WO2022110263A1 - 一种气体动压推力轴承、电机及空压机 - Google Patents

一种气体动压推力轴承、电机及空压机 Download PDF

Info

Publication number
WO2022110263A1
WO2022110263A1 PCT/CN2020/133482 CN2020133482W WO2022110263A1 WO 2022110263 A1 WO2022110263 A1 WO 2022110263A1 CN 2020133482 W CN2020133482 W CN 2020133482W WO 2022110263 A1 WO2022110263 A1 WO 2022110263A1
Authority
WO
WIPO (PCT)
Prior art keywords
top foil
foil
plate
outer ring
corrugated
Prior art date
Application number
PCT/CN2020/133482
Other languages
English (en)
French (fr)
Inventor
华青松
仙存妮
邱瑞林
刘亚波
魏建新
Original Assignee
北京稳力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京稳力科技有限公司 filed Critical 北京稳力科技有限公司
Publication of WO2022110263A1 publication Critical patent/WO2022110263A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/08Sliding-contact bearings for exclusively rotary movement for axial load only for supporting the end face of a shaft or other member, e.g. footstep bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings

Definitions

  • the invention relates to the technical field of bearings, in particular to a gas dynamic pressure thrust bearing.
  • Air dynamic pressure foil bearing is a sliding bearing that works under gas dynamic lubrication. Using the wedge effect, the air in the surrounding environment enters the wedge-shaped support air cavity with the increase of the rotor speed. When the rotor speed reaches a certain threshold, the gas pressure in the wedge-shaped support air cavity increases to form a gas film that can support the rotor. , the rotor is suspended.
  • the top foil In order to form a wedge-shaped support air cavity, the top foil is generally formed by pre-bending, but with the increase of the load, the deformation of the flat part of the top foil is larger than that of the wedge-shaped part according to the air pressure distribution on the bearing surface, which makes the top foil The wedge-shaped part of the sheet is seriously worn at the junction of the flat part. Working for a long time in this condition will not only damage the bearing, but even burn out the rotor and the whole equipment.
  • the present invention provides a gas dynamic pressure thrust bearing, a motor and an air compressor.
  • a gas dynamic pressure thrust bearing Through structural optimization, the friction between the wedge-shaped part and the flat part of the top foil and the rotor can be prevented, so as to optimize the use state of the bearing. .
  • the gas dynamic pressure thrust bearing provided by the present invention includes a top foil plate, a corrugated foil plate and a bottom plate arranged in sequence; a plurality of top foils evenly distributed on the circumference of the top foil plate are used to form a supporting air cavity with the rotor.
  • a plurality of corrugated foils evenly distributed in the circumferential direction of the foil plate respectively support the corresponding top foils; wherein: the top foil includes a top foil connecting outer ring, and the top foil connecting the outer ring is connected to a plurality of the top foils.
  • connecting segments extending downward are respectively provided; the radial outer plate edges of the top foil fixing ends are connected with the corresponding connecting segments; the bottom plate body of the bottom plate is connected with the corresponding connecting segments.
  • the corrugated foil plate includes a corrugated foil connecting outer ring, and the corrugated foil fixed ends of the plurality of corrugated foils are connected from the The corresponding positions of the outer ring of the corrugated foil are respectively extended inward; the outer ring of the top foil connection and the outer ring of the corrugated foil are fixedly connected to the main body of the bottom plate, and are configured such that the fixed end of the top foil is inserted
  • the device is installed in the cavity through groove below the corresponding coupling portion, and the bottom surface of the top foil fixing end is flush with the bottom surface of the bottom plate main body.
  • the backing plate is arranged between the top foil plate and the corrugated foil plate or between the bottom plate and the corrugated foil plate; the backing plate includes a backing plate connection
  • the outer ring extends inwardly from the positions corresponding to the plurality of the fixed ends of the corrugated foils where the backing plate is connected to the outer ring, respectively; and is configured such that the spacers are supported on the corresponding between the upper surface of the fixed end of the corrugated foil and the lower surface of the wedge-shaped portion of the top foil, or supported between the upper surface of the corresponding bottom plate body and the lower surface of the fixed end of the corrugated foil.
  • the spacer extends along the length direction of the fixed end of the corrugated foil; the connecting section is formed to extend downward perpendicular to the connecting outer ring of the top foil.
  • the backing plate is connected to the outer ring and the inner wall of the corrugated foil is connected to the outer ring, respectively provided with inner recesses corresponding to a plurality of the connection segments to accommodate the corresponding connection segments.
  • the inner wall of the outer ring connected to the corrugated foil the top foil is connected to the outer ring, the backing plate is connected to the outer ring, the corrugated foil is connected to the outer ring and the bottom plate main body is tightened by screws. Fasteners or rivets to secure the connection.
  • the radial inner plate edge of the top foil body of the top foil, the radial inner plate edge of the corrugated foil body of the corrugated foil, and the radial inner plate edge of the gasket are all the same as the
  • the central through hole of the base plate body is arc-shaped with equal diameters.
  • the fixed end of the top foil sheet, the wedge-shaped portion of the top foil sheet and the flat portion connected to the top foil sheet are configured such that the radial cross-section is Bent shape.
  • the present invention also provides a motor including the aforementioned gas dynamic pressure thrust bearing.
  • the present invention also provides an air compressor, comprising the aforementioned motor.
  • this solution proposes an innovative solution for the fixing method of the top foil of the gas dynamic pressure thrust bearing.
  • the radial outer plate of the fixed end is connected with the corresponding connecting section, thereby moving the axial relative position of the top foil downward;
  • the bottom body is provided with a cavity through groove along the length direction of the fixed end of the top foil, and is self-contained
  • a coupling portion of the through groove is provided with a matching coupling portion on the side groove wall opposite to the fixed end of the top foil, and the coupling portion extends upward and circumferentially toward the corresponding fixed end of the top foil;
  • the fixed end of the top foil does not occupy the axial space between the bearing bottom plate and the rotor, thereby reducing the thickness dimension of the gas dynamic pressure thrust bearing;
  • the bottom surface of the fixed end of the top foil and The bottom surface of the base plate body is flush, which controls the thickness of the entire bearing assembly as a whole, which greatly reduces the possibility of friction with the rot
  • the height of the top foil fixing part is controlled to be low, which can prevent the fixing part from being too high and forming on the upstream side of the wedge-shaped air cavity.
  • the possibility of the wedge effect before the intake can quickly form a stable air film supporting the rotor.
  • the entire bearing assembly can be detachably connected to the base plate body by using the connecting outer ring. The elimination of welding makes the process simpler, which is conducive to mass production and reduces product manufacturing costs; at the same time, the parts can be replaced when damaged, without replacing the entire bearing. components, further reducing product maintenance costs.
  • the present invention also includes a backing plate arranged between the top foil plate and the corrugated foil, extending inward from the backing plate connecting the outer ring to form a spacer adapted to the corresponding corrugated foil, after assembly,
  • the spacer is supported between the upper surface of the corresponding corrugated foil fixed end and the lower surface of the wedge-shaped portion of the top foil; in this way, on the one hand, the spacer supporting the wedge-shaped portion of the top foil can prevent the top foil from being deformed and move down, This area maintains a relatively high posture, and the thickness of the gas film is reduced in the running state, thereby improving the bearing capacity.
  • the shim support can avoid the possibility that the top foil is deformed and wears the junction of the wedge portion and the flat portion, which further ensures the performance and service life of the bearing.
  • FIG. 1 is a schematic diagram of the overall structure of the gas dynamic pressure thrust bearing according to the first embodiment
  • Fig. 2 is an assembly exploded view of the gas dynamic pressure thrust bearing shown in Fig. 1;
  • Fig. 3 is the enlarged view of A part of Fig. 2;
  • Fig. 4 is the enlarged view of B part of Fig. 2;
  • Fig. 5 is the C-direction partial view of Fig. 1;
  • FIG. 6 is a schematic diagram of the overall structure of the gas dynamic pressure thrust bearing according to the second embodiment
  • Fig. 7 is the assembly exploded view of the gas dynamic pressure thrust bearing shown in Fig. 6;
  • FIG. 8 is a partial view taken in the direction D of FIG. 6 .
  • Top foil plate 10 top foil sheet 11, top foil fixed end 111, inserting side plate edge 1111, wedge-shaped part 112, flat part 113, radial outer plate edge 114, radial inner plate edge 115, top foil connecting outer ring 12.
  • corrugated foil plate 20 The corrugated foil plate 20, the corrugated foil sheet 21, the corrugated foil fixed end 211, the radially outer plate edge 212, the radially inner plate edge 213, the corrugated foil connecting outer ring 22, the inner recess 221, and the positioning block 222;
  • the bottom plate 30 the bottom plate main body 31 , the central through hole 311 , the positioning block 312 , the cavity through groove 32 , and the coupling portion 33 ;
  • Backing plate 40 gasket 41, radial inner plate edge 411, backing plate connecting outer ring 42, inner recess 421, positioning block 422;
  • this embodiment uses the gas dynamic pressure thrust bearing shown in the figure as the main body of description to describe the structural innovation scheme of the present invention in detail.
  • the gas dynamic pressure thrust bearing is placed between the bearing seat and the rotor, and includes a top foil plate, a corrugated foil plate and a bottom plate arranged in sequence, wherein the bottom plate is used to be fixed on the bearing seat, and the top foil plate faces the rotor to A support gas film is formed in the operating state.
  • the top foil and the corrugated foil of the gas dynamic pressure thrust bearing are arranged in a one-to-one correspondence along the circumferential direction. It should be understood that the number of them and the size ratio relationship of the specific specific shape do not constitute the gas dynamic pressure thrust bearing claimed in this application. Substantial restrictions.
  • FIG. 1 is a schematic diagram of the overall structure of the gas dynamic pressure thrust bearing according to this embodiment
  • FIG. 2 is an assembly exploded view of the gas dynamic pressure thrust bearing shown in FIG. 1
  • the gas dynamic pressure thrust bearing includes a top foil plate 10 , a corrugated foil plate 20 and a bottom plate 30 which are arranged in sequence.
  • the plurality of top foil sheets 11 evenly distributed in the circumferential direction of the top foil plate 10 are used to form a supporting air cavity with the rotor (not shown in the figure), and the plurality of corrugated foil sheets 21 evenly distributed in the circumferential direction of the corrugated foil plate 20 respectively support the corresponding
  • the top foil 11 and the bottom plate 30 are used to be fixed on the bearing seat (not shown in the figure).
  • the top foil plate 10 includes a top foil connecting outer ring 12 for assembly, and a plurality of top foil sheets 11 are placed inside the top foil connecting outer ring 12 .
  • FIG. 3 is an enlarged view of part A of FIG. 2 . 1-3, from the top foil connecting outer ring 12 at the position corresponding to the top foil fixing ends 111 of the plurality of top foil sheets 11, there are respectively provided connecting sections 121 extending downward, and the top foil is fixed The radially outer plate edges of the ends 111 are connected with the corresponding connecting segments 121 . Based on the above structure, after the top foil plate 10 is processed, the relative positional relationship of each top foil 11 has been determined.
  • the “downward extension” of the connecting section 121 is defined by the azimuth relationship shown in the figure, that is, it extends in the direction of the bottom plate 30 , so that the relative axial position of the top foil 11 is moved downward, and the size of the downward movement is less than or equal to the sum of the thicknesses of the corrugated foil plate 20 and the bottom plate 30, so as to ensure that the height of its fixing position relative to the top foil 11 body can be reduced; it is understandable that the use of this orientation is only used to clearly describe the structural relationship, not constitute a restriction on the substance of this program.
  • the "radial direction” used here and hereinafter is defined with respect to the rotation center of the bearing, the “radial outer side” refers to the side away from the rotation center, and the “radial inner side” hereinafter refers to the side close to the rotation center side.
  • the corrugated foil plate 20 includes a corrugated foil connection outer ring 22 for assembly, and a plurality of corrugated foil sheets 21 are placed on the inner side of the corrugated foil connection outer ring 22. Please refer to FIG. 4 together, which is B in FIG. 2 . Partial enlargement.
  • the corrugated foil fixed ends 211 of each corrugated foil sheet 21 are respectively formed to extend inward from the corresponding positions where the corrugated foil is connected to the outer ring 22 . Based on the above structure, after the corrugated foil plate 20 is processed, the relative positional relationship of each corrugated foil sheet 21 has been determined.
  • the corrugated foil fixed end 211 of the corrugated foil 21 corresponds to the position of the wave portion of the corrugated foil 21 , and has the same shape and size.
  • the bottom plate 30 serves as the basic structure for bearing assembly, and the positions of the bottom plate main body 31 corresponding to the plurality of top foil fixed ends 111 are respectively provided with cavity through grooves 32 along the length direction of the top foil fixed ends 111 for the purpose of The body that accommodates the top foil fixing end 111; the groove wall from the cavity through slot 32 opposite to the top foil fixing end 111 is provided with a matching coupling portion 33, which is upward from the bottom plate main body 31 and faces the corresponding top
  • the foil fixing end 111 is formed to extend circumferentially. In the axial projection plane, the coupling portion 33 overlaps with the top foil fixing end 111 placed in the cavity through groove 32 to limit its axial displacement.
  • the coupling portion 33 can adopt different structural forms, such as but not limited to the one-piece plate-like structure shown in the figure, and can also be provided as a plurality of plate-like structures spaced along the groove wall of the cavity through-groove 32; in addition, , the cross-sectional shape of the coupling portion 33 can also be different shapes, as long as its lower surface can constitute a limit for the axial displacement of the top foil fixed end 111 placed in the cavity through-groove 32, all of which are required in this application. within the scope of protection.
  • the top foil connection outer ring 12 and the corrugated foil connection outer ring 22 are fixedly connected to the bottom plate main body 31 , and are configured such that the top foil fixed end 111 is inserted into the cavity through groove 32 below the corresponding coupling portion 33 . , the bottom surface of the top foil fixing end 111 is flush with the bottom surface of the bottom plate main body 31 .
  • FIG. 5 is a partial view taken along the direction C of FIG. 1 .
  • the top foil fixed ends 111 are inserted into the cavity through grooves 32 below the corresponding coupling portions 33 , and each top foil fixed end 111 does not occupy the axial direction from the bearing base plate 30 to the rotor 50 . space, reducing the overall thickness of the bearing.
  • the bottom surface of the top foil fixed end 111 is flush with the bottom surface of the bottom plate main body 31.
  • the groove depth of the cavity through groove 32 is not less than the thickness of the top foil fixed end 111 to ensure the overall thickness of the bearing assembly is controlled. In this way, the possibility of friction between the wedge-shaped portion 112 of the top foil and the flat portion 113 of the top foil and the friction with the rotor is effectively reduced, so as to ensure a good running state of the thrust bearing.
  • the radial length of the coupling portion 33 is smaller than the length of the cavity through-groove 32
  • the width is smaller than the width of the cavity through-groove 32 , which can take into account the limiting function and the convenience of assembly.
  • the top foil fixing end 111 is inserted into the cavity through groove 32 below the corresponding coupling portion 33, and the height of the top foil fixing part is controlled to be low, which can prevent the fixing part from being too high and in the wedge-shaped gas.
  • the upstream side of the intake air of the cavity a forms a wedge effect before the intake air, and then the air film supporting the rotor 50 is rapidly formed in the plane air cavity b.
  • the fixed end 111 of the top foil, the wedge-shaped portion 112 of the top foil 11 and the flat portion 113 connected to the top foil 11 may be configured such that the radial cross-section is Bend shape, as shown in Figure 5. It should be pointed out that the top foil 11 is approximately bent in a "Z" shape to accommodate the assembly relationship structure such as the cavity through-groove 32 and the coupling portion 33, and is not limited to the letter "Z". Should The bending position and shape can be pre-formed or formed by pressing the coupling portion 33 and the bottom plate 30 during the assembly process.
  • the fixed end 111 of the top foil, the wedge-shaped portion 112 of the top foil 11 and the flat portion 113 connected to the top foil 11 can be configured in other structural forms, such as a continuous transition arc in radial cross section, and the curvature gradient is not particularly limited.
  • the coupling portion 33 is preset to form an angle of less than 90 degrees with the bottom plate main body 31 , and the coupling portion can pass through the corresponding through holes of the corrugated foil plate 20 and the top foil plate 10 to detachably fix the top foil plate and the corrugated foil plate .
  • the coupling portion 33 is pressed, so as to play the role of fixing the three sheets, and the coupling portion can be fixed without protruding too much.
  • the top foil 10 and the corrugated foil 20 of this solution are detachably connected to the bottom plate body 31 by using the connecting outer ring, and the elimination of welding makes the process simpler , which is conducive to mass production and reduces product manufacturing costs; at the same time, components can be replaced when damaged, without the need to replace the entire bearing assembly, further reducing product maintenance costs.
  • the connecting section 121 extends downward perpendicular to the top foil connecting outer ring 12 , and is perpendicular to the body plate surface of the top foil connecting outer ring 12 , which can reasonably limit the radial dimension.
  • a plurality of inner concave portions 221 are provided on the inner wall of the corrugated foil connecting outer ring 22, and each inner concave portion 221 is respectively provided correspondingly with the connecting section 121 extending downward on the top foil plate 10 to accommodate the corresponding connecting section 121; After assembly, the overall radial integration is better.
  • the gap T1 there is a predetermined gap T1 between the insertion side plate edge 1111 of the top foil fixed end 111 and the groove wall of the cavity through groove 32 on the opposite side.
  • the gap T1 provides a redundant space for displacement of the top foil fixing end 111 , that is, the top foil fixing end 111 can retreat to abut against the side groove wall.
  • the free ends of the top foil 11 and the corrugated foil 21 can approach the coupling portion 33 , which can reasonably control the axial warping and bending of the free ends of the top foil 11 during operation to avoid wear.
  • the size of the predetermined gap T1 can be specifically selected according to the actual application of a specific product.
  • the surface of the top foil 10 facing the rotor can be coated with wear-resistant coating, which can improve its wear resistance.
  • the radial inner plate edge 115 of the top foil body of the top foil 11 and the radial inner plate edge 213 of the corrugated foil body of the corrugated foil 21 are arcs with the same diameter as the central through hole 311 of the bottom plate body 31 shape. There are through holes of the same inner diameter that fit the central axis, and the four have the same outer diameter.
  • the positioning block 122 is arranged on the outer circumference of the top foil connecting outer ring 12
  • the positioning block 222 is arranged on the outer circumference of the corrugated foil connecting outer ring 22
  • the outer circumference of the bottom plate main body 31 is arranged Locating block 312 .
  • each positioning block is provided with a mounting hole, which can be fixedly connected by a threaded fastener or a riveting piece, and the assembly and fixation of the bearing assembly and the bearing seat can be realized.
  • the positioning block used to realize the fixed connection function can be in the form shown in the figure protruding from the corresponding connection outer ring; it can also be integrated on the corresponding connection outer ring, and the installation holes are formed outside the corresponding connection On the ring, the aforementioned fixed connection function can also be satisfied.
  • At least three positioning blocks are provided, rather than being limited to the four shown in the figure, so as to form a stable and reliable connection relationship.
  • the circumferential spacing between the three can be designed non-equidistantly, which can ensure the circumferential relative positional relationship between the components and prevent errors during assembly.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 6 is a schematic diagram of the overall structure of the gas dynamic pressure thrust bearing according to this embodiment
  • FIG. 7 is an assembly exploded view of the gas dynamic pressure thrust bearing shown in FIG. 6 .
  • the same constitution and structure in the figures are indicated by the same symbols.
  • the gas dynamic pressure thrust bearing includes a top foil plate 10 , a backing plate 40 , a corrugated foil plate 20 and a bottom plate 30 arranged in sequence.
  • the backing plate 40 is arranged between the top foil plate 10 and the corrugated foil plate 20 .
  • the backing plate 40 includes a backing plate connecting outer ring 42 for assembly, and a plurality of spacers 41 are formed by extending inwardly from positions corresponding to the plurality of corrugated foil fixing ends 211 of the backing plate connecting outer ring 42; 8, which is a partial view of the D direction of FIG. 6.
  • the gasket connection outer ring 42 is fixed between the top foil connection outer ring 11 and the corrugated foil connection outer ring 21, and is configured such that the gasket 41 is supported on the upper surface of the corresponding corrugated foil fixed end 211 and the top foil 11 between the lower surfaces of the wedge-shaped portion 112.
  • the gasket 41 supporting the wedge-shaped portion 112 of the top foil constitutes a reliable welding-free positioning of the fixed end of the corrugated foil, which can prevent the deformation of the top foil from moving downward, so that this area maintains a relatively high posture, and the air film is in the running state.
  • the thickness is reduced, which increases the load-carrying capacity.
  • the support by the spacer 4 can avoid the possibility that the top foil 11 is deformed and the interface between the wedge-shaped portion 112 and the flat portion 113 is worn.
  • the gasket 41 extends along the length direction of the fixed end 211 of the corrugated foil, so as to establish a good supporting relationship along the length.
  • a plurality of inner concave portions 421 are provided on the inner wall of the connecting outer ring 42 of the backing plate, and each inner concave portion 421 is respectively provided correspondingly with the connecting section 121 extending downward on the top foil plate 10 to accommodate the corresponding connecting section 121, thereby obtaining Overall better radial integration.
  • the coupling portion 33 can also be preset to form an angle of less than 90 degrees with the bottom plate main body 31 , and the coupling portion can pass through the corresponding through holes of the corrugated foil plate 20 and the top foil plate 10 to connect the top foil plate and the backing plate. And the corrugated foil board can be removed and fixed. When in use, after stacking the four sheets in sequence, press the coupling part 33 to complete the fixing of the four sheets.
  • a positioning block 422 is arranged on the outer circumference of the backing plate connecting the outer ring 42.
  • the positioning block 422 is also provided with installation holes, and the threaded fasteners or riveting parts are used to pierce the components on each component.
  • the positioning block can realize the fixed connection of each assembly of the bearing assembly.
  • the radially inner plate edge 411 of the gasket 41 is in an arc shape with the same diameter as the central through hole of the base plate 211 body, and is processed and assembled.
  • each component in this solution can be integrally formed with a sheet material using a stamping process, and the specific stamping process is not the core invention of the present application, which can be realized by those of ordinary skill in the art based on the existing technology, so this paper will not Repeat.
  • the present embodiment also provides a motor using the aforementioned gas dynamic pressure thrust bearing. It should be understood that other functions of the motor constitute not the core inventive point of the present application, and thus will not be repeated herein.
  • the present invention also provides an air compressor using the aforementioned motor.
  • other functions of the air compressor are not the core inventions of the present application, so they will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)

Abstract

一种气体动压推力轴承、电机及空压机,该轴承包括依次设置的顶箔板、波箔板和底板;自其顶箔连接外圈的与多个顶箔固定端相应的位置处,分别设置有向下延伸形成的连接段,顶箔固定端的径向外侧板沿与相应的连接段连接;在其底板主体的与多个顶箔固定端相应的位置处,分别开设有沿所述顶箔固定端的长度方向设置容腔通槽;自所述容腔通槽的与所述顶箔固定端相对侧槽壁,向上并朝向相应的所述顶箔固定端周向延伸形成耦接部;并配置为:顶箔固定端插装置于相应的所述耦接部下方的所述容腔通槽内,所述顶箔固定端的底面与所述底板主体的底面齐平。通过结构优化,可防止顶箔片的楔形部分和平面部分相接处与转子的摩擦,从而优化轴承使用状态。

Description

一种气体动压推力轴承、电机及空压机
本申请要求于2020年11月24日提交中国专利局的申请号为202011329234.2、发明名称为“一种气体动压推力轴承、电机及空压机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及轴承技术领域,具体涉及一种气体动压推力轴承。
背景技术
空气动压箔片轴承,是一种在气体动力润滑状态下工作的滑动轴承。其利用楔形效应,周围环境中的空气随着转子转速的升高进入楔形支承气腔中,转子的转速达到一定阈值时,楔形支承气腔中的气体气压变大形成可支承起转子的气膜,转子悬浮起来。
为了形成楔形支承气腔,一般将顶箔片预折弯形成,但是随着载荷的增大,根据轴承表面的气压分布顶箔片平面部分的变形量大于楔形部分的变形量,这样使得顶箔片的楔形部分与平面部分相接处磨损严重,长时间工作在此状况下不仅损害轴承甚至会烧坏转子和整机设备。
此外,受限于空气刚度较低的特点,空气动压轴承的承载力远低于油膜轴承和滚珠轴承,限制了止推空气动压轴承的应用。
有鉴于此,亟待针对现有气体动压推力轴承进行优化设计,以避免顶箔片的楔形部分与平面部分相接处出现严重磨损。
发明内容
为解决上述技术问题,本发明提供一种气体动压推力轴承、电机及空压机,通过结构优化可防止顶箔片的楔形部分和平面部分相接处与转子的摩擦,从而优化轴承使用状态。
本发明提供的气体动压推力轴承,包括依次设置的顶箔板、波箔板和底板;所述顶箔板上周向均布的多个顶箔片用于与转子形成支承气腔,所 述波箔板上周向均布的多个波箔片分别支撑相应的所述顶箔片;其中:所述顶箔板包括顶箔连接外圈,且自所述顶箔连接外圈的与多个所述顶箔片的顶箔固定端相应的位置处,分别设置有向下延伸形成的连接段;所述顶箔固定端的径向外侧板沿与相应的所述连接段连接;所述底板的底板主体的与多个所述顶箔固定端相应的位置处,分别开设有沿所述顶箔固定端的长度方向设置容腔通槽;自所述容腔通槽的与所述顶箔固定端相对侧槽壁,向上并朝向相应的所述顶箔固定端周向延伸形成耦接部;所述波箔板包括波箔连接外圈,多个所述波箔片的波箔固定端且自所述波箔连接外圈的相应位置处,分别向内延伸形成;所述顶箔连接外圈和所述波箔连接外圈与所述底板主体固定连接,并配置为:所述顶箔固定端插装置于相应的所述耦接部下方的所述容腔通槽内,所述顶箔固定端的底面与所述底板主体的底面齐平。
优选地,还包括垫板,所述垫板设置在所述顶箔板和所述波箔板之间或者设置在所述底板和所述波箔板之间;所述垫板包括垫板连接外圈,自所述垫板连接外圈的与多个所述波箔固定端相应的位置处,分别向内延伸形成多个垫片;并配置为:所述垫片支撑在相应的所述波箔固定端的上表面与所述顶箔片的楔形部分的下表面之间,或者,支撑在相应的所述底板本体的上表面与所述波箔固定端的下表面之间。
优选地,所述垫片沿所述波箔固定端的长度方向延伸;所述连接段垂直于所述顶箔连接外圈向下延伸形成。
优选地,所述垫板连接外圈和所述波箔连接外圈的内壁,分别设置有与多个所述连接段相应设置的内凹部,以容纳相应的所述连接段。
优选地,所述顶箔固定端的插装侧板沿与相对侧的所述容腔通槽的槽壁之间具有预定的间隙。
优选地,所述顶箔片的顶箔本体的径向外侧板沿,与所述顶箔连接外圈的内壁之间具有径向间隙;所述波箔片的波箔本体的径向外侧板沿,与所述波箔连接外圈的内壁之间具有径向间隙;所述顶箔连接外圈、垫板连接外圈、所述波箔连接外圈和所述底板主体之间通过螺纹紧固件或者铆接件固定连接。
优选地,所述顶箔片的顶箔本体的径向内侧板沿、所述波箔片的波箔本体的径向内侧板沿以及所述垫片的径向内侧板沿,均为与所述底板本体的中心通孔等径的圆弧状。
优选地,所述顶箔片固定端和所述顶箔片的楔形部分及与部分其相连的平面部分配置为:径向截面呈
Figure PCTCN2020133482-appb-000001
型折弯状。
本发明还提供一种电机,包括如前所述的气体动压推力轴承。
本发明还提供一种空气压缩机,包括如前所述的电机。
与现有技术相比,本方案另辟蹊径针对气体动压推力轴承的顶箔固定方式提出了一种创新方案,具体地,在顶箔连接外圈向下延伸形成一连接段,每个顶箔片固定端的径向外侧板沿与相应的连接段连接,由此将顶箔片的轴向相对位置下移;底板主体上开设有沿顶箔固定端的长度方向设置容腔通槽,并自容腔通槽的与顶箔固定端相对侧槽壁设置相适配的耦接部,该耦接部向上并朝向相应的顶箔固定端周向延伸形成;组装完成后,各顶箔固定端插装置于相应的耦接部下方的容腔通槽内,顶箔固定端不占用轴承底板至转子的轴向空间,由此,可降低气体动压推力轴承的厚度尺寸;且顶箔固定端的底面与底板主体的底面齐平,整体上控制整个轴承组件厚度,大大降低了顶箔片楔形部分和平面部分相接处与转子摩擦的可能性,从而确保推力轴承的良好运行状态。另外,由于顶箔固定端插装置于相应的耦接部下方的容腔通槽内,将顶箔固定部位的高度控制得较低,可避免固定部位过高而在楔形气腔的上游侧形成进气前楔形效应的可能,能够快速形成支承转子的稳定气膜。此外,该轴承组件整体可以利用连接外圈与底板本体可拆卸连接,取消焊接使得工序较为简单,利于大批量生产,降低了产品制造成本;与此同时,部件损坏时可以更换,无需更换整个轴承组件,进一步降低了产品维护成本。
在本发明的优选方案中,还包括设置在顶箔板和波箔板之间的垫板,自其垫板连接外圈向内延伸形成与相应波箔片适配的垫片,组装后,垫片支撑在相应的波箔固定端的上表面与顶箔片的楔形部分的下表面之间;如此设置,一方面该支撑顶箔片楔形部分的垫片,能够避免顶箔形变出现下移,使得该区域保持相对较高的姿态,运行状态下气膜厚度得以减小,从 而提高承载力。另外,在启停阶段,通过垫片支撑可避免顶箔片形变而磨损楔形部分与平面部分交界处的可能性,进一步确保轴承的性能和使用寿命。
在本发明的另一优选方案中,顶箔固定端的插装侧板沿与相对侧的容腔通槽的槽壁之间具有预定的间隙,这样,空气压力使得顶箔片变形时,间隙提供了顶箔固定端位移冗余空间,顶箔片和波箔片的自由端可趋近于该耦接部,由此,该耦接部进一步能够合理控制顶箔片自由端在运行过程中的轴向翘起和弯曲量,最大限度地降低磨损的可能性。
附图说明
图1为实施例一所述气体动压推力轴承的整体结构示意图;
图2为图1中所示气体动压推力轴承的装配爆炸图;
图3为图2的A部放大图;
图4为图2的B部放大图;
图5为图1的C向局部视图;
图6为实施例二所述气体动压推力轴承的整体结构示意图;
图7为图6中所示气体动压推力轴承的装配爆炸图;
图8为图6的D向局部视图。
图中:
顶箔板10、顶箔片11、顶箔固定端111、插装侧板沿1111、楔形部分112、平面部分113、径向外侧板沿114、径向内侧板沿115、顶箔连接外圈12、连接段121、定位块122;
波箔板20、波箔片21、波箔固定端211、径向外侧板沿212、径向内侧板沿213、波箔连接外圈22、内凹部221、定位块222;
底板30、底板主体31、中心通孔311、定位块312、容腔通槽32、耦接部33;
垫板40、垫片41、径向内侧板沿411、垫板连接外圈42、内凹部421、定位块422;
转子50。
具体实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明作进一步的详细说明。
不失一般性,本实施方式以图中所示气体动压推力轴承作为描述主体,详细说明本发明的结构创新方案。使用状态下,该气体动压推力轴承置于轴承座与转子之间,包括依次设置的顶箔板、波箔板和底板,其中,底板用于固定在轴承座上,顶箔板朝向转子以在运行状态下形成支撑气膜。该气体动压推力轴承的顶箔片和波箔片沿周向一一对应设置,应当理解,其设置数量及具体的具体形状的尺寸比例关系,对本申请请求保护的气体动压推力轴承未构成实质性的限制。
实施例一:
请参见图1和图2,其中,图1为本实施例所述气体动压推力轴承的整体结构示意图,图2为图1中所示气体动压推力轴承的装配爆炸图。该气体动压推力轴承包括依次设置的顶箔板10、波箔板20和底板30。具体地,顶箔板10上周向均布的多个顶箔片11用于与转子(图中未示出)形成支承气腔,波箔板20上周向均布的多个波箔片21分别支撑相应的顶箔片11,底板30用于固定在轴承座(图中未示出)上。
其中,顶箔板10包括用于组装的顶箔连接外圈12,多个顶箔片11置于顶箔连接外圈12的内侧。请一并参见图3,该图为图2的A部放大图。结合图1-3所示,自该顶箔连接外圈12的与多个顶箔片11的顶箔固定端111相应的位置处,分别设置有向下延伸形成的连接段121,顶箔固定端111的径向外侧板沿与相应的连接段121连接。基于上述结构,顶箔板10加工完成后,各顶箔处11的相对位置关系已确定。
这里,连接段121的“向下延伸”是以图示方位关系定义的,也即朝向底板30的方向延伸,由此,将顶箔片11的轴向相对位置下移,该下移的尺寸小于等于波箔板20和底板30厚度之和,从而确保其固定部位相对于顶箔片11本体的高度得以降低;可以理解的是,该方位词的使用仅用于清楚描述结构关系,而非构成对本方案实质内容的限制。
另外,这里以及下文所使用的“径向”,是相对于轴承转动中心为基准定义的,“径向外侧”是指远离转动中心的一侧,下文中的“径向内侧”是接近转动中心的一侧。
其中,波箔板20包括用于组装的波箔连接外圈22,多个波箔片21置于该波箔连接外圈22的内侧,请一并参见图4,该图为图2的B部放大图。各波箔片21的波箔固定端211自该波箔连接外圈22的相应位置处,分别向内延伸形成。基于上述结构,波箔板20加工完成后,各波箔片21的相对位置关系已确定。波箔片21的波箔固定端211与波箔片21的波浪部分位置对应,且形状相同、大小相同。
其中,底板30作为轴承组装的基础构成,其底板主体31的与多个顶箔固定端111相应的位置处,分别开设有沿顶箔固定端111的长度方向设置容腔通槽32,用于容纳顶箔固定端111的本体;自该容腔通槽32的与顶箔固定端111相对侧的槽壁设置有相适配的耦接部33,该自底板主体31向上并朝向相应的顶箔固定端111周向延伸形成,在轴向投影面内,耦接部33与置于容腔通槽32内的顶箔固定端111叠合,以限制其轴向位移。
这里,耦接部33可以采用不同的结构形式,例如但不限于图中所示的一体板状结构,也可以设置为沿容腔通槽32的槽壁间隔布置的多个板状结构;此外,该耦接部33的截面形状也可以为不同的形状,只要其下表面能够构成对置于容腔通槽32内的顶箔固定端111的轴向位移的限位,均在本申请请求保护的范围内。
本方案中,顶箔连接外圈12和波箔连接外圈22与底板主体31固定连接,并配置为:顶箔固定端111插装置于相应的耦接部33下方的容腔通槽32内,顶箔固定端111的底面与底板主体31的底面齐平。请一并参见图5,该图为图1的C向局部视图。
结合图5所示,组装完成后,顶箔固定端111插装置于相应的耦接部33下方的容腔通槽32内,各顶箔固定端111不占用轴承底板30至转子50的轴向空间,降低了轴承整体的厚度尺寸。并且,顶箔固定端111的底面与底板主体31的底面齐平,优选地,容腔通槽32的槽深不小于顶箔固定端111的板厚,以确保整体上控制整个轴承组件厚度。这样,有效降低了顶箔片楔形部分112和平面部分113相接处与转子摩擦的可能性,确保推 力轴承的良好运行状态。
需要说明的是,耦接部33的径向长度小于容腔通槽32的长度,宽度小于容腔通槽32的宽度,可兼顾其限位功能及组装便利性。
另外,本方案将顶箔固定端111插装置于相应的耦接部33下方的容腔通槽32内,将顶箔固定部位的高度控制得较低,可避免固定部位过高而在楔形气腔a的进气上游侧形成进气前楔形效应,进而在平面气腔b快速形成支承转子50的气膜。
例如但不限于,顶箔片固定端111和顶箔片11的楔形部分112及与部分其相连的平面部分113可配置为:径向截面呈
Figure PCTCN2020133482-appb-000002
型折弯状,如图5所示。需要指出的是,顶箔片11的呈近似折弯的“Z”字形,以适应容腔通槽32和耦接部33等装配关系结构,非局限于字母“Z”。该
Figure PCTCN2020133482-appb-000003
型折弯位置与可以预先成型,也可以在组装过程中通过耦接部33和底板30按压形成。当然,顶箔片固定端111和顶箔片11的楔形部分112及与部分其相连的平面部分113可配置为其他结构形式,例如径向截面呈连续过渡弧状,曲率渐变不作特别限制。
此外,耦接部33预设为与底板主体31呈小于90度的角度,该耦合部可以穿过波箔板20和顶箔板10的相应通孔将顶箔板和波箔板可拆卸固定。使用时将三个片按照顺序叠片后,将耦接部33按压,从而起到固定三个片的作用,且耦合部分不用突出太多就可以固定。与独立加工成形顶箔片11和波箔片21的现有结构相比,本方案的顶箔板10和波箔板20利用连接外圈与底板本体31可拆卸连接,取消焊接使得工序较为简单,利于大批量生产,降低了产品制造成本;与此同时,部件损坏时可以更换,无需更换整个轴承组件,进一步降低了产品维护成本。
作为优选,该连接段121垂直于顶箔连接外圈12向下延伸形成,与顶箔连接外圈12的本体板面垂直,能够合理限制径向尺寸。相应地,在波箔连接外圈22的内壁设置有多个内凹部221,每个内凹部221与顶箔板10上向下延伸的连接段121分别相应设置,以容纳相应的连接段121;组装后,整体上径向集成度较佳。
为了最大限度地降低磨损的可能性,作为优选,在顶箔固定端111的插装侧板沿1111与相对侧的容腔通槽32的槽壁之间具有预定的间隙T1。 如图5所示,空气压力使得顶箔片11变形时,间隙T1提供了顶箔固定端111位移冗余空间,也即,该顶箔固定端111可退让至与该侧槽壁相抵。这样,顶箔片11和波箔片21的自由端可趋近于该耦接部33,能够合理控制顶箔片11自由端在运行过程中的轴向翘起和弯曲量,避免产生磨损。
当然,该预定的间隙T1的大小,具体可根据具体产品的实际应用进行选定。
另外,顶箔板10朝向转子的表面可以做了耐磨涂层,可提高其耐磨性。
进一步地,顶箔片11的顶箔本体的径向外侧板沿114,与顶箔连接外圈12的内壁之间具有径向间隙T2;同样地,波箔片21的波箔本体的径向外侧板沿212,与波箔连接外圈22的内壁之间具有径向间隙T3。如此设置,可避免运行过程中产生形变与相应的连接外圈产生不必要的干涉,确保轴承性能。
另外,顶箔片11的顶箔本体的径向内侧板沿115、波箔片21的波箔本体的径向内侧板沿213,均为与底板本体31的中心通孔311等径的圆弧状。具有适配中心轴的相同内径通孔,且四者外径相同。
本方案提供了操作性较佳的装配结构,在顶箔连接外圈12的外周配置定位块122,在波箔连接外圈22的外周配置定位块222,同样地,在底板主体31的外周配置定位块312。在此基础上,各定位块开设安装孔,通过螺纹紧固件或者铆接件即可固定连,并实现轴承组件与轴承座的组装固定。
需要说明的是,用于实现固定连接功能的定位块,可以为图中所示的突出于相应连接外圈的形式;也可以集成在相应的连接外圈上,安装孔形成在相应的连接外圈上,同样可以满足前述固定连接功能。
这里,各定位块至少设置为三个,而非局限于图中所示的四个,以形成稳定可靠的连接关系。对于三个定位块,三者间的周向间距可以非等距设计,可确保组件间的周向相对位置关系,防止装配时出现错误。
实施例二:
本方案与实施例一的基本设计构思相同,区别在于:本方案增设有垫板。请一并参见图6和图7,其中,图6为本实施例所述气体动压推力轴承的整体结构示意图,图7为图6中所示气体动压推力轴承的装配爆炸图。 为了清楚示出本方案与实施例一的具体区别和联系,图中相同构成和结构以相同标记进行示明。
如图所示,该气体动压推力轴承包括依次设置的顶箔板10、垫板40、波箔板20和底板30依次设置。其中,垫板40设置在顶箔板10和波箔板20之间。
该垫板40包括用于组装的垫板连接外圈42,自垫板连接外圈42的与多个波箔固定端211相应的位置处,分别向内延伸形成多个垫片41;如图8所示,该图为图6的D向局部视图。
组装后,垫板连接外圈42固定在顶箔连接外圈11和波箔连接外圈21之间,并配置为:垫片41支撑在相应的波箔固定端211的上表面与顶箔片11的楔形部分112的下表面之间。一方面,支撑顶箔片楔形部分112的垫片41,构成对波箔固定端的可靠无焊接定位,能够避免顶箔形变出现下移,使得该区域保持相对较高的姿态,运行状态下气膜厚度得以减小,从而提高承载力。另外,在启停阶段,通过垫片4支撑可避免顶箔片11形变而磨损楔形部分112与平面部分113交界处的可能性。
作为优选,垫片41沿波箔固定端211的长度方向延伸,以沿该长度方式构建良好的支撑关系。
进一步地,在垫板连接外圈42内壁设置多个内凹部421,每个内凹部421与顶箔板10上向下延伸的连接段121分别相应设置,以容纳相应的连接段121,从而获得整体上较佳的径向集成度。本方案中,耦接部33也可预设为与底板主体31呈小于90度的角度,该耦合部可以穿过波箔板20和顶箔板10的相应通孔将顶箔板、垫板和波箔板可拆卸固定。使用时将四个片按照顺序叠片后,将耦接部33按压,完成四个片的固定。
同样地,为了获得较好的装配操作便利性,在垫板连接外圈42的外周配置定位块422,定位块422同样开设有安装孔,通过螺纹紧固件或者铆接件穿装各构成上的定位块,即可实现轴承组件的各组装固定连接。并且,在垫片41的径向内侧板沿411,为与底板211本体的中心通孔等径的圆弧状,利用加工和装配。
需要说明的是,本方案中各构成可分别以片材利用冲压工艺一体成形, 其具体冲压工艺非本申请的核心发明点所在,本领域普通技术人员能够基于现有技术实现,故本文不再赘述。
除前述气体动压推力轴承外,本实施方式还提供一种采用前述气体动压推力轴承的电机。应当理解,该电机的其他功能构成非本申请的核心发明点所在,故本文不再赘述。
除前述气体动压推力轴承和电机外,本发明还提供一种采用前述电机空气压缩机。同样地,该空气压缩机的其他功能构成非本申请的核心发明点所在,故本文不再赘述。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种气体动压推力轴承,其特征在于,包括依次设置的顶箔板、波箔板和底板;所述顶箔板上周向均布的多个顶箔片用于与转子形成支承气腔,所述波箔板上周向均布的多个波箔片分别支撑相应的所述顶箔片;其中:
    所述顶箔板包括顶箔连接外圈,且自所述顶箔连接外圈的与多个所述顶箔片的顶箔固定端相应的位置处,分别设置有向下延伸形成的连接段;所述顶箔固定端的径向外侧板沿与相应的所述连接段连接;
    所述底板的底板主体的与多个所述顶箔固定端相应的位置处,分别开设有沿所述顶箔固定端的长度方向设置容腔通槽;自所述容腔通槽的与所述顶箔固定端相对侧槽壁,向上并朝向相应的所述顶箔固定端周向延伸形成耦接部;
    所述波箔板包括波箔连接外圈,多个所述波箔片的波箔固定端且自所述波箔连接外圈的相应位置处,分别向内延伸形成;
    所述顶箔连接外圈和所述波箔连接外圈与所述底板主体固定连接,并配置为:所述顶箔固定端插装置于相应的所述耦接部下方的所述容腔通槽内,所述顶箔固定端的底面与所述底板主体的底面齐平。
  2. 根据权利要求1所述的气体动压推力轴承,其特征在于,还包括垫板,所述垫板设置在所述顶箔板和所述波箔板之间,或者设置在所述底板和所述波箔板之间;所述垫板包括垫板连接外圈,自所述垫板连接外圈的与多个所述波箔固定端相应的位置处,分别向内延伸形成多个垫片;并配置为:所述垫片支撑在相应的所述波箔固定端的上表面与所述顶箔片楔形部分与平面部分连接处的下表面之间。
  3. 根据权利要求2所述的气体动压推力轴承,其特征在于,所述垫片沿所述波箔固定端的长度方向延伸;所述连接段垂直于所述顶箔连接外圈向下延伸形成。
  4. 根据权利要求3所述的气体动压推力轴承,其特征在于,所述垫板连接外圈和所述波箔连接外圈的内壁,分别设置有与多个所述连接段相应设置的内凹部,以容纳相应的所述连接段。
  5. 根据权利要求2至4中任一项所述的气体动压推力轴承,其特征在 于,所述顶箔固定端的插装侧板沿与相对侧的所述容腔通槽的槽壁之间具有预定的间隙。
  6. 根据权利要求5所述的气体动压推力轴承,其特征在于,所述顶箔片的顶箔本体的径向外侧板沿,与所述顶箔连接外圈的内壁之间具有径向间隙;所述波箔片的波箔本体的径向外侧板沿,与所述波箔连接外圈的内壁之间具有径向间隙;所述顶箔连接外圈、垫板连接外圈、所述波箔连接外圈和所述底板主体之间通过螺纹紧固件或者铆接件固定连接。
  7. 根据权利要求6所述的气体动压推力轴承,其特征在于,所述顶箔片的顶箔本体的径向内侧板沿、所述波箔片的波箔本体的径向内侧板沿以及所述垫片的径向内侧板沿,均为与所述底板本体的中心通孔等径的圆弧状。
  8. 根据权利要求2所述的气体动压推力轴承,其特征在于,所述顶箔片固定端和所述顶箔片的楔形部分及与部分其相连的平面部分配置为:径向截面呈
    Figure PCTCN2020133482-appb-100001
    型折弯状。
  9. 一种电机,其特征在于,包括气体动压推力轴承,所述气体动压推力轴承为权利要求1-8中任意一项所述的气体动压推力轴承。
  10. 一种空气压缩机,其特征在于,包括电机,所述电机为权利要求9中所述的电机。
PCT/CN2020/133482 2020-11-24 2020-12-03 一种气体动压推力轴承、电机及空压机 WO2022110263A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011329234.2 2020-11-24
CN202011329234.2A CN112431847B (zh) 2020-11-24 2020-11-24 一种气体动压推力轴承、电机及空压机

Publications (1)

Publication Number Publication Date
WO2022110263A1 true WO2022110263A1 (zh) 2022-06-02

Family

ID=74693936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133482 WO2022110263A1 (zh) 2020-11-24 2020-12-03 一种气体动压推力轴承、电机及空压机

Country Status (2)

Country Link
CN (1) CN112431847B (zh)
WO (1) WO2022110263A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115263912A (zh) * 2022-07-30 2022-11-01 广东美的暖通设备有限公司 轴向轴承、压缩机和暖通设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102289217B1 (ko) * 2021-03-31 2021-08-13 주식회사 뉴로스 에어 포일 스러스트 베어링
CN113704913A (zh) * 2021-08-26 2021-11-26 北京动力机械研究所 一种推力动压气体轴承承载力的预测方法
CN114857077B (zh) * 2022-04-22 2023-01-10 烟台东德实业有限公司 一种稳定型高速离心空压机
CN114941650B (zh) * 2022-05-13 2023-04-28 烟台东德实业有限公司 一种无底板的空气轴承

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4296976A (en) * 1980-04-03 1981-10-27 Mechanical Technology Incorporated Cross-plies support element for compliant bearings
EP0186263A2 (en) * 1984-10-01 1986-07-02 The Garrett Corporation Thrust bearings
KR20010063914A (ko) * 1999-12-24 2001-07-09 구자홍 포일 스러스트 베어링 구조
CN103291745A (zh) * 2013-05-29 2013-09-11 南京航空航天大学 一种分离式波箔动压气体推力轴承
CN106415033A (zh) * 2015-03-20 2017-02-15 填易涡轮机械商贸有限公司 推力箔片空气轴承
CN210739124U (zh) * 2019-11-13 2020-06-12 石家庄金士顿轴承科技有限公司 一种具有连体式顶层箔片结构的止推箔片动压空气轴承
CN111561438A (zh) * 2020-04-28 2020-08-21 北京稳力科技有限公司 一种空气压缩机、电机及气体动压推力轴承
CN111637151A (zh) * 2020-06-05 2020-09-08 上海优社动力科技有限公司 推力空气箔片轴承

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3861018B2 (ja) * 2002-03-14 2006-12-20 三菱重工業株式会社 フォイル軸受
US7497627B2 (en) * 2004-06-07 2009-03-03 Honeywell International Inc. Thrust bearing
KR100590139B1 (ko) * 2005-04-14 2006-06-19 한국과학기술연구원 포일 스러스트 베어링
WO2015157052A1 (en) * 2014-04-11 2015-10-15 Borgwarner Inc. Foil thrust bearing for oil free turbocharger
EP3171047A1 (en) * 2015-11-17 2017-05-24 Brandenburgische Technische Universität Cottbus-Senftenberg Gas lubricated foil bearing with self-induced cooling
KR102474954B1 (ko) * 2015-11-18 2022-12-07 한온시스템 주식회사 에어 포일 베어링
CN109737140A (zh) * 2019-01-22 2019-05-10 西安交通大学 一种柔性组件及动压止推气体轴承
CN110005699B (zh) * 2019-04-12 2024-04-19 上海优社动力科技有限公司 一种具有自适应楔形的推力空气箔片轴承

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4296976A (en) * 1980-04-03 1981-10-27 Mechanical Technology Incorporated Cross-plies support element for compliant bearings
EP0186263A2 (en) * 1984-10-01 1986-07-02 The Garrett Corporation Thrust bearings
KR20010063914A (ko) * 1999-12-24 2001-07-09 구자홍 포일 스러스트 베어링 구조
CN103291745A (zh) * 2013-05-29 2013-09-11 南京航空航天大学 一种分离式波箔动压气体推力轴承
CN106415033A (zh) * 2015-03-20 2017-02-15 填易涡轮机械商贸有限公司 推力箔片空气轴承
CN210739124U (zh) * 2019-11-13 2020-06-12 石家庄金士顿轴承科技有限公司 一种具有连体式顶层箔片结构的止推箔片动压空气轴承
CN111561438A (zh) * 2020-04-28 2020-08-21 北京稳力科技有限公司 一种空气压缩机、电机及气体动压推力轴承
CN111637151A (zh) * 2020-06-05 2020-09-08 上海优社动力科技有限公司 推力空气箔片轴承

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115263912A (zh) * 2022-07-30 2022-11-01 广东美的暖通设备有限公司 轴向轴承、压缩机和暖通设备

Also Published As

Publication number Publication date
CN112431847A (zh) 2021-03-02
CN112431847B (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2022110263A1 (zh) 一种气体动压推力轴承、电机及空压机
CN113494528A (zh) 一种组合式气体止推箔片轴承装置
US20210341013A1 (en) Thrust foil bearing
CN111503134B (zh) 一种空气压缩机、电机及气体动压径向轴承
US20210310515A1 (en) Thrust foil bearing
CN112196890A (zh) 一种径向气体箔片轴承
CN113482965A (zh) 一种空气悬浮轴向轴承及氢能源压缩机
CN215762786U (zh) 气体止推轴承、压缩机和空调系统
CN111963571B (zh) 一种箔片动压气体轴承
CN212389648U (zh) 一种轴向止推箔片动压空气轴承
CN108368879B (zh) 箔片轴承
US20210355990A1 (en) Thrust foil bearing
CN216044582U (zh) 一种空气悬浮轴向轴承、装置及氢能源压缩机
WO2022067911A1 (zh) 径向气体箔片轴承
CN213511662U (zh) 一种径向气体箔片轴承
CN113202929B (zh) 一种端面刚度可控式干气密封结构
CN112943790A (zh) 一种免焊接空气动压止推轴承
US10371198B2 (en) Quad foil journal air bearing
CN217130105U (zh) 一种推力轴承组件及推力动压气体轴承
CN113494529B (zh) 一种单元环组合式波箔型径向空气轴承
CN218718165U (zh) 动压气体止推轴承、转子组件和压缩机
CN116498646A (zh) 一种具有翅片型支承箔片的气体动压轴承
CN218542925U (zh) 径向轴承、压缩机和暖通设备
CN216342341U (zh) 一种基于3d打印的机匣结构
EP3561323B1 (en) Foil journal air bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 14/9/2023)

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 14/09.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20963151

Country of ref document: EP

Kind code of ref document: A1