・・・モータ、121・・・ステータ、122・・・コイル、123・・・回転軸、124・・・ロータ、130・・・減速機、131・・・温度センサ、132・・・ギア、134・・・出力軸、135・・・油媒体、200・・・制御部、210・・・制動力算出部、220・・・トルク配分指令部、300D・・・ディスクブレーキ、300E・・・電動アクチュエータ、300F・・・前輪、300R・・・後輪、400・・・バッテリ、1000、1000’・・・車両。 100 ... Electric mechanism, 110 ... Inverter, 120 ... Motor, 121 ... Stator, 122 ... Coil, 123 ... Rotating shaft, 124 ... Rotor, 130 ... Reducer , 131 ... temperature sensor, 132 ... gear, 134 ... output shaft, 135 ... oil medium, 200 ... control unit, 210 ... braking force calculation unit, 220 ... torque distribution Command unit, 300D ... Disc brake, 300E ... Electric actuator, 300F ... Front wheel, 300R ... Rear wheel, 400 ... Battery, 1000, 1000'... Vehicle.

Claims (9)

  1.  モータと、油媒体に接するギアを内蔵して前記モータと車両の車輪との間で動力を伝達する減速機とを有する電動機構を備える車両制御装置であって、
     前記車両の制動時において、前記油媒体の現在の温度に応じて前記モータに対する回生トルク指令値を補正する車両制御装置。
    A vehicle control device including an electric mechanism having a motor and a speed reducer having a built-in gear in contact with an oil medium and transmitting power between the motor and the wheels of the vehicle.
    A vehicle control device that corrects a regenerative torque command value for the motor according to the current temperature of the oil medium when the vehicle is braking.
  2.  請求項1に記載の車両制御装置において、
     前記油媒体の現在の温度に対応する前記減速機の効率と基準となる前記減速機の効率との差分を算出し、前記差分に基づいて前記回生トルク指令値を補正する車両制御装置。
    In the vehicle control device according to claim 1,
    A vehicle control device that calculates a difference between the efficiency of the speed reducer corresponding to the current temperature of the oil medium and the efficiency of the speed reducer as a reference, and corrects the regenerative torque command value based on the difference.
  3.  請求項1または請求項2に記載の車両制御装置において、
     前記車両の制動時における減速度に基づいて、前記車両の前輪側または後輪側に、前記補正した回生トルク指令値に基づく回生トルクを配分する車両制御装置。
    In the vehicle control device according to claim 1 or 2.
    A vehicle control device that distributes regenerative torque based on the corrected regenerative torque command value to the front wheel side or the rear wheel side of the vehicle based on the deceleration of the vehicle during braking.
  4.  請求項3に記載の車両制御装置において、
     前記電動機構は前記車両の前輪側に設けられ、前記減速度が所定値より小さい場合は、前記前輪側の前記回生トルクを前記車両の後輪側の制動力より小さくし、前記減速度が前記所定値以上の場合は、前記前輪側の前記回生トルクを前記後輪側の前記制動力より大きくする車両制御装置。
    In the vehicle control device according to claim 3,
    The electric mechanism is provided on the front wheel side of the vehicle, and when the deceleration is smaller than a predetermined value, the regenerative torque on the front wheel side is made smaller than the braking force on the rear wheel side of the vehicle, and the deceleration is the deceleration. When the value is equal to or higher than a predetermined value, the vehicle control device increases the regenerative torque on the front wheel side to be larger than the braking force on the rear wheel side.
  5.  請求項3に記載の車両制御装置において、
     前記電動機構は前記車両の後輪側に設けられ、前記減速度が所定値より小さい場合は、前記車両の前輪側の制動力を前記後輪側の前記回生トルクより小さくし、前記減速度が前記所定値以上の場合は、前記前輪側の前記制動力を前記後輪側の前記回生トルクより大きくする車両制御装置。
    In the vehicle control device according to claim 3,
    The electric mechanism is provided on the rear wheel side of the vehicle, and when the deceleration is smaller than a predetermined value, the braking force on the front wheel side of the vehicle is made smaller than the regenerative torque on the rear wheel side, and the deceleration is reduced. When the value is equal to or higher than the predetermined value, the vehicle control device increases the braking force on the front wheel side to be larger than the regenerative torque on the rear wheel side.
  6.  請求項3に記載の車両制御装置において、
     前記電動機構は前記車両の前輪側および後輪側に設けられ、前記減速度が所定値より小さい場合は、前記前輪側の前記回生トルクを前記後輪側の前記回生トルクより小さくし、前記減速度が前記所定値以上の場合は、前記前輪側の前記回生トルクを前記後輪側の前記回生トルクより大きくする車両制御装置。
    In the vehicle control device according to claim 3,
    The electric mechanism is provided on the front wheel side and the rear wheel side of the vehicle, and when the deceleration is smaller than a predetermined value, the regenerative torque on the front wheel side is made smaller than the regenerative torque on the rear wheel side, and the deceleration is reduced. A vehicle control device that increases the regenerative torque on the front wheel side to be larger than the regenerative torque on the rear wheel side when the speed is equal to or higher than the predetermined value.
  7.  請求項1または請求項2に記載の車両制御装置において、
     前記車両の重量に基づいて、前記車両の目標制動力を算出し、前記算出した前記目標制動力に対して前記回生トルク指令値を算出する車両制御装置。
    In the vehicle control device according to claim 1 or 2.
    A vehicle control device that calculates a target braking force of the vehicle based on the weight of the vehicle and calculates the regenerative torque command value with respect to the calculated target braking force.
  8.  請求項1または請求項2に記載の車両制御装置において、
     前記車両が走行している路面状況に基づいて、前記車両の目標制動力を算出し、前記算出した前記目標制動力に対して前記回生トルク指令値を算出する車両制御装置。
    In the vehicle control device according to claim 1 or 2.
    A vehicle control device that calculates a target braking force of the vehicle based on the road surface condition on which the vehicle is traveling, and calculates the regenerative torque command value with respect to the calculated target braking force.
  9.  モータと、油媒体に接するギアを内蔵して前記モータと車両の車輪との間で動力を伝達する減速機とを有する電動機構を備える車両制御装置における車両制御方法であって、
     前記車両の制動時において、前記油媒体の現在の温度に応じて前記モータに対する回生トルク指令値を補正する車両制御方法。
    A vehicle control method in a vehicle control device including an electric mechanism having a motor and a speed reducer having a built-in gear in contact with an oil medium and transmitting power between the motor and the wheels of the vehicle.
    A vehicle control method for correcting a regenerative torque command value for the motor according to the current temperature of the oil medium when the vehicle is braking.
PCT/JP2021/034896 2020-11-27 2021-09-22 Vehicle control device and vehicle control method WO2022113503A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022565087A JPWO2022113503A1 (en) 2020-11-27 2021-09-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020197668 2020-11-27
JP2020-197668 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022113503A1 true WO2022113503A1 (en) 2022-06-02

Family

ID=81755502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034896 WO2022113503A1 (en) 2020-11-27 2021-09-22 Vehicle control device and vehicle control method

Country Status (2)

Country Link
JP (1) JPWO2022113503A1 (en)
WO (1) WO2022113503A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223648A (en) * 2010-04-05 2011-11-04 Nissan Motor Co Ltd Controller of electric vehicle
JP2012222856A (en) * 2011-04-04 2012-11-12 Ntn Corp Motor drive control method in electric vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223648A (en) * 2010-04-05 2011-11-04 Nissan Motor Co Ltd Controller of electric vehicle
JP2012222856A (en) * 2011-04-04 2012-11-12 Ntn Corp Motor drive control method in electric vehicle

Also Published As

Publication number Publication date
JPWO2022113503A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
JP5924628B2 (en) Braking force generator for vehicle
JP6818481B2 (en) Braking control method for regenerative braking coordinated control system for vehicles
JP6472626B2 (en) Vehicle skid prevention control device
CN108025651A (en) Electric vehicle with the braking system and method for braking system, controller and computer program
JP5596756B2 (en) Electric vehicle
JP2016028913A (en) Vehicle pitching vibration control device
WO2012052831A1 (en) Vehicle braking/driving force control system and vehicle braking/driving force control method
KR102569899B1 (en) Vehicle having electric motor and method of driving controlling for the same
CN110816281B (en) Control unit, device and method for vehicle recuperation brake control
JP5359664B2 (en) Control device for four-wheel independent drive vehicle
JP6153857B2 (en) Braking device for vehicle
CN116194349A (en) Vehicle control device, vehicle control method, and vehicle control system
CN112805193B (en) Method for distributing a braking torque requested by a driver to a vehicle axle of a motor vehicle
WO2022113503A1 (en) Vehicle control device and vehicle control method
US20210270333A1 (en) Vehicle control system
WO2021080011A1 (en) Control device
US11577605B1 (en) All-wheel-drive electric vehicle
WO2022264738A1 (en) Vehicle control device
US20230311671A1 (en) Electric vehicle
CN113573941B (en) Vehicle control device
JP7392741B2 (en) Vehicle controls and vehicles
WO2022138092A1 (en) Control device
WO2022085082A1 (en) Driving force control method and driving force control device
CN116639123A (en) Method and control device for distributing the total torque of a vehicle to the axle of the vehicle
CN113276832A (en) Method for carrying out distributed regulation in a vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897481

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565087

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897481

Country of ref document: EP

Kind code of ref document: A1