WO2022110982A1 - 耐低温冲击韧性风电钢的制备方法 - Google Patents

耐低温冲击韧性风电钢的制备方法 Download PDF

Info

Publication number
WO2022110982A1
WO2022110982A1 PCT/CN2021/118336 CN2021118336W WO2022110982A1 WO 2022110982 A1 WO2022110982 A1 WO 2022110982A1 CN 2021118336 W CN2021118336 W CN 2021118336W WO 2022110982 A1 WO2022110982 A1 WO 2022110982A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind power
rolling
impact toughness
temperature impact
power steel
Prior art date
Application number
PCT/CN2021/118336
Other languages
English (en)
French (fr)
Inventor
王中学
李艳
麻衡
宁伟
李文强
张长宏
倪凯
王腾飞
何康
曹阳
Original Assignee
莱芜钢铁集团银山型钢有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 莱芜钢铁集团银山型钢有限公司 filed Critical 莱芜钢铁集团银山型钢有限公司
Priority to EP21896486.4A priority Critical patent/EP4253586A1/en
Publication of WO2022110982A1 publication Critical patent/WO2022110982A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0056Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Definitions

  • the invention relates to the field of iron and steel smelting, in particular to a preparation method of low temperature impact toughness wind power steel.
  • Wind energy is a clean and stable new energy.
  • the use of wind power can effectively slow down climate change, improve energy security, and promote low-carbon economic growth. Therefore, wind power has become one of the fastest growing energy sources in the world in recent years.
  • the market demand is also increasing. my country will build 8 tens of millions of kilowatts of wind power bases in 7 provinces and regions including Gansu, Inner Mongolia, and Xinjiang.
  • d is the diameter of the bending center
  • a is the thickness of the sample.
  • the purpose of the present invention is to provide a preparation method of low temperature impact toughness wind power steel to solve at least one of the above problems.
  • the invention provides a normalized-rolled low-temperature impact toughness wind power steel sheet with low cost, excellent low-temperature impact toughness, and excellent comprehensive properties such as product strength, elongation at break and cold-bending performance. , Directly through the normalizing rolling process, the production cost is low, the production cycle is short, and the normalized rolling low temperature impact toughness wind power steel plate with a thickness of 6mm to 63mm can be produced, and the low temperature impact toughness wind power steel is obtained.
  • the present invention provides the following technical solutions:
  • a method for preparing low temperature impact toughness wind power steel comprising the following steps: pretreatment, desulfurization of molten iron; smelting, smelting the pretreated molten iron; refining, which is divided into LF refining and RH refining; Casting; rolling, using two-stage rolling, rough rolling and finishing rolling.
  • the sulfur content in the molten iron is controlled below 0.010% by mass percentage; preferably, the desulfurization temperature is 1250°C-1320°C .
  • the pretreated molten iron enters the converter for smelting, and the slag-forming material is added within 1min-5min before the end point of the molten iron entering the converter.
  • LF refining adopts bottom blowing argon stirring in the whole process, soft blowing argon for 10min-15min, adding lime to make slag, and using aluminum pellets.
  • the vacuum degree in the RH refining process is controlled at 10Pa-30Pa, and the vacuum time is 15min-25min; preferably, pure degassing Time ⁇ 5min, soft blowing time ⁇ 12min; preferably, the cycle of RH refining is controlled at 40min-60min, the addition amount of aluminum wire is 0m/t-3.3m/t, and the addition amount of titanium wire is 0.8m/t-3.3 m/t.
  • the whole process protection casting means that the long nozzle is used from the large ladle to the tundish and protected by argon sealing; the tundish is combined with a covering agent.
  • the carbonized rice husk is covered; the tundish to the crystallizer adopts an immersed nozzle and is protected by argon sealing; the liquid surface of the crystallizer adopts the peritectic steel mold powder; preferably, the composition of the peritectic steel mold powder is 25% ⁇ by weight SiO2 ⁇ 35 %, 35% ⁇ CaO ⁇ 45%, 1.90% ⁇ MgO ⁇ 3.00%, 3.00 % ⁇ Al2O3 ⁇ 4.00 %.
  • the drawing speed is stabilized to 0.80m/min-1.40m/min; preferably, the 175 section: the drawing speed is stabilized to 1.2 -1.35m/min, 200 section: the pulling speed is stable to 1.3-1.4m/min, 250 section: the pulling speed is stable to 1.1-1.3m/min, 300 section: the pulling speed is stable to 0.8-0.9m/min.
  • the casting superheat is controlled below 20°C; preferably, the height of the liquid level of the tundish is controlled, and the tundish is The height of the liquid level is not less than 600mm, and the height of the liquid level is between 800mm-1000mm during the normal pouring process; preferably, the straightening temperature of the slab is controlled above 900°C.
  • the billet discharge temperature is controlled at 1170°C-1280°C; the rough rolling opening temperature is 1130°C-1190°C, The rolling temperature is 1050°C-1120°C; the total reduction ratio of rough rolling is >50%; the starting temperature of finishing rolling is 850°C-1070°C, and the final rolling temperature of finishing rolling is 830°C-960°C.
  • the wind power steel includes the following components by weight percentage: 0.13% ⁇ C ⁇ 0.17%, 0.20% ⁇ Si ⁇ 0.50%, 0.90% ⁇ Mn ⁇ 1.65%, 0 ⁇ S ⁇ 0.010%, 0 ⁇ P ⁇ 0.030%, 0.010% ⁇ Nb ⁇ 0.040%, 0.010% ⁇ Ti ⁇ 0.030%, 0.015% ⁇ Als ⁇ 0.050%, the rest are iron and inevitable impurities, Als is acid soluble aluminum.
  • the preparation method of the low temperature impact toughness wind power steel disclosed in the present invention provides a normalizing rolled steel with low cost, excellent low temperature impact toughness and excellent comprehensive properties such as product strength, elongation after fracture and cold bending performance.
  • Low temperature impact toughness wind power steel sheet and by adding and controlling various alloying elements, directly through normalizing rolling process, low production cost, short production cycle and can produce normalized rolling low temperature impact toughness wind power steel sheet with thickness of 6mm to 63mm , to obtain low temperature impact toughness wind power steel.
  • a preparation method of low temperature impact toughness wind power steel includes the following components: 0.13% ⁇ C ⁇ 0.17%, 0.20% ⁇ Si ⁇ 0.50%, 0.90% ⁇ Mn ⁇ 1.65%, 0 ⁇ S ⁇ 0.010%, 0 ⁇ P ⁇ 0.030%, 0.010% ⁇ Nb ⁇ 0.040%, 0.010% ⁇ Ti ⁇ 0.030%, 0.015% ⁇ Als ⁇ 0.050%, the rest are iron and inevitable impurities, and Als is acid-soluble aluminum.
  • the minimum value of impact toughness at -20°C is ⁇ 100J.
  • the wind power steel has the advantages of low cost, excellent low temperature impact toughness, and excellent comprehensive properties such as product strength, elongation after fracture and cold bending performance. And the design of low C+Nb and Ti microalloying composition ensures that the steel plate has easy weldability.
  • Nb Give full play to the fine-grain strengthening effect of Nb to ensure that the steel plate has sufficient strength
  • Ti On the one hand, it eliminates free nitrogen in the steel and improves the aging resistance; Improve strength and toughness
  • Al On the one hand, it can refine grains and improve strength, and on the other hand, Al combines with N to prevent strain aging.
  • the present invention also provides a preparation method of the above-mentioned low temperature impact toughness wind power steel, the preparation method includes the following steps: pretreatment, smelting, refining, continuous casting and rolling.
  • the addition amount of each alloying element is fully considered in the composition design, and on the other hand, the normalizing rolling process is adopted in the rolling process to meet the demand for product performance.
  • Pretreatment refers to the desulfurization of molten iron.
  • the desulfurization of molten iron strictly implements the process regulations, and the sulfur content in the molten iron is controlled below 0.010% by mass percentage (such as 0.001%, 0.002%, 0.003%, 0.004%, 0.005%, 0.006%, 0.007%) , 0.008%, 0.009%, 0.010%)
  • the desulfurization temperature is 1250°C-1320°C (such as 1250°C, 1255°C, 1258°C, 1260°C, 1263°C, 1267°C, 1270°C, 1275°C, 1280°C, 1290°C , 1300 °C, 1305 °C, 1310 °C, 1315 °C, 1320 °C), after the desulfurization is completed, the slag on the surface of the molten iron is removed.
  • KR method is used for desulfurization to control the desulfurization temperature during pretreatment, and the sulfur content in molten iron is effectively reduced to less than 0.010%, the desulfurization is thorough, and the purity of steel is guaranteed.
  • the pretreated molten iron enters the converter for smelting, and the slag-forming material is added within 1min-5min before the end point of the molten iron entering the converter.
  • the end point pressure gun time is within 65s-120s
  • the added alloy composition is in the molten steel
  • the chemical reaction within is just completed, and the composition is completely homogenized. If the time is shorter than 65s, the reaction cannot be fully completed; if the time is longer than 120s, it will not have any effect on the components but will affect the production efficiency.
  • Silicon manganese is a ferroalloy containing 13%-25% silicon and 55%-75% manganese by weight, and the addition amount of silicon manganese is 20kg/t-30kg/t; ferrosilicon is 70%-78 % silicon iron alloy, the addition amount of ferrosilicon is 0.5kg/t-2kg/t; ferroniobium is an iron alloy containing 50%-65% niobium by weight, and the addition amount of ferroniobium is 0.1kg/t-0.8 kg/t.
  • Refining is divided into LF refining and RH refining.
  • LF refining adopts bottom blowing argon stirring in the whole process, soft argon blowing for 10min-15min, adding lime for slagging, using aluminum particle deoxidizer for deoxidation, and keeping time of yellow-white slag or white slag for 10min-30min (such as 10min, 12min, 17min) , 19min, 20min, 22min, 25min, 27min, 29min, 30min), the retention time of yellow-white slag or white slag is too short, and the final slag is not fully melted; the retention time of yellow-white slag or white slag is too long, which affects production efficiency.
  • LF refining can further desulfurize, deoxidize, remove inclusions, adjust the composition and temperature of molten steel, and obtain a good refining effect.
  • RH refining adopts the deep treatment mode, and the vacuum degree is controlled at 10Pa-30Pa.
  • the smaller the vacuum degree the smaller the nitrogen, hydrogen, oxygen and other gas inclusions in the molten steel, that is, clean steel smelting.
  • the ideal value of vacuum degree is 0Pa, but it is unrealistic to achieve the vacuum degree.
  • the vacuum time is controlled at 15min-25min (such as 15min, 17min, 19min, 20min, 22min, 25min). If the vacuum degree is kept too short, the gas inclusions will not be removed; if it is too long, it will no longer work and will affect the production efficiency.
  • the pure degassing time is controlled at ⁇ 5min, and the soft blowing time is ⁇ 12min.
  • the cycle of RH refining is controlled at 40min-60min, and the amount of aluminum wire added is 0m/t-3.3m/t (when LF refining, when the amount of aluminum particles added is sufficient to achieve deoxidation effect, RH refining can no longer add aluminum wire) , the addition of titanium wire is 0.8m/t-3.3m/t.
  • the main purpose of RH refining is to carry out vacuum degassing, reduce the gas content in the steel, reduce the defects caused by the gas inside the steel plate, and improve the purity, alloying and homogenization of the molten steel.
  • the whole process of protection casting is adopted, that is, the long nozzle from the ladle to the tundish is protected by argon sealing; the tundish is covered with a covering agent combined with carbonized rice husks to ensure good liquid surface coverage, so The molten steel is isolated from the air to avoid secondary oxidation; the tundish to the mold adopts an immersed nozzle and is protected by argon sealing; the liquid surface of the mold is made of peritectic steel mold slag to stabilize the pulling speed.
  • the main components of the peritectic steel mold flux are 25% ⁇ SiO 2 ⁇ 35%, 35% ⁇ CaO ⁇ 45%, 1.90% ⁇ MgO ⁇ 3.00%, 3.00% ⁇ Al 2 O 3 ⁇ 4.00%.
  • the casting speed is increased slowly and uniformly. After the target casting speed is raised, automatic control is implemented. At the same time, the fluctuation of the liquid level in the mold is closely observed, and the casting speed is gradually stabilized to 0.80m/min-1.40m/min. min. According to the size of the section, the pulling speed is also different.
  • the size of the section refers to the thickness specification of the slab. specifically,
  • the pulling speed is stable to 1.1-1.3m/min
  • the pulling speed is stable to 0.8-0.9m/min.
  • the width of the slab is 1800mm and 2200mm, while 2400mm is a special width specification, which is used for rolling ultra-wide specification steel plates.
  • the 2400mm width section (the width of the slab) is controlled at 1.0-1.1m/min.
  • the above-mentioned speed set according to the section can make the liquid solidify more fully, retain more non-uniform nucleation cores in the liquid, improve the nucleation rate, and prevent the development of columnar crystal regions. Thus, more equiaxed crystals are obtained, and the effect of grain refinement is achieved.
  • the determination of the pulling speed depends on the size of the slab section. According to the speed-up curve, the speed is increased in steps, and the speed is increased by 0.05m every 30s. After increasing to a certain value, it is maintained for a certain period of time. The specific operation is 0.4m/min for 1 minute, 0.6m/min for 2 minutes, and so on, and finally increased to desired pulling speed. The larger the section is, the smaller the pulling speed is, and the smaller the section is, the larger the pulling speed is, which is determined according to the casting cycle and the solidification law to avoid internal defects in the slab. If the cross section is large and the pulling speed is large, the molten steel is not solidified and the steel is directly drawn, and steel breakout will also occur.
  • the continuous casting process mainly reduces or avoids the surface cracks of the continuous casting slab through the control of the casting superheat to reduce the degree of segregation in the center of the slab, and through the reasonable control of the cooling water and straightening temperature, so as to improve the surface and internal quality of the slab.
  • the quality of the final product provides a strong guarantee.
  • the casting superheat is determined by the difference between the tundish temperature and the liquidus temperature, and the target is controlled below 20°C. Control the height of the liquid level of the tundish.
  • the height of the liquid level of the tundish shall not be less than 600mm when pouring, and the height of the liquid level in the normal pouring process is between 800mm and 1000mm.
  • the casting temperature is reduced by water cooling to obtain fine grain size; on the other hand, the crystallizer vibration and dynamic light pressing are used to refine the grain.
  • the billet straightening temperature is controlled above 900°C.
  • Rolling in the rolling process, two-stage rolling is used for wide and thick plate rolling.
  • the two-stage rolling is divided into rough rolling and finishing rolling, and four-high reversing rolling mill is used for rough rolling and finishing rolling.
  • the billet is heated before rolling, and the temperature of the billet is controlled at 1170°C-1280°C (such as 1170°C, 1175°C, 1180°C, 1190°C, 1200°C, 1205°C, 1210°C, 1215°C, 1220°C, 1225°C) °C, 1230 °C, 1235 °C, 1240 °C, 1245 °C, 1250 °C, 1255 °C, 1260 °C, 1265 °C, 1270 °C, 1275 °C, 1280 °C and the range between any two values), the purpose of heating the billet is to Improve the plasticity of steel, reduce the deformation resistance, and improve the internal structure and properties of the metal.
  • the steel is heated to the temperature range of the austenite single-phase solid solution structure, and a relatively high temperature and sufficient time are ensured to homogenize the structure and dissolve the carbides, but the temperature cannot be too high. If the heating temperature is too high, on the one hand, it will cause defects such as strong oxidation, decarburization, overheating, and overburning of the steel; it will also lead to an increase in the viscosity of the iron oxide scale in contact with the cast slab matrix, which will affect the descaling effect; on the other hand, it will lead to The original austenite grains are too coarse. According to the principle of grain inheritance, the grains of the finished product will be relatively coarse, which is not conducive to the performance of the finished product. If the heating temperature is too low, the final rolling temperature will decrease, the number of rolling passes will increase, and the rolling force will increase, which will affect the rolling rhythm and the control of the final product shape, reduce the quality of the steel, and even lead to scrap.
  • the billet rough rolling opening temperature is lower than the billet discharge temperature.
  • the rough rolling temperature of the billet is 1130°C-1190°C (such as 1130°C, 1135°C, 1140°C, 1145°C, 1150°C, 1155°C, 1160°C, 1165°C, 1170°C, 1175°C, 1180°C, 1185°C, 1190°C °C and the range between any two values), rough rolling and finishing temperature 1050°C-1120°C (such as 1050°C, 1055°C, 1060°C, 1065°C, 1070°C, 1075°C, 1080°C, 1085°C, 1090°C, 1095°C, 1000°C, 1005°C, 1010°C, 1015°C, 1020°C and the range between any two values), higher rolling temperature can provide good temperature conditions for the occurrence of recrystallization, and can make rolling
  • the process deformation resistance is reduced, the damage to the rolling mill equipment is reduced, which is conducive to the implementation of the high temperature, low speed and large reduction process, which is
  • the total reduction ratio of rough rolling is >50%; the rolling temperature of finishing rolling is 850°C-1070°C (such as 850°C, 860°C, 870°C, 880°C, 890°C, 900°C, 910°C, 920°C, 930°C, 940°C °C, 950°C, 960°C, 970°C, 980°C, 990°C, 1000°C, 1010°C, 1020°C, 1030°C, 1040°C, 1050°C, 1060°C, 1070°C), the finishing rolling temperature is 830°C -960°C (such as 830°C, 840°C, 850°C, 860°C, 870°C, 880°C, 890°C, 900°C, 910°C, 920°C, 930°C, 940°C, 950°C, 960°C). Normalizing rolling mainly depends on the temperature in the final rolling stage. The final rolling temperature is
  • control of various parameters in the above rolling process can refine the structure and grains to the greatest extent and improve the structure of the core of the steel plate, and obtain a steel plate with the final thickness, performance and surface quality that meet the requirements.
  • the present invention adopts normalizing rolling, rough rolling and finishing rolling are both normalizing rolling, normalizing rolling refers to high-temperature rolling carried out above the normalizing temperature, and the steel plate after rolling is above the critical temperature A c3 , which simulates Normalizing heat treatment state to obtain the expected structure.
  • a c3 is the critical temperature for austenitization of hypoeutectoid steel, and is the final temperature for the transformation of ferrite into austenite. Normalizing rolling can save the normalizing process, shorten the delivery cycle and reduce production costs.
  • Processes or parameters not described in detail in the process of the present invention are conventional techniques for wind power steels in the field.
  • the wind power steel includes the following components: C: 0.146%, Si: 0.28%, Mn: 1.32%, P: 0.017%, S: 0.004%, Nb: 0.012%, Ti: 0.019%, Als: 0.032%, The balance is iron and inevitable impurities.
  • the manufacturing method of the wind power steel containing the above-mentioned components, the production process flow comprises the following steps:
  • molten iron desulfurization strictly implements the process regulations, the molten iron sulfur is controlled at 0.008%, the temperature is 1250 ° C, and the slag on the surface of the molten iron is removed after the desulfurization is completed.
  • the molten steel after converter smelting enters the LF refining furnace, and lime is added to make slag according to the actual situation.
  • the retention time of yellow-white slag or white slag is 13min.
  • the whole process is bottom-blown argon stirring, and argon is blown softly for 11min.
  • the vacuum degree is controlled to 10Pa
  • the vacuum time is 18min
  • the pure degassing time is 10min
  • the soft blowing time is 15min
  • the RH refining cycle is 43min
  • the addition amount of titanium wire is 0.8m/t.
  • the whole process is protected by pouring, the mold flux is peritectic steel mold flux, the casting billet with 175 section is used, and the pulling speed in the stable period is set to 1.20m/min.
  • Rolling control the rolling temperature to ensure rolling in the specified temperature range, (1) the billet discharge temperature is 1230-1280 °C; (2) the average temperature of the rough rolling of the billet is 1130-1180 °C, and the average temperature of the final rolling ⁇ 1050°C, the total reduction ratio of rough rolling is >50%; (3) The starting temperature of finishing rolling is 1010-1070°C, and the final rolling temperature is 920°C-960°C.
  • the wind power steel includes the following components: C: 0.146%, Si: 0.28%, Mn: 1.34%, P: 0.015%, S: 0.008%, Nb: 0.011%, Ti: 0.018%, Als: 0.039%, The balance is iron and inevitable impurities.
  • the wind power steel includes the following components: C: 0.142%, Si: 0.30%, Mn: 1.34%, P: 0.013%, S: 0.008%, Nb: 0.037%, Ti: 0.018%, Als: 0.032%, The balance is iron and inevitable impurities.
  • the manufacturing method of the wind power steel containing the above-mentioned components, the production process flow comprises the following steps:
  • the molten steel after converter smelting enters the LF refining furnace, and lime is added to make slag according to the actual situation.
  • the retention time of yellow-white slag or white slag is 13min.
  • the whole process is bottom-blown argon stirring, and argon is blown softly for 15min.
  • Deoxidation is carried out with aluminum particle deoxidizer. Use ferroniobium to fine-tune the composition, feed aluminum wire to increase aluminum, and feed titanium wire to increase titanium.
  • the vacuum degree is controlled to 20Pa
  • the vacuum time is 25min
  • the pure degassing time is 15min
  • the soft blowing time is 20min
  • the RH refining cycle is 60min.
  • the addition amount of aluminum wire is 1.5m/t
  • the addition amount of titanium wire is 2.0m/t.
  • the whole process is protected by pouring, the mold flux is peritectic steel mold flux, the casting billet with 300 section is used, and the pulling speed in the stable period is set to 0.85m/min.
  • Rolling control the rolling temperature to ensure that the rolling is carried out in the specified temperature range, (1) the temperature of the billet is 1170-1220 ° C; (2) the average temperature of the rough rolling is 1160-1190 ° C, and the average temperature of the final rolling is 1160-1190 ° C. 1100-1130 °C, the total reduction ratio of rough rolling is >50%; (3) the finishing rolling temperature is 860-900 °C, and the finishing rolling temperature is 830-860 °C.
  • Table 3 The properties of the steel sheet in this example are listed in Table 3, and the performance testing method adopts the international general method.
  • Table 3 d is the diameter of the bending center, and a is the thickness of the sample.
  • Example 4 and Comparative Examples 1-3 except that the composition of the wind power steel is different from that of Example 1, the production process steps are the same as those of Example 1.
  • the composition of the wind power steel in Example 4 and Comparative Examples 1-3 please refer to Table 4 for details.
  • Table 5 The properties of the steel sheets of Example 4 and Comparative Examples 1-3 are listed in Table 5, and the performance testing method adopts the international general method.
  • d is the diameter of the bending center, and a is the thickness of the sample.
  • Comparative Example 4-7 except that the temperature of step 5) rolling is different from that of Example 3, the composition and other production process steps of wind power steel are the same as those of Example 3, and the temperature of step 5) rolling in Comparative Example 4-7 is the same as that of Example 3. See Table 6 for details.
  • Comparative Example 7 adopts the method of controlled rolling + normalizing process described in the background art section, and the properties of the steel sheet before the normalizing heat treatment.
  • the properties of the steel plates of Comparative Examples 4-7 are listed in Table 7, and the performance testing method adopts the international general method.
  • d is the diameter of the bending center
  • a is the thickness of the sample.
  • Comparative example 7 adopts the method of controlled rolling + normalizing process described in the background art section, and the performance of the steel plate before normalizing heat treatment is not good, so the rolling process of the present invention has the effect of normalizing heat treatment.
  • (1) the billet discharge temperature; (2) the average temperature of rough rolling and opening of the billet, and the average temperature of final rolling is ⁇ 1050 °C; (3) the starting temperature of finishing rolling, the final rolling temperature is equal to the temperature value.
  • Lower than the rolling temperature in step 5) of the present application due to the low temperature, uneven heating, insufficient deformation during rolling, uneven deformation of the intermediate structure, and most of the performance will be inconsistent.
  • the exemplary embodiment of the present invention by adjusting the composition and manufacturing process of the steel, the precise control of the microstructure transformation and the ratio of each phase is realized, and finally the normalized-rolled low-temperature impact toughness wind power steel with special mechanical properties is obtained.
  • Rolled low-temperature impact toughness wind power steel provides a relatively accurate control range of C, S, P, and gives the control range of Mn, Nb, Ti, the production cost of steelmaking is low, the production process is easy to stably control, and the chemical composition is also easy Stable control, the alloy composition is controlled by LF refining and RH refining, and the normalizing rolling process can be used to produce to meet the requirements of low temperature impact toughness, and other comprehensive properties of the steel plate (such as cold bending, elongation, yield strength and tensile strength) are excellent . Therefore, the exemplary embodiments of the present invention can provide a normalized-rolled low-temperature impact toughness wind power steel without using expensive Ni, Cr, and V, and thus can significantly reduce the production cost
  • a normalized-rolled low-temperature impact toughness wind power steel having a thickness of 6 mm to 63 mm, thereby simplifying the production process of the low-temperature impact toughness wind power steel, and providing a positive impact toughness steel with a larger thickness.
  • the invention is an economical wind power steel, which is suitable for wind power towers with normalized rolling and low temperature impact toughness requirements. When the low temperature reaches -20°C, the minimum impact toughness is ⁇ 100J.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明提供一种耐低温冲击韧性风电钢的制备方法,包括如下步骤:预处理,将铁水脱硫;冶炼,将预处理后的铁水进行冶炼;精炼,分为LF精炼和RH精炼;连铸,采用全程保护浇铸;轧制,采用二阶段轧制,分粗轧和精轧。发明公开的一种耐低温冲击韧性风电钢的制备方法,提供了一种成本低廉、低温冲击韧性优异且产品强度、断后伸长率和冷弯性能等综合性能优良的正火轧制低温冲击韧性风电钢板,以及通过采用添加和控制各种合金元素,直接通过正火轧制工艺,生产成本低、生产周期短并且可以生产6mm至63mm厚度的正火轧制低温冲击韧性风电钢板,得到耐低温冲击韧性风电钢。

Description

耐低温冲击韧性风电钢的制备方法 技术领域
本发明涉及钢铁冶炼领域,特别涉及一种耐低温冲击韧性风电钢的制备方法。
背景技术
风能是一种清洁而稳定的新能源,利用风力发电可有效减缓气候变化、提高能源安全、促进低碳经济增长,因此风电便成为近年来世界上增长最快的能源之一,从而风电用钢的市场需求量也越来越大。我国将在甘肃、内蒙古、新疆等7省区建设8个千万千瓦级的风电基地,其使用环境最低温度接近-20℃,故对低温冲击韧性要求高。
国家标准:GB/T 1591-2018提供了一种Q355ND钢的化学成分以及力学和工艺性能要求,如表1、表2所示。
表1 Q355ND化学成分(wt%)
C Si Mn P S Nb Ti Als
≤0.20 ≤0.50 0.90-1.65 ≤0.030 ≤0.025 0.005-0.05 0.006-0.05 ≥0.015
表2 Q355ND力学和工艺性能要求
Figure PCTCN2021118336-appb-000001
表2中,d为弯心直径,a为试样厚度。
在实际应用中,往往因为使用条件和应用领域的不同,会提出各种附加要求,这就需要在国标的基础上,进一步改善产品性能。
目前已有不少低温冲击韧性风电钢板的制造方法,从成分来看,合金元素添加较多,采用的是Nb、V、Ti成分体系,大多加入了贵金属如Ni、Cr等,增加了钢的生产成本。也有虽然不采用Ni、Cr成分体系,而使用控制轧制及控制冷却工艺,这种技术获得的产品低温冲击韧性合格率较低。
从生产工艺特点来看,目前低温冲击韧性风电钢板的研制和生产,绝大部分采用控制轧制+正火工艺的方法,以获得低温冲击韧性风电钢板的性能要求。虽然用上述方法可以使组织均匀,低温冲击韧性提高,但使用热处理工序使得生产周期较长,成本增加,生产效率较低。
发明内容
本发明的目的在于提供一种耐低温冲击韧性风电钢的制备方法,以解决上述问题中的至少一个问题。本发明提供了一种成本低廉、低温冲击韧性优异且产品强度、断后伸长率和冷弯性能等综合性能优良的正火轧制低温冲击韧性风电钢板,以及通过采用添加和控制各种合金元素,直接通过正火轧制工艺,生产成本低、生产周期短并且可以生产6mm至63mm厚度的正火轧制低温冲击韧性风电钢板,得到耐低温冲击韧性风电钢。
为了实现上述目的,本发明提供如下技术方案:
一种耐低温冲击韧性风电钢的制备方法,包括如下步骤:预处理,将铁水脱硫;冶炼,将预处理后的铁水进行冶炼;精炼,分为LF精炼和RH精炼;连铸,采用全程保护浇铸;轧制,采用二阶段轧制,为粗轧和精轧。
进一步地,在上述的耐低温冲击韧性风电钢的制备方法中,在所述预处理步骤中,将铁水中硫含量按质量百分比控制在0.010%以下;优选地,脱硫温度为1250℃-1320℃。
进一步地,在上述的耐低温冲击韧性风电钢的制备方法中,在所述冶炼步骤中,预处理后的铁水进入转炉进行冶炼,造渣料在铁水进入转炉的终点前1min-5min内加完,终渣碱度控制在R=3.0-4.0;优选地,终点压枪时间65s-120s;优选地,采用铝锰铁脱氧,铝锰铁加入量为2.0kg/t-3.5kg/t,钢水出至四分之一时,分批加入硅锰、硅铁、铌铁,钢水出至四分之三时加完;优选地,硅锰为含重量百分比为13%-25%的硅和55%-75%的锰的铁合金,硅锰的加入量为20kg/t-30kg/t;硅铁为含重量百分比为70%-78%的硅的铁合金, 硅铁的加入量为0.5kg/t-2kg/t;铌铁为含重量百分比为50%-65%的铌的铁合金,铌铁的加入量为0.1kg/t-0.8kg/t。
进一步地,在上述的耐低温冲击韧性风电钢的制备方法中,在所述精炼步骤中,LF精炼采用全程底吹氩搅拌,软吹氩气10min-15min,加入石灰进行造渣,采用铝粒脱氧剂进行脱氧;优选地,黄白渣或白渣保持时间10min-30min,终渣碱度控制在R=3.0-4.0。
进一步地,在上述的耐低温冲击韧性风电钢的制备方法中,在所述精炼步骤中,RH精炼过程中的真空度控制在10Pa-30Pa,真空时间为15min-25min;优选地,纯脱气时间≮5min,软吹时间≮12min;优选地,RH精炼的周期控制在40min-60min,铝线的加入量为0m/t-3.3m/t,钛线的加入量为0.8m/t-3.3m/t。
进一步地,在上述的耐低温冲击韧性风电钢的制备方法中,在所述连铸步骤中,全程保护浇铸是指大包至中间包采用长水口并进行氩封保护;中间包采用覆盖剂结合碳化稻壳进行覆盖;中间包至结晶器采用浸入式水口并采用氩封保护;结晶器液面采用包晶钢保护渣;优选地,按重量百分比,包晶钢保护渣的成分为25%≤SiO 2≤35%、35%≤CaO≤45%、1.90%≤MgO≤3.00%、3.00%≤Al 2O 3≤4.00%。
进一步地,在上述的耐低温冲击韧性风电钢的制备方法中,在所述连铸步骤中,拉速稳定到0.80m/min-1.40m/min;优选地,175断面:拉速稳定到1.2-1.35m/min,200断面:拉速稳定到1.3-1.4m/min,250断面:拉速稳定到1.1-1.3m/min,300断面:拉速稳定到0.8-0.9m/min。
进一步地,在上述的耐低温冲击韧性风电钢的制备方法中,在所述连铸步骤中,浇铸过热度控制在20℃以下;优选地,控制中间包液面的高度,开浇时中间包液面的高度不低于600mm,正常浇注过程时液面高度在800mm-1000mm之间;优选地,铸坯矫直温度控制在900℃以上。
进一步地,在上述的耐低温冲击韧性风电钢的制备方法中,在所述轧制步骤中,钢坯出炉温度控制在1170℃-1280℃;粗轧开轧温度1130℃-1190℃、粗轧终轧温度1050℃-1120℃;粗轧总压缩比>50%;精轧开轧温度为850℃-1070℃、精轧终轧温度为830℃-960℃。
进一步地,在上述的耐低温冲击韧性风电钢的制备方法中,按重量百分 比,所述风电钢包括如下成分:0.13%≤C≤0.17%,0.20%≤Si≤0.50%,0.90%≤Mn≤1.65%,0≤S≤0.010%,0≤P≤0.030%,0.010%≤Nb≤0.040%,0.010%≤Ti≤0.030%,0.015%≤Als≤0.050%,其余为铁和不可避免的杂质,Als为酸溶铝。
分析可知,本发明公开的一种耐低温冲击韧性风电钢的制备方法,提供了一种成本低廉、低温冲击韧性优异且产品强度、断后伸长率和冷弯性能等综合性能优良的正火轧制低温冲击韧性风电钢板,以及通过采用添加和控制各种合金元素,直接通过正火轧制工艺,生产成本低、生产周期短并且可以生产6mm至63mm厚度的正火轧制低温冲击韧性风电钢板,得到耐低温冲击韧性风电钢。
具体实施方式
下面将结合实施例来详细说明本发明。各个示例通过本发明的解释的方式提供而非限制本发明。实际上,本领域的技术人员将清楚,在不脱离本发明的范围或精神的情况下,可在本发明中进行修改和变型。例如,示为或描述为一个实施例的一部分的特征可用于另一个实施例,以产生又一个实施例。因此,所期望的是,本发明包含归入所附权利要求及其等同物的范围内的此类修改和变型。
根据本发明的实施例,提供了一种耐低温冲击韧性风电钢的制备方法。按重量百分比,风电钢包括如下成分:0.13%≤C≤0.17%,0.20%≤Si≤0.50%,0.90%≤Mn≤1.65%,0≤S≤0.010%,0≤P≤0.030%,0.010%≤Nb≤0.040%,0.010%≤Ti≤0.030%,0.015%≤Als≤0.050%,其余为铁和不可避免的杂质,Als为酸溶铝。在温度为-20℃时的冲击韧性的最小值≥100J。该风电钢成本低廉、低温冲击韧性优异且产品强度、断后伸长率和冷弯性能等综合性能优良。且采用低C+Nb、Ti微合金化成分设计,保证钢板具有易焊接性。
以下对本发明的耐低温冲击韧性风电钢的成分含量控制及作用进行进一步的说明。
以GB/T 1591-2018提供的Q355ND钢为基础,合理设计了Nb、Ti和Al的含量。Nb:充分发挥Nb的细晶强化作用,保证钢板具有足够的强度;Ti:一方面消除钢中的自由氮,提高抗时效性能,另一方面细化晶粒,减少 偏析降低带状组织级别,提高强韧性;Al:一方面可细化晶粒,提高强度,另一方面Al与N结合,可防止应变时效。
另一方面,本发明还提供了一种上述的耐低温冲击韧性风电钢的制备方法,制备方法包括如下步骤:预处理、冶炼、精炼、连铸、轧制。
为保证风电钢的低温冲击韧性要求,一方面在成分设计时充分考虑各合金元素的添加量,另一方面在轧制过程中采用正火轧制工艺,以满足对产品性能的需求。
预处理,是指铁水脱硫,铁水脱硫严格执行工艺规程,将铁水中硫含量按质量百分比控制在0.010%以下(比如0.001%、0.002%、0.003%、0.004%、0.005%、0.006%、0.007%、0.008%、0.009%、0.010%),脱硫温度为1250℃-1320℃(比如1250℃、1255℃、1258℃、1260℃、1263℃、1267℃、1270℃、1275℃、1280℃、1290℃、1300℃、1305℃、1310℃、1315℃、1320℃),脱硫完毕扒净铁水表面的渣。通常情况下,硫是有害元素,使钢产生热脆性,降低钢的延展性和韧性,在轧制时造成裂纹,且对焊接性能不利。本发明在预处理时采用KR法脱硫控制脱硫温度,并有效降低铁水中硫含量至0.010%以下,脱硫彻底,保证钢质纯净度。
冶炼,预处理后的铁水进入转炉进行冶炼,造渣料在铁水进入转炉的终点前1min-5min内加完,终渣碱度控制在R=3.0-4.0,终点压枪时间65s-120s(比如65s、70s、75s、80s、85s、90s、95s、100s、105s、110s、115s、120s及任意两个数值之间的范围),终点压枪时间在65s-120s内,加入的合金成分在钢水内的化学反应正好完成,达到成分完全均匀化。时间如果短于65s,反应不能充分完成;时间如果长于120s,对成分没有任何作用反而影响生产效率。
采用铝锰铁脱氧,铝锰铁加入量为2.0kg/t-3.5kg/t,钢水出至四分之一时,分批加入硅锰、硅铁、铌铁,钢水出至四分之三时加完。转炉冶炼控制的重点是尽量降低终点磷、硫含量,合理控制碳含量,保证钢质纯净度。
硅锰为含重量百分比为13%-25%的硅和55%-75%的锰的铁合金,硅锰的加入量为20kg/t-30kg/t;硅铁为含重量百分比为70%-78%的硅的铁合金,硅铁的加入量为0.5kg/t-2kg/t;铌铁为含重量百分比为50%-65%的铌的铁合金,铌铁的加入量为0.1kg/t-0.8kg/t。
精炼,分为LF精炼和RH精炼。
其中,LF精炼采用全程底吹氩搅拌,软吹氩气10min-15min,加入石灰进行造渣,采用铝粒脱氧剂进行脱氧,黄白渣或白渣保持时间10min-30min(比如10min、12min、17min、19min、20min、22min、25min、27min、29min、30min),黄白渣或白渣保持时间过短,终渣未化透;黄白渣或白渣保持时间过长,影响生产效率。终渣碱度控制在R=3.0-4.0,采用铌铁对成分进行微调,喂铝线增铝,喂钛线增钛。LF精炼可以进一步脱硫、脱氧、去夹杂,调整钢水成分和温度,获得良好的精炼效果。
RH精炼采用深处理模式,真空度控制在10Pa-30Pa,真空度越小,说明钢水中氮、氢、氧等气体夹杂物含量越小,即洁净钢冶炼。理想状态真空度的数值是0Pa,但要达到不太现实,本发明将真空度控制在10Pa-30Pa,说明钢水中氮、氢、氧等气体夹杂物含量很小,接近洁净钢冶炼。真空时间控制在15min-25min(比如15min、17min、19min、20min、22min、25min),真空度保持时间过短,气体夹杂除不净;过长,不再起作用反而影响生产效率。纯脱气时间控制在≮5min,软吹时间≮12min。RH精炼的周期控制在40min-60min,铝线的加入量为0m/t-3.3m/t(当LF精炼时,铝粒加入量已足够达到脱氧效果时,RH精炼可以不再加入铝线),钛线的加入量为0.8m/t-3.3m/t。RH精炼的主要目是进行真空脱气,降低钢中气体含量,减少钢板内部由气体带来的缺陷,改善钢水的纯净度及合金化和均匀化。
连铸,在板坯连铸过程中,采用全程保护浇铸,即大包至中间包采用长水口并进行氩封保护;中间包采用覆盖剂结合碳化稻壳进行覆盖,保证液面覆盖良好,使钢水与空气隔绝,避免二次氧化;中间包至结晶器采用浸入式水口并采用氩封保护;结晶器液面采用包晶钢保护渣,稳定拉速。按重量百分比,包晶钢保护渣的主要成分为25%≤SiO 2≤35%、35%≤CaO≤45%、1.90%≤MgO≤3.00%、3.00%≤Al 2O 3≤4.00%。
连铸过程中,开浇缓慢、均匀地提高拉速,提至目标拉速后,实行自动控制,同时密切观察结晶器液面波动情况,逐步使拉速稳定到0.80m/min-1.40m/min。根据断面的尺寸不同,拉速也不同,断面的尺寸是指铸坯的厚度规格。具体地,
175断面:拉速稳定到1.2-1.35m/min,
200断面:拉速稳定到1.3-1.4m/min,
250断面:拉速稳定到1.1-1.3m/min,
300断面:拉速稳定到0.8-0.9m/min。
一般铸坯宽度为1800mm和2200mm,而2400mm为特殊宽度规格,轧制超宽规格钢板使用。其中2400mm宽度断面(铸坯的宽度)按1.0-1.1m/min控制。
在浇铸温度和过热度一定时,上述根据断面设定的速度可使液体凝固更充分,在液体中保留了较多的非均匀形核核心,提高了形核率,阻止柱状晶区的发展,从而获得了更多的等轴晶,达到了细化晶粒的效果。
拉速的确定取决于铸坯断面大小。根据提速曲线,台阶式进行提速,每30s速度提高0.05m,提高到一个数值后保持一定时间,具体操作是0.4m/min保持1分钟,0.6m/min保持2分钟,如此进行,最终提高到所需拉速。断面大拉速小,断面小拉速大,是根据浇铸周期和凝固定律确定,避免铸坯出现内部缺陷。若断面大拉速大,钢水未凝固直接拉钢也会产生漏钢。
连铸过程主要通过对浇铸过热度的控制来减轻铸坯中心偏析程度以及通过对冷却水和矫直温度的合理控制,减少或避免连铸坯表面裂纹,从而提高铸坯表面和内部质量,为最终产品的质量提供有力保证。浇铸过热度是由中间包温度与液相线温度之差确定,目标控制在20℃以下。控制中间包液面的高度,开浇时中间包液面的高度不低于600mm,正常浇注过程液面高度在800mm-1000mm之间,严禁低液面浇铸,防止卷渣。一方面通过进行水冷,降低浇铸温度,获得细小的晶粒尺寸;一方面采用结晶器振动和动态轻压下,细化晶粒。铸坯矫直温度控制在900℃以上。
轧制,在轧制过程中,宽厚板轧制采用二阶段轧制,二阶段轧制分为粗轧和精轧,粗轧和精轧轧制采用四辊可逆式轧机。在轧制之前对钢坯进行加热处理,钢坯出炉温度控制在1170℃-1280℃(比如1170℃、1175℃、1180℃、1190℃、1200℃、1205℃、1210℃、1215℃、1220℃、1225℃、1230℃、1235℃、1240℃、1245℃、1250℃、1255℃、1260℃、1265℃、1270℃、1275℃、1280℃及任意两数值之间的范围),钢坯进行加热的目的是提高钢的塑性,降低变形抗力,改善金属内部组织和性能。一般将钢加热到奥氏体单相固溶体组织的温度范围内,并保证有较高的温度和足够的时间以均匀化组织及溶解碳化物, 但温度不能过高。加热温度过高,一方面会引起钢的强烈氧化、脱碳、过热、过烧等缺陷;也会导致与铸坯基体接触的氧化铁皮粘度增大,影响除鳞效果;另一方面,会导致原始奥氏体晶粒过于粗大,根据晶粒遗传原理,成品的晶粒也会较为粗大,不利于成品的性能。加热温度过低则会使终轧温度降低,轧制道次增多,轧制力增加,影响轧制节奏和最终成品板形的控制,降低钢的质量,甚至会导致废品。
钢坯出炉后粗轧前要进行高压水除鳞即除去铸坯表面的氧化铁皮,为后续获得高表面质量提供保证。因此,钢坯粗轧开轧温度相比于钢坯出炉温度会降低。钢坯粗轧开轧温度1130℃-1190℃(比如1130℃、1135℃、1140℃、1145℃、1150℃、1155℃、1160℃、1165℃、1170℃、1175℃、1180℃、1185℃、1190℃及任意两数值之间的范围),粗轧终轧温度1050℃-1120℃(比如1050℃、1055℃、1060℃、1065℃、1070℃、1075℃、1080℃、1085℃、1090℃、1095℃、1000℃、1005℃、1010℃、1015℃、1020℃及任意两数值之间的范围),较高的轧制温度可以为再结晶的发生提供良好的温度条件,并且可使轧制过程变形抗力降低,减少对轧机设备的损害,有利于高温低速大压下工艺的实施,进而有利于裂纹、疏松、孔隙等缺陷的消除及夹杂物的球化,有利于变形渗透到中心,使变形更均匀,提高了板坯的塑性,有利于轧制,以保证粗轧阶段的总压缩比。
粗轧总压缩比>50%;精轧开轧温度为850℃-1070℃(比如850℃、860℃、870℃、880℃、890℃、900℃、910℃、920℃、930℃、940℃、950℃、960℃、970℃、980℃、990℃、1000℃、1010℃、1020℃、1030℃、1040℃、1050℃、1060℃、1070℃),精轧终轧温度为830℃-960℃(比如830℃、840℃、850℃、860℃、870℃、880℃、890℃、900℃、910℃、920℃、930℃、940℃、950℃、960℃)。正火轧制主要取决于最终轧制阶段的温度,终轧温度为830℃-960℃可以保证轧制为正火轧制。
上述轧制过程中各参数的控制能够最大程度地细化组织晶粒及改善钢板心部的组织,可获得最终厚度、性能、表面质量都符合要求的钢板。
本发明采用的是正火轧制,粗轧和精轧均为正火轧制,正火轧制是指在正火温度以上进行的高温轧制,轧制后钢板在临界温度A c3以上,模拟正火热处理状态,以获得预期的组织形态。A c3是亚共析钢的奥氏体化的临界温度, 是铁素体转变为奥氏体的终了温度。采用正火轧制即可省去正火工序缩短交货周期又可降低生产成本。
本发明工艺中未详细说明的工艺或参数为本领域风电用钢的常规技术。
实施例1:
按重量百分比,风电钢包括如下成分:C:0.146%、Si:0.28%、Mn:1.32%、P:0.017%、S:0.004%、Nb:0.012%、Ti:0.019%,Als:0.032%,余量为铁和不可避免的杂质。
含有上述成分的风电钢的制造方法,生产工艺流程包括如下步骤:
1)预处理,铁水脱硫严格执行工艺规程,铁水硫控制在0.008%,温度1250℃,脱硫完毕扒净铁水表面的渣。
2)冶炼,预处理后的铁水进入转炉进行冶炼,造渣料于终点前3min加完,终渣碱度控制在R=3.0,终点压枪时间65s。采用铝锰铁脱氧,铝锰铁加入量2.5kg/t。钢水出至四分之一时,分批加入硅锰、硅铁、铌铁,钢水出至四分之三时加完。
3)精炼,转炉冶炼后的钢水进入LF精炼炉,根据实际情况加入石灰进行造渣,黄白渣或白渣保持时间为13min,采用全程底吹氩搅拌,软吹氩气11min。
LF精炼后进入RH精炼炉,控制真空度10Pa,真空时间18min,纯脱气时间10min,软吹时间15min,RH精炼周期43min,钛线的加入量为0.8m/t。
4)连铸,采用全程保护浇注,保护渣采用包晶钢保护渣,采用175断面的铸坯,设定稳定期拉速为1.20m/min。
5)轧制,控制轧制温度,保证在规定的温度区间进行轧制,(1)钢坯出炉温度1230-1280℃;(2)钢坯粗轧开轧平均温度1130-1180℃,终轧平均温度≥1050℃,粗轧总压缩比>50%;(3)精轧开轧温度1010-1070℃,终轧温度为920℃-960℃。
本实施例的钢板性能列于表3中,性能测试方法采用国际通用方法。
实施例2:
按重量百分比,风电钢包括如下成分:C:0.146%、Si:0.28%、Mn: 1.34%、P:0.015%、S:0.008%、Nb:0.011%、Ti:0.018%,Als:0.039%,余量为铁和不可避免的杂质。
含有上述成分的风电钢的制造方法,生产工艺流程操作步骤同实施例1。
本实施例的钢板性能列于表3中,性能测试方法采用国际通用方法。
实施例3:
按重量百分比,风电钢包括如下成分:C:0.142%、Si:0.30%、Mn:1.34%、P:0.013%、S:0.008%、Nb:0.037%、Ti:0.018%,Als:0.032%,余量为铁和不可避免的杂质。
含有上述成分的风电钢的制造方法,生产工艺流程包括如下步骤:
1)预处理,铁水脱硫严格执行工艺规程,铁水硫控制在0.005%,温度1290℃,脱硫完毕扒净铁水表面的渣。
2)冶炼,预处理后的铁水进入转炉进行冶炼,造渣料于终点前3min加完,终渣碱度控制在R=3.5,终点压枪时间100s。采用铝锰铁脱氧,铝锰铁加入量3.0kg/t。钢水出至四分之一时,分批加入硅锰、硅铁、铌铁,钢水出至四分之三时加完。
3)精炼,转炉冶炼后的钢水进入LF精炼炉,根据实际情况加入石灰进行造渣,黄白渣或白渣保持时间为13min,采用全程底吹氩搅拌,软吹氩气15min。采用铝粒脱氧剂进行脱氧。采用铌铁对成分进行微调,喂铝线增铝,喂钛线增钛。
LF精炼后进入RH精炼炉,控制真空度20Pa,真空时间25min,纯脱气时间15min,软吹时间20min,RH精炼周期60min,铝线的加入量为1.5m/t,钛线的加入量为2.0m/t。
4)连铸,采用全程保护浇注,保护渣采用包晶钢保护渣,采用300断面的铸坯,设定稳定期拉速为0.85m/min。
5)轧制,控制轧制温度,保证在规定的温度区间进行轧制,(1)钢坯出炉温度1170-1220℃;(2)钢坯粗轧开轧平均温度1160-1190℃,终轧平均温度1100-1130℃,粗轧总压缩比>50%;(3)精轧开轧温度860-900℃,终轧温度为830℃-860℃。
本实施例的钢板性能列于表3中,性能测试方法采用国际通用方法。表 3中,d为弯心直径,a为试样厚度。
表3:实施例1-3中钢板性能
Figure PCTCN2021118336-appb-000002
实施例4、对比例1-3中除风电钢的成分与实施例1不同外,生产工艺流程步骤与实施例1相同,实施例4、对比例1-3中风电钢的成分具体参见表4。实施例4、对比例1-3的钢板性能列于表5中,性能测试方法采用国际通用方法。表5中,d为弯心直径,a为试样厚度。
表4:实施例4、对比例1-3中风电钢的成分
编号 C Si Mn P S Nb Ti Als
实施例4 0.17 0.5 1.6 0.015 0.007 0.035 0.03 0.05
对比例1 0.14 0.3 1.43 0.011 0.008 0.005 0.04 0.07
对比例2 0.16 0.4 1.6 0.012 0.005 0.05 0.05 0.03
对比例3 0.13 0.45 1.65 0.010 0.006 0.05 0.006 0.05
表5:实施例4、对比例1-3中钢板性能
Figure PCTCN2021118336-appb-000003
对比例4-7中除步骤5)轧制的温度与实施例3不同外,风电钢的成分和其他生产工艺流程步骤与实施例3相同,对比例4-7中步骤5)轧制的温度具体参见表6。对比例7采用背景技术部分说明的采用控制轧制+正火工艺的方法,在未正火热处理之前钢板的性能。对比例4-7的钢板性能列于表7中,性能测试方法采用国际通用方法。表7中,d为弯心直径,a为试样厚度。
表6:实施例4、对比例1-3中钢板性能
Figure PCTCN2021118336-appb-000004
表7:对比例4-6中钢板性能
Figure PCTCN2021118336-appb-000005
由表6和表7可知,由于步骤5)轧制的温度与实施例3不同,对比例4-6获得的钢板性能远不如实施例3获得的钢板性能。对比例7采用背景技术部分说明的采用控制轧制+正火工艺的方法,在未正火热处理之前钢板的性能不佳,因此本发明的轧制工艺有正火热处理效果。对比例4-7中,(1)钢坯出炉温度;(2)钢坯粗轧开轧平均温度,终轧平均温度≥1050℃;(3)精轧开轧温度,终轧温度为等温度数值均低于本申请步骤5)中轧制的温度由于温度低,加热不均匀,轧钢时变形不充分,中间组织变形不均匀,性能 绝大部分会存在不合情况。
本发明的示例性实施例通过调整钢的成分和制造工艺,实现对组织转变和各相比例的精确控制,最终得到特殊的力学性能的正火轧制低温冲击韧性风电钢,本发明的正火轧制低温冲击韧性风电钢提供了比较精确的C、S、P控制范围,并且给出了Mn、Nb、Ti的控制范围,炼钢生产成本较低,生产过程容易稳定控制,化学成分也容易稳定控制,通过LF精炼和RH精炼控制合金成分、采用正火轧制工艺就可以生产满足低温冲击韧性要求,钢板的其它综合性能(例如冷弯性、延伸率、屈服强度和抗拉强度)优良。因此,本发明的示例性实施例能够在不使用昂贵的Ni、Cr、V的情况下提供一种正火轧制低温冲击韧性风电钢,因此能够显著地降低生产成本。
根据本发明的示例性实施例,能够提供一种厚度为6mm至63mm的正火轧制耐低温冲击韧性风电钢,因此能够简化低温冲击韧性风电钢的生产工艺,并提供具有较大厚度的正火轧制低温冲击韧性风电钢板。本发明是一种经济型风电钢,适用于有正火轧制和低温冲击韧性要求的风电塔筒,在低温达到-20℃时,冲击韧性的最小值≥100J。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种耐低温冲击韧性风电钢的制备方法,其特征在于,包括如下步骤:
    预处理,将铁水脱硫;
    冶炼,将预处理后的铁水进行冶炼;
    精炼,分为LF精炼和RH精炼;
    连铸,采用全程保护浇铸;
    轧制,采用二阶段轧制,为粗轧和精轧。
  2. 根据权利要求1所述的耐低温冲击韧性风电钢的制备方法,其特征在于,
    在所述预处理步骤中,将铁水中硫含量按质量百分比控制在0.010%以下;
    优选地,脱硫温度为1250℃-1320℃。
  3. 根据权利要求1所述的耐低温冲击韧性风电钢的制备方法,其特征在于,
    在所述冶炼步骤中,预处理后的铁水进入转炉进行冶炼,造渣料在铁水进入转炉的终点前1min-5min内加完,终渣碱度控制在R=3.0-4.0;
    优选地,终点压枪时间65s-120s;
    优选地,采用铝锰铁脱氧,铝锰铁加入量为2.0kg/t-3.5kg/t,钢水出至四分之一时,分批加入硅锰、硅铁、铌铁,钢水出至四分之三时加完;
    优选地,硅锰为含重量百分比为13%-25%的硅和55%-75%的锰的铁合金,硅锰的加入量为20kg/t-30kg/t;
    硅铁为含重量百分比为70%-78%的硅的铁合金,硅铁的加入量为0.5kg/t-2kg/t;
    铌铁为含重量百分比为50%-65%的铌的铁合金,铌铁的加入量为0.1kg/t-0.8kg/t。
  4. 根据权利要求1所述的耐低温冲击韧性风电钢的制备方法,其特征在于,
    在所述精炼步骤中,LF精炼采用全程底吹氩搅拌,软吹氩气10min-15min,加入石灰进行造渣,采用铝粒脱氧剂进行脱氧;
    优选地,黄白渣或白渣保持时间10min-30min,终渣碱度控制在R=3.0-4.0。
  5. 根据权利要求1所述的耐低温冲击韧性风电钢的制备方法,其特征在于,
    在所述精炼步骤中,RH精炼过程中的真空度控制在10Pa-30Pa,真空时间为15min-25min;
    优选地,纯脱气时间≮5min,软吹时间≮12min;
    优选地,RH精炼的周期控制在40min-60min,铝线的加入量为0m/t-3.3m/t,钛线的加入量为0.8m/t-3.3m/t。
  6. 根据权利要求1所述的耐低温冲击韧性风电钢的制备方法,其特征在于,
    在所述连铸步骤中,全程保护浇铸是指大包至中间包采用长水口并进行氩封保护;中间包采用覆盖剂结合碳化稻壳进行覆盖;中间包至结晶器采用浸入式水口并采用氩封保护;结晶器液面采用包晶钢保护渣;
    优选地,按重量百分比,包晶钢保护渣的成分为25%≤SiO 2≤35%、35%≤CaO≤45%、1.90%≤MgO≤3.00%、3.00%≤Al 2O 3≤4.00%。
  7. 根据权利要求1所述的耐低温冲击韧性风电钢的制备方法,其特征在于,
    在所述连铸步骤中,拉速稳定到0.80m/min-1.40m/min;
    优选地,175断面:拉速稳定到1.2-1.35m/min,
    200断面:拉速稳定到1.3-1.4m/min,
    250断面:拉速稳定到1.1-1.3m/min,
    300断面:拉速稳定到0.8-0.9m/min。
  8. 根据权利要求1所述的耐低温冲击韧性风电钢的制备方法,其特征在于,
    在所述连铸步骤中,浇铸过热度控制在20℃以下;
    优选地,控制中间包液面的高度,开浇时中间包液面的高度不低于600mm,正常浇注过程时液面高度在800mm-1000mm之间;
    优选地,铸坯矫直温度控制在900℃以上。
  9. 根据权利要求1所述的耐低温冲击韧性风电钢的制备方法,其特征在于,
    在所述轧制步骤中,钢坯出炉温度控制在1170℃-1280℃;
    粗轧开轧温度1130℃-1190℃、粗轧终轧温度1050℃-1120℃;
    粗轧总压缩比>50%;
    精轧开轧温度为850℃-1070℃、精轧终轧温度为830℃-960℃。
  10. 根据权利要求1所述的耐低温冲击韧性风电钢的制备方法,其特征在于,按重量百分比,所述风电钢包括如下成分:0.13%≤C≤0.17%,0.20%≤Si≤0.50%,0.90%≤Mn≤1.65%,0≤S≤0.010%,0≤P≤0.030%,0.010%≤Nb≤0.040%,0.010%≤Ti≤0.030%,0.015%≤Als≤0.050%,其余为铁和不可避免的杂质,Als为酸溶铝。
PCT/CN2021/118336 2020-11-24 2021-09-14 耐低温冲击韧性风电钢的制备方法 WO2022110982A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21896486.4A EP4253586A1 (en) 2020-11-24 2021-09-14 Preparation method for low-temperature impact toughness-resistant wind power steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011334962.2 2020-11-24
CN202011334962.2A CN112662933A (zh) 2020-11-24 2020-11-24 耐低温冲击韧性风电钢的制备方法

Publications (1)

Publication Number Publication Date
WO2022110982A1 true WO2022110982A1 (zh) 2022-06-02

Family

ID=75404121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118336 WO2022110982A1 (zh) 2020-11-24 2021-09-14 耐低温冲击韧性风电钢的制备方法

Country Status (3)

Country Link
EP (1) EP4253586A1 (zh)
CN (1) CN112662933A (zh)
WO (1) WO2022110982A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114941111A (zh) * 2022-06-22 2022-08-26 江苏沙钢集团淮钢特钢股份有限公司 一种汽车控制臂用低碳非调质钢及其制备方法
CN115404407A (zh) * 2022-08-30 2022-11-29 江苏沙钢集团有限公司 一种大单重厚规格tmcp风电钢及其制造方法
CN115418559A (zh) * 2022-07-20 2022-12-02 山东钢铁股份有限公司 一种高强韧建筑用热轧h型钢及其制备方法
CN115786808A (zh) * 2022-11-22 2023-03-14 山东钢铁股份有限公司 一种420MPa级风电法兰用钢及其制备方法
CN117802394A (zh) * 2024-02-29 2024-04-02 江苏省沙钢钢铁研究院有限公司 低温钢的降低总氧含量的生产方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112662933A (zh) * 2020-11-24 2021-04-16 莱芜钢铁集团银山型钢有限公司 耐低温冲击韧性风电钢的制备方法
CN113652615A (zh) * 2021-07-27 2021-11-16 包头钢铁(集团)有限责任公司 一种高效的管线钢l245n生产工艺
CN114410935A (zh) * 2021-12-30 2022-04-29 舞阳钢铁有限责任公司 一种低温冲击韧性良好的p265gh钢板的生产方法
CN114891947B (zh) * 2022-04-29 2023-08-22 石钢京诚装备技术有限公司 一种提高风电法兰用钢低温冲击性能的方法
CN114959461A (zh) * 2022-05-07 2022-08-30 柳州钢铁股份有限公司 微铌合金化q355b低合金高强度结构钢板及其制造方法
CN115652219B (zh) * 2022-10-21 2023-11-21 舞阳钢铁有限责任公司 具有优异冷成型特性的低成本低温结构钢及其生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719739A (zh) * 2011-03-29 2012-10-10 鞍钢股份有限公司 一种风电塔低温用钢板及其生产方法
CN110129652A (zh) * 2019-04-30 2019-08-16 河北文丰钢铁有限公司 一种低锰微合金q355结构钢及其制备工艺
CN112662933A (zh) * 2020-11-24 2021-04-16 莱芜钢铁集团银山型钢有限公司 耐低温冲击韧性风电钢的制备方法
CN113462974A (zh) * 2021-06-29 2021-10-01 莱芜钢铁集团银山型钢有限公司 一种10~60mm厚度规格高强度高韧性叉车用钢及其制备方法
CN113604734A (zh) * 2021-07-13 2021-11-05 莱芜钢铁集团银山型钢有限公司 一种超厚度规格低残余应力叉车用钢及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5011773B2 (ja) * 2005-03-24 2012-08-29 Jfeスチール株式会社 低温靭性に優れた低降伏比電縫鋼管の製造方法
JP5187320B2 (ja) * 2010-01-06 2013-04-24 新日鐵住金株式会社 冷延鋼板の製造方法
CN103525998B (zh) * 2013-09-29 2015-11-04 莱芜钢铁集团有限公司 正火轧制型细晶粒压力焊接钢管用宽厚钢板
CN103757549A (zh) * 2014-01-08 2014-04-30 鞍钢股份有限公司 一种355MPa级厚板及其生产方法
CN104775073B (zh) * 2015-03-27 2017-05-24 武汉钢铁(集团)公司 一种风电用正火态钢板的生产方法
CN105018861B (zh) * 2015-08-10 2017-07-14 山东钢铁股份有限公司 一种低成本正火轧制热轧h型钢及其制备方法
CN109161796B (zh) * 2018-08-31 2020-11-03 邯郸钢铁集团有限责任公司 具有良好低温冲击韧性高强大梁钢800l及其生产方法
CN109722597A (zh) * 2018-12-21 2019-05-07 山东钢铁股份有限公司 一种具有良好耐低温韧性薄规格高强度钢板及其生产方法
CN110358973B (zh) * 2019-07-25 2021-05-11 南京钢铁股份有限公司 一种低成本s420nl低温韧性钢板及制造方法
CN111455255B (zh) * 2020-03-30 2022-05-06 江阴兴澄特种钢铁有限公司 一种80-100mm特厚海上风电用EH36钢的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719739A (zh) * 2011-03-29 2012-10-10 鞍钢股份有限公司 一种风电塔低温用钢板及其生产方法
CN110129652A (zh) * 2019-04-30 2019-08-16 河北文丰钢铁有限公司 一种低锰微合金q355结构钢及其制备工艺
CN112662933A (zh) * 2020-11-24 2021-04-16 莱芜钢铁集团银山型钢有限公司 耐低温冲击韧性风电钢的制备方法
CN113462974A (zh) * 2021-06-29 2021-10-01 莱芜钢铁集团银山型钢有限公司 一种10~60mm厚度规格高强度高韧性叉车用钢及其制备方法
CN113604734A (zh) * 2021-07-13 2021-11-05 莱芜钢铁集团银山型钢有限公司 一种超厚度规格低残余应力叉车用钢及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114941111A (zh) * 2022-06-22 2022-08-26 江苏沙钢集团淮钢特钢股份有限公司 一种汽车控制臂用低碳非调质钢及其制备方法
CN114941111B (zh) * 2022-06-22 2023-09-05 江苏沙钢集团淮钢特钢股份有限公司 一种汽车控制臂用低碳非调质钢及其制备方法
CN115418559A (zh) * 2022-07-20 2022-12-02 山东钢铁股份有限公司 一种高强韧建筑用热轧h型钢及其制备方法
CN115418559B (zh) * 2022-07-20 2023-11-07 山东钢铁股份有限公司 一种高强韧建筑用热轧h型钢及其制备方法
CN115404407A (zh) * 2022-08-30 2022-11-29 江苏沙钢集团有限公司 一种大单重厚规格tmcp风电钢及其制造方法
CN115786808A (zh) * 2022-11-22 2023-03-14 山东钢铁股份有限公司 一种420MPa级风电法兰用钢及其制备方法
CN117802394A (zh) * 2024-02-29 2024-04-02 江苏省沙钢钢铁研究院有限公司 低温钢的降低总氧含量的生产方法
CN117802394B (zh) * 2024-02-29 2024-04-30 江苏省沙钢钢铁研究院有限公司 低温钢的降低总氧含量的生产方法

Also Published As

Publication number Publication date
CN112662933A (zh) 2021-04-16
EP4253586A1 (en) 2023-10-04

Similar Documents

Publication Publication Date Title
WO2022110982A1 (zh) 耐低温冲击韧性风电钢的制备方法
CN107151763B (zh) 薄规格高强度冷成型用热轧钢带及其生产方法
CN110129681B (zh) 一种超高强度汽车结构钢生产方法
WO2022022066A1 (zh) 一种极地海洋工程用钢板及其制备方法
CN109706404B (zh) 一种含钛碳素钢及其生产方法
WO2022227396A1 (zh) 一种高效焊接桥梁钢及其制造方法
WO2023056792A1 (zh) 一种含镁45钢及其制备工艺
CN107574385B (zh) 一种提高双稳定铁素体不锈钢连铸坯等轴晶率的工艺方法
WO2022022040A1 (zh) 一种355MPa级别海洋工程用耐低温热轧H型钢及其制备方法
CN102234742B (zh) 一种直缝焊管用钢板及其制造方法
CN110144524A (zh) 一种440MPa级冷轧无间隙原子高强钢及其CSP+BAF生产方法
CN112962025A (zh) 一种低成本保探伤低合金结构钢中厚板的生产方法
CN102978511B (zh) 低成本生产汽车大梁钢用热轧钢板的方法
CN113652609A (zh) 一种低成本42CrMoA圆钢及其生产方法
WO2023098919A1 (zh) 一种低碳含氮奥氏体不锈钢棒的制造方法
CN110029268B (zh) 一种保心部低温韧性的低温压力容器用09MnNiDR钢板及制造方法
CN113862559A (zh) 一种520MPa级低屈强比风电用钢及其制备方法
CN113930674A (zh) 焊瓶钢热轧板带hp295及其制造方法
CN113957359A (zh) 高强度汽车车轮用钢及其制备方法
CN112662948A (zh) RE-Cr-Cu复合耐蚀钢及其制备方法
CN115807196B (zh) 一种高冶金质量高强韧含氮风电齿轮钢及其制造方法和应用
CN111593251A (zh) 螺纹钢及其制备方法
CN111304404A (zh) 一种用于真空感应炉氧化物冶金的包芯线及使用方法
JPH0559483A (ja) 商用周波数帯トランス用非晶質合金薄帯の製造方法
CN113462974B (zh) 一种10~60mm厚度规格高强度高韧性叉车用钢及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021896486

Country of ref document: EP

Effective date: 20230626