WO2022113299A1 - Heat exchanger and refrigeration cycle device - Google Patents

Heat exchanger and refrigeration cycle device Download PDF

Info

Publication number
WO2022113299A1
WO2022113299A1 PCT/JP2020/044334 JP2020044334W WO2022113299A1 WO 2022113299 A1 WO2022113299 A1 WO 2022113299A1 JP 2020044334 W JP2020044334 W JP 2020044334W WO 2022113299 A1 WO2022113299 A1 WO 2022113299A1
Authority
WO
WIPO (PCT)
Prior art keywords
mountain
heat exchanger
fin
holes
longitudinal direction
Prior art date
Application number
PCT/JP2020/044334
Other languages
French (fr)
Japanese (ja)
Inventor
暁 八柳
剛志 前田
悟 梁池
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US18/247,236 priority Critical patent/US20230358483A1/en
Priority to JP2022564962A priority patent/JPWO2022113299A1/ja
Priority to CN202080107348.4A priority patent/CN116457625A/en
Priority to EP20963563.0A priority patent/EP4253896A4/en
Priority to PCT/JP2020/044334 priority patent/WO2022113299A1/en
Publication of WO2022113299A1 publication Critical patent/WO2022113299A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/006Preventing deposits of ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/10Secondary fins, e.g. projections or recesses on main fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2225/00Reinforcing means
    • F28F2225/06Reinforcing means for fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/26Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements

Definitions

  • This disclosure relates to heat exchangers and refrigeration cycle devices.
  • the fin includes a sheet portion (flat surface portion) and a mountain portion and a valley portion.
  • the seat portion is formed concentrically around the outer periphery of the fin collar in order to guide the air flowing around the heat transfer tube and reduce the wake area.
  • the front and rear of the seat are open.
  • the peaks and valleys are continuously provided between the fin collars to vary the flow of air.
  • the present disclosure has been made in view of the above problems, and an object thereof is to provide a heat exchanger and a refrigerating cycle apparatus capable of improving heat transfer efficiency and fin strength. , To provide a heat exchanger and a refrigeration cycle device capable of improving the drainage of water adhering to fins.
  • the heat exchangers of the present disclosure include fins configured to extend in the lateral direction along the air flow direction and in the longitudinal direction intersecting the air flow direction, and a heat transfer tube penetrating the fins. There is.
  • the fins are provided with a plurality of through holes arranged in the longitudinal direction.
  • the heat transfer tube is inserted into a plurality of through holes.
  • the fin includes a flat surface portion and a plurality of first mountain portions and a plurality of second mountain portions configured to project from the flat surface portion.
  • the plurality of first peaks are arranged between the plurality of through holes and the first convex portion which is arranged so as to be curved downward along the longitudinal direction. It includes a second convex portion configured to be curved upward along the longitudinal direction.
  • Each of the plurality of second mountain portions is arranged between each of the plurality of first mountain portions and each of the plurality of through holes, and is configured to surround each of the plurality of through holes. In the lateral direction, the positions of the vertices of the first convex portion and the second convex portion are aligned.
  • the heat exchanger of the present disclosure since the first mountain portion and the second mountain portion are configured to protrude from the flat surface portion, the influence of the dead water area can be suppressed. Therefore, the heat transfer coefficient of the fins can be improved. Further, the strength of the fin can be improved by the first mountain portion and the second mountain portion. Further, since the positions of the vertices of the first convex portion and the second convex portion are aligned in the lateral direction, the water flowing from the apex of the first convex portion is guided to both sides from the apex of the second convex portion. Drainage can be improved.
  • FIG. 3 is a cross-sectional view taken along the line II-II of region A in FIG. It is an end view along the line III-III of FIG. It is an end view along the IV-IV line of FIG. It is a refrigerant circuit diagram which shows the refrigerating cycle apparatus which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows schematic the structure of the part corresponding to FIG. 2 of the heat exchanger which concerns on Embodiment 2.
  • FIG. It is an end view along the line VII-VII of FIG. It is an end view along the line VIII-VIII of FIG. It is an enlarged view of the IX part of FIG.
  • FIG. 2 It is sectional drawing which shows schematic the structure of the part corresponding to FIG. 2 of the heat exchanger which concerns on Embodiment 3.
  • FIG. It is sectional drawing which follows the XI-XI line of FIG.
  • FIG. It is sectional drawing which shows schematic the structure of the part corresponding to FIG. 2 of the heat exchanger which concerns on Embodiment 4.
  • FIG. It is an end view along the XIII-XIII line of FIG.
  • FIG. 2 It is sectional drawing which shows schematic the structure of the part corresponding to FIG. 2 of the heat exchanger which concerns on Embodiment 5.
  • FIG. It is an end view along the XV-XV line of FIG.
  • It is an end view along the XVI-XVI line of FIG.
  • It is an end view along the XVIII-XVIII line of FIG.
  • Embodiment 1 The configuration of the heat exchanger HE according to the first embodiment will be described with reference to FIGS. 1 to 4.
  • the heat exchanger HE includes fins F and a heat transfer tube P.
  • the fin F is configured to extend in the lateral direction D1 along the air flow direction D0 and the longitudinal direction D2 intersecting the air flow direction D0.
  • the fin F is configured to have a substantially rectangular shape.
  • the heat transfer tube P penetrates the fin F.
  • the heat transfer tube P is a circular tube.
  • the fin F is provided with a plurality of through holes TH arranged in the longitudinal direction D2. Each of the plurality of through holes TH is formed in a circular shape.
  • the heat transfer tube P is inserted into a plurality of through holes TH.
  • the heat exchanger HE includes a plurality of fins F.
  • the plurality of fins F are stacked at intervals from each other.
  • the heat transfer tube P penetrates the plurality of fins F in the direction D3 in which the plurality of fins F are stacked.
  • Each of the plurality of fins F is provided with a plurality of through holes TH.
  • the plurality of through holes TH are arranged in the longitudinal direction D2 of the fin F.
  • the plurality of through holes TH are arranged so as to be spaced apart from each other in the longitudinal direction D2 of the fin F.
  • the lateral direction D1 of the fin F is orthogonal to the longitudinal direction D2.
  • the lateral direction D1 of the fin F may be the horizontal direction.
  • the longitudinal direction D2 of the fin F may be the vertical direction (vertical direction).
  • the direction D3 in which the fins F are stacked is orthogonal to the lateral direction D1 and the longitudinal direction D2 of the fins F.
  • the heat transfer tube P has a plurality of heat transfer portions P1 and a plurality of connection portions P2. Each of the plurality of heat transfer portions P1 penetrates the plurality of fins F. Each of the plurality of heat transfer portions P1 is inserted into the plurality of through holes TH in the direction D3 in which the plurality of fins F are stacked. The plurality of heat transfer portions P1 are formed in a linear shape. Each of the plurality of heat transfer portions P1 extends in the direction D3 in which the plurality of fins F are stacked.
  • the plurality of connection portions P2 are portions that connect the plurality of heat transfer portions P1 to each other on the outside of the plurality of fins F.
  • Each of the plurality of connecting portions P2 is configured in a U shape.
  • Each of the plurality of connecting portions P2 connects a plurality of heat transfer tubes P adjacent to each other in the longitudinal direction D2 of the fin F.
  • Each of the plurality of connecting portions P2 is connected to the end portions of the plurality of heat transfer portions P1 in the direction D3 in which the plurality of fins F are stacked.
  • the plurality of heat transfer portions P1 are arranged in a plurality of stages in the longitudinal direction D2 of the fin F. In the present embodiment, the plurality of heat transfer portions P1 are arranged in four stages along the longitudinal direction D2 of the fins F.
  • the plurality of heat transfer units P1 are connected by the plurality of connection units P2 as follows.
  • the heat transfer portion P1 of the first stage is connected to the heat transfer portion P1 of the second stage at the back side of the direction D3 in which a plurality of fins F are stacked by the connection portion P2.
  • the second-stage heat transfer unit P1 is connected to the third-stage heat transfer unit P1 by a connecting portion P2 on the front side in the direction D3 in which a plurality of fins F are stacked.
  • the heat transfer unit P1 of the third stage is connected to the heat transfer unit P1 of the fourth stage at the back side of the direction D3 in which a plurality of fins F are stacked by the connection portion P2.
  • the heat transfer tube P is configured to meander in the longitudinal direction D2 of the fin F.
  • the fin F includes a flat surface portion SP, a plurality of first mountain portions MP1, a plurality of second mountain portions MP2, and a fin color FC.
  • the flat surface portion SP is configured to be flat.
  • the flat surface portion SP is configured in a flat plate shape.
  • the plurality of first mountain portions MP1 and the plurality of second mountain portions MP2 are configured to protrude from the flat surface portion SP.
  • the plurality of first mountain portions MP1 and the plurality of second mountain portions MP2 project from the plane portion SP in the same direction.
  • the plurality of first mountain portions MP1 include a first convex portion C1 and a second convex portion C2.
  • the first convex portion C1 is arranged between the plurality of through holes TH.
  • the first convex portion C1 is arranged below each of the plurality of through holes TH.
  • the first convex portion C1 is configured to be curved downward along the longitudinal direction D2 of the fin F.
  • the second convex portion C2 is arranged between the plurality of through holes TH.
  • the second convex portion C2 is arranged above each of the plurality of through holes TH.
  • the second convex portion C2 is configured to be curved upward along the longitudinal direction D2 of the fin F.
  • the plurality of first mountain portions MP1 include a plurality of first convex portions C1 and a plurality of second convex portions C2.
  • the first mountain portion MP1 has a portion extending along the longitudinal direction D2 of the fin F. Further, the first mountain portion MP1 has a portion extending along the lateral direction D1 of the fin F. The first mountain portion MP1 is arranged so as to be offset from the center of the through hole TH in the lateral direction D1 of the fin F. In the present embodiment, the first mountain portion MP1 is configured in an arc shape. In the present embodiment, the widths of the first mountain portions MP1 are equal.
  • the plurality of first mountain portions MP1 are lined up in the longitudinal direction D2 of the fin F.
  • four first mountain portions MP1 are arranged between the two through holes TH in the longitudinal direction D2 of the fin F.
  • two first mountain portions MP1 are arranged on the upper side and two on the lower side of one through hole TH.
  • Two first convex portions C1 arranged below one through hole TH in the longitudinal direction D2 of the fin F are arranged so as to be adjacent to each other in the longitudinal direction D2 of the fin F.
  • the two second convex portions C2 arranged above the one through hole TH in the longitudinal direction D2 of the fin F are arranged so as to be adjacent to each other in the longitudinal direction D2 of the fin F.
  • the two first convex portions C1 arranged so as to be adjacent to each other are configured to be curved to the same side along the longitudinal direction D2. Further, the two second convex portions C2 arranged so as to be adjacent to each other are configured to be curved on the opposite side of the two first convex portions C1 along the longitudinal direction D2.
  • the two first convex portions C1 arranged near the upper through hole TH between the two through holes TH are curved so as to protrude downward.
  • the two second convex portions C2 arranged near the lower through hole TH between the two through holes TH are curved so as to protrude upward.
  • the outer first convex portion C1 is among the two second convex portions C2 curved so as to protrude upward. It is arranged at a distance from the outer second convex portion C2.
  • Each of the plurality of first convex portions C1 is configured to have the same shape.
  • the radii of curvature of each of the plurality of first convex portions C1 are equal to each other.
  • the centers of curvature of each of the plurality of first convex portions C1 are linearly aligned with each other in the longitudinal direction D2 of the fin F.
  • the widths of the plurality of first convex portions C1 are equal to each other.
  • the lengths of the plurality of first convex portions C1 are equal to each other.
  • Each of the plurality of first convex portions C1 is configured to have the same shape except for each of the plurality of second convex portions C2 and the direction of bending along the longitudinal direction D2 of the fin F.
  • Each of the plurality of second convex portions C2 is configured to have the same shape.
  • the radii of curvature of each of the plurality of second convex portions C2 are equal to each other.
  • the centers of curvature of each of the plurality of second convex portions C2 are linearly aligned with each other in the longitudinal direction D2 of the fin F.
  • the widths of the plurality of second convex portions C2 are equal to each other.
  • the lengths of the plurality of second convex portions C2 are equal to each other.
  • Each of the plurality of first mountain portions MP1 is longer than each of the plurality of second mountain portions MP2 in the lateral direction D1 of the fin F.
  • each of the plurality of first mountain portions MP1 is arranged between each of the plurality of second mountain portions MP2.
  • the center of curvature of each of the plurality of first mountain portions MP1 is linearly aligned with the center of each of the plurality of second mountain portions MP2 in the longitudinal direction D2 of the fin F.
  • the inner first ridge MP1 is adjacent to the second ridge MP2.
  • the inner first ridge MP1 is adjacent to the second ridge MP2.
  • Each of the plurality of second mountain portions MP2 is arranged between each of the first mountain portions MP1 and each of the plurality of through holes TH.
  • Each of the plurality of second mountain portions MP2 is configured to surround each of the plurality of through holes TH.
  • the second mountain part MP2 is configured in an annular shape. The height of the second mountain portion MP2 protruding from the flat surface portion SP is higher than that of the first mountain portion MP1.
  • Each of the plurality of second mountain MP2s is configured to have the same shape.
  • the centers of each of the plurality of second mountain portions MP2 are linearly arranged in the longitudinal direction D2 of the fin F.
  • the widths of the plurality of second mountain MP2s are equal to each other.
  • the diameters of the plurality of second mountain MP2s are equal to each other.
  • the positions of the vertices V of the first convex portion C1 and the second convex portion C2 are aligned.
  • the apex V of the first convex portion C1 and the second convex portion C2 is the most protruding portion along the longitudinal direction D2 of the fin F.
  • the positions of the vertices V of the first convex portion C1 and the second convex portion C2 are aligned linearly.
  • the width of the first mountain part MP1 is narrower than that of the second mountain part MP2. That is, the width of each of the plurality of first mountain portions MP1 is narrower than the width of each of the plurality of second mountain portions MP2.
  • the summit of the first mountain part MP1 is located in the center of the width of the first mountain part MP1.
  • the summit of the second mountain part MP2 is located in the center of the width of the second mountain part MP2.
  • the height of the first mountain portion MP1 and the second mountain portion MP2 protruding from the flat surface portion SP is lower than that of the fin collar FC.
  • the fin color FC is configured in a cylindrical shape.
  • the heat transfer tube P is inserted into the fin collar FC.
  • the outer peripheral surface of the heat transfer tube P is fitted to the inner peripheral surface of the fin collar FC.
  • the fin collar FC is configured to protrude from the flat surface portion SP. In the present embodiment, the fin collar FC protrudes from the flat surface portion SP in the same direction as the first mountain portion MP1 and the second mountain portion MP2.
  • Fin color FC includes a peripheral wall and a flange.
  • the peripheral wall is configured to protrude from the flat surface portion SP.
  • the flange is configured to project outward from the peripheral wall.
  • the flange is provided at the tip opposite to the flat surface portion SP of the peripheral wall.
  • the fin F includes a plurality of fin color FCs.
  • the refrigeration cycle device 100 is, for example, an air conditioner and a refrigerator.
  • an air conditioner will be described as an example of the refrigeration cycle device 100.
  • the refrigeration cycle device 100 includes a refrigerant circuit RC, a refrigerant, a control device CD, and blower devices 6 and 7.
  • the refrigeration cycle device 100 includes a refrigerant circulation device RCD.
  • the refrigerant circulation device RCD is configured to circulate a refrigerant for heat exchange with air in the heat exchanger HE.
  • the refrigeration cycle device 100 in which the compressor 1 is incorporated as the refrigerant circulation device RCD will be described.
  • the refrigerant circulation device RCD may be a refrigerant pump.
  • the refrigerant circuit RC includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a pressure reducing valve 4, and an indoor heat exchanger 5.
  • the above heat exchanger HE may be applied to at least one of the outdoor heat exchanger 3 and the indoor heat exchanger 5.
  • the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the pressure reducing valve 4, and the indoor heat exchanger 5 are connected by pipes.
  • the refrigerant circuit RC is configured to circulate the refrigerant.
  • the refrigerant circuit RC is configured to perform a refrigerating cycle in which the refrigerant circulates while undergoing a phase change.
  • the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the pressure reducing valve 4, the control device CD, and the blower device 6 are housed in the outdoor unit 101.
  • the indoor heat exchanger 5 and the blower device 7 are housed in the indoor unit 102.
  • the refrigerant circulates in the order of the compressor 1, the four-way valve 2, the outdoor heat exchanger (condenser) 3, the pressure reducing valve 4, the indoor heat exchanger (evaporator) 5, and the four-way valve 2 during the cooling operation. It is configured as follows. Further, in the refrigerant circuit RC, during the heating operation, the refrigerant is charged in the order of the compressor 1, the four-way valve 2, the indoor heat exchanger (condenser) 5, the pressure reducing valve 4, the outdoor heat exchanger (evaporator) 3, and the four-way valve 2. It is configured to circulate.
  • the refrigerant flows through the refrigerant circuit RC in the order of the compressor 1, the condenser, the pressure reducing valve 4, and the evaporator.
  • the control device CD is configured to control each device of the refrigeration cycle device 100 by performing calculations, instructions, and the like.
  • the control device CD is electrically connected to a compressor 1, a four-way valve 2, a pressure reducing valve 4, a blower device 6, 7, and the like, and is configured to control the operation thereof.
  • the compressor 1 is configured to compress the refrigerant for heat exchange with air in the heat exchanger HE.
  • the compressor 1 is configured to compress and discharge the sucked refrigerant.
  • the compressor 1 may be configured to have a variable capacity.
  • the compressor 1 may be configured to change its capacity by adjusting the rotation speed of the compressor 1 based on an instruction from the control device CD.
  • the four-way valve 2 is configured to switch the flow of the refrigerant so that the refrigerant compressed by the compressor 1 flows to the outdoor heat exchanger 3 or the indoor heat exchanger 5.
  • the four-way valve 2 is configured to allow the refrigerant discharged from the compressor 1 to flow to the outdoor heat exchanger (condenser) 3 during the cooling operation. Further, the four-way valve 2 is configured to allow the refrigerant discharged from the compressor 1 to flow to the indoor heat exchanger (evaporator) 5 during the heating operation.
  • the outdoor heat exchanger 3 is configured to exchange heat between the refrigerant flowing inside the outdoor heat exchanger 3 and the air flowing outside the outdoor heat exchanger 3.
  • the outdoor heat exchanger 3 is configured to function as a condenser that condenses the refrigerant during the cooling operation and as an evaporator that evaporates the refrigerant during the heating operation.
  • the pressure reducing valve 4 is configured to reduce the pressure by expanding the refrigerant condensed by the condenser.
  • the pressure reducing valve 4 is configured to reduce the pressure of the refrigerant condensed by the outdoor heat exchanger (condenser) 3 during the cooling operation and to reduce the pressure of the refrigerant condensed by the indoor heat exchanger (evaporator) 5 during the heating operation.
  • the pressure reducing valve 4 is, for example, a solenoid valve.
  • the indoor heat exchanger 5 is configured to exchange heat between the refrigerant flowing inside the indoor heat exchanger 5 and the air flowing outside the indoor heat exchanger 5.
  • the indoor heat exchanger 5 is configured to function as an evaporator that evaporates the refrigerant during the cooling operation and as a condenser that condenses the refrigerant during the heating operation.
  • the blower device 6 is configured to blow outdoor air to the outdoor heat exchanger 3. That is, the blower 6 is configured to supply air to the outdoor heat exchanger 3.
  • the blower device 6 heat exchanges between the refrigerant and air by adjusting the amount of air flowing around the outdoor heat exchanger 3 by adjusting the rotation speed of the blower device 6 based on the instruction from the control device CD. It may be configured to adjust the amount.
  • the blower device 7 is configured to blow indoor air to the indoor heat exchanger 5. That is, the blower 7 is configured to supply air to the indoor heat exchanger 5.
  • the blower device 7 heat exchanges between the refrigerant and air by adjusting the amount of air flowing around the indoor heat exchanger 5 by adjusting the rotation speed of the blower device 7 based on the instruction from the control device CD. It may be configured to adjust the amount.
  • the solid line arrow in FIG. 5 indicates the flow of the refrigerant during the cooling operation, and the broken line arrow in FIG. 5 indicates the flow of the refrigerant during the heating operation.
  • the refrigeration cycle device 100 can selectively perform cooling operation and heating operation.
  • the refrigerant circulates in the refrigerant circuit RC in the order of the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the pressure reducing valve 4, the indoor heat exchanger 5, and the four-way valve 2.
  • the outdoor heat exchanger 3 functions as a condenser. Heat exchange is performed between the refrigerant flowing through the outdoor heat exchanger 3 and the air blown by the blower device 6.
  • the indoor heat exchanger 5 functions as an evaporator. Heat exchange is performed between the refrigerant flowing through the indoor heat exchanger 5 and the air blown by the blower device 7.
  • the refrigerant circulates in the refrigerant circuit RC in the order of the compressor 1, the four-way valve 2, the indoor heat exchanger 5, the pressure reducing valve 4, the outdoor heat exchanger 3, and the four-way valve 2.
  • the indoor heat exchanger 5 functions as a condenser. Heat exchange is performed between the refrigerant flowing through the indoor heat exchanger 5 and the air blown by the blower device 7.
  • the outdoor heat exchanger 3 functions as an evaporator. Heat exchange is performed between the refrigerant flowing through the outdoor heat exchanger 3 and the air blown by the blower device 6.
  • the refrigerating cycle device 100 can perform a defrosting operation.
  • the refrigerant temporarily circulates in the refrigerant circuit RC in the same order as during the cooling operation.
  • the frost generated in the evaporator is melted by the heat of the refrigerant. In this way, the frost generated on the evaporator is removed.
  • the heat exchanger HE since the first mountain portion MP1 and the second mountain portion MP2 are configured to protrude from the flat surface portion SP, the influence of the dead water area can be suppressed. .. Therefore, the heat transfer coefficient of the fin F can be improved. Further, the strength of the fin F can be improved by the first mountain portion MP1 and the second mountain portion MP2. Further, since the positions of the vertices V of the first convex portion C1 and the second convex portion C2 are aligned in the lateral direction D1 of the fin F, the water flowing from the apex V of the first convex portion C1 is second-convex. Drainage can be improved by guiding from the apex V of the portion C2 to both sides. In addition, this water may be condensed water, or may be defrost water generated at the time of defrosting.
  • the width of the first mountain portion MP1 is narrower than that of the second mountain portion MP2. Therefore, the drainage property can be improved by guiding the water staying in the second mountain portion MP2 to the first mountain portion MP1 by surface tension.
  • Embodiment 2 Unless otherwise specified, the heat exchanger HE and the refrigeration cycle apparatus 100 according to the second embodiment have the same configuration, operation, and operation effect as the heat exchanger HE and the refrigeration cycle apparatus 100 according to the first embodiment. There is.
  • the top of the mountain of the first mountain portion MP1 is located outside the center of the width of the first mountain portion MP1.
  • the summit of the second mountain part MP2 is located outside the center of the width of the second mountain part MP2. It suffices that the top of the mountain is located outside the center of the width in at least one of the first mountain part MP1 and the second mountain part MP2.
  • At least one of the first mountain portion MP1 and the second mountain portion MP2 includes an inner inclined surface IS and an outer inclined surface OS.
  • the inner inclined surface IS is arranged so as to face each of the plurality of through holes TH.
  • the outer inclined surface OS is arranged on the opposite side of each of the plurality of through holes with respect to the inner inclined surface IS.
  • the inner inclination angle ⁇ 1 formed by the inner inclined surface IS with respect to the flat surface portion SP is smaller than the outer inclined angle ⁇ 2 formed by the outer inclined surface OS with respect to the flat surface portion SP.
  • the inner inclination angle ⁇ 1 formed by the inner inclined surface IS with respect to the flat surface portion SP is larger than the outer inclined angle ⁇ 2 formed by the outer inclined surface OS with respect to the flat surface portion SP. small. Therefore, it is possible to prevent the water adhering to the fin F from staying on the inner inclined surface IS. Therefore, the drainage property can be improved.
  • Embodiment 3 Unless otherwise specified, the heat exchanger HE and the refrigeration cycle apparatus 100 according to the third embodiment have the same configuration, operation, and operation effect as the heat exchanger HE and the refrigeration cycle apparatus 100 according to the second embodiment. There is.
  • the first mountain portion MP1 is inclined so that the height protruding from the flat surface portion SP toward the center of the first mountain portion MP1 in the lateral direction D1 of the fin F becomes low.
  • the second mountain portion MP2 is inclined so that the height protruding from the flat surface portion SP toward the center of the second mountain portion MP2 in the lateral direction D1 of the fin F becomes lower.
  • At least one of the first mountain portion MP1 and the second mountain portion MP2 may be inclined so that the height protruding from the flat surface portion SP toward the center of each of the fins F in the lateral direction D1 is lowered. ..
  • the action and effect of the third embodiment will be described.
  • the heat exchanger HE according to the third embodiment, at least one of the first mountain portion MP1 and the second mountain portion MP2 protrudes from the flat surface portion SP toward the center in the lateral direction D1 of the fin F. It is tilted so that the height is low. Therefore, when the water adhering to the fin F slides downward, it is possible to prevent the water adhering to the fin F from being hindered from sliding down in at least one of the first mountain portion MP1 and the second mountain portion MP2. can. Therefore, the drainage property can be improved.
  • Embodiment 4 Unless otherwise specified, the heat exchanger HE and the refrigeration cycle apparatus 100 according to the fourth embodiment have the same configuration, operation, and operation effect as the heat exchanger HE and the refrigeration cycle apparatus 100 according to the second embodiment. There is.
  • Fin F includes the middle mountain part MM.
  • the intermediate mountain portion MM is configured to protrude from the flat surface portion SP.
  • the intermediate mountain portion MM protrudes from the flat portion SP in the same direction as the first mountain portion MP1 and the second mountain portion MP2.
  • the intermediate mountain portion MM is configured to extend linearly in the longitudinal direction D2 of the fin F.
  • the intermediate mountain portion MM is configured to connect the vertices of the first convex portion C1 and the second convex portion C2 to each other.
  • the width of the middle mountain part MM is narrower than that of the first mountain part MP1.
  • the intermediate mountain portion MM is configured to connect the vertices of the first convex portion C1 and the second convex portion C2 to each other. Therefore, since the intermediate mountain portion MM functions as a drainage route, it is possible to suppress the water adhering to the fins from staying in the first mountain portion MP1. Therefore, the drainage property can be improved.
  • Embodiment 5 Unless otherwise specified, the heat exchanger HE and the refrigeration cycle apparatus 100 according to the fifth embodiment have the same configuration, operation, and operation effect as the heat exchanger HE and the refrigeration cycle apparatus 100 according to the second embodiment. There is.
  • Fin F contains the third Yamabe MP3.
  • the fin F is configured to protrude from the flat surface portion SP.
  • the third mountain portion MP3 protrudes from the plane portion SP in the same direction as the first mountain portion MP1 and the second mountain portion MP2.
  • the third mountain portion MP3 is configured to extend linearly in the longitudinal direction D2 of the fin F.
  • the third mountain portion MP3 continuously extends from one end to the other end of the fin F in the longitudinal direction D2.
  • the third mountain portion MP3 is arranged outside the first mountain portion MP1 in the lateral direction D1 of the fin F.
  • the third mountain portion MP3 is arranged outside the second mountain portion MP2 in the lateral direction D1 of the fin F.
  • the third mountain portion MP3 is narrower than the first mountain portion MP1 and the second mountain portion MP2.
  • the fin F includes a plurality of third mountain parts MP3.
  • Each of the plurality of third mountain portions MP3 extends parallel to each other in the longitudinal direction D2 of the fin F.
  • the plurality of third mountain portions MP3 are arranged at both ends of the fin F in the lateral direction D1.
  • the plurality of third mountain portions MP3 are arranged so as to sandwich the plurality of first mountain portions MP1 and the plurality of second mountain portions MP2.
  • the third mountain portion MP3 is arranged at a distance from the first mountain portion MP1 and the second mountain portion MP2 in the lateral direction D1 of the fin F.
  • the widths of the plurality of third mountain MP3s are equal to each other.
  • the third mountain portion MP3 is configured to extend linearly in the longitudinal direction D2 of the fin F. Therefore, the strength of the fin F can be improved in the longitudinal direction D2 of the fin F by the third mountain portion MP3.
  • the third mountain portion MP3 is arranged outside the first mountain portion MP1 in the lateral direction D1 of the fin F, and is narrower than the first mountain portion MP1 and the second mountain portion MP2. Therefore, water adhering to the fin F can be guided from the first mountain portion MP1 to the third mountain portion MP3 by surface tension. Then, the water adhering to the fin F can be flowed along the third mountain portion MP3. Therefore, the drainage property can be improved.
  • Embodiment 6 Unless otherwise specified, the heat exchanger HE and the refrigeration cycle apparatus 100 according to the sixth embodiment have the same configuration, operation, and operation effect as the heat exchanger HE and the refrigeration cycle apparatus 100 according to the fifth embodiment. There is.
  • the first convex portion C1 is arranged farther from the third mountain portion MP3 than the second convex portion C2. In the lateral direction D1 of the fin F, the first convex portion C1 is shorter than the second convex portion C2.
  • the action and effect of the sixth embodiment will be described.
  • the first convex portion C1 is arranged farther from the third mountain portion MP3 than the second convex portion C2. Therefore, it becomes easy to guide the water adhering to the fin F from the second convex portion C2 to the third mountain portion MP3. Further, it is possible to suppress the movement of water adhering to the fin F from the third mountain portion MP3 to the first convex portion C1. Therefore, the drainage property can be improved.
  • 1 Compressor 2 Four-way valve, 3 Outdoor heat exchanger, 4 Pressure reducing valve, 5 Indoor heat exchanger, 100 Refrigeration cycle device, C1 1st convex part, C2 2nd convex part, D0 Air flow direction, D1 Short Direction, D2 longitudinal direction, F fin, HE heat exchanger, IS inner inclined surface, MP1 1st mountain part, MP2 2nd mountain part, MP3 3rd mountain part, OS outer inclined surface, P heat transfer tube, SP flat part, TH through hole, V apex.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchanger (HE) comprises: a fin (F) that is configured so as to extend in a shortitudinal direction (D1) along an air flow direction (D0) and a longitudinal direction (D2) that intersects the air flow direction (D0); and a heat exchanger tube (P) that passes through the fin (F). The fin (F) includes a flat portion (SP) and a plurality of first mountain portions (MP1) and a plurality of second mountain portions (MP2) configured so as to protrude from the flat portion (SP). The plurality of first mountain portions (MP1) includes a first protrusion (C1) that is configured so as to curve downward along the longitudinal direction (D2) and a second protrusion (C2) that is configured so as to curve upward along the longitudinal direction (D2). Each of the plurality of second mountain portions (MP2) is configured so as to surround each of a plurality of through holes (TH). In the shortitudinal direction (D1), the vertices of the first protrusion (C1) and the second protrusion (C2) are aligned.

Description

熱交換器および冷凍サイクル装置Heat exchanger and refrigeration cycle equipment
 本開示は、熱交換器および冷凍サイクル装置に関するものである。 This disclosure relates to heat exchangers and refrigeration cycle devices.
 従来、フィンとフィンを貫通する伝熱管とを備えたフィンチューブ型熱交換器がある。たとえば、特開2005-77083号公報(特許文献1)に記載された熱交換器では、フィンは、シート部(平面部)ならびに山部および谷部を備えている。シート部は、伝熱管の周りに流動する空気をガイドし、後流域を減少させるためにフィンカラーの外周辺に同心円状に形成されている。シート部は、前方および後方が開放されている。山部および谷部は、フィンカラーの間に空気の流動に変動を与えるために連続して設けられている。 Conventionally, there is a fin tube type heat exchanger equipped with fins and a heat transfer tube penetrating the fins. For example, in the heat exchanger described in Japanese Patent Application Laid-Open No. 2005-77083 (Patent Document 1), the fin includes a sheet portion (flat surface portion) and a mountain portion and a valley portion. The seat portion is formed concentrically around the outer periphery of the fin collar in order to guide the air flowing around the heat transfer tube and reduce the wake area. The front and rear of the seat are open. The peaks and valleys are continuously provided between the fin collars to vary the flow of air.
特開2005-77083号公報Japanese Unexamined Patent Publication No. 2005-77083
 上記の公報に記載された熱交換器では、空気の流動方向に沿って山部および谷部が連続して設けられているため、山部を起点に境界層が形成される。このため、谷部は死水域となる。その結果、谷部における局所熱伝達率が低下するため、フィン全体として熱伝達率が低下する。また、山谷が設けられていない平面部に応力が集中するため、フィンの強度が不足する。また、フィンに付着した水のフィンの長手方向への排出が阻害される。 In the heat exchanger described in the above publication, since the peaks and valleys are continuously provided along the flow direction of the air, the boundary layer is formed starting from the peaks. Therefore, the valley becomes a dead water area. As a result, the local heat transfer coefficient in the valley is lowered, so that the heat transfer coefficient of the fin as a whole is lowered. In addition, the strength of the fins is insufficient because the stress is concentrated on the flat surface portion where the peaks and valleys are not provided. In addition, the discharge of water adhering to the fins in the longitudinal direction is hindered.
 本開示は上記の課題に鑑みてなされたものであり、その目的は、熱伝達効率を向上させることができ、かつフィンの強度を向上させることができる熱交換器および冷凍サイクル装置を提供するとともに、フィンに付着した水の排水性を向上させることができる熱交換器および冷凍サイクル装置を提供することである。 The present disclosure has been made in view of the above problems, and an object thereof is to provide a heat exchanger and a refrigerating cycle apparatus capable of improving heat transfer efficiency and fin strength. , To provide a heat exchanger and a refrigeration cycle device capable of improving the drainage of water adhering to fins.
 本開示の熱交換器は、空気の流れ方向に沿う短手方向と空気の流れ方向に交差する長手方向とに延在するように構成されたフィンと、フィンを貫通する伝熱管とを備えている。フィンには長手方向に並んで複数の貫通孔が設けられている。伝熱管は、複数の貫通孔に挿入されている。フィンは、平面部と、平面部から突出するように構成された複数の第1山部および複数の第2山部とを含んでいる。複数の第1山部は、複数の貫通孔の間に配置されておりかつ長手方向に沿って下向きに湾曲するように構成された第1凸部と、複数の貫通孔の間に配置されておりかつ長手方向に沿って上向きに湾曲するように構成された第2凸部とを含んでいる。複数の第2山部の各々は、複数の第1山部の各々と複数の貫通孔の各々との間に配置されておりかつ複数の貫通孔の各々を取り囲むように構成されている。短手方向において、第1凸部と第2凸部との頂点の位置が揃っている。 The heat exchangers of the present disclosure include fins configured to extend in the lateral direction along the air flow direction and in the longitudinal direction intersecting the air flow direction, and a heat transfer tube penetrating the fins. There is. The fins are provided with a plurality of through holes arranged in the longitudinal direction. The heat transfer tube is inserted into a plurality of through holes. The fin includes a flat surface portion and a plurality of first mountain portions and a plurality of second mountain portions configured to project from the flat surface portion. The plurality of first peaks are arranged between the plurality of through holes and the first convex portion which is arranged so as to be curved downward along the longitudinal direction. It includes a second convex portion configured to be curved upward along the longitudinal direction. Each of the plurality of second mountain portions is arranged between each of the plurality of first mountain portions and each of the plurality of through holes, and is configured to surround each of the plurality of through holes. In the lateral direction, the positions of the vertices of the first convex portion and the second convex portion are aligned.
 本開示の熱交換器によれば、第1山部および第2山部は平面部から突出するように構成されているため、死水域の影響を抑制することができる。このため、フィンの熱伝達率を向上させることができる。また、第1山部および第2山部によりフィンの強度を向上させることができる。また、短手方向において、第1凸部と第2凸部との頂点の位置が揃っているため、第1凸部の頂点から流れた水を第2凸部の頂点から両側に導くことで排水性を向上させることができる。 According to the heat exchanger of the present disclosure, since the first mountain portion and the second mountain portion are configured to protrude from the flat surface portion, the influence of the dead water area can be suppressed. Therefore, the heat transfer coefficient of the fins can be improved. Further, the strength of the fin can be improved by the first mountain portion and the second mountain portion. Further, since the positions of the vertices of the first convex portion and the second convex portion are aligned in the lateral direction, the water flowing from the apex of the first convex portion is guided to both sides from the apex of the second convex portion. Drainage can be improved.
実施の形態1に係る熱交換器の構成を概略的に示す斜視図である。It is a perspective view which shows schematic structure of the heat exchanger which concerns on Embodiment 1. FIG. 図1の領域AのII-II線に沿う断面図である。FIG. 3 is a cross-sectional view taken along the line II-II of region A in FIG. 図2のIII-III線に沿う端面図である。It is an end view along the line III-III of FIG. 図2のIV-IV線に沿う端面図である。It is an end view along the IV-IV line of FIG. 実施の形態1に係る冷凍サイクル装置を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the refrigerating cycle apparatus which concerns on Embodiment 1. FIG. 実施の形態2に係る熱交換器の図2に対応する部分の構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the part corresponding to FIG. 2 of the heat exchanger which concerns on Embodiment 2. FIG. 図6のVII-VII線に沿う端面図である。It is an end view along the line VII-VII of FIG. 図6のVIII-VIII線に沿う端面図である。It is an end view along the line VIII-VIII of FIG. 図8のIX部分の拡大図である。It is an enlarged view of the IX part of FIG. 実施の形態3に係る熱交換器の図2に対応する部分の構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the part corresponding to FIG. 2 of the heat exchanger which concerns on Embodiment 3. FIG. 図10のXI-XI線に沿う断面図である。It is sectional drawing which follows the XI-XI line of FIG. 実施の形態4に係る熱交換器の図2に対応する部分の構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the part corresponding to FIG. 2 of the heat exchanger which concerns on Embodiment 4. FIG. 図12のXIII-XIII線に沿う端面図である。It is an end view along the XIII-XIII line of FIG. 実施の形態5に係る熱交換器の図2に対応する部分の構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the part corresponding to FIG. 2 of the heat exchanger which concerns on Embodiment 5. FIG. 図14のXV-XV線に沿う端面図である。It is an end view along the XV-XV line of FIG. 図14のXVI-XVI線に沿う端面図である。It is an end view along the XVI-XVI line of FIG. 実施の形態6に係る熱交換器の図2に対応する部分の構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the part corresponding to FIG. 2 of the heat exchanger which concerns on Embodiment 6. 図17のXVIII-XVIII線に沿う端面図である。It is an end view along the XVIII-XVIII line of FIG. 図17のXIX-XIX線に沿う端面図である。It is an end view along the XIX-XIX line of FIG.
 以下、実施の形態について図を参照して説明する。なお、以下において、同一または相当する部分には同一符号を付し、その説明は繰り返さない。 Hereinafter, embodiments will be described with reference to the drawings. In the following, the same or corresponding parts are designated by the same reference numerals, and the description thereof will not be repeated.
 実施の形態1.
 図1~図4を参照して、実施の形態1に係る熱交換器HEの構成について説明する。
Embodiment 1.
The configuration of the heat exchanger HE according to the first embodiment will be described with reference to FIGS. 1 to 4.
 図1および図2を参照して、熱交換器HEは、フィンFと、伝熱管Pとを備えている。フィンFは、空気の流れ方向D0に沿う短手方向D1と空気の流れ方向D0に交差する長手方向D2とに延在するように構成されている。フィンFは、略長方形状に構成されている。伝熱管PはフィンFを貫通する。伝熱管Pは、円管である。フィンFには長手方向D2に並んで複数の貫通孔THが設けられている。複数の貫通孔THの各々は、円形に構成されている。伝熱管Pは、複数の貫通孔THに挿入されている。 With reference to FIGS. 1 and 2, the heat exchanger HE includes fins F and a heat transfer tube P. The fin F is configured to extend in the lateral direction D1 along the air flow direction D0 and the longitudinal direction D2 intersecting the air flow direction D0. The fin F is configured to have a substantially rectangular shape. The heat transfer tube P penetrates the fin F. The heat transfer tube P is a circular tube. The fin F is provided with a plurality of through holes TH arranged in the longitudinal direction D2. Each of the plurality of through holes TH is formed in a circular shape. The heat transfer tube P is inserted into a plurality of through holes TH.
 本実施の形態では、熱交換器HEは、複数のフィンFを備えている。複数のフィンFは、互いに間隔をあけて積み重ねられている。伝熱管Pは、複数のフィンFが積み重ねられた方向D3に複数のフィンFを貫通する。複数のフィンFの各々には、複数の貫通孔THが設けられている。複数の貫通孔THは、フィンFの長手方向D2に並んでいる。複数の貫通孔THは、フィンFの長手方向D2互いに間隔をあけて配置されている。 In the present embodiment, the heat exchanger HE includes a plurality of fins F. The plurality of fins F are stacked at intervals from each other. The heat transfer tube P penetrates the plurality of fins F in the direction D3 in which the plurality of fins F are stacked. Each of the plurality of fins F is provided with a plurality of through holes TH. The plurality of through holes TH are arranged in the longitudinal direction D2 of the fin F. The plurality of through holes TH are arranged so as to be spaced apart from each other in the longitudinal direction D2 of the fin F.
 フィンFの短手方向D1は、長手方向D2に直交している。フィンFの短手方向D1は水平方向であってもよい。フィンFの長手方向D2は上下方向(鉛直方向)であってもよい。フィンFが積み重ねられた方向D3は、フィンFの短手方向D1および長手方向D2に直交している。 The lateral direction D1 of the fin F is orthogonal to the longitudinal direction D2. The lateral direction D1 of the fin F may be the horizontal direction. The longitudinal direction D2 of the fin F may be the vertical direction (vertical direction). The direction D3 in which the fins F are stacked is orthogonal to the lateral direction D1 and the longitudinal direction D2 of the fins F.
 伝熱管Pは、複数の伝熱部P1と、複数の接続部P2とを有している。複数の伝熱部P1の各々は、複数のフィンFを貫通している。複数の伝熱部P1の各々は、複数のフィンFが積み重ねられた方向D3に複数の貫通孔THに挿入されている。複数の伝熱部P1は、直線状に構成されている。複数の伝熱部P1の各々は、複数のフィンFが積み重ねられた方向D3に延在している。 The heat transfer tube P has a plurality of heat transfer portions P1 and a plurality of connection portions P2. Each of the plurality of heat transfer portions P1 penetrates the plurality of fins F. Each of the plurality of heat transfer portions P1 is inserted into the plurality of through holes TH in the direction D3 in which the plurality of fins F are stacked. The plurality of heat transfer portions P1 are formed in a linear shape. Each of the plurality of heat transfer portions P1 extends in the direction D3 in which the plurality of fins F are stacked.
 複数の接続部P2は、複数のフィンFの外側で複数の伝熱部P1同士を接続する部分である。複数の接続部P2の各々は、U字状に構成されている。複数の接続部P2の各々は、フィンFの長手方向D2に互いに隣り合う複数の伝熱管P同士を接続している。複数の接続部P2の各々は、複数のフィンFが積み重ねられた方向D3における複数の伝熱部P1の端部に接続されている。複数の伝熱部P1は、フィンFの長手方向D2に複数段に配置されている。本実施の形態では、複数の伝熱部P1は、フィンFの長手方向D2に沿って4段に配置されている。 The plurality of connection portions P2 are portions that connect the plurality of heat transfer portions P1 to each other on the outside of the plurality of fins F. Each of the plurality of connecting portions P2 is configured in a U shape. Each of the plurality of connecting portions P2 connects a plurality of heat transfer tubes P adjacent to each other in the longitudinal direction D2 of the fin F. Each of the plurality of connecting portions P2 is connected to the end portions of the plurality of heat transfer portions P1 in the direction D3 in which the plurality of fins F are stacked. The plurality of heat transfer portions P1 are arranged in a plurality of stages in the longitudinal direction D2 of the fin F. In the present embodiment, the plurality of heat transfer portions P1 are arranged in four stages along the longitudinal direction D2 of the fins F.
 複数の伝熱部P1は、複数の接続部P2によって次のように接続されている。第1段の伝熱部P1は、第2段の伝熱部P1に接続部P2によって複数のフィンFが積み重ねられた方向D3の奥側で接続されている。第2段の伝熱部P1は、第3段の伝熱部P1に接続部P2によって複数のフィンFが積み重ねられた方向D3の手前側で接続されている。第3段の伝熱部P1は、第4段の伝熱部P1に接続部P2によって複数のフィンFが積み重ねられた方向D3の奥側で接続されている。このようにして、伝熱管Pは、フィンFの長手方向D2に蛇行するように構成されている。 The plurality of heat transfer units P1 are connected by the plurality of connection units P2 as follows. The heat transfer portion P1 of the first stage is connected to the heat transfer portion P1 of the second stage at the back side of the direction D3 in which a plurality of fins F are stacked by the connection portion P2. The second-stage heat transfer unit P1 is connected to the third-stage heat transfer unit P1 by a connecting portion P2 on the front side in the direction D3 in which a plurality of fins F are stacked. The heat transfer unit P1 of the third stage is connected to the heat transfer unit P1 of the fourth stage at the back side of the direction D3 in which a plurality of fins F are stacked by the connection portion P2. In this way, the heat transfer tube P is configured to meander in the longitudinal direction D2 of the fin F.
 図2~図4を参照して、フィンFの構造について詳しく説明する。
 フィンFは、平面部SPと、複数の第1山部MP1と、複数の第2山部MP2と、フィンカラーFCとを含んでいる。平面部SPは、平面状に構成されている。平面部SPは、平板状に構成されている。
The structure of the fin F will be described in detail with reference to FIGS. 2 to 4.
The fin F includes a flat surface portion SP, a plurality of first mountain portions MP1, a plurality of second mountain portions MP2, and a fin color FC. The flat surface portion SP is configured to be flat. The flat surface portion SP is configured in a flat plate shape.
 複数の第1山部MP1および複数の第2山部MP2は、平面部SPから突出するように構成されている。本実施の形態では、複数の第1山部MP1および複数の第2山部MP2は、同じ方向に平面部SPから突出している。 The plurality of first mountain portions MP1 and the plurality of second mountain portions MP2 are configured to protrude from the flat surface portion SP. In the present embodiment, the plurality of first mountain portions MP1 and the plurality of second mountain portions MP2 project from the plane portion SP in the same direction.
 複数の第1山部MP1は、第1凸部C1と、第2凸部C2とを含んでいる。第1凸部C1は、複数の貫通孔THの間に配置されている。第1凸部C1は、複数の貫通孔THの各々の下方に配置されている。第1凸部C1は、フィンFの長手方向D2に沿って下向きに湾曲するように構成されている。第2凸部C2は、複数の貫通孔THの間に配置されている。第2凸部C2は、複数の貫通孔THの各々の上方に配置されている。第2凸部C2は、フィンFの長手方向D2に沿って上向きに湾曲するように構成されている。本実施の形態では、複数の第1山部MP1は、複数の第1凸部C1と、複数の第2凸部C2とを含んでいる。 The plurality of first mountain portions MP1 include a first convex portion C1 and a second convex portion C2. The first convex portion C1 is arranged between the plurality of through holes TH. The first convex portion C1 is arranged below each of the plurality of through holes TH. The first convex portion C1 is configured to be curved downward along the longitudinal direction D2 of the fin F. The second convex portion C2 is arranged between the plurality of through holes TH. The second convex portion C2 is arranged above each of the plurality of through holes TH. The second convex portion C2 is configured to be curved upward along the longitudinal direction D2 of the fin F. In the present embodiment, the plurality of first mountain portions MP1 include a plurality of first convex portions C1 and a plurality of second convex portions C2.
 第1山部MP1は、フィンFの長手方向D2に沿って延在する部分を有している。また、第1山部MP1は、フィンFの短手方向D1に沿って延在する部分を有している。第1山部MP1は、フィンFの短手方向D1に貫通孔THの中心とずれるように配置されている。本実施の形態では、第1山部MP1は、円弧状に構成されている。本実施の形態では、第1山部MP1の幅は、等しい。 The first mountain portion MP1 has a portion extending along the longitudinal direction D2 of the fin F. Further, the first mountain portion MP1 has a portion extending along the lateral direction D1 of the fin F. The first mountain portion MP1 is arranged so as to be offset from the center of the through hole TH in the lateral direction D1 of the fin F. In the present embodiment, the first mountain portion MP1 is configured in an arc shape. In the present embodiment, the widths of the first mountain portions MP1 are equal.
 複数の第1山部MP1は、フィンFの長手方向D2に並んでいる。本実施の形態では、フィンFの長手方向D2において2つの貫通孔THの間に4つの第1山部MP1が配置されている。フィンFの長手方向D2において1つの貫通孔THの上側および下側に2つずつ第1山部MP1が配置されている。 The plurality of first mountain portions MP1 are lined up in the longitudinal direction D2 of the fin F. In the present embodiment, four first mountain portions MP1 are arranged between the two through holes TH in the longitudinal direction D2 of the fin F. In the longitudinal direction D2 of the fin F, two first mountain portions MP1 are arranged on the upper side and two on the lower side of one through hole TH.
 フィンFの長手方向D2において1つの貫通孔THの下側に配置された2つの第1凸部C1は、フィンFの長手方向D2に互いに隣接するように配置されている。フィンFの長手方向D2において1つの貫通孔THの上側に配置された2つの第2凸部C2は、フィンFの長手方向D2に互いに隣接するように配置されている。 Two first convex portions C1 arranged below one through hole TH in the longitudinal direction D2 of the fin F are arranged so as to be adjacent to each other in the longitudinal direction D2 of the fin F. The two second convex portions C2 arranged above the one through hole TH in the longitudinal direction D2 of the fin F are arranged so as to be adjacent to each other in the longitudinal direction D2 of the fin F.
 互いに隣接するように配置された2つの第1凸部C1は、長手方向D2に沿って同じ側に湾曲するように構成されている。また、互いに隣接するように配置された2つの第2凸部C2は、長手方向D2に沿って2つの第1凸部C1と反対側に湾曲するように構成されている。 The two first convex portions C1 arranged so as to be adjacent to each other are configured to be curved to the same side along the longitudinal direction D2. Further, the two second convex portions C2 arranged so as to be adjacent to each other are configured to be curved on the opposite side of the two first convex portions C1 along the longitudinal direction D2.
 2つの貫通孔THの間において上側の貫通孔THの近くに配置された2つの第1凸部C1は下側に向けて突き出すように湾曲している。2つの貫通孔THの間において下側の貫通孔THの近くに配置された2つの第2凸部C2は上側に向けて突き出すように湾曲している。下側に向けて突き出すように湾曲している2つの第1凸部C1のうち外側の第1凸部C1は、上側に向けて突き出すように湾曲している2つの第2凸部C2のうち外側の第2凸部C2と間隔をあけて配置されている。 The two first convex portions C1 arranged near the upper through hole TH between the two through holes TH are curved so as to protrude downward. The two second convex portions C2 arranged near the lower through hole TH between the two through holes TH are curved so as to protrude upward. Of the two first convex portions C1 curved so as to protrude downward, the outer first convex portion C1 is among the two second convex portions C2 curved so as to protrude upward. It is arranged at a distance from the outer second convex portion C2.
 複数の第1凸部C1の各々は、同じ形状に構成されている。複数の第1凸部C1の各々の曲率半径は、互いに等しい。複数の第1凸部C1の各々の曲率中心は、フィンFの長手方向D2に互いに直線状に並んでいる。複数の第1凸部C1の各々の幅は、互いに等しい。複数の第1凸部C1の各々の長さは、互いに等しい。 Each of the plurality of first convex portions C1 is configured to have the same shape. The radii of curvature of each of the plurality of first convex portions C1 are equal to each other. The centers of curvature of each of the plurality of first convex portions C1 are linearly aligned with each other in the longitudinal direction D2 of the fin F. The widths of the plurality of first convex portions C1 are equal to each other. The lengths of the plurality of first convex portions C1 are equal to each other.
 複数の第1凸部C1の各々は、複数の第2凸部C2の各々とフィンFの長手方向D2に沿って湾曲する方向を除いて同じ形状に構成されている。複数の第2凸部C2の各々は、同じ形状に構成されている。複数の第2凸部C2の各々の曲率半径は、互いに等しい。複数の第2凸部C2の各々の曲率中心は、フィンFの長手方向D2に互いに直線状に並んでいる。複数の第2凸部C2の各々の幅は、互いに等しい。複数の第2凸部C2の各々の長さは、互いに等しい。 Each of the plurality of first convex portions C1 is configured to have the same shape except for each of the plurality of second convex portions C2 and the direction of bending along the longitudinal direction D2 of the fin F. Each of the plurality of second convex portions C2 is configured to have the same shape. The radii of curvature of each of the plurality of second convex portions C2 are equal to each other. The centers of curvature of each of the plurality of second convex portions C2 are linearly aligned with each other in the longitudinal direction D2 of the fin F. The widths of the plurality of second convex portions C2 are equal to each other. The lengths of the plurality of second convex portions C2 are equal to each other.
 複数の第1山部MP1の各々は、フィンFの短手方向D1において複数の第2山部MP2の各々よりも長い。フィンFの長手方向D2において、複数の第1山部MP1の各々は、複数の第2山部MP2の各々の間に配置されている。複数の第1山部MP1の各々の曲率中心は、フィンFの長手方向D2に複数の第2山部MP2の各々の中心と直線状に並んでいる。 Each of the plurality of first mountain portions MP1 is longer than each of the plurality of second mountain portions MP2 in the lateral direction D1 of the fin F. In the longitudinal direction D2 of the fin F, each of the plurality of first mountain portions MP1 is arranged between each of the plurality of second mountain portions MP2. The center of curvature of each of the plurality of first mountain portions MP1 is linearly aligned with the center of each of the plurality of second mountain portions MP2 in the longitudinal direction D2 of the fin F.
 フィンFの長手方向D2において貫通孔THの上側に配置された2つの第1山部MP1のうち内側の第1山部MP1は第2山部MP2に隣接している。フィンFの長手方向D2において貫通孔THの下側に配置された2つの第1山部MP1のうち内側の第1山部MP1は第2山部MP2に隣接している。 Of the two first ridges MP1 arranged above the through hole TH in the longitudinal direction D2 of the fin F, the inner first ridge MP1 is adjacent to the second ridge MP2. Of the two first ridges MP1 arranged below the through hole TH in the longitudinal direction D2 of the fin F, the inner first ridge MP1 is adjacent to the second ridge MP2.
 複数の第2山部MP2の各々は、第1山部MP1の各々と複数の貫通孔THの各々との間に配置されている。複数の第2山部MP2の各々は、複数の貫通孔THの各々を取り囲むように構成されている。第2山部MP2は、円環状に構成されている。第2山部MP2は、第1山部MP1よりも平面部SPから突出する高さが高い。 Each of the plurality of second mountain portions MP2 is arranged between each of the first mountain portions MP1 and each of the plurality of through holes TH. Each of the plurality of second mountain portions MP2 is configured to surround each of the plurality of through holes TH. The second mountain part MP2 is configured in an annular shape. The height of the second mountain portion MP2 protruding from the flat surface portion SP is higher than that of the first mountain portion MP1.
 複数の第2山部MP2の各々は、同じ形状に構成されている。複数の第2山部MP2の各々の中心は、フィンFの長手方向D2に直線状に並んでいる。複数の第2山部MP2の各々の幅は、互いに等しい。複数の第2山部MP2の各々の直径は、互いに等しい。 Each of the plurality of second mountain MP2s is configured to have the same shape. The centers of each of the plurality of second mountain portions MP2 are linearly arranged in the longitudinal direction D2 of the fin F. The widths of the plurality of second mountain MP2s are equal to each other. The diameters of the plurality of second mountain MP2s are equal to each other.
 フィンFの短手方向D1において、第1凸部C1と第2凸部C2との頂点Vの位置が揃っている。第1凸部C1および第2凸部C2の頂点Vは、フィンFの長手方向D2に沿って最も突き出した部分である。フィンFの長手方向D2において、第1凸部C1と第2凸部C2の頂点Vの位置は直線状に並んでいる。 In the lateral direction D1 of the fin F, the positions of the vertices V of the first convex portion C1 and the second convex portion C2 are aligned. The apex V of the first convex portion C1 and the second convex portion C2 is the most protruding portion along the longitudinal direction D2 of the fin F. In the longitudinal direction D2 of the fin F, the positions of the vertices V of the first convex portion C1 and the second convex portion C2 are aligned linearly.
 第1山部MP1は、第2山部MP2よりも幅が狭い。つまり、複数の第1山部MP1の各々の幅は、複数の第2山部MP2の各々の幅よりも狭い。 The width of the first mountain part MP1 is narrower than that of the second mountain part MP2. That is, the width of each of the plurality of first mountain portions MP1 is narrower than the width of each of the plurality of second mountain portions MP2.
 第1山部MP1の山の頂上は、第1山部MP1の幅の中央に位置している。第2山部MP2の山の頂上は、第2山部MP2の幅の中央に位置している。 The summit of the first mountain part MP1 is located in the center of the width of the first mountain part MP1. The summit of the second mountain part MP2 is located in the center of the width of the second mountain part MP2.
 第1山部MP1および第2山部MP2は、フィンカラーFCよりも平面部SPから突出する高さが低い。 The height of the first mountain portion MP1 and the second mountain portion MP2 protruding from the flat surface portion SP is lower than that of the fin collar FC.
 フィンカラーFCは、円筒状に構成されている。フィンカラーFCに伝熱管Pが挿入されている。フィンカラーFCの内周面に伝熱管Pの外周面が嵌合されている。フィンカラーFCは、平面部SPから突出するように構成されている。本実施の形態では、フィンカラーFCは、第1山部MP1および第2山部MP2と同じ方向に平面部SPから突出している。 The fin color FC is configured in a cylindrical shape. The heat transfer tube P is inserted into the fin collar FC. The outer peripheral surface of the heat transfer tube P is fitted to the inner peripheral surface of the fin collar FC. The fin collar FC is configured to protrude from the flat surface portion SP. In the present embodiment, the fin collar FC protrudes from the flat surface portion SP in the same direction as the first mountain portion MP1 and the second mountain portion MP2.
 フィンカラーFCは、周壁と、フランジとを含んでいる。周壁は、平面部SPから突出するように構成されている。フランジは、周壁から外側に張り出すように構成されている。フランジは、周壁の平面部SPと反対側の先端に設けられている。本実施の形態では、フィンFは、複数のフィンカラーFCを含んでいる。 Fin color FC includes a peripheral wall and a flange. The peripheral wall is configured to protrude from the flat surface portion SP. The flange is configured to project outward from the peripheral wall. The flange is provided at the tip opposite to the flat surface portion SP of the peripheral wall. In this embodiment, the fin F includes a plurality of fin color FCs.
 図5を参照して、実施の形態1に係る熱交換器HEを備えた冷凍サイクル装置100の構成について説明する。冷凍サイクル装置100は、たとえば、空気調和機および冷凍機などである。実施の形態1では、冷凍サイクル装置100の一例として空気調和機について説明する。冷凍サイクル装置100は、冷媒回路RCと、冷媒と、制御装置CDと、送風装置6、7とを備えている。冷凍サイクル装置100は、冷媒循環装置RCDを備えている。冷媒循環装置RCDは、熱交換器HEにおいて空気との間で熱交換を行うための冷媒を循環させるように構成されている。実施の形態1では、冷媒循環装置RCDとして圧縮機1が組み込まれた冷凍サイクル装置100について説明する。なお、冷媒循環装置RCDは、冷媒ポンプであってもよい。 With reference to FIG. 5, the configuration of the refrigeration cycle apparatus 100 provided with the heat exchanger HE according to the first embodiment will be described. The refrigeration cycle device 100 is, for example, an air conditioner and a refrigerator. In the first embodiment, an air conditioner will be described as an example of the refrigeration cycle device 100. The refrigeration cycle device 100 includes a refrigerant circuit RC, a refrigerant, a control device CD, and blower devices 6 and 7. The refrigeration cycle device 100 includes a refrigerant circulation device RCD. The refrigerant circulation device RCD is configured to circulate a refrigerant for heat exchange with air in the heat exchanger HE. In the first embodiment, the refrigeration cycle device 100 in which the compressor 1 is incorporated as the refrigerant circulation device RCD will be described. The refrigerant circulation device RCD may be a refrigerant pump.
 冷媒回路RCは、圧縮機1と、四方弁2と、室外熱交換器3と、減圧弁4と、室内熱交換器5とを含んでいる。上記の熱交換器HEは、室外熱交換器3および室内熱交換器5の少なくともいずれかに適用されていればよい。圧縮機1、四方弁2、室外熱交換器3、減圧弁4および室内熱交換器5は、配管によって接続されている。冷媒回路RCは、冷媒を循環させるように構成されている。冷媒回路RCは、冷媒が相変化しながら循環する冷凍サイクルが行われるように構成されている。 The refrigerant circuit RC includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a pressure reducing valve 4, and an indoor heat exchanger 5. The above heat exchanger HE may be applied to at least one of the outdoor heat exchanger 3 and the indoor heat exchanger 5. The compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the pressure reducing valve 4, and the indoor heat exchanger 5 are connected by pipes. The refrigerant circuit RC is configured to circulate the refrigerant. The refrigerant circuit RC is configured to perform a refrigerating cycle in which the refrigerant circulates while undergoing a phase change.
 圧縮機1、四方弁2、室外熱交換器3、減圧弁4、制御装置CDおよび送風装置6は、室外機101に収容されている。室内熱交換器5および送風装置7は、室内機102に収容されている。 The compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the pressure reducing valve 4, the control device CD, and the blower device 6 are housed in the outdoor unit 101. The indoor heat exchanger 5 and the blower device 7 are housed in the indoor unit 102.
 冷媒回路RCは、冷房運転時には、圧縮機1、四方弁2、室外熱交換器(凝縮器)3、減圧弁4、室内熱交換器(蒸発器)5、四方弁2の順に冷媒が循環するように構成されている。また、冷媒回路RCは、暖房運転時には、圧縮機1、四方弁2、室内熱交換器(凝縮器)5、減圧弁4、室外熱交換器(蒸発器)3、四方弁2の順に冷媒が循環するように構成されている。 In the refrigerant circuit RC, the refrigerant circulates in the order of the compressor 1, the four-way valve 2, the outdoor heat exchanger (condenser) 3, the pressure reducing valve 4, the indoor heat exchanger (evaporator) 5, and the four-way valve 2 during the cooling operation. It is configured as follows. Further, in the refrigerant circuit RC, during the heating operation, the refrigerant is charged in the order of the compressor 1, the four-way valve 2, the indoor heat exchanger (condenser) 5, the pressure reducing valve 4, the outdoor heat exchanger (evaporator) 3, and the four-way valve 2. It is configured to circulate.
 冷媒は、冷媒回路RCを、圧縮機1、凝縮器、減圧弁4、蒸発器の順に流れる。
 制御装置CDは、演算、指示等を行って冷凍サイクル装置100の各機器等を制御するように構成されている。制御装置CDは、圧縮機1、四方弁2、減圧弁4、送風装置6、7などに電気的に接続されており、これらの動作を制御するように構成されている。
The refrigerant flows through the refrigerant circuit RC in the order of the compressor 1, the condenser, the pressure reducing valve 4, and the evaporator.
The control device CD is configured to control each device of the refrigeration cycle device 100 by performing calculations, instructions, and the like. The control device CD is electrically connected to a compressor 1, a four-way valve 2, a pressure reducing valve 4, a blower device 6, 7, and the like, and is configured to control the operation thereof.
 圧縮機1は、熱交換器HEにおいて空気との間で熱交換を行うための冷媒を圧縮するように構成されている。圧縮機1は吸入した冷媒を圧縮して吐出するように構成されている。圧縮機1は、容量可変に構成されていてもよい。圧縮機1は、制御装置CDからの指示に基づいて圧縮機1の回転数が調整されることにより容量が変化するように構成されていてもよい。 The compressor 1 is configured to compress the refrigerant for heat exchange with air in the heat exchanger HE. The compressor 1 is configured to compress and discharge the sucked refrigerant. The compressor 1 may be configured to have a variable capacity. The compressor 1 may be configured to change its capacity by adjusting the rotation speed of the compressor 1 based on an instruction from the control device CD.
 四方弁2は、圧縮機1により圧縮された冷媒を室外熱交換器3または室内熱交換器5に流すように冷媒の流れを切替えるように構成されている。四方弁2は、冷房運転時には圧縮機1から吐出された冷媒を室外熱交換器(凝縮器)3に流すように構成されている。また、四方弁2は、暖房運転時には圧縮機1から吐出された冷媒を室内熱交換器(蒸発器)5に流すように構成されている。 The four-way valve 2 is configured to switch the flow of the refrigerant so that the refrigerant compressed by the compressor 1 flows to the outdoor heat exchanger 3 or the indoor heat exchanger 5. The four-way valve 2 is configured to allow the refrigerant discharged from the compressor 1 to flow to the outdoor heat exchanger (condenser) 3 during the cooling operation. Further, the four-way valve 2 is configured to allow the refrigerant discharged from the compressor 1 to flow to the indoor heat exchanger (evaporator) 5 during the heating operation.
 室外熱交換器3は、室外熱交換器3の内部を流れる冷媒と室外熱交換器3の外部を流れる空気との間で熱交換を行うように構成されている。室外熱交換器3は、冷房運転時には冷媒を凝縮させる凝縮器として機能し、暖房運転時には冷媒を蒸発させる蒸発器として機能するように構成されている。 The outdoor heat exchanger 3 is configured to exchange heat between the refrigerant flowing inside the outdoor heat exchanger 3 and the air flowing outside the outdoor heat exchanger 3. The outdoor heat exchanger 3 is configured to function as a condenser that condenses the refrigerant during the cooling operation and as an evaporator that evaporates the refrigerant during the heating operation.
 減圧弁4は、凝縮器で凝縮された冷媒を膨張させることにより減圧させるように構成されている。減圧弁4は、冷房運転時には室外熱交換器(凝縮器)3により凝縮された冷媒を減圧させ、暖房運転時には室内熱交換器(蒸発器)5により凝縮された冷媒を減圧させるように構成されている。減圧弁4は、たとえば、電磁弁である。 The pressure reducing valve 4 is configured to reduce the pressure by expanding the refrigerant condensed by the condenser. The pressure reducing valve 4 is configured to reduce the pressure of the refrigerant condensed by the outdoor heat exchanger (condenser) 3 during the cooling operation and to reduce the pressure of the refrigerant condensed by the indoor heat exchanger (evaporator) 5 during the heating operation. ing. The pressure reducing valve 4 is, for example, a solenoid valve.
 室内熱交換器5は、室内熱交換器5の内部を流れる冷媒と室内熱交換器5の外部を流れる空気との間で熱交換を行うように構成されている。室内熱交換器5は、冷房運転時には冷媒を蒸発させる蒸発器として機能し、暖房運転時には冷媒を凝縮させる凝縮器として機能するように構成されている。 The indoor heat exchanger 5 is configured to exchange heat between the refrigerant flowing inside the indoor heat exchanger 5 and the air flowing outside the indoor heat exchanger 5. The indoor heat exchanger 5 is configured to function as an evaporator that evaporates the refrigerant during the cooling operation and as a condenser that condenses the refrigerant during the heating operation.
 送風装置6は、室外熱交換器3に室外の空気を送風するように構成されている。つまり、送風装置6は、室外熱交換器3に対して空気を供給するように構成されている。送風装置6は、制御装置CDからの指示に基づいて送風装置6の回転数が調整されることにより室外熱交換器3の周囲を流れる空気の量を調整することで冷媒と空気との熱交換量を調整するように構成されていてもよい。 The blower device 6 is configured to blow outdoor air to the outdoor heat exchanger 3. That is, the blower 6 is configured to supply air to the outdoor heat exchanger 3. The blower device 6 heat exchanges between the refrigerant and air by adjusting the amount of air flowing around the outdoor heat exchanger 3 by adjusting the rotation speed of the blower device 6 based on the instruction from the control device CD. It may be configured to adjust the amount.
 送風装置7は、室内熱交換器5に室内の空気を送風するように構成されている。つまり、送風装置7は、室内熱交換器5に対して空気を供給するように構成されている。送風装置7は、制御装置CDからの指示に基づいて送風装置7の回転数が調整されることにより室内熱交換器5の周囲を流れる空気の量を調整することで冷媒と空気との熱交換量を調整するように構成されていてもよい。 The blower device 7 is configured to blow indoor air to the indoor heat exchanger 5. That is, the blower 7 is configured to supply air to the indoor heat exchanger 5. The blower device 7 heat exchanges between the refrigerant and air by adjusting the amount of air flowing around the indoor heat exchanger 5 by adjusting the rotation speed of the blower device 7 based on the instruction from the control device CD. It may be configured to adjust the amount.
 続いて、図5を参照して、冷凍サイクル装置100の動作について説明する。図5中実線矢印は冷房運転時における冷媒の流れを示し、図5中破線矢印は暖房運転時のおける冷媒の流れを示している。 Subsequently, the operation of the refrigeration cycle apparatus 100 will be described with reference to FIG. The solid line arrow in FIG. 5 indicates the flow of the refrigerant during the cooling operation, and the broken line arrow in FIG. 5 indicates the flow of the refrigerant during the heating operation.
 冷凍サイクル装置100は、冷房運転と暖房運転とを選択的に行うことが可能である。冷房運転時には、圧縮機1、四方弁2、室外熱交換器3、減圧弁4、室内熱交換器5、四方弁2の順に冷媒が冷媒回路RCを循環する。冷房運転時には室外熱交換器3は、凝縮器として機能する。室外熱交換器3を流れる冷媒と送風装置6によって送風される空気との間で熱交換が行われる。冷房運転時には室内熱交換器5は、蒸発器として機能する。室内熱交換器5を流れる冷媒と送風装置7によって送風される空気との間で熱交換が行われる。 The refrigeration cycle device 100 can selectively perform cooling operation and heating operation. During the cooling operation, the refrigerant circulates in the refrigerant circuit RC in the order of the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the pressure reducing valve 4, the indoor heat exchanger 5, and the four-way valve 2. During the cooling operation, the outdoor heat exchanger 3 functions as a condenser. Heat exchange is performed between the refrigerant flowing through the outdoor heat exchanger 3 and the air blown by the blower device 6. During the cooling operation, the indoor heat exchanger 5 functions as an evaporator. Heat exchange is performed between the refrigerant flowing through the indoor heat exchanger 5 and the air blown by the blower device 7.
 暖房運転においては、圧縮機1、四方弁2、室内熱交換器5、減圧弁4、室外熱交換器3、四方弁2の順に冷媒が冷媒回路RCを循環する。暖房運転時には室内熱交換器5は、凝縮器として機能する。室内熱交換器5を流れる冷媒と送風装置7によって送風される空気との間で熱交換が行われる。暖房運転時には室外熱交換器3は、蒸発器として機能する。室外熱交換器3を流れる冷媒と送風装置6によって送風される空気との間で熱交換が行われる。 In the heating operation, the refrigerant circulates in the refrigerant circuit RC in the order of the compressor 1, the four-way valve 2, the indoor heat exchanger 5, the pressure reducing valve 4, the outdoor heat exchanger 3, and the four-way valve 2. During the heating operation, the indoor heat exchanger 5 functions as a condenser. Heat exchange is performed between the refrigerant flowing through the indoor heat exchanger 5 and the air blown by the blower device 7. During the heating operation, the outdoor heat exchanger 3 functions as an evaporator. Heat exchange is performed between the refrigerant flowing through the outdoor heat exchanger 3 and the air blown by the blower device 6.
 また、冷凍サイクル装置100は、除霜運転を行うことが可能である。除霜運転時には、一時的に冷房運転時と同様の順に冷媒が冷媒回路RCを循環する。これにより、蒸発器に発生した霜が冷媒の熱によって溶かされる。このようにして、蒸発器に発生した霜が除去される。 Further, the refrigerating cycle device 100 can perform a defrosting operation. During the defrosting operation, the refrigerant temporarily circulates in the refrigerant circuit RC in the same order as during the cooling operation. As a result, the frost generated in the evaporator is melted by the heat of the refrigerant. In this way, the frost generated on the evaporator is removed.
 次に、実施の形態1の作用効果について説明する。
 実施の形態1に係る熱交換器HEによれば、第1山部MP1および第2山部MP2は平面部SPから突出するように構成されているため、死水域の影響を抑制することができる。このため、フィンFの熱伝達率を向上させることができる。また、第1山部MP1および第2山部MP2によりフィンFの強度を向上させることができる。また、フィンFの短手方向D1において、第1凸部C1と第2凸部C2との頂点Vの位置が揃っているため、第1凸部C1の頂点Vから流れた水を第2凸部C2の頂点Vから両側に導くことで排水性を向上させることができる。なお、この水は凝縮水であってもよく、また除霜時に発生した除霜水であってもよい。
Next, the action and effect of the first embodiment will be described.
According to the heat exchanger HE according to the first embodiment, since the first mountain portion MP1 and the second mountain portion MP2 are configured to protrude from the flat surface portion SP, the influence of the dead water area can be suppressed. .. Therefore, the heat transfer coefficient of the fin F can be improved. Further, the strength of the fin F can be improved by the first mountain portion MP1 and the second mountain portion MP2. Further, since the positions of the vertices V of the first convex portion C1 and the second convex portion C2 are aligned in the lateral direction D1 of the fin F, the water flowing from the apex V of the first convex portion C1 is second-convex. Drainage can be improved by guiding from the apex V of the portion C2 to both sides. In addition, this water may be condensed water, or may be defrost water generated at the time of defrosting.
 実施の形態1に係る熱交換器HEによれば、第1山部MP1は、第2山部MP2よりも幅が狭い。このため、第2山部MP2に滞留した水を表面張力により第1山部MP1に導くことで排水性を向上させることができる。 According to the heat exchanger HE according to the first embodiment, the width of the first mountain portion MP1 is narrower than that of the second mountain portion MP2. Therefore, the drainage property can be improved by guiding the water staying in the second mountain portion MP2 to the first mountain portion MP1 by surface tension.
  実施の形態2.
 実施の形態2に係る熱交換器HEおよび冷凍サイクル装置100は、特に説明しない限り、実施の形態1に係る熱交換器HEおよび冷凍サイクル装置100と同一の構成、動作および作用効果を有している。
Embodiment 2.
Unless otherwise specified, the heat exchanger HE and the refrigeration cycle apparatus 100 according to the second embodiment have the same configuration, operation, and operation effect as the heat exchanger HE and the refrigeration cycle apparatus 100 according to the first embodiment. There is.
 図6~図9を参照して、実施の形態2に係る熱交換器HEのフィンFの構造について説明する。 The structure of the fin F of the heat exchanger HE according to the second embodiment will be described with reference to FIGS. 6 to 9.
 図6~図8に示すように、本実施の形態では、第1山部MP1の山の頂上は、第1山部MP1の幅の中央よりも外側に位置している。第2山部MP2の山の頂上は、第2山部MP2の幅の中央よりも外側に位置している。第1山部MP1および第2山部MP2の少なくともともいずれかにおいて、山の頂上が幅の中央よりも外側に位置していればよい。 As shown in FIGS. 6 to 8, in the present embodiment, the top of the mountain of the first mountain portion MP1 is located outside the center of the width of the first mountain portion MP1. The summit of the second mountain part MP2 is located outside the center of the width of the second mountain part MP2. It suffices that the top of the mountain is located outside the center of the width in at least one of the first mountain part MP1 and the second mountain part MP2.
 図8および図9に示すように、第1山部MP1および第2山部MP2の少なくともいずれかは、内側傾斜面ISと、外側傾斜面OSとを含んでいる。内側傾斜面ISは、複数の貫通孔THの各々に向かい合うように配置されている。外側傾斜面OSは、内側傾斜面ISに対して複数の貫通孔の各々と反対側に配置されている。平面部SPに対して内側傾斜面ISがなす内側傾斜角度θ1は、平面部SPに対して外側傾斜面OSがなす外側傾斜角度θ2よりも小さい。 As shown in FIGS. 8 and 9, at least one of the first mountain portion MP1 and the second mountain portion MP2 includes an inner inclined surface IS and an outer inclined surface OS. The inner inclined surface IS is arranged so as to face each of the plurality of through holes TH. The outer inclined surface OS is arranged on the opposite side of each of the plurality of through holes with respect to the inner inclined surface IS. The inner inclination angle θ1 formed by the inner inclined surface IS with respect to the flat surface portion SP is smaller than the outer inclined angle θ2 formed by the outer inclined surface OS with respect to the flat surface portion SP.
 次に、実施の形態2の作用効果について説明する。
 実施の形態2に係る熱交換器HEによれば、平面部SPに対して内側傾斜面ISがなす内側傾斜角度θ1は、平面部SPに対して外側傾斜面OSがなす外側傾斜角度θ2よりも小さい。このため、フィンFに付着した水が内側傾斜面ISに滞留することを抑制することができる。したがって、排水性を向上させることができる。
Next, the action and effect of the second embodiment will be described.
According to the heat exchanger HE according to the second embodiment, the inner inclination angle θ1 formed by the inner inclined surface IS with respect to the flat surface portion SP is larger than the outer inclined angle θ2 formed by the outer inclined surface OS with respect to the flat surface portion SP. small. Therefore, it is possible to prevent the water adhering to the fin F from staying on the inner inclined surface IS. Therefore, the drainage property can be improved.
 実施の形態3.
 実施の形態3に係る熱交換器HEおよび冷凍サイクル装置100は、特に説明しない限り、実施の形態2に係る熱交換器HEおよび冷凍サイクル装置100と同一の構成、動作および作用効果を有している。
Embodiment 3.
Unless otherwise specified, the heat exchanger HE and the refrigeration cycle apparatus 100 according to the third embodiment have the same configuration, operation, and operation effect as the heat exchanger HE and the refrigeration cycle apparatus 100 according to the second embodiment. There is.
 図10および図11を参照して、実施の形態3に係る熱交換器HEのフィンFの構造について説明する。 The structure of the fin F of the heat exchanger HE according to the third embodiment will be described with reference to FIGS. 10 and 11.
 第1山部MP1は、フィンFの短手方向D1において第1山部MP1の中央に向けて平面部SPから突出する高さが低くなるように傾斜している。第2山部MP2は、フィンFの短手方向D1において第2山部MP2の中央に向けて平面部SPから突出する高さが低くなるように傾斜している。 The first mountain portion MP1 is inclined so that the height protruding from the flat surface portion SP toward the center of the first mountain portion MP1 in the lateral direction D1 of the fin F becomes low. The second mountain portion MP2 is inclined so that the height protruding from the flat surface portion SP toward the center of the second mountain portion MP2 in the lateral direction D1 of the fin F becomes lower.
 第1山部MP1および第2山部MP2の少なくともいずれかは、フィンFの短手方向D1において各々の中央に向けて平面部SPから突出する高さが低くなるように傾斜していればよい。 At least one of the first mountain portion MP1 and the second mountain portion MP2 may be inclined so that the height protruding from the flat surface portion SP toward the center of each of the fins F in the lateral direction D1 is lowered. ..
 次に、実施の形態3の作用効果について説明する。
 実施の形態3に係る熱交換器HEによれば、第1山部MP1および第2山部MP2の少なくともいずれかは、フィンFの短手方向D1において各々の中央に向けて平面部SPから突出する高さが低くなるように傾斜している。このため、フィンFに付着した水が下方に滑落する際、第1山部MP1および第2山部MP2の少なくともいずれかにおいてフィンFに付着した水の滑落が阻害されることを抑制することができる。したがって、排水性を向上させることができる。
Next, the action and effect of the third embodiment will be described.
According to the heat exchanger HE according to the third embodiment, at least one of the first mountain portion MP1 and the second mountain portion MP2 protrudes from the flat surface portion SP toward the center in the lateral direction D1 of the fin F. It is tilted so that the height is low. Therefore, when the water adhering to the fin F slides downward, it is possible to prevent the water adhering to the fin F from being hindered from sliding down in at least one of the first mountain portion MP1 and the second mountain portion MP2. can. Therefore, the drainage property can be improved.
 実施の形態4.
 実施の形態4に係る熱交換器HEおよび冷凍サイクル装置100は、特に説明しない限り、実施の形態2に係る熱交換器HEおよび冷凍サイクル装置100と同一の構成、動作および作用効果を有している。
Embodiment 4.
Unless otherwise specified, the heat exchanger HE and the refrigeration cycle apparatus 100 according to the fourth embodiment have the same configuration, operation, and operation effect as the heat exchanger HE and the refrigeration cycle apparatus 100 according to the second embodiment. There is.
 図12および図13を参照して、実施の形態4に係る熱交換器HEのフィンFの構造について説明する。 The structure of the fin F of the heat exchanger HE according to the fourth embodiment will be described with reference to FIGS. 12 and 13.
 フィンFは、中間山部MMを含んでいる。中間山部MMは、平面部SPから突出するように構成されている。中間山部MMは、第1山部MP1および第2山部MP2と同じ方向に平面部SPから突出している。 Fin F includes the middle mountain part MM. The intermediate mountain portion MM is configured to protrude from the flat surface portion SP. The intermediate mountain portion MM protrudes from the flat portion SP in the same direction as the first mountain portion MP1 and the second mountain portion MP2.
 中間山部MMは、フィンFの長手方向D2に直線状に延びるように構成されている。中間山部MMは、第1凸部C1および第2凸部C2の互いの頂点をつなぐように構成されている。中間山部MMは、第1山部MP1よりも幅が狭い。 The intermediate mountain portion MM is configured to extend linearly in the longitudinal direction D2 of the fin F. The intermediate mountain portion MM is configured to connect the vertices of the first convex portion C1 and the second convex portion C2 to each other. The width of the middle mountain part MM is narrower than that of the first mountain part MP1.
 次に、実施の形態4の作用効果について説明する。
 実施の形態4に係る熱交換器HEによれば、中間山部MMは、第1凸部C1および第2凸部C2の互いの頂点をつなぐように構成されている。このため、中間山部MMが排水経路として機能することによって、フィンに付着した水が第1山部MP1に滞留することを抑制することができる。したがって、排水性を向上させることができる。
Next, the action and effect of the fourth embodiment will be described.
According to the heat exchanger HE according to the fourth embodiment, the intermediate mountain portion MM is configured to connect the vertices of the first convex portion C1 and the second convex portion C2 to each other. Therefore, since the intermediate mountain portion MM functions as a drainage route, it is possible to suppress the water adhering to the fins from staying in the first mountain portion MP1. Therefore, the drainage property can be improved.
 実施の形態5.
 実施の形態5に係る熱交換器HEおよび冷凍サイクル装置100は、特に説明しない限り、実施の形態2に係る熱交換器HEおよび冷凍サイクル装置100と同一の構成、動作および作用効果を有している。
Embodiment 5.
Unless otherwise specified, the heat exchanger HE and the refrigeration cycle apparatus 100 according to the fifth embodiment have the same configuration, operation, and operation effect as the heat exchanger HE and the refrigeration cycle apparatus 100 according to the second embodiment. There is.
 図14~図16を参照して、実施の形態5に係る熱交換器HEのフィンFの構造について説明する。 The structure of the fin F of the heat exchanger HE according to the fifth embodiment will be described with reference to FIGS. 14 to 16.
 フィンFは、第3山部MP3を含んでいる。フィンFは、平面部SPから突出するように構成されている。第3山部MP3は、第1山部MP1および第2山部MP2と同じ方向に平面部SPから突出している。第3山部MP3は、フィンFの長手方向D2に直線状に延びるように構成されている。第3山部MP3は、フィンFの長手方向D2の一端から他端まで連続して延びている。 Fin F contains the third Yamabe MP3. The fin F is configured to protrude from the flat surface portion SP. The third mountain portion MP3 protrudes from the plane portion SP in the same direction as the first mountain portion MP1 and the second mountain portion MP2. The third mountain portion MP3 is configured to extend linearly in the longitudinal direction D2 of the fin F. The third mountain portion MP3 continuously extends from one end to the other end of the fin F in the longitudinal direction D2.
 第3山部MP3は、フィンFの短手方向D1において第1山部MP1の外側に配置されている。第3山部MP3は、フィンFの短手方向D1において第2山部MP2の外側に配置されている。第3山部MP3は、第1山部MP1および第2山部MP2よりも幅が狭い。 The third mountain portion MP3 is arranged outside the first mountain portion MP1 in the lateral direction D1 of the fin F. The third mountain portion MP3 is arranged outside the second mountain portion MP2 in the lateral direction D1 of the fin F. The third mountain portion MP3 is narrower than the first mountain portion MP1 and the second mountain portion MP2.
 本実施の形態では、フィンFは、複数の第3山部MP3を含んでいる。複数の第3山部MP3の各々は、フィンFの長手方向D2に互いに平行に延びている。複数の第3山部MP3は、フィンFの短手方向D1の両端部に配置されている。複数の第3山部MP3は、複数の第1山部MP1および複数の第2山部MP2を挟むように配置されている。第3山部MP3は、フィンFの短手方向D1において第1山部MP1および第2山部MP2から間隔をあけて配置されている。複数の第3山部MP3の各々の幅は、互いに等しい。 In the present embodiment, the fin F includes a plurality of third mountain parts MP3. Each of the plurality of third mountain portions MP3 extends parallel to each other in the longitudinal direction D2 of the fin F. The plurality of third mountain portions MP3 are arranged at both ends of the fin F in the lateral direction D1. The plurality of third mountain portions MP3 are arranged so as to sandwich the plurality of first mountain portions MP1 and the plurality of second mountain portions MP2. The third mountain portion MP3 is arranged at a distance from the first mountain portion MP1 and the second mountain portion MP2 in the lateral direction D1 of the fin F. The widths of the plurality of third mountain MP3s are equal to each other.
 次に、実施の形態5の作用効果について説明する。
 実施の形態5に係る熱交換器HEによれば、第3山部MP3は、フィンFの長手方向D2に直線状に延びるように構成されている。このため、第3山部MP3によってフィンFの長手方向D2においてフィンFの強度を向上させることができる。
Next, the action and effect of the fifth embodiment will be described.
According to the heat exchanger HE according to the fifth embodiment, the third mountain portion MP3 is configured to extend linearly in the longitudinal direction D2 of the fin F. Therefore, the strength of the fin F can be improved in the longitudinal direction D2 of the fin F by the third mountain portion MP3.
 第3山部MP3は、フィンFの短手方向D1において第1山部MP1の外側に配置されておりかつ第1山部MP1および第2山部MP2よりも幅が狭い。このため、第1山部MP1から第3山部MP3へと表面張力によりフィンFに付着した水を導くことができる。そして、第3山部MP3に沿ってフィンFに付着した水を流すことができる。したがって、排水性を向上させることができる。 The third mountain portion MP3 is arranged outside the first mountain portion MP1 in the lateral direction D1 of the fin F, and is narrower than the first mountain portion MP1 and the second mountain portion MP2. Therefore, water adhering to the fin F can be guided from the first mountain portion MP1 to the third mountain portion MP3 by surface tension. Then, the water adhering to the fin F can be flowed along the third mountain portion MP3. Therefore, the drainage property can be improved.
 実施の形態6.
 実施の形態6に係る熱交換器HEおよび冷凍サイクル装置100は、特に説明しない限り、実施の形態5に係る熱交換器HEおよび冷凍サイクル装置100と同一の構成、動作および作用効果を有している。
Embodiment 6.
Unless otherwise specified, the heat exchanger HE and the refrigeration cycle apparatus 100 according to the sixth embodiment have the same configuration, operation, and operation effect as the heat exchanger HE and the refrigeration cycle apparatus 100 according to the fifth embodiment. There is.
 図17~図19を参照して、実施の形態6に係る熱交換器HEのフィンFの構造について説明する。 The structure of the fin F of the heat exchanger HE according to the sixth embodiment will be described with reference to FIGS. 17 to 19.
 フィンFの短手方向D1において、第1凸部C1は、第2凸部C2よりも第3山部MP3から離れて配置されている。フィンFの短手方向D1において、第1凸部C1は、第2凸部C2よりも短い。 In the lateral direction D1 of the fin F, the first convex portion C1 is arranged farther from the third mountain portion MP3 than the second convex portion C2. In the lateral direction D1 of the fin F, the first convex portion C1 is shorter than the second convex portion C2.
 次に、実施の形態6の作用効果について説明する。
 実施の形態6に係る熱交換器HEによれば、フィンFの短手方向D1において、第1凸部C1は、第2凸部C2よりも第3山部MP3から離れて配置されている。このため、第2凸部C2から第3山部MP3へフィンFに付着した水を導くことが容易となる。また、第3山部MP3から第1凸部C1へフィンFに付着した水が移動することを抑制することができる。したがって、排水性を向上させることができる。
Next, the action and effect of the sixth embodiment will be described.
According to the heat exchanger HE according to the sixth embodiment, in the lateral direction D1 of the fin F, the first convex portion C1 is arranged farther from the third mountain portion MP3 than the second convex portion C2. Therefore, it becomes easy to guide the water adhering to the fin F from the second convex portion C2 to the third mountain portion MP3. Further, it is possible to suppress the movement of water adhering to the fin F from the third mountain portion MP3 to the first convex portion C1. Therefore, the drainage property can be improved.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of this disclosure is set forth by the claims rather than the description above and is intended to include all modifications within the meaning and scope of the claims.
 1 圧縮機、2 四方弁、3 室外熱交換器、4 減圧弁、5 室内熱交換器、100 冷凍サイクル装置、C1 第1凸部、C2 第2凸部、D0 空気の流れ方向、D1 短手方向、D2 長手方向、F フィン、HE 熱交換器、IS 内側傾斜面、MP1 第1山部、MP2 第2山部、MP3 第3山部、OS 外側傾斜面、P 伝熱管、SP 平面部、TH 貫通孔、V 頂点。 1 Compressor, 2 Four-way valve, 3 Outdoor heat exchanger, 4 Pressure reducing valve, 5 Indoor heat exchanger, 100 Refrigeration cycle device, C1 1st convex part, C2 2nd convex part, D0 Air flow direction, D1 Short Direction, D2 longitudinal direction, F fin, HE heat exchanger, IS inner inclined surface, MP1 1st mountain part, MP2 2nd mountain part, MP3 3rd mountain part, OS outer inclined surface, P heat transfer tube, SP flat part, TH through hole, V apex.

Claims (9)

  1.  空気の流れ方向に沿う短手方向と前記空気の流れ方向に交差する長手方向とに延在するように構成されたフィンと、
     前記フィンを貫通する伝熱管とを備え、
     前記フィンには前記長手方向に並んで複数の貫通孔が設けられており、
     前記伝熱管は、前記複数の貫通孔に挿入されており、
     前記フィンは、平面部と、前記平面部から突出するように構成された複数の第1山部および複数の第2山部とを含み、
     前記複数の第1山部は、前記複数の貫通孔の間に配置されておりかつ前記長手方向に沿って下向きに湾曲するように構成された第1凸部と、前記複数の貫通孔の間に配置されておりかつ前記長手方向に沿って上向きに湾曲するように構成された第2凸部とを含み、
     前記複数の第2山部の各々は、前記複数の第1山部の各々と前記複数の貫通孔の各々との間に配置されておりかつ前記複数の貫通孔の各々を取り囲むように構成されており、
     前記短手方向において、前記第1凸部と前記第2凸部との頂点の位置が揃っている、熱交換器。
    Fins configured to extend in the lateral direction along the air flow direction and in the longitudinal direction intersecting the air flow direction.
    A heat transfer tube that penetrates the fins is provided.
    The fins are provided with a plurality of through holes arranged side by side in the longitudinal direction.
    The heat transfer tube is inserted into the plurality of through holes, and the heat transfer tube is inserted into the plurality of through holes.
    The fin includes a flat surface portion and a plurality of first mountain portions and a plurality of second mountain portions configured to project from the flat surface portion.
    The plurality of first mountain portions are arranged between the plurality of through holes and between the first convex portion configured to be curved downward along the longitudinal direction and the plurality of through holes. Includes a second convex portion that is arranged in and configured to curve upward along the longitudinal direction.
    Each of the plurality of second mountain portions is arranged between each of the plurality of first mountain portions and each of the plurality of through holes, and is configured to surround each of the plurality of through holes. And
    A heat exchanger in which the positions of the vertices of the first convex portion and the second convex portion are aligned in the lateral direction.
  2.  前記第1山部は、前記第2山部よりも幅が狭い、請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the first mountain portion is narrower than the second mountain portion.
  3.  前記第1山部および前記第2山部の少なくともいずれかは、前記複数の貫通孔の各々に向かい合うように配置された内側傾斜面と、前記内側傾斜面に対して前記複数の貫通孔の各々と反対側に配置された外側傾斜面とを含み、
     前記平面部に対して前記内側傾斜面がなす内側傾斜角度は、前記平面部に対して前記外側傾斜面がなす外側傾斜角度よりも小さい、請求項1または2に記載の熱交換器。
    At least one of the first mountain portion and the second mountain portion has an inner inclined surface arranged so as to face each of the plurality of through holes, and each of the plurality of through holes with respect to the inner inclined surface. Includes an outer sloping surface located on the opposite side of the
    The heat exchanger according to claim 1 or 2, wherein the inner tilt angle formed by the inner inclined surface with respect to the flat surface portion is smaller than the outer inclined angle formed by the outer inclined surface with respect to the flat surface portion.
  4.  前記第1山部および前記第2山部の少なくともいずれかは、前記短手方向において各々の中央に向けて前記平面部から突出する高さが低くなるように傾斜している、請求項3に記載の熱交換器。 According to claim 3, at least one of the first mountain portion and the second mountain portion is inclined so that the height protruding from the flat surface portion becomes lower toward the center of each in the lateral direction. The heat exchanger described.
  5.  前記フィンは、前記平面部から突出するように構成された中間山部を含み、
     前記中間山部は、前記長手方向に直線状に延びるように構成されておりかつ前記第1凸部および前記第2凸部の互いの前記頂点をつなぐように構成されている、請求項1~4のいずれか1項に記載の熱交換器。
    The fins include an intermediate ridge configured to project from the flat surface.
    Claims 1 to 1, wherein the intermediate mountain portion is configured to extend linearly in the longitudinal direction and is configured to connect the apex of the first convex portion and the second convex portion to each other. The heat exchanger according to any one of 4.
  6.  前記フィンは、前記平面部から突出するように構成された第3山部を含み、
     前記第3山部は、前記長手方向に直線状に延びるように構成されている、請求項1~5のいずれか1項に記載の熱交換器。
    The fins include a third ridge configured to project from the flat surface.
    The heat exchanger according to any one of claims 1 to 5, wherein the third mountain portion is configured to extend linearly in the longitudinal direction.
  7.  前記第3山部は、前記短手方向において前記第1山部の外側に配置されておりかつ前記第1山部および前記第2山部よりも幅が狭い、請求項6に記載の熱交換器。 The heat exchange according to claim 6, wherein the third mountain portion is arranged outside the first mountain portion in the lateral direction and is narrower than the first mountain portion and the second mountain portion. vessel.
  8.  前記短手方向において、前記第1凸部は、前記第2凸部よりも前記第3山部から離れて配置されている、請求項6または7に記載の熱交換。 The heat exchange according to claim 6 or 7, wherein the first convex portion is arranged farther from the third mountain portion than the second convex portion in the lateral direction.
  9.  請求項1~8のいずれか1項に記載の熱交換器と、
     冷媒循環装置とを備え、
     前記冷媒循環装置は、前記熱交換器において空気との間で熱交換を行うための冷媒を循環させるように構成されている、冷凍サイクル装置。
    The heat exchanger according to any one of claims 1 to 8.
    Equipped with a refrigerant circulation device,
    The refrigerant circulation device is a refrigerating cycle device configured to circulate a refrigerant for exchanging heat with air in the heat exchanger.
PCT/JP2020/044334 2020-11-27 2020-11-27 Heat exchanger and refrigeration cycle device WO2022113299A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/247,236 US20230358483A1 (en) 2020-11-27 2020-11-27 Heat exchanger and refrigeration cycle apparatus
JP2022564962A JPWO2022113299A1 (en) 2020-11-27 2020-11-27
CN202080107348.4A CN116457625A (en) 2020-11-27 2020-11-27 Heat exchanger and refrigeration cycle device
EP20963563.0A EP4253896A4 (en) 2020-11-27 2020-11-27 Heat exchanger and refrigeration cycle device
PCT/JP2020/044334 WO2022113299A1 (en) 2020-11-27 2020-11-27 Heat exchanger and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/044334 WO2022113299A1 (en) 2020-11-27 2020-11-27 Heat exchanger and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2022113299A1 true WO2022113299A1 (en) 2022-06-02

Family

ID=81755429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044334 WO2022113299A1 (en) 2020-11-27 2020-11-27 Heat exchanger and refrigeration cycle device

Country Status (5)

Country Link
US (1) US20230358483A1 (en)
EP (1) EP4253896A4 (en)
JP (1) JPWO2022113299A1 (en)
CN (1) CN116457625A (en)
WO (1) WO2022113299A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730589U (en) * 1980-07-25 1982-02-17
JPS5730591U (en) * 1980-07-25 1982-02-17
JP2005077083A (en) 2003-09-02 2005-03-24 Lg Electronics Inc Heat exchanger
JP2019163909A (en) * 2018-03-20 2019-09-26 東京電力ホールディングス株式会社 Fin tube type heat exchanger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235693A (en) * 1985-04-10 1986-10-20 Matsushita Electric Ind Co Ltd Finned tube type heat exchanger
JP6337742B2 (en) * 2014-11-04 2018-06-06 パナソニックIpマネジメント株式会社 Finned tube heat exchanger
CN110726325A (en) * 2019-11-19 2020-01-24 广东美的暖通设备有限公司 Fin for tube-fin heat exchanger, tube-fin heat exchanger and air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730589U (en) * 1980-07-25 1982-02-17
JPS5730591U (en) * 1980-07-25 1982-02-17
JP2005077083A (en) 2003-09-02 2005-03-24 Lg Electronics Inc Heat exchanger
JP2019163909A (en) * 2018-03-20 2019-09-26 東京電力ホールディングス株式会社 Fin tube type heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4253896A4

Also Published As

Publication number Publication date
US20230358483A1 (en) 2023-11-09
EP4253896A1 (en) 2023-10-04
EP4253896A4 (en) 2024-01-17
JPWO2022113299A1 (en) 2022-06-02
CN116457625A (en) 2023-07-18

Similar Documents

Publication Publication Date Title
JP5397489B2 (en) Heat exchanger and air conditioner
WO2012098912A1 (en) Heat exchanger and air conditioner
US7182127B2 (en) Heat exchanger
JP6790077B2 (en) Heat exchanger
JP6371046B2 (en) Air conditioner and heat exchanger for air conditioner
US20110120177A1 (en) Heat exchanger for shedding water
KR102491602B1 (en) Air conditioner
WO2019175973A1 (en) Heat exchanger and air conditioner with same
KR20150119982A (en) Heat exchanger
WO2022014515A1 (en) Heat exchanger
WO2022113299A1 (en) Heat exchanger and refrigeration cycle device
JP6987227B2 (en) Heat exchanger and refrigeration cycle equipment
WO2022113298A1 (en) Heat exchanger and refrigeration cycle device
JP5569409B2 (en) Heat exchanger and air conditioner
WO2022113297A1 (en) Heat exchanger and refrigeration cycle device
US11293701B2 (en) Heat exchanger and air conditioner having the same
JP2015031484A (en) Heat exchanger and air conditioner including the same
KR102414545B1 (en) Heat exchanger
JP5664272B2 (en) Heat exchanger and air conditioner
JP2015031483A (en) Heat exchanger and air conditioner including the same
WO2021234952A1 (en) Heat exchanger and air conditioner provided with said heat exchanger
JP7050538B2 (en) Heat exchanger and air conditioner
JPWO2019155571A1 (en) Heat exchanger and refrigeration cycle equipment
WO2018020552A1 (en) Heat exchanger and air conditioner
JP7258151B2 (en) Heat exchanger and refrigeration cycle equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963563

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022564962

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202080107348.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020963563

Country of ref document: EP

Effective date: 20230627