WO2022110598A1 - 一种双机械臂式结构的车载血管造影机 - Google Patents

一种双机械臂式结构的车载血管造影机 Download PDF

Info

Publication number
WO2022110598A1
WO2022110598A1 PCT/CN2021/084476 CN2021084476W WO2022110598A1 WO 2022110598 A1 WO2022110598 A1 WO 2022110598A1 CN 2021084476 W CN2021084476 W CN 2021084476W WO 2022110598 A1 WO2022110598 A1 WO 2022110598A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
base
pulley
motor
module
Prior art date
Application number
PCT/CN2021/084476
Other languages
English (en)
French (fr)
Inventor
韩雅玲
孙景阳
梁明
王效增
李洋
刘丹
刘浩
林鹏
Original Assignee
中国人民解放军北部战区总医院
中国科学院沈阳自动化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军北部战区总医院, 中国科学院沈阳自动化研究所 filed Critical 中国人民解放军北部战区总医院
Priority to US18/038,445 priority Critical patent/US20230404497A1/en
Publication of WO2022110598A1 publication Critical patent/WO2022110598A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4405Constructional features of apparatus for radiation diagnosis the apparatus being movable or portable, e.g. handheld or mounted on a trolley
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4458Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit or the detector unit being attached to robotic arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents

Definitions

  • the invention belongs to the technical field of medical devices, and in particular relates to a vehicle-mounted angiography machine with a double mechanical arm structure.
  • the most effective way to treat acute myocardial infarction is to use coronary interventional surgery to quickly open the infarction-related coronary vessels, and coronary interventional surgery needs to be performed in an interventional catheterization laboratory with cardiovascular angiography X-ray machines and other related interventional equipment.
  • the vehicle-mounted mobile shelter with the function of interventional catheterization laboratory can deliver equipment and interventionists to the patient's diagnosis and treatment site.
  • the deployment time and operation time are limited. It takes a long time to fold up, and during transportation, it is impossible to carry out "immediate" surgical rescue according to the patient's condition.
  • This kind of interventional surgery shelter cannot be used for the diagnosis and treatment of patients with acute myocardial infarction in random areas.
  • the angiography machine installed in the catheterization laboratory of the hospital's interventional operation is composed of a two-degree-of-freedom C-ring structure that emits X-rays and a receiving device. in a regular ambulance. If you want to perform cardiovascular interventional surgery in an ambulance, you must install an angiography machine for vascular interventional surgery in the ambulance. The structure of the entire angiography machine can be reduced to meet the loading requirements of the narrow space in the ambulance.
  • the present invention is aimed at the defects existing in the prior art, and provides a vehicle-mounted angiography machine with a double mechanical arm structure.
  • the traditional DSA occupies a large space and cannot be arranged in the mobile ambulance body.
  • the present invention adopts the following technical solutions, including a six-degree-of-freedom robot lower arm located in the lower part of the vehicle body space, a three-degree-of-freedom moving bed for moving a patient in the middle of the space, and a seven-degree-of-freedom robot upper arm in the upper part of the space; It is connected with the flat panel detector of the angiography machine, and the end of the lower arm is connected with the anode tube of the angiography machine.
  • both the robot upper arm and the robot lower arm include a six-degree-of-freedom module, and an anode tube is installed on the six-degree-of-freedom module of the robot lower arm; the robot upper arm also includes a seven-axis module arranged on the six-degree-of-freedom module. .
  • the six-degree-of-freedom module includes a one-two-joint base, a three-joint module disposed on the one-two-joint base, and a four-five-six-axis module disposed on the three-joint module.
  • the one-two joint base includes a one-axis base and a two-axis base arranged above the one-axis base; the one-axis base and the two-axis base are connected by a crossed roller bearing, and the one-axis base is
  • a shaft joint is rotatably connected in the seat. One end of the shaft joint passes through the base of one shaft and the end that goes out is connected to the bottom of the base of two shafts.
  • the base rotates accordingly; a three-joint module is arranged above the two-axis base; a geared motor is installed on the two-axis base, and the geared motor is mounted on the two-axis base through a motor mounting plate.
  • the three-joint module includes a three-axis base, and the front part of the three-axis base is connected with the front part of the two-axis base through a rotating shaft; the gear motor drives the rotating shaft to rotate, and the rear part of the two-axis base is connected to the rear of the three-axis base.
  • a gas spring is arranged between the parts, one end of the gas spring is hinged with the two-axis base, and the other end of the gas spring is hinged with the bottom of the three-axis base; on the three-axis base are installed two parallel movable guide rail slider modules, one with four
  • the shaft base is slidably connected to the three-axis base through the bidirectional moving guide rail slider module; the three-axis base is provided with a rack, and the four-axis base is provided with two gears: gear 1 and gear 2; gear 1 and pulley One is installed on the first three shafts together (the two are coaxial), and the second pulley, the second gear, and the third pulley are installed on the three shafts together (the second pulley, the second gear, and the three pulleys are coaxial) ;Three-axis one is connected with the four-axis base through the belt seat bearing one, and three-axis two are connected with the four-axis base through the belt-seat bearing two; the pulle
  • the motor shaft of the module motor is provided with a pulley four.
  • the second rotation drives the coaxial gear 2 and the pulley 3 to rotate along with it.
  • the pulley 1 rotates, which drives the coaxial gear 1 to rotate.
  • the first gear and the second gear are connected to the rack.
  • the meshing transmission drives the four-axis base to translate along the guide rail slider module.
  • the two-way moving guide rail module includes a first-layer guide rail and a second-layer guide rail; wherein, the first-layer guide rail is installed on the three-axis base and is connected with the three-axis base; the first-layer slider is slidably connected with the first-layer guide rail, and the first The bottom of the guide rail connector is installed on the upper surface of the first-layer slider, the upper surface of the guide rail connector is installed with a second-layer guide rail, the second-layer guide rail is connected with the second-layer slider, and the second-layer slider is connected with the four-axis base.
  • the second gear is located between the second pulley and the third pulley, and the three-axis joint module motor is mounted on the four-axis base through the three-axis joint module motor seat.
  • the four-axis base is provided with four-, five- and six-axis modules, and the four-, five-six-axis modules include a four-axis module, a five-axis module and a six-axis module;
  • the four-axis module includes a four-axis pulley and a and a synchronous belt structure composed of two four-axis pulleys, the first four-axis pulley of the synchronous belt structure is driven by a four-axis motor;
  • the second four-axis pulley is installed on the four-axis driven shaft as a driven wheel, and the four-axis driven shaft is driven by a four-axis motor.
  • the shaft is fixed on the four-axis bracket through the four-axis belt seat bearing, and the four-axis driven shaft is also connected to one side of a five-axis connecting piece; (the four-axis motor drives the four-axis pulley to rotate, and the synchronous belt drives the four-axis pulley.
  • the five-axis connecting piece installed on the driven shaft rotates accordingly;).
  • the five-axis module includes a synchronous belt structure composed of five-axis pulley 1 and five-axis pulley 2.
  • the five-axis pulley 1 of the synchronous belt structure is driven by a five-axis motor;
  • the five-axis driven shaft On the five-axis driven shaft, the five-axis driven shaft is fixed on the five-axis support through the five-axis belt seat bearing, and the five-axis driven shaft is also connected with the other side of a five-axis connecting piece; the five-axis driven shaft
  • a five-axis gear is also installed on the shaft.
  • the five-axis gear is connected with the five-axis gear two for meshing transmission.
  • the five-axis gear (conical wheel) is installed on the five-axis gear shaft.
  • the sub bearing is installed on the five-axis connecting piece.
  • the five-axis crossed roller bearing and the anode tube are connected by connecting rods.
  • the five-axis motor drives the five-axis pulley to rotate, and the synchronous belt drives the five-axis driven shaft to rotate, and the five-axis connecting piece installed on the driven shaft rotates accordingly;
  • the four-axis motor cooperates with the five-axis motor to move synchronously to realize The pitching motion of the five-axis connector (tube); when the five-axis motor moves alone, it drives the pulley and transmits the motion to the second five-axis gear (to realize the side-swing motion of the tube).
  • the six-axis module includes a six-axis support mounted on a crossed roller bearing, a six-axis screw is fixed on the six-axis support, and a six-axis nut (six-axis nut) is fixed on the six-axis screw.
  • the six-axis nut is connected with the six-axis adapter, the six-axis adapter is arranged on the six-axis slider, the six-axis slider is slidably connected with the six-axis guide rail, the six-axis guide is arranged on the six-axis bracket, and the six-axis
  • the lead screw can be rotated relative to the six-axis support and the six-axis lead screw is parallel to the six-axis guide rail; one end of the six-axis lead screw is installed with a six-axis pulley 1, and the six-axis pulley 1 and the six-axis pulley 2 constitute synchronization Belt structure, the synchronous belt structure is driven by a six-axis motor, and the six-axis motor is fixed on a six-axis support through a six-axis motor seat.
  • the four-axis motor is mounted on the four-axis motor base
  • the five-axis motor is mounted on the five-axis motor base.
  • the six-axis nut is connected to the receiving plate through a seven-axis bracket, one end of the seven-axis bracket is connected to the six-axis nut, and the other end of the seven-axis bracket is installed with a receiving plate (flat panel detector);
  • the lower end is rotatably connected with the seven-axis support through a seven-axis driven shaft, and the seven-axis driven shaft is rotatably connected with the seven-axis support through a seven-axis crossed roller bearing.
  • the second gear is connected with the bevel gear 1 for meshing transmission.
  • the first bevel gear is installed outside the motor shaft of the seven-axis motor, and the seven-axis motor is installed on the seven-axis support through the seven-axis motor seat.
  • the present invention has beneficial effects.
  • the structure designed in the present invention in terms of the treatment method, transports the catheter room to the patient for emergency rescue, saves the time for transporting the patient, and achieves a better rescue effect.
  • the design structure of the present invention occupies a small space, and solves the problem that the traditional DSA occupies a large space and cannot be arranged in a mobile ambulance under the conditions of mobile/field combat and the like.
  • the design structure of the present invention is lighter in weight and more flexible in movement.
  • 1-2 are schematic diagrams of the overall structure of the present invention.
  • Figure 3-1 is a schematic diagram of the overall structure of the upper arm of the present invention.
  • Figure 3-2 is a schematic diagram of the overall structure of the lower arm of the present invention.
  • Figure 4 is a schematic diagram of the joints of the upper and lower arms 1-2 of the present invention.
  • 5-1 to 5-4 are schematic diagrams of the joints of the upper and lower arms 3 of the present invention.
  • 6-1 to 6-3 are schematic diagrams of the structure of the bidirectional moving guide rail module of the present invention.
  • Figures 7-1 to 7-2 are schematic diagrams of the lower arm 4-5-6 axis.
  • FIG. 8 is a schematic diagram of the structure of the shaft 6-7 of the upper arm.
  • FIG. 9 is a schematic structural diagram of the 6-axis in FIG. 8 .
  • FIG. 10 is a schematic structural diagram of the 7-axis in FIG. 8 .
  • 1 is the upper arm
  • 2 is the lower arm
  • 3 is the moving bed
  • 4 is a one-axis base
  • 5 is a one-axis crossed roller bearing
  • 6 is a two-axis base
  • 7 is a gas spring
  • 8 is a three-axis base
  • the seat, 9 is the shaft joint, and 10 is the two-axis gear motor;
  • 51 is rail module one
  • 52 is four-axis base
  • 53 is rail module two
  • 55 is three-axis rack
  • 56 is three-joint gear one
  • 57 is three-axis one
  • 58 is three-joint pulley one
  • 519 510 is a three-joint pulley two
  • 511 is a three-joint gear two
  • 512 is a seated bearing two
  • 513 is a three-joint pulley three
  • 514 is a three-joint pulley four
  • 515 is a three-axis two
  • 516 is a three-axis joint module motor
  • 61 is a guide rail connector
  • 62 is a first-layer slider
  • 64 is a first-layer guide rail
  • 65 is a second-layer guide rail
  • 66 is a second-layer slider
  • 71 is five-axis pulley one
  • 72 is four-axis pulley one
  • 75 is five-axis driven shaft
  • 76 is five-axis pulley two
  • 77 is five-axis belt seat bearing
  • 78 is five-axis gear one
  • 78 is five-axis Axle gear one
  • 79 is a five-axis connector
  • 710 is a five-axis gear two
  • 711 is a five-axis crossed roller bearing
  • 712 is a five-axis gear shaft
  • 713 is a four-axis bearing with a seat
  • 714 is a four-axis bracket
  • 715 is a Four-axis driven shaft
  • 716 is four-axis pulley two
  • 81 is a six-axis bracket, 83 is a six-axis nut, 84 is a six-axis adapter, 85 is a six-axis screw, 86 is a six-axis pulley one, 87 is a six-axis pulley two, 88 is a six-axis motor seat, 89 is a six-axis motor, 810 is a six-axis guide rail, and 811 is a six-axis slider;
  • 91 is a seven-axis bracket
  • 93 is a seven-axis motor
  • 94 is a bevel gear 1
  • 95 is a seven-axis motor seat
  • 96 is a seven-axis roller bearing
  • 97 is a receiving plate
  • 98 is a seven-axis driven shaft
  • 99 is a bevel gear two.
  • the present invention includes a six-degree-of-freedom robot lower arm located in the lower part of the vehicle body space, a three-degree-of-freedom mobile bed for moving patients in the middle of the space, and a seven-degree-of-freedom robot upper arm in the upper part of the space.
  • the end of the upper arm is connected with the flat panel detector of the angiography machine, and the end of the lower arm is connected with the anode tube of the angiography machine.
  • both the robot upper arm and the robot lower arm include a six-degree-of-freedom module, and an anode tube is installed on the six-degree-of-freedom module of the robot lower arm; the robot upper arm further includes a seven-axis module arranged on the six-degree-of-freedom module .
  • the six-degree-of-freedom module includes a one-two-joint base, a three-joint module disposed on the one-two-joint base, and a four-five-six-axis module disposed on the three-joint module.
  • the one-two-joint base includes a one-axis base and a two-axis base disposed above the one-axis base; the one-axis base and the two-axis base are connected by a one-axis crossed roller bearing, and a A shaft joint is rotatably connected in the shaft base.
  • One end of the shaft joint passes through the first shaft base and the end that goes out is connected to the bottom of the second shaft base.
  • the other end of the shaft joint is driven to rotate by the shaft joint drive motor, which is driven by the shaft joint.
  • the two-axis base rotates accordingly; a three-joint module is arranged above the two-axis base; a two-axis deceleration motor is installed on the two-axis base, and the deceleration motor is mounted on the two-axis base through a motor mounting plate.
  • the three-joint module includes a three-axis base, and the front part of the three-axis base is connected with the front part of the two-axis base through a rotating shaft; the gear motor drives the rotating shaft to rotate, and the rear part of the two-axis base is connected to the rear of the three-axis base.
  • a gas spring is arranged between the parts, one end of the gas spring is hinged with the two-axis base, and the other end of the gas spring is hinged with the bottom of the three-axis base; on the three-axis base are installed two parallel movable guide rail slider modules, one with four
  • the shaft base is slidably connected to the three-axis base through the bidirectional moving guide rail slider module; the three-axis base is provided with a three-axis rack, and the four-axis base is provided with two gears: three-joint gear one and three-joint gear two;
  • the three-joint gear 1 and the three-joint pulley 1 are jointly installed on the three-axis 1 (the two are coaxial), and the three-joint pulley 2, the three-joint gear 2, the three-joint pulley, and the three-joint pulley are jointly installed on the three-axis 2 (the two are coaxial).
  • the module motor acts, the three-joint pulley No. 2 rotates, and drives the coaxial three-joint gear No. 2 and the three-joint pulley.
  • the third rotates accordingly, and through the synchronous belt transmission structure 1, the three-joint pulley rotates once, which drives the three-joint gear coaxial with it to rotate.
  • the base translates along the guide rail slider module.
  • the two-way moving guide rail module includes a first-layer guide rail and a second-layer guide rail; wherein, the first-layer guide rail is installed on the three-axis base and is connected with the three-axis base; the first-layer slider is slidably connected with the first-layer guide rail, and The bottom of the guide rail connector is installed on the upper surface of the first-layer slider, the upper surface of the guide rail connector is installed with a second-layer guide rail, the second-layer guide rail is connected with the second-layer slider, and the second-layer slider is connected with the four-axis base.
  • the second gear is located between the second pulley and the third pulley, and the three-axis joint module motor is mounted on the four-axis base through the three-axis joint module motor seat.
  • the four-axis base is provided with four-, five-six-axis modules, and the four-, five-six-axis modules include a four-axis module, a five-axis module and a six-axis module;
  • the four-axis module includes a synchronous belt structure composed of four-axis pulley 1 and four-axis pulley 2.
  • the four-axis pulley 1 of the synchronous belt structure is driven by a four-axis motor;
  • the four-axis driven shaft On the four-axis driven shaft, the four-axis driven shaft is fixed on the four-axis bracket through the four-axis belt seat bearing, and the four-axis driven shaft is also connected to one side of a five-axis connecting piece; (the four-axis motor drives As soon as the four-axis pulley rotates, the four-axis driven shaft is driven to rotate by the synchronous belt, and the five-axis connecting piece installed on the driven shaft rotates accordingly;).
  • the five-axis module includes a synchronous belt structure composed of five-axis pulley 1 and five-axis pulley 2.
  • the five-axis pulley 1 of the synchronous belt structure is driven by a five-axis motor;
  • the five-axis driven shaft On the five-axis driven shaft, the five-axis driven shaft is fixed on the five-axis support through the five-axis belt seat bearing, and the five-axis driven shaft is also connected with the other side of a five-axis connecting piece; the five-axis driven shaft
  • a five-axis gear is also installed on the shaft.
  • the five-axis gear is connected with the five-axis gear two for meshing transmission.
  • the five-axis gear (conical wheel) is installed on the five-axis gear shaft.
  • the sub bearing is installed on the five-axis connecting piece.
  • the five-axis crossed roller bearing is connected with the anode tube through a connecting rod.
  • the five-axis motor drives the five-axis pulley to rotate, and the synchronous belt drives the five-axis driven shaft to rotate, and the five-axis connecting piece installed on the driven shaft rotates accordingly;
  • the four-axis motor cooperates with the five-axis motor to move synchronously to realize The pitching motion of the five-axis connector (tube); when the five-axis motor moves alone, it drives the pulley and transmits the motion to the second five-axis gear (to realize the side-swing motion of the tube).
  • the six-axis module includes a six-axis support mounted on a crossed roller bearing, a six-axis screw is fixed on the six-axis support, and a six-axis nut (six-axis nut) is fixed on the six-axis screw.
  • the six-axis nut is connected with the six-axis adapter, the six-axis adapter is arranged on the six-axis slider, the six-axis slider is slidably connected with the six-axis guide rail, the six-axis guide is arranged on the six-axis bracket, and the six-axis
  • the lead screw can be rotated relative to the six-axis support and the six-axis lead screw is parallel to the six-axis guide rail; one end of the six-axis lead screw is installed with a six-axis pulley 1, and the six-axis pulley 1 and the six-axis pulley 2 constitute synchronization Belt structure, the synchronous belt structure is driven by a six-axis motor, and the six-axis motor is fixed on a six-axis support through a six-axis motor seat.
  • the four-axis motor is mounted on the four-axis motor base, and the five-axis motor is mounted on the five-axis motor base.
  • the six-axis nut is connected to the receiving plate through a seven-axis bracket, one end of the seven-axis bracket is connected to the six-axis nut, and the other end of the seven-axis bracket is installed with a receiving plate (flat panel detector);
  • the lower end is rotatably connected with the seven-axis support through a seven-axis driven shaft, and the seven-axis driven shaft is rotatably connected with the seven-axis support through a seven-axis crossed roller bearing.
  • the second gear is connected with the bevel gear 1 for meshing transmission.
  • the first bevel gear is installed outside the motor shaft of the seven-axis motor, and the seven-axis motor is installed on the seven-axis support through the seven-axis motor seat.
  • the robot as a whole has an upper and lower double-arm structure, with 7 degrees of freedom for the upper arm and 6 degrees of freedom for the lower arm. and the connection relationship of each degree of freedom.
  • the upper arm has 7 degrees of freedom, and the flat panel detector of the angiography machine is fixed at the end.
  • the lower arm has 6 degrees of freedom, and the anode tube of the angiography machine is fixed at the end.
  • the telecentric motion is realized by two, three and four axes to realize the 45-degree isocenter detection in the plane of a specific point, and the detection of the 45-degree cone angle in the space range is realized by the rotation of one axis. Five degrees of freedom realize the influence of installation and other errors, and the upper arm has 6 degrees of freedom.
  • a double-arm robot and a three-degree-of-freedom movable bed are arranged in the mobile car body.
  • the double-arm robot realizes isocenter detection at different angles at fixed points. When detecting different positions, it is realized by moving the bed.
  • the three shafts are driven by rack and pinion to achieve bidirectional motion, and in order to achieve this function, through belt transmission, one of the double gears is always meshed with the rack.
  • the superposition of two high-precision guide rails can not only achieve high-precision movement, but also meet the requirements of bidirectional movement.
  • Four or five degrees of freedom compact design the overall height is compressed by pulleys and gears, which can save space.
  • the upper arm has six degrees of freedom through belt drive and ball screw drive to change the isocenter distance between the receiver and the transmitter.
  • the realization of the 7 degrees of freedom of the upper arm is completed by the bevel gear transmission, mainly to reduce the height space.
  • Figure 4 is a schematic diagram of the 1-axis and the 2-axis.
  • the first axis drives the two-axis seat through the motor.
  • the cross-roller bearing supports the second-axis seat.
  • the motor and the reducer are fixed on the second-axis seat.
  • the air support is used to reduce the output torque of the motor reducer. .
  • Figure 5-3 is a schematic diagram of three joints.
  • the pulley is driven by the motor to transmit the motion to the gear, and then the motion is transmitted to the other gear through another pair of pulleys.
  • the two gears move synchronously and mesh with the rack below. Realize three-axis linear motion.
  • the dual gear setup is so that one gear will always remain engaged when moving in both directions.
  • the figure above shows the left and right limit states.
  • Figure 6-3 shows the structure of slide rail-slider-connector-slider-slider, which can realize bidirectional movement. Bear the load for the structure shown in Figure 5-3 and ensure the motion accuracy.
  • the 4-axis motor drives the pulley, and cooperates with the 5-axis motor to move synchronously to realize the pitching motion of the speed limiter and the tube.
  • the five-axis motor moves independently, drives the pulley, and transmits the motion to the bevel gear. Controls the speed limiter and tube side-swing motion.
  • the six-axis is the rotational movement of the speed limiter around its own axis.
  • the 4-5 axis of the upper arm is the same as that of the lower arm.
  • the motor transmits the output torque to the pulley, and then transmits it to the lead screw nut through the pulley to achieve up and down movement.
  • the motor output torque is transmitted to the receiving plate through the bevel gear. Rotate around its own axis.
  • the present invention can realize the isocenter movement of the upper and lower arms around a specific point, and can perform positive and negative 45° attitude adjustment.
  • the detection area of 300mm*300mm can be realized, and the bed body can be moved up and down through the bed-shifting mechanism to adapt to the height difference of different operators, so that the height of the patient is in the best position compared with the operator.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)
  • Transmission Devices (AREA)

Abstract

一种双机械臂式结构的车载血管造影机,属于医疗器械技术领域,其用于心血管疾病现场及途中对患者进行介入手术诊治,占用空间小。车载血管造影机包括位于车体空间下部的六自由度机器人下臂(2)、空间中部的移动患者的三自由度移动床(3)、空间上部的七自由度机器人上臂(1);上臂(1)端部与血管造影机的平板探测器相连,下臂(2)端部与血管造影机的阳极球管相连。通过上、下臂(1,2)的中心运动,配合床(3)的上下-左右-前后移动,实现大范围的等中心检测,为微创手术过程中提供高质量的造影图像。

Description

一种双机械臂式结构的车载血管造影机 技术领域
本发明属于医疗器械技术领域,尤其涉及一种双机械臂式结构的车载血管造影机。
背景技术
治疗急性心肌梗死最有效的方式是采用冠状动脉介入手术方法快速开通梗死相关冠状动脉血管,而冠状动脉介入手术需要在具有心血管造影X射线机等相关介入设备的介入导管室条件下进行。目前所研究具有介入导管室功能的车载移动方舱,虽然能够实现把设备及介入术者送达患者诊治现场,但是由于方舱系统体积较大,且手术前展开地域较大,展开时间及术后收拢时间较长,并在运送途中,不能随根据患者病情“即时”实施手术抢救,这种介入手术方舱对于随机地域急性心肌梗死患者的诊治做不到及时诊治。
亟需发明一种微型的机动性好、集成度高、操控性强、响应速度快的救护车式心血管介入导管室,可以快速到达急性心肌梗死患者病发现场,在现场快速展开,对患者“即时”开展微创介入手术诊治,同时具有在送运医院途中,根据病情能够随时进行介入手术,保证患者的生命体征的功能,是具体重要的应用意义。
再者,医院介入手术导管室所安装的血管造影机,由发出X射线及接收装置的二自由度C环结构组成,安装形式大致为地轴式、悬挂式,体积及重量都较大,难以安装在常规的救护车里。如果想要实现在救护车里进行心血管介入手术,就必须有在救护车里安装血管介入手术所用的血管造影机,亟待发明一种无C环结构的双机械臂式车载血管造影机,可以缩小整个血管造影机的结构,能够满足救护车内狭小空间的装载需求。
发明内容
本发明就是针对现有技术存在的缺陷,提供一种双机械臂式结构的车载血管造影机,其用于心血管疾病现场及途中对患者进行介入手术诊治,占用空间小,解决了移动条件下,传统DSA占用空间大,无法排布在移动救护车体内的问题。
为实现上述目的,本发明采用如下技术方案,包括位于车体空间下部的六自由度机器人下臂、空间中部的移动患者的三自由度移动床、空间上部的七自由度机器人上臂;上臂端部与血管造影机的平板探测器相连,下臂端部与血管造影机的阳极球管相连。
通过上、下臂的中心运动,配合床的上下-左右-前后移动,实现大范围的等中心检测,为微创手术过程中提供高质量的造影图像。
进一步地,所述机器人上臂和机器人下臂均包括六自由度模块,机器人下臂的六自 由度模块上安装有阳极球管;所述机器人上臂还包括设置于六自由度模块上的七轴模块。
更进一步地,所述六自由度模块包括一二关节基座、设置于一二关节基座上的三关节模块、设置于三关节模块上的四五六轴模块。
更进一步地,所述一二关节基座包括一轴基座、设置于一轴基座上方的二轴基座;一轴基座与二轴基座间通过交叉滚子轴承相连,一轴基座内转动连接有轴关节,该轴关节一端穿过一轴基座且穿出的端部与二轴基座底部相连,轴关节另一端由轴关节驱动电机驱动旋转,通过轴关节带动二轴基座随之转动;二轴基座上方设置有三关节模块;二轴基座上安装有减速电机,该减速电机通过电机安装板安装于二轴基座上。
更进一步地,三关节模块包括三轴基座,该三轴基座前部与二轴基座前部通过转轴相连;减速电机驱动该转轴转动,二轴基座后部与三轴基座后部间设置有气弹簧,该气弹簧一端与二轴基座铰接,气弹簧另一端与三轴基座底部铰接;三轴基座上安装有两并列设置的移动导轨滑块模组,一四轴基座通过双向移动导轨滑块模组与三轴基座滑动连接;三轴基座上设置有齿条,四轴基座上设置有两齿轮:齿轮一和齿轮二;齿轮一与带轮一共同安装于三轴一上(两者共轴),带轮二、齿轮二、带轮三三轴共同安装于三轴二上(带轮二、齿轮二、带轮三三者共轴);三轴一通过带座轴承一与四轴基座相连,三轴二通过带座轴承二与四轴基座相连;带轮一与带轮三通过同步带连接为同步带传动结构一;四轴基座上设置有三轴关节模组电机,该模组电机的电机轴上安装有带轮四,带轮四与带轮二通过同步带构成同步带传动结构二;模组电机动作,带轮二转动,带动与之共轴的齿轮二及带轮三随之转动,通过同步带传动结构一,带轮一转动,带动与之共轴的齿轮一转动,齿轮一、齿轮二均与齿条啮合传动,带动四轴基座沿导轨滑块模组平移。
更进一步地,双向移动导轨模组包括一层导轨、二层导轨;其中,一层导轨安装于三轴基座上、与三轴基座相连;一层滑块与一层导轨滑动连接,一导轨连接件底部安装于一层滑块上表面,导轨连接件的上表面安装有二层导轨,二层导轨与二层滑块相连,二层滑块与四轴基座相连。
更进一步地,齿轮二位于带轮二与带轮三中间,三轴关节模组电机通过三轴关节模组电机座安装于四轴基座上。
更进一步地,所述四轴基座上设置有四五六轴模块,该四五六轴模块包括四轴模块、五轴模块及六轴模块;所述四轴模块包括由四轴带轮一及四轴带轮二构成的同步带结构,该同步带结构的四轴带轮一由四轴电机驱动;四轴带轮二作为从动轮安装于四轴从动轴上,该四轴从动轴通过四轴带座轴承固定于四轴支架上,且四轴从动轴上还与一五轴连接件 的一侧相连;(四轴电机带动四轴带轮一转动,通过同步带带动四轴从动轴转动,安装于从动轴上的五轴连接件随之转动;)。
所述五轴模块包括由五轴带轮一及五轴带轮二构成的同步带结构,该同步带结构的五轴带轮一由五轴电机驱动;五轴带轮二作为从动轮安装于五轴从动轴上,该五轴从动轴通过五轴带座轴承固定于五轴支架上,且五轴从动轴上还与一五轴连接件的另一侧相连;五轴从动轴上还安装有五轴齿轮一,五轴齿轮一与五轴齿轮二啮合传动相连,五轴齿轮二(锥形轮)安装于五轴齿轮轴上,该五轴齿轮轴通过五轴交叉滚子轴承安装于五轴连接件上。
更进一步地,机器人下臂中,五轴交叉滚子轴承与阳极球管通过连接杆相连。(五轴电机带动五轴带轮一转动,通过同步带带动五轴从动轴转动,安装于从动轴上的五轴连接件随之转动;)四轴电机配合五轴电机同步运动,实现五轴连接件(球管)的俯仰运动;五轴电机单独运动时,带动带轮,将运动传递给五轴齿轮二(实现球管的侧摆运动)。
更进一步地,所述六轴模块包括安装于交叉滚子轴承上的六轴支架,该六轴支架上固定有六轴丝杠,六轴丝杠上固定有六轴螺母(六轴丝母),该六轴螺母与六轴转接件相连,该六轴转接件设置于六轴滑块上,六轴滑块与六轴导轨滑动连接,六轴导轨设置于六轴支架上,六轴丝杠可相对六轴支架转动且六轴丝杠与六轴导轨相平行;该六轴丝杠一端端部安装有六轴带轮一,该六轴带轮一与六轴带轮二构成同步带结构,该同步带结构由六轴电机驱动,该六轴电机通过六轴电机座固定于六轴支架上。
更进一步地,四轴电机安装于四轴电机座上,五轴电机安装于五轴电机座上。
更进一步地,机器人上臂中,六轴螺母上通过七轴支架与接收板相连,七轴支架一端连接于六轴螺母上,七轴支架另一端上安装有接收板(平板探测器);接收板下端通过七轴从动轴与七轴支架转动连接,该七轴从动轴通过七轴交叉滚子轴承与七轴支架转动连接,该从动轴的端部外安装有锥齿轮二,该锥齿轮二与锥齿轮一啮合传动相连,锥形齿轮一安装于七轴电机的电机轴外,该七轴电机通过七轴电机座安装于七轴支架上。
与现有技术相比本发明有益效果。
本发明中设计的结构,在救治方法上,将导管室运输到患者身边,进行紧急抢救,节省运输患者时间,实现更好的抢救效果。
本发明中设计结构占用空间小,解决了移动/野战等条件下,传统DSA占用空间大,无法排布在移动救护车体内的问题。
相比于传统C臂,本发明中设计结构质量更轻巧、运动更灵活。
附图说明
下面结合附图和具体实施方式对本发明做进一步说明。本发明保护范围不仅局限于以下内容的表述。
图1-2是本发明整体结构示意图。
图3-1本发明上臂整体结构示意图。
图3-2本发明下臂整体结构示意图。
图4是本发明上、下臂1-2关节示意图。
图5-1到5-4是本发明上下臂3关节示意图。
图6-1到6-3是本发明双向移动导轨模组结构示意图。
图7-1到图7-2为下臂4-5-6轴的示意图。
图8为上臂6-7轴结构示意图。
图9为图8中6轴的结构示意图。
图10为图8中7轴的结构示意图。
图中,1为上臂、2为下臂、3为移动床、4为一轴基座、5为一轴交叉滚子轴承、6为二轴基座、7为气弹簧、8为三轴基座、9为轴关节、10为二轴减速电机;
51为导轨模组一、52为四轴基座、53为导轨模组二、55为三轴齿条、56为三关节齿轮一、57为三轴一、58为三关节带轮一、519为带座轴承一、510为三关节带轮二、511为三关节齿轮二、512为带座轴承二、513为三关节带轮三、514为三关节带轮四、515为三轴二、516为三轴关节模组电机;
61为导轨连接件、62为一层滑块、64为一层导轨、65为二层导轨、66为二层滑块;
71为五轴带轮一、72为四轴带轮一、75为五轴从动轴、76为五轴带轮二、77为五轴带座轴承、78为五轴齿轮一、78为五轴齿轮一、79为五轴连接件、710为五轴齿轮二、711为五轴交叉滚子轴承、712为五轴齿轮轴、713为四轴带座轴承、714为四轴支架、715为四轴从动轴、716为四轴带轮二;
81为六轴支架、83为六轴螺母、84为六轴转接件、85为六轴丝杠、86为六轴带轮一、87为六轴带轮二、88为六轴电机座、89为六轴电机、810为六轴导轨、811为六轴滑块;
91为七轴支架、93为七轴电机、94为锥齿轮一、95为七轴电机座、96为七轴滚子轴承、97为接收板、98为七轴从动轴、99为锥齿轮二。
具体实施方式
如图1-10所示,本发明包括位于车体空间下部的六自由度机器人下臂、空间中部的 移动患者的三自由度移动床、空间上部的七自由度机器人上臂。
上臂端部与血管造影机的平板探测器相连,下臂端部与血管造影机的阳极球管相连。
通过上、下臂的中心运动,配合床的上下-左右-前后移动,实现大范围的等中心检测,为微创手术过程中提供高质量的造影图像。
优选地,所述机器人上臂和机器人下臂均包括六自由度模块,机器人下臂的六自由度模块上安装有阳极球管;所述机器人上臂还包括设置于六自由度模块上的七轴模块。
更优选地,所述六自由度模块包括一二关节基座、设置于一二关节基座上的三关节模块、设置于三关节模块上的四五六轴模块。
更优选地,所述一二关节基座包括一轴基座、设置于一轴基座上方的二轴基座;一轴基座与二轴基座间通过一轴交叉滚子轴承相连,一轴基座内转动连接有轴关节,该轴关节一端穿过一轴基座且穿出的端部与二轴基座底部相连,轴关节另一端由轴关节驱动电机驱动旋转,通过轴关节带动二轴基座随之转动;二轴基座上方设置有三关节模块;二轴基座上安装有二轴减速电机,该减速电机通过电机安装板安装于二轴基座上。
更优选地,三关节模块包括三轴基座,该三轴基座前部与二轴基座前部通过转轴相连;减速电机驱动该转轴转动,二轴基座后部与三轴基座后部间设置有气弹簧,该气弹簧一端与二轴基座铰接,气弹簧另一端与三轴基座底部铰接;三轴基座上安装有两并列设置的移动导轨滑块模组,一四轴基座通过双向移动导轨滑块模组与三轴基座滑动连接;三轴基座上设置有三轴齿条,四轴基座上设置有两齿轮:三关节齿轮一和三关节齿轮二;三关节齿轮一与三关节带轮一共同安装于三轴一上(两者共轴),三关节带轮二、三关节齿轮二、三关节带轮三三轴共同安装于三轴二上(三关节带轮二、三关节齿轮二、三关节带轮三三者共轴);三轴一通过带座轴承一与四轴基座相连,三轴二通过带座轴承二与四轴基座相连;三关节带轮一与三关节带轮三通过同步带连接为同步带传动结构一;四轴基座上设置有三轴关节模组电机,该模组电机的电机轴上安装有三关节带轮四,三关节带轮四与三关节带轮二通过同步带构成同步带传动结构二;模组电机动作,三关节带轮二转动,带动与之共轴的三关节齿轮二及三关节带轮三随之转动,通过同步带传动结构一,三关节带轮一转动,带动与之共轴的三关节齿轮一转动,三关节齿轮一、三关节齿轮二均与齿条啮合传动,带动四轴基座沿导轨滑块模组平移。
更优选地,双向移动导轨模组包括一层导轨、二层导轨;其中,一层导轨安装于三轴基座上、与三轴基座相连;一层滑块与一层导轨滑动连接,一导轨连接件底部安装于一层 滑块上表面,导轨连接件的上表面安装有二层导轨,二层导轨与二层滑块相连,二层滑块与四轴基座相连。
更优选地,齿轮二位于带轮二与带轮三中间,三轴关节模组电机通过三轴关节模组电机座安装于四轴基座上。
更优选地,所述四轴基座上设置有四五六轴模块,该四五六轴模块包括四轴模块、五轴模块及六轴模块;
所述四轴模块包括由四轴带轮一及四轴带轮二构成的同步带结构,该同步带结构的四轴带轮一由四轴电机驱动;四轴带轮二作为从动轮安装于四轴从动轴上,该四轴从动轴通过四轴带座轴承固定于四轴支架上,且四轴从动轴上还与一五轴连接件的一侧相连;(四轴电机带动四轴带轮一转动,通过同步带带动四轴从动轴转动,安装于从动轴上的五轴连接件随之转动;)。
所述五轴模块包括由五轴带轮一及五轴带轮二构成的同步带结构,该同步带结构的五轴带轮一由五轴电机驱动;五轴带轮二作为从动轮安装于五轴从动轴上,该五轴从动轴通过五轴带座轴承固定于五轴支架上,且五轴从动轴上还与一五轴连接件的另一侧相连;五轴从动轴上还安装有五轴齿轮一,五轴齿轮一与五轴齿轮二啮合传动相连,五轴齿轮二(锥形轮)安装于五轴齿轮轴上,该五轴齿轮轴通过五轴交叉滚子轴承安装于五轴连接件上。
更优选地,机器人下臂中,五轴交叉滚子轴承与阳极球管通过连接杆相连。(五轴电机带动五轴带轮一转动,通过同步带带动五轴从动轴转动,安装于从动轴上的五轴连接件随之转动;)四轴电机配合五轴电机同步运动,实现五轴连接件(球管)的俯仰运动;五轴电机单独运动时,带动带轮,将运动传递给五轴齿轮二(实现球管的侧摆运动)。
更优选地,所述六轴模块包括安装于交叉滚子轴承上的六轴支架,该六轴支架上固定有六轴丝杠,六轴丝杠上固定有六轴螺母(六轴丝母),该六轴螺母与六轴转接件相连,该六轴转接件设置于六轴滑块上,六轴滑块与六轴导轨滑动连接,六轴导轨设置于六轴支架上,六轴丝杠可相对六轴支架转动且六轴丝杠与六轴导轨相平行;该六轴丝杠一端端部安装有六轴带轮一,该六轴带轮一与六轴带轮二构成同步带结构,该同步带结构由六轴电机驱动,该六轴电机通过六轴电机座固定于六轴支架上。
更优选地,四轴电机安装于四轴电机座上,五轴电机安装于五轴电机座上。
更优选地,机器人上臂中,六轴螺母上通过七轴支架与接收板相连,七轴支架一端连接于六轴螺母上,七轴支架另一端上安装有接收板(平板探测器);接收板下端通过七轴 从动轴与七轴支架转动连接,该七轴从动轴通过七轴交叉滚子轴承与七轴支架转动连接,该从动轴的端部外安装有锥齿轮二,该锥齿轮二与锥齿轮一啮合传动相连,锥形齿轮一安装于七轴电机的电机轴外,该七轴电机通过七轴电机座安装于七轴支架上。
作为一种具体实施例:
机器人整体为上下双臂结构,上臂7个自由度,下臂6个自由度。以及各自由度连接关系。上臂为7个自由度,端部固定血管造影机的平板探测器。下臂为6个自由度,端部固定血管造影机的阳极球管。远心运动实现方式,是靠二、三、四轴实现特定点的平面内的45度等中心检测,而通过一轴的旋转实现空间范围内45度锥角的检测。五自由度实现安装等误差的影响,上臂6自由度。移动车体内布置双臂式机器人、三自由度可移动床体,双臂机器人实现定点不同角度等中心检测,当检测不同位置时,通过床体移动来实现。三轴通过齿轮齿条传动,实现双向运动,而且为了实现该功能,通过皮带传动,双齿轮始终有一个与齿条啮合。两个高精度导轨叠加,既能实现高精度运动,也能实现双向运动的要求。四、五自由度紧凑设计,通过带轮及齿轮将整体高度压缩,能够节省空间。上臂六自由度通过皮带传动及滚珠丝杠传动,改变接收器与发射头等中心距离。上臂7自由度的实现通过锥齿轮传动完成,主要是为了减少占用高度空间。上下臂固定的球管与平板探测器对中心采取两种方式,一种是采用上下臂旁边的标测仪对中心,另一种是通过平板探测器接收球管发射的X线后,根据平板上的显亮像素点参数对中心。通过上下臂等中心运动,配合床的上下-左右-前后移动,实现大范围的等中心检测,为微创手术过程中提供高质量的造影图像。
图4为1轴和2轴示意图,一轴通过电机带动二轴座运动,交叉滚子轴承支撑二轴座,电机与减速机固定在二轴座上,气撑用于减少电机减速机输出扭矩。
图5-3为三关节示意图,通过电机带动带轮,将运动传递给齿轮,再通过另一对带轮将运动传递给另一个齿轮,两个齿轮同步运动,并与下面的齿条啮合,实现三轴的直线运动。双齿轮设置是为了双向移动时始终有一个齿轮保持啮合状态。上图为左右两个极限状态。
图6-3表示滑轨-滑块-连接件-滑轨-滑块结构,可以实现双向运动。为图5-3中结构承担负载,且保证运动精度。
图7-2中,4轴电机带动带轮,并配合5轴电机同步运动,实现限速器与球管的俯仰运动,五轴电机单独运动,带动带轮,并将运动传递给锥齿轮,控制限速器与球管侧摆运动。六轴为限速器绕自身轴线的自转运动。上臂4-5轴与下臂结构相同。
图9中,电机将输出力矩传递给皮带轮,再通过带轮传递给丝杠螺母,实现上下运 动。
图10中,电机输出力矩通过锥齿轮传递给接收板。实现绕自身轴线旋转。
本发明通过上述自由度的设置,可以实现上下臂绕特定点实现等中心运动,并可以进行正负45°姿态调整,为了扩大检测范围可以控制移床机构实现床体左右-前后的运动,整体可以实现300mm*300mm检测区域,并且通过移床机构进行床体上下移动,适应不同术者的身高差异,使患者高度相比于术者处于最佳的位置。
可以理解的是,以上关于本发明的具体描述,仅用于说明本发明而并非受限于本发明实施例所描述的技术方案,本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换,以达到相同的技术效果;只要满足使用需要,都在本发明的保护范围之内。

Claims (6)

  1. 一种双机械臂式结构的车载血管造影机,其特征在于,包括位于车体空间下部的六自由度机器人下臂、空间中部的移动患者的三自由度移动床、空间上部的七自由度机器人上臂;上臂端部与血管造影机的平板探测器相连,下臂端部与血管造影机的阳极球管相连;通过上、下臂的中心运动,配合床的上下-左右-前后移动;
    所述机器人上臂和机器人下臂均包括六自由度模块,机器人下臂的六自由度模块上安装有阳极球管;所述机器人上臂还包括设置于六自由度模块上的七轴模块;
    所述六自由度模块包括一二关节基座、设置于一二关节基座上的三关节模块、设置于三关节模块上的四五六轴模块;
    所述一二关节基座包括一轴基座、设置于一轴基座上方的二轴基座;一轴基座与二轴基座间通过交叉滚子轴承相连,一轴基座内转动连接有轴关节,该轴关节一端穿过一轴基座且穿出的端部与二轴基座底部相连,轴关节另一端由轴关节驱动电机驱动旋转,通过轴关节带动二轴基座随之转动;二轴基座上方设置有三关节模块;二轴基座上安装有减速电机,该减速电机通过电机安装板安装于二轴基座上;
    三关节模块包括三轴基座,该三轴基座前部与二轴基座前部通过转轴相连;减速电机驱动该转轴转动,二轴基座后部与三轴基座后部间设置有气弹簧,该气弹簧一端与二轴基座铰接,气弹簧另一端与三轴基座底部铰接;三轴基座上安装有两并列设置的移动导轨滑块模组,一四轴基座通过双向移动导轨滑块模组与三轴基座滑动连接;三轴基座上设置有齿条,四轴基座上设置有两齿轮:齿轮一和齿轮二;齿轮一与带轮一共同安装于三轴一上,带轮二、齿轮二、带轮三三轴共同安装于三轴二上;三轴一通过带座轴承一与四轴基座相连,三轴二通过带座轴承二与四轴基座相连;带轮一与带轮三通过同步带连接为同步带传动结构一;四轴基座上设置有三轴关节模组电机,该模组电机的电机轴上安装有带轮四,带轮四与带轮二通过同步带构成同步带传动结构二;模组电机动作,带轮二转动,带动与之共轴的齿轮二及带轮三随之转动,通过同步带传动结构一,带轮一转动,带动与之共轴的齿轮一转动,齿轮一、齿轮二均与齿条啮合传动,带动四轴基座沿导轨滑块模组平移;
    双向移动导轨模组包括一层导轨、二层导轨;其中,一层导轨安装于三轴基座上、与三轴基座相连;一层滑块与一层导轨滑动连接,一导轨连接件底部安装于一层滑块上表面,导轨连接件的上表面安装有二层导轨,二层导轨与二层滑块相连,二层滑块与四轴基座相连。
  2. 根据权利要求1所述的一种双机械臂式结构的车载血管造影机,其特征在于:齿轮二位于带轮二与带轮三中间,三轴关节模组电机通过三轴关节模组电机座安装于四轴基座上。
  3. 根据权利要求2所述的一种双机械臂式结构的车载血管造影机,其特征在于:所述四轴 基座上设置有四五六轴模块,该四五六轴模块包括四轴模块、五轴模块及六轴模块;
    所述四轴模块包括由四轴带轮一及四轴带轮二构成的同步带结构,该同步带结构的四轴带轮一由四轴电机驱动;四轴带轮二作为从动轮安装于四轴从动轴上,该四轴从动轴通过四轴带座轴承固定于四轴支架上,且四轴从动轴上还与一五轴连接件的一侧相连;
    所述五轴模块包括由五轴带轮一及五轴带轮二构成的同步带结构,该同步带结构的五轴带轮一由五轴电机驱动;五轴带轮二作为从动轮安装于五轴从动轴上,该五轴从动轴通过五轴带座轴承固定于五轴支架上,且五轴从动轴上还与一五轴连接件的另一侧相连;
    五轴从动轴上还安装有五轴齿轮一,五轴齿轮一与五轴齿轮二啮合传动相连,五轴齿轮二安装于五轴齿轮轴上,该五轴齿轮轴通过五轴交叉滚子轴承安装于五轴连接件上。
  4. 根据权利要求3所述的一种双机械臂式结构的车载血管造影机,其特征在于:机器人下臂中,五轴交叉滚子轴承与阳极球管通过连接杆相连;
    四轴电机配合五轴电机同步运动,实现五轴连接件的俯仰运动;五轴电机单独运动时,带动带轮,将运动传递给五轴齿轮二。
  5. 根据权利要求4所述的一种双机械臂式结构的车载血管造影机,其特征在于:所述六轴模块包括安装于交叉滚子轴承上的六轴支架,该六轴支架上固定有六轴丝杠,六轴丝杠上固定有六轴螺母,该六轴螺母与六轴转接件相连,该六轴转接件设置于六轴滑块上,六轴滑块与六轴导轨滑动连接,六轴导轨设置于六轴支架上,六轴丝杠可相对六轴支架转动且六轴丝杠与六轴导轨相平行;该六轴丝杠一端端部安装有六轴带轮一,该六轴带轮一与六轴带轮二构成同步带结构,该同步带结构由六轴电机驱动,该六轴电机通过六轴电机座固定于六轴支架上。
  6. 根据权利要求5所述的一种双机械臂式结构的车载血管造影机,其特征在于:机器人上臂中,六轴螺母上通过七轴支架与接收板相连,七轴支架一端连接于六轴螺母上,七轴支架另一端上安装有接收板;接收板下端通过七轴从动轴与七轴支架转动连接,该七轴从动轴通过七轴交叉滚子轴承与七轴支架转动连接,该从动轴的端部外安装有锥齿轮二,该锥齿轮二与锥齿轮一啮合传动相连,锥形齿轮一安装于七轴电机的电机轴外,该七轴电机通过七轴电机座安装于七轴支架上。
PCT/CN2021/084476 2020-11-24 2021-03-31 一种双机械臂式结构的车载血管造影机 WO2022110598A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/038,445 US20230404497A1 (en) 2020-11-24 2021-03-31 Vehicle-mounted angiography machine with double-robotic-arm type structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011329410.2 2020-11-24
CN202011329410.2A CN112386269B (zh) 2020-11-24 2020-11-24 一种双机械臂式结构的车载血管造影机

Publications (1)

Publication Number Publication Date
WO2022110598A1 true WO2022110598A1 (zh) 2022-06-02

Family

ID=74607659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084476 WO2022110598A1 (zh) 2020-11-24 2021-03-31 一种双机械臂式结构的车载血管造影机

Country Status (3)

Country Link
US (1) US20230404497A1 (zh)
CN (1) CN112386269B (zh)
WO (1) WO2022110598A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117064559A (zh) * 2023-10-13 2023-11-17 上海嘉奥信息科技发展有限公司 双面多自由度手术机器人

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112386269B (zh) * 2020-11-24 2022-05-17 中国人民解放军北部战区总医院 一种双机械臂式结构的车载血管造影机

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0517601A1 (fr) * 1991-06-07 1992-12-09 Sopha Medical Gamma caméra tomographique munie d'un détecteur orientable
JP2003038473A (ja) * 2001-07-31 2003-02-12 Shimadzu Corp X線撮影装置
US20030091153A1 (en) * 2001-11-15 2003-05-15 Ge Medical Systems Global Technology Scaleable x-ray positioner
CN2907546Y (zh) * 2006-05-18 2007-06-06 西安交通大学 独立立柱式车载用x射线机
CN101428420A (zh) * 2008-12-17 2009-05-13 哈尔滨工业大学 超冗余全方位移动操作臂
CN206120334U (zh) * 2016-07-05 2017-04-26 上海西门子医疗器械有限公司 一种移动式x光数字摄影系统
CN107296692A (zh) * 2016-12-30 2017-10-27 南阳师范学院 一种车载式x射线手术平台
CN107693035A (zh) * 2017-11-21 2018-02-16 南方医科大学 一种可实现多种轨道扫描的x射线成像装置及方法
CN209884171U (zh) * 2017-08-21 2020-01-03 上海一影信息科技有限公司 一种x射线成像系统
CN210077676U (zh) * 2018-06-22 2020-02-18 伊士通(上海)医疗器械有限公司 用于军用车载x射线车厢
CN112386269A (zh) * 2020-11-24 2021-02-23 中国人民解放军北部战区总医院 一种双机械臂式结构的车载血管造影机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006059500A1 (de) * 2006-12-15 2008-07-03 Siemens Ag Röntgenuntersuchungsvorrichtung
DE102008016414B4 (de) * 2008-03-31 2018-01-04 Kuka Roboter Gmbh Röntgenvorrichtung und medizinischer Arbeitsplatz
US8126114B2 (en) * 2008-09-12 2012-02-28 Accuray Incorporated Seven or more degrees of freedom robotic manipulator having at least one redundant joint
US20140314538A1 (en) * 2013-04-18 2014-10-23 Transenterix Surgical, Inc. Support arm system for medical equipment
WO2017029690A1 (ja) * 2015-08-17 2017-02-23 川崎重工業株式会社 X線撮影システム
EP3788961A3 (en) * 2016-04-11 2021-05-26 Dedicated2Imaging, LLC Improved ct imaging systems
EP3646789A1 (en) * 2018-10-30 2020-05-06 Koninklijke Philips N.V. X-ray imaging arrangement

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0517601A1 (fr) * 1991-06-07 1992-12-09 Sopha Medical Gamma caméra tomographique munie d'un détecteur orientable
JP2003038473A (ja) * 2001-07-31 2003-02-12 Shimadzu Corp X線撮影装置
US20030091153A1 (en) * 2001-11-15 2003-05-15 Ge Medical Systems Global Technology Scaleable x-ray positioner
CN2907546Y (zh) * 2006-05-18 2007-06-06 西安交通大学 独立立柱式车载用x射线机
CN101428420A (zh) * 2008-12-17 2009-05-13 哈尔滨工业大学 超冗余全方位移动操作臂
CN206120334U (zh) * 2016-07-05 2017-04-26 上海西门子医疗器械有限公司 一种移动式x光数字摄影系统
CN107296692A (zh) * 2016-12-30 2017-10-27 南阳师范学院 一种车载式x射线手术平台
CN209884171U (zh) * 2017-08-21 2020-01-03 上海一影信息科技有限公司 一种x射线成像系统
CN107693035A (zh) * 2017-11-21 2018-02-16 南方医科大学 一种可实现多种轨道扫描的x射线成像装置及方法
CN210077676U (zh) * 2018-06-22 2020-02-18 伊士通(上海)医疗器械有限公司 用于军用车载x射线车厢
CN112386269A (zh) * 2020-11-24 2021-02-23 中国人民解放军北部战区总医院 一种双机械臂式结构的车载血管造影机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117064559A (zh) * 2023-10-13 2023-11-17 上海嘉奥信息科技发展有限公司 双面多自由度手术机器人
CN117064559B (zh) * 2023-10-13 2024-01-09 上海嘉奥信息科技发展有限公司 双面多自由度手术机器人

Also Published As

Publication number Publication date
CN112386269B (zh) 2022-05-17
CN112386269A (zh) 2021-02-23
US20230404497A1 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
WO2022110598A1 (zh) 一种双机械臂式结构的车载血管造影机
CN109397245A (zh) 一种护理机器人
US10307121B2 (en) X-ray device having an adjusting apparatus
CN105686883A (zh) 一种冗余自由度持镜机械臂
EP3342389B1 (en) Robotic operating table and hybrid operating system
CN208784756U (zh) 具有六自由度机械臂的dr机器人
US9352468B2 (en) Manipulator
WO2018090671A1 (zh) 一种胶囊胃镜磁控制系统
CN111166471B (zh) 一种三轴交汇式主被动混合手术持镜臂
JPH0117690B2 (zh)
CN214017585U (zh) 双机械臂式结构的车载血管造影机
JPS62148649A (ja) X線診断装置
CN112386407B (zh) 一种用于心血管介入手术的救护车式移动导管室
US5479470A (en) X-ray examination apparatus
US20170347981A1 (en) Medical imaging device and suspension gantry thereof
JP2018111139A (ja) 多関節ロボットアームの関節駆動機構、多関節ロボットアームおよびロボット手術台
CN112450951A (zh) 一种全方位冗余双臂构型血管造影机
JP6270957B1 (ja) ロボット手術台
US4879737A (en) Articulated X-ray stand arm
CN212089567U (zh) 一种可支持断层融合的移动dr检测装置
CN208942168U (zh) 射线摄影装置
CN208610862U (zh) 多功能射线摄影装置
CN206913161U (zh) 一种万向调整装置及应用其的医疗机器人
CN2342773Y (zh) 适用于x射线机诊视床的x射线管组件翻转装置
JPS6334870Y2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896116

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18038445

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896116

Country of ref document: EP

Kind code of ref document: A1