WO2022110908A1 - 伽马曲线的调节方法、调节装置以及显示装置 - Google Patents

伽马曲线的调节方法、调节装置以及显示装置 Download PDF

Info

Publication number
WO2022110908A1
WO2022110908A1 PCT/CN2021/112676 CN2021112676W WO2022110908A1 WO 2022110908 A1 WO2022110908 A1 WO 2022110908A1 CN 2021112676 W CN2021112676 W CN 2021112676W WO 2022110908 A1 WO2022110908 A1 WO 2022110908A1
Authority
WO
WIPO (PCT)
Prior art keywords
refresh rate
gamma curve
control signal
refresh
pulse number
Prior art date
Application number
PCT/CN2021/112676
Other languages
English (en)
French (fr)
Inventor
李勇
刘亚辉
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Publication of WO2022110908A1 publication Critical patent/WO2022110908A1/zh
Priority to US18/169,383 priority Critical patent/US11935466B2/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas
    • G09G2340/0435Change or adaptation of the frame rate of the video stream

Definitions

  • the present application relates to the field of display technology, and in particular, to a gamma curve adjustment method, an adjustment device, and a display device.
  • Organic light emitting diode (organic light emitting diode, OLED) display devices are the mainstream direction of the current market, and the market demand is great, but the challenges are also great.
  • the present application provides a gamma curve adjustment method, an adjustment device and a display device, so as to improve the brightness and color coordinate shift problems and improve the display function of the display device.
  • the present application provides a method for adjusting a gamma curve, including:
  • a third refresh rate is determined according to the light-emitting control signal at the first refresh rate, the light-emitting control signal at the second refresh rate, and the reference duty cycle; wherein the third refresh rate is located between the first refresh rate and all Between the second refresh rates, the duty cycle of the third refresh rate is equal to the reference duty cycle;
  • the gamma curve is adjusted according to the third refresh rate.
  • the application provides a device for adjusting a gamma curve, configured to perform the method for adjusting a gamma curve described in the first aspect, the adjusting device comprising:
  • the reference duty ratio obtaining module is set to determine the reference duty ratio of the light emitting control signal according to the duty ratio of the light emitting control signal under the preset refresh rate;
  • the third refresh rate calculation module is configured to determine the third refresh rate according to the light-emitting control signal at the first refresh rate, the light-emitting control signal at the second refresh rate and the reference duty cycle; wherein, the third refresh rate between the first refresh rate and the second refresh rate, the duty cycle of the third refresh rate is equal to the reference duty cycle;
  • the gamma curve adjustment module is configured to adjust the gamma curve according to the third refresh rate.
  • the present application provides a display device, comprising a gamma curve storage unit, the gamma curve storage unit is configured to store a gamma curve obtained by the method for adjusting a gamma curve described in the first aspect.
  • the present application provides a method for adjusting a gamma curve, an adjusting device and a display device; wherein the method for adjusting a gamma curve includes: determining a reference duty cycle of the lighting control signal according to the duty cycle of the lighting control signal at a preset refresh rate duty ratio; determining a third refresh rate according to the light-emitting control signal at the first refresh rate and the light-emitting control signal at the second refresh rate and the reference duty ratio; wherein the third refresh rate is between the first refresh rate and the Between the second refresh rates, the duty cycle of the third refresh rate is equal to the reference duty cycle; the gamma curve is adjusted according to the third refresh rate.
  • the technical solution provided by the present application adopts a third refresh rate between the first refresh rate and the second refresh rate to adjust the gamma curve.
  • the gray scale voltage of the adjusted gamma curve is relative to the two ( That is, the deviation between the gray-scale voltage of the gamma curve corresponding to the first refresh rate and the gray-scale voltage of the gamma curve corresponding to the second refresh rate) is smaller than the gray-scale voltage of the gamma curve corresponding to the first refresh rate and the second The deviation of the grayscale voltage of the gamma curve corresponding to the refresh rate.
  • the difference between the gate potential of the driving transistor and the gray-scale voltage of the gamma curve at different refresh rates can be reduced, thereby reducing the first refresh rate and the second refresh rate.
  • the degree of color shift when the two refresh rates are switched improves the problem of brightness and color coordinate shift between different refresh rates when sharing a gamma curve, and improves the display function of the display device.
  • 1 is a timing comparison diagram of a light-emitting control signal under a high and low refresh rate provided in the prior art
  • FIG. 2 is a flowchart of a method for adjusting a gamma curve provided by the application
  • FIG. 3 is a timing comparison diagram of light-emitting control signals at different refresh rates provided by the present application.
  • Fig. 4 is a kind of color shift degree contrast schematic diagram provided by the application.
  • FIG. 5 is a flowchart of another method for adjusting a gamma curve provided by the application.
  • Fig. 6 is another timing comparison diagram of light-emitting control signals under different refresh rates provided by the present application.
  • FIG. 7 is a flowchart of another method for adjusting a gamma curve provided by the application.
  • FIG. 8 is a structural block diagram of a device for adjusting a gamma curve provided by the present application.
  • FIG. 9 is a structural block diagram of another gamma curve adjustment device provided by the present application.
  • FIG. 10 is a structural block diagram of a display device provided by the present application.
  • OLED display devices need to support multiple refresh rates.
  • the gamma curve is adjusted at each refresh rate, which will lead to too long debugging time in the production process and reduce production efficiency.
  • the OLED display device can adopt the scheme of sharing the gamma curve to reduce the debugging time in the production process.
  • the gate capacitor discharge time of the driving transistor is different. If the gamma curve is shared, the difference in discharge time will cause brightness and color coordinate shifts between different refresh rates. question.
  • FIG. 1 is a timing comparison diagram of light-emitting control signals under a high and low refresh rate provided in the prior art; with reference to FIG. 1, the high refresh rate is 90Hz, the low refresh rate is 60Hz, and the vertical rear corridor ( Vertical back porch (VBP) time is equal to vertical back porch (VBP) time in the next frame at low refresh rate. Moreover, the scanning time of N lines (N Line, NL) in the next frame with the high refresh rate is equal to the scanning time of N lines (NL) in the next frame with the low refresh rate. However, the vertical front porch (VFP) time in the next frame of the high refresh rate is different from the vertical front porch (VFP) time in the next frame of the low refresh rate, that is, the length of the non-display time is different.
  • VFP Vertical back porch
  • the brightness adjustment interval of the lighting control signal is 4 pulse signals.
  • the refresh rate is 60Hz, by increasing the VFP time, the brightness adjustment interval of the lighting control signal becomes 6 pulse signals, so as to ensure that the PWM accounts for PWM before and after switching. There is no change in the empty ratio.
  • Switching from a refresh rate of 90Hz to a refresh rate of 60Hz due to the excessive change in non-display time, the difference in the discharge time of the gate capacitance of the driving transistor is too large, and the difference in the gate potential of the driving transistor is relatively large, that is, the ⁇ Vdata is too large. big.
  • the gate capacitance discharge equation for the drive transistor is determined based on:
  • Vdata V0*e- t/RC ; wherein, V0 is the grayscale voltage corresponding to the gamma curve, t is the discharge time, R is the equivalent resistance value of the discharge loop, and C is the gate capacitance value of the drive transistor.
  • FIG. 2 is a flowchart of a method for adjusting a gamma curve provided by the present application. Referring to FIG. 2 , the method includes:
  • the gamma curve adjustment can be performed by adjusting the light-emitting control signal and adjusting the data voltage on the data signal line.
  • the adjustment of the light-emitting control signal may be performed by adjusting the duty ratio of the light-emitting control signal.
  • the OLED display device can support multiple refresh rates, and each refresh rate is a preset refresh rate of the OLED display device.
  • the duty ratio of the light-emitting control signal at each refresh rate may be the same, so as to ensure the same light-emitting brightness of the OLED display device at different refresh rates.
  • the reference duty ratio of the light-emitting control signal of the OLED display device can be determined according to the duty ratio of the light-emitting control signal at a refresh rate supported by the OLED display device, so as to ensure the light-emitting control at different refresh rates when the refresh rate is adjusted subsequently.
  • the duty cycle of the signal is equal to the reference duty cycle, which ensures the same luminous brightness of the OLED display device under different refresh rates.
  • the multiple refresh rates include a first refresh rate and a second refresh rate.
  • the first refresh rate may be the highest refresh rate, and one frame time is the shortest at this time, and the second refresh rate may be the lowest refresh rate, at this time, one frame time longest.
  • the third refresh rate is determined by the first refresh rate and the second refresh rate, so that the third refresh rate is located between the first refresh rate and the second refresh rate, so that the gamma curve adjusted according to the third refresh rate can be at the same gray level
  • the lower grayscale voltage is located between the grayscale voltage of the gamma curve corresponding to the first refresh rate and the grayscale voltage of the gamma curve corresponding to the second refresh rate.
  • the duty ratio of the third refresh rate is equal to the reference duty ratio, which can ensure that the luminous brightness of the OLED display device at the third refresh rate is the same as the luminous brightness of the OLED display device at other preset refresh rates.
  • the third refresh rate here refers to a refresh rate located between the first refresh rate and the second refresh rate. Multiple refresh rates may be included between the first refresh rate and the second refresh rate.
  • the gamma curve is shared, if the gamma curve is adjusted at either the first refresh rate or the second refresh rate, this difference in discharge time will cause the other refresh rate to switch to the other refresh rate. Serious problem of low brightness and low grayscale color cast.
  • the present application uses a third refresh rate between the first refresh rate and the second refresh rate to adjust the gamma curve. Under the same grayscale, the adjusted grayscale voltage of the gamma curve is located at the gamma corresponding to the first refresh rate.
  • the gray-scale voltage of the adjusted gamma curve has a certain value relative to the gray-scale voltage of the gamma curve corresponding to the first refresh rate.
  • the gray-scale voltage of the adjusted gamma curve also has a certain deviation from the gray-scale voltage of the gamma curve corresponding to the second refresh rate, and the gray-scale voltage of the adjusted gamma curve is relative to the two The deviation of the two is smaller than the deviation of the gray-scale voltage of the gamma curve corresponding to the first refresh rate and the gray-scale voltage of the gamma curve corresponding to the second refresh rate.
  • the discharge time of the gate capacitance of the drive transistor at the third refresh rate is the sum of the discharge time of the gate capacitance of the drive transistor at the first refresh rate and the discharge time of the gate capacitance of the drive transistor at the second refresh rate
  • the absolute value of the difference between the discharge time of the gate capacitance of the drive transistor at the third refresh rate and the discharge time of the gate capacitance of the drive transistor at the first refresh rate, and the drive transistor at the third refresh rate The absolute value of the difference between the discharge time of the gate capacitance of the drive transistor at the second refresh rate and the discharge time of the gate capacitance of the drive transistor at the second refresh rate is smaller than the discharge time of the gate capacitance of the drive transistor at the first refresh rate and the discharge time of the drive transistor at the second refresh rate.
  • the absolute value of the difference in the discharge time of the gate capacitance of the drive transistor at two refresh rates Therefore, when the display is switched between the first refresh rate and the second refresh rate, the difference between the gate potential of the driving transistor and the gray-scale voltage of the gamma curve at different refresh rates can be reduced, thereby reducing the first refresh rate and the second refresh rate.
  • the degree of color shift when the two refresh rates are switched improves the problem of brightness and color coordinate shift between different refresh rates when sharing a gamma curve, and improves the display function of the display device.
  • FIG. 3 is a timing comparison diagram of lighting control signals at different refresh rates provided by the present application.
  • the first refresh rate is 90 Hz and the second refresh rate is 60 Hz.
  • the third refresh rate determined by the light-emitting control signal at the refresh rate of 60 Hz and the reference duty cycle is 72 Hz.
  • the gamma curve is adjusted according to the third refresh rate.
  • the difference between the gate potential of the driving transistor and the gray-scale voltage of the gamma curve at the second refresh rate can be reduced, thereby reducing the direction of the first refresh rate to the second refresh rate.
  • the degree of color shift when the second refresh rate is switched.
  • the degree of color shift when the second refresh rate is switched to the first refresh rate will also be reduced.
  • FIG. 4 is a schematic diagram of a color shift degree comparison provided by the present application. Referring to 4, taking the first refresh rate of 90 Hz, the second refresh rate of 60 Hz, and the third refresh rate of 72 Hz as an example, the third refresh rate is now adjusted. Using the gamma curve as a reference, the first coordinate point O in FIG.
  • the line segment OA1 is the color shift degree at the first refresh rate
  • the line segment OA2 is the color shift degree at the second refresh rate. Therefore, when the display device switches between the first refresh rate and the second refresh rate, relative to the standard color, The degree of color shift is the length of line segment OA1 or line segment OA2. However, if the gamma curve is adjusted with either the first refresh rate or the second refresh rate, for example, the gamma curve is adjusted with the first refresh rate, then the color at the first refresh rate is used as the standard color.
  • the first coordinate point O in FIG. 4 is the standard color at the first refresh rate.
  • the first refresh rate is switched to the second refresh rate
  • the line segment OB is the color shift degree at the second refresh rate.
  • the line segment OB is greater than the length of line segment OA1 or line segment OA2. That is to say, when the gamma curve is adjusted by the third refresh rate, the color at the third refresh rate is used as the standard color, the color shift of the first refresh rate relative to the third refresh rate is small, and the color shift of the second refresh rate is relatively small relative to the third refresh rate. The color shift of the three refresh rates is also small.
  • the present application provides a method for adjusting a gamma curve, comprising: determining a reference duty ratio of a lighting control signal according to a duty ratio of a lighting control signal at a preset refresh rate; The light-emitting control signal at the refresh rate and the reference duty cycle determine a third refresh rate; wherein the third refresh rate is located between the first refresh rate and the second refresh rate, and the duty cycle of the third refresh rate is equal to Baseline duty cycle; adjust the gamma curve according to the third refresh rate.
  • the technical solution provided by the present application adopts a third refresh rate between the first refresh rate and the second refresh rate to adjust the gamma curve. Under the same grayscale, the grayscale voltage of the adjusted gamma curve is relative to the first refresh rate.
  • the grayscale voltage of the corresponding gamma curve has a certain deviation.
  • the grayscale voltage of the adjusted gamma curve also has a certain deviation relative to the grayscale voltage of the gamma curve corresponding to the second refresh rate, and the adjusted grayscale voltage also has a certain deviation.
  • the deviation of the grayscale voltage of the gamma curve relative to the two is smaller than the deviation of the grayscale voltage of the gamma curve corresponding to the first refresh rate and the grayscale voltage of the gamma curve corresponding to the second refresh rate.
  • the difference between the gate potential of the driving transistor and the gray-scale voltage of the gamma curve at different refresh rates can be reduced, thereby reducing the first refresh rate and the second refresh rate.
  • the degree of color shift when the two refresh rates are switched improves the problem of brightness and color coordinate shift between different refresh rates when sharing a gamma curve, and improves the display function of the display device.
  • the duty cycle of the light emitting control signal at the first refresh rate is equal to the duty cycle of the light emitting control signal at the second refresh rate
  • the preset refresh rate is the first refresh rate or the second refresh rate.
  • the third refresh rate is determined according to the light emission control signal at the first refresh rate and the light emission control signal at the second refresh rate and the reference duty cycle, and the third refresh rate is located between the first refresh rate and the second refresh rate. That is, the third refresh rate is an intermediate refresh rate between the first refresh rate and the second refresh rate.
  • FIG. 5 is a flowchart of another method for adjusting a gamma curve provided by the present application. Referring to FIG. 5 , the method includes:
  • S220 Acquire the first pulse number of the light emitting control signal within the next frame of the first refresh rate, and the second pulse number of the light emitting control signal within the next frame of the second refresh rate.
  • the light-emitting control signal may be a multi-pulse signal, and the duty cycle of the light-emitting control signal at the first refresh rate is equal to the duty cycle of the light-emitting control signal at the second refresh rate.
  • the first refresh rate is 90Hz
  • the first pulse number of the lighting control signal within the next frame of the first refresh rate is 4 pulse signals
  • the second refresh rate is 60Hz, because the light is emitted at the refresh rate of 90Hz
  • the duty cycle of the control signal and the duty cycle of the lighting control signal at a refresh rate of 60 Hz need to be equal, then when the refresh rate is 60 Hz, the brightness adjustment interval of the lighting control signal becomes 6 pulse signals.
  • S230 Determine the third pulse number of the lighting control signal within the next frame time of the third refresh rate according to the first pulse number and the second pulse number; wherein, the third pulse number is an integer, and the third pulse number is within the first between the number of pulses and the second number of pulses.
  • the first refresh rate is 90Hz
  • the first pulse number of the light-emitting control signal within the next frame of the first refresh rate is 4 pulse signals
  • the second refresh rate is 60Hz
  • the light-emitting control signal is The brightness adjustment interval becomes 6 pulse signals. That is, the first pulse number is 4, the second pulse number is 6, and the third pulse number of the lighting control signal in the next frame time of the third refresh rate is determined according to the first pulse number and the second pulse number. Because, the third pulse number is an integer, and the third pulse number is between the first pulse number and the second pulse number. Then, the number of third pulses of the light-emitting control signal in the next frame time of the third refresh rate is five.
  • FIG. 6 is another timing comparison diagram of the light-emitting control signal at different refresh rates provided by the present application.
  • the first refresh rate is 90 Hz
  • the first pulse of the light-emitting control signal within the next frame of the first refresh rate is The number is 4 pulse signals
  • the second refresh rate is 45Hz
  • the brightness adjustment interval of the lighting control signal becomes 8 pulse signals.
  • the third pulse number determined according to the first pulse number and the second pulse number may be 5, 6 and 7.
  • the third refresh rate determined according to the third pulse number is located between the first refresh rate corresponding to the first pulse number and the second pulse number corresponding to the third refresh rate. between the second refresh rate.
  • the first refresh rate is 90 Hz
  • the first pulse number of the lighting control signal within the next frame of the first refresh rate is 4 pulse signals
  • the second refresh rate is 60 Hz
  • the brightness adjustment interval of the lighting control signal is into 6 pulse signals. That is, the first pulse number is 4, the second pulse number is 6, and the third pulse number of the lighting control signal within the next frame time of the third refresh rate is determined to be 5 according to the first pulse number and the second pulse number.
  • the refresh rate is 72Hz with 5 pulses
  • the third refresh rate is 72Hz determined according to the light-emitting control signal at the refresh rate of 90Hz, the light-emitting control signal at the refresh rate of 60Hz and the reference duty cycle.
  • the first refresh rate is 90Hz
  • the first pulse number of the lighting control signal within the next frame of the first refresh rate is 4 pulse signals
  • the second refresh rate is 45Hz
  • the third pulse number of the lighting control signal in the next frame of the third refresh rate may be 5, 6 and 7.
  • the third pulse number is 5
  • the corresponding refresh rate is 72 Hz
  • the third pulse number is 60 Hz
  • the third pulse number is 7, the corresponding refresh rate is 51.4 Hz. That is, the third refresh rate may be 72Hz, 60Hz or 51.4Hz.
  • the method further includes:
  • the third refresh rate is adjusted by adjusting the vertical blanking time of the first refresh rate or the second refresh rate.
  • the scanning always starts from the upper left corner of the image and moves forward horizontally, while the scanning point also moves downward at a slower rate .
  • the scanning point quickly returns to the left, and starts to scan the second line below the starting point of the first line.
  • the return process between lines is called horizontal blanking.
  • a complete image scanning signal consists of a sequence of line signals separated by horizontal blanking intervals, called a frame. After the scanning point scans a frame, it must return from the lower right corner of the image to the upper left corner of the image to start scanning a new frame. This time interval is called vertical blanking, also called vertical blanking.
  • the third refresh rate is adjusted by adjusting the vertical blanking time of the first refresh rate or the second refresh rate.
  • the vertical blanking time is the time corresponding to the non-display phase.
  • the first refresh rate is 90Hz
  • the number of first pulses of the lighting control signal in the next frame time of the first refresh rate is 4 pulse signals
  • the second refresh rate is 60Hz
  • the brightness adjustment interval of the lighting control signal becomes 6 pulses Signal.
  • the refresh rate is 72Hz. It is also possible to reduce the time corresponding to one pulse signal by adjusting the vertical blanking time of the second refresh rate, and change from 6 pulse signals to 5 pulse signals, so that the third refresh rate corresponding to 5 pulse signals can be obtained.
  • the third refresh rate is 72Hz.
  • the first refresh rate is 90Hz
  • the number of first pulses of the lighting control signal within the next frame of the first refresh rate is 4 pulses
  • the second refresh rate is 45Hz
  • the brightness adjustment interval of the lighting control signal becomes 8 pulses Signal.
  • the third pulse number of the lighting control signal in the next frame time of the third refresh rate may be 5, 6 and 7.
  • the third refresh rate corresponding to the 6 pulse signals can be obtained, and the third refresh rate at this time is 60Hz.
  • the third refresh rate is 51.4Hz.
  • the vertical blanking time of the second refresh rate reducing the time corresponding to one pulse signal, and changing from 8 pulse signals to 7 pulse signals, the third refresh rate corresponding to 7 pulse signals can be obtained.
  • the refresh rate is 51.4Hz.
  • the third refresh rate corresponding to the 6 pulse signals can be obtained, and the third refresh rate at this time is 60Hz.
  • the third refresh rate corresponding to the 5 pulse signals can be obtained. At this time, the third refresh rate is 72 Hz.
  • the absolute value of the difference between the third pulse number and the first pulse number is equal to the absolute value of the difference between the third pulse number and the second pulse number.
  • the third pulse number is determined, wherein the absolute value of the difference between the third pulse number and the first pulse number is equal to the absolute value of the difference between the third pulse number and the second pulse number.
  • the refresh time corresponding to the third refresh rate (that is, the discharge time of the gate capacitance of the driving transistor at the third refresh rate) is determined according to the third pulse number, wherein the refresh time corresponding to the third refresh rate is the same as the first refresh rate.
  • the absolute value of the time difference between the refresh times corresponding to the rate is equal to the absolute value of the time difference between the refresh time corresponding to the third refresh rate and the refresh time corresponding to the second refresh rate.
  • the third refresh rate is 72 Hz.
  • the gamma curve is adjusted according to a third refresh rate between the first refresh rate and the second refresh rate, with respect to the first refresh rate and the second refresh rate, the gate capacitance discharge time of the drive transistor changes by an equal amount.
  • the gray scale voltage corresponding to the gamma curve adjusted at the third refresh rate can also make the degree of color shift at the first refresh rate and the second refresh rate equal. Therefore, the problem of brightness and color coordinate shift in switching from the first refresh rate to the second refresh rate and switching from the second refresh rate to the first refresh rate is further improved, and the display function of the display device is improved.
  • the method for adjusting the gamma curve provided by the present application, by obtaining the first pulse number of the light emitting control signal within the next frame time of the first refresh rate, and the second pulse number of the light emitting control signal within the next frame time of the second refresh rate, and according to the first pulse number and the second pulse number to determine the third pulse number of the light-emitting control signal within the next frame of the third refresh rate; wherein the third pulse number is an integer, and the third pulse number is the same as the first pulse number
  • the absolute value of the difference is equal to the absolute value of the difference between the third pulse number and the second pulse number. Then determine the third refresh rate according to the third pulse number.
  • the absolute value of the time difference between the refresh time corresponding to the third refresh rate and the refresh time corresponding to the first refresh rate is equal to the refresh time corresponding to the third refresh rate and the second refresh rate.
  • the gray-scale voltage corresponding to the gamma curve adjusted at the third refresh rate can also make the degree of color shift at the first refresh rate equal to that at the second refresh rate. Therefore, the problem of brightness and color coordinate shift in switching from the first refresh rate to the second refresh rate and switching from the second refresh rate to the first refresh rate is further improved, and the display function of the display device is improved.
  • Fig. 7 is a flow chart of another gamma curve adjustment method provided by the application, with reference to Fig. 7, the method includes:
  • S310 Determine the minimum refresh rate and the maximum refresh rate among the first refresh rate, the second refresh rate, and the fourth refresh rate.
  • the preset refresh rate of the OLED display device may further include a fourth refresh rate, that is, the refresh rate of the OLED display device may be switched among the first refresh rate, the second refresh rate and the fourth refresh rate.
  • a fourth refresh rate that is, the refresh rate of the OLED display device may be switched among the first refresh rate, the second refresh rate and the fourth refresh rate.
  • the OLED display device after determining the minimum refresh rate and the maximum refresh rate among the preset refresh rates of the OLED display device, update the first refresh rate among the three preset refresh rates at the maximum refresh rate, and update and obtain the three refresh rates at the minimum refresh rate
  • the second refresh rate among the preset refresh rates when the number of preset refresh rates that the OLED display device can support is three, the adjustment sharing is determined according to the maximum refresh rate among the three preset refresh rates and the minimum refresh rate among the three preset refresh rates.
  • the third refresh rate for the gamma curve Therefore, the problem of brightness and color coordinate shift in the mutual switching between the first refresh rate, the second refresh rate and the fourth refresh rate is improved, and the display function of the display device is improved.
  • the preset refresh rate of the OLED display device may include three or more types, according to a maximum refresh rate among the three or more preset refresh rates and a maximum refresh rate among the three or more preset refresh rates.
  • the minimum refresh rate determines the third refresh rate that adjusts the shared gamma curve.
  • S340 Determine a third refresh rate according to the light-emitting control signal at the first refresh rate, the light-emitting control signal at the second refresh rate, and the reference duty cycle; wherein the third refresh rate is located between the first refresh rate and the second refresh rate During the period, the duty cycle of the third refresh rate is equal to the reference duty cycle.
  • the gamma curve is burned into a one-time programmable read only memory (One Time Programmable Read Only Memory, OTPROM, OTP for short), and the OTP is located in the driver chip of the display device middle.
  • OTPROM One Time Programmable Read Only Memory
  • the driving chip drives the display device to display at the preset refresh rate according to the gamma curve adjusted by the third refresh rate.
  • the third refresh rate between the first refresh rate and the second refresh rate to adjust the gamma curve, under the same grayscale, the grayscale voltage of the adjusted gamma curve is located at the gamma curve corresponding to the first refresh rate.
  • the gray-scale voltage of the adjusted gamma curve has a certain deviation relative to the gray-scale voltage of the gamma curve corresponding to the first refresh rate
  • the gray-scale voltage of the adjusted gamma curve also has a certain deviation relative to the gray-scale voltage of the gamma curve corresponding to the second refresh rate
  • the gray-scale voltage of the adjusted gamma curve is relative to the two The deviation is smaller than the deviation between the grayscale voltage of the gamma curve corresponding to the first refresh rate and the grayscale voltage of the gamma curve corresponding to the second refresh rate.
  • the difference between the gate potential of the driving transistor and the gray-scale voltage of the gamma curve at different refresh rates can be reduced, thereby reducing the first refresh rate and the second refresh rate.
  • the degree of color shift when the two refresh rates are switched improves the problem of brightness and color coordinate shift between different refresh rates when sharing a gamma curve, and improves the display function of the display device.
  • FIG. 8 is a structural block diagram of a device for adjusting a gamma curve provided by the present application.
  • the adjustment device includes:
  • the reference duty ratio obtaining module 10 is configured to determine the reference duty ratio of the light emitting control signal according to the duty ratio of the light emitting control signal at the preset refresh rate;
  • the third refresh rate calculation module 20 is configured to determine the third refresh rate according to the lighting control signal at the first refresh rate, the lighting control signal at the second refresh rate and the reference duty cycle; wherein the third refresh rate is located at Between the first refresh rate and the second refresh rate, the duty cycle of the third refresh rate is equal to the reference duty cycle;
  • the gamma curve adjustment module 30 is configured to adjust the gamma curve according to the third refresh rate.
  • the device for adjusting the gamma curve includes a reference duty cycle acquisition module 10 , a third refresh rate calculation module 20 and a gamma curve adjustment module 30 .
  • the reference duty ratio obtaining module 10 is configured to determine the reference duty ratio of the light emitting control signal according to the duty ratio of the light emitting control signal at the preset refresh rate.
  • the OLED display device supports multiple refresh rates, and the duty cycle of the light-emitting control signal is the same at each refresh rate.
  • the light-emitting control signal of the OLED display device can be determined according to the duty cycle of the light-emitting control signal at one refresh rate supported by the OLED display device.
  • the base duty cycle of the signal That is to say, the reference duty ratio obtaining module may determine the reference duty ratio of the lighting control signal according to the duty ratio of the lighting control signal at any preset refresh rate.
  • the third refresh rate calculation module 20 is configured to determine the third refresh rate according to the lighting control signal at the first refresh rate, the lighting control signal at the second refresh rate and the reference duty cycle.
  • the multiple refresh rates include a first refresh rate and a second refresh rate.
  • the duty cycle of the lighting control signal at the first refresh rate is equal to the duty cycle of the lighting control signal at the second refresh rate, and the preset refresh rate is the first refresh rate. rate or a second refresh rate.
  • the third refresh rate calculation module 20 determines a third refresh rate according to the light emission control signal at the first refresh rate and the light emission control signal at the second refresh rate and the reference duty cycle, and the third refresh rate is located between the first refresh rate and the between the second refresh rate. That is, the third refresh rate is an intermediate refresh rate between the first refresh rate and the second refresh rate.
  • the gamma curve adjustment module 30 is configured to adjust the gamma curve according to the third refresh rate.
  • the adjusted gamma curve is the common gamma curve of the display device. If the gamma curve is adjusted at either the first refresh rate or the second refresh rate, this difference in discharge time will cause serious problems of low brightness and low grayscale color cast after switching to the other refresh rate. .
  • the gamma curve is adjusted by using an intermediate refresh rate between the first refresh rate and the second refresh rate, that is, the third refresh rate. Under the same grayscale, the grayscale voltage of the adjusted gamma curve is at the first refresh rate.
  • the grayscale voltage of the adjusted gamma curve is relative to the grayscale of the gamma curve corresponding to the first refresh rate.
  • the voltage of the gamma curve has a certain deviation.
  • the gray-scale voltage of the adjusted gamma curve also has a certain deviation from the gray-scale voltage of the gamma curve corresponding to the second refresh rate, and the gray-scale voltage of the adjusted gamma curve also has a certain deviation.
  • the deviation of the voltage with respect to both is smaller than the deviation of the grayscale voltage of the gamma curve corresponding to the first refresh rate and the grayscale voltage of the gamma curve corresponding to the second refresh rate.
  • the discharge time of the gate capacitance of the drive transistor at the third refresh rate is the sum of the discharge time of the gate capacitance of the drive transistor at the first refresh rate and the discharge time of the gate capacitance of the drive transistor at the second refresh rate.
  • the absolute value of the difference between the discharge time of the gate capacitance of the drive transistor at the third refresh rate and the discharge time of the gate capacitance of the drive transistor at the first refresh rate, and the drive transistor at the third refresh rate The absolute value of the difference between the discharge time of the gate capacitance of the drive transistor at the second refresh rate and the discharge time of the gate capacitance of the drive transistor at the second refresh rate is smaller than the discharge time of the gate capacitance of the drive transistor at the first refresh rate and the discharge time of the drive transistor at the second refresh rate.
  • the absolute value of the difference in the discharge time of the gate capacitance of the drive transistor at two refresh rates Therefore, when the display is switched between the first refresh rate and the second refresh rate, the difference between the gate potential of the driving transistor and the gray-scale voltage of the gamma curve at different refresh rates can be reduced, thereby reducing the first refresh rate and the second refresh rate.
  • the degree of color shift when the two refresh rates are switched improves the problem of brightness and color coordinate shift between different refresh rates when sharing a gamma curve, and improves the display function of the display device.
  • FIG. 9 is a structural block diagram of another gamma curve adjustment device provided by the present application.
  • the adjustment device further includes:
  • the third refresh rate adjustment module 40 is configured to adjust the third refresh rate by adjusting the first refresh rate or the vertical blanking time of the second refresh rate.
  • FIG. 10 is a structural block diagram of a display device provided by the present application.
  • the present application also provides a display device 1, comprising a gamma curve storage unit 2, and the gamma curve storage unit 2 is configured to store any
  • the gamma curve storage unit 2 may be a gamma register. Since the gamma curve stored in the gamma curve storage unit 2 is the gamma curve obtained by the adjustment method of the gamma curve described in any of the above embodiments, it has the same technical effect, which is not repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请公开了一种伽马曲线的调节方法、调节装置以及显示装置;其中伽马曲线的调节方法包括:根据预设刷新率下的发光控制信号的占空比确定发光控制信号的基准占空比;根据第一刷新率下的发光控制信号和第二刷新率下的发光控制信号以及基准占空比确定第三刷新率;其中,第三刷新率位于第一刷新率和第二刷新率之间,第三刷新率的占空比等于基准占空比;根据第三刷新率调节伽马曲线。本申请提供的伽马曲线的调节方法改善了共用伽马曲线时,不同刷新率之间存在亮度和色坐标偏移问题,提高了显示装置的显示功能。

Description

伽马曲线的调节方法、调节装置以及显示装置
本申请要求在2020年11月24日提交中国专利局、申请号为202011331247.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种伽马曲线的调节方法、调节装置以及显示装置。
背景技术
有机发光二极管(organic light emitting diode,OLED)显示装置是目前市场的主流方向,市场需求很大,但挑战同样也大。
OLED显示装置在支持多种刷新率时,由于共用伽马曲线,造成不同刷新率之间存在亮度和色坐标偏移问题,影响了显示装置的显示功能。
发明内容
本申请提供了一种伽马曲线的调节方法、调节装置以及显示装置,以改善亮度和色坐标偏移问题,提高显示装置的显示功能。
第一方面,本申请提供了一种伽马曲线的调节方法,包括:
根据预设刷新率下的发光控制信号的占空比确定发光控制信号的基准占空比;
根据第一刷新率下的发光控制信号和第二刷新率下的发光控制信号以及所述基准占空比确定第三刷新率;其中,所述第三刷新率位于所述第一刷新率和所述第二刷新率之间,所述第三刷新率的占空比等于所述基准占空比;
根据所述第三刷新率调节所述伽马曲线。
第二方面,本申请提供了一种伽马曲线的调节装置,设置为执行第一方面 所述的伽马曲线的调节方法,所述调节装置包括:
基准占空比获取模块,设置为根据预设刷新率下的发光控制信号的占空比确定发光控制信号的基准占空比;
第三刷新率计算模块,设置为根据第一刷新率下的发光控制信号和第二刷新率下的发光控制信号以及所述基准占空比确定第三刷新率;其中,所述第三刷新率位于所述第一刷新率和所述第二刷新率之间,所述第三刷新率的占空比等于所述基准占空比;
伽马曲线调节模块,设置为根据所述第三刷新率调节所述伽马曲线。
第三方面,本申请提供了一种显示装置,包括伽马曲线存储单元,所述伽马曲线存储单元设置为存储通过第一方面所述的伽马曲线的调节方法获取的伽马曲线。
本申请提供了一种伽马曲线的调节方法、调节装置以及显示装置;其中伽马曲线的调节方法,包括:根据预设刷新率下的发光控制信号的占空比确定发光控制信号的基准占空比;根据第一刷新率下的发光控制信号和第二刷新率下的发光控制信号以及所述基准占空比确定第三刷新率;其中,第三刷新率位于第一刷新率和所述第二刷新率之间,第三刷新率的占空比等于基准占空比;根据第三刷新率调节伽马曲线。本申请提供的技术方案采用位于第一刷新率和第二刷新率之间的第三刷新率调节伽马曲线,在同一灰阶下,调节后的伽马曲线的灰阶电压相对于两者(即第一刷新率对应的伽马曲线的灰阶电压和第二刷新率对应的伽马曲线的灰阶电压)的偏差,均小于第一刷新率对应的伽马曲线的灰阶电压与第二刷新率对应的伽马曲线的灰阶电压的偏差。因此在第一刷新率和第二刷新率切换显示时,可以减小不同刷新率下驱动晶体管的栅极电位相对于伽马曲线的灰阶电压的差值,从而降低了第一刷新率和第二刷新率切换时色偏的程度,改善了共用伽马曲线时,不同刷新率之间存在亮度和色坐标偏移问题,提高了显示装置的显示功能。
附图说明
图1是现有技术中提供的一种高低刷新率下发光控制信号的时序对比图;
图2是本申请提供的一种伽马曲线的调节方法的流程图;
图3是本申请提供的一种不同刷新率下发光控制信号的时序对比图;
图4是本申请提供的一种色偏程度对比示意图;
图5是本申请提供的另一种伽马曲线的调节方法的流程图;
图6是本申请提供的另一种不同刷新率下发光控制信号的时序对比图;
图7是本申请提供的又一种伽马曲线的调节方法的流程图;
图8是本申请提供的一种伽马曲线的调节装置的结构框图;
图9是本申请提供的另一种伽马曲线的调节装置的结构框图;
图10是本申请提供的一种显示装置的结构框图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
高刷新率应用在OLED显示装置越来越普遍,因此OLED显示装置需要支持多种刷新率。为了显示效果,每个刷新率下都调整伽马曲线,会导致生产过程中调试时间过长,降低生产效率。OLED显示装置可以采用共用伽马曲线的方案,来降低生产过程中调试时间。但是由于不同刷新率下,非显示时间的长短不同,进而导致驱动晶体管的栅极电容放电时间不同,若共用伽马曲线,放电时间的差异会造成不同刷新率之间存在亮度和色坐标偏移问题。
图1是现有技术中提供的一种高低刷新率下发光控制信号的时序对比图;参考图1,高刷新率为90Hz,低刷新率为60Hz,高刷新率下一帧中垂直后廊(Vertical back porch,VBP)时间与低刷新率下一帧中垂直后廊(VBP)时间相 等。并且,高刷新率下一帧中N行(N Line,NL)扫描时间与低刷新率下一帧中N行(NL)扫描时间相等。但是高刷新率下一帧中垂直前廊(Vertical front porch,VFP)时间与低刷新率下一帧中垂直前廊(VFP)时间不同,即非显示时间的长短不同。刷新率为90Hz时,发光控制信号的亮度调节区间为4个脉冲信号,刷新率为60Hz时,通过增加VFP时间,发光控制信号的亮度调节区间变为6个脉冲信号,以确保切换前后PWM占空比无变化。从刷新率为90Hz切换到刷新率为60Hz,因非显示时间变化量过大,造成驱动晶体管的栅极电容放电时间差异过大,使得驱动晶体管的栅极电位的差值比较大,即ΔVdata过大。驱动晶体管的栅极电容放电公式基于以下确定:
Vdata=V0*e -t/RC;其中,V0为伽马曲线对应的灰阶电压,t为放电时间,R为放电回路的等效电阻值,C为驱动晶体管的栅极电容值。
若伽马曲线为在刷新率为90Hz时调节的伽马曲线,共用到刷新率为60Hz时,Δt1=1/60-1/90。即刷新率为90Hz时一帧对应的时间为1/90s,刷新率为60Hz时一帧对应的时间为1/60s,相对于刷新率为90Hz时的放电时间,刷新率为60Hz时的放电时间增加了Δt1=1/60-1/90,则刷新率为90Hz时驱动晶体管的栅极电位与刷新率为60Hz时驱动晶体管的栅极电位的差值为:ΔVdata=V0*e^-Δt1/RC,造成切换到刷新率为60Hz后,存在低亮低灰阶偏色严重的问题,如果伽马曲线为在刷新率为60Hz时调节的伽马曲线,共用到刷新率为90Hz时,刷新率由60Hz切换到90Hz后,也存在低亮低灰阶偏色严重的问题。如果以90Hz或者60Hz其中任意一个刷新率来调节伽马曲线,这种放电时间差异会造成切换到另外一个刷新率后,另外一个刷新率低亮低灰阶偏色严重问题。
基于上述问题,本申请提供了一种伽马曲线的调节方法,图2是本申请提供的一种伽马曲线的调节方法的流程图,参考图2,方法包括:
S110、根据预设刷新率下发光控制信号的占空比确定发光控制信号的基准占空比。
具体的,伽马曲线调节可以通过对发光控制信号进行调节和对数据信号线 上的数据电压进行调节。其中对发光控制信号进行调节可以通过调节发光控制信号的占空比进行调节。OLED显示装置可以支持多种刷新率,每一刷新率为OLED显示装置的预设刷新率。每种刷新率下发光控制信号的占空比可以相同,以保证不同刷新率下OLED显示装置的发光亮度相同。此时可以根据OLED显示装置支持的一种刷新率下发光控制信号的占空比确定此OLED显示装置发光控制信号的基准占空比,以便于后续调节刷新率时保证不同刷新率下的发光控制信号的占空比等于基准占空比,保证OLED显示装置在不同刷新率下的发光亮度相同。
S120、根据第一刷新率下的发光控制信号和第二刷新率下的发光控制信号以及基准占空比确定第三刷新率;其中,第三刷新率位于第一刷新率和第二刷新率之间,第三刷新率的占空比等于基准占空比。
具体的,多种刷新率包括第一刷新率和第二刷新率,第一刷新率可以为最高刷新率,此时一帧时间最短,第二刷新率可以为最低刷新率,此时一帧时间最长。通过第一刷新率和第二刷新率确定第三刷新率,使第三刷新率位于第一刷新率和第二刷新率之间,可以使根据第三刷新率调节的伽马曲线在同一灰阶下的灰阶电压位于第一刷新率对应的伽马曲线的灰阶电压和第二刷新率对应的伽马曲线的灰阶电压之间。而且,第三刷新率的占空比等于基准占空比,可以保证第三刷新率下OLED显示装置的发光亮度与其他预设刷新率下OLED显示装置的发光亮度相同。需要说明的是,这里的第三刷新率是指位于第一刷新率和第二刷新率之间的一个刷新率。第一刷新率和第二刷新率之间可以包括多个刷新率。
S130、根据第三刷新率调节伽马曲线。
具体的,若共用伽马曲线,如果以第一刷新率或者第二刷新率其中任意一个刷新率来调整伽马曲线,这种放电时间差异会造成切换到另外一个刷新率后,另外一个刷新率低亮低灰阶偏色严重问题。本申请采用位于第一刷新率和第二刷新率之间的第三刷新率来调节伽马曲线,同一灰阶下,调节后的伽马曲线的 灰阶电压位于第一刷新率对应的伽马曲线的灰阶电压与第二刷新率对应的伽马曲线的灰阶电压之间,即调节后的伽马曲线的灰阶电压相对于第一刷新率对应的伽马曲线的灰阶电压具有一定的偏差,同样,调节后的伽马曲线的灰阶电压相对于第二刷新率对应的伽马曲线的灰阶电压也具有一定的偏差,且调节后的伽马曲线的灰阶电压相对于两者的偏差,均小于第一刷新率对应的伽马曲线的灰阶电压与第二刷新率对应的伽马曲线的灰阶电压的偏差。同时,第三刷新率下的驱动晶体管的栅极电容的放电时间位于第一刷新率下的驱动晶体管的栅极电容的放电时间和第二刷新率下的驱动晶体管的栅极电容的放电时间之间,第三刷新率下的驱动晶体管的栅极电容的放电时间相对于第一刷新率下的驱动晶体管的栅极电容的放电时间的差值的绝对值,以及第三刷新率下的驱动晶体管的栅极电容的放电时间相对于第二刷新率下的驱动晶体管的栅极电容的放电时间的差值的绝对值,均小于第一刷新率下的驱动晶体管的栅极电容的放电时间与第二刷新率下的驱动晶体管的栅极电容的放电时间的差值的绝对值。因此在第一刷新率和第二刷新率切换显示时,可以减小不同刷新率下驱动晶体管的栅极电位相对于伽马曲线的灰阶电压的差值,从而降低了第一刷新率和第二刷新率切换时色偏的程度,改善了共用伽马曲线时,不同刷新率之间存在亮度和色坐标偏移问题,提高了显示装置的显示功能。
图3是本申请提供的一种不同刷新率下发光控制信号的时序对比图,参考图3,第一刷新率为90Hz,第二刷新率为60Hz,根据刷新率为90Hz下的发光控制信号和刷新率为60Hz下的发光控制信号以及基准占空比确定的第三刷新率为72Hz。根据第三刷新率调节伽马曲线,此时从第一刷新率90Hz切换至第二刷新率60Hz时,放电时间差为Δt2=1/60-1/72,相对于相关技术中,若以第一刷新率为90Hz时调节伽马曲线,将伽马曲线共用到刷新率为60Hz时,放电时间差为Δt1=1/60-1/90,Δt1的值大于Δt2的值。因此,在切换至第二刷新率60Hz时,根据第三刷新率调节后的伽马曲线的灰阶电压相对于第二刷新率对应的伽马曲线的灰阶电压的偏差,小于第一刷新率对应的伽马曲线的灰阶电压与第二 刷新率对应的伽马曲线的灰阶电压的偏差。因此在第一刷新率向第二刷新率切换显示时,可以减小第二刷新率下驱动晶体管的栅极电位相对于伽马曲线的灰阶电压的差值,从而降低了第一刷新率向第二刷新率切换时色偏的程度,同样的,在根据第三刷新率调节伽马曲线后,第二刷新率向第一刷新率切换时色偏的程度也将被降低。
根据位于第一刷新率和第二刷新率之间的第三刷新率调节伽马曲线,相对于以第一刷新率或第二刷新率来调整伽马曲线,在切换至第一刷新率或第二刷新率时,驱动晶体管的栅极电容的放电时间的差值的绝对值均相对变小。图4是本申请提供的一种色偏程度对比示意图,参考4,以第一刷新率为90Hz,第二刷新率为60Hz,第三刷新率为72Hz为例,现以第三刷新率调节的伽马曲线作为基准,图4中的第一坐标点O为第三刷新率下的标准色,以线段长度表示色偏程度。线段OA1为第一刷新率下的色偏程度,线段OA2为第二刷新率下的色偏程度,因此当显示装置在第一刷新率和第二刷新率之间切换时,相对于标准色,色偏程度为线段OA1或线段OA2的长度。但是若以第一刷新率或者第二刷新率其中任意一个刷新率来调节伽马曲线,例如以第一刷新率来调节伽马曲线,此时则以第一刷新率下的颜色为标准色,图4中的第一坐标点O为第一刷新率下的标准色,此时从第一刷新率切换者第二刷新率,线段OB为第二刷新率下的色偏程度,显然,线段OB的长度大于线段OA1或线段OA2的长度。也就是说,以第三刷新率来调节伽马曲线时,以第三刷新率下的颜色为标准色,第一刷新率相对于第三刷新率的色偏偏小,第二刷新率相对于第三刷新率的色偏同样偏小,当第一刷新率与第二刷新率之间相互切换时,显示装置显示的色偏程度减小,色偏问题得到改善,从而提高了显示装置的显示功能。
本申请提供了一种伽马曲线的调节方法包括:根据预设刷新率下发光控制信号的占空比确定发光控制信号的基准占空比;根据第一刷新率下的发光控制信号和第二刷新率下的发光控制信号以及所述基准占空比确定第三刷新率;其中,第三刷新率位于第一刷新率和所述第二刷新率之间,第三刷新率的占空比 等于基准占空比;根据第三刷新率调节所述伽马曲线。本申请提供的技术方案采用位于第一刷新率和第二刷新率之间的第三刷新率调节伽马曲线,同一灰阶下,调节后的伽马曲线的灰阶电压相对于第一刷新率对应的伽马曲线的灰阶电压具有一定的偏差,同样,调节后的伽马曲线的灰阶电压相对于第二刷新率对应的伽马曲线的灰阶电压也具有一定的偏差,且调节后的伽马曲线的灰阶电压相对于两者的偏差,均小于第一刷新率对应的伽马曲线的灰阶电压与第二刷新率对应的伽马曲线的灰阶电压的偏差。因此在第一刷新率和第二刷新率切换显示时,可以减小不同刷新率下驱动晶体管的栅极电位相对于伽马曲线的灰阶电压的差值,从而降低了第一刷新率和第二刷新率切换时色偏的程度,改善了共用伽马曲线时,不同刷新率之间存在亮度和色坐标偏移问题,提高了显示装置的显示功能。
第一刷新率下发光控制信号的占空比和第二刷新率下发光控制信号的占空比相等,预设刷新率为第一刷新率或第二刷新率。根据第一刷新率下的发光控制信号和第二刷新率下的发光控制信号以及基准占空比确定第三刷新率,第三刷新率位于第一刷新率和第二刷新率之间。即第三刷新率为第一刷新率和第二刷新率的中间刷新率。
图5是本申请提供的另一种伽马曲线的调节方法的流程图,参考图5,方法包括:
S210、根据预设刷新率下发光控制信号的占空比确定发光控制信号的基准占空比。
S220、获取第一刷新率下一帧时间内发光控制信号的第一脉冲数,以及第二刷新率下一帧时间内发光控制信号的第二脉冲数。
具体的,发光控制信号可以为多脉冲信号,第一刷新率下发光控制信号的占空比和第二刷新率下发光控制信号的占空比相等。例如,参考图3,第一刷新率为90Hz,第一刷新率下一帧时间内发光控制信号的第一脉冲数为4个脉冲信号;第二刷新率为60Hz,因为刷新率为90Hz下发光控制信号的占空比和刷新 率为60Hz下发光控制信号的占空比需要相等,则刷新率为60Hz时,发光控制信号的亮度调节区间变为6个脉冲信号。
S230、根据第一脉冲数和所述第二脉冲数确定第三刷新率下一帧时间内发光控制信号的第三脉冲数;其中,第三脉冲数为整数,且第三脉冲数在第一脉冲数和第二脉冲数之间。
具体的,请继续参考图3,第一刷新率为90Hz,第一刷新率下一帧时间内发光控制信号的第一脉冲数为4个脉冲信号;第二刷新率为60Hz,发光控制信号的亮度调节区间变为6个脉冲信号。即第一脉冲数为4个,第二脉冲数为6个,根据第一脉冲数和第二脉冲数确定第三刷新率下一帧时间内发光控制信号的第三脉冲数。因为,第三脉冲数为整数,且第三脉冲数在第一脉冲数和第二脉冲数之间。则第三刷新率下一帧时间内发光控制信号的第三脉冲数为5个。
图6是本申请提供的另一种不同刷新率下发光控制信号的时序对比图,参考图6,例如第一刷新率为90Hz,第一刷新率下一帧时间内发光控制信号的第一脉冲数为4个脉冲信号;第二刷新率为45Hz,发光控制信号的亮度调节区间变为8个脉冲信号。则根据第一脉冲数和第二脉冲数确定的第三脉冲数可以为5个、6个和7个。
S240、根据第三脉冲数确定第三刷新率。
具体的,第三脉冲数位于第一脉冲数和第二脉冲数之间,则根据第三脉冲数确定的第三刷新率位于第一脉冲数对应的第一刷新率和第二脉冲数对应的第二刷新率之间。例如,参考图3,第一刷新率为90Hz,第一刷新率下一帧时间内发光控制信号的第一脉冲数为4个脉冲信号;第二刷新率为60Hz,发光控制信号的亮度调节区间变为6个脉冲信号。即第一脉冲数为4个,第二脉冲数为6个,则根据第一脉冲数和第二脉冲数确定第三刷新率下一帧时间内发光控制信号的第三脉冲数为5个。脉冲数为5个的刷新率为72HZ,则根据刷新率为90Hz下的发光控制信号和刷新率为60Hz下的发光控制信号以及基准占空比确定的第三刷新率为72Hz。
参考图6,例如第一刷新率为90Hz,第一刷新率下一帧时间内发光控制信号的第一脉冲数为4个脉冲信号;第二刷新率为45Hz,发光控制信号的亮度调节区间变为8个脉冲信号。则根据第一脉冲数和所述第二脉冲数确定第三刷新率下一帧时间内发光控制信号的第三脉冲数可以为5个、6个和7个。第三脉冲数为5个时对应的刷新率为72Hz,第三脉冲数为6个时对应的刷新率为60Hz,第三脉冲数为7个时对应的刷新率为51.4Hz。即第三刷新率可以为72Hz、60Hz或51.4Hz。
可选的,在根据第三脉冲数确定所述第三刷新率之后,还包括:
通过调整第一刷新率或第二刷新率的场消隐时间以调节出第三刷新率。
具体的,参考图3和图6,在将光信号转换为电信号的扫描过程中,扫描总是从图像的左上角开始,水平向前行进,同时扫描点也以较慢的速率向下移动。当扫描点到达图像右侧边缘时,扫描点快速返回左侧,重新开始在第1行的起点下面进行第2行扫描,行与行之间的返回过程称为水平消隐。一幅完整的图像扫描信号,由水平消隐间隔分开的行信号序列构成,称为一帧。扫描点扫描完一帧后,要从图像的右下角返回到图像的左上角,开始新一帧的扫描,这一时间间隔,叫做垂直消隐,也称场消隐。通过调整第一刷新率或第二刷新率的场消隐时间以调节出第三刷新率。场消隐时间为非显示阶段对应的时间。
若第一刷新率为90Hz,第一刷新率下一帧时间内发光控制信号的第一脉冲数为4个脉冲信号;第二刷新率为60Hz,发光控制信号的亮度调节区间变为6个脉冲信号。通过调整第一刷新率的场消隐时间,增加一个脉冲信号对应的时间,从4个脉冲信号变为5个脉冲信号,即可得到5个脉冲信号对应的第三刷新率,此时第三刷新率为72Hz。也可以通过调整第二刷新率的场消隐时间,减少一个脉冲信号对应的时间,从6个脉冲信号变为5个脉冲信号,即可得到5个脉冲信号对应的第三刷新率,此时第三刷新率为72Hz。
若第一刷新率为90Hz,第一刷新率下一帧时间内发光控制信号的第一脉冲数为4个脉冲信号;第二刷新率为45Hz,发光控制信号的亮度调节区间变为8 个脉冲信号。则根据第一脉冲数和第二脉冲数确定第三刷新率下一帧时间内发光控制信号的第三脉冲数可以为5个、6个和7个。通过调整第一刷新率的场消隐时间,增加一个脉冲信号对应的时间,从4个脉冲信号变为5个脉冲信号,即可得到5个脉冲信号对应的第三刷新率,此时第三刷新率为72Hz。增加2个脉冲信号对应的时间,从4个脉冲信号变为6个脉冲信号,即可得到6个脉冲信号对应的第三刷新率,此时第三刷新率为60Hz。增加3个脉冲信号对应的时间,从4个脉冲信号变为7个脉冲信号,即可得到7个脉冲信号对应的第三刷新率,此时第三刷新率为51.4Hz。通过调整第二刷新率的场消隐时间,减少一个脉冲信号对应的时间,从8个脉冲信号变为7个脉冲信号,即可得到7个脉冲信号对应的第三刷新率,此时第三刷新率为51.4Hz。减少2个脉冲信号对应的时间,从8个脉冲信号变为6个脉冲信号,即可得到6个脉冲信号对应的第三刷新率,此时第三刷新率为60Hz。减少3个脉冲信号对应的时间,从8个脉冲信号变为5个脉冲信号,即可得到5个脉冲信号对应的第三刷新率,此时第三刷新率为72Hz。
第三脉冲数与第一脉冲数的差值的绝对值等于第三脉冲数与第二脉冲数的差值的绝对值。
具体的,确定第三脉冲数,其中,第三脉冲数与第一脉冲数的差值的绝对值等于第三脉冲数与第二脉冲数的差值的绝对值。此时,根据第三脉冲数确定第三刷新率对应的刷新时间(即第三刷新率下的驱动晶体管的栅极电容的放电时间),其中,第三刷新率对应的刷新时间与第一刷新率对应的刷新时间的时间差的绝对值等于第三刷新率对应的刷新时间与第二刷新率的对应的刷新时间的时间差的绝对值。
参考图3,若第一刷新率为90Hz,第二刷新率为60Hz,则第三刷新率为72Hz。此时切换到第一刷新率后,第一刷新率下的驱动晶体管的栅极电容的放电时间与第三刷新率下的驱动晶体管的栅极电容的放电时间之间的时间差为Δt1=1/72-1/90;切换到第二刷新率后,第二刷新率下的驱动晶体管的栅极电容的 放电时间与第三刷新率下的驱动晶体管的栅极电容的放电时间之间的时间差为Δt2=1/60-1/72,通过计算,可以确定Δt1=Δt2。参考图5,若第一刷新率为90Hz,第二刷新率为45Hz,则第三刷新率为60Hz,此时切换到第一刷新率后,第一刷新率下的驱动晶体管的栅极电容的放电时间与第三刷新率下的驱动晶体管的栅极电容的放电时间之间的时间差为Δt3=1/60-1/90;切换到第二刷新率后,第二刷新率下的驱动晶体管的栅极电容的放电时间与第三刷新率下的驱动晶体管的栅极电容的放电时间之间的时间差为Δt4=1/45-1/60,通过计算,可以确定Δt3=Δt4。根据位于第一刷新率和第二刷新率之间的第三刷新率调节伽马曲线,相对于第一刷新率和第二刷新率,驱动晶体管的栅极电容放电时间的改变量相等。此时,在第三刷新率下调节的伽马曲线对应的灰阶电压,还可以使第一刷新率下和第二刷新率下的色偏程度相等。从而进一步地改善了第一刷新率切换为第二刷新率,以及从第二刷新率切换为第一刷新率存在亮度和色坐标偏移问题,提高了显示装置的显示功能。
S250、根据第三刷新率调节伽马曲线。
本申请提供的伽马曲线的调节方法,通过获取第一刷新率下一帧时间内发光控制信号的第一脉冲数,以及第二刷新率下一帧时间内发光控制信号的第二脉冲数,并根据第一脉冲数和所述第二脉冲数确定第三刷新率下一帧时间内发光控制信号的第三脉冲数;其中,第三脉冲数为整数,第三脉冲数与第一脉冲数的差值的绝对值等于第三脉冲数与第二脉冲数的差值的绝对值。再根据第三脉冲数确定第三刷新率,此时,第三刷新率对应的刷新时间与第一刷新率对应的刷新时间的时间差的绝对值等于第三刷新率对应的刷新时间与第二刷新率的对应的刷新时间的时间差的绝对值。在第三刷新率下调节的伽马曲线对应的灰阶电压,还可以使第一刷新率下和第二刷新率下的色偏程度相等。从而进一步地改善了第一刷新率切换为第二刷新率,以及从第二刷新率切换为第一刷新率存在亮度和色坐标偏移问题,提高了显示装置的显示功能。
图7是本申请提供的另一种伽马曲线的调节方法的流程图,参考图7,方法 包括:
S310、确定第一刷新率、第二刷新率和第四刷新率中的最小刷新率和最大刷新率。
具体的,OLED显示装置的预设刷新率还可以包括第四刷新率,即该OLED显示装置的刷新率可以在第一刷新率、第二刷新率和第四刷新率之间相互切换。在根据第一刷新率和第二刷新率确定第三刷新率之前,还需要确定OLED显示装置的预设刷新率中的最小刷新率和最大刷新率。即确定第一刷新率、第二刷新率和第四刷新率中的最小刷新率和最大刷新率。
S320、以最大刷新率更新第一刷新率,以最小刷新率更新第二刷新率。
具体的,确定OLED显示装置的预设刷新率中的最小刷新率和最大刷新率后,以最大刷新率更新获取三个预设刷新率中的第一刷新率,以最小刷新率更新获取三个预设刷新率中的第二刷新率。也就是说,当OLED显示装置可以支持的预设刷新率的种数为三种时,根据三种预设刷新率中的最大刷新率以及三种预设刷新率中的最小刷新率确定调节共用伽马曲线的第三刷新率。从而改善了第一刷新率、第二刷新率和第四刷新率之间相互切换存在亮度和色坐标偏移问题,提高了显示装置的显示功能。
在本方案的另一种实施例中,OLED显示装置的预设刷新率可以包括三种以上,根据三种以上的预设刷新率中的最大刷新率以及三种以上的预设刷新率中的最小刷新率确定调节共用伽马曲线的第三刷新率。从而改善了三种以上的预设刷新率之间相互切换存在亮度和色坐标偏移问题,进一步地提高了显示装置的显示功能。
S330、根据预设刷新率下发光控制信号的占空比确定发光控制信号的基准占空比。
S340、根据第一刷新率下的发光控制信号和第二刷新率下的发光控制信号以及基准占空比确定第三刷新率;其中,第三刷新率位于第一刷新率和第二刷新率之间,第三刷新率的占空比等于基准占空比。
S350、根据第三刷新率调节伽马曲线。
S360、烧录调节后的伽马曲线至显示装置。
具体的,根据第三刷新率调节伽马曲线后,将伽马曲线烧录至一次性可编程只读存储器(One Time Programmable Read Only Memory,OTPROM,简称OTP)中,OTP位于显示装置的驱动芯片中。
S370、根据调节后的伽马曲线驱动显示装置在预设刷新率下显示。
具体的,驱动芯片根据第三刷新率调节后的伽马曲线驱动显示装置在预设刷新率下进行显示。通过采用位于第一刷新率和第二刷新率之间的第三刷新率调节伽马曲线,同一灰阶下,调节后的伽马曲线的灰阶电压位于第一刷新率对应的伽马曲线的灰阶电压与第二刷新率对应的伽马曲线的灰阶电压之间,即调节后的伽马曲线的灰阶电压相对于第一刷新率对应的伽马曲线的灰阶电压具有一定的偏差,同样,调节后的伽马曲线的灰阶电压相对于第二刷新率对应的伽马曲线的灰阶电压也具有一定的偏差,且调节后的伽马曲线的灰阶电压相对于两者的偏差,均小于第一刷新率对应的伽马曲线的灰阶电压与第二刷新率对应的伽马曲线的灰阶电压的偏差。因此在第一刷新率和第二刷新率切换显示时,可以减小不同刷新率下驱动晶体管的栅极电位相对于伽马曲线的灰阶电压的差值,从而降低了第一刷新率和第二刷新率切换时色偏的程度,改善了共用伽马曲线时,不同刷新率之间存在亮度和色坐标偏移问题,提高了显示装置的显示功能。
本申请还提了一种伽马曲线的调节装置,设置为执行上述任意实施例所述的伽马曲线的调节方法,图8是本申请提供的一种伽马曲线的调节装置的结构框图,参考图8,调节装置包括:
基准占空比获取模块10,设置为根据预设刷新率下发光控制信号的占空比确定发光控制信号的基准占空比;
第三刷新率计算模块20,设置为根据第一刷新率下的发光控制信号和第二刷新率下的发光控制信号以及所述基准占空比确定第三刷新率;其中,第三刷 新率位于第一刷新率和所述第二刷新率之间,第三刷新率的占空比等于基准占空比;
伽马曲线调节模块30,设置为根据第三刷新率调节伽马曲线。
具体的,伽马曲线的调节装置包括基准占空比获取模块10、第三刷新率计算模块20以及伽马曲线调节模块30。基准占空比获取模块10设置为根据预设刷新率下发光控制信号的占空比确定发光控制信号的基准占空比。OLED显示装置支持多种刷新率,每种刷新率下发光控制信号的占空比均相同,可以根据OLED显示装置支持的一种刷新率下发光控制信号的占空比确定此OLED显示装置发光控制信号的基准占空比。也就是说,基准占空比获取模块可以根据任意一个预设刷新率下发光控制信号的占空比确定发光控制信号的基准占空比。
第三刷新率计算模块20设置为根据第一刷新率下的发光控制信号和第二刷新率下的发光控制信号以及所述基准占空比确定第三刷新率。多种刷新率包括第一刷新率和第二刷新率,第一刷新率下发光控制信号的占空比和第二刷新率下发光控制信号的占空比相等,预设刷新率为第一刷新率或第二刷新率。第三刷新率计算模块20根据第一刷新率下的发光控制信号和第二刷新率下的发光控制信号以及所述基准占空比确定第三刷新率,第三刷新率位于第一刷新率和第二刷新率之间。即第三刷新率为第一刷新率和第二刷新率的中间刷新率。
伽马曲线调节模块30设置为根据第三刷新率调节伽马曲线。调节后的伽马曲线为显示装置的共用伽马曲线。如果以第一刷新率或者第二刷新率其中任意一个刷新率来调整伽马曲线,这种放电时间差异会造成切换到另外一个刷新率后,另外一个刷新率低亮低灰阶偏色严重问题。本申请通过采用位于第一刷新率和第二刷新率之间的中间刷新率即第三刷新率调节伽马曲线,同一灰阶下,调节后的伽马曲线的灰阶电压位于第一刷新率对应的伽马曲线的灰阶电压与第二刷新率对应的伽马曲线的灰阶电压之间,即调节后的伽马曲线的灰阶电压相对于第一刷新率对应的伽马曲线的灰阶电压具有一定的偏差,同样,调节后的伽马曲线的灰阶电压相对于第二刷新率对应的伽马曲线的灰阶电压也具有一定 的偏差,且调节后的伽马曲线的灰阶电压相对于两者的偏差,均小于第一刷新率对应的伽马曲线的灰阶电压与第二刷新率对应的伽马曲线的灰阶电压的偏差。同时,第三刷新率下的驱动晶体管的栅极电容的放电时间位于第一刷新率下的驱动晶体管的栅极电容的放电时间和第二刷新率下的驱动晶体管的栅极电容的放电时间之间,第三刷新率下的驱动晶体管的栅极电容的放电时间相对于第一刷新率下的驱动晶体管的栅极电容的放电时间的差值的绝对值,以及第三刷新率下的驱动晶体管的栅极电容的放电时间相对于第二刷新率下的驱动晶体管的栅极电容的放电时间的差值的绝对值,均小于第一刷新率下的驱动晶体管的栅极电容的放电时间与第二刷新率下的驱动晶体管的栅极电容的放电时间的差值的绝对值。因此在第一刷新率和第二刷新率切换显示时,可以减小不同刷新率下驱动晶体管的栅极电位相对于伽马曲线的灰阶电压的差值,从而降低了第一刷新率和第二刷新率切换时色偏的程度,改善了共用伽马曲线时,不同刷新率之间存在亮度和色坐标偏移问题,提高了显示装置的显示功能。
可选的,图9是本申请提供的另一种伽马曲线的调节装置的结构框图,参考图9,调节装置还包括:
第三刷新率调节模块40,设置为通过调整第一刷新率或第二刷新率的场消隐时间以调节出第三刷新率。
图10是本申请提供的一种显示装置的结构框图,参考图10,本申请还提供了一种显示装置1,包括伽马曲线存储单元2,伽马曲线存储单元2设置为存储通过上述任意实施例所述的伽马曲线的调节方法获取的伽马曲线,伽马曲线存储单元2可以为伽马寄存器。由于伽马曲线存储单元2中存储的伽马曲线为通过上述任意实施例所述的伽马曲线的调节方法获取的伽马曲线,因此具有相同的技术效果,这里不再赘述。
注意,上述仅为本申请的较佳实施例及所运用技术原理。本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽 然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本申请构思的情况下,还可以包括更多其他等效实施例,而本申请的范围由所附的权利要求范围决定。

Claims (13)

  1. 一种伽马曲线的调节方法,包括:
    根据预设刷新率下的发光控制信号的占空比确定发光控制信号的基准占空比;
    根据第一刷新率下的发光控制信号和第二刷新率下的发光控制信号以及所述基准占空比确定第三刷新率;其中,所述第三刷新率位于所述第一刷新率和所述第二刷新率之间,所述第三刷新率的占空比等于所述基准占空比;
    根据所述第三刷新率调节所述伽马曲线。
  2. 根据权利要求1所述的伽马曲线的调节方法,其中,所述第一刷新率下的发光控制信号的占空比和所述第二刷新率下的发光控制信号的占空比相等,所述预设刷新率为所述第一刷新率或所述第二刷新率。
  3. 根据权利要求2所述的伽马曲线的调节方法,其中,所述发光控制信号为多脉冲信号;根据所述第一刷新率下的发光控制信号和所述第二刷新率下的发光控制信号以及所述基准占空比确定第三刷新率,包括:
    获取所述第一刷新率下的一帧时间内的发光控制信号的第一脉冲数,以及所述第二刷新率下的一帧时间内的发光控制信号的第二脉冲数;
    根据所述第一脉冲数和所述第二脉冲数确定所述第三刷新率下的一帧时间内的发光控制信号的第三脉冲数;其中,所述第三脉冲数为整数,且所述第三脉冲数在所述第一脉冲数和所述第二脉冲数之间;
    根据所述第三脉冲数确定所述第三刷新率。
  4. 根据权利要求3所述的伽马曲线的调节方法,其中,在根据所述第三脉冲数确定所述第三刷新率之后,还包括:
    通过调整所述第一刷新率或所述第二刷新率的场消隐时间以调节出所述第三刷新率。
  5. 根据权利要求3所述的伽马曲线的调节方法,其中,所述第三脉冲数与所述第一脉冲数的差值的绝对值等于所述第三脉冲数与所述第二脉冲数的差值的绝对值。
  6. 根据权利要求1所述的伽马曲线的调节方法,其中,还包括第四刷新率,在根据所述第一刷新率下的发光控制信号和所述第二刷新率下的发光控制信号以及所述基准占空比确定所述第三刷新率之前,还包括:
    确定所述第一刷新率、所述第二刷新率和所述第四刷新率中的最小刷新率和最大刷新率;
    以所述最大刷新率更新所述第一刷新率;
    以所述最小刷新率更新所述第二刷新率。
  7. 根据权利要求1所述的伽马曲线的调节方法,其中,在根据所述第三刷新率调节所述伽马曲线之后,还包括:
    烧录调节后的所述伽马曲线至显示装置;
    根据调节后的所述伽马曲线驱动所述显示装置在所述预设刷新率下显示。
  8. 根据权利要求1所述的伽马曲线的调节方法,其中,所述第三刷新率为位于所述第一刷新率与所述第二刷新率之间的多个刷新率中的其中一个刷新率。
  9. 一种伽马曲线的调节装置,设置为执行权利要求1-8任一项所述的伽马曲线的调节方法,所述调节装置包括:
    基准占空比获取模块,设置为根据预设刷新率下的发光控制信号的占空比确定发光控制信号的基准占空比;
    第三刷新率计算模块,设置为根据第一刷新率下的发光控制信号和第二刷新率下的发光控制信号以及所述基准占空比确定第三刷新率;其中,所述第三刷新率位于所述第一刷新率和所述第二刷新率之间,所述第三刷新率的占空比等于所述基准占空比;
    伽马曲线调节模块,设置为根据所述第三刷新率调节所述伽马曲线。
  10. 根据权利要求9所述的伽马曲线的调节装置,其中,还包括:
    第三刷新率调节模块,设置为通过调整所述第一刷新率或所述第二刷新率的场消隐时间以调节出所述第三刷新率。
  11. 一种显示装置,包括伽马曲线存储单元,所述伽马曲线存储单元设置 为存储通过权利要求1-8任一项所述的伽马曲线的调节方法获取的伽马曲线。
  12. 根据权利要求11所述的显示装置,其中,所述伽马曲线存储单元为伽马寄存器。
  13. 根据权利要求11所述的显示装置,其中,所述伽马曲线存储单元为一次性可编程只读存储器,所述伽马曲线烧录至所述一次性可编程只读存储器中。
PCT/CN2021/112676 2020-11-24 2021-08-16 伽马曲线的调节方法、调节装置以及显示装置 WO2022110908A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/169,383 US11935466B2 (en) 2020-11-24 2023-02-15 Method for adjusting gamma curve, device for adjusting gamma curve, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011331247.3 2020-11-24
CN202011331247.3A CN112365839B (zh) 2020-11-24 2020-11-24 伽马曲线的调节方法、装置以及显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/169,383 Continuation US11935466B2 (en) 2020-11-24 2023-02-15 Method for adjusting gamma curve, device for adjusting gamma curve, and display device

Publications (1)

Publication Number Publication Date
WO2022110908A1 true WO2022110908A1 (zh) 2022-06-02

Family

ID=74534305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112676 WO2022110908A1 (zh) 2020-11-24 2021-08-16 伽马曲线的调节方法、调节装置以及显示装置

Country Status (3)

Country Link
US (1) US11935466B2 (zh)
CN (1) CN112365839B (zh)
WO (1) WO2022110908A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112365839B (zh) 2020-11-24 2022-04-12 昆山国显光电有限公司 伽马曲线的调节方法、装置以及显示装置
CN113077746A (zh) * 2021-03-23 2021-07-06 Tcl华星光电技术有限公司 显示面板的伽马校正方法及装置
CN113299216B (zh) * 2021-05-28 2023-01-20 昆山国显光电有限公司 Gamma调试方法、装置、设备及存储介质
CN113393818B (zh) * 2021-06-17 2022-08-05 深圳市华星光电半导体显示技术有限公司 显示面板的调节方法以及调节装置
TWI792762B (zh) * 2021-12-10 2023-02-11 大陸商北京歐錸德微電子技術有限公司 動態亮度調整方法、oled顯示裝置、及資訊處理裝置
CN114267280B (zh) * 2021-12-24 2023-10-13 绵阳惠科光电科技有限公司 伽马电压产生电路和显示设备
CN114613306A (zh) * 2022-03-14 2022-06-10 维沃移动通信有限公司 显示控制芯片、显示面板及相关设备、方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106373516A (zh) * 2016-10-31 2017-02-01 北京集创北方科技股份有限公司 Led显示装置及其驱动方法
CN110491351A (zh) * 2019-09-27 2019-11-22 京东方科技集团股份有限公司 一种显示面板的驱动方法、其驱动装置及显示装置
CN111312145A (zh) * 2020-03-03 2020-06-19 昆山国显光电有限公司 显示器及其驱动方法
CN111554218A (zh) * 2020-04-24 2020-08-18 昆山国显光电有限公司 显示参数确定方法、装置及显示设备
CN112365839A (zh) * 2020-11-24 2021-02-12 昆山国显光电有限公司 伽马曲线的调节方法、装置以及显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260849A (ja) * 2004-03-15 2005-09-22 Toshiba Corp 表示装置と表示方法
US7639222B2 (en) * 2005-10-04 2009-12-29 Chunghwa Picture Tubes, Ltd. Flat panel display, image correction circuit and method of the same
US9370075B2 (en) * 2008-12-09 2016-06-14 Ignis Innovation Inc. System and method for fast compensation programming of pixels in a display
US10643555B2 (en) * 2016-09-23 2020-05-05 Apple Inc. Internal gamma correction for electronic displays
KR102594294B1 (ko) * 2016-11-25 2023-10-25 엘지디스플레이 주식회사 전계 발광 표시 장치 및 이의 구동 방법
TWI626642B (zh) 2017-06-20 2018-06-11 友達光電股份有限公司 顯示裝置及其伽瑪曲線補償電路與驅動方法
CN110675824B (zh) * 2019-10-09 2021-08-27 京东方科技集团股份有限公司 一种信号输出电路、驱动ic、显示装置及其驱动方法
CN111968582B (zh) * 2020-01-14 2022-04-15 Oppo广东移动通信有限公司 显示屏变频方法、ddic芯片、显示屏模组及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106373516A (zh) * 2016-10-31 2017-02-01 北京集创北方科技股份有限公司 Led显示装置及其驱动方法
CN110491351A (zh) * 2019-09-27 2019-11-22 京东方科技集团股份有限公司 一种显示面板的驱动方法、其驱动装置及显示装置
CN111312145A (zh) * 2020-03-03 2020-06-19 昆山国显光电有限公司 显示器及其驱动方法
CN111554218A (zh) * 2020-04-24 2020-08-18 昆山国显光电有限公司 显示参数确定方法、装置及显示设备
CN112365839A (zh) * 2020-11-24 2021-02-12 昆山国显光电有限公司 伽马曲线的调节方法、装置以及显示装置

Also Published As

Publication number Publication date
US20230196995A1 (en) 2023-06-22
CN112365839B (zh) 2022-04-12
CN112365839A (zh) 2021-02-12
US11935466B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
WO2022110908A1 (zh) 伽马曲线的调节方法、调节装置以及显示装置
US7864156B2 (en) Liquid crystal display device, light source device, and light source control method
KR100895734B1 (ko) 액정 표시 장치 및 표시 제어 방법
KR20080000632A (ko) 램프 분할과 타이밍이 최적화된 스캐닝 백라이트 lcd패널
US20070008250A1 (en) Electroluminescent display devices
KR102568899B1 (ko) Led 디스플레이 장치 및 그 동작 방법
WO2022057294A1 (zh) 亮度调节方法、装置及显示设备
CN112581901B (zh) 显示面板及其显示驱动方法以及电子设备
TWI756052B (zh) 掃描式顯示器及其驅動裝置與驅動方法
JP2004163828A (ja) 液晶表示装置
KR20200128289A (ko) 표시 장치 및 이의 구동 방법
US11289034B2 (en) Display device performing local dimming
KR101126402B1 (ko) 액정표시장치 및 그의 구동방법
JP2004163829A (ja) 液晶表示装置
JP2009109736A (ja) 液晶表示装置及びその駆動方法
US8305367B2 (en) Method for driving display device to hide transient behavior
US10607550B2 (en) Digital control driving method and driving display device
US9472164B2 (en) Display apparatus light emission control method and display apparatus
TWI455099B (zh) Drive circuit, backlight driver and backlight drive method
JP2011227117A (ja) 画像処理装置、表示システム、電子機器及び画像処理方法
WO2023088263A1 (zh) 背光控制方法、设备及存储介质
KR20140137243A (ko) 표시장치 및 표시장치의 구동방법
JP2014006456A (ja) 表示装置
WO2023092405A1 (zh) 显示面板的控制方法及控制装置、显示装置
JP2011197168A (ja) 表示装置及び表示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896413

Country of ref document: EP

Kind code of ref document: A1