WO2022110885A1 - 一种多用户调度方法、基站及相关装置 - Google Patents

一种多用户调度方法、基站及相关装置 Download PDF

Info

Publication number
WO2022110885A1
WO2022110885A1 PCT/CN2021/110264 CN2021110264W WO2022110885A1 WO 2022110885 A1 WO2022110885 A1 WO 2022110885A1 CN 2021110264 W CN2021110264 W CN 2021110264W WO 2022110885 A1 WO2022110885 A1 WO 2022110885A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
equipment
user group
channel orthogonality
uplink
Prior art date
Application number
PCT/CN2021/110264
Other languages
English (en)
French (fr)
Inventor
许威
何振耀
孙欢
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21896392.4A priority Critical patent/EP4231758A4/en
Publication of WO2022110885A1 publication Critical patent/WO2022110885A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/04013Intelligent reflective surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a multi-user scheduling method, a base station, and a related device.
  • Intelligent reflective surface usually composed of a large number of almost passive low-cost reflective elements with reconfigurable parameters, can be used as an effective means to improve the performance of wireless communication systems.
  • the intelligent controller by adjusting the phases of all the reflective elements of the IRS and reconstructing the wireless propagation channel, functions such as signal enhancement and interference cancellation can be achieved without increasing the overhead of the transmitter.
  • the channel between the base station (BS) and the user (user) in Figure 1 is interfered by trees, which can be passed through Artificially deploy IRS to effectively increase multiple propagation paths and improve the quality of wireless communication links.
  • the IRS can implement passive beamforming, focusing or nulling energy at the desired location. While saving cost and energy consumption, IRS is of great significance to the improvement of system performance.
  • the embodiments of the present application provide a multi-user scheduling method, a base station, and a related device, which can reduce system pilot frequency overhead and improve system multi-user scheduling efficiency.
  • a multi-user scheduling method includes: dividing user equipment to be scheduled into uplink user group equipment and downlink user group equipment; instructing the uplink user group equipment to send a configuration pilot signal to an intelligent reflection surface IRS; Instructing the downlink user group device to receive the configuration pilot signal reflected by the IRS, so that the downlink user group device determines the channel orthogonal to each of the uplink user group devices according to the configuration pilot signal obtaining the channel orthogonality evaluation information and determining at least a pair of target user equipments from the to-be-scheduled user equipment according to the channel orthogonality evaluation information; using the at least one pair of target user equipments Multi-user scheduling for data transmission.
  • the first step in this embodiment of the present application is to realize the over-the-air calculation of channel orthogonality based on the assistance of the IRS, and combine the channel orthogonality evaluation information obtained by the orthogonality measurement to pre-screen the user equipments to be scheduled to have better orthogonality and channel chains.
  • the second step only requires scheduling and data transmission for the users in the target user equipment group using the classical method. This method greatly reduces the system overhead and system computational complexity required for multi-user scheduling.
  • the channel orthogonality evaluation information determined by the downlink user group equipment with each of the uplink user group equipment according to the configuration pilot signal includes:
  • the downlink user group equipment determines a channel orthogonality evaluation value with each of the uplink user group equipment according to the configuration pilot signal.
  • the channel orthogonality evaluation value may be specifically set according to the actual situation, which is not limited in this embodiment of the present application.
  • the calculation formula of the channel orthogonality evaluation value provided in the embodiment of the present application is:
  • g i,j is the channel orthogonality evaluation value between the downlink user group device v j and the uplink user group device ui , is the channel vector of the downlink user group device v j , is the conjugate transpose of the channel vector of the uplink user group device ui .
  • the method further includes:
  • the downlink user group equipment normalizes the channel orthogonality evaluation value to construct a channel orthogonality evaluation vector.
  • the channel orthogonality evaluation vector may be specifically set according to actual needs, which is not limited in this embodiment of the present application.
  • the channel orthogonality evaluation vector is:
  • Target user devices include:
  • the top K pairs of target user equipments with the smallest channel orthogonality evaluation value are selected from the to-be-scheduled user equipments, where K is an integer greater than or equal to 1, and the user equipments between the target user equipment pairs are not repeated. It can be understood that the non-repetition of user equipments between the target user equipment pairs means that the same user equipment does not appear repeatedly between each pair of target user equipments. For example, if the first pair of target user equipment includes target user equipment A and target user equipment B, then target user equipment A and target user equipment B will not appear repeatedly in other target user equipment pairs.
  • the selecting the top K pairs of target user equipments with the smallest channel orthogonality evaluation value from the user equipments to be scheduled includes:
  • n is an integer greater than or equal to 1;
  • the n+1th pair of target user equipments with the smallest channel orthogonality evaluation value is selected from the remaining to-be-scheduled user equipments, where n+1 is less than or equal to the K.
  • the method further includes:
  • the top J pairs of target user equipments with the smallest channel orthogonality evaluation value are selected from the K pairs of target user equipments, the J is an integer greater than or equal to 1, and the J is less than the K.
  • the performing multi-user scheduling for data transmission on the at least one pair of target user equipments includes:
  • the dividing the user equipment to be scheduled into the uplink user group equipment and the downlink user group equipment includes:
  • the sorted user equipment to be scheduled is divided into uplink user group equipment and downlink user group equipment according to the sorted sequence number parity or a preset rule.
  • the method further includes:
  • the configuration signaling includes user time-frequency resource configuration information, reference signal configuration information, and user feedback configuration information ;
  • phase configuration signaling required for the over-the-air calculation is sent to the IRS, where the phase configuration signaling is used to indicate the phase configuration of the IRS array.
  • an embodiment of the present application provides a base station and a control device, and the control device communicates with other parts of the base station through a communication bus;
  • the control device includes: a memory, a processor, and a communication link;
  • the memory for storing instructions
  • the processor in communication with the memory through the communication link;
  • control device After some instructions stored in the memory are executed by the processor, the control device enables the base station to implement the user scheduling method according to the first aspect.
  • an apparatus for multi-user scheduling including:
  • a processing module configured to divide the user equipment to be scheduled into uplink user group equipment and downlink user group equipment
  • the processing module is further configured to instruct the uplink user group equipment to send a configuration pilot signal to the intelligent reflective surface IRS;
  • the processing module is further configured to instruct the downlink user group device to receive the configuration pilot signal reflected by the IRS, so that the downlink user group device determines a relationship with each of the configuration pilot signals according to the configuration pilot signal.
  • an acquiring module configured to acquire the channel orthogonality evaluation information and determine at least a pair of target user equipments from the to-be-scheduled user equipments according to the channel orthogonality evaluation information
  • the processing module is further configured to perform multi-user scheduling for data transmission on the at least one pair of target user equipments.
  • the obtaining module is further configured to: obtain a channel orthogonality evaluation value fed back by each downlink user group device;
  • the processing module is configured to: select the top K pairs of target user equipments with the smallest channel orthogonality evaluation value from the to-be-scheduled user equipments, where K is an integer greater than or equal to 1, and the target user equipment pairs There is no duplication between user devices.
  • the processing module is used for:
  • n is an integer greater than or equal to 1;
  • the n+1th pair of target user equipments with the smallest channel orthogonality evaluation value is selected from the remaining to-be-scheduled user equipments, where n+1 is less than or equal to the K.
  • the processing module is used for:
  • the top J pairs of target user equipments with the smallest channel orthogonality evaluation value are selected from the K pairs of target user equipments, the J is an integer greater than or equal to 1, and the J is less than the K.
  • the processing module is used for:
  • the processing module is further configured to send a reference signal to the IRS with a fixed beam, so that the user equipment to be scheduled receives the reference signal and reports the reference signal the received signal strength corresponding to the reference signal;
  • the obtaining module is further configured to obtain the received signal strength
  • the processing module is further configured to sort the to-be-scheduled user equipment according to the received signal strength and in combination with a criterion for multi-user scheduling;
  • the processing module is further configured to divide the sorted user equipments to be scheduled into uplink user group equipment and downlink user group equipment according to the sorted sequence numbers or preset rule parity.
  • the processing module is further configured to:
  • the configuration signaling includes user time-frequency resource configuration information, reference signal configuration information, and user feedback configuration information ;
  • phase configuration signaling required for the over-the-air calculation is sent to the IRS, where the phase configuration signaling is used to indicate the phase configuration of the IRS array.
  • an embodiment of the present application provides a method for evaluating channel orthogonality, including: (downlink user group equipment) receiving a configuration pilot signal reflected by an IRS and sent by an uplink user group equipment; according to the received configuration The pilot signal determines channel orthogonality evaluation information with each of the uplink user group equipment; reports the channel orthogonality evaluation information to the base station.
  • the determining the channel orthogonality evaluation information with each of the uplink user group equipment according to the configuration pilot signal includes:
  • a channel orthogonality evaluation value with each of the uplink user group equipment is determined according to the configuration pilot signal.
  • the Methods after the channel orthogonality evaluation value with each of the uplink user group equipment is determined according to the received configuration pilot signal, the Methods also include:
  • the downlink user group equipment normalizes the channel orthogonality evaluation value to construct a channel orthogonality evaluation vector.
  • the method before the receiving the configuration pilot signal sent by the uplink user group equipment reflected by the IRS, the method further includes:
  • an embodiment of the present application provides a user equipment, including more than one processor, a memory, and a wireless network interface;
  • the memory is a short-term storage memory or a persistent storage memory
  • the user equipment communicates with a base station or other user equipment through the wireless network interface;
  • the processor is configured to communicate with the memory and execute operations of instructions in the memory on the user equipment to perform the method of the fourth aspect.
  • an embodiment of the present application provides an apparatus for evaluating channel orthogonality, including: a receiving module, configured to receive a configuration pilot signal sent by an uplink user group device reflected by IRS; The configuration pilot signal of the device determines the channel orthogonality evaluation information with each of the uplink user group equipment; the sending module is configured to report the channel orthogonality evaluation information to the base station.
  • the processing module is used for:
  • a channel orthogonality evaluation value with each of the uplink user group equipment is determined according to the received configuration pilot signal.
  • the processing module is used for:
  • the downlink user group equipment normalizes the channel orthogonality evaluation value to construct a channel orthogonality evaluation vector.
  • the receiving module is further configured to:
  • the embodiments of the present application provide a computer-readable storage medium, including instructions, when the instructions are executed on a computer or a processor, the computer or the processor is made to execute the first aspect or the fourth aspect method.
  • an embodiment of the present application provides a computer program product including instructions, the computer program product includes program instructions, and when the program instructions are run on a computer or a processor, the computer or the processor A method as in the first aspect or the fourth aspect is performed.
  • Fig. 1 is a schematic diagram of a smart reflective surface
  • FIG. 2 is a schematic diagram of an application scenario of an embodiment of the present application
  • FIG. 3 is a flowchart of a user scheduling method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of over-the-air calculation of channel orthogonality in an embodiment of the present application
  • FIG. 5 is a flowchart of a downlink user group device execution in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a detailed technical solution of an embodiment of the application.
  • FIG. 7 is a simulation test performance gain diagram provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an apparatus for user scheduling provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an access network device according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an apparatus for evaluating channel orthogonality provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a user equipment provided by an embodiment of the present application.
  • the embodiments of the present application provide a multi-user scheduling method, a base station, and a related device, which can reduce system pilot frequency overhead and improve system multi-user scheduling efficiency.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations. Any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • a user scheduling scheme based on semi-orthogonal criterion is commonly used.
  • This scheme requires the base station to estimate the precise channel state information of all users, and calculate and select users with better channel orthogonality to perform multi-user communication according to the channel state information based on the semi-orthogonal criterion. Specifically, after initialization, first select a user with the largest channel vector modulus value from the candidate user set as a reference user; secondly, calculate the orthogonal projection of other user channels in the candidate user set on the reference user channel, and select the projection vector among them.
  • the user with the largest modulus value is used as the new reference user; finally, the candidate user set is updated according to the channel orthogonality with the new reference user, and the user with stronger channel orthogonality is reserved. Repeat the above process to obtain a sufficient number of reference users to complete the scheduling.
  • the commonly used multi-user selection scheduling algorithm based on semi-orthogonal isometric measurement has high computational complexity.
  • the computational complexity required to select orthogonal users through channel state information (CSI) is about 1.48 ⁇ (1 ⁇ M) ⁇ (M ⁇ M) ⁇ D ⁇ 5 ⁇ 106.
  • the embodiment of the present application proposes an efficient multi-user scheduling method that is oriented to a massive user access scenario, does not occupy base station resources, and is assisted by an IRS for over-the-air computing.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, for example: for example, code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (frequency division multiple access) multiple access, FDMA), orthogonal frequency division multiple access (orthogonal frequency-division multiple access, OFDMA), single carrier frequency division multiple access (single carrier FDMA, SC-FDMA) and other systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • single carrier frequency division multiple access single carrier frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • system is interchangeable with "network”.
  • 3GPP long term evolution long term evolution (long term evolution, LTE) system and various versions based on LTE evolution, as well as fifth generation (5 Generation, 5G) communication systems, new radio (new radio, NR) and other communication systems.
  • 5G fifth generation
  • the communication system may also be applicable to future-oriented communication technologies, and the technical solutions provided by the embodiments of the present application are all applicable.
  • the system architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 2 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the application scenario includes a terminal device 201 , an access network device 202 and an IRS 203 .
  • the terminal device 201 is wirelessly connected to the access network device 202
  • the terminal device 201 is wirelessly connected to the access network device 202 through the IRS 203 .
  • the terminal device 201 is also called user equipment (UE), mobile station (MS), mobile terminal (MT), etc., and is a device that provides voice and/or data connectivity to users.
  • the device, or a chip provided in the device for example, a handheld device, a vehicle-mounted device, etc. with a wireless connection function.
  • some examples of terminal devices are: mobile phone (mobile phone), tablet computer, notebook computer, PDA, mobile internet device (MID), wearable device, virtual reality (VR) device, augmented Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart grid wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the access network device 202 may be any device with a wireless transceiver function, or a chip provided in a specific wireless transceiver function device.
  • the access network device 202 includes but is not limited to: base stations (eg, base station BS, base station NodeB, evolved base station eNodeB or eNB, base station gNodeB or gNB in the fifth-generation 5G communication system, base station in future communication systems, and base stations in WiFi systems. access node, wireless relay node, wireless backhaul node), etc.
  • the base station can be: a macro base station, a micro base station, a pico base station, a small base station, a relay station, and the like.
  • Multiple base stations may support a network of one or more technologies mentioned above, or a future evolution network.
  • a base station may contain one or more co-sited or non-co-sited transmission reception points (TRPs).
  • the access network device 202 may also be a wireless controller, a centralized unit (central unit, CU), or a distributed unit (distributed unit, DU) in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the following description will be given by taking the access network device 202 as the base station as an example.
  • the multiple access network devices 202 may be base stations of the same type, or may be base stations of different types.
  • the base station can communicate with the terminal device 201, and can also communicate with the terminal device 201 through a relay station.
  • the terminal device 201 can support communication with multiple base stations of different technologies.
  • the terminal device 201 can support communication with a base station supporting an LTE network, a base station supporting a 5G network, and a base station supporting an LTE network. Dual connectivity of base stations for 5G networks.
  • the terminal device 201 is connected to a RAN node of the wireless network.
  • RAN nodes are: gNB, TRP, evolved Node B (evolved Node B, eNB), next generation evolved Node B (next generation evolved Node B, LTE ng-eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B , HNB), base band unit (BBU), or Wifi access point (access point, AP), etc.
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • BTS home base station
  • home base station for example, home evolved NodeB, or home Node B , HNB
  • BBU base band unit
  • Wifi access point access point, AP
  • the IRS 203 is similar to the description corresponding to the foregoing FIG. 1 and will not be repeated here. It can be understood that the IRS applied in the embodiments of the present application is a passively transmitting large-scale smart surface, which does not have the capability of baseband signal processing, but has a corresponding signaling receiver and phase adjustment circuit control.
  • the embodiment of the present application is mainly applied to an IRS-MU-MIMO system, and the application scenario is mainly an IRS-assisted ultra-large-scale multi-user communication system.
  • the application scenario is mainly an IRS-assisted ultra-large-scale multi-user communication system.
  • the embodiments of the present application can efficiently perform orthogonal user scheduling in this scenario.
  • the embodiment of the present application mainly performs orthogonality determination based on the channel hr between the IRS 203 and the terminal device 201.
  • the direct path h d between the access network device 202 and the terminal device 201 is determined in the embodiment of the present application.
  • FIG. 3 is a flowchart of a user scheduling method provided by an embodiment of the present application. This process can be performed by the access network device 202 (in this embodiment of the present application, the gNB is used as an example), and the process includes:
  • the gNB may divide the user equipment to be scheduled into uplink user group equipment and downlink user group equipment in an appropriate manner according to actual needs, such as random grouping, which is not limited in this embodiment of the present application.
  • the embodiment of the present application provides a better grouping method for grouping according to the strength of the reflected link, which is as follows:
  • the gNB sends downlink configuration signaling to the IRS signaling receiver to open all N units of the IRS and configure the initial reflection phase ⁇ 0 of the IRS.
  • the gNB transmits the reference signal with SSB/CSI-RS towards the IRS in a fixed beam.
  • the user equipment to be scheduled receives the SSB/CSI-RS reference signal toward the IRS, performs received signal strength measurement, and reports the measurement result back to the gNB.
  • the received signal strength here may also be the reflected link strength between the reference signal from the gNB to the IRS and then to the received user equipment to be scheduled.
  • the gNB After receiving the measurement results, the gNB can perform asynchronous duplex user group division, as follows:
  • the gNB ranks the user equipments to be scheduled based on the proportional fairness criterion. First, for the user equipment d to be scheduled, the gNB calculates the index ⁇ d according to the proportional fairness criterion according to its reflected link strength:
  • r d represents the received signal strength of the user equipment to be scheduled
  • ⁇ d represents the cumulative number of calls of the user equipment to be scheduled.
  • the gNB can sort the users according to the size of the index (may be sorted from large to small or from small to large, etc.), and the sorted set of user equipments to be scheduled is D.
  • the gNB allocates uplink and downlink users at intervals for the sorted user set D, forming an uplink user group U and a downlink user group V, namely:
  • V ⁇ d (2m)
  • m 1,2,...,L2 ⁇ ;
  • the user equipment to be scheduled in the uplink user group U may also be referred to as uplink user group equipment.
  • the user equipment to be scheduled in the downlink user group V may also be referred to as downlink user group equipment.
  • the numbers L 1 and L 2 of user equipments to be scheduled in the user group are limited by resources such as configurable subcarriers.
  • the user equipments to be scheduled are grouped according to the sorted sequence number parity. In practical applications, the grouping may also be performed according to other preset rules, which is not limited in this embodiment of the present application.
  • the gNB may perform asynchronous duplex user group division on the user equipment, and divide the user equipment into an uplink user group and a downlink user group.
  • This embodiment of the present application first sorts the user equipments according to the reflected link strength of the user equipments and based on the proportional fairness criterion, and divides the user equipment groups according to the sorted set of user equipments.
  • the orthogonality between the user equipment channels of different user groups The determination can be accomplished by IRS-assisted over-the-air calculations.
  • the gNB after step 301 and before step 302, the gNB also configures signaling for the user equipment to be scheduled and the IRS. Specifically include:
  • the gNB configures the signaling for the user equipment to be scheduled: if the gNB supports the full-duplex mode, the gNB sends the configuration signaling and pilot pattern of the uplink and downlink communication to the user equipment in the uplink user group U and the downlink user group V respectively. Frequency configuration signaling, transmission time slot, and uplink time slot configuration signaling for measurement feedback; if the gNB does not support full-duplex mode, additional time slots are separately configured for users in the uplink user group for uplink transmission.
  • the gNB configures signaling for the IRS: the gNB sends downlink configuration information to the IRS signaling receiver to open all N units of the IRS and configure the phase ⁇ 1 .
  • ⁇ 1 is a predefined phase control matrix, for example, ⁇ 1 is an identity matrix or a diagonal matrix with the same diagonal elements, which is used to support over-the-air calculation of channels between user equipments.
  • the transmission time slot and the measurement feedback uplink time slot configuration signaling can ensure that the user equipments in the downlink user group V immediately feedback and report after completing the orthogonality measurement, thereby reducing waiting time and delay.
  • the gNB in addition to the user equipment to be scheduled, there may also be user equipments that are communicating with the gNB in the cell.
  • the gNB directly classifies it into the scheduled user set to ensure that its communication status is not interrupted.
  • the gNB informs the user equipment in the downlink user group V of its communication frequency band and appropriately increases the number of users L 2 in V, and the user equipment in the downlink user group V receives the information of the user equipment through the IRS , which directly realizes the over-the-air computation of channel orthogonality.
  • the communication frequency band of the user equipment in the uplink user group U is notified via the gNB, and the over-the-air calculation of the orthogonality with the user channel of the uplink user group can also be directly implemented while communicating.
  • the gNB may instruct all user equipments u i ⁇ U, i ⁇ ⁇ 1, 2, . . . , L 1 ⁇ in the uplink user group U to send configuration pilot signals toward the IRS uplink.
  • the configuration pilot signal can be reflected by the IRS to reach the user equipment in the downlink user group V.
  • the configuration pilot signal in the embodiment of the present application refers to the pilot signal configured by the gNB for the user equipment, and may specifically be an orthogonal pilot signal, a semi-orthogonal pilot signal, a non-orthogonal pilot signal, and the like. , which is not limited in the embodiments of the present application.
  • the gNB may instruct all user equipments v j ⁇ V,j ⁇ 1,2,...,L 2 ⁇ in the downlink user group V to receive the configuration pilots sent by the uplink user group equipment toward the IRS signal to realize the over-the-air calculation of channel orthogonality between users.
  • the gNB may instruct all user equipments v j ⁇ V,j ⁇ 1,2,...,L 2 ⁇ in the downlink user group V to receive the configuration pilots sent by the uplink user group equipment toward the IRS signal to realize the over-the-air calculation of channel orthogonality between users.
  • there are 5 user equipments u 1 , u 2 , u 3 , u 4 , and u 5 in the uplink user group U which transmit configuration pilot signals on 5 subcarrier bands respectively, and all the user equipments in the downlink user group V are fully configured.
  • the frequency band is received, and the configured pilot signals from five uplink users are received.
  • FIG. 4 is a schematic diagram of over-the-air calculation of channel orthogonality in an embodiment of the present application.
  • the user equipment u 1 in the uplink user group U passes the channel
  • the configuration pilot signal is sent towards the IRS
  • the user equipment u 2 passes the channel
  • a configuration pilot signal is sent towards the IRS.
  • the IRS reflects these configuration pilot signals, so that the user equipments in the downlink user group V receive the configuration pilot signals.
  • the user equipment v1 in the downlink user group V passes the channel
  • the configuration pilot signal is received towards the IPS
  • user equipment v 2 passes the channel
  • the configuration pilot signal is received towards the IPS
  • user equipment v3 goes through the channel
  • a configuration pilot signal is received towards the IPS.
  • the user equipments in the downlink user group V may determine the channel orthogonality evaluation information with each uplink user group equipment according to the configuration pilot signal.
  • the channel orthogonality evaluation information is a parameter used to evaluate the channel orthogonality, and may specifically be a channel orthogonality evaluation value.
  • the configuration pilot signal that the user equipment v j in the downlink user group V receives toward the IPS and sent by the uplink user group equipment ui is:
  • ⁇ 1 is the phase of the IRS
  • x represents the transmitted symbol of the gNB
  • n represents the noise received by the user equipment vj.
  • g i,j is the channel orthogonality evaluation value between the user equipment v j and the uplink user group equipment ui .
  • One user equipment vj can receive configuration pilot signals sent by multiple uplink user group equipments ui , and thus can determine multiple channel orthogonality evaluation values.
  • the above calculation method of the channel orthogonality evaluation value is only one of the implementation methods of the embodiments of the present application. In practical applications, other parameters capable of evaluating the channel orthogonality may be set according to actual needs. Not limited.
  • the IRS-assisted over-the-air calculation implements channel orthogonality measurement.
  • the user equipment in the uplink user group transmits the configuration pilot signal toward the phase IRS, and the user equipment in the downlink user group receives toward the IRS.
  • the user's channel orthogonality evaluation value is
  • the user equipments in the downlink user group V may further normalize all the channel orthogonality evaluation values to construct a channel orthogonality evaluation vector.
  • the user equipments in the downlink user group V may only feed back the channel orthogonality evaluation value, and the gNB performs normalization processing after receiving the channel orthogonality evaluation value.
  • the embodiment of the present application does not limit the execution subject of the normalization process.
  • the user equipments in the downlink user group V may report the channel orthogonality evaluation vector or the channel orthogonality evaluation value to the gNB.
  • the transmission time slot and measurement feedback uplink time slot configuration signaling can ensure that the user equipment in the downlink user group V determines the channel orthogonality evaluation vector or the channel orthogonality evaluation value and reports it immediately, reducing waiting time and delay.
  • the process of determining the channel orthogonality evaluation vector or the channel orthogonality evaluation value by the user equipments in the above-mentioned downlink user group V may be implemented by over-the-air calculation.
  • Over-the-air computing provides an architecture that integrates communications and computing.
  • the process of over-the-air computation is: through the concurrent transmission of all nodes, the direct computation of the objective function in the over-the-air channel can be realized by using the superposition characteristic of the wireless channel.
  • the gNB after the gNB obtains the channel orthogonality evaluation information (channel orthogonality evaluation vector or channel orthogonality evaluation value) reported by the user equipment in the downlink user group V, it can evaluate the channel orthogonality according to the channel orthogonality evaluation information. At least one pair of target user equipments is determined from the user equipments to be scheduled. Specifically, the gNB can select the top K pairs of target user equipments with the smallest channel orthogonality evaluation value from the user equipments to be scheduled, where K is an integer greater than or equal to 1, and the user equipments between the target user equipments do not overlap.
  • K is an integer greater than or equal to 1
  • the non-repetition of user equipments between target user equipments means that if one pair of target user equipments is ⁇ v 1 , u 1 ⁇ , v 1 and u 1 no longer appear in other pairs of target user equipments, that is, they are not repeated.
  • the following process can be used to achieve:
  • the gNB selects a pair of target user equipments with the smallest channel orthogonality evaluation value from the user equipments to be scheduled;
  • the gNB may establish an inter-user channel orthogonality evaluation table according to the received channel orthogonality evaluation vector or channel orthogonality evaluation value.
  • Table 1 is an example of an inter-user channel orthogonality evaluation table.
  • the gNB selects a pair of target user equipments with strong channel orthogonality, that is, the minimum orthogonality evaluation value g i,j .
  • the gNB deletes or shields the channel orthogonality evaluation values corresponding to the two user equipments of the pair of target user equipments.
  • gNB can delete or mask the relevant rows and columns in Table 1.
  • the pair of target user equipments selected in step 3401 are v 1 and u 1 , then the gNB can delete or mask the row corresponding to v 1 and the column corresponding to u 1 in Table 1, so that the channel orthogonality between users can be evaluated.
  • Tables (eg Table 1) are updated.
  • the gNB can continue to find the next pair of target user equipments in the manner of step 3041 until the number of target user equipments reaches the requirement.
  • Example of selection scheme gNB searches Table 1 to find the element with the smallest evaluation value Satisfy:
  • gNB selects the corresponding user pair according to its subscript Join the core user group (collection of target user devices), then delete in Table 1 and Corresponding rows and columns, update Table 1, and re-find the next pair of orthogonal users. The above steps are repeated until the selection of k pairs of orthogonal users is completed, where k is an integer greater than or equal to 1.
  • This embodiment of the present application introduces the concept of a core user group (that is, the concept of target user equipment).
  • the base station constructs a channel orthogonality evaluation table according to the orthogonality evaluation value reported by the downlink user feedback, and selects a channel with better orthogonality from the table.
  • User devices form a core user group.
  • the channel link strength of the user equipment in the core user group is relatively high and the mutual orthogonality is good, which can be used for subsequent scheduling.
  • the gNB can divide the user group according to other methods, and perform the channel orthogonality over-the-air calculation under the new user group division. Specifically, the gNB may cyclically use the user equipments in the determined core user group as the equipment to be scheduled, and perform steps 301 to 304, thereby continuously screening to obtain target user equipments with better orthogonality and greater channel link strength. For example, the gNB performs steps 301 to 304 for the first time to obtain the set of core users as K pairs of target user equipments, the next time the gNB continues to screen the K pairs of target user equipments, and executes steps 301 to 304 again to obtain J pairs of target user equipments User equipment, J is a positive integer less than K.
  • gNB can not only obtain target user equipment with better orthogonality and stronger channel link strength, but also further reduce the set of core users, reducing the system overhead and system requirements for multi-user scheduling. Computational complexity.
  • the gNB may perform multi-user channel estimation on at least one pair of target user equipments (which may also be expressed as user equipments in a core user group), and perform data analysis according to a typical multi-user scheduling algorithm. Multi-user selective scheduling of transmissions.
  • the gNB can perform multi-user channel estimation for the user equipment in the core user group by using the classical method, and perform multi-user scheduling for the target user equipment for data transmission according to the typical multi-user scheduling algorithm.
  • multi-user scheduling algorithms There are many typical multi-user scheduling algorithms, which are not limited in this embodiment of the present application.
  • One of the implementations provided by the embodiment of the present application is:
  • h k is the IRS-user channel of the kth user
  • is an index to measure the orthogonality of the user channel
  • S 0 is the set of scheduled orthogonal users.
  • FIG. 5 is a flowchart of a downlink user group device execution in an embodiment of the present application.
  • the steps performed by the downlink user group equipment include:
  • Step 501 is similar to the description corresponding to the foregoing FIG. 4 and will not be repeated here.
  • Step 502 is similar to the process performed by the user equipment in the downlink user group V in step 303 in the foregoing embodiments corresponding to FIG. 3 , and details are not repeated here.
  • the downlink user group equipment determines the channel orthogonality evaluation information, and can report the channel orthogonality evaluation information to the base station (gNB), so that the base station receives (obtains) the channel orthogonality evaluation information.
  • FIG. 6 is a schematic diagram of a detailed technical solution of an embodiment of the present application.
  • the gNB first transmits a beam in a fixed direction with an SSB/CSI-RS reference signal, so that the user equipment to be scheduled receives the reference signal and measures and feeds back the received signal strength corresponding to the reference signal. Then, the gNB implements the division of asynchronous duplex user groups according to the received signal strength fed back by the user equipment to be scheduled, and performs signaling configuration for the user equipment to be scheduled and the IRS. This process is similar to step 301 in the foregoing embodiments corresponding to FIG. 3 , and details are not repeated here.
  • the grouped user equipments to be scheduled are divided into two groups: a downlink user group V and an uplink user group U.
  • the user equipment of the uplink user group U sends the configuration pilot signal to the user equipment of the downlink user group V, and after the user equipment of the downlink user group V receives the configuration pilot signal, the over-the-air calculation can be implemented, and the over-the-air calculation is performed.
  • the results are fed back to gNB. This process is similar to steps 302 and 303 in the foregoing embodiments corresponding to FIG. 3 , and details are not repeated here.
  • the gNB After the gNB receives the over-the-air calculation results fed back by the user equipments of the downlink user group V, the gNB can construct a channel orthogonality evaluation table, and then screen out the user equipments to be scheduled according to the channel orthogonality evaluation table to select channels with better orthogonality and better orthogonality.
  • the target user equipment with greater intensity is divided into the core user group K. This process is similar to step 304 in the foregoing embodiments corresponding to FIG. 3 , and details are not repeated here.
  • the gNB can re-use the user equipments in the core user group K as the to-be-scheduled user equipments, re-divide the to-be-scheduled user equipments in a similar manner, and perform channel orthogonality again Evaluation and other processing are performed, so that target user equipments with better orthogonality and greater channel link strength are further screened in the core user group K, and further optimization of the core user group K is achieved.
  • the number of times of optimization may be set according to the actual situation, which is not limited in this embodiment of the present application.
  • the gNB After the gNB determines the core user group K, it can perform user scheduling according to the core user group K.
  • the scheduling manner is similar to step 305 in the foregoing embodiments corresponding to FIG. 3 , and details are not described herein again.
  • the embodiment of the present application verifies the technical effect through a simulation example.
  • FIG. 7 is a simulation test performance gain diagram provided by an embodiment of the present application.
  • This simulation test selects U users directly and randomly to access from all the users to be accessed; the "ideal multi-user scheduling performance upper bound" scheme assumes that the channel state information of all D users is completely known, and the user directly follows the semi-orthogonal criterion. schedule. It can be seen that the user scheduling scheme of the embodiment of the present application has a large performance gain compared with random user scheduling, and is close to the upper bound of multi-user scheduling performance under ideal conditions.
  • the embodiments of the present application effectively reduce the pilot overhead and computational complexity through over-the-air calculation.
  • the traditional multi-user scheduling algorithm directly performs user scheduling from D users according to the semi-orthogonal criterion, and the computational complexity is 1.48 ⁇ (1 ⁇ N) ⁇ (N ⁇ N) ⁇ D ⁇ 3.9 ⁇ 107;
  • the present invention only needs to perform orthogonal scheduling on users in the core user group, and the computational complexity is 1.48 ⁇ (1 ⁇ N) ⁇ (N ⁇ N) ⁇ K ⁇ 1.2 ⁇ 107.
  • the embodiments of the present invention can achieve a performance gain equivalent to the traditional algorithm on the premise that the channel estimation overhead and computational complexity are only 30% of those of the traditional scheduling algorithm .
  • the over-the-air calculation of channel orthogonality is assisted by the IRS, and the core user group is constructed based on the orthogonality measurement results.
  • the classical method to perform multi-user channel estimation for the users in the core user group K and perform multi-user channel estimation according to the user
  • the channel semi-orthogonal criterion is used for user selection scheduling, which greatly reduces the channel estimation overhead and computational complexity.
  • the transmission and measurement steps of the designed user in this solution can be completed in a given time slot or a given space of the base station, such as selecting an existing uplink user to find candidate users and other methods.
  • the embodiments of the present application implement over-the-air calculation of channel orthogonality measurement through IRS-assisted inter-user communication.
  • the user group can be divided according to different methods, and the channel orthogonality can be calculated in the air under the new user group division.
  • FIG. 8 is a schematic diagram of an apparatus for multi-user scheduling provided by an embodiment of the present application.
  • the apparatus 800 for multi-user scheduling includes:
  • an acquisition module 801 configured to perform step 304 in the respective embodiments corresponding to FIG. 3 above;
  • the processing module 802 is configured to execute step 301 , step 302 , step 303 and step 305 in the respective embodiments corresponding to FIG. 3 above.
  • FIG. 9 is a schematic diagram of an access network device according to an embodiment of the present application.
  • the access network device 900 includes: one or more processors 901 , a memory 903 and a communication interface 904 , and the processor 901 , the memory 903 and the communication interface 904 can be connected through a communication bus 902 .
  • the memory 903 is used to store one or more programs; the one or more processors 901 are used to run the one or more programs, so that the access network device 900 executes the corresponding method embodiments described above. method. That is, the access network device 900 may be the access network device 202 in the embodiment shown in FIG. 2 above.
  • the processor 901 may be a general-purpose central processing unit (CPU), a network processor (NP), a microprocessor, or may be one or more integrated circuits for implementing the solutions of the present application, such as , an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general-purpose array logic (generic array logic, GAL) or any combination thereof.
  • the communication bus 902 is used to transfer information between the aforementioned components.
  • the communication bus 902 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 9, but it does not mean that there is only one bus or one type of bus.
  • the memory 903 can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, or can be random access memory (RAM) or can store information and instructions. Other types of dynamic storage devices, it can also be electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage , optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, blu-ray disc, etc.), magnetic disk storage medium or other magnetic storage device, or can be used to carry or store desired program code in the form of instructions or data structures and any other medium that can be accessed by a computer, but is not limited thereto.
  • the memory 903 may exist independently and be connected to the processor 901 through the communication bus 902 .
  • the memory 903 may also be integrated with the processor 901 .
  • the Communication interface 904 uses any transceiver-like device for communicating with other devices or a communication network.
  • the communication interface 904 includes a wired communication interface, and may also include a wireless communication interface.
  • the wired communication interface may be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface or a combination thereof.
  • the wireless communication interface may be a wireless local area network (wireless local area networks, WLAN) interface, a cellular network communication interface or a combination thereof, and the like.
  • the processor 901 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 9 .
  • the access network device 900 may include multiple processors, such as the processor 901 and the processor 905 shown in FIG. 9 .
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the access network device 900 may further include an output device and an input device.
  • the output device communicates with the processor 901 and can display information in a variety of ways.
  • the output device may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, a projector, or the like.
  • the input device communicates with the processor 901 and can receive user input in a variety of ways.
  • the input device may be a mouse, a keyboard, a touch screen device, or a sensor device, or the like.
  • the memory 903 is used to store the program code 910 for executing the solutions of the present application, and the processor 901 can execute the program code 910 stored in the memory 903 . That is, the access network device 900 may implement the user scheduling method provided by the method embodiment through the processor 901 and the program code 910 in the memory 903 .
  • the access network device 900 corresponds to the access network device in the foregoing method embodiments, and specifically, each unit in the access network device 900 and the other operations and/or functions described above are respectively designed to implement the above shown in FIG. 3 .
  • each unit in the access network device 900 and the other operations and/or functions described above are respectively designed to implement the above shown in FIG. 3 .
  • FIG. 10 is a schematic diagram of an apparatus for evaluating channel orthogonality provided by an embodiment of the present application.
  • the apparatus 1000 includes:
  • a receiving module 1001 configured to perform step 501 in the embodiment corresponding to FIG. 5 above;
  • a processing module 1002 configured to perform step 502 in the embodiment corresponding to FIG. 5 above;
  • the sending module 1003 is configured to execute step 503 in the embodiment corresponding to FIG. 5 above.
  • FIG. 11 is a schematic diagram of a user equipment provided by an embodiment of the present application.
  • the processor 1101, the communication bus 1102, the memory 1103, the communication interface 1104, the processor 1105, and the program code 1110 may refer to the respective embodiments corresponding to FIG.
  • the user equipment 1100 may be the terminal equipment 201 in the embodiment shown in FIG. 2 above.
  • the user equipment 1100 corresponds to the user equipment in the above method embodiments, and specifically, each unit in the user equipment 1100 and the above other operations and/or functions are respectively to implement the downlink user group in the above method shown in FIG. 5 .
  • each unit in the user equipment 1100 and the above other operations and/or functions are respectively to implement the downlink user group in the above method shown in FIG. 5 .
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种多用户调度方法、基站及相关装置,该方法第一步通过基于IRS辅助实现信道正交性的空中计算,结合正交性测量得到的信道正交性评估信息从待调度用户设备中预筛选出正交性更好、信道链路强度更大的目标用户设备集合。第二步只需要利用经典方法对目标用户设备组中的用户进行调度和数据传输。该方法极大的减小了用于多用户调度所需的系统开销和系统计算复杂度。

Description

一种多用户调度方法、基站及相关装置
本申请要求于2020年11月24日提交中国专利局、申请号为202011335709.9、申请名称为“一种多用户调度方法、基站及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种多用户调度方法、基站及相关装置。
背景技术
智能反射表面(intelligent reflecting surface,IRS),通常是由大量具有可重构参数的几乎无源的低成本反射元件组成,可以作为一种提升无线通信系统性能的有效手段。借助于智能控制器,通过调整IRS所有反射元件的相位,重构无线传播信道,可以在不增加发送端开销的前提下实现信号增强以及干扰消除等功能。
具体来说,如图1所示,在某些信道受阻或信道质量较差的通信场景下,例如图1中基站(base station,BS)与用户(user)之间信道受树木干扰,可以通过人为地部署IRS来有效地增加多条传播经,提升无线通信链路的质量。此外,通过改变反射信号的相位,IRS可以实现被动波束赋型功能,在所需的位置实现能量聚焦或能量零化。在节约成本和能耗的同时,IRS对于系统性能的提升有重大意义。
然而,在基于IRS的多用户多输入多输出(multi-user multiple-input multiple-output,MU-MIMO)系统中,随着用户数的增加和IRS单元个数的增加,用于信道估计的开销巨大,多用户选择调度算法的计算复杂度高,引起传输效率下降。
发明内容
本申请实施例提供了一种多用户调度方法、基站及相关装置,能够减小系统导频开销,提高系统多用户调度效率。
本申请实施例提供的一种多用户调度方法,包括:将待调度用户设备划分为上行用户组设备和下行用户组设备;指示所述上行用户组设备向智能反射表面IRS发送配置导频信号;指示所述下行用户组设备接收通过所述IRS反射的所述配置导频信号,以使得所述下行用户组设备根据所述配置导频信号确定与每一个所述上行用户组设备的信道正交性评估信息;获取所述信道正交性评估信息并根据所述信道正交性评估信息从所述待调度用户设备中确定至少一对目标用户设备;对所述至少一对目标用户设备进行用于数据传输的多用户调度。
本申请实施例第一步通过基于IRS辅助实现信道正交性的空中计算,结合正交性测量得到的信道正交性评估信息从待调度用户设备中预筛选出正交性更好、信道链路强度更大的目标用户设备集合。第二步只需要利用经典方法对目标用户设备组中的用户进行调度和数据传输。该方法极大的减小了用于多用户调度所需的系统开销和系统计算复杂度。
结合第一方面,在本申请实施例的一种实现方式中,所述下行用户组设备根据所述配 置导频信号确定与每一个所述上行用户组设备的信道正交性评估信息包括:
所述下行用户组设备根据所述配置导频信号确定与每一个所述上行用户组设备的信道正交性评估值。
信道正交性评估值可以根据实际情况具体设定,本申请实施例对此不做限定。示例性的,本申请实施例提供信道正交性评估值的计算公式为:
Figure PCTCN2021110264-appb-000001
其中,g i,j为所述下行用户组设备v j与所述上行用户组设备u i之间的所述信道正交性评估值,
Figure PCTCN2021110264-appb-000002
为所述下行用户组设备v j的信道向量,
Figure PCTCN2021110264-appb-000003
为所述上行用户组设备u i的信道向量的共轭转置。
结合第一方面,在本申请实施例的一种实现方式中,所述下行用户组设备确定与每一个所述上行用户组设备的信道正交性评估值之后,所述方法还包括:
所述下行用户组设备对所述信道正交性评估值进行归一化处理,构建信道正交性评估向量。
信道正交性评估向量可以根据实际需要具体设定,本申请实施例对此不做限定。示例性的,所述信道正交性评估向量为:
Figure PCTCN2021110264-appb-000004
其中,
Figure PCTCN2021110264-appb-000005
为所述信道正交性评估向量,
Figure PCTCN2021110264-appb-000006
为下行用户组设备v j与第一个上行用户组设备之间的归一化信道正交性评估值,
Figure PCTCN2021110264-appb-000007
为下行用户组设备v j与第二个上行用户组设备之间的归一化信道正交性评估值,
Figure PCTCN2021110264-appb-000008
为下行用户组设备v j与第三个上行用户组设备之间的归一化信道正交性评估值,
Figure PCTCN2021110264-appb-000009
为下行用户组设备v j与第I个上行用户组设备之间的归一化信道正交性评估值。
结合第一方面,在本申请实施例的一种实现方式中,所述获取所述信道正交性评估信息并根据所述信道正交性评估信息从所述待调度用户设备中确定至少一对目标用户设备包括:
获取每一个下行用户组设备反馈的所述信道正交性评估值;
从所述待调度用户设备中选择信道正交性评估值最小的前K对目标用户设备,所述K为大于或等于1的整数,所述目标用户设备对之间的用户设备不重复。可以理解的是,所述目标用户设备对之间的用户设备不重复是指每对目标用户设备之间不会重复出现相同的用户设备。例如,第1对目标用户设备中包括目标用户设备A和目标用户设备B,则目标用户设备A和目标用户设备B将不在其他目标用户设备对中重复出现。
结合第一方面,在本申请实施例的一种实现方式中,所述从所述待调度用户设备中选择信道正交性评估值最小的前K对目标用户设备包括:
从所述待调度用户设备中选择信道正交性评估值最小的第n对目标用户设备,所述n为大于或等于1的整数;
删除或屏蔽所述第n对目标用户设备中两个用户设备所对应的信道正交性评估值;
从剩下的所述待调度用户设备中选择信道正交性评估值最小的第n+1对目标用户设备,所述n+1小于或等于所述K。
结合第一方面,在本申请实施例的一种实现方式中,所述从所述待调度用户设备中选择信道正交性评估值最小的前K对目标用户设备之后,所述方法还包括:
从所述K对目标用户设备中选择信道正交性评估值最小的前J对目标用户设备,所述J为大于或等于1的整数,所述J小于所述K。
结合第一方面,在本申请实施例的一种实现方式中,所述对所述至少一对目标用户设备进行用于数据传输的多用户调度包括:
对所述至少一对目标用户设备中的用户设备进行多用户信道估计,并按照典型多用户调度算法对所述目标用户设备进行用于数据传输的多用户调度。
结合第一方面,在本申请实施例的一种实现方式中,所述将待调度用户设备划分为上行用户组设备和下行用户组设备包括:
以固定波束向所述IRS发送参考信号,以使得其他所述待调度用户设备接收所述参考信号并上报所述参考信号对应的接收信号强度;
获取所述接收信号强度;
根据所述接收信号强度,并结合用于多用户调度的准则对所述待调度用户设备进行排序;
按照排序的序号奇偶或预设规则将排序后的所述待调度用户设备划分为上行用户组设备和下行用户组设备。
结合第一方面,在本申请实施例的一种实现方式中,所述将待调度用户设备划分为上行用户组设备和下行用户组设备之后,所述指示所述上行用户组设备向智能反射表面IRS发送配置导频信号之前,所述方法还包括:
向所述上行用户组设备和所述下行用户组设备分别发送上行通信或下行通信所需的配置信令,所述配置信令包括用户时频资源配置信息、参考信号配置信息及用户反馈配置信息;
向IRS发送空中计算所需的相位配置信令,所述相位配置信令用于指示IRS阵列的相位配置。
第二方面,本申请实施例提供一种基站,一个控制装置,所述控制装置通过通信总线与所述基站其他部分相通信;
所述控制装置包括:存储器,处理器,通信链路;
所述存储器,用于存储指令;
所述处理器,通过所述通信链路和所述存储器相通信;
所述存储器中存储的一些指令,通过所述处理器执行后,所述控制装置使得所述基站可以实现如第一方面的用户调度方法。
第三方面,本申请实施例提供一种多用户调度的装置,包括:
处理模块,用于将待调度用户设备划分为上行用户组设备和下行用户组设备;
所述处理模块,还用于指示所述上行用户组设备向智能反射表面IRS发送配置导频信 号;
所述处理模块,还用于指示所述下行用户组设备接收通过所述IRS反射的所述配置导频信号,以使得所述下行用户组设备根据所述配置导频信号确定与每一个所述上行用户组设备的信道正交性评估信息;
获取模块,用于获取所述信道正交性评估信息并根据所述信道正交性评估信息从所述待调度用户设备中确定至少一对目标用户设备;
所述处理模块,还用于对所述至少一对目标用户设备进行用于数据传输的多用户调度。
结合第三方面,在本申请实施例的一种实现方式中,所述获取模块还用于:获取每一个下行用户组设备反馈的信道正交性评估值;
所述处理模块用于:从所述待调度用户设备中选择所述信道正交性评估值最小的前K对目标用户设备,所述K为大于或等于1的整数,所述目标用户设备对之间的用户设备不重复。
结合第三方面,在本申请实施例的一种实现方式中,所述处理模块用于:
从所述待调度用户设备中选择信道正交性评估值最小的第n对目标用户设备,所述n为大于或等于1的整数;
删除或屏蔽所述第n对目标用户设备中两个用户设备所对应的信道正交性评估值;
从剩下的所述待调度用户设备中选择信道正交性评估值最小的第n+1对目标用户设备,所述n+1小于或等于所述K。
结合第三方面,在本申请实施例的一种实现方式中,所述处理模块用于:
从所述K对目标用户设备中选择信道正交性评估值最小的前J对目标用户设备,所述J为大于或等于1的整数,所述J小于所述K。
结合第三方面,在本申请实施例的一种实现方式中,结合第三方面,在本申请实施例的一种实现方式中,所述处理模块用于:
对所述至少一对目标用户设备中的用户设备进行多用户信道估计,并按照典型多用户调度算法对所述目标用户设备进行用于数据传输的多用户调度。
结合第三方面,在本申请实施例的一种实现方式中,所述处理模块还用于以固定波束向所述IRS发送参考信号,以使得所述待调度用户设备接收所述参考信号并上报所述参考信号对应的接收信号强度;
所述获取模块还用于获取所述接收信号强度;
所述处理模块还用于根据所述接收信号强度,并结合用于多用户调度的准则对所述待调度用户设备进行排序;
所述处理模块还用于按照排序的序号或预设规则奇偶将排序后的所述待调度用户设备划分为上行用户组设备和下行用户组设备。
结合第三方面,在本申请实施例的一种实现方式中,所述处理模块还用于:
向所述上行用户组设备和所述下行用户组设备分别发送上行通信或下行通信所需的配置信令,所述配置信令包括用户时频资源配置信息、参考信号配置信息及用户反馈配置信 息;
向IRS发送空中计算所需的相位配置信令,所述相位配置信令用于指示IRS阵列的相位配置。
第四方面,本申请实施例提供一种信道正交性评估的方法,包括:(下行用户组设备)接收通过IRS反射的上行用户组设备发送的配置导频信号;根据接收到的所述配置导频信号确定与每一个所述上行用户组设备的信道正交性评估信息;向基站上报所述信道正交性评估信息。
结合第四方面,在本申请实施例的一种实现方式中,所述根据所述配置导频信号确定与每一个所述上行用户组设备的信道正交性评估信息包括:
根据所述配置导频信号确定与每一个所述上行用户组设备的信道正交性评估值。
结合第四方面,在本申请实施例的一种实现方式中,所述根据接收到的所述配置导频信号确定与每一个所述上行用户组设备的信道正交性评估值之后,所述方法还包括:
所述下行用户组设备对所述信道正交性评估值进行归一化处理,构建信道正交性评估向量。
结合第四方面,在本申请实施例的一种实现方式中,所述接收通过IRS反射的上行用户组设备发送的配置导频信号之前,所述方法还包括:
接收基站发送的配置信令以及所述上行用户组设备的配置信息,所述配置信令包括用户时频资源配置信息、参考信号配置信息及用户反馈配置信息。
第五方面,本申请实施例提供一种用户设备,包括一个以上处理器,存储器,无线网络接口;
所述存储器为短暂存储存储器或持久存储存储器;
所述用户设备通过所述无线网络接口与基站或其他用户设备通信;
所述处理器配置为与所述存储器通信,在所述用户设备上执行所述存储器中的指令操作以执行如第四方面的方法。
第六方面,本申请实施例提供一种信道正交性评估的装置,包括:接收模块,用于接收通过IRS反射的上行用户组设备发送的配置导频信号;处理模块,用于根据接收到的所述配置导频信号确定与每一个所述上行用户组设备的信道正交性评估信息;发送模块,用于向基站上报所述信道正交性评估信息。
结合第六方面,在本申请实施例的一种实现方式中,所述处理模块用于:
根据接收到的所述配置导频信号确定与每一个所述上行用户组设备的信道正交性评估值。
结合第六方面,在本申请实施例的一种实现方式中,所述处理模块用于:
所述下行用户组设备对所述信道正交性评估值进行归一化处理,构建信道正交性评估向量。
结合第六方面,在本申请实施例的一种实现方式中,所述接收模块还用于:
接收基站发送的配置信令以及所述上行用户组设备的配置信息,所述配置信令包括用户时频资源配置信息、参考信号配置信息及用户反馈配置信息。
第七方面,本申请实施例提供一种计算机可读存储介质,包括指令,当所述指令在计算机或处理器上运行时,使得所述计算机或所述处理器执行如第一方面或第四方面的方法。
第八方面,本申请实施例提供一种包含指令的计算机程序产品,所述计算机程序产品包括程序指令,当所述程序指令在计算机或处理器上运行时,使得所述计算机或所述处理器执行如第一方面或第四方面的方法。
附图说明
图1为智能反射表面的示意图;
图2为本申请实施例的应用场景示意图;
图3为本申请实施例提供的用户调度方法的流程图;
图4为本申请实施例中信道正交性空中计算的示意图;
图5为本申请实施例中下行用户组设备执行的流程图;
图6为本申请实施例详细技术方案的示意图;
图7为本申请实施例提供的仿真测试性能增益图;
图8为本申请实施例提供的一种用户调度的装置的示意图;
图9为本申请实施例提供的一种接入网设备的示意图;
图10为本申请实施例提供的信道正交性评估的装置示意图;
图11为本申请实施例提供的用户设备的示意图。
具体实施方式
本申请实施例提供了一种多用户调度方法、基站及相关装置,能够减小系统导频开销,提高系统多用户调度效率。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“对应于”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
为了下述各实施例的描述清楚简洁,首先给出相关技术的简要介绍:
针对MU-MIMO系统的多用户调度问题,目前常用一种基于半正交准则的用户调度方 案。该方案需要基站估计出所有用户的精准信道状态信息,根据信道状态信息基于半正交准则计算选择信道正交性较好的用户进行多用户通信。具体地,初始化后首先从备选用户集合中选择一个信道向量模值最大的用户作为参考用户;其次,计算备选用户集合中其他用户信道关于该参考用户信道的正交投影,选择其中投影向量模值最大的用户作为新的参考用户;最后,根据与新参考用户的信道正交性强弱更新备选用户集合,保留信道正交性较强的用户。重复上述过程获得足够数目的参考用户完成调度。
上述现有技术需要获得所有用户的精确信道状态信息用于后续计算,在IRS-MU-MIMO系统中,随着用户数的增加和IRS单元个数的增加,用于信道估计的开销巨大。例如,在具有M=32天线BS,D=100个单天线用户和一个具有N=64个反射元件的IRS组成的单个小区中,多用户调度算法要求系统估算DMN=204800信道系数,信道估计开销和时延巨大。
其次,在获得所有用户的信道状态信息后,常用基于半正交等准测的多用户选择调度算法的计算复杂度高。例如,在具有M=32天线基站,D=100个单天线用户的传统MU-MIMO中,通过信道状态信息(channel state information,CSI)来计算选择正交用户所需的计算复杂度约为1.48×(1×M)×(M×M)×D≈5×106。
传统多用户调度算法应用于IRS-MU-MIMO系统会带来高开销高计算复杂度挑战,在面对海量用户接入时该问题会更为突出。综合考虑IRS信道特点与现有技术挑战,需要考虑一种可行的且复杂度较低的正交用户调度方案。
本申请实施例提出一种面向海量用户接入场景,不占用基站资源,由IRS辅助空中计算的高效多用户调度方法。本申请实施例的技术方案可以应用于各种通信系统,例如:例如码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)和其它系统等。术语“系统”可以和“网络”相互替换。例如,3GPP长期演进(long term evolution,LTE)系统和基于LTE演进的各种版本、以及第五代(5Generation,5G)通信系统、新空口(new radio,NR)等通信系统。此外,所述通信系统还可以适用于面向未来的通信技术,都适用本申请实施例提供的技术方案。本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
图2为本申请实施例的应用场景示意图。为了便于理解,下面将结合图2,对本申请实施例的应用场景进行简单的介绍。如图2所示,该应用场景包括终端设备201、接入网设备202和IRS203。其中,终端设备201与接入网设备202无线连接,或者终端设备201通过IRS203与接入网设备202无线连接。
其中,终端设备201又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,或,设置于该设备内的芯片,例如,具有无线连接功允许的手持式设备、 车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
接入网设备202可以是任意一种具有无线收发功能的设备,或,设置于具体无线收发功能的设备内的芯片。接入网设备202包括但不限于:基站(例如基站BS,基站NodeB、演进型基站eNodeB或eNB、第五代5G通信系统中的基站gNodeB或gNB、未来通信系统中的基站、WiFi系统中的接入节点、无线中继节点、无线回传节点)等。基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持上述提及的一种或者多种技术的网络,或者未来演进网络。基站可以包含一个或多个共站或非共站的传输接收点(transmission reception point,TRP)。接入网设备202还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(central unit,CU)或者分布单元(distributed unit,DU)等。以下以接入网设备202为基站为例进行说明。所述多个接入网设备202可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备201进行通信,也可以通过中继站与终端设备201进行通信。终端设备201可以支持与不同技术的多个基站进行通信,例如,终端设备201可以支持与支持LTE网络的基站通信,也可以支持与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。例如将终端设备201接入到无线网络的RAN节点。目前,一些RAN节点的举例为:gNB、TRP、演进型节点B(evolved Node B,eNB)、下一代演进型节点B(next generation evolved Node B,LTE ng-eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或Wifi接入点(access point,AP)等。
IRS203与前述图1对应的描述类似,此处不再赘述。可以理解的是,本申请实施例中应用的IRS为被动发射大规模智能表面,不具备基带信号处理的能力,但具备相应的信令接收器和相位调整电路控制。
如图2所示,本申请实施例主要应用于IRS-MU-MIMO系统,应用场景主要为IRS辅助的超大规模多用户通信系统。如图2所示的小区中存在大规模备选用户(终端设备201)。本申请实施例可以在该场景下高效地进行正交用户调度。
如图2所示,本申请实施例主要依据IRS203与终端设备201之间的信道h r进行正交性判定,接入网设备202与终端设备201之间的直达径h d在本申请实施例中并无特殊用途,且直达径h d的影响可以通过一定操作消除,例如,终端设备201接收信号y 1=(h rΦ 1G+h d)x+n 1,其中G表示接入网设备202与IRS203之间的信道,Φ 1表示IRS反 射系数矩阵,x表示接入网设备202发送符号,n 1表示终端设备201接收的噪声。在信道相干时间内,改变IRS反射系数矩阵为Φ 2,接入网设备202经同样的信道向终端设备201发送相同的符号,终端设备201接收信号可以表示为y 2=(h rΦ 2G+h d)x+n 2,终端设备201将两次接收信号相减即可消除掉直达径分量h d的影响,即y 2-y 1=h r21)Gx+(n 2-n 1)。由上述分析可知直达径分量h d对于信道正交性评估的影响可以被消除,所以本申请实施例后续为了简化问题描述,都仅考虑经过IRS203的反射径h r,不考虑直达径h d的影响。
图3为本申请实施例提供的用户调度方法的流程图。该流程可以由接入网设备202(本申请实施例中以gNB为例进行描述)执行,该流程包括:
301、将待调度用户设备划分为上行用户组设备和下行用户组设备;
在本申请实施例中,gNB可以根据实际需要采用适当的方式将待调度用户设备划分为上行用户组设备和下行用户组设备,例如随机分组等,本申请实施例对此不做限定。本申请实施例提供一种较优的分组方式为根据反射链路强度进行分组,具体如下:
首先,gNB向IRS信令接收器发送下行配置信令,打开IRS的全部N个单元以及配置IRS的初始反射相位Φ 0
然后,gNB以固定波束朝向IRS发射带有SSB/CSI-RS参考信号。
然后,待调度用户设备通过朝向IRS接收SSB/CSI-RS参考信号,进行接收信号强度测量,并将测量结果反馈上报回gNB。可以理解的是,这里的接收信号强度也可以是参考信号从gNB到IRS再到接收的待调度用户设备之间的反射链路强度。
接收到测量结果之后的gNB可以进行异步双工用户组划分,具体如下:
gNB基于比例公平准则对待调度用户设备排序。首先,针对待调度用户设备d,gNB根据其反射链路强度按照比例公平准则计算指标δ d
Figure PCTCN2021110264-appb-000010
其中,r d表示待调度用户设备的接收信号强度,τ d表示待调度用户设备的累计调用次数。
gNB可以按照指标的大小对用户进行排序(可以是从大到小排序或从小到大排序等),排序后的待调度用户设备的集合为D。
gNB针对排序后的用户集合D间隔分配上下行用户,形成上行用户组U和下行用户组V,即:
U={d (2m-1)|m=1,2,...,L 1};
V={d (2m)|m=1,2,...,L 2};
其中,上行用户组U中的待调度用户设备也可以称为上行用户组设备。下行用户组V中的待调度用户设备也可以称为下行用户组设备。用户组(即上行用户组U和下行用户组V)中的待调度用户设备个数L 1、L 2受可配置子载波等资源限定。
上述举例是以排序的序号奇偶来对待调度用户设备进行分组,在实际应用中,也可以按照其他预设规则来进行分组,本申请实施例对此不做限定。
本申请实施例中,gNB可以对用户设备进行异步双工用户组划分,将用户设备划分为上行用户组与下行用户组。本申请实施例首先按照用户设备的反射链路强度,基于比例公平准则对用户设备进行排序,针对排序后的用户设备集合进行用户组划分,不同用户组的用户设备信道之间的正交性的判定可以通过IRS辅助的空中计算完成。
在一些实施例中,在步骤301之后,步骤302之前,gNB还给待调度用户设备以及IRS配置信令。具体包括:
1、gNB给待调度用户设备配置信令:若gNB支持全双工模式,gNB给上行用户组U和下行用户组V中的用户设备分别发送上行和下行通信的配置信令、导频图案时频配置信令、传输时隙以及测量反馈上行时隙配置信令;若gNB不支持全双工模式,则额外给上行用户组中的用户单独配置时隙供其上行发送。
2、gNB给IRS配置信令:gNB向IRS信令接收器发送下行配置信息,打开IRS的全部N个单元以及配置相位Φ 1。Φ 1为预定义相位控制矩阵,例如Φ 1为单位矩阵或对角元相同的对角阵,用于支持用户设备间信道的空中计算。
在本申请实施例中,传输时隙以及测量反馈上行时隙配置信令可以保证下行用户组V中的用户设备完成正交性测量后立即反馈上报,减少等待时间,降低时延。
此外,除了待调度用户设备之外,小区中可能还存在正在与gNB通信的用户设备。对于正在与gNB通信的用户设备,gNB直接将其划入已调度用户集合,保证其通信状态不被中断。此外,对于上行通信用户设备,gNB将其通信频段告知下行用户组V中的用户设备且适当增大V中用户个数L 2,下行用户组V中的用户设备通过IRS接收该用户设备的信息,直接实现信道正交性的空中计算。对于下行通信用户设备,经由gNB告知上行用户组U中的用户设备的通信频段,也可以在通信的同时直接实现与上行用户组用户信道正交性的空中计算。
302、指示上行用户组设备向智能反射表面IRS发送配置导频信号;
在本申请实施例中,gNB可以指示上行用户组U中所有用户设备u i∈U,i∈{1,2,...,L 1}朝向IRS上行发送配置导频信号。该配置导频信号可以经过IRS反射到达下行用户组V中的用户设备。
可以理解的是,本申请实施例中的配置导频信号是指gNB给用户设备配置的导频信号,具体可以是正交导频信号、半正交导频信号、非正交导频信号等,本申请实施例对此不做限定。
303、指示下行用户组设备接收通过IRS反射的配置导频信号,以使得下行用户组设备根据配置导频信号确定与每一个上行用户组设备的信道正交性评估信息;
在本申请实施例中,gNB可以指示下行用户组V中的所有用户设备v j∈V,j∈{1,2,...,L 2}朝向IRS接收上行用户组设备发送的配置导频信号,实现用户间信道正交性空中计算。示例性的,上行用户组U存在5个用户设备u 1、u 2、u 3、u 4、u 5,分别在5个子载波波段上发送配置导频信号,下行用户组V中所有用户设备全频段接收,收到来自五个上行用户的配 置导频信号。
图4为本申请实施例中信道正交性空中计算的示意图。如图4所示,上行用户组U中的用户设备u 1通过信道
Figure PCTCN2021110264-appb-000011
朝向IRS发送配置导频信号,用户设备u 2通过信道
Figure PCTCN2021110264-appb-000012
朝向IRS发送配置导频信号。IRS则将这些配置导频信号进行反射,使得下行用户组V中的用户设备接收到该配置导频信号。具体地,下行用户组V中的用户设备v 1通过信道
Figure PCTCN2021110264-appb-000013
朝向IPS接收到配置导频信号,用户设备v 2通过信道
Figure PCTCN2021110264-appb-000014
朝向IPS接收到配置导频信号,用户设备v 3通过信道
Figure PCTCN2021110264-appb-000015
朝向IPS接收到配置导频信号。
在本申请实施例中,下行用户组V中的用户设备接收到配置导频信号后,可以根据配置导频信号确定与每一个上行用户组设备的信道正交性评估信息。信道正交性评估信息是用于评价信道正交性的参数,具体可以是信道正交性评估值。示例性的,下行用户组V中的用户设备v j朝向IPS接收到上行用户组设备u i发送的配置导频信号为:
Figure PCTCN2021110264-appb-000016
其中,
Figure PCTCN2021110264-appb-000017
为用户设备v j接收配置导频信号所用的信道,Φ 1为IRS的相位,
Figure PCTCN2021110264-appb-000018
为上行用户组设备u i发送配置导频信号所用的信道,x表示gNB的发送符号,n表示用户设备v j接收的噪声。
可以理解的是,当Φ 1为单位矩阵或对角元相同的对角阵时,并忽略噪声的影响,可以得到联合信道正交性评估值为:
Figure PCTCN2021110264-appb-000019
其中,g i,j为用户设备v j与上行用户组设备u i之间的信道正交性评估值。一个用户设备v j可以接收多个上行用户组设备u i发送的配置导频信号,因此可以确定多个信道正交性评估值。
上述信道正交性评估值的计算方式仅是本申请实施例的其中一种实现方式,在实际应用中,根据实际需要可以设定其他能够评估信道正交性的参数,本申请实施例对此不做限定。
本申请实施例由IRS辅助的空中计算实现信道正交性测量,上行用户组用户设备朝相IRS发射配置导频信号,下行用户组用户设备朝向IRS接收,根据接收信号强度即可得到与所有上行用户的信道正交性评估值。
在一些实施例中,下行用户组V中的用户设备确定信道正交性评估值后,还可以对所有的信道正交性评估值进行归一化处理,构建信道正交性评估向量。
Figure PCTCN2021110264-appb-000020
其中,
Figure PCTCN2021110264-appb-000021
为所述信道正交性评估向量,
Figure PCTCN2021110264-appb-000022
为下行用户组设备v j与第一个上行用户组设备之间的归一化信道正交性评估值,
Figure PCTCN2021110264-appb-000023
为下行用户组设备v j与第二个上行用户组设备之间的归一化信道正交性评估值,
Figure PCTCN2021110264-appb-000024
为下行用户组设备v j与第三个上行用户组设备之间的归一化信道正交性评估值,
Figure PCTCN2021110264-appb-000025
为下行用户组设备v j与第I个上行用户组设备之间的归一化信道正交性评估值。
在一些实施例中,下行用户组V中的用户设备可以仅反馈信道正交性评估值,gNB接收到信道正交性评估值后再做归一化处理。本申请实施例对归一化处理的执行主体不做限定。
下行用户组V中的用户设备确定信道正交性评估向量或者信道正交性评估值后,可以将信道正交性评估向量或者信道正交性评估值上报至gNB。传输时隙以及测量反馈上行时隙配置信令可以保证下行用户组V中的用户设备确定信道正交性评估向量或者信道正交性评估值后立即反馈上报,减少等待时间,降低时延。
上述下行用户组V中的用户设备确定信道正交性评估向量或者信道正交性评估值的过程可以通过空中计算实现。空中计算提供了一种通信和计算一体化的架构。空中计算的过程是:通过所有节点的并发传输,利用无线信道的叠加特性,可以实现目标函数在空口信道中的直接计算。
304、获取信道正交性评估信息并根据信道正交性评估信息从待调度用户设备中确定至少一对目标用户设备;
在本申请实施例中,gNB获取下行用户组V中的用户设备上报的信道正交性评估信息(信道正交性评估向量或者信道正交性评估值)后,可以根据信道正交性评估信息从待调度用户设备中确定至少一对目标用户设备。具体地,gNB可以从待调度用户设备中选择信道正交性评估值最小的前K对目标用户设备,K为大于或等于1的整数,目标用户设备之间的用户设备不重复。其中,目标用户设备之间的用户设备不重复是指,若其中一对目标用户设备是{v 1,u 1},则其他对目标用户设备不再出现v 1和u 1,即不重复。在实际应用中,可以采用以下流程来实现:
3041、gNB从待调度用户设备中选择信道正交性评估值最小的一对目标用户设备;
在本申请实施例中,gNB可以根据接收到的信道正交性评估向量或者信道正交性评估值建立用户间信道正交性评估表。表1为用户间信道正交性评估表的一种示例。
表1
Figure PCTCN2021110264-appb-000026
gNB根据表1选择信道正交性强,即正交性评估值g i,j最小的一对目标用户设备。
3042、gNB删除或屏蔽该对目标用户设备两个用户设备所对应的信道正交性评估值。
在实际应用中,gNB可以删除或屏蔽表1中相关的行和列。示例性的,步骤3401中选择的一对目标用户设备为v 1和u 1,则gNB可以删除或屏蔽表1中v 1对应的行和u 1对应的列, 使得用户间信道正交性评估表(例如表1)更新。
用户间信道正交性评估表更新后,gNB可以按照步骤3041的方式继续找下一对目标用户设备,直到目标用户设备的数量达到要求。
选择方案举例:gNB搜索表1,找到评估值最小的元素
Figure PCTCN2021110264-appb-000027
满足:
Figure PCTCN2021110264-appb-000028
gNB根据其下标选择对应的用户对
Figure PCTCN2021110264-appb-000029
加入核心用户组(目标用户设备的集合),然后在表1中删除
Figure PCTCN2021110264-appb-000030
Figure PCTCN2021110264-appb-000031
对应的行和列,更新表1,再重新寻找下一对正交用户对。重复上述步骤直至完成k对正交用户的选择,k为大于或等于1的整数。本申请实施例引入核心用户组概念(即目标用户设备的概念),基站根据下行用户反馈上报的正交性评估值构建信道正交性评估表,从该表中选择信道正交性好的多个用户设备组成核心用户组。核心用户组中用户设备信道链路强度较大且互相正交性较好,可用于后续调度。
gNB可以根据其它方式进行用户组划分,在新的用户组划分下进行信道正交性空中计算,多次重复后综合计算结果可获得正交性更好的核心用户集合。具体地,gNB可以循环地将确定的核心用户组中的用户设备作为待调度设备,执行步骤301至步骤304,从而不断筛选得到正交性更好、信道链路强度更大的目标用户设备。例如,gNB第一次执行步骤301至步骤304获得核心用户集合为K对目标用户设备,下一次gNB则从这K对目标用户设备中继续进行筛选,再次执行步骤301至步骤304获得J对目标用户设备,J为小于K的正整数。gNB通过多次筛选,不仅可以得到正交性更好、信道链路强度更大的目标用户设备,还可以将核心用户集合进一步缩小,减小了用于多用户调度所需的系统开销和系统计算复杂度。
305、对至少一对目标用户设备进行用于数据传输的多用户调度。
在本申请实施例中,gNB可以对至少一对目标用户设备中的用户设备(也可以表述为核心用户组中的用户设备)进行多用户信道估计,并照典型多用户调度算法进行用于数据传输的多用户选择调度。
gNB可以利用经典方法对核心用户组中用户设备进行多用户信道估计,并按照典型多用户调度算法对目标用户设备进行用于数据传输的多用户调度。典型多用户调度算法较多,本申请实施例对此不做限定。本申请实施例提供其中一种实现方式为:
初始化:T 1={1,2,...,K},p=1,
Figure PCTCN2021110264-appb-000032
循环:投影计算:
Figure PCTCN2021110264-appb-000033
用户选择:
Figure PCTCN2021110264-appb-000034
S 0←S 0∪{π(p)},t (p)=t π(p)
集合更新:
Figure PCTCN2021110264-appb-000035
直至:S 0=U,完成U个正交用户调度。
其中,h k为第k个用户的IRS-用户信道,α为衡量用户信道正交性强弱的指标,S 0为调度的正交用户集合。
图5为本申请实施例中下行用户组设备执行的流程图。下行用户组设备(下行用户组V中的用户设备)执行的步骤包括:
501、接收通过IRS反射的上行用户组设备发送的配置导频信号;
步骤501与前述图4对应的描述类似,此处不再赘述。
502、根据接收到的配置导频信号测量确定与每一个上行用户组设备的信道正交性评估信息;
步骤502与前述图3对应的各个实施例中步骤303中下行用户组V中的用户设备所执行的流程类似,此处不再赘述。
503、向基站上报信道正交性评估信息。
在本申请实施例中,下行用户组设备确定信道正交性评估信息,可以将信道正交性评估信息上报给基站(gNB),以使得基站接收(获取)到该信道正交性评估信息。
图6为本申请实施例详细技术方案的示意图。该技术方案中,gNB首先发送带有SSB/CSI-RS参考信号的固定方向波束,使得待调度用户设备接收该参考信号并测量、反馈参考信号对应的接收信号强度。然后,gNB根据待调度用户设备反馈的接收信号强度实现异步双工用户组的划分,以及给待调度用户设备和IRS进行信令配置。该过程与前述图3对应的各个实施例中步骤301类似,此处不再赘述。
分组后的待调度用户设备分为下行用户组V和上行用户组U两组。其中,上行用户组U的用户设备向下行用户组V的用户设备发送配置导频信号,而下行用户组V的用户设备接收到该配置导频信号之后,可以实现空中计算,并将空中计算的结果反馈至gNB。该过程与前述图3对应的各个实施例中步骤302和步骤303类似,此处不再赘述。
gNB接收到下行用户组V的用户设备反馈的空中计算结果后,gNB可以构建信道正交评估表,然后根据信道正交评估表从待调度用户设备中筛选出正交性更好、信道链路强度更大的目标用户设备,划分至核心用户组K。该过程与前述图3对应的各个实施例中步骤304类似,此处不再赘述。
在一些情况中,若需要进一步优化核心用户组K,gNB可以重新将核心用户组K中的用户设备作为待调度用户设备,按照类似的方式重新划分待调度用户设备,并重新进行信道正交性评估等处理,从而在核心用户组K中进一步筛选出正交性更好、信道链路强度更大的目标用户设备,在实现核心用户组K的进一步优化。优化的次数可以根据实际情况进行设定,本申请实施例对此不做限定。
gNB确定核心用户组K后,可以根据核心用户组K进行用户调度。该调度方式与前述图3对应的各个实施例中步骤305类似,此处不再赘述。
本申请实施例通过仿真实例验证技术效果。具体地,仿真参数设置如下:gNB天线单元配置M=64,小区内有D=100个单天线用户,预设上行/下行用户组用户最大数目为L 1+L 2=50,核心用户组用户数目K=30,调度用户数目U=12,仿真信道均为平坦瑞利衰落信道。 图7为本申请实施例提供的仿真测试性能增益图。该仿真测试从所有待接入用户中直接随机选择U个用户接入;“理想多用户调度性能上界”方案为假设所有D个用户信道状态信息完全已知,直接按照半正交准则进行用户调度。可以看到,本申请实施例的用户调度方案相较于随机用户调度有大幅度的性能增益,且逼近理想情况下的多用户调度性能上界。
本申请实施例通过空中计算有效减少了导频开销与计算复杂度,以IRS反射天线数目N=64为例,下面对比传统方法与本申请实施例的导频开销与计算复杂度。
信道估计开销比较:传统多用户调度算法,需要知道所有D个用户的信道状态信息,需要估计D×M×N=409600信道系数;本发明仅需对核心用户组中用户进行信道估计,需要估计K×M×N=122880信道系数。
计算复杂度比较:传统多用户调度算法,从D个用户中直接按照半正交准则进行用户调度,计算复杂度为1.48×(1×N)×(N×N)×D≈3.9×107;本发明仅需对核心用户组中用户进行正交调度,计算复杂度为1.48×(1×N)×(N×N)×K≈1.2×107。
从上述性能增益与信道估计开销与计算复杂度比较可以看出,本发明实施例可以在信道估计开销与计算复杂度仅为传统调度算法的30%的前提下,取得与传统算法相当的性能增益。
本申请实施例通过IRS辅助实现信道正交性的空中计算,通过正交性测量结果构建了核心用户组,最终只需要利用经典方法对核心用户组K中用户进行多用户信道估计,并按照用户信道半正交准则进行用户选择调度,大大减小了信道估计开销与计算复杂度。
在大规模MIMO系统中,使用本申请实施例提供的技术方案可以获得如下的有益效果:
(1)系统导频开销小:新方案只为预选择的用户进行导频资源的分配和检测,能够有效避免为所有用户分配导频而引起的导频资源竞争、上行导频信号污染及导频资源开销过大等引起传输效率下降;有效避免检测更多用户的全信道信息,降低基站处理复杂度。
并且,该方案中设计用户做的发射和测量步骤可以在基站给定时隙或给定空间中完成,比如选择已有的上行用户来寻找候选用户等其他方式。
(2)系统多用户调度效率高:新方案仅对预选择用户集合进行多用户选择,极大降低了系统调度算法的计算复杂度和存储复杂度,能够有效避免在全用户集合上进行多用户选择。
本申请实施例通过IRS辅助的用户间通信实现信道正交性测量的空中计算。可以根据不同方式进行用户组划分,在新的用户组划分下进行信道正交性空中计算,多次重复后综合计算结果可获得正交性更好的核心用户集合。重复次数越多,获得的用户集合用户间正交性越好,但复杂度与时延均会随之上升,存在性能和时延与复杂度之间的trade-off。
图8为本申请实施例提供的一种多用户调度的装置的示意图。该多用户调度的装置800包括:
获取模块801,用于执行上述图3对应的各个实施例中的步骤304;
处理模块802,用于执行上述图3对应的各个实施例中的步骤301、步骤302、步骤303和步骤305。
图9为本申请实施例提供的一种接入网设备的示意图。该接入网设备900包括:一个 或多个处理器901、存储器903和通信接口904,处理器901、存储器903和通信接口904可以通过通信总线902相连。所述存储器903用于存储一个或多个程序;所述一个或多个处理器901用于运行所述一个或多个程序,使得所述接入网设备900执行如上述各个方法实施例对应的方法。即,该接入网设备900可为上述图2所示的实施例中的接入网设备202。
处理器901可以是一个通用中央处理器(central processing unit,CPU)、网络处理器(network processer,NP)、微处理器、或者可以是一个或多个用于实现本申请方案的集成电路,例如,专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
通信总线902用于在上述组件之间传送信息。通信总线902可以分为地址总线、数据总线、控制总线等。为便于表示,附图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器903可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其它类型的静态存储设备,也可以是随机存取存储器(random access memory,RAM)或者可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only Memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其它光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备,或者是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质,但不限于此。存储器903可以是独立存在,并通过通信总线902与处理器901相连接。存储器903也可以和处理器901集成在一起。
通信接口904使用任何收发器一类的装置,用于与其它设备或通信网络通信。通信接口904包括有线通信接口,还可以包括无线通信接口。其中,有线通信接口例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线通信接口可以为无线局域网(wireless local area networks,WLAN)接口,蜂窝网络通信接口或其组合等。
在具体实现中,作为一种实施例,处理器901可以包括一个或多个CPU,如附图9中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,接入网设备900可以包括多个处理器,如附图9中所示的处理器901和处理器905。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,接入网设备900还可以包括输出设备和输入设备。输出设备和处理器901通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD)、发光二级管(light emitting diode,LED)显示设备、阴极射线管(cathode ray tube,CRT)显示设备或投影仪(projector)等。输入 设备和处理器901通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
在一些实施例中,存储器903用于存储执行本申请方案的程序代码910,处理器901可以执行存储器903中存储的程序代码910。也即是,接入网设备900可以通过处理器901以及存储器903中的程序代码910,来实现方法实施例提供的用户调度方法。
应理解,接入网设备900对应于上述方法实施例中的接入网设备,具体地,接入网设备900中的各单元和上述其他操作和/或功能分别为了实现上述图3所示的方法中的gNB所实施的各种步骤和方法,具体细节可参见上述方法实施例,为了简洁,在此不再赘述。
图10为本申请实施例提供的信道正交性评估的装置示意图。该装置1000包括:
接收模块1001,用于执行上述图5对应的实施例中的步骤501;
处理模块1002,用于执行上述图5对应的实施例中的步骤502;
发送模块1003,用于执行上述图5对应的实施例中的步骤503。
图11为本申请实施例提供的用户设备的示意图。该用户设备1100中,处理器1101、通信总线1102、存储器1103、通信接口1104、处理器1105以及程序代码1110可参照前述图9对应的各个实施例,本申请实施例对此不再赘述。该用户设备1100可为上述图2所示的实施例中的终端设备201。
应理解,用户设备1100对应于上述方法实施例中的用户设备,具体地,用户设备1100中的各单元和上述其他操作和/或功能分别为了实现上述图5所示的方法中的下行用户组设备所实施的各种步骤和方法,具体细节可参见上述方法实施例,为了简洁,在此不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出 来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (28)

  1. 一种多用户调度方法,其特征在于,包括:
    将待调度用户设备划分为上行用户组设备和下行用户组设备;
    指示所述上行用户组设备向智能反射表面IRS发送配置导频信号;
    指示所述下行用户组设备接收通过所述IRS反射的所述配置导频信号,以使得所述下行用户组设备根据所述配置导频信号确定与每一个所述上行用户组设备的信道正交性评估信息;
    获取所述信道正交性评估信息并根据所述信道正交性评估信息从所述待调度用户设备中确定至少一对目标用户设备;
    对所述至少一对目标用户设备进行用于数据传输的多用户调度。
  2. 根据权利要求1所述的方法,其特征在于,所述下行用户组设备根据所述配置导频信号确定与每一个所述上行用户组设备的信道正交性评估信息包括:
    所述下行用户组设备根据所述配置导频信号确定与每一个所述上行用户组设备的信道正交性评估值。
  3. 根据权利要求2所述的方法,其特征在于,所述下行用户组设备确定与每一个所述上行用户组设备的信道正交性评估值之后,所述方法还包括:
    所述下行用户组设备对所述信道正交性评估值进行归一化处理,构建信道正交性评估向量。
  4. 根据权利要求2或3所述的方法,其特征在于,所述获取所述信道正交性评估信息并根据所述信道正交性评估信息从所述待调度用户设备中确定至少一对目标用户设备包括:
    获取每一个下行用户组设备反馈的所述信道正交性评估值;
    从所述待调度用户设备中选择所述信道正交性评估值最小的前K对目标用户设备,所述K为大于或等于1的整数,所述目标用户设备对之间的用户设备不重复。
  5. 根据权利要求4所述的方法,其特征在于,所述从所述待调度用户设备中选择信道正交性评估值最小的前K对目标用户设备包括:
    从所述待调度用户设备中选择信道正交性评估值最小的第n对目标用户设备,所述n为大于或等于1的整数;
    删除或屏蔽所述第n对目标用户设备中两个用户设备所对应的信道正交性评估值;
    从剩下的所述待调度用户设备中选择信道正交性评估值最小的第n+1对目标用户设备,所述n+1小于或等于所述K。
  6. 根据权利要求4所述的方法,其特征在于,所述从所述待调度用户设备中选择信道正交性评估值最小的前K对目标用户设备之后,所述方法还包括:
    从所述K对目标用户设备中选择信道正交性评估值最小的前J对目标用户设备,所述J为大于或等于1的整数,所述J小于所述K。
  7. 根据权利要求1所述的方法,其特征在于,所述对所述至少一对目标用户设备进行用于数据传输的多用户调度包括:
    对所述至少一对目标用户设备中的用户设备进行多用户信道估计,并按照典型多用户调度算法对所述目标用户设备进行用于数据传输的多用户调度。
  8. 根据权利要求1至7任意一项所述的方法,其特征在于,所述将待调度用户设备划分为上行用户组设备和下行用户组设备包括:
    以固定波束向所述IRS发送参考信号,以使得其它所述待调度用户设备接收所述参考信号并上报所述参考信号对应的接收信号强度;
    获取所述接收信号强度;
    根据所述接收信号强度,并结合用于多用户调度的准则对所述待调度用户设备进行排序;
    按照排序的序号奇偶或预设规则将排序后的所述待调度用户设备划分为上行用户组设备和下行用户组设备。
  9. 根据权利要求1至8任意一项所述的方法,其特征在于,所述将待调度用户设备划分为上行用户组设备和下行用户组设备之后,所述指示所述上行用户组设备向智能反射表面IRS发送配置导频信号之前,所述方法还包括:
    向所述上行用户组设备和所述下行用户组设备分别发送上行通信或下行通信所需的配置信令,所述配置信令包括用户时频资源配置信息、参考信号配置信息及用户反馈配置信息;
    向IRS发送空中计算所需的相位配置信令,所述相位配置信令用于指示IRS阵列的相位配置。
  10. 一种信道正交性评估的方法,其特征在于,包括:
    接收通过IRS反射的上行用户组设备发送的配置导频信号;
    根据接收到的所述配置导频信号测量确定与每一个所述上行用户组设备的信道正交性评估信息;
    向基站上报所述信道正交性评估信息。
  11. 根据权利要求10所述的方法,其特征在于,所述根据接收到的所述配置导频信号确定与每一个所述上行用户组设备的信道正交性评估信息包括:
    根据接收到的所述配置导频信号确定与每一个所述上行用户组设备的信道正交性评估值。
  12. 根据权利要求11所述的方法,其特征在于,所述根据所述配置导频信号确定与每一个所述上行用户组设备的信道正交性评估值之后,所述方法还包括:
    所述下行用户组设备对所述信道正交性评估值进行归一化处理,构建信道正交性评估向量。
  13. 根据权利要求10所述的方法,其特征在于,所述接收通过RIS反射的上行用户组设备发送的配置导频信号之前,所述方法还包括:
    接收基站发送的配置信令以及所述上行用户组设备的配置信息,所述配置信令包括用户时频资源配置信息、参考信号配置信息及用户反馈配置信息。
  14. 一种基站,其特征在于,一个控制装置,所述控制装置通过通信总线与所述基站 其他部分相通信;
    所述控制装置包括:存储器,处理器,通信链路;
    所述存储器,用于存储指令;
    所述处理器,通过所述通信链路和所述存储器相通信;
    所述存储器中存储的一些指令,通过所述处理器执行后,所述控制装置使得所述基站可以实现权利要求1至9任意一项所述的用户调度方法。
  15. 一种多用户调度的装置,其特征在于,包括:
    处理模块,用于将待调度用户设备划分为上行用户组设备和下行用户组设备;
    所述处理模块,还用于指示所述上行用户组设备向智能反射表面IRS发送配置导频信号;
    所述处理模块,还用于指示所述下行用户组设备接收通过所述IRS反射的所述配置导频信号,以使得所述下行用户组设备根据所述配置导频信号确定与每一个所述上行用户组设备的信道正交性评估信息;
    获取模块,用于获取所述信道正交性评估信息并根据所述信道正交性评估信息从所述待调度用户设备中确定至少一对目标用户设备;
    所述处理模块,还用于对所述至少一对目标用户设备进行用于数据传输的多用户调度。
  16. 根据权利要求15所述的装置,其特征在于,
    所述获取模块还用于:获取每一个下行用户组设备反馈的信道正交性评估值;
    所述处理模块用于:从所述待调度用户设备中选择所述信道正交性评估值最小的前K对目标用户设备,所述K为大于或等于1的整数,所述目标用户设备对之间的用户设备不重复。
  17. 根据权利要求16所述的装置,其特征在于,所述处理模块用于:
    从所述待调度用户设备中选择信道正交性评估值最小的第n对目标用户设备,所述n为大于或等于1的整数;
    删除或屏蔽所述第n对目标用户设备中两个用户设备所对应的信道正交性评估值;
    从剩下的所述待调度用户设备中选择信道正交性评估值最小的第n+1对目标用户设备,所述n+1小于或等于所述K。
  18. 根据权利要求16所述的装置,其特征在于,所述处理模块用于:
    从所述K对目标用户设备中选择信道正交性评估值最小的前J对目标用户设备,所述J为大于或等于1的整数,所述J小于所述K。
  19. 根据权利要求15所述的装置,其特征在于,所述处理模块用于:
    对所述至少一对目标用户设备中的用户设备进行多用户信道估计,并按照典型多用户调度算法对所述目标用户设备进行用于数据传输的多用户调度。
  20. 根据权利要求15至19任意一项所述的装置,其特征在于,
    所述处理模块还用于以固定波束向所述IRS发送参考信号,以使得所述待调度用户设备接收所述参考信号并上报所述参考信号对应的接收信号强度;
    所述获取模块还用于获取所述接收信号强度;
    所述处理模块还用于根据所述接收信号强度,并结合用于多用户调度的准则对所述待调度用户设备进行排序;
    所述处理模块还用于按照排序的序号奇偶或预设规则将排序后的所述待调度用户设备划分为上行用户组设备和下行用户组设备。
  21. 根据权利要求15至20任意一项所述的装置,其特征在于,所述处理模块还用于:
    向所述上行用户组设备和所述下行用户组设备分别发送上行通信或下行通信所需的配置信令,所述配置信令包括用户时频资源配置信息、参考信号配置信息及用户反馈配置信息;
    向IRS发送空中计算所需的相位配置信令,所述相位配置信令用于指示IRS阵列的相位配置。
  22. 一种用户设备,其特征在于,包括一个以上处理器,存储器,无线网络接口;
    所述存储器为短暂存储存储器或持久存储存储器;
    所述用户设备通过所述无线网络接口与基站或其他用户设备通信;
    所述处理器配置为与所述存储器通信,在所述用户设备上执行所述存储器中的指令操作以执行权利要求10至13中任意一项所述的方法。
  23. 一种信道正交性评估的装置,其特征在于,包括:
    接收模块,用于接收通过IRS反射的上行用户组设备发送的配置导频信号;
    处理模块,用于根据接收到的所述配置导频信号确定与每一个所述上行用户组设备的信道正交性评估信息;
    发送模块,用于向基站上报所述信道正交性评估信息。
  24. 根据权利要求23所述的装置,其特征在于,所述处理模块用于:
    根据接收到的所述配置导频信号确定与每一个所述上行用户组设备的信道正交性评估值。
  25. 根据权利要求24所述的装置,其特征在于,所述处理模块用于:
    所述下行用户组设备对所述信道正交性评估值进行归一化处理,构建信道正交性评估向量。
  26. 根据权利要求23所述的方法,其特征在于,所述接收模块还用于:
    接收基站发送的配置信令以及所述上行用户组设备的配置信息,所述配置信令包括用户时频资源配置信息、参考信号配置信息及用户反馈配置信息。
  27. 一种计算机可读存储介质,包括指令,当所述指令在计算机或处理器上运行时,使得所述计算机或所述处理器执行如权利要求1至13中任意一项所述的方法。
  28. 一种包含指令的计算机程序产品,所述计算机程序产品包括程序指令,当所述程序指令在计算机或处理器上运行时,使得所述计算机或所述处理器执行如权利要求1至13中任意一项所述的方法。
PCT/CN2021/110264 2020-11-24 2021-08-03 一种多用户调度方法、基站及相关装置 WO2022110885A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21896392.4A EP4231758A4 (en) 2020-11-24 2021-08-03 MULTI-USER PLANNING METHOD, BASE STATION AND RELATED APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011335709.9A CN114554612A (zh) 2020-11-24 2020-11-24 一种多用户调度方法、基站及相关装置
CN202011335709.9 2020-11-24

Publications (1)

Publication Number Publication Date
WO2022110885A1 true WO2022110885A1 (zh) 2022-06-02

Family

ID=81660431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110264 WO2022110885A1 (zh) 2020-11-24 2021-08-03 一种多用户调度方法、基站及相关装置

Country Status (3)

Country Link
EP (1) EP4231758A4 (zh)
CN (1) CN114554612A (zh)
WO (1) WO2022110885A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116015374A (zh) * 2022-12-09 2023-04-25 大连理工大学 智能反射面辅助的非正交多址接入携能网络安全波束赋形方法
CN116468256A (zh) * 2023-06-19 2023-07-21 青岛创新奇智科技集团股份有限公司 多生产线的管理方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110809904A (zh) * 2017-07-01 2020-02-18 英特尔公司 用于运载工具无线电通信的方法和设备
CN111313951A (zh) * 2020-02-17 2020-06-19 南京邮电大学 基于非理想csi的irs辅助安全通信无线传输方法
CN111817768A (zh) * 2020-06-03 2020-10-23 北京交通大学 一种用于智能反射表面无线通信的信道估计方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101669301B (zh) * 2007-05-10 2012-12-05 上海贝尔阿尔卡特股份有限公司 无线通信系统上行链路传输调度方法和相关设备
CN106028461B (zh) * 2016-05-23 2019-04-23 西安电子科技大学 中继协作分布式多用户调度方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110809904A (zh) * 2017-07-01 2020-02-18 英特尔公司 用于运载工具无线电通信的方法和设备
CN111313951A (zh) * 2020-02-17 2020-06-19 南京邮电大学 基于非理想csi的irs辅助安全通信无线传输方法
CN111817768A (zh) * 2020-06-03 2020-10-23 北京交通大学 一种用于智能反射表面无线通信的信道估计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4231758A4
WANG ZHAORUI; LIU LIANG; CUI SHUGUANG: "Channel Estimation for Intelligent Reflecting Surface Assisted Multiuser Communications: Framework, Algorithms, and Analysis", IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, IEEE SERVICE CENTER, PISCATAWAY, NJ., US, vol. 19, no. 10, 30 June 2020 (2020-06-30), US , pages 6607 - 6620, XP011814041, ISSN: 1536-1276, DOI: 10.1109/TWC.2020.3004330 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116015374A (zh) * 2022-12-09 2023-04-25 大连理工大学 智能反射面辅助的非正交多址接入携能网络安全波束赋形方法
CN116015374B (zh) * 2022-12-09 2024-03-22 大连理工大学 智能反射面辅助的非正交多址接入携能网络安全波束赋形方法
CN116468256A (zh) * 2023-06-19 2023-07-21 青岛创新奇智科技集团股份有限公司 多生产线的管理方法及装置
CN116468256B (zh) * 2023-06-19 2023-09-29 青岛创新奇智科技集团股份有限公司 多生产线的管理方法及装置

Also Published As

Publication number Publication date
EP4231758A1 (en) 2023-08-23
CN114554612A (zh) 2022-05-27
EP4231758A4 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
US11063723B2 (en) Communication method, network device, terminal device, and system
JP7046203B2 (ja) チャネル推定方法及び装置
TWI681680B (zh) 一種獲取、回饋發送波束資訊的方法及裝置
CN110475279B (zh) 通信的方法和通信装置
KR101414665B1 (ko) 부분 채널 상태 정보를 이용한 다층 빔포밍
WO2022110885A1 (zh) 一种多用户调度方法、基站及相关装置
US11218192B2 (en) Uplink active set management for multiple-input multiple-output communications
TWI692264B (zh) 波束管理方法、網路設備和終端
CN109005548A (zh) 一种信道质量信息的上报方法及装置
TWI813818B (zh) 非同調合作多輸入多輸出通信
EP4181446A1 (en) Method and apparatus for acquiring channel parameter
CN110506444A (zh) 在具有多点连接的通信系统中提供显式反馈的系统和方法
CN111586741B (zh) 一种信息上报方法及终端
US11032841B2 (en) Downlink active set management for multiple-input multiple-output communications
WO2022133471A1 (en) Methods of extending type ii port selection codebook for supporting higher rank transmission
CN114531698A (zh) 一种波束的处理方法及装置、通信设备
Hu et al. Key technologies in massive MIMO
CN110114983A (zh) 用于支持通信网络中的用户通信设备分组的设备和方法
JP2023553432A (ja) チャネル情報フィードバック方法及び通信装置
JP2023551051A (ja) 伝送方法、装置、機器及び可読記憶媒体
WO2020211736A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
US11949472B2 (en) MU-MIMO operation control
JP6999838B2 (ja) 多入力多出力無線送信を構成するための方法及び装置
CA3134282A1 (en) Active set management for multiple-input multiple-output communications
WO2023109577A1 (zh) 波束报告方法、装置及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896392

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021896392

Country of ref document: EP

Effective date: 20230516

NENP Non-entry into the national phase

Ref country code: DE