WO2022113368A1 - 画像変換方法、プログラム、画像変換装置、画像変換システム - Google Patents
画像変換方法、プログラム、画像変換装置、画像変換システム Download PDFInfo
- Publication number
- WO2022113368A1 WO2022113368A1 PCT/JP2020/044566 JP2020044566W WO2022113368A1 WO 2022113368 A1 WO2022113368 A1 WO 2022113368A1 JP 2020044566 W JP2020044566 W JP 2020044566W WO 2022113368 A1 WO2022113368 A1 WO 2022113368A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- brightness
- pretreatment
- information
- selecting
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 99
- 238000006243 chemical reaction Methods 0.000 title claims description 40
- 238000007781 pre-processing Methods 0.000 claims abstract description 23
- 239000012472 biological sample Substances 0.000 claims abstract description 12
- 230000002093 peripheral effect Effects 0.000 claims description 37
- 238000003705 background correction Methods 0.000 claims description 29
- 238000009499 grossing Methods 0.000 claims description 22
- 238000012545 processing Methods 0.000 claims description 18
- 238000012549 training Methods 0.000 claims description 13
- 238000005304 joining Methods 0.000 claims description 2
- 230000001131 transforming effect Effects 0.000 claims description 2
- 210000004027 cell Anatomy 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 238000012937 correction Methods 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 238000013527 convolutional neural network Methods 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000002073 fluorescence micrograph Methods 0.000 description 2
- 238000003709 image segmentation Methods 0.000 description 2
- 238000003706 image smoothing Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/36—Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
Definitions
- the present invention relates to an image conversion method, a program, an image conversion device, and an image conversion system.
- Patent Document 1 a technique of converting a bright-field image of a cell into an image like a phase-difference image by AI is known. (See, for example, Patent Document 1).
- the technique of the present disclosure provides a novel image conversion method.
- One embodiment of the invention is a method of transforming an image of an image of a biological sample using a trained model, wherein the method is not a phase-difference image of an image of the biological sample.
- the trained model includes a step of generating an image of the above, a step of converting the second image into a third image using the trained model, and a step of outputting the third image.
- a trained model generated by training a training source image group consisting of images that are not retardation images and a training target image group consisting of retardation images as training data.
- the image conversion method of the technique of the present disclosure is a method of converting an image obtained by capturing a biological sample using a trained model, and is a first method in which the biological sample is captured and not a phase difference image.
- the trained model includes a step of converting a second image into a third image using a trained model, and a step of outputting a third image, and the trained model is from an image that is not a phase difference image.
- This is a trained model generated by training a training source image group and a training target image group consisting of phase difference images as training data.
- the image conversion system 100 of the present disclosure includes an image acquisition device 102 and an image conversion device 103 (FIG. 1).
- the image conversion device 103 acquires an image obtained by capturing a biological sample by the image pickup means 107 from the image generation device 102 by the image acquisition unit 111 (S11).
- the image acquisition device 101 has a biological sample observation means 106 and an image pickup means 107.
- the observation means 106 is a microscope suitable for observing a biological sample, and is, for example, a bright-field microscope, a fluorescence microscope, a differential interference microscope, and the like.
- the image pickup means 107 is an image pickup element such as a CCD.
- the images captured by the method of the imaging means 107 are a bright field image, a fluorescence image, and a differential interference contrast image, respectively. Since the image acquired by the image acquisition device 101 is an image before image processing described later, it may be referred to as an original image or an image to be converted.
- the selection unit 114 selects the image processing suitable for the image information acquired by the image information acquisition unit 113 (S12). Since the image processing here is a process before the image conversion process is performed, it may be referred to as a pre-process.
- the preprocessing is selected from shading correction processing, image smoothing processing, and contrast enhancement processing.
- shading correction processing is selected when it is determined that the original image has uneven brightness.
- the smoothing process and / or the contrast enhancement process may be performed in layers.
- the order of implementation is not particularly limited.
- the image smoothing process is selected when the background occupies a predetermined ratio or more of the image, for example, the background occupies 40% or more, preferably 50% or more, more preferably 60% or more of the image.
- shading correction processing and / or contrast enhancement processing may be performed in combination.
- the order of implementation is not particularly limited.
- the shading correction process and the smoothing process are not selected. In this case, for example, only the contrast enhancement process is selected.
- the selection unit 114 checks whether the original image has luminance unevenness based on the luminance information of the image obtained by the image information acquisition unit 113 (S121), and has luminance unevenness. If it is determined, the shading correction process is selected (S122).
- the luminance information is the luminance value of the peripheral region of the image and the luminance of the peripheral region of the image is less than a predetermined value
- shading correction for the image is selected. Since most of the illumination of the microscope has a bright center, there is a difference in the amount of light between the center of the imaging range and the peripheral portion. Especially when observing at a low magnification, the difference in the amount of light in the image becomes a problem. From this, when the luminance value in the peripheral region of the image is less than a predetermined value, it can be determined that the image has luminance unevenness. If the luminance value in the peripheral area of the image is equal to or greater than a predetermined value, shading correction for the image is not selected.
- the predetermined value may be set as a value calculated from the amount of light emitted from the illumination, or may be set as a value calculated from the luminance value in the central portion.
- the predetermined value may be an absolute value of brightness. For example, when the predetermined value is an 8-bit image and the luminance value of the peripheral portion is less than 100, the case where the predetermined value is less than 100 is given as a determination criterion.
- a predetermined value may be set as a value calculated by using the luminance value of the background region where the sample does not exist and the luminance value of the sample.
- the peripheral area means, for example, a predetermined range along the outer edge of the image.
- the outer edge of the peripheral area may be in contact with the outer edge of the image.
- the shape of the peripheral area is not particularly limited, and examples thereof include a circle, an ellipse, a square, a rectangle, a quadrangle, and a polygon. When the image is a quadrangle, for example, as shown in FIG. 4, the peripheral area is preferably a quadrangle tangent to both adjacent sides at any corner.
- the area of the peripheral region is not particularly limited, and may be 1/100 or more and 1/9 or less of the entire visual field, 1/81 or more and 1/16 or less, or 1/64. It may be 1/25 or more, 1/64 or more and 1/25 or less, or 1/49 or more and 1/36 or less.
- how much magnification the low magnification means and what the predetermined value is may be determined in advance according to the conditions of the device. For example, as shown in FIG. 4, when the objective lens is 4 times, 10 times, and 40 times, and the acquired image size is 2500 pixels, if the field of view as shown in the figure is obtained, 100 pixels in the upper left corner. The average brightness is calculated with a square of x100 pixels as the peripheral area. In FIG.
- a predetermined value is set to 70, and there is uneven brightness when the peripheral area is 70 or less. You can judge that.
- the calculation of the brightness of the peripheral region and the brightness of the central region can also be performed using the median value and the representative value of the brightness of the region.
- the selection of shading correction is determined based on the relationship between the brightness of the peripheral area and the brightness of the central area. In this case, it is determined whether or not the image has uneven brightness based on the relationship between the brightness of the peripheral region and the brightness of the central region. As an example of the relationship between the brightness of the peripheral region and the brightness of the central region, there is a difference between the brightness of the peripheral region and the brightness of the central region of the image. In that case, if the difference between the brightness in the peripheral region and the brightness in the central region of the image is equal to or greater than a predetermined value, it is determined that the image has uneven brightness.
- the central region means, for example, an region including the center of gravity of the image.
- the shape of the central region is not particularly limited, and examples thereof include a circle, an ellipse, a square, a rectangle, a quadrangle, and a polygon.
- the area of the central region is not particularly limited, and may be 1/100 or more and 1/9 or less of the entire visual field, 1/81 or more and 1/16 or less, or 1/64. It may be 1/25 or less, 1/64 or more and 1/25 or less, or 1/49 or more and 1/36 or less, but the same area as the peripheral area. Is preferable. For example, in the case of FIG.
- the ratio of the brightness of the peripheral region and the brightness of the central region of the image can be mentioned.
- a predetermined value is set to 0.5, and the ratio is If it is 0.5 or less, it may be determined that there is uneven brightness.
- the method for determining whether or not the image has uneven brightness is not limited to these, and various methods can be considered.
- the average value of their brightness may be obtained in a plurality of peripheral regions.
- a threshold value may be set for the size per pixel of the CCD to determine whether or not the image is a low-magnification image. This is because it is considered that luminance unevenness occurs when observing with an objective lens of a predetermined threshold value or less, for example, 2 times or less, 4 times or less, or 10 times or less.
- the selection unit 114 examines whether the background is at least a predetermined ratio of the original image, for example, 40% or more, preferably 50% or more, and more preferably 60% or more (). S123), the smoothing process is selected when it occupies a predetermined ratio or more (S124).
- the method of calculating the ratio to the background image is not particularly limited, but for example, there is a method of using a binarized image obtained by binarizing the image.
- the ratio of each area of the observation object and the background may be calculated.
- a partial area of a predetermined size is set and a partial area including an object is present in the binarized image, it is considered that the background is equal to or more than a predetermined ratio of the image, and the smoothing process is selected. May be good. This is because when the background area occupies a certain area in the image, the object is not included in the partial area of a predetermined size.
- the size of the partial region is arbitrarily set according to the type of sample, the type of cells, the culture state, and the like, and may be set by the user.
- the case where the background is more than a predetermined ratio of the image can be specifically exemplified as the case where the cultured cells are not confluent or the case where the cultured cells are observed at a high magnification.
- the confluency is below a predetermined threshold, for example, 50% or less, 30% or less, or 10% or less, or above a predetermined threshold, for example, 20 times or more, 30 times or more, 40 times or more, 50. Examples thereof include the case of observing using an objective lens having a magnification of 4 times or more or 60 times or more.
- a predetermined ratio of the image for example, less than 80%, preferably less than 60%, more preferably less than 40%, shading correction and smoothing processing are not performed.
- (C) Acquisition of Magnification Information Whether or not preprocessing suitable for the acquired original image is necessary may be performed by the selection unit 114 acquiring the magnification information from the data incidental to the image.
- magnification when the image is acquired is low, it is considered that there is uneven brightness, and it is determined that shading correction is performed. Further, when the magnification when the image is acquired is high, it is considered that the background area in which the cells are not imaged occupies a large proportion in the image, and it is determined that the smoothing process is performed.
- the image is low magnification, high magnification, or high even at low magnification. You can decide whether it is a magnification that is not a magnification.
- magnification information of the image obtained from the data attached to the image is less than the first threshold value, it is determined to be low magnification.
- magnification information of the image obtained from the data incidental to the image is equal to or greater than the second threshold value, it is determined to have a high magnification.
- the magnification information at the time of image acquisition is, for example, the magnification of the objective lens, the magnification of the intermediate magnification device, and the total magnification determined by the magnification of the objective lens and the intermediate magnification.
- the first threshold value is, for example, 10 times.
- the second threshold value may be, for example, 20 times, 40 times, or 60 times.
- the magnification information at the time of image acquisition may be estimated from the setting of the imaging device.
- the magnification information of the original image may be acquired from the magnification of the objective lens, the magnification of the intermediate scaling device, the total magnification set in advance or identified by the device, and the like.
- the sample pixel size obtained from the camera information may be acquired to obtain the magnification information of the original image.
- the preprocessing may be performed based on the information selected in (A) and (B) in consideration of the conditions (A) and (B).
- the necessary preprocessing can be selected for the original image. Then, according to the selection, the image preprocessing unit 115 preprocesses the image (S12). Hereinafter, each process will be described in detail (FIG. 2).
- shading correction is a process for removing unevenness from an image having uneven brightness, and is particularly used for removing aberration of a lens, uneven illumination, and the like.
- the shading correction method may be appropriately selected from known methods. For example, a process of blurring an image (smoothing process) is performed to create a reference image. By calculating the brightness of the image / the brightness of the reference image for each pixel and making it constant over the entire image, an image without shading can be obtained.
- the image preprocessing unit 115 performs the smoothing process for at least the background area on the image (S124). ).
- the image reduction may be performed only in the background area as described above. As a result, the resolution of the object area to be observed is maintained, and the resolution is lowered only in the processed background area.
- Image reduction may include, for example, reducing the image to 90%, 80%, 75%, 70%, 60%, 50%, 40%, 30%, 25%, 20%. The larger the reduction ratio, the higher the effect of removing the artifacts. Therefore, when creating a converted image in which only the background area is processed, it is preferable that the reduction ratio is large.
- the reduction ratio of the image is small when the entire image is processed for each object area without specifying the object area. Is preferable.
- the image reduction ratio may be changed between the background area and the object area.
- smoothing in the luminance direction there is a process of correcting the luminance value of the portion to be processed to make it constant.
- a filter process such as a generally well-known bilateral filter.
- other well-known noise reduction processing may be utilized.
- noise reduction process also called noise reduction process
- the image preprocessing unit may perform a process of enhancing the contrast of the image to which the shading correction and / or the smoothing process has been performed (S125). If shading correction and smoothing are not selected, contrast enhancement may be performed on the original image. This process can be performed by a method well known to those skilled in the art. For example, tone mapping, histogram equalization method, and local histogram equalization method can be exemplified. The contrast enhancement process may be performed on the original image before the preprocessing.
- the image preprocessing unit 115 may perform a division process for dividing the image into small areas (S126). At this time, it is preferable that the small regions are divided so that the ends overlap each other. When the edges are divided without overlapping, the boundaries of the small areas become conspicuous due to the difference in brightness that occurs between the small areas during conversion. This is because the boundaries of the small areas become inconspicuous by weighting and combining.
- ⁇ Input to trained model / image conversion> The image obtained in this way or a small region obtained by dividing the image is input to the learning model of the image conversion unit 117 (S13), and an artificial retardation image is generated by image conversion (S14). That is, according to the trained model possessed by the image conversion unit 117, an image obtained by preprocessing an original image that is not a phase difference image or a small area obtained by dividing the image is used as an input image, and an image converted into an artificial retardation image is used as an output image. , Perform image conversion processing.
- an image conversion network is used, an image belonging to the first image group is used as a source image, and an image of a second image group different from the first image group is used as a target image. It is preferable to learn the mapping from the source to the target and generate a trained model.
- the image conversion network is not particularly limited, and is "convolutional neural networks (CNN)”, “generative adversarial networks (GAN)”, “CGAN (Conditional GAN)”, and “DCGAN (Deep Conventional GAN)”. ) ”,“ Pix2Pix ”,“ CycleGAN ”, etc. Is preferable.
- a microscope observation image other than the phase difference image is input to a trained model trained using a microscope observation image other than the phase difference image as a source image and a phase difference microscope observation image as a target image. Therefore, an artificial phase difference image similar to the phase difference image can be output.
- the microscope-observed image other than the phase difference image may be an image captured at a magnification of 20 times or more, but it is preferably a magnification of 10 times or more, and more preferably a magnification of 4 times or more.
- the microscope observation image other than the phase contrast image as the source image includes a bright field image, a fluorescence image, a differential interference contrast image, and the like, and a trained model can be created separately for each. From this, it is preferable to select the most suitable trained model for the image to be converted, and for that purpose, select a trained model that uses the image captured by the same method as when it was captured as the source image. It is preferable to do.
- training data of the source image and the target image images captured at different magnifications of the objective lens may be used, and a trained model trained by each may be created. In that case, it is preferable to select a trained model that uses an image having the same magnification as the image to be converted as training data. It was
- the image post-processing unit 119 combines the small areas obtained by the conversion into an artificial retardation image.
- the weighting for example, when weighting the divided area 1 and the divided area 2, the distance to the divided area 1 and the distance to the divided area 2 are a (pixel) and b (pixel), respectively, for the pixels of the overlapping portion. At this time, it is conceivable to add the brightness of the original image with an inversely proportional weight according to the distance.
- the weighting calculation method is not limited to this, and different calculation formulas may be used, but even in that case, the distance to the overlapping portion of the pixels is short according to the distance to the division area 1 and the division area 2. It is preferable to increase the weight corresponding to the brightness of the divided region.
- the image post-processing unit 119 may detect the region where the cells exist and generate an image of only the region where the cells exist.
- the image output unit 121 outputs the generated artificial phase difference image (S15) and displays it on the image display means 123 (S16).
- the image display means 123 may display the original image and / or an image of only the region where the cells exist.
- the image conversion process and the output of the artificial phase difference image may be performed while observing the sample in the image pickup apparatus.
- the artificial phase difference image is displayed in real time, for example, when the image pickup device is operated.
- information regarding the setting of the image pickup apparatus is acquired before the original image is acquired, and an algorithm for performing appropriate preprocessing is selected.
- the information regarding the setting of the image pickup device is, for example, the magnification information of the original image, specifically, the magnification of the objective lens, the magnification of the intermediate scaling device, and the total magnification set in advance or identified by the device.
- the sample pixel size obtained from the camera information. Preprocessing of the original image is selected based on the magnification information of these original images.
- the field of view is determined so that the observation position is included. Then, when the original image is acquired, preprocessing and image conversion are performed immediately, and the image after image conversion is displayed on the image display means 123. As a result, the user can operate the microscope while looking at the image display means 123 on which the artificial retardation image is displayed.
- a program for causing a computer to execute the image processing method described so far, and a non-transient computer-readable storage medium for storing the program are also embodiments of the technique of the present disclosure.
- Shading correction (Fig. 5) Using an inverted microscope, a 96-well plate was imaged with an objective lens at 10x to obtain an input bright-field image. An average value filter set with a kernel size of 101 was applied to the input bright-field image to generate a blur image as a reference image. A shading-corrected image was obtained by taking the ratio of the brightness of the bright field image to the brightness of the reference image for each pixel.
- the divided small area was set to a size of 256pixel, and image segmentation was performed.
- a bright field image including nerve cells was prepared as a training target image group, and a phase difference image including nerve cells was prepared as a learning source image group, and CycleGAN was trained to create the trained model.
- a trained model for conversion a generator that performs conversion from the source to the target in the trained CycleGAN model was set, and the shading-corrected image was converted into an artificial phase difference image.
- the upper part of FIG. 5 is a comparative example in which the image is converted without shading correction, but the image is rougher than the example in which the image is converted after the shading correction in the middle part is performed. Further, the example is compared with the actual phase difference image in the lower part of FIG. 4, but in the phase difference image, it is almost impossible to observe normally due to the uneven brightness.
- the upper part of FIG. 8 is a photograph when converted into an artificial retardation image without correction, and the lower part is a photograph when smoothing correction is performed and converted into an artificial retardation image. Without the correction, there are a lot of white dot-like artifacts in the background, but when converted after the correction, the number of artifacts is significantly reduced.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Microscoopes, Condenser (AREA)
- Image Processing (AREA)
Abstract
本開示の一実施態様は、生物学的サンプルを撮像した画像を、学習済みモデルを用いて変換する方法であって、前記方法は、生物学的サンプルが撮像された、位相差画像ではない第1の画像を取得する工程と、前記第1の画像の画像情報に基づいて、前処理のタイプを選択する工程と、前記第1の画像に対し、前記選択された前処理を行い、第2の画像を生成する工程と、前記学習済みモデルを用いて、前記第2の画像を第3の画像に変換する工程と、前記第3の画像を出力する工程と、を含み、前記学習済みモデルは、位相差画像ではない画像からなる学習用ソース画像群と位相差画像からなる学習用ターゲット画像群とを学習用データとして学習させて生成された学習済みモデルである。
Description
本発明は、画像変換方法、プログラム、画像変換装置、画像変換システムに関する。
従来、AIによって細胞の明視野画像を位相差画像風に画像に変換する技術が知られている。(例えば、特許文献1参照)。
本開示の技術は、新規な画像変換方法を提供する。
本発明の一実施態様は、生物学的サンプルを撮像した画像を、学習済みモデルを用いて変換する方法であって、前記方法は、生物学的サンプルが撮像された、位相差画像ではない第1の画像を取得する工程と、前記第1の画像の画像情報に基づいて、前処理のタイプを選択する工程と、前記第1の画像に対し、前記選択された前処理を行い、第2の画像を生成する工程と、前記学習済みモデルを用いて、前記第2の画像を第3の画像に変換する工程と、前記第3の画像を出力する工程と、を含み、前記学習済みモデルは、位相差画像ではない画像からなる学習用ソース画像群と位相差画像からなる学習用ターゲット画像群とを学習用データとして学習させて生成された学習済みモデルである。
以下、本開示の技術の実施の形態につき、添付図面を用いて詳細に説明する。以下に記載された発明の実施の形態及び具体的な実施例などは、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。
また、実施例に説明する画像処理はあくまでも一例であり、本開示の技術を実施する際には、主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよいことは言うまでもない。
なお、本明細書に記載された全ての文献(特許文献および非特許文献)並びに技術規格は、本明細書に具体的にかつ個々に記載された場合と同様に、本明細書中に参照により取り込まれる。
本開示の技術の画像変換方法は、生物学的サンプルを撮像した画像を、学習済みモデルを用いて変換する方法であって、生物学的サンプルが撮像された、位相差画像ではない第1の画像を取得する工程と、第1の画像の画像情報に基づいて、前処理のタイプを選択する工程と、第1の画像に対し、選択された前処理を行い、第2の画像を生成する工程と、学習済みモデルを用いて、第2の画像を第3の画像に変換する工程と、第3の画像を出力する工程と、を含み、学習済みモデルは、位相差画像ではない画像からなる学習用ソース画像群と位相差画像からなる学習用ターゲット画像群とを学習用データとして学習させて生成された学習済みモデルである。
以下、図1のシステム構成および図2と図3のフローチャートを参照しながら、各工程について詳細に説明する。
<画像の取得>
本開示の画像変換システム100は、画像取得装置102と画像変換装置103を備える(図1)。
本開示の画像変換システム100は、画像取得装置102と画像変換装置103を備える(図1)。
まず、画像変換装置103は、画像生成装置102から、撮像手段107によって生物学的サンプルを撮像した画像を、画像取得部111で取得する(S11)。
ここで、画像取得装置101は、生物学的サンプルの観察手段106と撮像手段107を有する。観察手段106は、生物学的サンプルの観察に適した顕微鏡であり、例えば明視野顕微鏡、蛍光顕微鏡、微分干渉顕微鏡などである。撮像手段107は、例えばCCDなどの撮像素子である。撮像手段107による手法で撮像した画像は、それぞれ、明視野画像、蛍光画像、微分干渉画像である。なお、画像取得装置101で取得された画像は、後述する画像処理を行う前の画像であるため、オリジナル画像または変換対象画像と称することがある。
<前処理の選択>
次に、画像変換装置103において、選択部114が、画像情報取得部113が取得した画像情報に適した画像処理を選択する(S12)。ここでの画像処理は、画像変換処理を行う前の処理であるため、前処理と称してもよい。前処理は、シェーディング補正処理、画像平滑化処理、コントラスト強調処理から選択される。
次に、画像変換装置103において、選択部114が、画像情報取得部113が取得した画像情報に適した画像処理を選択する(S12)。ここでの画像処理は、画像変換処理を行う前の処理であるため、前処理と称してもよい。前処理は、シェーディング補正処理、画像平滑化処理、コントラスト強調処理から選択される。
シェーディングについて、オリジナル画像に輝度ムラがあるとされた場合にシェーディング補正処理が選択される。この場合、重ねて、平滑化処理及び/又はコントラスト強調処理を行ってもよい。実施する順序は特に限定されない。
また、後述する画像変換を行った後、画像において対象物が写っていない背景領域のノイズに起因してアーティファクトが生じうる。そのため、背景が画像の所定の割合以上、例えば、背景が画像の40%以上、好ましくは50%以上、より好ましくは60%以上を占める場合に画像平滑化処理が選択される。この場合、重ねて、シェーディング補正処理及び/又はコントラスト強調処理を行ってもよい。実施する順序は特に限定されない。
輝度ムラがなく、かつ背景が画像の80%未満、好ましくは60%未満、より好ましくは40%未満である場合、シェーディング補正処理及び平滑化処理は選択されない。この場合、例えばコントラスト強調処理のみが選択される。
以下、各場合について、詳細に説明する。
(A)画像情報に基づくシェーディング補正の選択
選択部114は、画像情報取得部113が得た画像の輝度情報に基づき、オリジナル画像に輝度ムラがあるかどうかを調べ(S121)、輝度ムラがあると判定された場合、シェーディング補正処理を選択する(S122)。
選択部114は、画像情報取得部113が得た画像の輝度情報に基づき、オリジナル画像に輝度ムラがあるかどうかを調べ(S121)、輝度ムラがあると判定された場合、シェーディング補正処理を選択する(S122)。
例えば、輝度情報が、画像の周辺領域の輝度値であるとき、画像の周辺領域の輝度が所定値未満である場合には画像に対するシェーディング補正を選択する。顕微鏡の照明の多くは中心が明るくなっているため、撮影範囲中心と周辺部とで光量差が生じる。特に低倍率での観察時には画像における光量差が問題になる。このことから、画像の周辺領域の輝度値が所定値未満であるとき、画像に輝度ムラがあると判定できる。画像の周辺領域の輝度値が所定値以上である場合には、画像に対するシェーディング補正は選択されない。ここで、所定値は、例えば、明視野観察の場合には、照明から照射される光量から算出した値を設定してもよく、中心部の輝度値から算出した値を設定してもよい。中心部の輝度値から算出する場合には、例えば中心部の輝度値の30%、40%、または50%程度を所定値として設定する。また、所定値は輝度の絶対値であってもよい。例えば、所定値は8ビットの画像であった場合に周辺部の輝度値が100未満の場合等が判断基準としてあげられる。輝度値分布から算出してもよく、この場合には輝度値分布の中央値の1/2、1/3、または1/4未満である。また、蛍光観察の場合は、所定値は、サンプルが存在しない背景領域の輝度値と、サンプルの輝度値とを使用して算出した値を設定してもよい。
ここで、周辺領域とは、例えば、画像の外縁に沿った所定範囲のことを意味する。周辺領域は外縁に近いほど好ましく、画像の外縁から、画像の幅の10%以内に含まれることが好ましく、5%以内に含まれることがより好ましい。周辺領域の外縁が画像の外縁に接していてもよい。周辺領域の形は特に限定されず、円、楕円、正方形、長方形、四角形、多角形などが例示できる。画像が四角形の場合、例えば図4のように、周辺領域は、いずれかの隅で隣り合う両辺に接する正方形であることが好ましい。周辺領域の面積は、特に限定されず、視野全体の100分の一以上9分の一以下であってもよく、81分の一以上16分の一以下であってもよく、64分の一以上25分の一以下であってもよく、64分の一以上25分の一以下であってもよく、49分の一以上36分の一以下であってもよい。ここで、低倍率がどの程度の倍率を意味するか、所定値はどの程度であるか、は装置が有する条件であらかじめ決めておけばよい。例えば、図4に示すように、対物レンズが4倍、10倍、40倍のそれぞれの場合に、取得した画像サイズが2500pixelの場合、図のような視野が得られたとすると、左上隅に100pixel x 100pixelの正方形を周辺領域とし、その平均輝度を計算する。図4で、各平均輝度が、4倍では1.4、10倍では125、40倍では115であった場合、例えば、所定値を70と設定し、周辺領域が70以下を輝度ムラがあると判断すればよい。なお、周辺領域の輝度、中央領域の輝度の計算には、領域の輝度の平均値以外にも、領域の輝度の中央値、代表値などで計算も可能である。
輝度情報が、画像の周辺領域の輝度と中央領域の輝度の関係であるとき、周辺領域の輝度と中央領域の輝度の関係に基づきシェーディング補正の選択を判定する。この場合には、周辺領域の輝度と中央領域の輝度の関係に基づき、画像に輝度ムラがあるかどうかの判定を行う。周辺領域の輝度と中央領域の輝度の関係の一例としては、画像の周辺領域の輝度と中央領域の輝度の差があげられる。その場合は画像の周辺領域の輝度と中央領域の輝度の差が所定値以上である場合に画像は輝度ムラがあると判定する。
ここで、中央領域とは、例えば、画像の重心を含む領域を意味する。中央領域の形は特に限定されず、円、楕円、正方形、長方形、四角形、多角形などが例示できる。中央領域の面積は、特に限定されず、視野全体の100分の一以上9分の一以下であってもよく、81分の一以上16分の一以下であってもよく、64分の一以上25分の一以下であってもよく、64分の一以上25分の一以下であってもよく、49分の一以上36分の一以下であってもよいが、周辺領域と同じ面積であることが好ましい。例えば図4の場合、対角線の交点が画像と一致し100pixel x 100pixelの正方形を中央領域とし、その平均輝度を計算する。周辺領域の平均輝度と中央領域の平均輝度の差を計算する。例えば、図4で、各平均輝度の差が、4倍では145、10倍では18、40倍では9であった場合、例えば、所定値を100と設定し、平均輝度の差が100以上の場合に輝度ムラがあると判定すればよい。
また、周辺領域の輝度と中央領域の輝度の関係としては、画像の周辺領域の輝度と中央領域の輝度の比があげられる。その場合は画像の周辺領域の輝度と中央領域の輝度の比が所定値以上である場合に画像は輝度ムラがあると判定する。図4で、各平均輝度の比が、4倍では0.01、10倍では0.9、40倍では0.9あった場合、例えば、所定値を0.5と設定し、その比が0.5以下を輝度ムラがあると判定すればよい。
画像に輝度ムラがあるかどうかと判断するための方法はこれらに限らず、様々な方法が考えられる。複数の周辺領域において、それらの輝度の平均値を求めてもよい。また、CCD1画素あたりのサイズについて閾値を設定して、画像が低倍率画像かどうかを判定してもよい。所定の閾値以下、例えば2倍以下、4倍以下、あるいは10倍以下の対物レンズを用いて観察したりしたとき、輝度ムラが発生すると考えられるからである。
(B)画像情報に基づく平滑化処理の選択
選択部114は、背景がオリジナル画像の所定の割合以上、例えば、40%以上、好ましくは50%以上、より好ましくは60%以上かどうかを調べ(S123)、所定の割合以上を占める場合に平滑化処理を選択する(S124)。
選択部114は、背景がオリジナル画像の所定の割合以上、例えば、40%以上、好ましくは50%以上、より好ましくは60%以上かどうかを調べ(S123)、所定の割合以上を占める場合に平滑化処理を選択する(S124)。
背景の画像に対する割合を算出する方法は特に限定されないが、例えば、画像を二値化した二値化画像を用いる方法がある。二値化画像において、観察対象物と背景の各面積の割合を算出すればよい。あるいは、所定サイズの部分領域を設定し、二値化画像において対象物を含む部分領域が存在する場合に、背景が画像の所定の割合以上あるとみなし、平滑化処理をすることを選択してもよい。背景領域が画像中の一定領域を占める場合には、所定サイズの部分領域内に対象物が含まれないからである。部分領域のサイズは、サンプルの種類、細胞の種類、培養状態などに応じて任意に設定され、ユーザーが設定してもよい。
背景が画像の所定の割合以上ある場合とは、具体的には、培養細胞がコンフルエントでない場合や、高倍率で観察した場合などが例示できる。具体的には、所定の閾値以下、例えば50%以下、30%以下、あるいは10%以下のコンフルエンシーであったり、あるいは所定の閾値以上、例えば20倍以上、30倍以上、40倍以上、50倍以上、あるいは60倍以上の対物レンズを用いて観察したりした場合などが例示できる。
画像に輝度ムラがなく、かつ背景が画像の所定の割合未満、例えば80%未満、好ましくは60%未満、より好ましくは40%未満である場合、シェーディング補正及び平滑化処理は行わない。
(C)倍率情報取得
取得したオリジナル画像に適した前処理の要否については、画像に付帯するデータから、選択部114が倍率情報を取得することにより行ってもよい。
取得したオリジナル画像に適した前処理の要否については、画像に付帯するデータから、選択部114が倍率情報を取得することにより行ってもよい。
この場合には画像取得した際の倍率が低倍率である場合には輝度ムラがあるとみなし、シェーディング補正を行うと判定する。また、画像取得した際の倍率が高倍率である場合には、画像中に細胞が撮像されていない背景領域が占める割合が多いとみなし、平滑化処理を行うと判定する。あらかじめ、低倍率および高倍率を規定する第一閾値および第二閾値を設定し、画像に付帯するデータに含まれる倍率を参照することで、画像が低倍率か、高倍率か、低倍率でも高倍率でもない倍率か、を決めることができる。
画像に付帯するデータから得られた画像の倍率情報が第一閾値未満のときは、低倍率と判定する。画像に付帯するデータから得られた画像の倍率情報が第二閾値以上のときは、高倍率と判定する。画像取得時の倍率情報は、例えば対物レンズの倍率や、中間変倍装置の倍率や、対物レンズの倍率と中間変倍より定まる総合倍率である。画像の倍率情報が対物レンズの倍率である場合、第一閾値は、例えば10倍である。画像の倍率情報が対物レンズの倍率である場合、第二閾値は、例えば、20倍であってもよく、40倍であってもよく、60倍であってもよい。
なお、サンプル撮像時にリアルタイムで画像変換を行う場合には、画像取得時の倍率情報は撮像装置の設定から推測してもよい。例えば、対物レンズの倍率、中間変倍装置の倍率、また、あらかじめ設定された・または装置により識別された総合倍率などから、オリジナル画像の倍率情報を取得してもよい。また、カメラ情報から得られるサンプルピクセルサイズを取得して、オリジナル画像の倍率情報を取得してもよい。
なお、画像に付帯する倍率情報が存在する場合でも、(A)(B)の条件を考慮し、(A)(B)で選択された情報に基づき前処理を実施してもよい。
<前処理の実施>
以上のようにして、オリジナル画像に対し、必要な前処理を選択することができる。そしてその選択に従って画像前処理部115によって、画像に前処理がなされる(S12)。以下、各処理について詳細に説明する(図2)。
以上のようにして、オリジナル画像に対し、必要な前処理を選択することができる。そしてその選択に従って画像前処理部115によって、画像に前処理がなされる(S12)。以下、各処理について詳細に説明する(図2)。
(A)シェーディング補正が選択されたとき
画像に対し、選択部114がシェーディング補正を選択したとき、画像前処理部115は画像にシェーディング補正を行う(S122)。シェーディング補正とは、輝度ムラのある画像からムラを除く処理のことであって、特にレンズの収差や照明ムラなどを除去するために用いられる。シェーディング補正の方法は公知の方法から適宜選択すればよい。例えば画像をぼかす処理(平滑化処理)を行い、参照画像を作成する。画素毎に画像の輝度/参照画像の輝度を計算し、画像全体で一定にすることにより、シェーディングを除去した画像が得られる。
画像に対し、選択部114がシェーディング補正を選択したとき、画像前処理部115は画像にシェーディング補正を行う(S122)。シェーディング補正とは、輝度ムラのある画像からムラを除く処理のことであって、特にレンズの収差や照明ムラなどを除去するために用いられる。シェーディング補正の方法は公知の方法から適宜選択すればよい。例えば画像をぼかす処理(平滑化処理)を行い、参照画像を作成する。画素毎に画像の輝度/参照画像の輝度を計算し、画像全体で一定にすることにより、シェーディングを除去した画像が得られる。
(B)平滑化処理が選択されたとき
画像に対し、選択部114が平滑化処理を選択したとき、画像前処理部115は、画像に対し、少なくとも背景領域についての平滑化処理を行う(S124)。
画像に対し、選択部114が平滑化処理を選択したとき、画像前処理部115は、画像に対し、少なくとも背景領域についての平滑化処理を行う(S124)。
空間方向の平滑化の一例として、空間方向に対し、画像にサンプリング処理を行う処理があげられ、この処理により画像サイズが小さくなる。画像を縮小する際の補間処理としては、バイキュービック法など、公知の方法を用いることができる。画像縮小は、前述の通り背景領域のみに行ってもよい。それによって、観察対象である対象物領域の解像度は保たれ、処理を行った背景領域のみ解像度が低くなる。画像縮小は例えば、90%、80%、75%、70%、60%、50%、40%、30%、25%、20%に画像を縮小することが挙げられる。縮小する割合が大きいほどアーティファクトの除去効果は高いため、背景領域だけを処理した変換画像を作成する場合には、縮小する割合が大きいことが好ましい。一方で、画像の縮小により、画像変換後の対象物領域の解像度が低くなるため、対象物領域を特定せず、対象物領域ごと画像全体を処理する場合には、画像の縮小割合が小さいことが好ましい。背景領域と対象物領域とで、画像縮小の割合を変えてもよい。
輝度方向への平滑化の一例として、処理する部分の輝度値を補正し、一定にする処理が挙げられる。また、輝度方向への平滑化処理の例として、一般によく知られたバイラテラルフィルタのようなフィルタ処理があげられる。また、その他のよく知られたノイズ低減処理を利用してもよい。輝度値を補正する場合、画像を細胞領域と背景領域に分割し、背景領域にのみこの処理を行うことが望ましい。
これらの平滑化処理によって、画像変換前のノイズが低減されるので、ノイズ低減処理(ノイズリダクション処理とも呼ばれる)になる。そして、画像変換後のアーティファクトが減少する。
<コントラストの増強>
画像前処理部は、シェーディング補正及び/又は平滑化処理を行った画像に対し、コントラストを強調する処理を行ってもよい(S125)。シェーディング補正及び平滑化処理が選択されなかった場合には、オリジナル画像に対してコントラスト強調処理が実行されてもよい。この処理は、当業者には周知の方法で行うことができる。例えば、トーンマッピング、ヒストグラム均等法、局所的ヒストグラム均等化法が例示できる。なお、コントラストの強調処理は、前処理を行う前に、オリジナル画像に対して行ってもよい。
画像前処理部は、シェーディング補正及び/又は平滑化処理を行った画像に対し、コントラストを強調する処理を行ってもよい(S125)。シェーディング補正及び平滑化処理が選択されなかった場合には、オリジナル画像に対してコントラスト強調処理が実行されてもよい。この処理は、当業者には周知の方法で行うことができる。例えば、トーンマッピング、ヒストグラム均等法、局所的ヒストグラム均等化法が例示できる。なお、コントラストの強調処理は、前処理を行う前に、オリジナル画像に対して行ってもよい。
<画像分割処理>
その後、画像前処理部115は、画像を小領域に分割する分割処理を行ってもよい(S126)。この際、小領域はそれぞれ端が重なった状態で分割されることが好ましい。端を重ねずに分割した場合、変換時に小領域間で生じた輝度の違いによって小領域の境界が目立つようになるが、端が重なった状態で分割することにより、結合するときに重なり部分で重み付けをして結合することによって、小領域の境界が目立たなくなるためである。
その後、画像前処理部115は、画像を小領域に分割する分割処理を行ってもよい(S126)。この際、小領域はそれぞれ端が重なった状態で分割されることが好ましい。端を重ねずに分割した場合、変換時に小領域間で生じた輝度の違いによって小領域の境界が目立つようになるが、端が重なった状態で分割することにより、結合するときに重なり部分で重み付けをして結合することによって、小領域の境界が目立たなくなるためである。
<学習済みモデルへの入力・画像変換>
こうして得られた画像または画像を分割した小領域をそれぞれ、画像変換部117が有する学習モデルに入力し(S13)、画像変換により人工位相差画像を生成させる(S14)。すなわち、画像変換部117が有する学習済みモデルにより、位相差画像ではないオリジナル画像を前処理した画像または画像を分割した小領域を入力画像とし、人工位相差画像に変換した画像を出力画像とする、画像変換処理を行う。
こうして得られた画像または画像を分割した小領域をそれぞれ、画像変換部117が有する学習モデルに入力し(S13)、画像変換により人工位相差画像を生成させる(S14)。すなわち、画像変換部117が有する学習済みモデルにより、位相差画像ではないオリジナル画像を前処理した画像または画像を分割した小領域を入力画像とし、人工位相差画像に変換した画像を出力画像とする、画像変換処理を行う。
本開示の技術においては、画像変換ネットワークを用い、ソース画像として、第1の画像群に属ずる画像を用い、ターゲット画像として、第1の画像群とは異なる第2の画像群の画像を用い、ソースからターゲットへの写像を学習し、学習済みモデルを生成するのが好ましい。画像変換ネットワークとしては特に限定されず、「畳み込みニューラルネットワーク(convolutional neural networks;CNN)」、「敵対的生成ネットワーク」(Generative Adversarial Networks;GAN)、「CGAN(Conditional GAN)」「DCGAN(Deep Conventional GAN)」、「Pix2Pix」、「CycleGAN」などが例示できるが、学習の際、第一画像群に含まれる画像と第二画像群に含まれる画像は、視野が異なっていてもかまわないため、CycleGANが好ましい。
画像変換の一例として、ソース画像として位相差画像以外の顕微鏡観察画像を用い、ターゲット画像として位相差顕微鏡観察画像を用いて学習させた学習済みモデルに、位相差画像以外の顕微鏡観察画像を入力して、位相差画像に類似した人工位相差画像を出力させることができる。位相差画像以外の顕微鏡観察画像は、倍率20倍以上で撮像された画像であってもよいが、倍率10倍以上であることが好ましく、倍率4倍以上であることがより好ましい。
ここで、ソース画像としての位相差画像以外の顕微鏡観察画像は、明視野画像、蛍光画像、微分干渉画像などがあり、それぞれ別個に学習済みモデルを作成することができる。この中から、変換するための画像に最適な学習済みモデルを選択することが好ましく、そのためには、撮像されたときの手法と同じ手法で撮像された画像をソース画像にした学習済みモデルを選択するのが好ましい。
また、ソース画像及びターゲット画像の学習用データとして、対物レンズの異なる倍率で撮像した画像を用い、それぞれで学習させた学習済みモデルを作成してもよい。その場合、変換するための画像の倍率と同じ倍率の画像を学習用データとして用いた学習済みモデルを選択するのが好ましい。
<出力画像の生成>
画像を小領域に分割して学習済みモデルに入力した場合、画像後処理部119は、変換して得られた小領域を結合して、人工位相差画像にする。
画像を小領域に分割して学習済みモデルに入力した場合、画像後処理部119は、変換して得られた小領域を結合して、人工位相差画像にする。
小領域を結合する際(S141)、重なり部分に対し重み付けをして結合するのが好ましい。それによって、画像全体の輝度を一様にし、分割の境界を目立たなくすることができる。
重み付けとしては、例えば、分割領域1と分割領域2に関して重み付けをする際、重なり部分のピクセルに対し、分割領域1への距離と分割領域2への距離がそれぞれa(pixel)、b(pixel)のとき、その距離に応じた逆比例の重みで元画像の輝度を足し合わせることが考えられる。すなわち、分割領域1の重みw1=b/(a+b)、分割領域2の重みw2=a/(a+b)として、結合した画像の該当ピクセルの輝度値I=w1×I1+w2×I2となる(I1,I2は分割領域1、分割領域2の該当ピクセル輝度値を指す)。
重み付けの算出方法はこれに限定されず、異なる計算式を利用してもよいが、その場合でも、重なり部分のピクセルに対し、分割領域1と分割領域2への距離に応じて、距離が短い分割領域の輝度に対応した重みを大きくすることが好ましい。
小領域を結合したのち、前処理において画像を縮小したかどうかを判断し(S142)、画像を縮小した場合は、縮小した部分について拡大処理を行う(S143)。
また、人工位相差画像の作成後、画像後処理部119は、細胞の存在する領域を検出し、細胞の存在する領域だけの画像を生成してもよい。
<人工位相差画像の出力>
最後に、画像出力部121が生成された人工位相差画像を出力し(S15)、画像表示手段123に表示させる(S16)。この時、画像表示手段123は、オリジナル画像および/または細胞の存在する領域だけの画像とともに表示してもよい。
最後に、画像出力部121が生成された人工位相差画像を出力し(S15)、画像表示手段123に表示させる(S16)。この時、画像表示手段123は、オリジナル画像および/または細胞の存在する領域だけの画像とともに表示してもよい。
なお、画像変換処理及び人工位相差画像の出力は、撮像装置においてサンプルを観察している際に行われてもよい。この場合には人工位相差画像は、たとえば撮像装置の操作時にリアルタイム表示される。この場合には、例えば、オリジナル画像取得前に撮像装置の設定に関する情報を取得し、適切な前処理を行うためのアルゴリズムを選択する。撮像装置の設定に関する情報は、例えば、オリジナル画像の倍率情報であり、具体的には対物レンズの倍率、中間変倍装置の倍率、また、あらかじめ設定された・または装置により識別された総合倍率、カメラ情報から得られるサンプルピクセルサイズである。これらのオリジナル画像の倍率情報に基づき、オリジナル画像の前処理が選択される。次に、観察位置が入るように視野を決定する。そして、オリジナル画像を取得すると即時で前処理及び画像変換が行われ、画像表示手段123には画像変換後の画像が表示される。このことにより、ユーザーは人工位相差画像が表示された画像表示手段123を見ながら、顕微鏡操作を行うことができる。
<プログラム及び記憶媒体>
ここまでに記載した画像処理方法をコンピューターに実行させるプログラムや、そのプログラムを格納する、非一過性のコンピューター可読記憶媒体も、本開示の技術の実施形態である。
ここまでに記載した画像処理方法をコンピューターに実行させるプログラムや、そのプログラムを格納する、非一過性のコンピューター可読記憶媒体も、本開示の技術の実施形態である。
(1)シェーディング補正(図5)
倒立顕微鏡を用い、96ウェルプレートを対物レンズ10倍で撮像し入力明視野画像を得た。カーネルサイズ101と設定した平均値フィルタを入力明視野画像に作用させ、参照画像であるblur画像を生成した。画素毎に、明視野画像の輝度と参照画像の輝度の比をとることで、シェーディング補正画像を得た。
倒立顕微鏡を用い、96ウェルプレートを対物レンズ10倍で撮像し入力明視野画像を得た。カーネルサイズ101と設定した平均値フィルタを入力明視野画像に作用させ、参照画像であるblur画像を生成した。画素毎に、明視野画像の輝度と参照画像の輝度の比をとることで、シェーディング補正画像を得た。
分割した小領域をサイズ256pixelと設定し、画像分割を行った。重ね合わせの範囲は分割した小領域の半分(=128pixel)とした。学習済みモデルの生成には、学習用ターゲット画像群として神経細胞を含む明視野画像を、学習用ソース画像群として神経細胞を含む位相差画像を準備し、CycleGANの学習を行い作成した。変換用の学習済みモデルとして、学習済みCycleGANモデル中のソースからターゲットへの変換を行うgeneratorを設定し、シェーディング補正画像を人工位相差画像に変換した。
図5の上段は、シェーディング補正をしないで画像変換した比較例であるが、中段のシェーディング補正をしてから画像変換した実施例に対し、画像が荒くなっている。また、実施例を実際の位相差画像と比較したのが、図4の下段であるが、位相差画像では、輝度ムラのため、ほとんど正常に観察ができなくなっている。
(2)ノイズ除去補正(図8)
倒立顕微鏡を用い、96ウェルプレートを対物レンズ60倍で撮像し入力明視野画像を得た。入力明視野画像を線形補間を利用した画像縮小を行い、縮小画像を生成した。縮小割合は1/2とした。学習済みモデルについては(1)と同様のモデルを利用した変換を行い、その後、線形補間により拡大画像を生成した。
倒立顕微鏡を用い、96ウェルプレートを対物レンズ60倍で撮像し入力明視野画像を得た。入力明視野画像を線形補間を利用した画像縮小を行い、縮小画像を生成した。縮小割合は1/2とした。学習済みモデルについては(1)と同様のモデルを利用した変換を行い、その後、線形補間により拡大画像を生成した。
図8の上段は、補正をしないで人工位相差画像に変換した場合、下段は、平滑化補正をして人工位相差画像に変換した場合の写真である。補正なしでは、背景に多量に白い点状のアーティファクトがあるのに対し、補正後に変換すると、アーティファクトの数が著しく減少する。
Claims (15)
- 生物学的サンプルを撮像した画像を、学習済みモデルを用いて変換する方法であって、
前記方法は、
生物学的サンプルが撮像された、位相差画像ではない第1の画像を取得する工程と、
前記第1の画像の画像情報に基づいて、前処理のタイプを選択する工程と、
前記第1の画像に対し、前記選択された前処理を行い、第2の画像を生成する工程と、
前記学習済みモデルを用いて、前記第2の画像を第3の画像に変換する工程と、
前記第3の画像を出力する工程と、を含み、
前記学習済みモデルは、位相差画像ではない画像からなる学習用ソース画像群と位相差画像からなる学習用ターゲット画像群とを学習用データとして学習させて生成された学習済みモデルである、方法。 - 前記前処理が、シェーディング補正を行う処理、または前記第1の画像の前記生物学的サンプルが撮像されていない背景領域の一部を平滑化する処理を含む、請求項1に記載の方法。
- 前処理のタイプを選択する工程において、
前記第1の画像に輝度ムラがある場合に、前記第1の画像にシェーディング補正を行う処理を選択する、請求項1または2に記載の方法。 - 前記画像情報は輝度情報であり、
前記前処理のタイプを選択する工程において、
前記第1の画像の前記輝度情報に基づいて、前記シェーディング補正を行う処理を選択する、請求項3に記載の方法。 - 前記輝度情報は、前記第1の画像の周辺領域の輝度値であり、
前記前処理のタイプを選択する工程において、
前記周辺領域の輝度値が所定値以下である場合に、前記シェーディング補正を行う処理を選択する、請求項4に記載の方法。 - 前記輝度情報は、前記第1の画像の周辺領域の周辺領域の輝度値と中央領域の輝度値の差であり、
前記前処理のタイプを選択する工程において、
前記第1の画像の周辺領域の輝度と中央領域の輝度の差が所定値以上である場合に、前記シェーディング補正を行う処理を選択する、請求項5または6に記載の方法。 - 前記輝度情報は、前記第1の画像の周辺領域の周辺領域の輝度値と中央領域の輝度値の比であり、
前記前処理のタイプを選択する工程において、
前記第1の画像の周辺領域の輝度と中央領域の輝度の比が所定値以上である場合に、前記シェーディング補正を行う処理を選択する、請求項5または6に記載の方法。 - 前記前処理のタイプを選択する工程において、
前記第1の画像の前記背景領域の割合に基づき、前記平滑化する処理を選択する、請求項2から7のいずれか一項に記載の方法。 - 前記前処理のタイプを選択する工程において、
前記背景領域が前記第一の画像の所定の割合以上を占める場合に、前記平滑化する処理を選択する、請求項8に記載の方法。 - 前記前処理のタイプを選択する工程において、
前記第1の画像の倍率情報に基づき前記前処理のタイプを選択する、請求項1又は2に記載の方法。 - 前記倍率情報は、前記第1画像に付帯したメタデータから取得され、前記第1の画像が観察された顕微鏡の対物レンズの倍率に関する情報である請求項10に記載の方法。
- 前記第2の画像を第3の画像に変換する工程は、前記第2の画像を小領域に分割するサブステップと、前記各小領域を前記学習済モデルによって変換するサブステップと、前記変換後の各小領域を結合するサブステップとを含む、請求項1から11のいずれか一項に記載の方法。
- 請求項1~12のいずれか1項に記載の画像変換方法をコンピューターに実行させるプログラム。
- 請求項1~12のいずれか一項に記載の方法を実行する処理部を有する、画像変換装置。
- 画像生成装置と、請求項16に記載の画像変換装置と、を備える画像変換システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/044566 WO2022113368A1 (ja) | 2020-11-30 | 2020-11-30 | 画像変換方法、プログラム、画像変換装置、画像変換システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/044566 WO2022113368A1 (ja) | 2020-11-30 | 2020-11-30 | 画像変換方法、プログラム、画像変換装置、画像変換システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022113368A1 true WO2022113368A1 (ja) | 2022-06-02 |
Family
ID=81754208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/044566 WO2022113368A1 (ja) | 2020-11-30 | 2020-11-30 | 画像変換方法、プログラム、画像変換装置、画像変換システム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022113368A1 (ja) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07248450A (ja) * | 1994-03-11 | 1995-09-26 | Olympus Optical Co Ltd | 顕微鏡システム |
JP2001036748A (ja) * | 1999-07-15 | 2001-02-09 | Canon Inc | 画像処理装置及び方法 |
JP2010117229A (ja) * | 2008-11-12 | 2010-05-27 | Olympus Corp | 高さ情報取得装置、高さ情報取得方法、及びプログラム |
JP2011253354A (ja) * | 2010-06-02 | 2011-12-15 | Sony Corp | 画像処理装置および方法、並びにプログラム |
JP2013029806A (ja) * | 2011-06-22 | 2013-02-07 | Canon Inc | 撮像装置 |
WO2015045828A1 (ja) * | 2013-09-27 | 2015-04-02 | 富士フイルム株式会社 | 撮像装置及び撮像方法 |
JP2019144294A (ja) * | 2018-02-16 | 2019-08-29 | オリンパス株式会社 | 画像処理装置、顕微鏡システム、画像処理方法および画像処理プログラム |
JP2019204009A (ja) * | 2018-05-24 | 2019-11-28 | オリンパス株式会社 | 顕微鏡システム |
JP2019211468A (ja) * | 2018-06-01 | 2019-12-12 | 株式会社フロンティアファーマ | 画像処理方法、薬剤感受性試験方法および画像処理装置 |
JP2020027956A (ja) * | 2018-08-09 | 2020-02-20 | 株式会社Jvcケンウッド | 処理装置 |
JP2020060822A (ja) * | 2018-10-05 | 2020-04-16 | 株式会社フロンティアファーマ | 画像処理方法および画像処理装置 |
-
2020
- 2020-11-30 WO PCT/JP2020/044566 patent/WO2022113368A1/ja active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07248450A (ja) * | 1994-03-11 | 1995-09-26 | Olympus Optical Co Ltd | 顕微鏡システム |
JP2001036748A (ja) * | 1999-07-15 | 2001-02-09 | Canon Inc | 画像処理装置及び方法 |
JP2010117229A (ja) * | 2008-11-12 | 2010-05-27 | Olympus Corp | 高さ情報取得装置、高さ情報取得方法、及びプログラム |
JP2011253354A (ja) * | 2010-06-02 | 2011-12-15 | Sony Corp | 画像処理装置および方法、並びにプログラム |
JP2013029806A (ja) * | 2011-06-22 | 2013-02-07 | Canon Inc | 撮像装置 |
WO2015045828A1 (ja) * | 2013-09-27 | 2015-04-02 | 富士フイルム株式会社 | 撮像装置及び撮像方法 |
JP2019144294A (ja) * | 2018-02-16 | 2019-08-29 | オリンパス株式会社 | 画像処理装置、顕微鏡システム、画像処理方法および画像処理プログラム |
JP2019204009A (ja) * | 2018-05-24 | 2019-11-28 | オリンパス株式会社 | 顕微鏡システム |
JP2019211468A (ja) * | 2018-06-01 | 2019-12-12 | 株式会社フロンティアファーマ | 画像処理方法、薬剤感受性試験方法および画像処理装置 |
JP2020027956A (ja) * | 2018-08-09 | 2020-02-20 | 株式会社Jvcケンウッド | 処理装置 |
JP2020060822A (ja) * | 2018-10-05 | 2020-04-16 | 株式会社フロンティアファーマ | 画像処理方法および画像処理装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5595121B2 (ja) | 画像処理装置、画像処理方法、およびプログラム | |
RU2523028C2 (ru) | Устройство обработки изображения, устройство захвата изображения и способ обработки изображения | |
CN112734650A (zh) | 一种基于虚拟多曝光融合的不均匀光照图像增强方法 | |
JP2011107702A (ja) | 入力画像の画像処理システム、画像表示システム、及び画像処理方法 | |
CN108305232B (zh) | 一种单帧高动态范围图像生成方法 | |
JP2012208553A (ja) | 画像処理装置、および画像処理方法、並びにプログラム | |
Jiang et al. | Color image enhancement with brightness preservation using a histogram specification approach | |
WO2013145732A1 (en) | System for improved image enhancement | |
CN114240767A (zh) | 一种基于曝光融合的图像宽动态范围处理方法及装置 | |
CN106296608A (zh) | 一种基于映射表的鱼眼图像处理方法及系统 | |
JP5614550B2 (ja) | 画像処理方法、画像処理装置及びプログラム | |
CN115273114A (zh) | 文档图像优化方法和介质 | |
Zhu et al. | Low-light image enhancement network with decomposition and adaptive information fusion | |
CN114155173A (zh) | 一种图像去雾方法、设备及非易失性存储介质 | |
WO2019160041A1 (ja) | 画像処理装置、顕微鏡システム、画像処理方法および画像処理プログラム | |
WO2022113367A1 (ja) | 画像変換方法、プログラム、画像処理装置 | |
WO2022113368A1 (ja) | 画像変換方法、プログラム、画像変換装置、画像変換システム | |
CN117876233A (zh) | 一种基于无人机遥感技术的测绘图像增强方法 | |
JP7280107B2 (ja) | 画像処理方法、プログラム、画像処理装置、画像処理システム、及び、顕微鏡システム | |
CN116630198A (zh) | 一种结合自适应伽马校正的多尺度融合水下图像增强方法 | |
CN113012079B (zh) | 低亮度车底图像增强方法、装置及存储介质 | |
CN113763524B (zh) | 基于物理光学模型和神经网络的双流散景渲染方法及系统 | |
KR102470242B1 (ko) | 영상 처리 장치, 영상 처리 방법, 및 프로그램 | |
JP2019045981A (ja) | 画像処理装置、画像処理方法及びプログラム | |
JP2007151094A (ja) | 画像の階調変換装置、プログラム、電子カメラ、およびその方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20963631 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20963631 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |