WO2022110177A1 - 自适应峰均比papr抑制装置、方法以及通信设备 - Google Patents

自适应峰均比papr抑制装置、方法以及通信设备 Download PDF

Info

Publication number
WO2022110177A1
WO2022110177A1 PCT/CN2020/132856 CN2020132856W WO2022110177A1 WO 2022110177 A1 WO2022110177 A1 WO 2022110177A1 CN 2020132856 W CN2020132856 W CN 2020132856W WO 2022110177 A1 WO2022110177 A1 WO 2022110177A1
Authority
WO
WIPO (PCT)
Prior art keywords
clipping
carrier
input signal
signal
clipped
Prior art date
Application number
PCT/CN2020/132856
Other languages
English (en)
French (fr)
Inventor
邹志强
高亚楠
吴亚琦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20963065.6A priority Critical patent/EP4236221A4/en
Priority to CN202080107024.0A priority patent/CN116530061A/zh
Priority to PCT/CN2020/132856 priority patent/WO2022110177A1/zh
Publication of WO2022110177A1 publication Critical patent/WO2022110177A1/zh
Priority to US18/325,955 priority patent/US20230308333A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2623Reduction thereof by clipping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Definitions

  • the present application relates to the field of communication technologies, and in particular, to an adaptive peak-to-average ratio PAPR suppression apparatus, method, and communication device.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the multi-carriers are orthogonal. Since OFDM is composed of multiple independently modulated sub-carrier signals, when When the phases of each sub-carrier are the same or similar, the superimposed signal will generate a larger instantaneous power peak, which will bring a higher peak-to-average power ratio (PAPR, Peak to Average Power Ratio), also known as the peak-to-average ratio.
  • PAPR Peak to Average Power Ratio
  • the transmitter designs a clipping algorithm on the intermediate frequency side to reduce PAPR, protect the power amplifier, and improve the efficiency of the power amplifier.
  • an adaptive peak-to-average ratio PAPR suppression device, method and communication equipment are proposed.
  • the PAPR suppression is performed through the cooperation of two-stage clipping modules.
  • the implementation method is simple, adapts to multiple scenarios, and ensures no missing clipping and PAPR controllable. , to protect the amplifier.
  • an embodiment of the present application provides an adaptive peak-to-average ratio PAPR suppression device, the device includes: a first clipping module and a second clipping module, the second clipping module reports to the first clipping module A clipping module outputs a signal to be clipped that satisfies an input condition of the first clipping module, where the input condition includes a peak distribution characteristic of the input signal; the first clipping module performs a first clipping process on the signal to be clipped A clipping process obtains a first clipped signal.
  • PAPR suppression is performed through the cooperation of two-stage clipping modules.
  • the above-mentioned embodiments of the present application can adapt to many Scenarios to ensure no missing clipping, controllable PAPR, and protect the power amplifier; compared with the method that needs to extract each peak and perform clipping processing in severe scenarios, the method of preconfiguring clipping parameters according to statistical characteristics in the present application is more efficient. It is simple, and solves the technical problems of excessively complex static clipping algorithms or limited application scenarios in the related art.
  • the second clipping module is configured to acquire an input signal, and when the carrier parameter of the input signal does not meet the input condition of the first clipping module, the The carrier parameter of the input signal and the input condition perform a second clipping process on the input signal to obtain the signal to be clipped.
  • the second clipping module is configured to acquire the input signal, where the carrier parameter of the input signal is When the input condition of the first clipping module is satisfied, the input signal is output to the first clipping module as a signal to be clipped.
  • the second clipping module is further configured to acquire the input signal, and output the input signal to the first clipping module module;
  • the first clipping module is configured to perform a third clipping process on the input signal according to the clipping parameter corresponding to the carrier parameter of the input signal; wherein the clipping parameter is a statistical feature according to the peak distribution of the input signal , configured for different carriers.
  • the carrier parameter is an inter-carrier power ratio
  • the clipping parameter is a weighting coefficient of clipping noise
  • the adaptive weighted distribution of clipping noise by the first clipping module is realized.
  • the above-mentioned embodiments of the present application can adapt to multiple scenarios, ensure no missing clipping, controllable PAPR, and protect the power amplifier.
  • the method of preconfiguring clipping parameters according to statistical features of the present application is simpler to implement.
  • the input condition of the first clipping module is a static first inter-carrier statistical feature
  • the second clipping module is configured to, when the carrier parameter of the input signal does not satisfy the first inter-carrier statistical feature, perform a filtering operation on the input signal according to the carrier parameter of the input signal and the first inter-carrier statistical feature. a second clipping process to obtain the signal to be clipped;
  • the first clipping module is configured to perform a first clipping process on the signal to be clipped according to a clipping parameter corresponding to a first inter-carrier statistical feature to obtain the first clipped signal.
  • the second clipping module can adaptively start the clipping process according to the relationship between the statistical characteristics of the input signal and the first carrier, and perform the clipping process on the input signal. It is suitable for PAPR control of any scene signal, and the implementation is simple.
  • the input condition of the first clipping module is a dynamic second inter-carrier statistical feature, wherein the first clipping module The wave module is configured to periodically update the second carrier statistic and the clipping parameter corresponding to the second carrier statistic,
  • the second clipping module is configured to, when the carrier parameter of the input signal does not satisfy the second inter-carrier statistic, perform the filtering on the input signal according to the carrier parameter of the input signal and the second inter-carrier statistic. a second clipping process to obtain the signal to be clipped;
  • the first clipping module is configured to perform a first clipping process on the signal to be clipped according to the clipping parameter corresponding to the second inter-carrier statistical feature to obtain the first clipped signal.
  • the second clipping module is used to adaptively enable clipping processing according to the relationship between the statistical characteristics between the input signal and the second carrier, and perform clipping processing on the input signal.
  • a clipping module periodically counts the inter-carrier characteristics of the input signal, and updates the locally configured second inter-carrier statistical characteristics and corresponding clipping parameters according to the statistical inter-carrier characteristics, and can also implement adaptive clipping processing.
  • the carrier parameter, the first inter-carrier statistical feature, and the second carrier statistical feature of the input signal include inter-carrier statistics power ratio.
  • embodiments of the present application provide a communication device, including the adaptive peak-to-average ratio PAPR suppression apparatus described in any one of the implementation manners of the first aspect.
  • embodiments of the present application provide a communication system, the communication system includes a baseband unit BBU, and the communication system further includes a remote radio unit RRU or an active antenna processing unit AAU; as in any of the first aspect
  • the first clipping module described in one implementation is located in the RRU or the AAU
  • the second clipping module described in any implementation in the first aspect is located in the BBU; or, as in any one of the first aspects Implementation Mode Both the first clipping module and the second clipping module are located in the RRU or the AAU.
  • an embodiment of the present application provides an adaptive peak-to-average ratio PAPR suppression method, the method is applied to a communication device, and the method includes:
  • the communication device performs a second clipping process on an input signal whose carrier parameter does not meet the input condition to obtain a signal to be clipped, and performs a first clipping process on the signal to be clipped to obtain a first clipped signal; wherein the input condition It includes the peak distribution characteristics of the input signal, and the carrier parameter of the signal to be clipped satisfies the input condition.
  • the PAPR suppression method of the present application performs preprocessing (second clipping processing) on the input signal that does not satisfy the peak distribution characteristics, to obtain the to-be-clipped signal that satisfies the peak distribution characteristics, and then performs the first clipping processing on the to-be-clipped signal, The first clipped signal is obtained.
  • the above-mentioned embodiments of the present application can be adapted to multiple scenarios, ensuring no missing clipping, controllable PAPR, and protection Power amplifier; compared with the method that needs to extract each peak and perform clipping processing in severe scenes, the method of pre-configuring clipping parameters according to statistical characteristics and preprocessing the input signal in the present application is simpler to implement and solves the problem. It solves the technical problems that the static clipping algorithm in the related art is too complicated or the application scene is limited.
  • the communication device performs a second clipping process on the input signal whose carrier parameter does not meet the input condition to obtain the signal to be clipped, including:
  • the communication device When the carrier parameter of the input signal does not meet the input condition, the communication device performs a second clipping process on the input signal according to the carrier parameter of the input signal and the input condition, to obtain the to-be-clipped wave signal.
  • the method further includes: the communication device performs a first clipping on the input signal whose carrier parameter meets the input condition wave processing to obtain the first clipped signal.
  • the PAPR suppression method of the above-mentioned embodiments of the present application according to the relationship between the carrier parameters of the input signal and the input conditions, different clipping processes are adopted for the input signal, compared with the simple clipping parameter in the related art (typical scenario). configuration, the above-mentioned embodiments of the present application can adapt to multiple scenarios, ensure no leakage clipping, controllable PAPR, and protect the power amplifier; The feature pre-configures the clipping parameters and preprocesses the input signal, which is simpler to implement, and solves the technical problems of excessively complex static clipping algorithms or limited application scenarios in the related art.
  • the method further includes:
  • the communication device performs a third clipping process on the input signal according to the clipping parameter corresponding to the carrier parameter of the input signal; wherein the clipping parameter is a statistical feature according to the peak distribution of the input signal, which is a different carrier wave. configured.
  • the carrier parameter is an inter-carrier power ratio
  • the clipping parameter is a weighting coefficient of clipping noise
  • the PAPR suppression method of the above-mentioned embodiments of the present application by configuring different clipping parameters for different carriers according to the statistical characteristics of the peak distribution of the input signal, the adaptive weighted allocation of clipping noise by the communication device is realized, compared with Regarding the configuration of simple clipping parameters in the related art (typical scenario), the above-mentioned embodiments of the present application can be adapted to multiple scenarios, ensuring no missing clipping, controllable PAPR, and protecting the power amplifier. Compared with the method that needs to extract each peak and perform clipping processing in severe scenarios, the method of preconfiguring clipping parameters according to statistical features of the present application is simpler to implement.
  • the input condition is a static first inter-carrier statistical feature
  • the communication device When the carrier parameter of the input signal does not meet the input condition, the communication device performs a second clipping process on the input signal according to the carrier parameter of the input signal and the input condition, to obtain the to-be-clipped Wave signals, including:
  • the communication device When the carrier parameter of the input signal does not satisfy the first inter-carrier statistical feature, the communication device performs a second clipping on the input signal according to the carrier parameter of the input signal and the first inter-carrier statistical feature. wave processing to obtain the signal to be clipped;
  • the communication device performs a first clipping process on the signal to be clipped to obtain a first clipped signal, including:
  • the communication device performs a first clipping process on the signal to be clipped according to the clipping parameter corresponding to the first inter-carrier statistical feature to obtain the first clipped signal.
  • the method further includes:
  • the communication device configures clipping parameters corresponding to the first inter-carrier statistical characteristic according to the first inter-carrier statistical characteristic.
  • the process of adaptively enabling clipping processing and performing clipping processing on the input signal according to the relationship between the statistical characteristics between the input signal and the first carrier can adapt to any scene signal.
  • PAPR control, and the implementation is simple.
  • the input condition is a dynamic second carrier statistical feature
  • the method further includes:
  • the communication device periodically acquires a new statistical feature of the second carrier, and configures clipping parameters corresponding to the statistical feature of the new second carrier according to the new statistical feature of the second carrier.
  • the communication device when the carrier parameter of the input signal does not satisfy the input condition, the communication device The parameters and the input conditions perform a second clipping process on the input signal to obtain the signal to be clipped, including:
  • the communication device When the carrier parameter of the input signal does not satisfy the second inter-carrier statistical feature, the communication device performs a second clipping process on the input signal according to the carrier parameter of the input signal and the second inter-carrier statistical feature , to obtain the signal to be clipped;
  • the communication device performs a first clipping process on the signal to be clipped to obtain a first clipped signal, including:
  • the communication device performs a first clipping process on the signal to be clipped according to the clipping parameter corresponding to the second inter-carrier statistical feature to obtain the first clipped signal.
  • the PAPR suppression method of the above-mentioned embodiments of the present application through the process of adaptively enabling the second clipping process and performing the second clipping process on the input signal according to the relationship between the statistical characteristics between the input signal and the second carrier, the periodic The inter-carrier characteristics of the input signal are counted, and the locally configured second inter-carrier statistical characteristics and corresponding clipping parameters are updated according to the statistical inter-carrier characteristics, and an adaptive first clipping process can also be implemented.
  • the PAPR control of any scene signal can be adapted, and the implementation is simple.
  • the carrier parameter of the input signal, the statistical characteristics between the first carriers, and the second carrier is the power ratio between carriers.
  • an embodiment of the present application provides an adaptive peak-to-average ratio PAPR suppression apparatus, the apparatus is applied to communication equipment, and the apparatus includes:
  • a clipping unit configured to perform a second clipping process on an input signal whose carrier parameter does not meet the input conditions to obtain a signal to be clipped, and perform a first clipping process on the signal to be clipped to obtain a first clipped signal; wherein, the The input condition includes peak distribution characteristics of the input signal, and the carrier parameter of the signal to be clipped satisfies the input condition.
  • the PAPR suppression device of the present application performs preprocessing (second clipping processing) on the input signal that does not satisfy the peak distribution characteristics, to obtain the to-be-clipped signal that satisfies the peak distribution characteristics, and then performs the first clipping processing on the to-be-clipped signal, The first clipped signal is obtained.
  • the above-mentioned embodiments of the present application can be adapted to multiple scenarios, ensuring no missing clipping, controllable PAPR, and protection Power amplifier; compared with the method that needs to extract each peak and perform clipping processing in severe scenes, the method of pre-configuring clipping parameters according to statistical characteristics and preprocessing the input signal in the present application is simpler to implement and solves the problem. It solves the technical problems that the static clipping algorithm in the related art is too complicated or the application scene is limited.
  • the clipping unit includes:
  • a second clipping module configured to perform a second clipping process on the input signal according to the carrier parameter of the input signal and the input condition when the carrier parameter of the input signal does not meet the input condition, to obtain the signal to be clipped.
  • the apparatus further includes:
  • the first clipping module is configured to perform a first clipping process on an input signal whose carrier parameter meets the input condition to obtain a first clipped signal.
  • the PAPR suppression device of the above-mentioned embodiments of the present application according to the relationship between the carrier parameters of the input signal and the input conditions, different clipping processes are adopted for the input signal, compared with the simple clipping parameter in the related art (typical scenario). configuration, the above-mentioned embodiments of the present application can adapt to multiple scenarios, ensure no leakage clipping, controllable PAPR, and protect the power amplifier; The feature pre-configures the clipping parameters and preprocesses the input signal, which is simpler to implement, and solves the technical problems of excessively complex static clipping algorithms or limited application scenarios in the related art.
  • the apparatus further includes:
  • the third clipping module is configured to perform third clipping processing on the input signal according to the clipping parameter corresponding to the carrier parameter of the input signal; wherein the clipping parameter is a statistical feature according to the peak distribution of the input signal, configured for different carriers.
  • the carrier parameter is an inter-carrier power ratio
  • the clipping parameter is a weighting coefficient of clipping noise
  • the PAPR suppression apparatus of the above-mentioned embodiments of the present application by configuring different clipping parameters for different carriers according to the statistical characteristics of the peak distribution of the input signal, the adaptive weighted distribution of the clipping noise by the communication device is realized, compared with Regarding the configuration of simple clipping parameters in the related art (typical scenario), the above-mentioned embodiments of the present application can be adapted to multiple scenarios, ensuring no missing clipping, controllable PAPR, and protecting the power amplifier. Compared with the method that needs to extract each peak and perform clipping processing in severe scenarios, the method of preconfiguring clipping parameters according to statistical features of the present application is simpler to implement.
  • the input condition is a static first inter-carrier statistical feature
  • the second clipping module is further configured to, when the carrier parameter of the input signal does not satisfy the first inter-carrier statistical feature, perform a The input signal is subjected to a second clipping process to obtain the signal to be clipped;
  • the first clipping module is further configured to perform a first clipping process on the signal to be clipped according to clipping parameters corresponding to the first inter-carrier statistical characteristics to obtain the first clipped signal.
  • the apparatus further includes:
  • a first configuration module configured to configure clipping parameters corresponding to the first inter-carrier statistical characteristic according to the first inter-carrier statistical characteristic.
  • PAPR suppression apparatus by adaptively enabling clipping processing and clipping the input signal according to the relationship between the statistical characteristics between the input signal and the first carrier, it is possible to adapt to any scene signal.
  • PAPR control, and the implementation is simple.
  • the input condition is a dynamic second carrier statistical feature
  • the apparatus further includes:
  • the second configuration module is configured to periodically acquire a new statistical feature of the second carrier, and configure clipping parameters corresponding to the statistical feature of the new second carrier according to the new statistical feature of the second carrier.
  • the second clipping module is further configured to, when the carrier parameter of the input signal does not satisfy the second inter-carrier statistical feature , performing a second clipping process on the input signal according to the carrier parameter of the input signal and the statistical characteristics between the second carriers to obtain the signal to be clipped;
  • the first clipping module is further configured to perform a first clipping process on the signal to be clipped according to the clipping parameter corresponding to the second inter-carrier statistical feature to obtain the first clipped signal.
  • the PAPR suppression device of the above-mentioned embodiments of the present application through the process of adaptively enabling the second clipping process and performing the second clipping process on the input signal according to the relationship between the statistical characteristics between the input signal and the second carrier, the periodic The inter-carrier characteristics of the input signal are counted, and the locally configured second inter-carrier statistical characteristics and corresponding clipping parameters are updated according to the statistical inter-carrier characteristics, and an adaptive first clipping process can also be implemented.
  • the PAPR control of any scene signal can be adapted, and the implementation is simple.
  • the statistical feature is the power ratio between carriers.
  • an adaptive peak-to-average ratio PAPR suppression device including:
  • processors a processor; a memory for storing processor-executable instructions; wherein the processor is configured to implement the method of the fourth aspect or any one of the implementation manners of the fourth aspect when executing the instructions.
  • embodiments of the present application provide a non-volatile computer-readable storage medium on which computer program instructions are stored, and when the computer program instructions are executed by a processor, implement the fourth aspect or the fourth aspect. Any one of the methods described in the implementation manner.
  • an embodiment of the present application provides a terminal device, and the terminal device can execute the above-mentioned fourth aspect or one or more of the PAPR suppression methods in multiple possible implementation manners of the fourth aspect.
  • embodiments of the present application provide a computer program product, comprising computer-readable codes, or a non-volatile computer-readable storage medium carrying computer-readable codes, when the computer-readable codes are stored in an electronic
  • the processor in the electronic device executes the fourth aspect or one or more of the PAPR suppression methods in the multiple possible implementation manners of the fourth aspect.
  • 1a and 1b respectively illustrate examples of clipping scenarios in the related art.
  • FIG. 2 shows a block diagram of an apparatus for suppressing PAPR according to an embodiment of the present application.
  • FIG. 3 shows a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 4 shows a block diagram of an apparatus for suppressing PAPR according to an embodiment of the present application.
  • FIG. 5 shows a block diagram of an apparatus for suppressing PAPR according to an embodiment of the present application.
  • FIG. 6 shows a block diagram of an apparatus for suppressing PAPR according to an embodiment of the present application.
  • FIG. 7 shows a block diagram of a communication device according to an embodiment of the present application.
  • FIG. 8 shows a flowchart of a PAPR suppression method according to an embodiment of the present application.
  • FIG. 9 shows a flowchart of a PAPR suppression method according to an embodiment of the present application.
  • FIG. 10 shows a flowchart of a PAPR suppression method according to an embodiment of the present application.
  • FIG. 11 shows a flowchart of a PAPR suppression method according to an embodiment of the present application.
  • FIG. 12 shows a flowchart of a PAPR suppression method according to an embodiment of the present application.
  • FIG. 13 shows a flowchart of a PAPR suppression method according to an embodiment of the present application.
  • FIG. 14 shows a block diagram of an apparatus for suppressing PAPR according to an embodiment of the present application.
  • Clipping For signals with large peaks, set a threshold to suppress the peaks exceeding the threshold. The process of clipping is called clipping.
  • Clipping Noise The difference between the original signal and the clipping threshold.
  • Carrier parameter The characteristic parameter of the carrier of the signal, such as the modulation method of the carrier, spectrum occupancy, power spectral density, or the instantaneous information between the carriers, etc.
  • the instantaneous information between the carriers may include the power ratio between the carriers, etc.
  • the modulation mode of the carrier may refer to different modulation modes such as the phase and amplitude of the data carried by the carrier, and the spectrum occupancy of the carrier may refer to the spectrum width occupied by the carrier, the location of the carrier frequency, and the like.
  • the instantaneous information between carriers may refer to information about parameter relationships between carriers at a certain moment, and the power allocation ratio between carriers may refer to the ratio of power configuration between different carriers.
  • Statistical features between carriers the statistical results of the relationship between the parameters of the input signal carriers within a certain period of time.
  • the IF clipping algorithm is designed according to the most severe scenario, the implementation cost is high and the complexity is high; if the IF clipping algorithm is designed according to the typical scenario, although the implementation complexity is reduced, its adaptability is poor, and when the signal peaks Leakage will occur when the characteristics change, which will affect the robustness of the power amplifier.
  • FIG. 1a and 1b respectively illustrate examples of clipping scenarios in the related art.
  • the power characteristics of the input signal are turned on, resulting in a very dense peak distribution of the input signal, as shown in Figure 1a.
  • the power characteristics of the input signal are not turned on, the peak distribution characteristics of the input signal do not change (or change little), and the peak distribution of the input signal is sparse, as shown in Figure 1b.
  • the clipping processing can be performed according to the typical scene design, but the applicable scene of the clipping processing method is limited, and the application of the clipping processing method in complex scenes may cause some peaks to be missed.
  • the technical problem to be solved by the present application is that the intermediate frequency static clipping algorithm in the related art is too complicated or has limited application scenarios.
  • FIG. 2 shows a block diagram of an apparatus for suppressing PAPR according to an embodiment of the present application.
  • FIG. 3 shows a schematic diagram of an application scenario according to an embodiment of the present application.
  • the communication device may include BBU (Building Baseband Unit, baseband unit), and RRU (Radio Remote Unit, remote radio unit) and/or AAU (Active Antenna Unit, active antenna processing unit) ).
  • BBU Building Baseband Unit, baseband unit
  • RRU Radio Remote Unit, remote radio unit
  • AAU Active Antenna Unit, active antenna processing unit
  • the RRU can be hung on the wall of the equipment room, the BBU can be installed in a standard cabinet, and the RRU and the antenna are connected by feeders; or the RRU can be installed on the tower, the BBU and the RRU are connected by optical fibers, and the RRU and the antenna are connected by jumpers connect.
  • 4G the 4th generation, the fourth generation of mobile communication technology
  • the traditional integrated macro base station is completely replaced by the BBU+RRU+antenna mode, and some BBUs are unified in a computer room to form a BBU pool.
  • 5G (5th-Generation, fifth-generation mobile communication technology) introduced Massive MIMO (multiple-in multiple-out, multiple-in-multiple-out) technology, so AAU appeared.
  • the PAPR suppression apparatus of the embodiment provided in this application may include the first clipping module 11 and the second clipping module 12 shown in FIG. 2 .
  • the input terminal of the second clipping module 12 is used for receiving input signals
  • the output terminal of the second clipping module 12 is connected to the input terminal of the first clipping module 11
  • the first clipping module 12 is connected to the input terminal of the first clipping module 11 .
  • the output terminal of the wave module 11 outputs the clipped signal.
  • the input condition includes peak distribution characteristics of the input signal.
  • the peak distribution characteristics of the input signal may include statistical characteristics of the peak distribution of the input signal, and the peak distribution characteristics of the input signal are mainly affected by factors such as the power ratio between carriers of the input signal, the modulation mode of the carrier, and the spectrum occupancy.
  • the inter-carrier power ratio may refer to the ratio of power configuration between different carriers
  • the modulation mode of the carrier may refer to different modulation modes such as the phase and amplitude of the data carried by the carrier
  • the spectrum occupancy of the carrier may refer to the carrier occupancy the frequency spectrum width, the position of the carrier frequency point, etc.
  • the first clipping module 11 may include clipping parameters configured according to the statistical characteristics of the peak distribution of the input signal.
  • the first clipping module 11 can The carrier parameter and the clipping parameter of the input signal perform a first clipping process on the input signal.
  • the clipping parameter may refer to data related to the allocation method of clipping noise, for example, the ratio of clipping noise allocation when clipping different carriers, or Weighting coefficient of clipping noise corresponding to different carriers when clipping is performed on different carriers.
  • the first clipping module 11 is configured with a noise allocation during clipping when the inter-carrier power ratio of the input signal is 1:1
  • the ratio is also 1:1.
  • the first clipping module 11 can perform the operation on the input signal according to the configured clipping parameters (the clipping noise distribution ratio of 1:1). The first clipping process.
  • the second clipping module 12 can output to the first clipping module 11 a signal to be clipped that satisfies the input conditions of the first clipping module 11, and the first clipping module can A first clipping signal is obtained by performing a first clipping process on the signal to be clipped.
  • the second clipping module 12 is configured to determine whether to enable the second clipping process for the input signal according to whether the carrier parameter of the input signal satisfies the input condition of the first clipping module 11 .
  • the second clipping module 12 is configured to acquire the input signal, and when the carrier parameter of the input signal satisfies the input condition of the first clipping module 11, the input signal is It is output to the first clipping module 11 as the signal to be clipped.
  • the second clipping module 12 may not turn on the second clipping process on the input signal, or, in other words, turn off the first clipping process on the input signal.
  • Second clipping processing that is, the second clipping module 12 may not perform the second clipping processing on the input signal when the carrier parameter of the input signal satisfies the input condition of the first clipping module 11 .
  • the second clipping module 12 is configured to acquire an input signal, and when the carrier parameter of the input signal does not meet the input conditions of the first clipping module 11, according to the The carrier parameter of the input signal and the input condition perform a second clipping process on the input signal to obtain the signal to be clipped.
  • the second clipping module 12 may determine to enable the second clipping process on the input signal when the carrier parameter of the input signal does not meet the input condition of the first clipping module 11 .
  • a second clipping process may be performed on the input signal, and the carrier parameter of the signal to be clipped after the second clipping process satisfies the input condition of the first clipping module 11.
  • the second clipping module 12 can be used to preprocess the input signal (the second clipping process) when the carrier parameter of the input signal does not meet the input conditions of the first clipping module 11 .
  • the carrier parameter of the clipped signal satisfies the input condition of the first clipping module 11 , so that the first clipping module 11 can perform a first clipping process on the signal to be clipped to obtain the first clipped signal.
  • the first clipping module 11 may be located in the RRU or AAU on the intermediate frequency side
  • the second clipping module 12 may be located in the BBU on the baseband side, or may be located in the RRU or AAU on the intermediate frequency side.
  • the intermediate frequency clipping processing of the input signal is realized by the cooperation of the first clipping module 11 and the second clipping module 12 .
  • PAPR suppression is performed through the cooperation of two-stage clipping modules.
  • the above-mentioned embodiments of the present application can adapt to many Scenarios to ensure no missing clipping, controllable PAPR, and protect the power amplifier; compared with the method that needs to extract each peak and perform clipping processing in severe scenarios, the method of preconfiguring clipping parameters according to statistical characteristics in the present application is more efficient. It is simple, and solves the technical problems of excessively complex static clipping algorithms or limited application scenarios in the related art.
  • the second clipping module 12 is further configured to acquire the input signal, and output the input signal to the first clipping module 11; the first clipping module 11 is configured to The clipping parameter corresponding to the carrier parameter of the input signal performs a third clipping process on the input signal; wherein the clipping parameter is configured for different carriers according to the statistical characteristics of the peak distribution of the input signal.
  • the second clipping module 12 may not be deployed, and the first clipping module 11 directly obtains the input signal, and performs third clipping processing on the input signal according to the clipping parameter corresponding to the carrier parameter of the input signal.
  • the carrier parameter may be a power ratio between carriers
  • the clipping parameter may be a weighting coefficient of clipping noise
  • the first clipping module 11 is used for clipping parameters corresponding to the power ratio between carriers Determines the weighting factor for clipping noise.
  • the clipping parameter is configured for different carriers according to the statistical characteristics of the peak distribution of the input signal
  • the first clipping module can adaptively adjust the weighting coefficient of the clipping noise according to the power ratio between the carriers of the input signal , and perform a third clipping process on the input signal according to the weighting coefficient of the clipping noise.
  • the adaptive weighting of the clipping noise by the first clipping module 11 is realized by configuring different clipping parameters for different carriers according to the statistical characteristics of the peak distribution of the input signal. Allocation, compared with the configuration of simple clipping parameters in the related art (typical scenario), the above-mentioned embodiments of the present application can adapt to multiple scenarios, ensure no missing clipping, controllable PAPR, and protect the power amplifier. Compared with the method that needs to extract each peak and perform clipping processing in severe scenarios, the method of preconfiguring clipping parameters according to statistical features of the present application is simpler to implement.
  • clipping noise can be allocated adaptively according to the power ratio between carriers, which can better allocate clipping noise and ensure system performance.
  • the PAPR suppression device of the present application will be described in detail in several different embodiments below.
  • the second clipping module 12 is bypassed, and the first clipping module 11 clips adaptively.
  • FIG. 4 shows a block diagram of an apparatus for suppressing PAPR according to an embodiment of the present application.
  • the input conditions of the first clipping module 11 can be set to be relatively broad, so that all input signals can meet the input conditions.
  • the second clipping module 12 can work in the bypass mode, and the input signal is not affected.
  • the second clipping module 12 can directly output the input signal to the input end of the first clipping module 11 after acquiring the input signal.
  • the second clipping module 12 is represented as a dashed box, and works in a bypass mode.
  • the second clipping module 12 may not be deployed, and only the first clipping module 11 may be deployed.
  • the first clipping module 11 can directly acquire the input signal, and perform a third clipping process on the input signal according to the clipping parameter corresponding to the carrier parameter of the input signal.
  • the corresponding clipping parameters can be configured on the first clipping module 11 according to the statistical characteristics of the peak distribution of the input signal, and the statistical characteristics of the peak distribution can be the carrier wave Features, such as inter-carrier power configuration, carrier modulation, and carrier spectrum occupancy.
  • different clipping parameters can be configured for different carriers according to the statistical characteristics of the peak distribution of the input signal.
  • the first clipping module 11 can be based on the carrier parameters of the input signal and the statistical characteristics of the carrier.
  • the clipping parameter configured by the feature adaptively performs the third clipping process on the input signal.
  • different carriers of the input signal and clipping parameters corresponding to different carriers may be recorded in the form of a table.
  • the first clipping module 11 can look up the table according to the carrier parameter of the input signal to obtain the corresponding clipping parameter.
  • the first clipping module 11 can be configured with 1:2 and 1:2 and The clipping parameters corresponding to 1:1 respectively. For example, when the inter-carrier power ratio is 1:2, the corresponding clipping noise weighting coefficient is 1:2, and when the inter-carrier power ratio is 1:1, The corresponding clipping noise has a weighting factor of 1:1.
  • the first clipping module 11 when the first clipping module 11 receives the input signal, if the inter-carrier power ratio of the input signal is determined to be 1:2 according to the instantaneous information of the input signal, the first clipping module 11 can use the weighting coefficient of clipping noise 1:2 respectively perform the third clipping processing on the input signal, that is to say, the allocation ratio of clipping noise between carriers during clipping is 1:2, as shown in Figure 4, the power ratio between carriers is 1:2 When clipping, the input signal with low power corresponds to low clipping noise (1), and the input signal with high power corresponds to high clipping noise (2).
  • the third clipping process can be performed on the input signal by using the weighting coefficient of the clipping noise of 1:1.
  • the distribution ratio of the clipping noise between the two carriers is 1:1.
  • the clipping noise of the carriers is also in a 1:1 relationship during clipping, that is, The clipping noise is the same for both carrier assignments. It should be noted that the first clipping module 11 shown in FIG.
  • 4 is only some examples of the present application, and does not limit the present application in any way, and can also be based on other inter-carrier power ratios (for example, 1:5,1 : 10, etc.) to set the corresponding clipping parameters, and can also configure the corresponding clipping parameters according to the statistical characteristics of other instantaneous information between carriers, for example, according to the modulation method between carriers, spectrum occupancy and other instantaneous information Statistical features configure the corresponding clipping parameters.
  • inter-carrier power ratios for example, 1:5,1 : 10, etc.
  • the adaptive weighting of the clipping noise by the first clipping module 11 is realized by configuring different clipping parameters for different carriers according to the statistical characteristics of the peak distribution of the input signal. Allocation, compared with the configuration of simple clipping parameters in the related art (typical scenario), the above-mentioned embodiments of the present application can adapt to multiple scenarios, ensure no missing clipping, controllable PAPR, and protect the power amplifier. Compared with the method that needs to extract each peak and perform clipping processing in severe scenarios, the method of preconfiguring clipping parameters according to statistical features of the present application is simpler to implement.
  • clipping noise can be allocated adaptively according to the power ratio between carriers, which can better allocate clipping noise and ensure system performance.
  • a second clipping module may be deployed in the communication device, or the second clipping module already deployed in the communication device determines whether to enable clipping according to the carrier parameter of the input signal and the input condition, Signals are not bypassed.
  • the second clipping module can output to the first clipping module a signal to be clipped that meets the input conditions of the first clipping module, and the first clipping module performs a first clipping process on the signal to be clipped The first clipped signal is obtained.
  • the second clipping module is configured to, when the carrier parameter of the input signal does not meet the input condition of the first clipping module, perform the filtering of the input signal according to the carrier parameter of the input signal and the input condition.
  • the signal is subjected to a second clipping process to obtain the signal to be clipped; when the carrier parameter of the input signal meets the input conditions of the first clipping module, the input signal is output to the signal to be clipped as the signal to be clipped. Describe the first clipping module.
  • the second clipping module 12 when the carrier parameter of the input signal does not satisfy the input condition of the first clipping module 11, the second clipping module 12 performs the second clipping process on the input signal according to the carrier parameter and the input condition of the input signal, and obtains the For the clipped signal, the carrier parameter of the signal to be clipped can meet the input conditions of the first clipping module. Then, the first clipping module 11 performs a first clipping process on the signal to be clipped to obtain a first clipped signal.
  • the process of adaptive clipping is realized through the cooperation between the two clipping modules, and the implementation manner is simple and can be adapted to more application scenarios.
  • the apparatus for suppressing PAPR in this embodiment may also include a variety of different implementation manners.
  • the first clipping module 11 may be an adaptive clipping module, or may not be an adaptive clipping module
  • the second clipping module 12 may be a module that adaptively turns on clipping.
  • the second clipping module 12 is automatically turned on, and the first clipping module 11 is statically clipped.
  • the input condition of the first clipping module may be a static first inter-carrier statistical feature
  • the second clipping module is used for when the carrier parameter of the input signal does not satisfy the first inter-carrier statistics
  • a second clipping process is performed on the input signal according to the carrier parameter of the input signal and the first inter-carrier statistical feature to obtain the signal to be clipped, the carrier parameter of the signal to be clipped
  • the first inter-carrier statistical feature is satisfied;
  • the first clipping module is configured to perform a first clipping process on the signal to be clipped according to the clipping parameter corresponding to the first inter-carrier statistical feature, and obtain the first clipping process.
  • a clipped signal is configured to perform a first clipping process on the signal to be clipped according to the clipping parameter corresponding to the first inter-carrier statistical feature
  • the first inter-carrier statistical feature may be a long-term statistical feature between signal carriers.
  • corresponding static clipping parameters may be configured according to the first inter-carrier statistical feature, and the An inter-carrier statistical feature and a corresponding static clipping parameter are updated. Therefore, the first inter-carrier statistical feature is static, and the clipping parameter corresponding to the first inter-carrier statistical feature is a static clipping parameter. In this way, the first clipping module 11 can search for the corresponding static clipping parameter according to the carrier parameter of the input signal, and perform the first clipping process on the input signal according to the found static clipping parameter.
  • the second clipping module 12 is responsible for performing a second clipping process on an input signal whose carrier parameters do not satisfy the first inter-carrier statistical characteristics, so as to obtain a to-be-clipped signal that meets the first inter-carrier statistical characteristics.
  • the signal to be clipped input to the first clipping module 11 satisfies the entry condition (the first inter-carrier statistical feature) of the first clipping module 11, and the first clipping module 11 can The corresponding clipping parameter performs a first clipping process on the first clipped signal.
  • the second clipping module 12 may perform a second clipping process on the input signal according to the carrier parameters of the input signal and the first inter-carrier statistical characteristics, such as That is to say, the second clipping module 12 can perform the second clipping process according to the difference between the carrier parameter of the input signal and the statistical characteristics between the first carriers.
  • the clipping parameter on the first clipping module 11 is configured according to the inter-carrier power ratio of 1:1
  • the input value of the first clipping module 11 is When the power ratio between the carriers of the input signal satisfies 1:1, the first clipping process can be performed on the input signal according to the configured clipping parameters, and the power ratio between the carriers of the input signal of the second clipping module 12 does not satisfy the At 1:1
  • the second clipping module 12 can perform a second clipping process on the input signal, and cut off a part of the peak value of the high-power carrier in advance, so that the signal to be clipped that enters the first clipping module after the second clipping process , even if the first clipping process is performed using the clipping noise weighting coefficient configured when the inter-carrier power ratio is 1:1, no missing clipping will occur.
  • FIG. 5 shows a block diagram of an apparatus for suppressing PAPR according to an embodiment of the present application.
  • the static clipping parameter configured on the first clipping module 11 according to when the inter-carrier power ratio is 1:1 is: the weighting coefficient of clipping noise is 1:1.
  • the first clipping module 11 is in an on state.
  • the second clipping module 12 When the second clipping module 12 has different carrier parameters (inter-carrier power ratio) of the input signal and statistical characteristics between the first carriers, that is, the inter-carrier power ratio of the input signal does not satisfy the first inter-carrier statistical characteristics (carrier-to-carrier power ratio) power ratio 1:1), the second clipping module 12 can perform second clipping processing on the input signal, and eliminate a part of the peak value of the high-power carrier in advance, so that the second clipping process enters the first clipping module 11 Even if the first clipping process is performed using the clipping noise weighting coefficient configured when the inter-carrier power ratio is 1:1, the signal to be clipped will not be missed clipping.
  • the carrier parameters of the two input signals do not satisfy the first inter-carrier statistical feature.
  • the first inter-carrier statistical feature as the inter-carrier power ratio as an example
  • carrier 2 lends its own power to carrier 1, resulting in an increase in the power within the bandwidth of carrier 1, resulting in a deviation of the power ratio between carrier 1 and carrier 2 from 1:1, and the first clipping module 11 will leak Clipping
  • the second clipping module 12 is turned on, and the carrier 1 is clipped, and a part of the peak value is eliminated in advance to ensure that the signal to be clipped sent to the first clipping module 11 satisfies the peak distribution characteristics, ensuring that the first clipping
  • the module 11 has no leakage clipping; since the carrier 2 is a power lender, the peak-to-average ratio is no problem for the power amplifier, so the second clipping module 12 does not clip the carrier 2 and directly sends it to the first clipping module 11 .
  • the second clipping module 12 cuts off part of the power of the carrier 1 so that the peak-to-average ratio of the carrier 1 and the carrier 2 satisfies 1:1, and then sends it to the first clipping module 11 .
  • the first inter-carrier statistical feature as the power spectral density as an example
  • the power of part of the bandwidth (dashed line 5M) is lent to another bandwidth (narrow solid line 5M), resulting in Fig.
  • the power in the narrow solid line bandwidth shown in 5 increases, and the first clipping module 11 will have leakage clipping.
  • the second clipping module 12 is turned on, and the carrier 1 is clipped to eliminate part of the peaks in advance to ensure that The signal sent to the first clipping module 11 satisfies the peak distribution characteristics, ensuring that the clipping module 1 has no missing clipping, and the carrier 2 does not borrow power, so the second clipping module 12 does not clip the carrier 2, and directly sends it to the first clipping module 12.
  • the second clipping module 12 adaptively starts the clipping process according to the relationship between the statistical characteristics between the input signal and the first carrier, and performs the clipping process on the input signal, It can adapt to the PAPR control of any scene signal, and the implementation is simple.
  • the second clipping module 12 is adaptively enabled, and the first clipping module 11 is adaptively clipped.
  • the input condition of the first clipping module is a dynamic second carrier statistical feature, wherein the first clipping module is further used for the second carrier statistical feature and the second carrier statistical feature
  • the clipping parameters corresponding to the feature are periodically updated.
  • the second clipping module is configured to, when the carrier parameter of the input signal does not satisfy the second inter-carrier statistical feature, perform a second cut on the input signal according to the carrier parameter of the input signal and the second inter-carrier statistical feature. Clipping processing to obtain the signal to be clipped, and the carrier parameter of the signal to be clipped meets the second inter-carrier statistical feature; the first clipping module is used for clipping corresponding to the second inter-carrier statistical feature The parameter performs a first clipping process on the signal to be clipped to obtain the first clipped signal.
  • the second inter-carrier statistical feature may be a short-term inter-carrier statistical feature obtained by periodic statistics.
  • the first clipping module 11 may configure corresponding clipping parameters according to the new second inter-carrier statistical features obtained by statistics in each period, that is, periodically update the configured clipping parameters according to the statistical period.
  • the time length of each cycle may be determined according to a specific application scenario, which is not limited in this application. Therefore, the first clipping module 11 can also perform adaptive clipping processing on the input signal as time changes.
  • the processing process of the input signal by the second clipping module 12 is the same as that of the previous embodiment, except that when judging whether the carrier parameter of the input signal satisfies the second inter-carrier statistical characteristics as time changes, the second inter-carrier statistical Features also change over time.
  • the second clipping module 12 performs the second clipping processing on the input signal, the referenced second inter-carrier statistical feature also changes periodically with time.
  • FIG. 6 shows a block diagram of an apparatus for suppressing PAPR according to an embodiment of the present application.
  • the clipping parameters configured on the first clipping module 11 according to the inter-carrier power ratio of 1:1 or 1:2 are: a weighting coefficient of clipping noise of 1:1 or 1:2 .
  • the first clipping module 11 is in an on state.
  • the first The second clipping module 12 can perform a second clipping process on the input signal to obtain a signal to be clipped that satisfies the statistical characteristics between the second carriers, and outputs the signal to be clipped to the first clipping module 11 .
  • the second inter-carrier power configuration 1:1 and 1:2 configured on the first clipping module 11 and the corresponding clipping noise weighting coefficient 1:1 or 1:2 can be based on the statistical characteristics of the new cycle and the corresponding clipping noise. Wave parameters are updated.
  • the second clipping module 12 adaptively starts the clipping process according to the relationship between the statistical characteristics between the input signal and the second carrier, and performs the clipping process on the input signal
  • the first clipping module 11 periodically counts the inter-carrier characteristics of the input signal, and updates the locally configured second inter-carrier statistical characteristics and corresponding clipping parameters according to the statistical inter-carrier characteristics, which can also implement adaptive clipping processing.
  • the present application also provides a PAPR suppression method, which is applied to a communication device.
  • the communication device may include: a first clipping module and a second clipping module, wherein the second clipping module The input end of the clipping module is used for receiving input signals, and the output end of the second clipping module is connected to the input end of the first clipping module.
  • FIG. 7 shows a block diagram of the communication device according to an embodiment of the present application.
  • the communication device shown in FIG. 7 may be a base station.
  • the communication device shown in FIG. 7 may include a baseband unit and a radio frequency unit, where the baseband unit may include a BBU.
  • the radio unit may include RRU+antenna, and/or, AAU.
  • the RRU or AAU may be provided with the PAPR suppression apparatus of the foregoing embodiments of the present application.
  • the first clipping module may be located in the RRU or the AAU, and the second clipping module is located in the BBU.
  • the communication device may also include one or more processors and one or more memories, the memories may store executable instructions corresponding to the PAPR suppression method provided by the present application, and the processors may be configured to execute the executable instructions stored in the memory.
  • the PAPR suppression method provided in this application is implemented.
  • connection relationship between the processor and the memory and the baseband unit and the radio frequency unit in FIG. 7 is only an example of the present application, and does not limit the present application in any way.
  • processors and memories are provided, respectively.
  • the processor can be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or a central processing unit. It can be a central processor unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller (MCU) , it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • MCU microcontroller
  • PLD programmable logic device
  • the memory can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM) or other types of storage devices that can store information and instructions Dynamic storage device, the memory can also include non-volatile memory (non-volatile memory), such as flash memory (flash memory), hard disk drive (hard disk drive, HDD) or solid-state drive (solid-state drive, SSD); memory Combinations of the above kinds of memories may also be included.
  • non-volatile memory such as flash memory (flash memory), hard disk drive (hard disk drive, HDD) or solid-state drive (solid-state drive, SSD); memory Combinations of the above kinds of memories may also be included.
  • the memory can also be electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disk storage (including compressed optical disks) , laser disc, compact disc, digital versatile disc, Blu-ray disc, etc.), magnetic disk storage medium or other magnetic storage device, or any other device capable of carrying or storing desired program code in the form of instructions or data structures and capable of being accessed by a computer Other media, but not limited to this.
  • the memory may exist independently and be connected to the processor through a communication line.
  • the memory can also be integrated with the processor.
  • the memory provided by the embodiments of the present application may generally be non-volatile.
  • the memory is used to store the computer-executed instructions involved in executing the solution of the present application, and the execution is controlled by the processor.
  • the processor is configured to execute the computer-executed instructions stored in the memory, thereby implementing the method provided by the embodiments of the present application.
  • FIG. 8 shows a flowchart of a PAPR suppression method according to an embodiment of the present application. As shown in Figure 8, the method may include the following steps:
  • Step S701 the communication device controls the second clipping module to output to the first clipping module a signal to be clipped that satisfies an input condition of the first clipping module, where the input condition includes a peak distribution characteristic of the input signal;
  • Step S702 the communication device uses the first clipping module to perform a first clipping process on the signal to be clipped to obtain a first clipped signal.
  • the communication device may determine whether to enable the second clipping module for the input signal according to whether the carrier parameter of the input signal satisfies the input condition of the first clipping module The second clipping processing; wherein, the input condition includes the peak distribution characteristics of the input signal.
  • FIG. 9 shows a flowchart of a PAPR suppression method according to an embodiment of the present application. As shown in Figure 9, in one possible implementation,
  • Step S701 the communication device controls the second clipping module to output to the first clipping module a signal to be clipped that satisfies the input conditions of the first clipping module, which may include:
  • Step S7011 when the carrier parameter of the input signal does not meet the input condition of the first clipping module, the second clipping module 12 of the communication device performs the first step on the input signal according to the carrier parameter of the input signal and the input condition. Two clipping processing to obtain the signal to be clipped;
  • Step S7012 when the carrier parameter of the input signal satisfies the input condition of the first clipping module, the second clipping module 12 of the communication device outputs the input signal as the signal to be clipped to the first clipping module.
  • Wave Module 11 when the carrier parameter of the input signal satisfies the input condition of the first clipping module, the second clipping module 12 of the communication device outputs the input signal as the signal to be clipped to the first clipping module.
  • the communication device adopts the second clipping module 12 to perform the second clipping process on the input signal according to the carrier parameter of the input signal and the input condition. , to obtain the signal to be clipped, and the carrier parameter of the signal to be clipped can satisfy the input condition of the first clipping module. Then, the first clipping module 11 is used to perform a first clipping process on the signal to be clipped to obtain a first clipped signal.
  • the communication device uses the second clipping module 12 to directly output the input signal as the signal to be clipped to the first clipping module 11, and then uses the first clipping module 12 to directly output the input signal to the first clipping module 11.
  • the clipping module 11 performs a first clipping process on the signal to be clipped to obtain a first clipped signal.
  • the process of adaptive clipping is realized through the cooperation between the two clipping modules, and the implementation manner is simple and can be adapted to more application scenarios.
  • the communication device can determine whether to enable the second clipping of the input signal by the second clipping module 12 according to whether the carrier parameter of the input signal satisfies the input conditions of the first clipping module 11 . deal with.
  • the communication device controlling the second clipping module to output to the first clipping module a signal to be clipped that satisfies the input condition of the first clipping module may include: the communication device is in the When the carrier parameter of the input signal satisfies the input condition of the first clipping module, the second clipping module is not turned on.
  • the communication device may not enable the clipping processing of the input signal by the second clipping module 12, or, in other words, disable the clipping processing of the input signal, or That is, when the carrier parameter of the input signal satisfies the input condition of the first clipping module 11 , the second clipping module 12 in the communication device outputs the input signal to the first clipping module 11 as the signal to be clipped.
  • the communication device uses the first clipping module 11 to perform a first clipping process on the input signal, and the input condition includes the peak distribution characteristic of the input signal.
  • the peak distribution characteristics of the input signal may include statistical characteristics of the peak distribution of the input signal, for example, the statistically obtained inter-carrier power ratio of the input signal, the modulation mode of the carrier, the spectrum occupancy of the carrier, and so on. That is to say, the communication device can configure the corresponding clipping parameters on the first clipping module 11 according to the statistical characteristics of the peak distribution of the input signal.
  • the communication device can The parameter and the clipping parameter perform a first clipping process on the input signal.
  • the communication device controls the second clipping module to output to the first clipping module a signal to be clipped that satisfies the input condition of the first clipping module, and may further include: in the carrier wave of the input signal When the parameters do not meet the input conditions of the first clipping module 11, the communication device controls the second clipping module to perform a second clipping process on the input signal according to the carrier parameters of the input signal and the input conditions, to obtain the signal to be clipped. When the carrier parameter of the input signal does not meet the input condition of the first clipping module 11, the communication device may determine to enable the second clipping module 12 to perform the second clipping process on the input signal according to the carrier parameter of the input signal and the input condition.
  • a second clipping process may be performed on the input signal according to the difference between the carrier parameter of the input signal and the input condition to obtain the signal to be clipped, and the carrier parameter of the signal to be clipped satisfies the input condition. Then, the first clipping module 11 performs a first clipping process on the signal to be clipped according to clipping parameters corresponding to the input conditions to obtain a first clipped signal.
  • PAPR suppression is performed through the cooperation of two-stage clipping modules.
  • the above-mentioned embodiments of the present application can adapt to many scene, to ensure no leakage clipping, PAPR controllable, and protect the power amplifier.
  • the method of preconfiguring clipping parameters according to statistical characteristics of the present application is simpler to implement, which solves the problem of the complexity of static clipping algorithms in the related art.
  • the method further includes:
  • the received input signal is output to the input end of the first clipping module; the communication device adopts the first clipping module A third clipping process is performed on the input signal according to the clipping parameter corresponding to the carrier parameter of the input signal; wherein the clipping parameter is configured for different carriers according to the statistical characteristics of the peak distribution of the input signal.
  • the communication device can set the input conditions of the first clipping module 11 to be relatively broad, so that all input signals can meet the input conditions.
  • the second clipping module 12 is controlled to work in a bypass mode, without performing any processing on the input signal, and outputting the received input signal to the first clipping module 11 .
  • the second clipping module 12 is represented as a dashed box, and works in a bypass mode.
  • the corresponding clipping parameters can be configured on the first clipping module 11 according to the statistical characteristics of the peak distribution of the input signal, and the statistical characteristics of the peak distribution can be the carrier wave Features, such as inter-carrier power configuration, carrier modulation, and carrier spectrum occupancy.
  • different clipping parameters can be configured for different carriers according to the statistical characteristics of the peak distribution of the input signal.
  • the first clipping module 11 can be based on the carrier parameters of the input signal and the characteristics of the carrier wave.
  • the configured clipping parameters can adaptively adjust the weighting coefficient of the clipping noise, and perform clipping processing on the input signal according to the weighting coefficient of the clipping noise.
  • the carrier parameter may be a power ratio between carriers
  • the clipping parameter may be a clipping noise weighting coefficient
  • the communication device adopts the first clipping module according to the input signal The clipping parameter corresponding to the carrier parameter, and performing clipping processing on the input signal, including: the communication device adopts the first clipping module according to the weighting coefficient of the clipping noise corresponding to the power ratio between the carriers, to The input signal is clipped.
  • the adaptive weighting of the clipping noise by the first clipping module 11 is realized by configuring different clipping parameters for different carriers according to the statistical characteristics of the peak distribution of the input signal. Allocation, compared with the configuration of simple clipping parameters in the related art (typical scenario), the above-mentioned embodiments of the present application can adapt to multiple scenarios, ensure no missing clipping, controllable PAPR, and protect the power amplifier. Compared with the method that needs to extract each peak and perform clipping processing in severe scenarios, the method of preconfiguring clipping parameters according to statistical features of the present application is simpler to implement.
  • clipping noise can be allocated adaptively according to the power ratio between carriers, which can better allocate clipping noise and ensure system performance.
  • the PAPR suppression apparatuses in the embodiments shown in FIG. 8 and FIG. 9 may also include various implementations.
  • the first clipping module 11 may be an adaptive clipping module, or may not be an adaptive clipping module.
  • the second clipping module 12 may be a module for adaptively enabling clipping.
  • the input condition of the first clipping module is a static first inter-carrier statistical feature
  • the method further includes: the communication device performs a A clipping parameter corresponding to the first inter-carrier statistical feature is configured in the first clipping module.
  • the first inter-carrier statistical feature may be a long-term statistical feature between signal carriers, and the communication device may configure corresponding static clipping parameters on the first clipping module 11 according to the first inter-carrier statistical feature, and will not update after configuration .
  • the communication device can search for the corresponding static clipping parameter according to the carrier parameter of the input signal, and use the first clipping module 11 to clip the input signal according to the found static clipping parameter.
  • step S7011 when the carrier parameter of the input signal does not satisfy the input condition of the first clipping module, the second clipping module 12 of the communication device is based on the carrier parameter of the input signal and the input The second clipping process is performed on the input signal to obtain the to-be-clipped signal, which may include:
  • the second clipping module of the communication device pairs the input signal with the first inter-carrier statistical feature according to the carrier parameter of the input signal and the first inter-carrier statistical feature.
  • the input signal is subjected to a second clipping process to obtain the signal to be clipped, and the carrier parameter of the signal to be clipped satisfies the first inter-carrier statistical characteristics.
  • Step S702 the communication device adopts the first clipping module to perform the first clipping processing on the signal to be clipped to obtain the first clipping signal, which can include:
  • the communication device uses the first clipping module to perform first clipping processing on the signal to be clipped according to clipping parameters corresponding to the first inter-carrier statistical characteristics, to obtain the first clipped signal.
  • the communication device adopts the second clipping module 12 to perform a second clipping process on the input signal whose carrier parameters do not meet the statistical characteristics between the first carriers, and cuts out large signals in advance. A fraction of the peak power of the carrier.
  • the signal to be clipped input to the first clipping module 11 satisfies the entry condition (the first inter-carrier statistical feature) of the first clipping module 11, and the communication device can use the first clipping module according to the first inter-carrier statistics
  • the clipping parameter of the feature configuration performs the first clipping processing on the signal to be clipped, and no missing clipping occurs.
  • the second clipping module 12 adaptively starts the clipping process according to the relationship between the statistical characteristics between the input signal and the first carrier, and performs the clipping process on the input signal, It can adapt to the PAPR control of any scene signal, and the implementation is simple.
  • the input condition of the first clipping module is a dynamic second carrier statistical feature
  • the method further includes: the communication device periodically acquires a new second carrier statistical feature , and configure clipping parameters corresponding to the statistical features of the second carrier in the first clipping module according to the statistical features of the new second carrier.
  • the second inter-carrier statistical feature may be a short-term inter-carrier statistical feature obtained by periodic statistics.
  • the communication device can configure the corresponding clipping parameters on the first clipping module 11 according to the new second inter-carrier statistical characteristics obtained by statistics in each period, that is, according to the statistical period, periodically perform periodicity on the configured clipping parameters. 's update.
  • the time length of each cycle may be determined according to a specific application scenario, which is not limited in this application. Therefore, as time changes, the first clipping module 11 can also perform adaptive clipping processing on the input signal.
  • step S7011 when the carrier parameter of the input signal does not satisfy the input condition of the first clipping module, the second clipping module 12 of the communication device is based on the carrier parameter of the input signal and the input The second clipping process is performed on the input signal to obtain the to-be-clipped signal, which may include:
  • the second clipping module 12 of the communication device is based on the carrier parameter of the input signal and the second inter-carrier statistical characteristics.
  • a second clipping process is performed on the input signal to obtain the signal to be clipped, and the carrier parameter of the signal to be clipped satisfies the second inter-carrier statistical feature.
  • Step S702 the communication device uses the first clipping module to perform first clipping processing on the signal to be clipped to obtain a first clipped signal, which may include:
  • the communication device uses the first clipping module to perform a first clipping process on the signal to be clipped according to clipping parameters corresponding to the second inter-carrier statistical feature to obtain the first clipped signal.
  • the processing process of the input signal by the second clipping module 12 is the same as the processing process of the previous embodiment, except that the carrier of the input signal is determined as time changes.
  • the second inter-carrier statistical characteristic also changes with time.
  • the referenced second inter-carrier statistical feature also changes periodically with time.
  • the second clipping module 12 adaptively enables clipping processing according to the relationship between the statistical characteristics between the input signal and the second carrier, and performs clipping processing on the input signal.
  • the first clipping module 11 periodically counts the inter-carrier characteristics of the input signal, and updates the locally configured second inter-carrier statistical characteristics and corresponding clipping parameters according to the statistical inter-carrier characteristics, which can also implement adaptive clipping processing.
  • the carrier parameter of the input signal, the first inter-carrier statistic feature, and the second carrier statistic feature are inter-carrier power ratios.
  • the carrier parameter of the input signal, the first inter-carrier statistical feature, and the second carrier statistical feature may also be other carrier features such as the modulation mode of the carrier, the spectrum occupancy of the carrier, etc., which are not limited in this application.
  • the present application also provides a PAPR suppression method, which is applied to a communication device.
  • the communication device may be the RRU or AAU described above, or may also be the communication device shown in FIG. 3 or FIG. 7 , which is not limited in this application.
  • FIG. 10 shows a flowchart of a PAPR suppression method according to an embodiment of the present application.
  • the PAPR suppression method of the present application may include:
  • Step S100 the communication device performs a second clipping process on an input signal whose carrier parameter does not meet the input condition to obtain a signal to be clipped, and performs a first clipping process on the signal to be clipped to obtain a first clipped signal.
  • the input condition includes peak distribution characteristics of the input signal, and the carrier parameter of the signal to be clipped satisfies the input condition.
  • the peak distribution characteristics of the input signal may include statistical characteristics of the peak distribution of the input signal, and the peak distribution characteristics of the input signal are mainly affected by factors such as the power ratio between carriers of the input signal, the modulation method of the carrier, and the spectrum occupancy.
  • the communication device configures clipping parameters according to the statistical characteristics (input conditions) of the peak value distribution of the input signal, and when the carrier parameter of the input signal does not meet the input conditions, performs a second clipping process on the input signal, and obtains a waiting list that meets the input conditions.
  • the signal is clipped, and then the first clipping process is performed according to the clipping parameter corresponding to the input condition to obtain the first clipped signal.
  • the PAPR suppression method of the present application performs preprocessing (second clipping processing) on the input signal that does not satisfy the peak distribution characteristics, to obtain the to-be-clipped signal that satisfies the peak distribution characteristics, and then performs the first clipping processing on the to-be-clipped signal, The first clipped signal is obtained.
  • the above-mentioned embodiments of the present application can be adapted to multiple scenarios, ensuring no missing clipping, controllable PAPR, and protection Power amplifier; compared with the method that needs to extract each peak and perform clipping processing in severe scenes, the method of pre-configuring clipping parameters according to statistical characteristics and preprocessing the input signal in the present application is simpler to implement and solves the problem. It solves the technical problems that the static clipping algorithm in the related art is too complicated or the application scene is limited.
  • FIG. 11 shows a flowchart of a PAPR suppression method according to an embodiment of the present application.
  • the method may include:
  • Step S110 the communication device performs a second clipping process on an input signal whose carrier parameter does not meet the input conditions to obtain a signal to be clipped, and performs a first clipping process on the signal to be clipped to obtain a first clipped signal;
  • Step S111 the communication device performs a first clipping process on the input signal whose carrier parameter meets the input condition to obtain a first clipped signal.
  • step S110 For the process of step S110, reference may be made to the part about the introduction of step S100 above, which will not be repeated.
  • step S111 when the communication device determines that the carrier parameter of the input signal satisfies the input condition, it can directly perform the first clipping process on the input signal to obtain the first clipped signal.
  • the PAPR suppression method of the above-mentioned embodiments of the present application according to the relationship between the carrier parameters of the input signal and the input conditions, different clipping processes are adopted for the input signal, compared with the simple clipping parameter in the related art (typical scenario). configuration, the above-mentioned embodiments of the present application can adapt to multiple scenarios, ensure no leakage clipping, controllable PAPR, and protect the power amplifier; The feature pre-configures the clipping parameters and preprocesses the input signal, which is simpler to implement, and solves the technical problems of excessively complex static clipping algorithms or limited application scenarios in the related art.
  • step S100 the communication device performs a second clipping process on the input signal whose carrier parameter does not meet the input condition to obtain the signal to be clipped, which may include:
  • the communication device When the carrier parameter of the input signal does not meet the input condition, the communication device performs a second clipping process on the input signal according to the carrier parameter of the input signal and the input condition, to obtain the to-be-clipped wave signal.
  • the communication device may perform the second clipping process according to the difference between the carrier parameter of the input signal and the input condition.
  • the input condition as the inter-carrier power ratio as an example, combined with the example shown in Figure 5, it is assumed that the clipping parameter is configured according to the inter-carrier power ratio of 1:1, and when the inter-carrier power ratio of the input signal satisfies 1:1 , the first clipping process can be performed on the input signal according to the configured clipping parameters.
  • the communication device can perform a second clipping process on the input signal, and cut off part of the peak value of the high-power carrier in advance, so that the second clipping process enters the pending clipping process. Even if the signal is subjected to the first clipping processing using the clipping noise weighting coefficient configured when the inter-carrier power ratio is 1:1, no missing clipping will occur.
  • PAPR suppression method of the above-mentioned embodiments of the present application by adaptively enabling the second clipping process according to the relationship between the input signal and the input condition, and performing the second clipping process on the input signal, it is possible to adapt to any scene signal.
  • PAPR control, and the implementation is simple.
  • FIG. 12 shows a flowchart of a PAPR suppression method according to an embodiment of the present application.
  • Step S100 may include:
  • Step S121 when the carrier parameter of the input signal does not satisfy the first inter-carrier statistical feature, the communication device performs an analysis on the input signal according to the carrier parameter of the input signal and the first inter-carrier statistical feature.
  • the signal to be clipped is obtained, and the carrier parameter of the signal to be clipped satisfies the first inter-carrier statistical feature.
  • step S111 the communication device performs a first clipping process on the signal to be clipped to obtain a first clipped signal, which may include:
  • Step S122 the communication device performs a first clipping process on the signal to be clipped according to the clipping parameter corresponding to the first inter-carrier statistical feature to obtain the first clipped signal.
  • the method may further include:
  • Step S120 the communication device configures clipping parameters corresponding to the first inter-carrier statistical feature according to the first inter-carrier statistical feature.
  • the first inter-carrier statistical feature may be a long-term statistical feature between signal carriers, and the communication device may configure corresponding static clipping parameters according to the first inter-carrier statistical feature, and no longer perform the first inter-carrier statistical feature after the configuration. and the corresponding static clipping parameters are updated.
  • the communication device can search for the corresponding static clipping parameter according to the carrier parameter of the input signal, and perform the first clipping process on the input signal according to the found static clipping parameter.
  • the communication device may further perform a first inter-carrier statistical feature on the input signal according to the carrier parameter of the input signal and the first inter-carrier statistical feature.
  • the second clipping process is performed to obtain the signal to be clipped, and the carrier parameter of the signal to be clipped satisfies the first inter-carrier statistical feature.
  • a first clipping process is performed on the signal to be clipped according to the clipping parameter corresponding to the first inter-carrier statistical feature to obtain the first clipped signal.
  • the process of adaptively enabling clipping processing and performing clipping processing on the input signal according to the relationship between the statistical characteristics between the input signal and the first carrier can adapt to any scene signal.
  • PAPR control, and the implementation is simple.
  • FIG. 13 shows a flowchart of a PAPR suppression method according to an embodiment of the present application.
  • the input condition is a dynamic second carrier statistic.
  • the method may include:
  • Step S130 the communication device periodically acquires a new statistical feature of the second carrier, and configures clipping parameters corresponding to the statistical feature of the new second carrier according to the new statistical feature of the second carrier.
  • Step S100 (S110) may include:
  • Step S131 when the carrier parameter of the input signal does not satisfy the second inter-carrier statistical feature, the communication device performs a second analysis on the input signal according to the carrier parameter of the input signal and the second inter-carrier statistical feature. Clipping processing to obtain the signal to be clipped, and the carrier parameter of the signal to be clipped meets the statistical characteristics between the second carriers;
  • Step S111 the communication device performs a first clipping process on the signal to be clipped to obtain a first clipped signal, which may include:
  • Step S132 the communication device performs a first clipping process on the signal to be clipped according to the clipping parameter corresponding to the second inter-carrier statistical feature to obtain the first clipped signal.
  • the second inter-carrier statistical characteristics may be short-term inter-carrier statistical characteristics obtained by periodic statistics.
  • the communication device may configure the corresponding clipping parameter according to the new second inter-carrier statistical feature obtained by statistics in each period, that is, periodically update the configured clipping parameter according to the statistical period.
  • the time length of each cycle may be determined according to a specific application scenario, which is not limited in this application. Therefore, the first clipping process may also be a process of performing adaptive clipping processing on the input signal as time changes.
  • step S131 The specific process of the second clipping processing in step S131 is the same as the processing process described above, except that with the change of time, when judging whether the carrier parameter of the input signal satisfies the second inter-carrier statistical characteristics, the second inter-carrier statistical characteristics It also changes over time.
  • the referenced second inter-carrier statistical feature also changes periodically with time.
  • the PAPR suppression method of the above-mentioned embodiments of the present application through the process of adaptively enabling the second clipping process and performing the second clipping process on the input signal according to the relationship between the statistical characteristics between the input signal and the second carrier, the periodic The inter-carrier characteristics of the input signal are counted, and the locally configured second inter-carrier statistical characteristics and corresponding clipping parameters are updated according to the statistical inter-carrier characteristics, and an adaptive first clipping process can also be implemented.
  • the PAPR control of any scene signal can be adapted, and the implementation is simple.
  • the method includes:
  • the communication device performs a third clipping process on the input signal according to the clipping parameter corresponding to the carrier parameter of the input signal; wherein the clipping parameter is a statistical feature according to the peak distribution of the input signal, which is a different carrier wave.
  • the carrier parameter is a power ratio between carriers
  • the clipping parameter is a weighting coefficient of clipping noise.
  • the corresponding clipping parameters can be configured according to the statistical characteristics of the peak distribution of the input signal.
  • the statistical characteristics of the peak distribution can be carrier characteristics, such as inter-carrier power spectrum occupancy.
  • different clipping parameters can be configured for different carriers according to the statistical characteristics of the peak distribution of the input signal.
  • the communication device can configure the clipping parameters according to the carrier parameters of the input signal and the characteristics of the carrier. parameter, adaptively adjusts the weighting coefficient of the clipping noise, and performs clipping processing on the input signal according to the weighting coefficient of the clipping noise.
  • the PAPR suppression method of the above-mentioned embodiments of the present application by configuring different clipping parameters for different carriers according to the statistical characteristics of the peak distribution of the input signal, the adaptive weighted allocation of clipping noise by the communication device is realized, compared with Regarding the configuration of simple clipping parameters in the related art (typical scenario), the above-mentioned embodiments of the present application can be adapted to multiple scenarios, ensuring no missing clipping, controllable PAPR, and protecting the power amplifier. Compared with the method that needs to extract each peak and perform clipping processing in severe scenarios, the method of preconfiguring clipping parameters according to statistical features of the present application is simpler to implement.
  • Embodiments of the present application also provide an adaptive peak-to-average ratio PAPR suppression apparatus, which is applied to communication equipment.
  • FIG. 14 shows a block diagram of an apparatus for suppressing PAPR according to an embodiment of the present application. As shown in FIG. 14 , the apparatus may include:
  • the clipping unit 1400 is configured to perform a second clipping process on an input signal whose carrier parameter does not meet the input conditions to obtain a signal to be clipped, and perform a first clipping process on the signal to be clipped to obtain a first clipped signal;
  • the input condition includes peak distribution characteristics of the input signal, and the carrier parameter of the signal to be clipped satisfies the input condition.
  • the PAPR suppression device of the present application performs preprocessing (second clipping processing) on the input signal that does not satisfy the peak distribution characteristics, to obtain the to-be-clipped signal that satisfies the peak distribution characteristics, and then performs the first clipping processing on the to-be-clipped signal, The first clipped signal is obtained.
  • the above-mentioned embodiments of the present application can be adapted to multiple scenarios, ensuring no missing clipping, controllable PAPR, and protection Power amplifier; compared with the method that needs to extract each peak and perform clipping processing in severe scenes, the method of pre-configuring clipping parameters according to statistical characteristics and preprocessing the input signal in the present application is simpler to implement and solves the problem. It solves the technical problems that the static clipping algorithm in the related art is too complicated or the application scene is limited.
  • the clipping unit 1400 includes: a second clipping module, configured to, when the carrier parameter of the input signal does not meet the input condition, perform the following steps according to the carrier parameter of the input signal and The input condition performs a second clipping process on the input signal to obtain the signal to be clipped.
  • the apparatus further includes: a first clipping module, configured to perform a first clipping process on an input signal whose carrier parameter meets the input condition to obtain a first clipped signal.
  • the PAPR suppression device of the above-mentioned embodiments of the present application according to the relationship between the carrier parameters of the input signal and the input conditions, different clipping processes are adopted for the input signal, compared with the simple clipping parameter in the related art (typical scenario). configuration, the above-mentioned embodiments of the present application can adapt to multiple scenarios, ensure no leakage clipping, controllable PAPR, and protect the power amplifier; The feature pre-configures the clipping parameters and preprocesses the input signal, which is simpler to implement, and solves the technical problems of excessively complex static clipping algorithms or limited application scenarios in the related art.
  • the apparatus further includes: a third clipping module, configured to perform a third clipping process on the input signal according to a clipping parameter corresponding to a carrier parameter of the input signal; wherein , and the clipping parameter is configured for different carriers according to the statistical characteristics of the peak distribution of the input signal.
  • a third clipping module configured to perform a third clipping process on the input signal according to a clipping parameter corresponding to a carrier parameter of the input signal; wherein , and the clipping parameter is configured for different carriers according to the statistical characteristics of the peak distribution of the input signal.
  • the carrier parameter is a power ratio between carriers
  • the clipping parameter is a weighting coefficient of clipping noise
  • the PAPR suppression apparatus of the above-mentioned embodiments of the present application by configuring different clipping parameters for different carriers according to the statistical characteristics of the peak distribution of the input signal, the adaptive weighted distribution of the clipping noise by the communication device is realized, compared with Regarding the configuration of simple clipping parameters in the related art (typical scenario), the above-mentioned embodiments of the present application can be adapted to multiple scenarios, ensuring no missing clipping, controllable PAPR, and protecting the power amplifier. Compared with the method that needs to extract each peak and perform clipping processing in severe scenarios, the method of preconfiguring clipping parameters according to statistical features of the present application is simpler to implement.
  • the input condition is a static first inter-carrier statistical feature
  • the second clipping module is further configured to perform the first inter-carrier statistics when the carrier parameter of the input signal does not satisfy the first inter-carrier statistics feature, perform a second clipping process on the input signal according to the carrier parameter of the input signal and the statistical characteristics between the first carriers to obtain the signal to be clipped; the first clipping module is also used for A first clipping process is performed on the signal to be clipped according to the clipping parameter corresponding to the first inter-carrier statistical feature to obtain the first clipped signal.
  • the apparatus further includes: a first configuration module, configured to configure clipping parameters corresponding to the first inter-carrier statistical characteristics according to the first inter-carrier statistical characteristics.
  • PAPR suppression apparatus by adaptively enabling clipping processing and clipping the input signal according to the relationship between the statistical characteristics between the input signal and the first carrier, it is possible to adapt to any scene signal.
  • PAPR control, and the implementation is simple.
  • the input condition is a dynamic second carrier statistical feature
  • the apparatus further includes: a second configuration module, configured to periodically acquire a new second carrier statistical feature, and based on the new statistical feature of the second carrier Configure the clipping parameter corresponding to the new statistical feature of the second carrier of the second carrier.
  • the second clipping module is further configured to, when the carrier parameter of the input signal does not satisfy the second inter-carrier statistical characteristics, according to the carrier parameter of the input signal and the second The inter-carrier statistical feature performs a second clipping process on the input signal to obtain the to-be-clipped signal; the first clipping module is further configured to A first clipping process is performed on the signal to be clipped to obtain the first clipped signal.
  • the PAPR suppression device of the above-mentioned embodiments of the present application through the process of adaptively enabling the second clipping process and performing the second clipping process on the input signal according to the relationship between the statistical characteristics between the input signal and the second carrier, the periodic The inter-carrier characteristics of the input signal are counted, and the locally configured second inter-carrier statistical characteristics and corresponding clipping parameters are updated according to the statistical inter-carrier characteristics, and an adaptive first clipping process can also be implemented.
  • the PAPR control of any scene signal can be adapted, and the implementation is simple.
  • the carrier parameter, the first inter-carrier statistic feature and the second carrier statistic feature of the input signal are the inter-carrier power ratio.
  • An embodiment of the present application provides a PAPR suppression apparatus, including: a processor and a memory for storing instructions executable by the processor; wherein the processor is configured to implement the above method when executing the instructions.
  • Embodiments of the present application provide a non-volatile computer-readable storage medium on which computer program instructions are stored, and when the computer program instructions are executed by a processor, implement the above method.
  • Embodiments of the present application provide a computer program product, including computer-readable codes, or a non-volatile computer-readable storage medium carrying computer-readable codes, when the computer-readable codes are stored in a processor of an electronic device When running in the electronic device, the processor in the electronic device executes the above method.
  • a computer-readable storage medium may be a tangible device that can hold and store instructions for use by the instruction execution device.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
  • Computer-readable storage media include: portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read-only memory (Electrically Programmable Read-Only-Memory, EPROM or flash memory), static random access memory (Static Random-Access Memory, SRAM), portable compact disk read-only memory (Compact Disc Read-Only Memory, CD - ROM), Digital Video Disc (DVD), memory sticks, floppy disks, mechanically encoded devices, such as punch cards or raised structures in grooves on which instructions are stored, and any suitable combination of the foregoing .
  • RAM random access memory
  • ROM read only memory
  • EPROM erasable programmable read-only memory
  • EPROM Errically Programmable Read-Only-Memory
  • SRAM static random access memory
  • portable compact disk read-only memory Compact Disc Read-Only Memory
  • CD - ROM Compact Disc Read-Only Memory
  • DVD Digital Video Disc
  • memory sticks floppy disks
  • Computer readable program instructions or code described herein may be downloaded to various computing/processing devices from a computer readable storage medium, or to an external computer or external storage device over a network such as the Internet, a local area network, a wide area network and/or a wireless network.
  • the network may include copper transmission cables, fiber optic transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers.
  • a network adapter card or network interface in each computing/processing device receives computer-readable program instructions from a network and forwards the computer-readable program instructions for storage in a computer-readable storage medium in each computing/processing device .
  • the computer program instructions used to perform the operations of the present application may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or in one or more source or object code written in any combination of programming languages, including object-oriented programming languages such as Smalltalk, C++, etc., and conventional procedural programming languages such as the "C" language or similar programming languages.
  • the computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server implement.
  • the remote computer may be connected to the user's computer through any kind of network—including a Local Area Network (LAN) or a Wide Area Network (WAN)—or, may be connected to an external computer (eg, use an internet service provider to connect via the internet).
  • electronic circuits such as programmable logic circuits, Field-Programmable Gate Arrays (FPGA), or Programmable Logic Arrays (Programmable Logic Arrays), are personalized by utilizing state information of computer-readable program instructions.
  • Logic Array, PLA the electronic circuit can execute computer readable program instructions to implement various aspects of the present application.
  • These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer or other programmable data processing apparatus to produce a machine that causes the instructions when executed by the processor of the computer or other programmable data processing apparatus , resulting in means for implementing the functions/acts specified in one or more blocks of the flowchart and/or block diagrams.
  • These computer readable program instructions can also be stored in a computer readable storage medium, these instructions cause a computer, programmable data processing apparatus and/or other equipment to operate in a specific manner, so that the computer readable medium on which the instructions are stored includes An article of manufacture comprising instructions for implementing various aspects of the functions/acts specified in one or more blocks of the flowchart and/or block diagrams.
  • Computer readable program instructions can also be loaded onto a computer, other programmable data processing apparatus, or other equipment to cause a series of operational steps to be performed on the computer, other programmable data processing apparatus, or other equipment to produce a computer-implemented process , thereby causing instructions executing on a computer, other programmable data processing apparatus, or other device to implement the functions/acts specified in one or more blocks of the flowcharts and/or block diagrams.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more functions for implementing the specified logical function(s) executable instructions.
  • the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented in hardware (eg, circuits or ASICs (Application) that perform the corresponding functions or actions. Specific Integrated Circuit, application-specific integrated circuit)), or can be implemented by a combination of hardware and software, such as firmware.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Amplifiers (AREA)

Abstract

本申请涉及自适应峰均比PAPR抑制装置、方法以及通信设备。PAPR抑制装置包括:第一削波模块和第二削波模块,第二削波模块向第一削波模块输出满足第一削波模块的输入条件的待削波信号,输入条件包括输入信号的峰值分布特征;第一削波模块对待削波信号进行第一削波处理得到第一削波信号。通过两级削波模块的配合进行PAPR抑制,相比于相关技术(典型场景)中简单削波参数的配置,保证无漏削、PAPR可控,保护功放;相比于严苛场景中需要提取每一个峰值并进行削波处理的方式,本申请的根据统计特征预先配置削波参数的方式实现方式更简单。

Description

自适应峰均比PAPR抑制装置、方法以及通信设备 技术领域
本申请涉及通信技术领域,尤其涉及一种自适应峰均比PAPR抑制装置、方法以及通信设备。
背景技术
OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)是一种多载波调制技术,多载波之间是正交的,由于OFDM是由多个独立经过调制的子载波信号叠加而成的,当各个子载波相位相同或者相近时,叠加信号便会产生较大的瞬时功率峰值,由此带来较高的峰值平均功率比(PAPR,Peak to Average Power Ratio),也可称作峰均比。
若将高PAPR信号直接送入功率放大器,则会引起功放的非线性失真,产生新的频率分量,对解调结果产生影响,严重时甚至会烧毁功放。相关技术中,发射机在中频侧设计削波算法来降低PAPR,保护功放,提升功放效率。
发明内容
有鉴于此,提出了一种自适应峰均比PAPR抑制装置、方法以及通信设备,过两级削波模块的配合进行PAPR抑制,实现方式简单,适应多场景,保证无漏削、PAPR可控,保护功放。
第一方面,本申请的实施例提供了一种自适应峰均比PAPR抑制装置,所述装置包括:第一削波模块和第二削波模块,所述第二削波模块向所述第一削波模块输出满足所述第一削波模块的输入条件的待削波信号,所述输入条件包括输入信号的峰值分布特征;所述第一削波模块对所述待削波信号进行第一削波处理得到第一削波信号。
根据本申请提供的实施方式的PAPR抑制装置,通过两级削波模块的配合进行PAPR抑制,相比于相关技术(典型场景)中简单削波参数的配置,本申请的上述实施方式可以适应多场景,保证无漏削、PAPR可控,保护功放;相比于严苛场景中需要提取每一个峰值并进行削波处理的方式,本申请的根据统计特征预先配置削波参数的方式实现方式更简单,解决了相关技术中静态削波算法复杂度过高或应用场景受限的技术问题。
根据第一方面的第一种可能的实现方式中,所述第二削波模块用于获取输入信号,在所述输入信号的载波参数不满足所述第一削波模块的输入条件时,根据所述输入信号的载波参数和所述输入条件对所述输入信号进行第二削波处理,得到所述待削波信号。
根据第一方面、第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述第二削波模块用于获取所述输入信号,在所述输入信号的载波参数满足所述第一削波模块的输入条件时,将所述输入信号作为待削波信号输出至所述第一削波模块。
根据本申请上述实施方式的PAPR抑制装置,通过两个削波模块之间的配合,对输入信号采用不同的削波过程,实现自适应削波的过程,实现方式简单且可以适应更多的应用场景。
根据第一方面,在第三种可能的实现方式中,在旁路模式下,所述第二削波模块还用于获取所述输入信号,将所述输入信号输出至所述第一削波模块;
所述第一削波模块用于根据所述输入信号的载波参数对应的削波参数,对所述输入信号进行第三削波处理;其中,削波参数为根据输入信号的峰值分布的统计特征,为不同的载波配置的。
根据第一方面的第三种可能的实现方式,在第四种可能的实现方式中,所述载波参数为载波间功率配比,所述削波参数为削波噪声的加权系数。
根据本申请上述实施方式的PAPR抑制装置,通过根据输入信号的峰值分布的统计特征,为不同的载波配置不同的削波参数的方式,实现第一削波模块对削波噪声的自适应加权分配,相比于相关技术(典型场景)中简单削波参数的配置,本申请的上述实施方式可以适应多场景,保证无漏削、PAPR可控,保护功放。相比于严苛场景中需要提取每一个峰值并进行削波处理的方式,本申请的根据统计特征预先配置削波参数的方式实现方式更简单。
根据第一方面的第一种可能的实现方式,在第五种可能的实现方式中,所述第一削波模块的输入条件为静态的第一载波间统计特征,
所述第二削波模块用于在所述输入信号的载波参数不满足第一载波间统计特征时,根据所述输入信号的载波参数和所述第一载波间统计特征对所述输入信号进行第二削波处理,得到所述待削波信号;
所述第一削波模块用于根据与第一载波间统计特征对应的削波参数对所述待削波信号进行第一削波处理,得到所述第一削波信号。
据本申请上述实施方式的PAPR抑制装置,通过第二削波模块根据输入信号与第一载波间统计特征之间的关系自适应开启削波处理、以及对输入信号进行削波处理的过程,可以适应任何场景信号的PAPR控制,并且实现方式简单。
根据第一方面的第一种可能的实现方式,在第六种可能的实现方式中,所述第一削波模块的输入条件为动态的第二载波间统计特征,其中,所述第一削波模块用于对所述第二载波统计特征以及第二载波统计特征对应的削波参数进行周期性更新,
所述第二削波模块用于在所述输入信号的载波参数不满足第二载波间统计特征时,根据所述输入信号的载波参数和所述第二载波间统计特征对所述输入信号进行第二削波处理,得到所述待削波信号;
所述第一削波模块用于根据与第二载波间统计特征对应的削波参数对所述待削波信号进行第一削波处理,得到所述第一削波信号。
根据本申请上述实施方式的PAPR抑制装置,通过第二削波模块根据输入信号与第二载波间统计特征之间的关系自适应开启削波处理、以及对输入信号进行削波处理的过程,第一削波模块周期性统计输入信号的载波间特征,并根据统计的载波间特征更新本地配置的第二载波间统计特征以及对应的削波参数,也可以实现自适应的削波处理。通过两个可以进行自适应削波处理的模块的配合,能够适应任何场景信号的PAPR控制,并且实现方式简单。
根据第一方面的第五种或第六种可能的实现方式,在第七种可能的实现方式中,所述输入信号的载波参数、第一载波间统计特征以及第二载波统计特征包括载波间功率配比。
第二方面,本申请的实施例提供了一种通信设备,包括如第一方面中任意一种实现方式所述的自适应峰均比PAPR抑制装置。
第三方面,本申请的实施例提供了一种通信系统,所述通信系统包括基带单元BBU,所述通信系统还包括射频拉远单元RRU或有源天线处理单元AAU;如第一方面中任意一种实现方式所述的第一削波模块位于RRU或者AAU内,如第一方面中任意一种实现方式所述的第二削波模块位于BBU内;或者,如第一方面中任意一种实现方式所述第一削波模块和所述第二削波模块都位于RRU内或者AAU内。
第四方面,本申请的实施例提供了一种自适应峰均比PAPR抑制方法,所述方法应用于通信设备,所述方法包括:
所述通信设备对载波参数不满足输入条件的输入信号进行第二削波处理得到待削波信号,对待削波信号进行第一削波处理,得到第一削波信号;其中,所述输入条件包括输入信号的峰值分布特征,所述待削波信号的载波参数满足所述输入条件。
本申请的PAPR抑制方法通过对不满足峰值分布特征的输入信号进行预处理(第二削波处理),得到满足峰值分布特征的待削波信号,然后对待削波信号进行第一削波处理,得到第一削波信号。通过分步处理、两级削波的方式,相比于相关技术(典型场景)中简单削波参数的配置,本申请的上述实施方式可以适应多场景,保证无漏削、PAPR可控,保护功放;相比于严苛场景中需要提取每一个峰值并进行削波处理的方式,本申请的根据统计特征预先配置削波参数、并对输入信号进行预处理的方式,实现方式更简单,解决了相关技术中静态削波算法复杂度过高或应用场景受限的技术问题。
根据第四方面的第一种可能的实现方式中,所述通信设备对载波参数不满足输入条件的输入信号进行第二削波处理得到待削波信号,包括:
所述通信设备在所述输入信号的载波参数不满足所述输入条件时,根据所述输入信号的载波参数和所述输入条件对所述输入信号进行第二削波处理,得到所述待削波信号。
根据第四方面或第四方面的第一种可能的实现方式,在第二种可能的实现方式中,所述方法还包括:所述通信设备对载波参数满足输入条件的输入信号进行第一削波处理,得到第一削波信号。
根据本申请上述实施方式的PAPR抑制方法,根据输入信号的载波参数以及输入条件之间的关系,对输入信号采用不同的削波过程,相比于相关技术(典型场景)中简单削波参数的配置,本申请的上述实施方式可以适应多场景,保证无漏削、PAPR可控,保护功放;相比于严苛场景中需要提取每一个峰值并进行削波处理的方式,本申请的根据统计特征预先配置削波参数、并对输入信号进行预处理的方式,实现方式更简单,解决了相关技术中静态削波算法复杂度过高或应用场景受限的技术问题。
根据第四方面的第三种可能的实现方式中,所述方法还包括:
所述通信设备根据所述输入信号的载波参数对应的削波参数,对所述输入信号进行第三削波处理;其中,削波参数为根据输入信号的峰值分布的统计特征,为不同的载波配置的。
根据第四方面的第三种可能的实现方式,在第四种可能的实现方式中,所述载波参数为载波间功率配比,削波参数为削波噪声的加权系数。
根据本申请上述实施方式的PAPR抑制方法,通过根据输入信号的峰值分布的统计特征,为不同的载波配置不同的削波参数的方式,实现通信设备对削波噪声的自适应加权分配,相比于相关技术(典型场景)中简单削波参数的配置,本申请的上述实施方式可以适应多场景,保证无漏削、PAPR可控,保护功放。相比于严苛场景中需要提取每一个峰值并进行削波处理的方式,本申请的根据统计特征预先配置削波参数的方式实现方式更简单。
根据第四方面的第一种可能的实现方式,在第五种可能的实现方式中,所述输入条件为静态的第一载波间统计特征,
所述通信设备在所述输入信号的载波参数不满足所述输入条件时,根据所述输入信号的载波参数和所述输入条件对所述输入信号进行第二削波处理,得到所述待削波信号,包括:
所述通信设备在所述输入信号的载波参数不满足所述第一载波间统计特征时,根据所述输入信号的载波参数和所述第一载波间统计特征对所述输入信号进行第二削波处理,得到所述待削波信号;
所述通信设备对所述待削波信号进行第一削波处理,得到第一削波信号,包括:
所述通信设备根据与第一载波间统计特征对应的削波参数对所述待削波信号进行第一削波处理,得到所述第一削波信号。
根据第四方面的第五种可能的实现方式,在第六种可能的实现方式中,所述方法还包括:
所述通信设备根据所述第一载波间统计特征配置所述第一载波间统计特征对应的削波参数。
根据本申请上述实施方式的PAPR抑制方法,通过根据输入信号与第一载波间统计特征之间的关系自适应开启削波处理、以及对输入信号进行削波处理的过程,可以适应任何场景信 号的PAPR控制,并且实现方式简单。
根据第四方面的第一种可能的实现方式,在第七种可能的实现方式中,所述输入条件为动态的第二载波统计特征,所述方法还包括:
所述通信设备周期性的获取新的第二载波统计特征,并根据新的第二载波统计特征配置新的第二载波统计特征对应的削波参数。
根据第四方面的第七种可能的实现方式,在第八种可能的实现方式中,所述通信设备在所述输入信号的载波参数不满足所述输入条件时,根据所述输入信号的载波参数和所述输入条件对所述输入信号进行第二削波处理,得到所述待削波信号,包括:
所述通信设备在所述输入信号的载波参数不满足第二载波间统计特征时,根据所述输入信号的载波参数和所述第二载波间统计特征对所述输入信号进行第二削波处理,得到所述待削波信号;
所述通信设备对所述待削波信号进行第一削波处理,得到第一削波信号,包括:
所述通信设备根据与第二载波间统计特征对应的削波参数对所述待削波信号进行第一削波处理,得到所述第一削波信号。
根据本申请上述实施方式的PAPR抑制方法,通过根据输入信号与第二载波间统计特征之间的关系自适应开启第二削波处理、以及对输入信号进行第二削波处理的过程,周期性统计输入信号的载波间特征,并根据统计的载波间特征更新本地配置的第二载波间统计特征以及对应的削波参数,也可以实现自适应的第一削波处理。通过两个可以进行自适应削波处理的过程的配合,能够适应任何场景信号的PAPR控制,并且实现方式简单。
根据第四方面的第五种至第八种可能的实现方式中的任意一种,在第九种可能的实现方式中,所述输入信号的载波参数、第一载波间统计特征以及第二载波统计特征为载波间功率配比。
第五方面,本申请的实施例提供了一种自适应峰均比PAPR抑制装置,所述装置应用于通信设备,所述装置包括:
削波单元,用于对载波参数不满足输入条件的输入信号进行第二削波处理得到待削波信号,对待削波信号进行第一削波处理,得到第一削波信号;其中,所述输入条件包括输入信号的峰值分布特征,所述待削波信号的载波参数满足所述输入条件。
本申请的PAPR抑制装置通过对不满足峰值分布特征的输入信号进行预处理(第二削波处理),得到满足峰值分布特征的待削波信号,然后对待削波信号进行第一削波处理,得到第一削波信号。通过分步处理、两级削波的方式,相比于相关技术(典型场景)中简单削波参数的配置,本申请的上述实施方式可以适应多场景,保证无漏削、PAPR可控,保护功放;相比于严苛场景中需要提取每一个峰值并进行削波处理的方式,本申请的根据统计特征预先配置 削波参数、并对输入信号进行预处理的方式,实现方式更简单,解决了相关技术中静态削波算法复杂度过高或应用场景受限的技术问题。
根据第五方面的第一种可能的实现方式中,所述削波单元包括:
第二削波模块,用于在所述输入信号的载波参数不满足所述输入条件时,根据所述输入信号的载波参数和所述输入条件对所述输入信号进行第二削波处理,得到所述待削波信号。
根据第五方面或者第五方面的第一种可能的实现方式,在第二种可能的实现方式中,所述装置还包括:
第一削波模块,用于对载波参数满足输入条件的输入信号进行第一削波处理,得到第一削波信号。
根据本申请上述实施方式的PAPR抑制装置,根据输入信号的载波参数以及输入条件之间的关系,对输入信号采用不同的削波过程,相比于相关技术(典型场景)中简单削波参数的配置,本申请的上述实施方式可以适应多场景,保证无漏削、PAPR可控,保护功放;相比于严苛场景中需要提取每一个峰值并进行削波处理的方式,本申请的根据统计特征预先配置削波参数、并对输入信号进行预处理的方式,实现方式更简单,解决了相关技术中静态削波算法复杂度过高或应用场景受限的技术问题。
根据第五方面的第三种可能的实现方式中,所述装置还包括:
第三削波模块,用于根据所述输入信号的载波参数对应的削波参数,对所述输入信号进行第三削波处理;其中,削波参数为根据输入信号的峰值分布的统计特征,为不同的载波配置的。
根据第五方面的第三种可能的实现方式,在第四种可能的实现方式中,所述载波参数为载波间功率配比,削波参数为削波噪声的加权系数。
根据本申请上述实施方式的PAPR抑制装置,通过根据输入信号的峰值分布的统计特征,为不同的载波配置不同的削波参数的方式,实现通信设备对削波噪声的自适应加权分配,相比于相关技术(典型场景)中简单削波参数的配置,本申请的上述实施方式可以适应多场景,保证无漏削、PAPR可控,保护功放。相比于严苛场景中需要提取每一个峰值并进行削波处理的方式,本申请的根据统计特征预先配置削波参数的方式实现方式更简单。
根据第五方面的第一种可能的实现方式,在第五种可能的实现方式中,所述输入条件为静态的第一载波间统计特征,
所述第二削波模块还用于在所述输入信号的载波参数不满足所述第一载波间统计特征时,根据所述输入信号的载波参数和所述第一载波间统计特征对所述输入信号进行第二削波处理,得到所述待削波信号;
所述第一削波模块还用于根据与第一载波间统计特征对应的削波参数对所述待削波信号进行第一削波处理,得到所述第一削波信号。
根据第五方面的第五种可能的实现方式,在第六种可能的实现方式中,所述装置还包括:
第一配置模块,用于根据所述第一载波间统计特征配置所述第一载波间统计特征对应的削波参数。
根据本申请上述实施方式的PAPR抑制装置,通过根据输入信号与第一载波间统计特征之间的关系自适应开启削波处理、以及对输入信号进行削波处理的过程,可以适应任何场景信号的PAPR控制,并且实现方式简单。
根据第五方面的第一种可能的实现方式,在第七种可能的实现方式中,所述输入条件为动态的第二载波统计特征,所述装置还包括:
第二配置模块,用于周期性的获取新的第二载波统计特征,并根据新的第二载波统计特征配置新的第二载波统计特征对应的削波参数。
根据第五方面的第七种可能的实现方式,在第八种可能的实现方式中,所述第二削波模块还用于在所述输入信号的载波参数不满足第二载波间统计特征时,根据所述输入信号的载波参数和所述第二载波间统计特征对所述输入信号进行第二削波处理,得到所述待削波信号;
所述第一削波模块还用于根据与第二载波间统计特征对应的削波参数对所述待削波信号进行第一削波处理,得到所述第一削波信号。
根据本申请上述实施方式的PAPR抑制装置,通过根据输入信号与第二载波间统计特征之间的关系自适应开启第二削波处理、以及对输入信号进行第二削波处理的过程,周期性统计输入信号的载波间特征,并根据统计的载波间特征更新本地配置的第二载波间统计特征以及对应的削波参数,也可以实现自适应的第一削波处理。通过两个可以进行自适应削波处理的过程的配合,能够适应任何场景信号的PAPR控制,并且实现方式简单。
根据第五方面的第五种至第八种可能的实现方式中的任意一种,在第九种可能的实现方式中,所述输入信号的载波参数、第一载波间统计特征以及第二载波统计特征为载波间功率配比。
第六方面,本申请的实施例提供了一种自适应峰均比PAPR抑制装置,包括:
处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为执行所述指令时实现第四方面或第四方面的任意一种实现方式所述的方法。
第七方面,本申请的实施例提供了一种非易失性计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现第四方面或第四方面的任意一种实现方式所述的方法。
第八方面,本申请的实施例提供了一种终端设备,该终端设备可以执行上述第四方面或 者第四方面的多种可能的实现方式中的一种或几种的PAPR抑制方法。
第九方面,本申请的实施例提供了一种计算机程序产品,包括计算机可读代码,或者承载有计算机可读代码的非易失性计算机可读存储介质,当所述计算机可读代码在电子设备中运行时,所述电子设备中的处理器执行上述第四方面或者第四方面的多种可能的实现方式中的一种或几种的PAPR抑制方法。
本申请的这些和其他方面在以下(多个)实施例的描述中会更加简明易懂。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本申请的示例性实施例、特征和方面,并且用于解释本申请的原理。
图1a和图1b分别示出相关技术中削波场景的示例。
图2示出根据本申请一实施例的PAPR抑制装置的框图。
图3示出根据本申请一实施例的应用场景的示意图。
图4示出根据本申请一实施例的PAPR抑制装置的框图。
图5示出根据本申请一实施例的PAPR抑制装置的框图。
图6示出根据本申请一实施例的PAPR抑制装置的框图。
图7示出根据本申请一实施例的通信设备的框图。
图8示出根据本申请一实施例的PAPR抑制方法的流程图。
图9示出根据本申请一实施例的PAPR抑制方法的流程图。
图10示出根据本申请一实施例的PAPR抑制方法的流程图。
图11示出根据本申请一实施例的PAPR抑制方法的流程图。
图12示出根据本申请一实施例的PAPR抑制方法的流程图。
图13示出根据本申请一实施例的PAPR抑制方法的流程图。
图14示出根据本申请一实施例的PAPR抑制装置的框图。
具体实施方式
以下将参考附图详细说明本申请的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本申请,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本申请同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本申请的主旨。
名词解释:
削波:针对峰值较大的信号,设置一个门限,对超过门限的峰值进行抑制,削峰的过程即称为削波。
削波噪声:原始信号与削波门限的差值。
载波参数:信号的载波的特征参数,比如,载波的调制方式、频谱占用情况、功率谱密度,或者载波间瞬时信息等,载波间瞬时信息可以包括载波间功率配比等。
其中,载波的调制方式可以是指对载波承载数据的相位、幅度等不同的调制方式,载波的频谱占用情况可以是指载波占用的频谱宽度、载波频点的位置等。载波间瞬时信息可以是指某一时刻载波间参数关系的信息,载波间功率配比可以是指不同载波之间功率配置的比例。
载波间统计特征:对一定时间内的输入信号的载波之间的参数的关系的统计结果。
若按照最严苛的场景来设计中频削波算法,实现开销大,复杂度高;若按照典型场景来设计中频削波算法,虽然降低了实现复杂度,但其适应性较差,当信号峰值特征变化时会产生漏削,影响功放鲁棒性。
图1a和图1b分别示出相关技术中削波场景的示例。举例来说,严苛场景下,输入信号的功率特性开启,导致输入信号的峰值分布变得很密,如图1a所示。此时,按最严苛场景削波,需要对提取出的每一个峰值都进行削波处理,实现起来复杂度高,开销大。典型场景下,输入信号的功率特性未开启,输入信号峰值分布特征未发生变化(或变化不大),输入信号的峰值分布较稀疏,如图1b所示。此时,按照典型场景设计进行削波处理即可,但削波处理方法适用场景受限,应用在复杂场景下可能导致部分峰值漏削。
因此,本申请要解决的技术问题为相关技术中的中频静态削波算法复杂度过高或应用场景受限。
为了解决上述技术问题,本申请提出了一种自适应峰均比PAPR抑制装置。图2示出根据本申请一实施例的PAPR抑制装置的框图。图3示出根据本申请一实施例的应用场景的示意图。
在图3所示的应该场景中,通信设备可以包括BBU(Building Baseband Unit,基带单元),以及RRU(Radio Remote Unit,射频拉远单元)和/或AAU(Active Antenna Unit,有源天线处理单元)。随着3G(3rd-Generation,第三代移动通信技术)的到来,出现了基带单元和射频单元分离的基站,这种基站被称为分布式基站,基带部分被称为BBU,而射频单元被称为RRU。RRU可以在机房的墙壁上挂着,BBU安装在标准机柜内,RRU和天线之间通过馈线连接;或者RRU安装在塔上,BBU和RRU之间通过光纤连接,RRU和天线之间通过跳线连接。进入4G(the 4th generation,第四代移动通信技术)之后,传统的一体的宏基站完全的被BBU+RRU+天线的模式取代,还有一些BBU被统一的放在一个机房之内,组成了BBU池。5G(5th-Generation,第五代移动通信技术)引入了Massive MIMO(multiple-in multiple-out,多进多出)技术,因此出现了AAU。MIMO越高阶,则需要天线越来越多,天线越来越多导致馈线也就越来越多,RRU上的馈线接口也就越多,而这样工艺的复杂度就越来越高。馈线本身还有一定的损耗,这会影响部分系统性能。因此,5G将RRU和原本的无源天线集成为一体,也就形成了最新的AAU。
本申请提供的实施方式的PAPR抑制装置可以包括图2所示的第一削波模块11和第二削波模块12。如图2所示,所述第二削波模块12的输入端用于接收输入信号,所述第二削波模块12的输出端连接所述第一削波模块11的输入端,第一削波模块11的输出端输出削波后的信号。
在一种可能的实现方式中,所述输入条件包括输入信号的峰值分布特征。其中,输入信号的峰值分布特征可以包括输入信号的峰值分布的统计特征,输入信号的峰值分布特征主要受输入信号的载波间功率配比、载波调制方式、频谱占用情况等因素的影响。其中,载波间功率配比可以是指不同载波之间功率配置的比例,载波的调制方式可以是指对载波承载数据的相位、幅度等不同的调制方式,载波的频谱占用情况可以是指载波占用的频谱宽度、载波频点的位置等。
也就是说,第一削波模块11上可以包括根据输入信号的峰值分布的统计特征而配置的削波参数,在输入信号的载波参数满足输入条件时,可以直接由第一削波模块11根据输入信号的载波参数以及削波参数对输入信号进行第一削波处理。其中,在一种可能的实现方式中,削波参数可以是指与削波噪声的分配方式相关的数据,比如说,对不同载波进行削波时的削波噪声分配的比例,或者说,对不同载波进行削波时不同载波对应的削波噪声的加权系数。
举例来说,假设输入信号的载波间功率配比为1:1,第一削波模块11上配置了在输入信号的载波间功率配比为1:1的情况下,削波时的噪声分配比例也是1:1。在根据输入信号的载波参数确定输入信号的载波间功率配比为1:1时,第一削波模块11可以根据已经配置的削波参数(削波噪声分配比例1:1)对输入信号进行第一削波处理。
其中,所述第二削波模块12可以向所述第一削波模块11输出满足所述第一削波模块11的输入条件的待削波信号,所述第一削波模块可以对所述待削波信号进行第一削波处理得到第一削波信号。
在一种可能的实现方式中,第二削波模块12用于根据输入信号的载波参数是否满足第一削波模块11的输入条件,确定是否开启对所述输入信号的第二削波处理。
在一种可能的实现方式中,第二削波模块12用于获取所述输入信号,在所述输入信号的载波参数满足所述第一削波模块11的输入条件时,将所述输入信号作为待削波信号输出至所述第一削波模块11。举例来说,第二削波模块12在输入信号的载波参数满足第一削波模块11的输入条件时,可以不开启对输入信号的第二削波处理,或者说,关闭对输入信号的第二削波处理,也就是说,第二削波模块12在输入信号的载波参数满足第一削波模块11的输入条件时,可以不对输入信号进行第二削波处理。
在另一种可能的实现方式中,所述第二削波模块12用于获取输入信号,在所述输入信号的载波参数不满足所述第一削波模块11的输入条件时,根据所述输入信号的载波参数和所述输入条件对所述输入信号进行第二削波处理,得到所述待削波信号。举例来说,第二削波模块12在输入信号的载波参数不满足第一削波模块11的输入条件时,可以确定开启对输入信号的第二削波处理。具体的,可以对输入信号进行第二削波处理,进行第二削波处理后的待 削波信号的载波参数满足第一削波模块11的输入条件。
也就是说,第二削波模块12可以用于在输入信号的载波参数不满足第一削波模块11的输入条件,对输入信号进行预处理(第二削波处理),预处理后的待削波信号的载波参数满足第一削波模块11的输入条件,从而可以由第一削波模块11对待削波信号进行第一削波处理,得到第一削波信号。
在一种可能的实现方式中,第一削波模块11可以位于中频侧的RRU或者AAU中,第二削波模块12可以在基带侧的BBU内,也可以位于中频侧的RRU或者AAU中。通过第一削波模11和第二削波模块12的配合实现对输入信号的中频削波处理。
根据本申请提供的实施方式的PAPR抑制装置,通过两级削波模块的配合进行PAPR抑制,相比于相关技术(典型场景)中简单削波参数的配置,本申请的上述实施方式可以适应多场景,保证无漏削、PAPR可控,保护功放;相比于严苛场景中需要提取每一个峰值并进行削波处理的方式,本申请的根据统计特征预先配置削波参数的方式实现方式更简单,解决了相关技术中静态削波算法复杂度过高或应用场景受限的技术问题。
在另一种可能的实现方式中,在旁路模式下,第二削波模块12还用于获取输入信号,将输入信号输出至第一削波模块11;第一削波模块11用于根据输入信号的载波参数对应的削波参数,对输入信号进行第三削波处理;其中,削波参数为根据输入信号的峰值分布的统计特征,为不同的载波配置的。或者,也可以不部署第二削波模块12,第一削波模块11直接获取输入信号,并根据输入信号的载波参数对应的削波参数,对输入信号进行第三削波处理。
在一种可能的实现方式中,载波参数可以为载波间功率配比,削波参数可以为削波噪声的加权系数,第一削波模块11用于根据载波间功率配比对应的削波参数确定削波噪声的加权系数。
在本实施方式中,削波参数为根据输入信号的峰值分布的统计特征为不同的载波配置的,第一削波模块可以根据输入信号的载波间功率配比自适应调整削波噪声的加权系数,并根据削波噪声的加权系数对所述输入信号进行第三削波处理。
根据本申请上述实施方式的PAPR抑制装置,通过根据输入信号的峰值分布的统计特征,为不同的载波配置不同的削波参数的方式,实现第一削波模块11对削波噪声的自适应加权分配,相比于相关技术(典型场景)中简单削波参数的配置,本申请的上述实施方式可以适应多场景,保证无漏削、PAPR可控,保护功放。相比于严苛场景中需要提取每一个峰值并进行削波处理的方式,本申请的根据统计特征预先配置削波参数的方式实现方式更简单。
另外,根据本申请上述实施方式的PAPR抑制装置,可以根据载波间功率配比自适应进行削波噪声的分配,可以更好的分配削波噪声,保证系统性能。下面分几类不同的实施方式对本申请的PAPR抑制装置进行详细的说明。
第二削波模块12旁路,第一削波模块11自适应削波。
图4示出根据本申请一实施例的PAPR抑制装置的框图。
在本实施方式中,第一削波模块11的输入条件可以设置的比较宽泛,使得所有的输入信号都可以满足输入条件,这样,第二削波模块12可以工作在旁路模式,不对输入信号进行任何处理,第二削波模块12可以获取输入信号后,直接将输入信号输出至第一削波模块11的输入端。如图4所示,第二削波模块12表示为虚线框,工作在旁路模式。
或者,在本实施方式中,也可以不部署第二削波模块12,只部署第一削波模块11。第一削波模块11可以直接获取输入信号,并根据输入信号的载波参数对应的削波参数,对输入信号进行第三削波处理。
对于第一削波模块11,根据上文可知,可以根据统计的输入信号的峰值分布的统计特征在第一削波模块11上配置对应的削波参数,所述峰值分布的统计特征可以为载波特征,比如说,载波间功率配置、载波的调制方式、载波的频谱占用情况。在本申请的实施方式中,可以根据输入信号的峰值分布的统计特征,为不同的载波配置不同的削波参数,这样,第一削波模块11可以根据输入信号的载波参数以及根据载波的统计特征配置的削波参数,自适应对输入信号进行第三削波处理。
在一种可能的实现方式中,可以通过表的形式记录输入信号的不同载波以及不同载波对应的削波参数。这样,第一削波模块11可以根据输入信号的载波参数查表即可获得对应的削波参数。
比如说,以载波间功率配比为例,如图4所示,假设根据统计载波间功率配比包括1:2、1:1,可以在第一削波模块11上配置与1:2和1:1分别对应的削波参数,比如说,可以配置载波间功率配比为1:2时,对应的削波噪声的加权系数为1:2,载波间功率配比为1:1时,对应的削波噪声的加权系数为1:1。这样,在第一削波模块11接收到输入信号,如果根据输入信号的瞬时信息确定输入信号的载波间功率配比为1:2时,第一削波模块11可以采用削波噪声的加权系数1:2分别对输入信号进行第三削波处理,也就是说,削波时载波间的削波噪声的分配比例为1:2,如图4所示,载波间功率配比为1:2时,在削波时,功率低的输入信号对应的削波噪声低(1),功率高的输入信号对应的削波噪声高(2)。如果根据输入信号的瞬时信息确定输入信号的载波间功率配比1:1,可以采用削波噪声的加权系数1:1分别对输入信号进行第三削波处理,也就是说,削波时载波间的削波噪声的分配比例为1:1,如图4所示,载波间功率配比为1:1时,在削波时,载波的削波噪声也是1:1的关系,也就是为两个载波分配的削波噪声相同。需要说明的是,图4所示的第一削波模块11仅仅是本申请的一些示例,不以任何方式限制本申请,还可以根据其他载波间功率配比(比如说,1:5,1:10,等等)设置对应的削波参数,以及还可以根据载波间的其他瞬时信息的统计特征配置对应的削波参数,比如说,可以根据载波间的调制方式、频谱占用情况等瞬时信息的统计特征配置对应的削波参数。
根据本申请上述实施方式的PAPR抑制装置,通过根据输入信号的峰值分布的统计特征,为不同的载波配置不同的削波参数的方式,实现第一削波模块11对削波噪声的自适应加权分 配,相比于相关技术(典型场景)中简单削波参数的配置,本申请的上述实施方式可以适应多场景,保证无漏削、PAPR可控,保护功放。相比于严苛场景中需要提取每一个峰值并进行削波处理的方式,本申请的根据统计特征预先配置削波参数的方式实现方式更简单。
另外,根据本申请上述实施方式的PAPR抑制装置,可以根据载波间功率配比自适应进行削波噪声的分配,可以更好的分配削波噪声,保证系统性能。
在本发明提供的另一实施例中,可以在通信设备中部署第二削波模块,或者通信设备中已部署的第二削波模块根据输入信号的载波参数以及输入条件确定是否开启削波,不对信号进行旁路。在这一实现方式下可以由第二削波模块向第一削波模块输出满足第一削波模块的输入条件的待削波信号,第一削波模块对待削波信号进行第一削波处理得到第一削波信号。其中,所述第二削波模块用于在所述输入信号的载波参数不满足所述第一削波模块的输入条件时,根据所述输入信号的载波参数和所述输入条件对所述输入信号进行第二削波处理,得到所述待削波信号;在所述输入信号的载波参数满足所述第一削波模块的输入条件时,将所述输入信号作为待削波信号输出至所述第一削波模块。
也就是说,在输入信号的载波参数不满足第一削波模块11的输入条件时,第二削波模块12根据输入信号的载波参数和输入条件对输入信号进行第二削波处理,得到待削波信号,待削波信号的载波参数可以满足第一削波模块的输入条件。然后,由第一削波模块11对待削波信号进行第一削波处理,得到第一削波信号。
根据本申请上述实施方式的PAPR抑制装置,通过两个削波模块之间的配合,实现自适应削波的过程,实现方式简单且可以适应更多的应用场景。
本实施方式的PAPR抑制装置还可以包括多种不同的实现方式,比如说,第一削波模块11可以是自适应削波的模块、也可以不是自适应削波的模块,第二削波模块12可以是自适应开启削波的模块。
第二削波模块12自适应开启,第一削波模块11静态削波。
在本实施方式中,所述第一削波模块的输入条件可以为静态的第一载波间统计特征,所述第二削波模块用于在所述输入信号的载波参数不满足第一载波间统计特征时,根据所述输入信号的载波参数和所述第一载波间统计特征对所述输入信号进行第二削波处理,得到所述待削波信号,所述待削波信号的载波参数满足所述第一载波间统计特征;所述第一削波模块用于根据与第一载波间统计特征对应的削波参数对所述待削波信号进行第一削波处理,得到所述第一削波信号。
其中,第一载波间统计特征可以为信号的载波间的长期统计特征,在第一削波模块11上,可以根据第一载波间统计特征配置对应的静态削波参数,配置后不再对第一载波间统计特征和对应的静态削波参数进行更新,因此,第一载波间统计特征为静态的,第一载波间统计特征对应的削波参数为静态削波参数。这样,第一削波模块11可以根据输入信号的载波参数查找对应的静态削波参数,根据查找到的静态削波参数对输入信号进行第一削波处理。
在本实施方式中,第二削波模块12负责对载波参数不满足第一载波间统计特征的输入信号进行第二削波处理,得到满足第一载波间统计特征的待削波信号。这样,输入第一削波模块11的待削波信号是满足第一削波模块11的入口条件(第一载波间统计特征)的,第一削波模块11可以根据与第一载波间统计特征对应的削波参数对第一削波信号进行第一削波处理。
为了得到满足第一载波间统计特征的待削波信号,第二削波模块12可以根据输入信号的载波参数和所述第一载波间统计特征对所述输入信号进行第二削波处理,比如说,第二削波模块12可以根据输入信号的载波参数与第一载波间统计特征之间的差异进行第二削波处理。以第一载波间统计特征为载波间功率配比为例,假设第一削波模块11上的削波参数为根据载波间功率配比为1:1配置的,输入第一削波模块11的输入信号的载波间功率配比满足1:1时,可以根据已经配置的削波参数对输入信号进行第一削波处理,在第二削波模块12的输入信号的载波间功率配比不满足1:1时,第二削波模块12可以对输入信号进行第二削波处理,提前削掉大功率载波的一部分峰值,使得第二削波处理后进入第一削波模块的待削波信号,即使采用按照载波间功率配比为1:1时配置的削波噪声加权系数进行第一削波处理,也不会产生漏削。
图5示出根据本申请一实施例的PAPR抑制装置的框图。在图5所示的示例中,第一削波模块11上根据载波间功率配比为1:1时配置的静态削波参数为:削波噪声的加权系数1:1。第一削波模块11处于开启状态。第二削波模块12在输入信号的载波参数(载波间功率配比)与第一载波间统计特征不同时,也就是,输入信号的载波间功率配比不满足第一载波间统计特征(载波间功率配比1:1),第二削波模块12可以对输入信号进行第二削波处理,提前消掉大功率载波的一部分峰值,使得第二削波处理后进入第一削波模块11的待削波信号,即使采用按照载波间功率配比为1:1时配置的削波噪声加权系数进行第一削波处理,也不会产生漏削。
如图5所示,展示了两种输入信号的载波参数不满足第一载波间统计特征的示例,以第一载波间统计特征为载波间功率配比为例,图5所述的场景2中,载波2将自己的功率借给了载波1,造成载波1带宽内功率增大,导致载波1和载波2的载波间功率配比与1:1存在偏差,第一削波模块11会有漏削,此时第二削波模块12开启,对载波1进行削波,提前对消掉一部分峰值,保证送入第一削波模块11的待削波信号满足峰值分布特征,保证第一削波模块11无漏削;载波2因为是功率出借方,峰均比对功放来说没有问题,所以第二削波模块12不对载波2削波,直接送入第一削波模块11。换言之,图5所示的场景2中,第二削波模块12削掉载波1的部分功率,使得载波1和载波2的峰均比满足1:1后,送入第一削波模块11。
以第一载波间统计特征为功率谱密度为例,图5所示的场景1中,载波1内,部分带宽(虚线5M)的功率借给了另外的带宽(窄实线5M),造成图5所示的窄实线带宽内功率增大,第一削波模块11会有漏削,此时第二削波模块12开启,对这个载波1进行削波,提前对消掉一部分峰值,保证送入第一削波模块11的信号满足峰值分布特征,保证削波模块1无漏削,载波2因为没有功率的借用,所以第二削波模块12不对载波2削波,直接送入第一削波模块 11。
根据本申请上述实施方式的PAPR抑制装置,通过第二削波模块12根据输入信号与第一载波间统计特征之间的关系自适应开启削波处理、以及对输入信号进行削波处理的过程,可以适应任何场景信号的PAPR控制,并且实现方式简单。
第二削波模块12自适应开启,第一削波模块11自适应削波。
在本实施方式中,所述第一削波模块的输入条件为动态的第二载波统计特征,其中,所述第一削波模块还用于对所述第二载波统计特征以及第二载波统计特征对应的削波参数进行周期性更新。
第二削波模块用于在所述输入信号的载波参数不满足第二载波间统计特征时,根据所述输入信号的载波参数和所述第二载波间统计特征对所述输入信号进行第二削波处理,得到所述待削波信号,所述待削波信号的载波参数满足所述第二载波间统计特征;第一削波模块用于根据与第二载波间统计特征对应的削波参数对所述待削波信号进行第一削波处理,得到所述第一削波信号。
其中,第二载波间统计特征可以是周期性统计得到的载波间的短期统计特征。第一削波模块11可以根据每个周期统计得到的新的第二载波间统计特征配置对应的削波参数,也就是根据统计的周期,对配置的削波参数进行周期性的更新。每个周期的时间长度可以根据具体的应用场景确定,本申请对此不作限定。因此,第一削波模块11随着时间的变化,也可以对输入信号进行自适应削波处理。
第二削波模块12对输入信号的处理过程与上一实施方式的处理过程相同,只是随着时间的变化,判断输入信号的载波参数是否满足第二载波间统计特征时,第二载波间统计特征也是随着时间而变化的。第二削波模块12在对输入信号进行第二削波处理时,参照的第二载波间统计特征也是随时间周期性变化的。
图6示出根据本申请一实施例的PAPR抑制装置的框图。在图6所示的示例中,第一削波模块11上根据载波间功率配比为1:1或者1:2配置的削波参数为:削波噪声的加权系数1:1或1:2。第一削波模块11处于开启状态。第二削波模块12在输入信号的载波参数与第二载波间统计特征不同时,也就是,输入信号的载波间功率配比不是已经配置的第二载波间统计特征中的任意一种,第二削波模块12可以对输入信号进行第二削波处理得到满足第二载波间统计特征的待削波信号,将待削波信号输出到第一削波模块11。第一削波模块11上配置的第二载波间功率配置1:1、1:2以及对应的削波噪声的加权系数1:1或1:2可以根据新的周期的统计特征以及对应的削波参数进行更新。
根据本申请上述实施方式的PAPR抑制装置,通过第二削波模块12根据输入信号与第二载波间统计特征之间的关系自适应开启削波处理、以及对输入信号进行削波处理的过程,第一削波模块11周期性统计输入信号的载波间特征,并根据统计的载波间特征更新本地配置的第二载波间统计特征以及对应的削波参数,也可以实现自适应的削波处理。通过两个可以进 行自适应削波处理的模块的配合,能够适应任何场景信号的PAPR控制,并且实现方式简单。
本申请还提供了一种PAPR抑制方法,应用于通信设备,在一种可能的实现方式中,所述通信设备可以包括:第一削波模块和第二削波模块,其中,所述第二削波模块的输入端用于接收输入信号,所述第二削波模块的输出端连接所述第一削波模块的输入端。
本申请还提供了一种通信设备,图7示出根据本申请一实施例的通信设备的框图。如图7所述的通信设备可以为基站,在一种可能的实现方式中,图7所示的通信设备可以包括基带单元和射频单元,其中,基带单元可以包括BBU。射频单元可以包括RRU+天线,和/或,AAU。
在一种可能的实现方式中,RRU或者AAU内可以设置有本申请上述实施方式的PAPR抑制装置。在另一种可能的实现方式中,第一削波模块可以位于RRU或者AAU内,第二削波模块位于BBU内。
通信设备还可以包括一个或多个处理器和一个或多个存储器,存储器中可以存储有与本申请提供的PAPR抑制方法对应的可执行指令,处理器可以被配置为执行存储器存储的可执行指令时,实现本申请提供的PAPR抑制方法。
图7中处理器和存储器以及基带单元和射频单元之间的连接关系仅仅是本申请的一个示例,不以任何方式限制本申请,比如说,处理器和存储器还可以分别设置在BBU、RRU、AAU内,也就是说,在BBU、RRU、AAU内分别设置处理器和存储器。
处理器可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
存储器可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。存储器还可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路与处理器相连接。存储器也可以和处理器集成在一起。本申请实施例提供的存储器通常可以具有非易失性。其中,存储器用于存储执行本申请方案所涉及的计算机执行指令,并由处理器来控制执行。处理器用于执行存储器中存储的计算机执行指令,从而实现本申请实施例提供的方法。
图8示出根据本申请一实施例的PAPR抑制方法的流程图。如图8所示,所述方法可以包括以下步骤:
步骤S701,所述通信设备控制第二削波模块向第一削波模块输出满足第一削波模块的输入条件的待削波信号,所述输入条件包括输入信号的峰值分布特征;
步骤S702,所述通信设备采用所述第一削波模块对待削波信号进行第一削波处理得到第一削波信号。
在一种可能的实现方式中,所述通信设备可以根据所述输入信号的载波参数是否满足所述第一削波模块的输入条件,确定是否开启所述第二削波模块对所述输入信号的第二削波处理;其中,所述输入条件包括输入信号的峰值分布特征。
图9示出根据本申请一实施例的PAPR抑制方法的流程图。如图9所示,在一种可能的实现方式中,
步骤S701,所述通信设备控制第二削波模块向第一削波模块输出满足第一削波模块的输入条件的待削波信号,可以包括:
步骤S7011,在所述输入信号的载波参数不满足所述第一削波模块的输入条件时,所述通信设备的第二削波模块12根据输入信号的载波参数和输入条件对输入信号进行第二削波处理,得到所述待削波信号;
步骤S7012,在所述输入信号的载波参数满足所述第一削波模块的输入条件时,所述通信设备的第二削波模块12将输入信号作为待削波信号输出至所述第一削波模块11。
也就是说,在输入信号的载波参数不满足第一削波模块11的输入条件时,通信设备采用第二削波模块12根据输入信号的载波参数和输入条件对输入信号进行第二削波处理,得到待削波信号,待削波信号的载波参数可以满足第一削波模块的输入条件。然后,采用第一削波模块11对待削波信号进行第一削波处理,得到第一削波信号。在输入信号的载波参数满足第一削波模块11的输入条件时,通信设备采用第二削波模块12直接将输入信号作为待削波信号输出至第一削波模块11,然后,采用第一削波模块11对待削波信号进行第一削波处理,得到第一削波信号。
根据本申请上述实施方式的PAPR抑制方法,通过两个削波模块之间的配合,实现自适应削波的过程,实现方式简单且可以适应更多的应用场景。
结合图2所示的PAPR抑制装置,通信设备可以根据输入信号的载波参数是否满足第一削波模块11的输入条件,确定是否开启第二削波模块12对所述输入信号的第二削波处理。
在一种可能的实现方式中,所述通信设备控制第二削波模块向第一削波模块输出满足第一削波模块的输入条件的待削波信号,可以包括:所述通信设备在所述输入信号的载波参数满足所述第一削波模块的输入条件时,不开启所述第二削波模块。在输入信号的载波参数满 足第一削波模块11的输入条件时,通信设备可以不开启第二削波模块12对输入信号的削波处理,或者说,关闭对输入信号的削波处理,也就是说,在输入信号的载波参数满足第一削波模块11的输入条件时,通信设备中的第二削波模块12将输入信号作为待削波信号输出至所述第一削波模块11。
对满足输入条件的输入信号,通信设备采用第一削波模块11对输入信号进行第一削波处理,所述输入条件包括输入信号的峰值分布特征。其中,输入信号的峰值分布特征可以包括输入信号的峰值分布的统计特征,比如说,统计得到的输入信号的载波间功率配比、载波的调制方式、载波的频谱占用情况,等等。也就是说,通信设备可以根据输入信号的峰值分布的统计特征在第一削波模块11上配置对应的削波参数,在输入信号的载波参数满足输入条件时,通信设备可以根据输入信号的载波参数以及削波参数对输入信号进行第一削波处理。
在一种可能的实现方式中,所述通信设备控制第二削波模块向第一削波模块输出满足第一削波模块的输入条件的待削波信号,还可以包括:在输入信号的载波参数不满足第一削波模块11的输入条件时,所述通信设备控制第二削波模块根据所述输入信号的载波参数和所述输入条件对所述输入信号进行第二削波处理,得到所述待削波信号。在输入信号的载波参数不满足第一削波模块11的输入条件时,通信设备可以确定开启第二削波模块12根据输入信号的载波参数和输入条件对输入信号的第二削波处理。具体的,可以根据输入信号的载波参数和输入条件之间的差异对输入信号进行第二削波处理得到待削波信号,待削波信号的载波参数满足输入条件。然后由第一削波模块11根据输入条件对应的削波参数对待削波信号进行第一削波处理得到第一削波信号。
根据本申请提供的实施方式的PAPR抑制方法,通过两级削波模块的配合进行PAPR抑制,相比于相关技术(典型场景)中简单削波参数的配置,本申请的上述实施方式可以适应多场景,保证无漏削、PAPR可控,保护功放。相比于严苛场景中需要提取每一个峰值并进行削波处理的方式,本申请的根据统计特征预先配置削波参数的方式实现方式更简单,解决了相关技术中静态削波算法复杂度过高或应用场景受限的技术问题。
在一种可能的实现方式中,所述方法还包括:
所述通信设备控制所述第二削波模块工作在旁路模式时,将接收到的所述输入信号输出至第一削波模块的输入端;所述通信设备采用所述第一削波模块根据所述输入信号的载波参数对应的削波参数,对所述输入信号进行第三削波处理;其中,削波参数为根据输入信号的峰值分布的统计特征,为不同的载波配置的。
结合图4所示的PAPR抑制装置,在本实施方式中,通信设备可以将第一削波模块11的输入条件设置的比较宽泛,使得所有的输入信号都可以满足输入条件,这样,通信设备可以控制第二削波模块12工作在旁路模式,不对输入信号进行任何处理,将接收到的输入信号输出至第一削波模块11。如图4所示,第二削波模块12表示为虚线框,工作在旁路模式。
对于第一削波模块11,根据上文可知,可以根据统计的输入信号的峰值分布的统计特征在第一削波模块11上配置对应的削波参数,所述峰值分布的统计特征可以为载波特征,比如 说,载波间功率配置、载波的调制方式、载波的频谱占用情况。在一种可能的实现方式中,可以根据输入信号的峰值分布的统计特征,为不同的载波配置不同的削波参数,这样,第一削波模块11可以根据输入信号的载波参数以及根据载波特征配置的削波参数,自适应的调整削波噪声的加权系数,并根据削波噪声的加权系数对输入信号进行削波处理。
在一种可能的实现方式中,所述载波参数可以为载波间功率配比,削波参数可以为削波噪声加权系数,所述通信设备采用所述第一削波模块根据所述输入信号的载波参数对应的削波参数,对所述输入信号进行削波处理,包括:所述通信设备采用所述第一削波模块根据所述载波间功率配比对应的削波噪声的加权系数,对所述输入信号进行削波处理。
根据本申请上述实施方式的PAPR抑制方法,通过根据输入信号的峰值分布的统计特征,为不同的载波配置不同的削波参数的方式,实现第一削波模块11对削波噪声的自适应加权分配,相比于相关技术(典型场景)中简单削波参数的配置,本申请的上述实施方式可以适应多场景,保证无漏削、PAPR可控,保护功放。相比于严苛场景中需要提取每一个峰值并进行削波处理的方式,本申请的根据统计特征预先配置削波参数的方式实现方式更简单。
另外,根据本申请上述实施方式的PAPR抑制装置,可以根据载波间功率配比自适应进行削波噪声的分配,可以更好的分配削波噪声,保证系统性能。
图8和图9所示的实施方式的PAPR抑制装置还可以包括多种不同的实现方式,比如说,第一削波模块11可以是自适应削波的模块、也可以不是自适应削波的模块,第二削波模块12可以是自适应开启削波的模块。
在一种可能的实现方式中,所述第一削波模块的输入条件为静态的第一载波间统计特征,所述方法还包括:所述通信设备根据所述第一载波间统计特征在所述第一削波模块内配置所述第一载波间统计特征对应的削波参数。
其中,第一载波间统计特征可以为信号的载波间的长期统计特征,通信设备可以根据第一载波间统计特征在第一削波模块11上配置对应的静态削波参数,配置后不再更新。这样,通信设备可以根据输入信号的载波参数查找对应的静态削波参数,根据查找到的静态削波参数采用第一削波模块11对输入信号进行削波。
在本实施方式中,步骤S7011,在所述输入信号的载波参数不满足所述第一削波模块的输入条件时,所述通信设备的第二削波模块12根据输入信号的载波参数和输入条件对输入信号进行第二削波处理,得到所述待削波信号,可以包括:
所述通信设备在所述输入信号的载波参数不满足第一载波间统计特征时,所述通信设备的第二削波模块根据所述输入信号的载波参数和所述第一载波间统计特征对所述输入信号进行第二削波处理,得到所述待削波信号,所述待削波信号的载波参数满足所述第一载波间统计特征。
步骤S702,所述通信设备采用所述第一削波模块对待削波信号进行第一削波处理得到第 一削波信号,可以包括:
所述通信设备采用所述第一削波模块根据与第一载波间统计特征对应的削波参数对所述待削波信号进行第一削波处理,得到所述第一削波信号。
结合图5所示的PAPR抑制装置,在本实施方式中,通信设备采用第二削波模块12对载波参数不满足第一载波间统计特征的输入信号进行第二削波处理,提前削掉大功率载波的一部分峰值。这样,输入第一削波模块11的待削波信号是满足第一削波模块11的入口条件(第一载波间统计特征)的,通信设备可以采用第一削波模块根据第一载波间统计特征配置的削波参数对待削波信号进行第一削波处理,不会产生漏削。
根据本申请上述实施方式的PAPR抑制方法,通过第二削波模块12根据输入信号与第一载波间统计特征之间的关系自适应开启削波处理、以及对输入信号进行削波处理的过程,可以适应任何场景信号的PAPR控制,并且实现方式简单。
在另一种可能的实现方式中,所述第一削波模块的输入条件为动态的第二载波统计特征,所述方法还包括:所述通信设备周期性的获取新的第二载波统计特征,并根据新的第二载波统计特征在所述第一削波模块内配置第二载波统计特征对应的削波参数。
其中,第二载波间统计特征可以是周期性统计得到的载波间的短期统计特征。通信设备可以根据每个周期统计得到的新的第二载波间统计特征,在第一削波模块11上配置对应的削波参数,也就是根据统计的周期,对配置的削波参数进行周期性的更新。每个周期的时间长度可以根据具体的应用场景确定,本申请对此不作限定。因此,随着时间的变化,第一削波模块11也可以对输入信号进行自适应削波处理。
在本实施方式中,步骤S7011,在所述输入信号的载波参数不满足所述第一削波模块的输入条件时,所述通信设备的第二削波模块12根据输入信号的载波参数和输入条件对输入信号进行第二削波处理,得到所述待削波信号,可以包括:
所述通信设备在所述输入信号的载波参数不满足第二载波间统计特征时,所述通信设备的第二削波模块12根据所述输入信号的载波参数和所述第二载波间统计特征对所述输入信号进行第二削波处理,得到所述待削波信号,所述待削波信号的载波参数满足所述第二载波间统计特征。
步骤S702,所述通信设备采用所述第一削波模块对待削波信号进行第一削波处理得到第一削波信号,可以包括:
所述通信设备采用所述第一削波模块根据与第二载波间统计特征对应的削波参数对所述待削波信号进行第一削波处理,得到所述第一削波信号。
结合图6所示的PAPR抑制装置,在本实施方式中,第二削波模块12对输入信号的处理过程与上一实施方式的处理过程相同,只是随着时间的变化,判断输入信号的载波参数是否满足第二载波间统计特征时,第二载波间统计特征也是随着时间而变化的。第二削波模块12 在对输入信号进行第二削波处理时,参照的第二载波间统计特征也是随时间周期性变化的。
根据本申请上述实施方式的PAPR抑制方法,通过第二削波模块12根据输入信号与第二载波间统计特征之间的关系自适应开启削波处理、以及对输入信号进行削波处理的过程,第一削波模块11周期性统计输入信号的载波间特征,并根据统计的载波间特征更新本地配置的第二载波间统计特征以及对应的削波参数,也可以实现自适应的削波处理。通过两个可以进行自适应削波处理的模块的配合,能够适应任何场景信号的PAPR控制,并且实现方式简单。
在一种可能的实现方式中,所述输入信号的载波参数、所述第一载波间统计特征以及所述第二载波统计特征为载波间功率配比。所述输入信号的载波参数、所述第一载波间统计特征以及所述第二载波统计特征还可以为载波的调制方式、载波的频谱占用情况等其他载波特征,本申请对此不作限定。
本申请还提供了一种PAPR抑制方法,应用于通信设备。所述通信设备可以是如上文所述的RRU或者AAU,或者也可以是图3或者图7所示的通信设备,本申请对此不作限定。
图10示出根据本申请一实施例的PAPR抑制方法的流程图。如图10所示,本申请的PAPR抑制方法可以包括:
步骤S100,所述通信设备对载波参数不满足输入条件的输入信号进行第二削波处理得到待削波信号,对待削波信号进行第一削波处理,得到第一削波信号。
其中,所述输入条件包括输入信号的峰值分布特征,待削波信号的载波参数满足所述输入条件。
如上文所述,输入信号的峰值分布特征可以包括输入信号的峰值分布的统计特征,输入信号的峰值分布特征主要受输入信号的载波间功率配比、载波调制方式、频谱占用情况等因素的影响。通信设备根据输入信号的峰值分布的统计特征(输入条件)而配置削波参数,在输入信号的载波参数不满足所述输入条件时,对输入信号进行第二削波处理,得到满足输入条件待削波信号,然后再根据输入条件对应的削波参数进行第一削波处理,得到第一削波信号。
本申请的PAPR抑制方法通过对不满足峰值分布特征的输入信号进行预处理(第二削波处理),得到满足峰值分布特征的待削波信号,然后对待削波信号进行第一削波处理,得到第一削波信号。通过分步处理、两级削波的方式,相比于相关技术(典型场景)中简单削波参数的配置,本申请的上述实施方式可以适应多场景,保证无漏削、PAPR可控,保护功放;相比于严苛场景中需要提取每一个峰值并进行削波处理的方式,本申请的根据统计特征预先配置削波参数、并对输入信号进行预处理的方式,实现方式更简单,解决了相关技术中静态削波算法复杂度过高或应用场景受限的技术问题。
图11示出根据本申请一实施方式的PAPR抑制方法的流程图。在一种可能的实现方式中,所述方法可以包括:
步骤S110,所述通信设备对载波参数不满足输入条件的输入信号进行第二削波处理得到待削波信号,对待削波信号进行第一削波处理,得到第一削波信号;
步骤S111,所述通信设备对载波参数满足输入条件的输入信号进行第一削波处理,得到第一削波信号。
步骤S110的过程可以参见上文中关于步骤S100的介绍的部分,不再赘述。
对于步骤S111,在通信设备判断输入信号的载波参数满足输入条件时,可以直接对输入信号进行第一削波处理,得到第一削波信号。
根据本申请上述实施方式的PAPR抑制方法,根据输入信号的载波参数以及输入条件之间的关系,对输入信号采用不同的削波过程,相比于相关技术(典型场景)中简单削波参数的配置,本申请的上述实施方式可以适应多场景,保证无漏削、PAPR可控,保护功放;相比于严苛场景中需要提取每一个峰值并进行削波处理的方式,本申请的根据统计特征预先配置削波参数、并对输入信号进行预处理的方式,实现方式更简单,解决了相关技术中静态削波算法复杂度过高或应用场景受限的技术问题。
在一种可能的实现方式中,步骤S100(S110),所述通信设备对载波参数不满足输入条件的输入信号进行第二削波处理得到待削波信号,可以包括:
所述通信设备在所述输入信号的载波参数不满足所述输入条件时,根据所述输入信号的载波参数和所述输入条件对所述输入信号进行第二削波处理,得到所述待削波信号。
在一种可能的实现方式中,所述通信设备可以根据输入信号的载波参数与输入条件之间的差异进行第二削波处理。以输入条件为载波间功率配比为例,结合图5所示的示例,假设根据载波间功率配比为1:1配置了削波参数,输入信号的载波间功率配比满足1:1时,可以根据已经配置的削波参数对输入信号进行第一削波处理。在输入信号的载波间功率配比不满足1:1时,通信设备可以对输入信号进行第二削波处理,提前削掉大功率载波的一部分峰值,使得第二削波处理后进入待削波信号,即使采用按照载波间功率配比为1:1时配置的削波噪声加权系数进行第一削波处理,也不会产生漏削。
根据本申请上述实施方式的PAPR抑制方法,通过根据输入信号与输入条件之间的关系自适应开启第二削波处理、以及对输入信号进行第二削波处理的过程,可以适应任何场景信号的PAPR控制,并且实现方式简单。
图12示出根据本申请一实施方式的PAPR抑制方法的流程图。
在一种可能的实现方式中,所述输入条件为静态的第一载波间统计特征。步骤S100(S110),可以包括:
步骤S121,所述通信设备在所述输入信号的载波参数不满足所述第一载波间统计特征时,根据所述输入信号的载波参数和所述第一载波间统计特征对所述输入信号进行第二削波处理, 得到所述待削波信号,所述待削波信号的载波参数满足所述第一载波间统计特征。
在本实施方式中,步骤S111,所述通信设备对所述待削波信号进行第一削波处理,得到第一削波信号,可以包括:
步骤S122,所述通信设备根据与第一载波间统计特征对应的削波参数对所述待削波信号进行第一削波处理,得到所述第一削波信号。
在一种可能的实现方式中,如图12所示,所述方法还可以包括:
步骤S120,所述通信设备根据所述第一载波间统计特征配置所述第一载波间统计特征对应的削波参数。
如上所述,第一载波间统计特征可以为信号的载波间的长期统计特征,通信设备可以根据第一载波间统计特征配置对应的静态削波参数,配置后不再对第一载波间统计特征和对应的静态削波参数进行更新。这样,通信设备可以根据输入信号的载波参数查找对应的静态削波参数,根据查找到的静态削波参数对输入信号进行第一削波处理。
在所述输入信号的载波参数不满足所述第一载波间统计特征时,所述通信设备还可以根据所述输入信号的载波参数和所述第一载波间统计特征对所述输入信号进行第二削波处理,得到所述待削波信号,所述待削波信号的载波参数满足所述第一载波间统计特征。然后,再根据与第一载波间统计特征对应的削波参数对所述待削波信号进行第一削波处理,得到所述第一削波信号。
根据本申请上述实施方式的PAPR抑制方法,通过根据输入信号与第一载波间统计特征之间的关系自适应开启削波处理、以及对输入信号进行削波处理的过程,可以适应任何场景信号的PAPR控制,并且实现方式简单。
图13示出根据本申请一实施方式的PAPR抑制方法的流程图。
在一种可能的实现方式中,所述输入条件为动态的第二载波统计特征。如图13所示,所述方法可以包括:
步骤S130,所述通信设备周期性的获取新的第二载波统计特征,并根据新的第二载波统计特征配置新的第二载波统计特征对应的削波参数。
步骤S100(S110),可以包括:
步骤S131,所述通信设备在所述输入信号的载波参数不满足第二载波间统计特征时,根据所述输入信号的载波参数和所述第二载波间统计特征对所述输入信号进行第二削波处理,得到所述待削波信号,所述待削波信号的载波参数满足所述第二载波间统计特征;
步骤S111,所述通信设备对所述待削波信号进行第一削波处理,得到第一削波信号,可以包括:
步骤S132,所述通信设备根据与第二载波间统计特征对应的削波参数对所述待削波信号进行第一削波处理,得到所述第一削波信号。
如上所述,第二载波间统计特征可以是周期性统计得到的载波间的短期统计特征。通信设备可以根据每个周期统计得到的新的第二载波间统计特征配置对应的削波参数,也就是根据统计的周期,对配置的削波参数进行周期性的更新。每个周期的时间长度可以根据具体的应用场景确定,本申请对此不作限定。因此,第一削波处理也可以是随着时间的变化,对输入信号进行自适应削波处理的过程。
步骤S131中第二削波处理的具体过程与上文所述的处理过程相同,只是随着时间的变化,判断输入信号的载波参数是否满足第二载波间统计特征时,第二载波间统计特征也是随着时间而变化的。在对输入信号进行第二削波处理时,参照的第二载波间统计特征也是随时间周期性变化的。
根据本申请上述实施方式的PAPR抑制方法,通过根据输入信号与第二载波间统计特征之间的关系自适应开启第二削波处理、以及对输入信号进行第二削波处理的过程,周期性统计输入信号的载波间特征,并根据统计的载波间特征更新本地配置的第二载波间统计特征以及对应的削波参数,也可以实现自适应的第一削波处理。通过两个可以进行自适应削波处理的过程的配合,能够适应任何场景信号的PAPR控制,并且实现方式简单。
在一种可能的实现方式中,所述方法包括:
所述通信设备根据所述输入信号的载波参数对应的削波参数,对所述输入信号进行第三削波处理;其中,削波参数为根据输入信号的峰值分布的统计特征,为不同的载波配置的。所述载波参数为载波间功率配比,削波参数为削波噪声的加权系数。
根据上文可知,可以根据统计的输入信号的峰值分布的统计特征配置对应的削波参数,所述峰值分布的统计特征可以为载波特征,比如说,载波间功率配置、载波的调制方式、载波的频谱占用情况。在一种可能的实现方式中,可以根据输入信号的峰值分布的统计特征,为不同的载波配置不同的削波参数,这样,通信设备可以根据输入信号的载波参数以及根据载波特征配置的削波参数,自适应的调整削波噪声的加权系数,并根据削波噪声的加权系数对输入信号进行削波处理。
根据本申请上述实施方式的PAPR抑制方法,通过根据输入信号的峰值分布的统计特征,为不同的载波配置不同的削波参数的方式,实现通信设备对削波噪声的自适应加权分配,相比于相关技术(典型场景)中简单削波参数的配置,本申请的上述实施方式可以适应多场景,保证无漏削、PAPR可控,保护功放。相比于严苛场景中需要提取每一个峰值并进行削波处理的方式,本申请的根据统计特征预先配置削波参数的方式实现方式更简单。
本申请的实施例还提供了一种自适应峰均比PAPR抑制装置,所述装置应用于通信设备。图14示出根据本申请一实施例的PAPR抑制装置的框图,如图14所示,所述装置可以包括:
削波单元1400,用于对载波参数不满足输入条件的输入信号进行第二削波处理得到待削波信号,对待削波信号进行第一削波处理,得到第一削波信号;其中,所述输入条件包括输入信号的峰值分布特征,所述待削波信号的载波参数满足所述输入条件。
本申请的PAPR抑制装置通过对不满足峰值分布特征的输入信号进行预处理(第二削波处理),得到满足峰值分布特征的待削波信号,然后对待削波信号进行第一削波处理,得到第一削波信号。通过分步处理、两级削波的方式,相比于相关技术(典型场景)中简单削波参数的配置,本申请的上述实施方式可以适应多场景,保证无漏削、PAPR可控,保护功放;相比于严苛场景中需要提取每一个峰值并进行削波处理的方式,本申请的根据统计特征预先配置削波参数、并对输入信号进行预处理的方式,实现方式更简单,解决了相关技术中静态削波算法复杂度过高或应用场景受限的技术问题。
在一种可能的实现方式中,所述削波单元1400包括:第二削波模块,用于在所述输入信号的载波参数不满足所述输入条件时,根据所述输入信号的载波参数和所述输入条件对所述输入信号进行第二削波处理,得到所述待削波信号。
在一种可能的实现方式中,所述装置还包括:第一削波模块,用于对载波参数满足输入条件的输入信号进行第一削波处理,得到第一削波信号。
根据本申请上述实施方式的PAPR抑制装置,根据输入信号的载波参数以及输入条件之间的关系,对输入信号采用不同的削波过程,相比于相关技术(典型场景)中简单削波参数的配置,本申请的上述实施方式可以适应多场景,保证无漏削、PAPR可控,保护功放;相比于严苛场景中需要提取每一个峰值并进行削波处理的方式,本申请的根据统计特征预先配置削波参数、并对输入信号进行预处理的方式,实现方式更简单,解决了相关技术中静态削波算法复杂度过高或应用场景受限的技术问题。
在一种可能的实现方式中,所述装置还包括:第三削波模块,用于根据所述输入信号的载波参数对应的削波参数,对所述输入信号进行第三削波处理;其中,削波参数为根据输入信号的峰值分布的统计特征,为不同的载波配置的。
在一种可能的实现方式中,所述载波参数为载波间功率配比,削波参数为削波噪声的加权系数。
根据本申请上述实施方式的PAPR抑制装置,通过根据输入信号的峰值分布的统计特征,为不同的载波配置不同的削波参数的方式,实现通信设备对削波噪声的自适应加权分配,相比于相关技术(典型场景)中简单削波参数的配置,本申请的上述实施方式可以适应多场景,保证无漏削、PAPR可控,保护功放。相比于严苛场景中需要提取每一个峰值并进行削波处理的方式,本申请的根据统计特征预先配置削波参数的方式实现方式更简单。
在一种可能的实现方式中,所述输入条件为静态的第一载波间统计特征,所述第二削波模块还用于在所述输入信号的载波参数不满足所述第一载波间统计特征时,根据所述输入信号的载波参数和所述第一载波间统计特征对所述输入信号进行第二削波处理,得到所述待削 波信号;所述第一削波模块还用于根据与第一载波间统计特征对应的削波参数对所述待削波信号进行第一削波处理,得到所述第一削波信号。
在一种可能的实现方式中,所述装置还包括:第一配置模块,用于根据所述第一载波间统计特征配置所述第一载波间统计特征对应的削波参数。
根据本申请上述实施方式的PAPR抑制装置,通过根据输入信号与第一载波间统计特征之间的关系自适应开启削波处理、以及对输入信号进行削波处理的过程,可以适应任何场景信号的PAPR控制,并且实现方式简单。
在一种可能的实现方式中,所述输入条件为动态的第二载波统计特征,所述装置还包括:第二配置模块,用于周期性的获取新的第二载波统计特征,并根据新的第二载波统计特征配置新的第二载波统计特征对应的削波参数。
在一种可能的实现方式中,所述第二削波模块还用于在所述输入信号的载波参数不满足第二载波间统计特征时,根据所述输入信号的载波参数和所述第二载波间统计特征对所述输入信号进行第二削波处理,得到所述待削波信号;所述第一削波模块还用于根据与第二载波间统计特征对应的削波参数对所述待削波信号进行第一削波处理,得到所述第一削波信号。
根据本申请上述实施方式的PAPR抑制装置,通过根据输入信号与第二载波间统计特征之间的关系自适应开启第二削波处理、以及对输入信号进行第二削波处理的过程,周期性统计输入信号的载波间特征,并根据统计的载波间特征更新本地配置的第二载波间统计特征以及对应的削波参数,也可以实现自适应的第一削波处理。通过两个可以进行自适应削波处理的过程的配合,能够适应任何场景信号的PAPR控制,并且实现方式简单。
在一种可能的实现方式中,所述输入信号的载波参数、第一载波间统计特征以及第二载波统计特征为载波间功率配比。
本申请的实施例提供了一种PAPR抑制装置,包括:处理器以及用于存储处理器可执行指令的存储器;其中,所述处理器被配置为执行所述指令时实现上述方法。
本申请的实施例提供了一种非易失性计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述方法。
本申请的实施例提供了一种计算机程序产品,包括计算机可读代码,或者承载有计算机可读代码的非易失性计算机可读存储介质,当所述计算机可读代码在电子设备的处理器中运行时,所述电子设备中的处理器执行上述方法。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可擦式可编程只读存储器(Electrically Programmable Read-Only-Memory,EPROM或闪存)、静态随机存取存储器(Static Random-Access Memory,SRAM)、便携式压缩盘只读存储器(Compact Disc Read-Only Memory, CD-ROM)、数字多功能盘(Digital Video Disc,DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。
这里所描述的计算机可读程序指令或代码可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本申请操作的计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或可编程逻辑阵列(Programmable Logic Array,PLA),该电子电路可以执行计算机可读程序指令,从而实现本申请的各个方面。
这里参照根据本申请实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本申请的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本申请的多个实施例的装置、系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可 以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。
也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行相应的功能或动作的硬件(例如电路或ASIC(Application Specific Integrated Circuit,专用集成电路))来实现,或者可以用硬件和软件的组合,如固件等来实现。
尽管在此结合各实施例对本发明进行了描述,然而,在实施所要求保护的本发明过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其它变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其它单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
以上已经描述了本申请的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (22)

  1. 一种自适应峰均比PAPR抑制装置,其特征在于,所述装置包括:第一削波模块和第二削波模块,
    所述第二削波模块向所述第一削波模块输出满足所述第一削波模块的输入条件的待削波信号,所述输入条件包括输入信号的峰值分布特征;
    所述第一削波模块对所述待削波信号进行第一削波处理得到第一削波信号。
  2. 根据权利要求1所述的装置,其特征在于,
    所述第二削波模块用于获取输入信号,在所述输入信号的载波参数不满足所述第一削波模块的输入条件时,根据所述输入信号的载波参数和所述输入条件对所述输入信号进行第二削波处理,得到所述待削波信号。
  3. 根据权利要求1或2所述的装置,其特征在于,
    所述第二削波模块用于获取所述输入信号,在所述输入信号的载波参数满足所述第一削波模块的输入条件时,将所述输入信号作为待削波信号输出至所述第一削波模块。
  4. 根据权利要求1所述的装置,其特征在于,在旁路模式下,
    所述第二削波模块还用于获取所述输入信号,将所述输入信号输出至所述第一削波模块;
    所述第一削波模块用于根据所述输入信号的载波参数对应的削波参数,对所述输入信号进行第三削波处理;
    其中,削波参数为根据输入信号的峰值分布的统计特征,为不同的载波配置的。
  5. 根据权利要求4所述的装置,其特征在于,所述载波参数为载波间功率配比,所述削波参数为削波噪声的加权系数。
  6. 根据权利要求2所述的装置,其特征在于,所述第一削波模块的输入条件为静态的第一载波间统计特征,
    所述第二削波模块用于在所述输入信号的载波参数不满足第一载波间统计特征时,根据所述输入信号的载波参数和所述第一载波间统计特征对所述输入信号进行第二削波处理,得到所述待削波信号;
    所述第一削波模块用于根据与第一载波间统计特征对应的削波参数对所述待削波信号进行第一削波处理,得到所述第一削波信号。
  7. 根据权利要求2所述的装置,其特征在于,所述第一削波模块的输入条件为动态的第 二载波间统计特征,其中,所述第一削波模块用于对所述第二载波统计特征以及第二载波统计特征对应的削波参数进行周期性更新,
    所述第二削波模块用于在所述输入信号的载波参数不满足第二载波间统计特征时,根据所述输入信号的载波参数和所述第二载波间统计特征对所述输入信号进行第二削波处理,得到所述待削波信号;
    所述第一削波模块用于根据与第二载波间统计特征对应的削波参数对所述待削波信号进行第一削波处理,得到所述第一削波信号。
  8. 根据权利要求6或7所述的装置,其特征在于,所述输入信号的载波参数、第一载波间统计特征以及第二载波统计特征包括载波间功率配比。
  9. 一种通信设备,其特征在于,包括如权利要求1-8任意一项所述的自适应峰均比PAPR抑制装置。
  10. 一种通信系统,所述通信系统包括基带单元BBU,所述通信系统还包括射频拉远单元RRU或有源天线处理单元AAU,其特征在于:
    如权利要求1-8任意一项所述的第一削波模块位于RRU或者AAU内,如权利要求1-8任意一项所述的第二削波模块位于BBU内;
    或者,如权利要求1-8任意一项所述第一削波模块和所述第二削波模块都位于RRU内或者AAU内。
  11. 一种自适应峰均比PAPR抑制方法,其特征在于,所述方法应用于通信设备,
    所述方法包括:
    所述通信设备对载波参数不满足输入条件的输入信号进行第二削波处理得到待削波信号,对待削波信号进行第一削波处理,得到第一削波信号;
    其中,所述输入条件包括输入信号的峰值分布特征,所述待削波信号的载波参数满足所述输入条件。
  12. 根据权利要求11所述的方法,其特征在于,所述通信设备对载波参数不满足输入条件的输入信号进行第二削波处理得到待削波信号,包括:
    所述通信设备在所述输入信号的载波参数不满足所述输入条件时,根据所述输入信号的载波参数和所述输入条件对所述输入信号进行第二削波处理,得到所述待削波信号。
  13. 根据权利要求11或12所述的方法,其特征在于,所述方法还包括:
    所述通信设备对载波参数满足输入条件的输入信号进行第一削波处理,得到第一削波信 号。
  14. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述通信设备根据所述输入信号的载波参数对应的削波参数,对所述输入信号进行第三削波处理;
    其中,削波参数为根据输入信号的峰值分布的统计特征,为不同的载波配置的。
  15. 根据权利要求14所述的方法,其特征在于,所述载波参数为载波间功率配比,削波参数为削波噪声的加权系数。
  16. 根据权利要求12所述的方法,其特征在于,所述输入条件为静态的第一载波间统计特征,
    所述通信设备在所述输入信号的载波参数不满足所述输入条件时,根据所述输入信号的载波参数和所述输入条件对所述输入信号进行第二削波处理,得到所述待削波信号,包括:
    所述通信设备在所述输入信号的载波参数不满足所述第一载波间统计特征时,根据所述输入信号的载波参数和所述第一载波间统计特征对所述输入信号进行第二削波处理,得到所述待削波信号;
    所述通信设备对所述待削波信号进行第一削波处理,得到第一削波信号,包括:
    所述通信设备根据与第一载波间统计特征对应的削波参数对所述待削波信号进行第一削波处理,得到所述第一削波信号。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述通信设备根据所述第一载波间统计特征配置所述第一载波间统计特征对应的削波参数。
  18. 根据权利要求12所述的方法,其特征在于,所述输入条件为动态的第二载波统计特征,所述方法还包括:
    所述通信设备周期性的获取新的第二载波统计特征,并根据新的第二载波统计特征配置新的第二载波统计特征对应的削波参数。
  19. 根据权利要求18所述的方法,其特征在于,
    所述通信设备在所述输入信号的载波参数不满足所述输入条件时,根据所述输入信号的载波参数和所述输入条件对所述输入信号进行第二削波处理,得到所述待削波信号,包括:
    所述通信设备在所述输入信号的载波参数不满足第二载波间统计特征时,根据所述输入信号的载波参数和所述第二载波间统计特征对所述输入信号进行第二削波处理,得到所述待 削波信号;
    所述通信设备对所述待削波信号进行第一削波处理,得到第一削波信号,包括:
    所述通信设备根据与第二载波间统计特征对应的削波参数对所述待削波信号进行第一削波处理,得到所述第一削波信号。
  20. 根据权利要求16-19任意一项所述的方法,其特征在于,所述输入信号的载波参数、第一载波间统计特征以及第二载波统计特征为载波间功率配比。
  21. 一种自适应峰均比PAPR抑制装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行所述指令时实现权利要求11-20任意一项所述的方法。
  22. 一种非易失性计算机可读存储介质,其上存储有计算机程序指令,其特征在于,所述计算机程序指令被处理器执行时实现权利要求11-20中任意一项所述的方法。
PCT/CN2020/132856 2020-11-30 2020-11-30 自适应峰均比papr抑制装置、方法以及通信设备 WO2022110177A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20963065.6A EP4236221A4 (en) 2020-11-30 2020-11-30 APPARATUS AND METHOD FOR PAPR SUPPRESSION WITH ADAPTIVE PEAK TO AVERAGE RATIO AND COMMUNICATION DEVICE
CN202080107024.0A CN116530061A (zh) 2020-11-30 2020-11-30 自适应峰均比papr抑制装置、方法以及通信设备
PCT/CN2020/132856 WO2022110177A1 (zh) 2020-11-30 2020-11-30 自适应峰均比papr抑制装置、方法以及通信设备
US18/325,955 US20230308333A1 (en) 2020-11-30 2023-05-30 Adaptive peak to average power ratio papr suppression apparatus and method, and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/132856 WO2022110177A1 (zh) 2020-11-30 2020-11-30 自适应峰均比papr抑制装置、方法以及通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/325,955 Continuation US20230308333A1 (en) 2020-11-30 2023-05-30 Adaptive peak to average power ratio papr suppression apparatus and method, and communication device

Publications (1)

Publication Number Publication Date
WO2022110177A1 true WO2022110177A1 (zh) 2022-06-02

Family

ID=81755202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132856 WO2022110177A1 (zh) 2020-11-30 2020-11-30 自适应峰均比papr抑制装置、方法以及通信设备

Country Status (4)

Country Link
US (1) US20230308333A1 (zh)
EP (1) EP4236221A4 (zh)
CN (1) CN116530061A (zh)
WO (1) WO2022110177A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4307571A4 (en) * 2021-03-30 2024-04-17 Huawei Technologies Co., Ltd. SIGNAL PROCESSING METHOD AND COMMUNICATION DEVICE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040081324A1 (en) * 2002-10-24 2004-04-29 Lau Kai Kwong Multi-channel audio signal limiter with shared clip detection
CN1553670A (zh) * 2003-05-30 2004-12-08 华为技术有限公司 一种信号削波装置及方法
US20070140101A1 (en) * 2005-12-15 2007-06-21 Nortel Networks Limited System and method for reducing peak-to-average power ratio in orthogonal frequency division multiplexing signals using reserved spectrum
CN111107031A (zh) * 2018-10-25 2020-05-05 北京新岸线移动多媒体技术有限公司 一种用于降低信号峰均比的方法及装置
CN111464476A (zh) * 2020-03-10 2020-07-28 北京新岸线移动多媒体技术有限公司 一种削波方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8583061B2 (en) * 2011-11-04 2013-11-12 Motorola Solutions, Inc. Peak suppression on multicarrier
US9236899B2 (en) * 2013-06-05 2016-01-12 Telefonaktiebolaget L M Ericsson (Publ) Crest factor reduction of inter-band carrier aggregated signals
EP3379784A4 (en) * 2015-12-17 2018-11-14 Huawei Technologies Co., Ltd. Clipping method and apparatus
CN111107030B (zh) * 2018-10-25 2022-07-12 北京新岸线移动多媒体技术有限公司 一种适用于大带宽系统的降低信号峰均比的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040081324A1 (en) * 2002-10-24 2004-04-29 Lau Kai Kwong Multi-channel audio signal limiter with shared clip detection
CN1553670A (zh) * 2003-05-30 2004-12-08 华为技术有限公司 一种信号削波装置及方法
US20070140101A1 (en) * 2005-12-15 2007-06-21 Nortel Networks Limited System and method for reducing peak-to-average power ratio in orthogonal frequency division multiplexing signals using reserved spectrum
CN111107031A (zh) * 2018-10-25 2020-05-05 北京新岸线移动多媒体技术有限公司 一种用于降低信号峰均比的方法及装置
CN111464476A (zh) * 2020-03-10 2020-07-28 北京新岸线移动多媒体技术有限公司 一种削波方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4236221A4 *

Also Published As

Publication number Publication date
EP4236221A4 (en) 2023-12-27
EP4236221A1 (en) 2023-08-30
CN116530061A (zh) 2023-08-01
US20230308333A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
US10687377B2 (en) Universal wireless station for multiple simultaneous wireless services
US9337784B2 (en) Apparatus and method for matching harmonics
US9521024B2 (en) Device of crest factor reduction
US20140269868A1 (en) Adaptive filter bank for dynamic notching in powerline communication
CN107872865B (zh) 一种ue、基站中的发射功率调整的方法和装置
CN108293032B (zh) 一种削波方法及装置
WO2022110177A1 (zh) 自适应峰均比papr抑制装置、方法以及通信设备
WO2020221226A1 (zh) 一种基于部分传输序列技术的边信息传输方法和装置
US20240014967A1 (en) Signal configuration method, apparatus and device, and storage medium
US9294382B2 (en) Communication device and method for enhancing energy efficiency
CN111615191A (zh) 一种控制方法、装置及计算机可读存储介质
CN101510866B (zh) 一种抑制信号峰均功率比的方法、装置及发射机
WO2021087533A2 (en) Apparatus and method of configurable crest factor reduction
Liu et al. Enhanced non-orthogonal waveform (eNOW) for 5G evolution and 6G
US11777768B2 (en) Pre-equalization compensation method and device for link, storage medium and electronic device
CN108881095B (zh) Ofdm数据处理方法及装置
Omidi et al. PAPR reduction in OFDM systems: Polynomial-based compressing and iterative expanding
Namitha et al. An improved selective mapping technique to reduce peak-to-average power ratio in SISO and SIMO OFDM systems without side information
Vittal et al. PAPR analysis of single carrier FDMA signals with Gaussian pulse shaping
Luo et al. Guardband optimization for cellular systems applying raised cosine windowed OFDM
WO2016165481A1 (zh) 数字信号处理方法及装置
RU2786129C1 (ru) Способ и устройство на базе полифазной структуры для снижения пиковой нагрузки и носитель компьютерной информации
Traverso A new family of filters for PAPR reduction of carrier aggregated signals
WO2022077251A1 (zh) 非正交波形的频谱整形方法及电子设备
CN109314523A (zh) 信号处理方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963065

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107024.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2020963065

Country of ref document: EP

Effective date: 20230523

NENP Non-entry into the national phase

Ref country code: DE