WO2022108420A1 - Apparatus and method for controlling grid-forming power conversion - Google Patents

Apparatus and method for controlling grid-forming power conversion Download PDF

Info

Publication number
WO2022108420A1
WO2022108420A1 PCT/KR2021/017281 KR2021017281W WO2022108420A1 WO 2022108420 A1 WO2022108420 A1 WO 2022108420A1 KR 2021017281 W KR2021017281 W KR 2021017281W WO 2022108420 A1 WO2022108420 A1 WO 2022108420A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
grid
power conversion
current
forming power
Prior art date
Application number
PCT/KR2021/017281
Other languages
French (fr)
Korean (ko)
Inventor
강지성
허견
Original Assignee
㈜한국그리드포밍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200158245A external-priority patent/KR102379169B1/en
Priority claimed from KR1020200164432A external-priority patent/KR102390466B1/en
Application filed by ㈜한국그리드포밍 filed Critical ㈜한국그리드포밍
Publication of WO2022108420A1 publication Critical patent/WO2022108420A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/70Regulating power factor; Regulating reactive current or power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Definitions

  • the present invention relates to a grid-forming power conversion control apparatus, and more particularly, to a grid-forming power conversion control apparatus and method capable of stable operation based on system information connected with information of a power conversion apparatus to be connected.
  • New and renewable energy are defined slightly differently by each country. In Korea, it is defined as energy other than oil, coal, nuclear power, or natural gas, and it is defined as energy in eight fields (solar energy, biomass, wind power, small hydropower, geothermal energy). , marine energy, waste energy) and three fields (fuel cell, coal liquefaction and hydrogen energy) as new energy belong to this category.
  • Renewable energy can be classified into several types such as solar heat, photovoltaic power generation, wind power generation, small hydro power generation, waste incineration heat and power generation, biomass energy (biogas, gasification power generation, biofuel), geothermal energy, and marine energy, depending on the technology and type of final energy. can be divided into Since such renewable energy is to obtain clean energy using the natural energy sources of the sun (light, heat), wind, water, and the sea, which are the primary energy sources, the amount of resources is almost infinite.
  • a power converter is installed between the renewable energy generator and the grid power source, converts the power supplied from the renewable energy generator into a voltage suitable for supplying the grid power, and supplies power to the grid power.
  • the power converter charges the power supplied from the renewable energy generator or grid power, and when the power supply from the grid power is stopped due to an abnormality such as a power outage in the grid power, the power supply is pre-charged according to the command of the upper controller. It performs the function of supplying power to the load.
  • the grid-forming power converter is a device that independently generates power in the power system and performs a role similar to that of a generator.
  • the grid-forming power converter maintains independent voltage generation even in the event of an external system failure and is different from other power converters in that it is required to supply a fault current.
  • the present invention provides a grid-forming power conversion control device and method capable of stable operation by evaluating impedance adequacy based on system information connected with information of a power conversion device to be connected.
  • the present invention provides a grid-forming power conversion control apparatus and method capable of optimal operation voltage control in which the power conversion apparatus minimizes the intensity of overcurrent in consideration of both the failure current and the reverse current in the event of a failure.
  • the present invention calculates the impedance constraint that enables stable grid forming operation even in all failure situations and, when the impedance criterion is not met, through power conversion device design change, controller addition, transformer wiring change, external system grounding factor adjustment, etc.
  • a grid-forming power conversion control apparatus and method capable of alleviating restrictions are provided.
  • the present invention provides a grid-forming power conversion control device and method that can efficiently meet the demand for a grid-forming power conversion device according to the expansion of new and renewable power sources by determining whether stable operation is performed in the step of connecting the grid-forming power conversion device to provide.
  • the present invention provides a grid-forming power conversion control apparatus and method capable of controlling the frequency of the voltage output by the grid-forming power conversion device without controlling the direct current, and capable of operating at a high speed.
  • a grid-forming power conversion control device According to one aspect of the present invention, there is provided a grid-forming power conversion control device.
  • the grid-forming power conversion control device converts the power supplied from the renewable energy generator into a voltage for supplying the grid power to the grid-forming power conversion unit, the grid-forming power conversion unit for supplying power It is connected to calculate the fault current when a fault occurs and calculates the reverse current that occurs when the voltage is lowered in case of a fault and the recovery reverse current that occurs when the fault is removed according to the fault current supply characteristics required by the system.
  • Information on the optimum voltage control unit and power system to find the operating point where overcurrent is minimized and find the operating point that satisfies the requirements of the power system as much as possible within the range that does not exceed the limit of the current that the power converter can supply Impedance constraint evaluation control unit that collects parameters for impedance evaluation using may include
  • the fault current supply characteristic is controlled by calculating the fault current and the reverse current, and the parameter collection is performed using the information of the power system.
  • Step setting the reference MVA connection impedance input and GFM (Grid Forming Source) voltage in the input setting section, 3-phase short-circuit fault current, line-to-line short-circuit fault current, line-to-line short-circuit fault current and 1-line ground fault at fault current calculation section Calculating the fault current, storing the current GFM voltage, calculating the recovery reverse current, and judging whether the calculated recovery reverse current exceeds the set limit value and operating with the input impedance It may include the step of determining whether it is possible.
  • GFM Grid Forming Source
  • the grid-forming power conversion control apparatus and method according to the present invention as described above has the following effects.
  • the impedance criterion is not met by calculating the impedance constraint that enables stable grid forming operation even in all failure conditions, it is restricted through power conversion device design change, controller addition, transformer wiring change, external system grounding factor adjustment, etc. can alleviate
  • stable operation can be determined in the step of connecting the grid-forming power converter, so that the demand for the grid-forming power converter according to the expansion of new and renewable power sources can be efficiently met.
  • FIG. 1 is a model configuration diagram for the optimal voltage tracking control and impedance constraint evaluation of the grid-forming power conversion control device according to the present invention
  • FIG. 2 is a block diagram of a device for optimal voltage tracking control and impedance constraint evaluation of a grid-forming power conversion control device according to the present invention
  • FIG. 3 is a flowchart illustrating a method for optimal voltage tracking control and impedance constraint evaluation of a grid-forming power conversion control device according to the present invention
  • FIG. 4 is a block diagram of a failure model of a three-phase short circuit failure
  • FIG. 6 is a configuration diagram of a failure model of a one-line ground fault failure
  • FIG. 9 is a block diagram of a failure model of a short circuit between lines
  • FIG. 10 is a configuration diagram of a calculation model of HV Side Fault of line-to-line short circuit failure
  • 11 and 12 are Fault Current graphs in case of short circuit failure between HV side PCC points of GFM Source linked to AC system.
  • FIG. 13 is a flowchart illustrating an overview of an output frequency control method of a grid-forming power conversion control apparatus according to the present invention
  • FIG. 14 is a block diagram schematically showing an output frequency control unit of a grid-forming power conversion control device according to the present invention.
  • 15 is a droop plot illustrating that the power generation system and the grid-forming power converter divide and provide power to the load.
  • Figure 16 is a view showing the outline of the output frequency control method of the grid-forming power converter according to the prior art together with the droop diagram illustrated in Figure 15
  • 17 is an exemplary control diagram for controlling the matching control of the grid forming power conversion unit to control the output frequency according to the voltage
  • FIG. 18 is a view showing the outline of the output frequency control method of the grid-forming power conversion control apparatus according to the present invention together with the droop diagram illustrated in FIG.
  • VDC DC voltage
  • 21 is a view for explaining a fourth embodiment of the output frequency control method of the grid-forming power conversion control apparatus according to the present invention
  • FIG. 22 is a view for explaining a fifth embodiment of the output frequency control method of the grid-forming power conversion control apparatus according to the present invention
  • FIG. 23 is a view for explaining a sixth embodiment of the output frequency control method of the grid-forming power conversion control apparatus according to the present invention
  • 24 is a diagram illustrating a DC voltage and an output frequency provided to the grid-forming power converter when the grid-forming power converter is controlled in the first embodiment, the second embodiment, and the third embodiment, respectively;
  • Figure 25 (a) is a diagram showing the output frequency of the DC voltage provided to the grid-forming power converter according to the prior art and the first embodiment and the second embodiment
  • Figure 25 (b) is Figure 25 (a) A drawing showing an enlarged range of 225kV to 245KV of
  • 26 (a) and 26 (b) are diagrams showing the experimental results of the grid forming power conversion unit (solid line) and the power system (dotted line) controlled by the prior art
  • 27 (a) and 27 (b) are diagrams showing the experimental results of the grid forming power conversion unit (solid line) and the power system (dashed line) controlled in the first embodiment
  • 28 (a) and 28 (b) are diagrams showing experimental results of the grid forming power conversion unit (solid line) and the power system (dashed line) controlled in the second embodiment
  • 29 (a) and 29 (b) are diagrams showing the experimental results of the grid forming power conversion unit (solid line) and the power system (dashed line) controlled in the third embodiment
  • 30 (a) and 30 (b) are diagrams showing the experimental results of the grid forming power conversion unit (solid line) and the power system (dashed line) controlled in the fourth embodiment
  • Figure 31 (a) shows the experimental results of the grid forming power conversion unit (solid line) and the power system (dotted line) controlled in the fifth embodiment
  • Figure 31 (b) is from 1.2 seconds to 3.2 seconds in Figure 31 (a)
  • 32(a) and 32(b) are diagrams illustrating a case in which control is performed by droop control according to the prior art under the experimental conditions illustrated in FIG. 19;
  • 33 and 34 are diagrams showing experimental results of the grid forming power conversion unit (solid line) and the power system (dotted line) controlled in the sixth embodiment
  • FIG. 1 is a model configuration diagram for the optimal voltage tracking control and impedance constraint evaluation of the grid-forming power conversion control device according to the present invention.
  • Grid-forming power conversion control apparatus and method according to the present invention based on the information of the connected power conversion device and the system information connected to the power conversion device in the event of a failure in consideration of both the fault current and the reverse current optimal operation to minimize the overcurrent intensity Stable operation is possible by controlling voltage (optimal voltage) and evaluating impedance adequacy.
  • the present invention calculates the impedance constraint that enables stable grid forming operation even in all failure situations, and when the impedance criterion is not met, the power conversion device design change, the controller addition, the transformer wiring method change, the grounding factor adjustment of the external system It may include a configuration that can relieve the constraint through the
  • the present invention is a failure calculation method, and may include the steps of calculating the Thevenin equivalent impedance and calculating the abc phase ⁇ symmetrical coordinates ⁇ converting the abc phase back to the abc phase to calculate the unbalanced fault.
  • the magnitude of the voltage acts as a variable in the grid forming power source, and it is impossible to equalize it by adding it to the AC voltage source.
  • the superposition method which calculates each and then adds them to one another.
  • the power converter When the power converter is operated by grid forming, it is required to supply the fault current to the allowable limit. Considering this, the method of lowering the voltage by considering only the fault current in the case of a 3-phase short-circuit failure without considering the reverse current is the power It is judged that it can have a fatal effect on the converter.
  • the control in which the power converter finds the optimal voltage when an external power system failure occurs is the characteristic of the fault current and the reverse current, the characteristic that there is a limit of the current that the power converter can flow, and the power system is grid Consider all the requirements for the forming power converter.
  • the present invention calculates all failure types in consideration of the characteristics of the fault current and the reverse current, finds the operating point where the overcurrent is minimized even in the most severe fault among them, and does not exceed the limit of the current that the power conversion device can flow. It is to track the optimum voltage that satisfies the requirements of the power system as much as possible in the range.
  • impedance evaluation is to find the minimum impedance that does not exceed the limit range of the current that the power converter can flow based on the fault current and reverse current.
  • the present invention is particularly useful in the engineering phase of the power converter because it can determine the impedance of the power converter or determine whether the connection point of the system to be connected is appropriate by understanding the impedance constraint.
  • the present invention considers the following characteristics of the power conversion device.
  • a generator and a grid-forming power converter both have a voltage source in common.
  • a generator has no current limit, whereas a power converter has a low current limit value as a power electronic device.
  • the grid-forming power converter operates as a voltage source, but a method of controlling the current not to be exceeded by reducing the voltage in a situation such as a failure is required.
  • the current when the current is limited, it is considered that not only the fault current supplied by the power conversion device but also the reverse current and the recovery reverse current entering the power conversion device are limited.
  • V and E are voltage, I is current, and Z is impedance , F is the current flowing to the fault point.
  • GFM for converter
  • SM for external system power source
  • ext for external system excluding GFM
  • the symbol for equivalence Z th is the Thevenin equivalent impedance
  • I th is the current flowing through the Thevenin equivalent impedance, that is, the current generated in the GFM or the current generated in the SM.
  • SMdirection is the abbreviation of the current generated from GFM and directed to the external system, while SM and GFMdirection are the current generated from SM and directed to the GFM.
  • FIG. 2 is a block diagram of a grid-forming power conversion control apparatus according to the present invention.
  • the grid-forming power conversion control device is installed between the renewable energy generator and the grid power source, as shown in FIG. 3, and converts the power supplied from the renewable energy generator into a voltage for supplying the grid power,
  • the grid-forming power conversion unit 100 that supplies power to the power source, and the grid-forming power conversion unit 100 are connected to the calculation of the fault current when a fault occurs and the reverse current generated when the voltage is lowered in case of a fault.
  • the optimum voltage control unit 200 performs optimal voltage control to find an operating point that satisfies the requirements of the power system, and the parameters for impedance evaluation are collected using information on the power system, and the connection impedance and GFM voltage setting values are changed. and an impedance constraint evaluation control unit 300 to obtain a minimum impedance that does not exceed the limit of the current that the power conversion device can supply.
  • the optimum voltage control unit 200 includes an optimum voltage calculation unit 10 that calculates an optimum voltage as the FRT voltage command value of the optimum voltage control unit, and a limit voltage calculation unit ( 11), the minimum voltage calculation unit 12 that calculates the minimum voltage as the lower limit of safety measures in case of incomplete voltage control of the optimum voltage control unit, and the operating point where the overcurrent is minimized in consideration of the fault current supply characteristics required by the system and a fault current supply characteristic control unit 13 that performs optimal voltage control to find an operating point that satisfies the requirements of the power system as much as possible in a range that does not exceed the limit of the current that the converter can supply.
  • optimal voltage control lowers the voltage when the current exceeds, and solves the overcurrent by raising the voltage in a specific section where the reverse current is high. Therefore, it is not lowered below the limit voltage.
  • the impedance constraint evaluation control unit 300 includes a parameter collection unit 20 that collects parameters for impedance evaluation using information of the power system, and an input setting unit 21 that sets the reference MVA connection impedance input and GFM voltage and , a fault current calculation unit 22 that calculates a fault current to obtain the minimum impedance that does not exceed the limit of the current that the power converter can supply, and the current GFM by determining whether the power converter current exceeds the set limit value
  • the recovery reverse current calculation and determination unit 23 that stores the voltage, calculates the recovery reverse current, and determines whether the recovery reverse current exceeds the set limit value, and operates with the input impedance if the recovery reverse current does not exceed the set limit value It includes an impedance evaluation unit 24 that determines that it is possible.
  • the fault current calculation unit 22 calculates three-phase short-circuit fault current, line-to-line short-circuit fault current, line-to-line short-circuit fault current, and 1-line ground fault fault current.
  • FIG. 3 is a flowchart illustrating a method for optimal voltage tracking control and impedance constraint evaluation of a grid-forming power conversion control device according to the present invention.
  • fault current calculation and reverse current calculation are performed to control fault current supply characteristics, and parameters are collected using information from the power system (S301).
  • the input setting unit 21 sets the reference MVA connection impedance input and the GFM (Grid Forming Source) voltage. (S302)
  • GFM Grid Forming Source
  • SM Synchronous AC Machine Source
  • F Total Fault Current
  • G Grounding Voltage
  • 0,1,2 Zero Sequence, Positive Sequence, Negative Sequence
  • th Thevenin equivalent impedance
  • E Source Voltage
  • phase angle is -30° when connected with Yd1-connected 3-phase transformer, and may vary depending on the impedance angle of VI.
  • the important point is is a virtual power source and not an actual voltage.
  • the power that the GFM converter actually generates is a voltage less than or equal to this.
  • the equalized external AC system is indicated as The normal and reverse phase impedances are the same, but the image impedance is set as a variable depending on the level of grounding. put it as Since LV and HV of the GFM source are different points of failure, the transformer impedance is not expressed as equivalent. connect through
  • Transformer is connected wye on HV side and delta connection on LV side. When voltage and current vary depending on the measurement point, they are displayed separately as 'HV' and 'LV'.
  • Impedance of GFM consists of transformer and interfacing impedance. In order to keep the control characteristics of the converter constant regardless of the capacity, the impedance compared to the self-capacitance (DC MVA) is taken constant.
  • transformer impedance is the converter series impedance (including filter impedance).
  • Rotating equipment has different impedance for each sequence.
  • the AC source impedance is also classified.
  • the converter , of the transformer is a passive element, R, L, and C, so it can be expressed as the same value without distinction between 0, 1 and 2.
  • the failure model of 3-phase short circuit failure is as follows.
  • FIG. 4 is a block diagram of a three-phase short circuit failure model.
  • a 3-phase short circuit fault circuit as shown in Fig. 4 is written as a parallel circuit for each GFM and AC source, and the problem is analyzed by superposition.
  • HV Side Fault is calculated as follows.
  • GFM terminal voltage is controlled as follows.
  • FIG. 5 is a graph showing the current change of the converter according to different connection impedances in a 3-phase fault.
  • the conventional failure model of 1-wire ground fault is as follows.
  • FIG. 6 is a configuration diagram of a failure model of a one-line ground fault failure.
  • one-line ground fault circuit as shown in the figure above is written as a parallel circuit for each GFM and AC (SM) source, and the problem is analyzed by superposition.
  • Each Seq Circuit is a series structure, and the + side of the Pos Circuit is connected to the - side of the Neg Circuit. Neg Circuit + side is connected to Zero Circuit - side. And the + side of the Zero Circuit is connected to the - side of the Pos Circuit. If there is an impedance between the fault point and the ground, connect it to the + side of each Seq circuit.
  • HV Side Fault is calculated as follows.
  • FIG. 7 is a configuration diagram of a calculation model of HV Side Fault in 1-line ground fault failure.
  • the current generated from the Grid Forming Converter is calculated as follows.
  • the zero-phase current generated in the converter is defined as in Equation (6).
  • the current generated from the AC side SM Source is calculated as follows.
  • the Ry current on the HV side in case of a ground fault in HV 1 line is as follows.
  • HV is the current that finally flows to the high voltage side.
  • the external system current on the HV side is as follows.
  • the HV side voltage is as follows.
  • the converter current on the LV side is as follows.
  • the LV side voltage is as follows.
  • impedance Is as follows.
  • the healthy current cannot be zero in the case of a one-wire ground fault derived by superposition.
  • each sequence current component has a different value as the size changes. Accordingly, not only the a-phase current but also the b and c-phase currents are the voltage of the GFM. It is determined as a function according to As , the b and c phase currents increase.
  • each phase current can be either in the forward direction or in the reverse direction. If this formula is not satisfied, limiting fails, a distorted current waveform is output, and the FRT fails (unstable) because resynchronization is not performed even after the fault is removed. In this case, it is necessary to protect the IGBT by blocking the converter. In this case, the equipment can be protected, but the grid forming property is lost, so the stability in terms of system operation is deteriorated, and the correct operation of the protective relay cannot be induced because the fault current cannot be supplied. none.
  • FIG. 9 is a configuration diagram of a failure model of a line-to-line short circuit failure.
  • the line-to-line short circuit fault circuit as shown in FIG. 9 is written as a parallel circuit for each GFM and AC source, and the problem is analyzed by superposition.
  • Each Seq Circuit is a parallel structure, connecting the + sides and connecting the - sides.
  • the fault impedance connects 3Zf to the + side of Zero Seq.
  • HV Side Fault is calculated as follows.
  • FIG. 10 is a configuration diagram of a calculation model of HV Side Fault of line-to-line short circuit failure.
  • the LV side In the event of a short circuit between HV lines, the LV side has an open video circuit and no zero current flows.
  • the current generated from the AC side SM Source is calculated as follows.
  • the LV side In the event of a short circuit between HV lines, the LV side has an open video circuit and no zero current flows.
  • Equation 22 That is, it is defined as in Equation 22.
  • the Ry current on the HV side is defined as follows in case of a short circuit between HV lines.
  • the external system current on the HV side is as follows.
  • the voltage on the HV side is as follows.
  • the converter current on the LV side is as follows.
  • the image component is removed and it is simplified as follows.
  • the voltage on the LV side is as follows.
  • the healthy current does not become 0 in case of a short circuit between lines derived from Superposition.
  • each phase current can be either in the forward direction or in the reverse direction.
  • 11 and 12 are Fault Current graphs in case of a short circuit failure between the HV side PCC points of the GFM Source connected to the AC system.
  • the limit value of DC MVA which fails to limit in line-to-line short-circuit failure, is lower than that of line-to-line short circuit.
  • the optimum voltage, the limit voltage, and the minimum voltage to be used as the setting values of the voltage control unit based on the above-mentioned 1-line ground fault, line-to-line short circuit, and line short-circuit fault calculation are as follows.
  • the optimum voltage is the voltage at which the power converter is expected to produce the best FRT performance. At the optimum voltage, the power converter supplies the maximum fault current within the range that does not exceed the current limit.
  • the optimum voltage is obtained from the condition that the phase current of the line-to-line short circuit becomes equal to the limit value.
  • the formula is:
  • s is an abbreviated display of converter impedance
  • g is an abbreviated display of Thevenin equivalent impedance viewed from the converter
  • e is an abbreviated display of the Thevenin equivalent impedance viewed from an external system
  • b is an abbreviated display of external system impedance
  • L is an abbreviated display of current limit.
  • impedance constraint satisfaction takes precedence over control unit operation.
  • the success of current limit means that it is a sinusoidal three-phase AC waveform of the rated frequency, and the result is supplied so that the maximum wave height value among three phases does not exceed the limit.
  • the limit voltage is the voltage at the point where the magnitude of the fault current and the reverse current are equal. At the limit voltage, the power converter can no longer obtain the gain of lowering the voltage further. If the voltage is lowered than the limit voltage, the reverse current (RC) exceeds the fault current, so there is no real benefit of lowering the maximum current. Therefore, the voltage control unit performs control not to lower the voltage than the limit voltage.
  • the limit voltage is obtained from the condition that the two phase currents of the line-to-line short circuit fault are equal.
  • the formula is:
  • t is an abbreviation of the parallel composite impedance of the Thevenin equivalent impedance and the external system impedance viewed from the converter.
  • ⁇ k is set so that the phase angle of the right side becomes 0.
  • the limit voltage is always present regardless of whether the impedance constraint evaluation is satisfied. Therefore, if the limit current at the limit voltage does not exceed the current limit value, the impedance constraint is considered to be satisfied.
  • the minimum voltage is the lowest voltage the power converter can operate without leaving the range of a successful FRT.
  • the minimum voltage means both the voltage at the point where the reverse current exceeds the current limit when the voltage is lowered in a 1-line ground fault, and the voltage at the point where the recovery reverse current exceeds the limit regardless of the fault type. If the impedance limit is exceeded during operation due to an unexpected change in the system impedance, there is a risk that the voltage control unit will command the minimum voltage or less. As a safety measure, if the voltage command value is lower than the minimum voltage, anti-wind-up clamping is performed. Anti-wind-up clamping is a control that resets the voltage control unit integrator.
  • ⁇ k is set so that the phase angle of the right side becomes 0.
  • t0 and t2 are the zero-phase and inverse parts of the abbreviated impedance t
  • m is the abbreviated display of the sum of the zero-phase and inverse parts of the Thevenin equivalent impedance seen from the converter
  • the triangle is the abbreviated display of the loop impedance.
  • impedance constraint satisfaction takes precedence over control unit operation.
  • the output frequency control method of the grid-forming power conversion control apparatus includes: calculating a frequency corresponding to the DC voltage provided to the grid-forming power conversion unit 100 ( S1310 ) and the grid
  • the forming power conversion unit 100 includes a step (S1320) of outputting a frequency corresponding to the provided DC voltage, but outputting the calculated frequency does not control the DC current provided to the grid forming power conversion unit 100 is performed without
  • the output frequency control unit 400 of the grid-forming power conversion control apparatus includes an input unit 410 , an output unit 420 , a processor 450 , a memory 440 , and a database 430 .
  • the output frequency control unit 400 of FIG. 14 is according to an embodiment, and not all blocks shown in FIG. 14 are essential components, and in another embodiment, some blocks included in the output frequency control unit 400 are added or changed. Or it can be deleted.
  • the output frequency control unit 400 may be implemented as a computing device for controlling the grid forming power conversion unit 100, each component included in the output frequency control unit 400 is implemented as a separate software device, It may be implemented as a separate hardware device combined with software.
  • the output frequency control unit 400 calculates a frequency corresponding to the DC voltage provided to the grid forming power conversion unit 100, and controls the grid forming power conversion unit 100 to output a frequency corresponding to the provided DC voltage, The step of outputting the calculated frequency is performed without controlling the DC current provided to the grid-forming power conversion unit 100 .
  • the input unit 410 means a means for inputting or obtaining a signal or data for controlling the grid-forming power conversion unit 100 .
  • the input unit 410 may input various types of signals or data in association with the processor 450 , or may directly acquire data in association with an external device and transmit the data to the processor 450 .
  • the input unit 410 may be a device or a server for inputting or receiving an output voltage, an output frequency, a droop rate, set point information, etc. of the grid forming power conversion unit 100, but is not necessarily limited thereto.
  • the output unit 420 may display an output voltage, an output frequency, a droop rate, setpoint information, and the like of the grid forming power conversion unit 100 in conjunction with the processor 450 .
  • the output unit 420 preferably displays various information through a display (not shown), a speaker, etc. provided in the output frequency control unit 400 in order to output predetermined information, but is not necessarily limited thereto.
  • the processor 450 performs a function of executing at least one instruction or program included in the memory 440 .
  • the processor 450 calculates a frequency corresponding to the DC voltage provided to the grid forming power converter 100 based on the data obtained from the input unit 410 or the database 430, and the grid forming power An operation of controlling the converter 100 to output a frequency corresponding to the provided DC voltage is performed.
  • the memory 440 includes at least one instruction or program executable by the processor 450 .
  • the memory 440 may include instructions or programs for performing processing.
  • the memory 440 may store a program for calculating a frequency and the calculated frequency values.
  • the database 430 refers to a general data structure implemented in the storage space (hard disk or memory) of a computer system using a database management program (DBMS), and performs data search (extraction), deletion, editing, addition, etc.
  • DBMS database management program
  • Relational database management system such as Oracle, Infomix, Sybase, DB2, Gemston, Orion
  • OODBMS object-oriented database management system
  • XML Native Database such as Excelon, Tamino, Sekaiju, etc. It can be implemented according to the requirements, and has appropriate fields or elements to achieve its function.
  • the database 430 may store an algorithm for calculating the frequency of the grid forming power converter 100, and the like, and may provide the stored data. Meanwhile, although the database 140 is described as being implemented in the output frequency control unit 400, it is not necessarily limited thereto, and may be implemented as a separate data storage device.
  • 15 is a droop plot illustrating that the power generation system and the grid-forming power converter according to an embodiment of the present invention share and provide power to a load.
  • 15 illustrates a case in which the power generation system and the grid-forming power conversion unit supply power to the same load.
  • AC droop' is a plot showing the output frequency versus the power provided by the power generation system to the load
  • the GFM droop shows the output frequency versus the power provided by the grid forming power converter 100 to the load. It is a plot.
  • both the AC droop' diagram and the GFM droop diagram have a characteristic that the output frequency decreases as the power provided to the load increases.
  • an AC droop diagram can be formed, and a set point (Psp, set point), which is an intersection point with the GFM droop diagram, is formed.
  • the power generation system and the grid-forming power converter 100 have different ratios of sharing the power provided to the load based on the set point Psp.
  • the PGFM is 50 MW
  • the PAC is 10 MW
  • the grid forming power conversion unit 100 and the power generation system provide a total of 60 MW to the load. That is, the 50 MW grid-forming power conversion unit 100 provides power to the load, and the remaining 10 MW provides power to the load by the external AC power generation system.
  • the frequency output by the grid forming power converter 100 in the no-load state is the no-load frequency (fNLGFM), and as the power provided to the load increases, it decreases to the maximum load frequency (fFLGFM).
  • fNLGFM no-load frequency
  • fFLGFM maximum load frequency
  • the grid forming power converter 100 and the power generation system output a common frequency, and the frequency at that time is referred to as the set point frequency (fsp).
  • the grid forming power conversion unit 100 controls the power provided to the load by the grid forming power conversion unit 100 ) can be performed by controlling the GFM Droop.
  • the droop diagram (GFM Droop) of the grid-forming power converter 100 is a droop rate corresponding to the slope of the droop diagram (GFM droop) of the grid-forming power converter 100, a target set point , It can be made by adjusting the no-load frequency (fNLGFM) output by the grid-forming power converter 100 in a no-load state and the maximum load frequency (fFLGFM) output by the grid-forming power converter 100 in a maximum load state.
  • droop refers to the control principle for proportionally sharing the power load jointly supplied by generators running in parallel. This is called the droop rate. That is, the droop rate is defined as in Equation 41 below.
  • FIG. 16 is a diagram illustrating an overview of an output frequency control method of a grid forming power converter according to the prior art together with a droop diagram illustrated in FIG. 15 .
  • the droop diagram illustrated in FIG. 15 is shown in the first quadrant, and in the second quadrant, a function for the DC voltage (VDC) provided with the output frequency of the grid forming power converter 100 is shown.
  • VDC DC voltage
  • the grid forming power conversion unit 100 in the droop diagram changes the output frequency from the maximum load frequency fFLGFM to the no-load frequency fNLGFM It can be outputted and interlocked with the power generation system to provide power to the load.
  • the output frequency of the grid-forming power converter 100 When the grid-forming power conversion unit 100 is matched and controlled, the output frequency is controlled according to the provided DC voltage. That is, the output frequency of the grid-forming power converter 100 has the form of a linear function passing through the origin. Therefore, in order for the output frequency of the grid forming power conversion unit 100 to change from the maximum load frequency fFLGFM to the no-load output frequency fNLGFM, the voltage provided to the grid forming power conversion unit 100 must change within the range of ⁇ VDC. do.
  • the matching control of the grid forming power converter 100 is provided as illustrated in FIG. 17 in order to control the output frequency to correspond to the voltage (VDC), the rated DC voltage (VDC*) and the rating
  • the direct current (idc) formed from the power (P*) and the power loss (Ploss) is controlled and must be provided to the grid forming power converter 100 .
  • the DC current must be controlled so that the voltage provided to the grid forming power converter 100 exists within the range of ⁇ VDC, and accordingly, the output frequency changes from fFLGFM, which is the output frequency at maximum load, to fNLGFM, which is the output frequency at no load.
  • the kdc included in the control loop illustrated in FIG. 17 may be expressed as in Equation 42 below.
  • the denominator of kdc includes a droop rate (mp). That is, for the matching control, DC current control is required to implement the droop characteristic separately from the control unit that generates the AC frequency, and the droop rate, which is the power sharing ratio of the grid forming power conversion unit 100, is reflected during the DC current control. There is a difficulty in that it is necessary to implement a complex and sophisticated controller.
  • FIG. 18 is a diagram illustrating an outline of an output frequency control method of a grid-forming power conversion control apparatus according to the present invention together with the droop diagram illustrated in FIG. 15 .
  • the first quadrant is a droop diagram illustrated in FIG. 15, and the diagram shown in the second quadrant shows the output frequency of the grid-forming power conversion control device according to this embodiment as a function of the DC voltage (VDC) provided. .
  • VDC DC voltage
  • the output frequency shown by the thick solid line of the grid-forming power converter 100 may change according to a linear function with respect to the input DC voltage (VDC).
  • the first-order function may be a first-order function having a slope ⁇ ′ passing through the output frequency fFLGFM at maximum load.
  • the linear function can be expressed as Equation 43 below.
  • the linear function may be a linear function having a slope ⁇ ′ over the no-load output frequency fNLGFM.
  • the first-order function may be a first-order function passing through the no-load output frequency (fNLGFM) and the maximum-load output frequency (fFLGFM).
  • Equation 44 The slope ( ⁇ ′) of the linear function can be obtained from Equation 44 below.
  • the rated frequency is set to 60Hz in Korea and 50Hz or 60Hz in the case of overseas, and the rated DC voltage is a value determined according to the manufacturing specifications of the equipment.
  • the frequency control method of the grid-forming power conversion control apparatus is a grid-forming power conversion unit when the DC voltage (VDC) provided to the grid-forming power conversion unit 100 is 0, unlike the prior art illustrated in FIG. 17 . (100) outputs the output frequency (fFLGFM) at the maximum load, and as the DC voltage (VDC) provided to the grid forming power converter 100 increases, the output frequency (f) increases along the slope ⁇ '.
  • the grid forming power conversion control device outputs an output frequency fNLGFM at no load.
  • the method for controlling the output frequency of the grid-forming power conversion control apparatus controls the DC current provided to the grid-forming power conversion unit 100 to obtain an output frequency within a desired range, thereby controlling the grid-forming power conversion unit 100 ) was maintained within the desired range.
  • a controller for controlling a direct current has been required, but such a controller is complicated and uneconomical in terms of cost.
  • the output frequency can be formed from the DC voltage provided to the grid forming frequency without controlling the DC current. Accordingly, a controller for controlling a complicated current is unnecessary, and thus an advantage of economical efficiency is provided.
  • FIG. 19 is a diagram illustrating an output frequency for a DC voltage (VDC) provided to a grid-forming power converter according to a second embodiment of the present invention.
  • VDC DC voltage
  • the grid-forming power converter 100 changes exponentially when the input voltage VDC changes.
  • the rotational speed error (g) of the generator rotor is expressed in terms of the DC voltage (VDC) provided to the grid-forming generator, and Equation 1 and Assuming that it can be expressed in the form of an exponential function, the acceleration (g') obtained by differentiating it can be expressed by Equation (2).
  • Equation 45 the output frequency (f) of the grid forming frequency is expressed as the rotation speed (g) and the acceleration (g') as shown in Equation 46 below.
  • a coefficient a is related to a droop characteristic
  • b is related to an inertia characteristic
  • c corresponds to -Vd0 in which a minus sign is added to the DC voltage provided to the grid-forming power converter 100 when the grid-forming power converter 100 outputs the maximum load frequency.
  • Equation 48 the output frequency f of the grid forming frequency is expressed as Equation 48 below.
  • the DC voltage provided to the grid forming power converter 100 obtained by Equation 48 - the relationship between the output frequency is in the form of an exponential function convex downward as shown in FIG. 19 .
  • the grid-forming power converter 100 changes exponentially when the input voltage VDC changes.
  • the rotational speed error (g) of the generator rotor is expressed in terms of the DC voltage (VDC) provided to the grid-forming generator. Assuming that it can be expressed in the form of an exponential function as in Equation (1) of Equation 49 below, an acceleration (g') obtained by differentiating it can be expressed as Equation (2). In Equation 49, a minus sign is added to the coefficients a and b in Equation 6 described above.
  • Equation 48 the output frequency (f) of the grid forming frequency is expressed as the rotation speed (g) and the acceleration (g') as shown in Equation 50 below.
  • the coefficients a, b, c and d are design parameters. As exemplified by Equation 51 below, a coefficient a is related to a droop characteristic, and b is related to an inertia characteristic. c corresponds to -Vd0 by adding a minus sign to the DC voltage provided to the grid-forming power conversion unit 100 when the grid-forming power conversion unit 100 outputs the maximum load frequency.
  • Equation 52 the output frequency f of the grid forming frequency is expressed as in Equation 52 below.
  • the DC voltage provided to the grid forming power converter 100 obtained by Equation 52 - the relationship between the output frequency is in the form of an exponential function convex upward as shown in FIG. 20 .
  • Equation 54 the output frequency f of the grid forming frequency is expressed as in Equation 54 below.
  • the DC voltage provided to the grid-forming power converter 100 obtained by Equation 54-output frequency relationship is in the form of an exponential function convex upwards passing through the origin as shown in FIG. 21 . Even in the fourth embodiment, it is possible to form an output frequency with the voltage provided to the grid-forming power converter 100 without controlling the current formed in the grid-forming power converter 100 . Accordingly, there is provided an advantage that there is no need to introduce a separate and complicated current controller.
  • FIG. 22 (a) is a diagram illustrating a DC voltage versus frequency relationship according to the prior art and a voltage versus frequency according to the present embodiment
  • FIG. 22 (b) is an enlarged view of the operating point in FIG. 22 (a). It is a drawing.
  • reference numeral 221 denotes a frequency change according to the prior art
  • 222 denotes a case where the steady-state frequency fss is the maximum load frequency
  • 223 denotes the steady-state frequency fss.
  • ) represents the case of no-load frequency
  • (224) represents the case where the steady-state frequency (fss) is the rated frequency.
  • the rated frequency in Korea is 60 Hz
  • the rated frequency in foreign countries is 50 Hz or 60 Hz.
  • reference numeral 225 denotes a full load state output frequency
  • 226 denotes a steady state output frequency in a full load state
  • 227 denotes an output frequency in a no-load state
  • 228 denotes a no-load state. represents the steady-state output frequency.
  • Reference numeral 229 denotes the output frequency according to the prior art
  • 230 denotes the output frequency at the set point.
  • the frequency conversion equation was derived in a bottom-up manner by applying the boundary condition after reflecting the intended droop ratio and inertia property to each parameter of the equation in advance.
  • a top-down method of deriving an appropriate value of each parameter after first applying a boundary condition is adopted.
  • VDC DC voltage
  • the balanced rotational speed appears as a DC voltage, and is converted into a frequency through an exponential function. Therefore, if the DC voltage is the same as the rated voltage, it is regarded as a no-load state and the no-load frequency fFLGFM is output.
  • a droop control frequency fss corresponding to the load is output.
  • Equation 57 When the frequency converted for each voltage level is expressed as an equation, the relationship between parameters a and d is arranged as shown in Equation 57.
  • Equation 57 1, 2, 3 and 4 respectively, the DC voltage is rated, the voltage is dropped to an arbitrary value by the load supply, the voltage is the lowest by the full load supply, and the voltage is 0 corresponding to the state of being From this, it can be seen that the parameters of the fifth embodiment are not determined as constants, unlike the previous embodiment, but are determined as a function of VDC that changes according to the voltage level in order to match the measured voltage level and the target droop fss.
  • Equation 60 a may be expressed by Equation (1) of Equation 60.
  • b may be defined as in Equation 59.
  • a value selected based on the full load (refer to Equation 58) may be used.
  • Equation 61 (wc/(s+wc)) denotes a low-frequency bandpass filter. That is, the exponential term operates instantaneously and bar a and bar d operate with a delay, so that the inertia effect is expressed from the DC voltage in the transient section, and finally converges to the desired steady-state frequency fss.
  • VDC input DC voltage
  • the output frequency may be similar to the embodiment illustrated in FIG. 61, but in this embodiment, the final value of the output frequency is determined according to the frequency fss intended by the droop. It is different in that it draws a variety of different curves for the VDC.
  • FIG. 23 a sixth embodiment of the output frequency control method of the grid-forming power conversion control apparatus according to the present invention will be described with reference to FIG. 23 .
  • the description of elements that are the same as or similar to those of the above-described embodiments may be omitted.
  • the output frequency of the grid forming power converter 100 is linearly changed when the input voltage VDC is changed.
  • the operation of the sixth embodiment is as follows.
  • Equation 62 In order to achieve a desired load sharing from parallel operation of a plurality of generators, control according to the droop principle as shown in Equation 62 is common. All physical quantities are described according to the per unit unit method.
  • Controlling the GFM converter with droop converges to the steady-state frequency fss depending on interaction with other parallel operators, and if you want more load sharing, you can do this by lowering the droop m or increasing the setpoint PSP. If you want to reduce the load sharing, you can do it by increasing m or decreasing PSP. This is the output when the PSP system reaches f0, so the actual output may be higher or lower than the PSP depending on the fss.
  • An object of the present embodiment is to achieve control that achieves load sharing performance equivalent to droop by using a measurement value other than P.
  • the frequency fout can be controlled by having a proportional relationship with the DC voltage, so that the droop control can be replaced by controlling it according to Equation 63.
  • Equation 64 which is the fluctuation equation of the generator, it can be seen that P can also be indirectly grasped through VDC, paying attention to the matching principle that DC voltage means the rotation speed of the synchronous generator rotor.
  • K damping coefficient w
  • w’ rotor rotation angular velocity, angular acceleration
  • the output in the equilibrium state in which the rotor does not decelerate or accelerate any more, the output can be known from the rotational speed of the rotor. Also, since the rotation speed can be known from the DC voltage, the output can be known from the DC voltage as a result. Therefore, if 1 the relationship between DC voltage and output, 2 relationship between DC voltage and frequency, and 3 relationship between output and frequency, is accurately defined, then droop control can be replaced by DC voltage measurement.
  • VFL full-load voltage
  • VNL no-load voltage
  • Equation 65 Equation 65 2 in Equation 65 is p.u.
  • the existing matching principle of equalizing unit reference DC voltage and rotation speed is applied.
  • fNL No-load frequency
  • fFL Full-load frequency
  • Equation 67 The relationship between output and frequency means droop, and if Equation 62 is rewritten according to the relationship with DC voltage, Equation 67 is obtained.
  • Equation 67 can be expressed as Equation 68.
  • Equation 68 the same droop frequency as Equation 62 can be achieved in a steady state, and frequency control can be performed only by measuring the DC voltage without a separate control unit for controlling the DC current.
  • the purpose of the control parameter k is to reduce noise by increasing k when the high frequency component of the DC voltage is severe and to enable smooth tuning.
  • FIG. 24 is a diagram illustrating a DC voltage and an output frequency provided to the grid-forming power converter when the grid-forming power converter is controlled in the first embodiment, the second embodiment, and the third embodiment, respectively.
  • the grid-forming power converter 100 controlled by the first embodiment outputs a frequency that increases in a first-order function.
  • the grid forming power conversion unit 100 controlled by the second embodiment outputs a frequency increasing exponentially convex downwards
  • the grid forming power conversion unit 100 controlled by the third embodiment It can be seen that outputs an exponentially increasing frequency that is convex upwards.
  • FIG. 25 (a) is a diagram showing the output frequency versus the DC voltage provided to the grid-forming power converter according to the prior art and the first embodiment and the second embodiment.
  • FIG. 25(b) is an enlarged view of the range of 225kV to 245KV of FIG. 25(a).
  • the grid forming power conversion unit 100 controlled by the prior art is linear in the magnitude of the provided DC voltage.
  • this is performed by controlling the current provided to the grid forming power conversion unit 100 using a separate DC current controller.
  • the change width of the frequency is relatively small even when the first embodiment changes linearly with respect to the DC voltage and the second embodiment changes exponentially.
  • the range of change in frequency according to the embodiment and the second embodiment can be seen.
  • 26 to 30 show when the power system (dotted line) and the grid-forming power conversion unit 100 (solid line) supply power to the load, and when disturbance occurs at 2 seconds, 3 seconds, and 4 seconds, power according to time It is a figure which shows the fluctuation
  • 26(a) and 26(b) show experimental results of a grid-forming power conversion unit (solid line) and a power system (dotted line) controlled by the prior art.
  • the grid-forming power conversion unit 100 and the power system supply power to the load by 30Mw each from approximately 1.3 seconds.
  • a disturbance occurs in 2.0 seconds
  • both the power system and the grid-forming power conversion unit 100 vibrate, and the vibration is stabilized after approximately 2.5 seconds.
  • vibration occurs in the power supplied by the disturbance generated in 3 seconds, and the vibration is stabilized after 3.5 seconds.
  • the grid-forming power conversion unit 100 provides 60MW to the load.
  • FIG. 26(b) it can be seen that the output frequency fluctuates significantly whenever a disturbance occurs.
  • FIGS. 27 (a) and 27 (b) show the experimental results of the grid forming power conversion unit (solid line) and the power system (dotted line) controlled in the first embodiment
  • FIGS. 28 (a), 28 (b) ) shows the experimental results of the grid forming power conversion unit (solid line) and the power system (dotted line) controlled in the second embodiment
  • FIGS. 29 (a) and 29 (b) are the grids controlled by the third embodiment Showing the experimental results of the forming power conversion unit (solid line) and the power system (dotted line)
  • FIGS. 30 (a) and 30 (b) are grid forming power conversion unit 100 (solid line) controlled in the fourth embodiment and the experimental results of the power system (dotted line) are shown.
  • the grid-forming power conversion unit 100 and the power system supply power to the load by 30Mw, respectively, from about 1.3 seconds later.
  • a disturbance occurs at 2.0 seconds, it is confirmed that both the power system and the grid-forming power conversion unit 100 vibrate, and the vibration is stabilized after approximately 2.2 seconds. Also, in the case of a disturbance occurring in 3 seconds, the vibration is stabilized after 15.2 seconds. After 4 seconds, the grid-forming power conversion unit 100 provides 60MW to the load.
  • the grid-forming power conversion unit 100 controlled by the first to fourth embodiments can confirm that the vibration is stably stabilized faster than in the prior art even when a disturbance occurs, It can be seen that even when disturbance occurs, the range of variation of the frequency output by the grid-forming power conversion unit 100 is not large compared to the prior art.
  • Figure 31 (a) shows the experimental results of the grid forming power conversion unit (solid line) and the power system (dotted line) controlled in the fifth embodiment
  • Figure 31 (b) is from 1.2 seconds to 3.2 seconds in Figure 31 (a) It is an enlarged view of the second part.
  • the grid-forming power conversion unit 100 and the AC power generation system are connected in 1.5 seconds.
  • a disturbance occurs that increases the load, and the set-point of the grid forming converter decreases in 4.5 seconds, and the set-point of the AC power generation system is maintained.
  • the output frequency is the same as Figure 31 (c). It can be confirmed that smooth load sharing with the AC system is achieved by having different steady-state frequencies according to the load level.
  • the third guide line G3, the first guide line G1, and the second guide line G2 each show an output distribution according to an intended droop at the corresponding time point. Since the output of the grid forming power converter 100 shown by the red solid line converges on each guide line, it can be confirmed that the desired load sharing is performed.
  • FIG. 32(a) and 32(b) show a case in which control is performed by droop control according to the prior art in the experimental condition illustrated in FIG. 19 . It can be seen that the vibration is attenuated in about 0.35 seconds in the present embodiment illustrated in FIG. 31(b), but according to the prior art illustrated in FIG. 32(a), 0.6 seconds, which is approximately twice the time of this embodiment, is It can be seen that the vibration is attenuated over time. Furthermore, when the droop control according to the prior art is to be controlled at high speed as in the present embodiment, it can be confirmed that a large vibration occurs as shown in FIG. 32(b), and the droop control according to the prior art cannot be controlled at high speed. can confirm.
  • FIGS. 33 and 34 are diagrams showing experimental results of grid forming power conversion (solid line) and power system (dashed line) controlled in the sixth embodiment.
  • the grid-forming power conversion unit 100 and the power system supply power to the load by 30Mw each from about 1 second.
  • a disturbance occurs at 1.3 seconds
  • both the power system and the grid-forming power conversion unit 100 vibrate, and the vibration is stabilized after approximately 2.0 seconds.
  • the vibration is stabilized after approximately 0.3 seconds after the disturbance occurs.
  • the grid-forming power conversion unit 100 provides power to the load alone.
  • the grid forming power conversion unit 100 controlled according to the sixth embodiment can confirm that the vibration is stably stabilized faster than in the prior art even when a disturbance occurs, and the disturbance is Even if it occurs, it can be seen that the range of variation of the frequency output by the grid-forming power conversion unit 100 is not large compared to the prior art.
  • the present invention relates to a grid-forming power conversion control device, and since it can provide a stable operating environment based on system information connected with information of a power conversion device to be connected, there is potential for industrial application.

Abstract

The present invention relates to an apparatus for controlling grid-forming power conversion. The apparatus may comprise: a grid-forming power conversion unit which converts power supplied from a renewable energy generator into a voltage for supplying to a system power source, and thereby supplies power to the system power source; an optimum voltage control unit which is connected to the grid-forming power conversion unit and which, by calculating a fault current when a fault occurs and calculating a reverse current that is generated when voltage is lowered when the fault occurs and a recovery reverse current that is generated when the fault is removed, performs optimum voltage control that involves finding an operating point at which overcurrent due to fault current supply characteristics required by the system is minimized, and finding an operating point which satisfies the requirements of the power system as much as possible within a range that does not exceed the limit of the current that a power conversion apparatus can supply; and an impedance constraint evaluation control unit which collects parameters for impedance evaluation using information from the power system, and sets a reference MVA connection impedance input and a grid-forming source (GFM) voltage so as to obtain a minimum impedance that does not exceed the limit of the current that the power conversion apparatus can supply.

Description

그리드 포밍 전력변환 제어 장치 및 방법Grid forming power conversion control device and method
본 발명은 그리드 포밍 전력변환 제어 장치에 관한 것으로, 구체적으로 접속하는 전력변환장치의 정보와 연결되는 계통정보를 바탕으로 안정적인 운전이 가능한 그리드 포밍 전력변환 제어 장치 및 방법에 관한 것이다.The present invention relates to a grid-forming power conversion control apparatus, and more particularly, to a grid-forming power conversion control apparatus and method capable of stable operation based on system information connected with information of a power conversion apparatus to be connected.
향후 세계 에너지 시스템의 미래는 화석연료의 한계성에 따른 새로운 에너지 기술 개발과 화석연료에서 발생하는 온실가스(GHG) 방출을 어떻게 해결하느냐에 달려 있다.The future of the global energy system depends on the development of new energy technologies due to the limitations of fossil fuels and how to solve greenhouse gas (GHG) emissions from fossil fuels.
그리고 미래 에너지의 흐름은 석유 시대에서 천연가스 시대를 거쳐 수소를 기반으로 한 신,재생에너지(new & renewable energy) 시대로 전환될 전망이다.And the flow of future energy is expected to shift from the oil era to the natural gas era to the hydrogen-based new & renewable energy era.
신,재생에너지는 각 국가별로 조금씩 달리 정의하는데, 우리나라의 경우 석유,석탄,원자력 또는 천연가스가 아닌 에너지로서 규정하고 있으며, 재생에너지로 여덟 개 분야(태양에너지, 바이오매스, 풍력, 소수력, 지열, 해양에너지, 폐기물에너지)와 신에너지로 세 개 분야(연료전지, 석탄액화가스화, 수소에너지)가 여기에 속한다.New and renewable energy are defined slightly differently by each country. In Korea, it is defined as energy other than oil, coal, nuclear power, or natural gas, and it is defined as energy in eight fields (solar energy, biomass, wind power, small hydropower, geothermal energy). , marine energy, waste energy) and three fields (fuel cell, coal liquefaction and hydrogen energy) as new energy belong to this category.
재생에너지는 그 기술과 최종 에너지의 형태에 따라 태양열, 태양광 발전, 풍력 발전, 소수력 발전, 폐기물 소각열 및 발전, 바이오매스 에너지(바이오 가스, 가스화 발전, 바이오 연료), 지열에너지, 해양에너지 등 여러 가지로 나눌 수 있다. 이러한 재생에너지는 1차 에너지원인 태양(빛,열), 바람, 물, 바다의 자연 에너지원을 이용하여 청정한 에너지를 얻는 것이므로 자원의 부존량은 거의 무한대다.Renewable energy can be classified into several types such as solar heat, photovoltaic power generation, wind power generation, small hydro power generation, waste incineration heat and power generation, biomass energy (biogas, gasification power generation, biofuel), geothermal energy, and marine energy, depending on the technology and type of final energy. can be divided into Since such renewable energy is to obtain clean energy using the natural energy sources of the sun (light, heat), wind, water, and the sea, which are the primary energy sources, the amount of resources is almost infinite.
세계적으로 풍력, 태양광 발전 등의 신재생에너지 확대보급에 대한 투자가 집중되고 있으나, 간헐적인 발전특성을 갖는 풍력 및 태양광과 같은 신재생에너지원에 의한 발전은 출력예측이 어렵고 심한 출력변동 특성으로 연계계통의 안정적 운영에 큰 영향을 미치게 된다.Globally, investment in the expansion and distribution of new and renewable energy such as wind power and solar power is concentrated, but power generation by new and renewable energy sources such as wind and solar power, which have intermittent power generation characteristics, is difficult to predict and has severe output fluctuation characteristics. This will greatly affect the stable operation of the connected system.
따라서, 풍력 및 태양광과 같은 신재생에너지원의 획기적인 보급 확대를 위해서는 출력변동이 심한 발전출력의 안정적 공급 및 전력품질 개선이 절실히 요구되고 있는 실정이다.Therefore, in order to dramatically expand the supply of new and renewable energy sources such as wind power and solar power, stable supply of power generation output with severe output fluctuations and improvement of power quality are urgently required.
이를 위하여, 전력변환장치가 신재생에너지 발전기와 계통 전원 사이에 설치되며, 신재생에너지 발전기에서 공급된 전력을 계통 전원에 공급하기 적합한 전압으로 변환하여, 계통 전원에 전력을 공급한다.To this end, a power converter is installed between the renewable energy generator and the grid power source, converts the power supplied from the renewable energy generator into a voltage suitable for supplying the grid power, and supplies power to the grid power.
또한, 전력변환장치는 신재생에너지 발전기 또는 계통 전원으로부터 공급된 전력을 충전하고, 계통 전원에서 정전 등과 같은 이상이 발생하여 계통 전원으로부터 전력공급이 중단되는 경우, 상위제어기의 명령에 따라 미리 충전된 전력을 부하에 공급하는 기능을 수행한다.In addition, the power converter charges the power supplied from the renewable energy generator or grid power, and when the power supply from the grid power is stopped due to an abnormality such as a power outage in the grid power, the power supply is pre-charged according to the command of the upper controller. It performs the function of supplying power to the load.
한편, 그리드 포밍 전력변환장치는 전력계통에서 독립적으로 전원을 생성하는 장치로 발전기와 유사한 역할을 수행한다.On the other hand, the grid-forming power converter is a device that independently generates power in the power system and performs a role similar to that of a generator.
신재생발전원이 늘어남에 따라 줄어드는 동기발전기 역할을 대체할 수 있는 그리드 포밍 전력변환장치의 확산이 요구되고 있다.As the number of renewable power sources increases, the spread of grid-forming power converters that can replace the reduced role of synchronous generators is required.
특히, 그리드 포밍 전력변환장치는 외부계통 고장상황에서도 독립전압 생성을 유지하며 다른 전력변환장치와는 다르게 고장전류를 공급할 것이 요구되는 차이를 갖는다.In particular, the grid-forming power converter maintains independent voltage generation even in the event of an external system failure and is different from other power converters in that it is required to supply a fault current.
종래 기술에서는 그리드 포밍 전력변환장치의 고장 대응에 단순한 방법을 채용하여, 고장전류가 한도를 초과하지 않을 때까지 전압을 낮추는 방식으로 대응하고, 불평형고장 및 역전류에 대한 고려가 없다.In the prior art, a simple method is adopted to respond to the failure of the grid-forming power converter, and the voltage is lowered until the failure current does not exceed the limit, and there is no consideration of unbalanced failure and reverse current.
즉, 불평형고장 시 전력변환장치 전압이 낮아짐에 따라 건전상 역전류를 발생하고, 고장유형과 무관하게 고장제거시 전위차에 따라 회복역전류 발생하여, 적절한 제한조치가 이루어지지 않는 경우 과도한 건전상 역전류, 회복역전류에 의해 전력전자 설비가 소손되는 문제가 있다.That is, in the case of an unbalanced failure, a healthy reverse current is generated as the voltage of the power converter decreases, and a recovery reverse current is generated according to the potential difference when the failure is removed regardless of the failure type. There is a problem that power electronic equipment is damaged by current and recovery reverse current.
특히, 그리드 포밍 전력변환장치를 전력계통에 접속 시 전력계통 고장에 따른 현상 분석은 있었으나, 이는 평형고장에 대한 분석에 한정되어 중요한 부분인 불평형고장 시 현상 분석은 없었으며, 고장에도 불구하고 안정적으로 운영하기 위해 요구되는 임피던스 제약을 평가하는 방법은 없었다.In particular, there was an analysis of the phenomenon according to the failure of the power system when the grid-forming power converter is connected to the power system, but it is limited to the analysis of the balanced failure, and there was no analysis of the phenomenon in the case of an unbalanced failure, which is an important part. There was no way to estimate the impedance constraints required to operate.
따라서, 접속하는 전력변환장치의 정보와 연결되는 계통정보를 바탕으로 임피던스 적정성을 평가하고 이 평가도구에 기반하여 전력변환장치를 올바르게 설계, 제작, 이용하는 기술의 개발이 요구되고 있다.Therefore, it is required to evaluate the impedance adequacy based on the information of the power converter to be connected and the system information to be connected, and to develop a technology for correctly designing, manufacturing, and using the power converter based on this evaluation tool.
본 발명의 배경기술은 대한민국 등록특허 제10-1337437호에 게시되어 있다.Background art of the present invention is disclosed in Korean Patent Registration No. 10-1337437.
본 발명은 접속하는 전력변환장치의 정보와 연결되는 계통정보를 바탕으로 임피던스 적정성을 평가하여 안정적인 운전이 가능한 그리드 포밍 전력변환 제어 장치 및 방법을 제공한다.The present invention provides a grid-forming power conversion control device and method capable of stable operation by evaluating impedance adequacy based on system information connected with information of a power conversion device to be connected.
본 발명은 고장 시 전력변환장치가 고장전류 및 역전류를 모두 고려하여 과전류 강도를 최소화하는 최적운전전압 제어가 가능한 그리드 포밍 전력변환 제어 장치 및 방법을 제공한다. The present invention provides a grid-forming power conversion control apparatus and method capable of optimal operation voltage control in which the power conversion apparatus minimizes the intensity of overcurrent in consideration of both the failure current and the reverse current in the event of a failure.
본 발명은 모든 고장상황에서도 안정적으로 그리드 포밍 운전이 가능한 임피던스 제약 계산을 하여 임피던스 기준이 충족되지 않는 경우, 전력변환장치 설계변경, 제어기 추가, 변압기 결선법 변경, 외부계통의 접지계수 조정 등을 통해 제약을 완화할 수 있는 그리드 포밍 전력변환 제어 장치 및 방법을 제공한다. The present invention calculates the impedance constraint that enables stable grid forming operation even in all failure situations and, when the impedance criterion is not met, through power conversion device design change, controller addition, transformer wiring change, external system grounding factor adjustment, etc. A grid-forming power conversion control apparatus and method capable of alleviating restrictions are provided.
본 발명은 그리드 포밍 전력변환장치를 연결하는 단계에서 안정한 운전여부를 판단할 수 있어 신재생발전원 확대에 따른 그리드 포밍 전력변환장치의 수요를 효율적으로 감당할 수 있는 그리드 포밍 전력변환 제어 장치 및 방법을 제공한다.The present invention provides a grid-forming power conversion control device and method that can efficiently meet the demand for a grid-forming power conversion device according to the expansion of new and renewable power sources by determining whether stable operation is performed in the step of connecting the grid-forming power conversion device to provide.
본 발명은 직류 전류를 제어하지 않고 그리드 포밍 전력변환장치가 출력하는 전압의 주파수를 제어할 수 있으며, 고속으로 동작할 수 있는 그리드 포밍 전력변환 제어 장치 및 방법을 제공한다.The present invention provides a grid-forming power conversion control apparatus and method capable of controlling the frequency of the voltage output by the grid-forming power conversion device without controlling the direct current, and capable of operating at a high speed.
본 발명의 다른 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.Other objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명의 일 측면에 따르면, 그리드 포밍 전력변환 제어 장치를 제공한다.According to one aspect of the present invention, there is provided a grid-forming power conversion control device.
본 발명의 일 실시 예에 따른 그리드 포밍 전력변환 제어 장치는 신재생에너지 발전기에서 공급된 전력을 계통 전원에 공급하기 위한 전압으로 변환하여 전력을 공급하는 그리드 포밍 전력변환부, 그리드 포밍 전력변환부에 연결되어 고장 발생시에 고장전류 산출 및 고장 시 전압을 낮추게 되면 발생하는 역전류(Reverse Current), 고장제거시 발생하는 회복역전류(Recovery Reverse Current)를 산출하여 계통이 요구하는 고장전류 공급특성에 따른 과전류가 최소화되는 운전점을 찾고 전력변환장치가 공급할 수 있는 전류의 한계를 초과하지 않는 범위에서 최대한 전력계통의 요구사항을 만족시키는 운전점을 찾는 최적 전압 제어를 하는 최적 전압 제어부 및 전력계통의 정보를 이용하여 임피던스 평가를 위한 파라미터를 수집하고, 기준 MVA 접속 임피던스 입력 및 GFM(Grid Forming Source) 전압 설정을 하여 전력변환장치가 공급할 수 있는 전류의 한계를 초과하지 않는 최소 임피던스를 구하는 임피던스 제약 평가 제어부를 포함할 수 있다.The grid-forming power conversion control device according to an embodiment of the present invention converts the power supplied from the renewable energy generator into a voltage for supplying the grid power to the grid-forming power conversion unit, the grid-forming power conversion unit for supplying power It is connected to calculate the fault current when a fault occurs and calculates the reverse current that occurs when the voltage is lowered in case of a fault and the recovery reverse current that occurs when the fault is removed according to the fault current supply characteristics required by the system. Information on the optimum voltage control unit and power system to find the operating point where overcurrent is minimized and find the operating point that satisfies the requirements of the power system as much as possible within the range that does not exceed the limit of the current that the power converter can supply Impedance constraint evaluation control unit that collects parameters for impedance evaluation using may include
본 발명의 다른 일 측면에 따르면, 그리드 포밍 전력변환 제어 방법을 제공한다.According to another aspect of the present invention, there is provided a grid-forming power conversion control method.
본 발명의 일 실시 예에 따른 그리드 포밍 전력변환 제어 방법은 계통 전원에 고장이 발생하면, 고장전류 산출 및 역전류 산출을 하여 고장전류 공급 특성 제어를 하고, 전력계통의 정보를 이용하여 파라미터 수집을 하는 단계, 입력 설정부에서 기준 MVA 접속 임피던스 입력 및 GFM(Grid Forming Source) 전압 설정을 하는 단계, 고장전류 계산부에서 3상 단락 고장전류, 선간 단락 고장전류,선간 단지락 고장전류 및 1선 지락 고장전류 산출을 하는 단계, 현재의 GFM 전압을 저장하고 회복 역전류(Recovery reverse current)를 계산하는 단계 및 계산된 회복 역전류(Recovery reverse current)가 설정 제한 값을 초과하는지 판단하여 입력 임피던스로 운전 가능 여부를 판단하는 단계를 포함할 수 있다. In the grid forming power conversion control method according to an embodiment of the present invention, when a failure occurs in the system power supply, the fault current supply characteristic is controlled by calculating the fault current and the reverse current, and the parameter collection is performed using the information of the power system. Step, setting the reference MVA connection impedance input and GFM (Grid Forming Source) voltage in the input setting section, 3-phase short-circuit fault current, line-to-line short-circuit fault current, line-to-line short-circuit fault current and 1-line ground fault at fault current calculation section Calculating the fault current, storing the current GFM voltage, calculating the recovery reverse current, and judging whether the calculated recovery reverse current exceeds the set limit value and operating with the input impedance It may include the step of determining whether it is possible.
이상에서 설명한 바와 같은 본 발명에 따른 그리드 포밍 전력변환 제어 장치 및 방법은 다음과 같은 효과가 있다.The grid-forming power conversion control apparatus and method according to the present invention as described above has the following effects.
첫째, 접속하는 전력변환장치의 정보와 연결되는 계통정보를 바탕으로 임피던스 적정성을 평가하여 안정적인 운전이 가능하다.First, stable operation is possible by evaluating the impedance adequacy based on the information of the connected power converter and the connected system information.
둘째, 고장 시 전력변환장치가 고장전류 및 역전류를 모두 고려하여 과전류 강도를 최소화하는 최적운전전압 제어가 가능하다.Second, it is possible to control the optimal operating voltage to minimize the overcurrent intensity by considering both the fault current and the reverse current of the power converter in case of a fault.
셋째, 모든 고장상황에서도 안정적으로 그리드 포밍 운전이 가능한 임피던스 제약 계산을 하여 임피던스 기준이 충족되지 않는 경우, 전력변환장치 설계변경, 제어기 추가, 변압기 결선법 변경, 외부계통의 접지계수 조정 등을 통해 제약을 완화할 수 있다.Third, if the impedance criterion is not met by calculating the impedance constraint that enables stable grid forming operation even in all failure conditions, it is restricted through power conversion device design change, controller addition, transformer wiring change, external system grounding factor adjustment, etc. can alleviate
넷째, 그리드 포밍 전력변환장치를 연결하는 단계에서 안정한 운전여부를 판단할 수 있어 신재생발전원 확대에 따른 그리드 포밍 전력변환장치의 수요를 효율적으로 감당할 수 있다.Fourth, stable operation can be determined in the step of connecting the grid-forming power converter, so that the demand for the grid-forming power converter according to the expansion of new and renewable power sources can be efficiently met.
다섯째, 직류 전류를 제어하지 않고 그리드 포밍 전력변환장치가 출력하는 전압의 주파수를 제어할 수 있으며, 고속으로 동작할 수 있다.Fifth, it is possible to control the frequency of the voltage output by the grid-forming power converter without controlling the direct current, and to operate at a high speed.
도 1은 본 발명에 따른 그리드 포밍 전력변환 제어 장치의 최적 전압 추종제어 및 임피던스 제약 평가를 위한 모델 구성도1 is a model configuration diagram for the optimal voltage tracking control and impedance constraint evaluation of the grid-forming power conversion control device according to the present invention;
도 2는 본 발명에 따른 그리드 포밍 전력변환 제어 장치의 최적 전압 추종제어 및 임피던스 제약 평가를 위한 장치의 구성 블록도2 is a block diagram of a device for optimal voltage tracking control and impedance constraint evaluation of a grid-forming power conversion control device according to the present invention;
도 3은 본 발명에 따른 그리드 포밍 전력변환 제어 장치의 최적 전압 추종제어 및 임피던스 제약 평가를 위한 방법을 나타낸 플로우 차트3 is a flowchart illustrating a method for optimal voltage tracking control and impedance constraint evaluation of a grid-forming power conversion control device according to the present invention;
도 4는 3상 단락 고장의 고장 모델 구성도4 is a block diagram of a failure model of a three-phase short circuit failure;
도 5는 3 Phase Fault에서 서로 다른 접속 임피던스에 따른 Converter의 Current 변화를 나타낸 그래프5 is a graph showing the current change of the converter according to different connection impedances in a 3-phase fault;
도 6은 1선 지락 고장의 고장 모델 구성도6 is a configuration diagram of a failure model of a one-line ground fault failure;
도 7은 1선 지락 고장의 HV Side Fault의 계산 모델 구성도7 is a configuration diagram of the calculation model of HV Side Fault of 1-line ground fault.
도 8은 AC 계통과 연계된 GFM Source의 HV측 PCC지점 1선 지락 고장 시 Fault Current 그래프8 is a Fault Current graph in the case of a ground fault in the HV side PCC point 1-line of the GFM Source linked to the AC system.
도 9는 선간 단락 고장의 고장 모델 구성도9 is a block diagram of a failure model of a short circuit between lines
도 10은 선간 단락 고장의 HV Side Fault의 계산 모델 구성도10 is a configuration diagram of a calculation model of HV Side Fault of line-to-line short circuit failure
도 11 및 도 12는 AC 계통과 연계된 GFM Source의 HV측 PCC지점 선간 단락 고장 시 Fault Current 그래프11 and 12 are Fault Current graphs in case of short circuit failure between HV side PCC points of GFM Source linked to AC system.
도 13은 본 발명에 따른 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법의 개요를 예시한 순서도13 is a flowchart illustrating an overview of an output frequency control method of a grid-forming power conversion control apparatus according to the present invention
도 14는 본 발명에 따른 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어부를 개략적으로 나타낸 블록 구성도14 is a block diagram schematically showing an output frequency control unit of a grid-forming power conversion control device according to the present invention;
도 15는 발전 계통과 그리드 포밍 전력변환부가 부하에 전력을 분담하여 제공하는 것을 예시한 드룹 선도(droop plot)15 is a droop plot illustrating that the power generation system and the grid-forming power converter divide and provide power to the load.
도 16은 종래 기술에 따른 그리드 포밍 전력변환장치의 출력 주파수 제어 방법의 개요를 도 15로 예시된 드룹 선도와 함께 도시한 도면Figure 16 is a view showing the outline of the output frequency control method of the grid-forming power converter according to the prior art together with the droop diagram illustrated in Figure 15
도 17은 그리드 포밍 전력변환부의 매칭 제어는 출력 주파수를 전압에 상응하여 제어하는 예시적 제어도17 is an exemplary control diagram for controlling the matching control of the grid forming power conversion unit to control the output frequency according to the voltage
도 18은 본 발명에 따른 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법의 개요를 도 15로 예시된 드룹 선도와 함께 도시한 도면18 is a view showing the outline of the output frequency control method of the grid-forming power conversion control apparatus according to the present invention together with the droop diagram illustrated in FIG.
도 19는 본 발명에 따른 그리드 포밍 전력변환부에 제공되는 직류 전압(VDC)에 대한 출력 주파수를 나타낸 도면19 is a view showing an output frequency for a DC voltage (VDC) provided to a grid-forming power converter according to the present invention
도 20은 본 발명에 따른 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법의 제3 실시예를 설명하기 위한 도면20 is a view for explaining a third embodiment of the output frequency control method of the grid-forming power conversion control apparatus according to the present invention
도 21은 본 발명에 따른 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법의 제4 실시예를 설명하기 위한 도면21 is a view for explaining a fourth embodiment of the output frequency control method of the grid-forming power conversion control apparatus according to the present invention
도 22는 본 발명에 따른 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법의 제5 실시예를 설명하기 위한 도면22 is a view for explaining a fifth embodiment of the output frequency control method of the grid-forming power conversion control apparatus according to the present invention
도 23은 본 발명에 따른 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법의 제6 실시예를 설명하기 위한 도면23 is a view for explaining a sixth embodiment of the output frequency control method of the grid-forming power conversion control apparatus according to the present invention
도 24는 그리드 포밍 전력변환부가 각각 제1 실시예, 제2 실시예 및 제3 실시예로 제어될 때, 그리드 포밍 전력변환부에 제공되는 직류 전압과 출력 주파수를 도시한 도면24 is a diagram illustrating a DC voltage and an output frequency provided to the grid-forming power converter when the grid-forming power converter is controlled in the first embodiment, the second embodiment, and the third embodiment, respectively;
도 25(a)는 종래 기술 및 제1 실시예, 제2 실시예에 따라 그리드 포밍 전력변환부에 제공되는 직류 전압대 출력 주파수를 도시한 선도이고, 도 25(b)는 도 25(a)의 225kV 내지 245KV 의 범위를 확대하여 도시한 도면Figure 25 (a) is a diagram showing the output frequency of the DC voltage provided to the grid-forming power converter according to the prior art and the first embodiment and the second embodiment, Figure 25 (b) is Figure 25 (a) A drawing showing an enlarged range of 225kV to 245KV of
도 26(a) 및 도 26(b)는 종래 기술로 제어되는 그리드 포밍 전력변환부(실선)와 전력 계통(점선)의 실험 결과를 도시한 도면26 (a) and 26 (b) are diagrams showing the experimental results of the grid forming power conversion unit (solid line) and the power system (dotted line) controlled by the prior art
도 27(a), 도 27(b)는 제1 실시예로 제어되는 그리드 포밍 전력변환부 (실선)와 전력 계통(점선)의 실험 결과를 도시한 도면27 (a) and 27 (b) are diagrams showing the experimental results of the grid forming power conversion unit (solid line) and the power system (dashed line) controlled in the first embodiment
도 28(a), 도 28(b)는 제2 실시예로 제어되는 그리드 포밍 전력변환부 (실선)와 전력 계통(점선)의 실험 결과를 도시한 도면28 (a) and 28 (b) are diagrams showing experimental results of the grid forming power conversion unit (solid line) and the power system (dashed line) controlled in the second embodiment
도 29(a), 도 29(b)는 제3 실시예로 제어되는 그리드 포밍 전력변환부(실선)와 전력 계통(점선)의 실험 결과를 도시한 도면29 (a) and 29 (b) are diagrams showing the experimental results of the grid forming power conversion unit (solid line) and the power system (dashed line) controlled in the third embodiment
도 30(a), 도 30(b)는 제4 실시예로 제어되는 그리드 포밍 전력변환부(실선)와 전력 계통(점선)의 실험 결과를 도시한 도면30 (a) and 30 (b) are diagrams showing the experimental results of the grid forming power conversion unit (solid line) and the power system (dashed line) controlled in the fourth embodiment
도 31(a)는 제5 실시예로 제어되는 그리드 포밍 전력변환부(실선)와 전력 계통(점선)의 실험 결과를 도시하며, 도 31(b)는 도 31(a)의 1.2초에서 3.2초 부분을 확대하여 도시한 도면Figure 31 (a) shows the experimental results of the grid forming power conversion unit (solid line) and the power system (dotted line) controlled in the fifth embodiment, Figure 31 (b) is from 1.2 seconds to 3.2 seconds in Figure 31 (a) A drawing showing an enlarged second part
도 32(a) 및 도 32(b)는 도 19로 예시된 실험 조건에서 종래 기술에 의한 드룹 제어로 제어를 수행하는 경우를 도시한 도면32(a) and 32(b) are diagrams illustrating a case in which control is performed by droop control according to the prior art under the experimental conditions illustrated in FIG. 19;
도 33 및 도 34는 제6 실시예로 제어되는 그리드 포밍 전력변환부(실선)와 전력 계통(점선)의 실험 결과를 도시한 도면33 and 34 are diagrams showing experimental results of the grid forming power conversion unit (solid line) and the power system (dotted line) controlled in the sixth embodiment
이하, 본 발명에 따른 그리드 포밍 전력변환 제어 장치 및 방법의 바람직한 실시 예에 관하여 상세히 설명하면 다음과 같다.Hereinafter, a preferred embodiment of the grid-forming power conversion control apparatus and method according to the present invention will be described in detail as follows.
본 발명에 따른 그리드 포밍 전력변환 제어 장치 및 방법의 특징 및 이점들은 이하에서의 각 실시 예에 대한 상세한 설명을 통해 명백해질 것이다.Features and advantages of the grid-forming power conversion control apparatus and method according to the present invention will become apparent through the detailed description of each embodiment below.
도 1은 본 발명에 따른 그리드 포밍 전력변환 제어 장치의 최적 전압 추종제어 및 임피던스 제약 평가를 위한 모델 구성도이다.1 is a model configuration diagram for the optimal voltage tracking control and impedance constraint evaluation of the grid-forming power conversion control device according to the present invention.
본 발명에 따른 그리드 포밍 전력변환 제어 장치 및 방법은 접속하는 전력변환장치의 정보와 연결되는 계통정보를 바탕으로 고장 시 전력변환장치가 고장전류 및 역전류를 모두 고려하여 과전류 강도를 최소화하는 최적운전전압(최적전압, Optimal Voltage) 제어를 하고, 임피던스 적정성을 평가하여 안정적인 운전이 가능하다.Grid-forming power conversion control apparatus and method according to the present invention based on the information of the connected power conversion device and the system information connected to the power conversion device in the event of a failure in consideration of both the fault current and the reverse current optimal operation to minimize the overcurrent intensity Stable operation is possible by controlling voltage (optimal voltage) and evaluating impedance adequacy.
이를 위하여, 본 발명은 모든 고장상황에서도 안정적으로 그리드 포밍 운전이 가능한 임피던스 제약 계산을 하여 임피던스 기준이 충족되지 않는 경우, 전력변환장치 설계변경, 제어기 추가, 변압기 결선법 변경, 외부계통의 접지계수 조정 등을 통해 제약을 완화할 수 있는 구성을 포함할 수 있다.To this end, the present invention calculates the impedance constraint that enables stable grid forming operation even in all failure situations, and when the impedance criterion is not met, the power conversion device design change, the controller addition, the transformer wiring method change, the grounding factor adjustment of the external system It may include a configuration that can relieve the constraint through the
본 발명은 고장계산 방법으로, 테브난 등가임피던스 계산, 불평형고장을 계산하기 위해 abc상 → 대칭좌표 → 다시 abc상으로 변환하여 계산하는 과정을 포함할 수 있다.The present invention is a failure calculation method, and may include the steps of calculating the Thevenin equivalent impedance and calculating the abc phase → symmetrical coordinates → converting the abc phase back to the abc phase to calculate the unbalanced fault.
다만, 1개의 전압원과 1개의 테브난 임피던스로 등가화하여 계산하는 방법 대신에 그리드 포밍 전원은 전압의 크기가 변수로 작용해 AC 전압원과 합하여 등가화하는 것이 불가능하므로, AC전원과 그리드 포밍 전원을 별도로 각각 계산해 나중에 하나로 합하여 계산하는 superposition 방법을 사용한다.However, instead of calculating by equalizing one voltage source and one Thevenin impedance, the magnitude of the voltage acts as a variable in the grid forming power source, and it is impossible to equalize it by adding it to the AC voltage source. We use the superposition method, which calculates each and then adds them to one another.
전력변환장치를 그리드 포밍으로 운전하는 경우 허용하는 한도껏 고장전류를 공급하기를 요구받는데, 이를 고려하면 역전류를 고려하지 않고 3상단락 고장 시의 고장전류만 고려해 전압을 낮추는 방법을 사용한 것은 전력변환장치에 치명적인 영향을 줄 수 있는 것으로 판단된다.When the power converter is operated by grid forming, it is required to supply the fault current to the allowable limit. Considering this, the method of lowering the voltage by considering only the fault current in the case of a 3-phase short-circuit failure without considering the reverse current is the power It is judged that it can have a fatal effect on the converter.
본 발명에서의 외부 전력계통 고장발생 시 전력변환장치가 최적의 전압을 찾아가는 제어는 고장전류의 특성과 역전류의 특성, 전력변환장치가 흘릴 수 있는 전류의 한계가 있다는 특성, 그리고 전력계통이 그리드 포밍 전력변환장치에 요구하는 사항을 모두 고려한다.In the present invention, the control in which the power converter finds the optimal voltage when an external power system failure occurs is the characteristic of the fault current and the reverse current, the characteristic that there is a limit of the current that the power converter can flow, and the power system is grid Consider all the requirements for the forming power converter.
본 발명은 고장전류의 특성과 역전류의 특성을 고려하여 모든 고장 유형을 계산하여 그 중 가장 심각한 고장에서도 과전류가 최소화되는 운전점을 찾고, 전력변환장치가 흘릴 수 있는 전류의 한계를 초과하지 않는 범위에서 최대한 전력계통의 요구사항을 만족시키는 최적전압을 추적(tracking) 하는 것이다.The present invention calculates all failure types in consideration of the characteristics of the fault current and the reverse current, finds the operating point where the overcurrent is minimized even in the most severe fault among them, and does not exceed the limit of the current that the power conversion device can flow. It is to track the optimum voltage that satisfies the requirements of the power system as much as possible in the range.
그리고 임피던스 평가는 고장전류 및 역전류 내용을 바탕으로 전력변환장치가 흘릴 수 있는 전류의 한계 범위를 초과하지 않는 최소 임피던스를 구하는 것이다.And impedance evaluation is to find the minimum impedance that does not exceed the limit range of the current that the power converter can flow based on the fault current and reverse current.
본 발명은 임피던스 제약을 파악함으로써 전력변환장치의 임피던스를 정하거나 연계될 계통의 접속지점이 적합한지 판단할 수 있으므로 이는 전력변환장치 엔지니어링 단계에서 특히 유용하다.The present invention is particularly useful in the engineering phase of the power converter because it can determine the impedance of the power converter or determine whether the connection point of the system to be connected is appropriate by understanding the impedance constraint.
그리고 고장제거 및 회복시에 고장유형과 무관하게 한 번 전압을 감소시켜 놓은 전력변환장치가 원래 전압을 회복하는 동안 외부 계통으로부터 들어오는 회복 역전류(recovery reverse current)가 존재하는 것을 고려하고, 3상단락 고장전류와 비교 시, 외부계통 임피던스가 거의 0에 가까운 상황에서도 역전류(reverse current)가 가장 커지지 않게 하는 한계전압은 0.5pu인 것을 고려한다.And when removing and recovering from a fault, regardless of the fault type, it is considered that the recovery reverse current from the external system exists while the power converter that has reduced the voltage once recovers the original voltage. In comparison with the lock fault current, consider that the limit voltage that prevents the reverse current from becoming the largest even in a situation where the external system impedance is close to 0 is 0.5pu.
그리고 본 발명은 전력변환장치의 다음과 같은 특성을 고려한다.And the present invention considers the following characteristics of the power conversion device.
발전기와 그리드 포밍 전력변환장치는 모두 전압원이라는 공통점을 갖는데, 발전기는 전류제한이 없는 반면, 전력변환장치는 전력전자설비로서 낮은 전류제한 값이 있다.A generator and a grid-forming power converter both have a voltage source in common. A generator has no current limit, whereas a power converter has a low current limit value as a power electronic device.
따라서, 그리드 포밍 전력변환장치는 전압원으로서 동작하되, 고장 등 상황에서는 전압을 감소시켜 전류가 초과되지 않게 제어하는 방안이 필요하다.Therefore, the grid-forming power converter operates as a voltage source, but a method of controlling the current not to be exceeded by reducing the voltage in a situation such as a failure is required.
여기서, 본 발명에서는 전류제한시에는 전력변환장치가 공급하는 고장전류뿐 아니라, 전력변환장치로 들어오는 역전류, 회복역전류 역시 모두 제한하는 것을 고려한다.Here, in the present invention, when the current is limited, it is considered that not only the fault current supplied by the power conversion device but also the reverse current and the recovery reverse current entering the power conversion device are limited.
이는 만약, 고장전류에만 착안하여 제한하게 되면 역전류가 과전류가 되어 전력변환장치 소손을 야기할 가능성이 있기 때문이다.This is because, if limited by focusing only on the fault current, the reverse current becomes an overcurrent and may cause damage to the power converter.
이하의 설명에서 사용되는 기호들은 다음과 같이 정의될 수 있다.Symbols used in the following description may be defined as follows.
물리량에 관한 기호 V,E는 전압, I는 전류, Z는 임피던스이고, 측정위치에 관한 기호 HV는 고압측에서 측정한 전류, 형성된 전압, ry는 고압측에 설치된 계전기에서 측정한 전류, 형성된 전압, F는 고장점으로 흐르는 전류이다.Symbols for physical quantities V and E are voltage, I is current, and Z is impedance , F is the current flowing to the fault point.
그리고 설비명칭에 관한 기호 GFM는 컨버터, SM은 외부 계통 발전원, ext는 GFM을 제외한 외부계통을 지칭한다.And the symbol for the name of the facility is GFM for converter, SM for external system power source, and ext for external system excluding GFM.
등가화에 관한 기호 Zth는 테브난 등가 임피던스, Ith는 테브난 등가 임피던스로 흐르는 전류, 즉 GFM에서 발생한 전류이거나, SM에서 발생한 전류를 의미한다.The symbol for equivalence Z th is the Thevenin equivalent impedance, and I th is the current flowing through the Thevenin equivalent impedance, that is, the current generated in the GFM or the current generated in the SM.
그리고 계산 중간 과정에서 고장회로에서 분기점 발생시, 각 루트별로 명칭을 부여한 경우 out은 외부로 나가는 것을, in은 내부로 돌아오는 것을 의미한다.And when a branch point occurs in the fault circuit in the middle of the calculation, when a name is assigned to each route, out means going out and in means returning to the inside.
그리고 GFM, SMdirection은 GFM에서 발생하여 외부계통으로 향하는 전류, SM, GFMdirection은 SM에서 발생하여 GFM으로 향하는 전류를 축약한 것이다.And GFM, SMdirection is the abbreviation of the current generated from GFM and directed to the external system, while SM and GFMdirection are the current generated from SM and directed to the GFM.
수식이 너무 길어지면 s, b, e, t, m, 세모를 사용하여 축약한다.If an expression becomes too long, abbreviation is made using s, b, e, t, m, and triangles.
그리고 대칭성분을 구분할 필요가 있을 경우 영상(0), 정상(1), 역상(2) 구분하고, 구분할 필요가 없는 경우, 숫자는 1(정상분)과 같으므로 숫자표기가 생략될 수 있다.And when it is necessary to distinguish the symmetric component, the image (0), normal (1), and reverse image (2) are distinguished.
도 2는 본 발명에 따른 그리드 포밍 전력변환 제어 장치의 구성 블록도이다.2 is a block diagram of a grid-forming power conversion control apparatus according to the present invention.
본 발명에 따른 그리드 포밍 전력변환 제어 장치는 도 3에서와 같이, 신재생에너지 발전기와 계통 전원 사이에 설치되어, 신재생에너지 발전기에서 공급된 전력을 계통 전원에 공급하기 위한 전압으로 변환하여, 계통 전원에 전력을 공급하는 그리드 포밍 전력변환부(100)와, 그리드 포밍 전력변환부(100)에 연결되어 고장 발생시에 고장전류 산출 및 고장 시 전압을 낮추게 되면 발생하는 역전류(Reverse Current), 고장제거시 발생하는 회복역전류(Recovery Reverse Current)를 산출하여 계통이 요구하는 고장전류 공급특성에 따른 과전류가 최소화되는 운전점을 찾고 전력변환장치가 공급할 수 있는 전류의 한계를 초과하지 않는 범위에서 최대한 전력계통의 요구사항을 만족시키는 운전점을 찾는 최적 전압 제어를 하는 최적 전압 제어부(200)와, 전력계통의 정보를 이용하여 임피던스 평가를 위한 파라미터를 수집하고, 접속 임피던스 및 GFM 전압 설정 값을 변화시켜가며 전력변환장치가 공급할 수 있는 전류의 한계를 초과하지 않는 최소 임피던스를 구하는 임피던스 제약 평가 제어부(300)를 포함한다.The grid-forming power conversion control device according to the present invention is installed between the renewable energy generator and the grid power source, as shown in FIG. 3, and converts the power supplied from the renewable energy generator into a voltage for supplying the grid power, The grid-forming power conversion unit 100 that supplies power to the power source, and the grid-forming power conversion unit 100 are connected to the calculation of the fault current when a fault occurs and the reverse current generated when the voltage is lowered in case of a fault. Calculate the recovery reverse current generated during removal to find the operating point where the overcurrent is minimized according to the fault current supply characteristics required by the system, and maximize it within the range that does not exceed the limit of current that the power converter can supply The optimum voltage control unit 200 performs optimal voltage control to find an operating point that satisfies the requirements of the power system, and the parameters for impedance evaluation are collected using information on the power system, and the connection impedance and GFM voltage setting values are changed. and an impedance constraint evaluation control unit 300 to obtain a minimum impedance that does not exceed the limit of the current that the power conversion device can supply.
여기서, 최적 전압 제어부(200)는 최적 전압 제어부의 FRT 전압 지령치로서 최적전압 산출을 하는 최적전압 산출부(10)와, 최적 전압 제어부의 FRT 전압 제어하한치로서 한계전압 산출을 하는 한계전압 산출부(11)와, 최적 전압 제어부의 전압 불완전 제어 시 안전조치 하한치로서 최소전압 산출을 하는 최소전압 산출부(12)와, 계통이 요구하는 고장전류 공급특성을 고려하여 과전류가 최소화되는 운전점을 찾고 전력변환장치가 공급할 수 있는 전류의 한계를 초과하지 않는 범위에서 최대한 전력계통의 요구사항을 만족시키는 운전점을 찾는 최적 전압 제어를 하는 고장전류 공급특성 제어부(13)를 포함한다.Here, the optimum voltage control unit 200 includes an optimum voltage calculation unit 10 that calculates an optimum voltage as the FRT voltage command value of the optimum voltage control unit, and a limit voltage calculation unit ( 11), the minimum voltage calculation unit 12 that calculates the minimum voltage as the lower limit of safety measures in case of incomplete voltage control of the optimum voltage control unit, and the operating point where the overcurrent is minimized in consideration of the fault current supply characteristics required by the system and a fault current supply characteristic control unit 13 that performs optimal voltage control to find an operating point that satisfies the requirements of the power system as much as possible in a range that does not exceed the limit of the current that the converter can supply.
그리고 최적 전압 제어는 전류가 초과하면 전압을 낮추고, 역전류가 높은 특정구간에서는 전압을 높여서 과전류를 해소하고, 전류가 낮아져 제한치에 여유가 생기면 전압을 높이고 전압이 과도하게 낮으면 회복역전류가 커지므로 한계전압 이하로는 낮추지 않는다.And optimal voltage control lowers the voltage when the current exceeds, and solves the overcurrent by raising the voltage in a specific section where the reverse current is high. Therefore, it is not lowered below the limit voltage.
그리고 임피던스 제약 평가 제어부(300)는 전력계통의 정보를 이용하여 임피던스 평가를 위한 파라미터를 수집하는 파라미터 수집부(20)와, 기준 MVA 접속 임피던스 입력 및 GFM 전압 설정을 하는 입력 설정부(21)와, 전력변환장치가 공급할 수 있는 전류의 한계를 초과하지 않는 최소 임피던스를 구하기 위한 고장 전류를 산출하는 고장전류 계산부(22)와, 전력변환장치 전류가 설정 제한 값을 초과하는지 판단하여 현재의 GFM 전압을 저장하고 회복 역전류를 계산하고, 회복 역전류가 설정 제한 값을 초과하는지 판단하는 회복 역전류 산출 및 판단부(23)와, 회복 역전류가 설정 제한 값을 초과하지 않으면 입력 임피던스로 운전 가능한 것으로 판단하는 임피던스 평가부(24)를 포함한다.And the impedance constraint evaluation control unit 300 includes a parameter collection unit 20 that collects parameters for impedance evaluation using information of the power system, and an input setting unit 21 that sets the reference MVA connection impedance input and GFM voltage and , a fault current calculation unit 22 that calculates a fault current to obtain the minimum impedance that does not exceed the limit of the current that the power converter can supply, and the current GFM by determining whether the power converter current exceeds the set limit value The recovery reverse current calculation and determination unit 23 that stores the voltage, calculates the recovery reverse current, and determines whether the recovery reverse current exceeds the set limit value, and operates with the input impedance if the recovery reverse current does not exceed the set limit value It includes an impedance evaluation unit 24 that determines that it is possible.
고장전류 계산부(22)는 3상단락 고장전류, 선간 단락 고장전류, 선간 단지락 고장전류 및 1선 지락 고장전류 산출한다.The fault current calculation unit 22 calculates three-phase short-circuit fault current, line-to-line short-circuit fault current, line-to-line short-circuit fault current, and 1-line ground fault fault current.
도 3은 본 발명에 따른 그리드 포밍 전력변환 제어 장치의 최적 전압 추종제어 및 임피던스 제약 평가를 위한 방법을 나타낸 플로우 차트이다.3 is a flowchart illustrating a method for optimal voltage tracking control and impedance constraint evaluation of a grid-forming power conversion control device according to the present invention.
먼저, 계통 전원에 고장이 발생하면, 고장전류 산출 및 역전류 산출을 하여 고장전류 공급 특성 제어를 하고, 전력계통의 정보를 이용하여 파라미터 수집을 한다.(S301)First, when a fault occurs in the system power supply, fault current calculation and reverse current calculation are performed to control fault current supply characteristics, and parameters are collected using information from the power system (S301).
입력 설정부(21)에서 기준 MVA 접속 임피던스 입력 및 GFM(Grid Forming Source) 전압 설정을 한다.(S302)The input setting unit 21 sets the reference MVA connection impedance input and the GFM (Grid Forming Source) voltage. (S302)
이어, 고장전류 계산부(22)에서 3상단락 고장전류,선간 단락 고장전류,선간 단지락 고장전류,1선 지락 고장전류 산출을 하고, 회복 역전류(Recovery reverse current)를 계산한다.(S304)Next, in the fault current calculation unit 22, three-phase short-circuit fault current, line-to-line short-circuit fault current, line-to-line short-circuit fault current, and 1-wire ground fault current are calculated, and the recovery reverse current is calculated. (S304) )
그리고 산출된 전력변환장치 전류가 설정 제한 값을 초과하는지 판단하여(S305) 전류가 설정 제한 값을 초과하지 않으면 입력 임피던스로 운전 가능한 것으로 판단하고(S310), 아니면 GFM 전압을 최소전압과 비교한다.(S306)And it is determined whether the calculated power converter current exceeds the set limit value (S305), and if the current does not exceed the set limit value, it is determined that the operation is possible with the input impedance (S310), otherwise the GFM voltage is compared with the minimum voltage. (S306)
GFM 전압이 최소전압보다 크거나 같으면 GFM 전압을 1 step 감소하고 고장 전류를 다시 산출하고(S307), 아니면 입력 임피던스로 운전 불가능한 것으로 판단하여(S308) 기준 MVA 접속 임피던스를 1 step 증가하고 고장 전류를 다시 산출한다.(S309)If the GFM voltage is greater than or equal to the minimum voltage, the GFM voltage is reduced by 1 step and the fault current is calculated again (S307), otherwise it is judged that operation is impossible with the input impedance (S308), and the reference MVA connection impedance is increased by 1 step and the fault current is reduced Calculate again. (S309)
전류가 설정 제한 값을 초과하지 않으면 입력 임피던스로 운전 가능한 것으로 판단하여(S310) 전력변환장치가 공급할 수 있는 전류의 한계를 초과하지 않는 최소 임피던스를 구한 것으로 판단하여 이 값을 요구되는 최소 임피던스 값으로 인터페이싱한다.(S311)If the current does not exceed the set limit value, it is determined that operation with the input impedance is possible (S310), and it is determined that the minimum impedance that does not exceed the limit of the current that the power converter can supply is obtained, and this value is set as the required minimum impedance value. interface. (S311)
여기서, 입력 설정부(21)에서 처음 접속 임피던스 입력 및 GFM(Grid Forming Source) 전압 설정을 하는 단계에서 100MVA를 기준 임피던스로 입력하고, GFM 전압을 1.0[pu]으로 설정한다.(S303)Here, in the step of setting the first connection impedance input and GFM (Grid Forming Source) voltage in the input setting unit 21, 100MVA is input as the reference impedance, and the GFM voltage is set to 1.0 [pu] (S303).
그리고 GFM 전압을 1 step 감소하고 고장 전류를 다시 산출하는 과정 및 접속 임피던스 1 step 감소 후 다시 기준 MVA 접속 임피던스로 입력하는 과정은 전력변환장치가 공급할 수 있는 전류의 한계를 초과하지 않는 최소 임피던스를 구할 때까지 반복한다.And the process of reducing the GFM voltage by 1 step and calculating the fault current again and the process of inputting the reference MVA connection impedance again after reducing the connection impedance by 1 step to obtain the minimum impedance that does not exceed the limit of the current that the power converter can supply Repeat until
도 1을 참고하여 본 발명에 따른 그리드 포밍 전력변환 제어 장치 최적 전압 추종제어 및 임피던스 제약 평가를 위한 모델 구성에 관하여 설명하면 다음과 같다.With reference to FIG. 1, the model configuration for the optimal voltage tracking control and impedance constraint evaluation of the grid-forming power conversion control device according to the present invention will be described as follows.
이하에서 설명하는 최적 전압 추종제어 및 임피던스 제약 평가를 위한 모델 및 계산 방법은 본 발명에 적용되는 일 예를 설명한 것으로 이로 제한되지 않는다.The model and calculation method for the optimal voltage tracking control and impedance constraint evaluation to be described below have been described as an example applied to the present invention and are not limited thereto.
GFM 환경에서의 고장은 Virtual Impedance 및 이에 따른 Terminal 전압 강하로 인해 기존 AC계통에서의 고장현상과 완전히 다른 분포를 보인다.Failures in GFM environment show a completely different distribution from failures in existing AC systems due to Virtual Impedance and consequent terminal voltage drop.
지금까지는 AC 발전원만이 유일한 고장전류 Source라는 원칙을 바탕으로, 고장점에서 바라본 Single Source Thevenin Equivalent Circuit으로 모든 회로를 하나의 임피던스로 단순화하여 표현 가능하였다.Up to now, based on the principle that only the AC power source is the only fault current source, the Single Source Thevenin Equivalent Circuit viewed from the point of failure was able to simplify and express all circuits with one impedance.
하지만 GFM 환경에서는 GFM과 AC Machine의 Source Voltage가 달라지므로 하나의 Source로 합쳐질 수 없고, 각 Source의 Superposition으로 현상을 해석해야 한다.However, in the GFM environment, since the source voltages of GFM and AC Machine are different, they cannot be combined into one source, and the phenomenon must be interpreted with the superposition of each source.
1기의 GFM과 1기의 AC Machine 환경에서, 각 고장 유형별 고장전류와 전압의 분포를 계산해보면 다음과 같다.Calculating the distribution of fault current and voltage for each fault type in the GFM and AC machine environments of 1 unit is as follows.
고장점은 Converter 변압기 High Voltage Side 측 3상단락, 선간 단락, 1선 지락을 고려한다. HV측 고장을 상정하는 이유는 이 지점이 일반적인 PCC 지점이기 때문이다.For fault points, consider 3-phase short circuit on the high voltage side of the converter transformer, short circuit between lines, and ground fault on one line. The reason for supposing the HV side failure is that this point is a general PCC point.
6가지 고장모델로부터 각 case별 전력변환장치 전압/전류, PCC Ry 전압/전류 수식을 유도하면 다음과 같다.The formulas for the power converter voltage/current and PCC Ry voltage/current for each case are derived from the six failure models as follows.
계산에 사용되는 파라미터들은 다음과 같다.The parameters used in the calculation are as follows.
GFM(Grid Forming Source), SM(Synchronous AC Machine Source), F(Total Fault Current), G(Grounding Voltage), 0,1,2(Zero Sequence, Positive Sequence, Negative Sequence), th(Thevenin equivalent impedance), E(Source Voltage), GFM 내부의 가상의 Ideal 전원은
Figure PCTKR2021017281-appb-img-000001
로 표시한다.
GFM(Grid Forming Source), SM(Synchronous AC Machine Source), F(Total Fault Current), G(Grounding Voltage), 0,1,2(Zero Sequence, Positive Sequence, Negative Sequence), th(Thevenin equivalent impedance) , E (Source Voltage), the virtual ideal power inside GFM is
Figure PCTKR2021017281-appb-img-000001
indicated as
전압의 크기
Figure PCTKR2021017281-appb-img-000002
이며 위상각
Figure PCTKR2021017281-appb-img-000003
은 Yd1 결선 3상 변압기와 연계한 경우 -30°이며, VI의 임피던스 각도에 따라서도 달라질 수 있다.
voltage magnitude
Figure PCTKR2021017281-appb-img-000002
and the phase angle
Figure PCTKR2021017281-appb-img-000003
is -30° when connected with Yd1-connected 3-phase transformer, and may vary depending on the impedance angle of VI.
중요한 점은
Figure PCTKR2021017281-appb-img-000004
은 가상의 전원이며 실제로 존재하는 Voltage는 아니다. GFM 컨버터가 실제로 생성하는 전원은 이보다 작거나 같은 크기의 전압이다.
the important point is
Figure PCTKR2021017281-appb-img-000004
is a virtual power source and not an actual voltage. The power that the GFM converter actually generates is a voltage less than or equal to this.
등가화한 외부 AC 계통은
Figure PCTKR2021017281-appb-img-000005
로 표시한다. 정상과 역상 impedance는 동일하지만 영상 임피던스는 Grounding의 수준에 따라 달라지는 변수로 설정하여
Figure PCTKR2021017281-appb-img-000006
로 둔다. GFM source의 LV와 HV는 다른 고장 지점이므로 equivalent로 표시하지 않고 변압기 임피던스
Figure PCTKR2021017281-appb-img-000007
을 통해 연계한다.
The equalized external AC system is
Figure PCTKR2021017281-appb-img-000005
indicated as The normal and reverse phase impedances are the same, but the image impedance is set as a variable depending on the level of grounding.
Figure PCTKR2021017281-appb-img-000006
put it as Since LV and HV of the GFM source are different points of failure, the transformer impedance is not expressed as equivalent.
Figure PCTKR2021017281-appb-img-000007
connect through
Transformer는 HV측 wye, LV측은 delta 결선한다. 전압과 전류는 측정 지점에 따라 달라지는 경우 'HV','LV'로 구분 표시한다.Transformer is connected wye on HV side and delta connection on LV side. When voltage and current vary depending on the measurement point, they are displayed separately as 'HV' and 'LV'.
GFM의 Impedance는 변압기와 interfacing impedance로 구성된다. 용량과 무관하게 컨버터의 제어특성을 일정하게 유지하기 위해서는 자기용량(DC MVA) 대비 임피던스를 일정하게 가져간다.Impedance of GFM consists of transformer and interfacing impedance. In order to keep the control characteristics of the converter constant regardless of the capacity, the impedance compared to the self-capacitance (DC MVA) is taken constant.
[수학식 1][Equation 1]
Figure PCTKR2021017281-appb-img-000008
Figure PCTKR2021017281-appb-img-000008
여기서,
Figure PCTKR2021017281-appb-img-000009
은 변압기 임피던스,
Figure PCTKR2021017281-appb-img-000010
는 컨버터 직렬 임피던스(필터 임피던스 포함)이다.
here,
Figure PCTKR2021017281-appb-img-000009
is the transformer impedance,
Figure PCTKR2021017281-appb-img-000010
is the converter series impedance (including filter impedance).
회전기기는 각 Sequence별 다른 임피던스를 갖는다.Rotating equipment has different impedance for each sequence.
따라서 AC Source impedance도 를 구분한다. 반면 컨버터의
Figure PCTKR2021017281-appb-img-000011
, 변압기의
Figure PCTKR2021017281-appb-img-000012
은 passive 소자인 R,L,C 이므로 0,1,2 구분 없이 같은 값으로 나타낼 수 있다.
Therefore, the AC source impedance is also classified. On the other hand, the converter
Figure PCTKR2021017281-appb-img-000011
, of the transformer
Figure PCTKR2021017281-appb-img-000012
is a passive element, R, L, and C, so it can be expressed as the same value without distinction between 0, 1 and 2.
3상단락 고장의 고장 모델은 다음과 같다.The failure model of 3-phase short circuit failure is as follows.
도 4는 3상단락 고장의 고장 모델 구성도이다.4 is a block diagram of a three-phase short circuit failure model.
Grid Forming 환경에서는 도 4에서와 같은 3상단락 고장회로를 GFM과 AC Source별로 각 Parallel Circuit으로 작성하고, Superposition으로 문제를 해석한다.In the Grid Forming environment, a 3-phase short circuit fault circuit as shown in Fig. 4 is written as a parallel circuit for each GFM and AC source, and the problem is analyzed by superposition.
HV Side Fault의 경우는 다음과 같이 계산한다.HV Side Fault is calculated as follows.
[수학식 2][Equation 2]
Figure PCTKR2021017281-appb-img-000013
Figure PCTKR2021017281-appb-img-000013
Figure PCTKR2021017281-appb-img-000014
Figure PCTKR2021017281-appb-img-000014
Figure PCTKR2021017281-appb-img-000015
Figure PCTKR2021017281-appb-img-000015
Figure PCTKR2021017281-appb-img-000016
Figure PCTKR2021017281-appb-img-000016
Figure PCTKR2021017281-appb-img-000017
Figure PCTKR2021017281-appb-img-000017
여기서,
Figure PCTKR2021017281-appb-img-000018
는 테브난 등가 임피던스, 정상분(1),영상분(0),역상분(2) 구분, 컨버터(GFM)측과 외부계통(SM)측 구분,
Figure PCTKR2021017281-appb-img-000019
는 전압, 컨버터(GFM)측과 외부계통(SM)측 구분,
Figure PCTKR2021017281-appb-img-000020
는 컨버터가 공급하는 고장전류, a,b,c상 구분을 한다.
here,
Figure PCTKR2021017281-appb-img-000018
is Thevenin equivalent impedance, normal (1), zero (0), negative (2) division, converter (GFM) side and external system (SM) side,
Figure PCTKR2021017281-appb-img-000019
is the voltage, converter (GFM) side and external system (SM) side,
Figure PCTKR2021017281-appb-img-000020
is the fault current supplied by the converter, and classifies a, b, and c phases.
GFM Terminal 전압은 다음과 같이 control 된다.GFM terminal voltage is controlled as follows.
[수학식 3][Equation 3]
Figure PCTKR2021017281-appb-img-000021
Figure PCTKR2021017281-appb-img-000021
도 5는 3 Phase Fault에서 서로 다른 접속 임피던스에 따른 Converter의 Current 변화를 나타낸 그래프이다.5 is a graph showing the current change of the converter according to different connection impedances in a 3-phase fault.
1선 지락 고장의 conventional 고장 Model은 다음과 같다.The conventional failure model of 1-wire ground fault is as follows.
도 6은 1선 지락 고장의 고장 모델 구성도이다.6 is a configuration diagram of a failure model of a one-line ground fault failure.
Grid Forming 환경에서는 위 그림과 같은 1선 지락 고장회로를 GFM과 AC(SM) Source별로 각 Parallel Circuit으로 작성하고, Superposition으로 문제를 해석한다.In the Grid Forming environment, one-line ground fault circuit as shown in the figure above is written as a parallel circuit for each GFM and AC (SM) source, and the problem is analyzed by superposition.
각 Seq Circuit은 직렬 구조로서, Pos Circuit +측은 Neg Circuit -측과 연결한다. Neg Circuit +측은 Zero Circuit -측과 연결한다. 그리고 Zero Circuit +측은 Pos Circuit -측과 연결한다. 고장점과 대지간 임피던스가 있는 경우 각 Seq circuit의 +측과 연결한다.Each Seq Circuit is a series structure, and the + side of the Pos Circuit is connected to the - side of the Neg Circuit. Neg Circuit + side is connected to Zero Circuit - side. And the + side of the Zero Circuit is connected to the - side of the Pos Circuit. If there is an impedance between the fault point and the ground, connect it to the + side of each Seq circuit.
HV Side Fault의 경우는 다음과 같이 계산한다.HV Side Fault is calculated as follows.
도 7은 1선 지락 고장의 HV Side Fault의 계산 모델 구성도이다.7 is a configuration diagram of a calculation model of HV Side Fault in 1-line ground fault failure.
[수학식 4][Equation 4]
Figure PCTKR2021017281-appb-img-000022
Figure PCTKR2021017281-appb-img-000022
Figure PCTKR2021017281-appb-img-000023
Figure PCTKR2021017281-appb-img-000023
여기서,
Figure PCTKR2021017281-appb-img-000024
는 외부계통 임피던스이고, 정상분(1),영상분(0) 구분을 한다.
here,
Figure PCTKR2021017281-appb-img-000024
is the external system impedance, and is divided into normal (1) and zero (0).
Figure PCTKR2021017281-appb-img-000025
Figure PCTKR2021017281-appb-img-000026
를 계산하기 위하여 서브루트로 toward zero seq route current notation 'out'과 toward opponent route current notation 'in'을 정의한다. 두 루트는 pos sequence 내부에서만 구분되므로 seq notation '1'은 생략한다.
Figure PCTKR2021017281-appb-img-000025
and
Figure PCTKR2021017281-appb-img-000026
To calculate , define toward zero seq route current notation 'out' and toward opponent route current notation 'in' as sub-routes. Since the two routes are distinguished only within the pos sequence, the seq notation '1' is omitted.
Grid Forming Converter로부터 발생하는 전류는 다음과 같이 계산한다.The current generated from the Grid Forming Converter is calculated as follows.
[수학식 5][Equation 5]
Figure PCTKR2021017281-appb-img-000027
Figure PCTKR2021017281-appb-img-000027
Figure PCTKR2021017281-appb-img-000028
Figure PCTKR2021017281-appb-img-000028
Figure PCTKR2021017281-appb-img-000029
Figure PCTKR2021017281-appb-img-000029
Figure PCTKR2021017281-appb-img-000030
Figure PCTKR2021017281-appb-img-000030
Figure PCTKR2021017281-appb-img-000031
Figure PCTKR2021017281-appb-img-000031
Figure PCTKR2021017281-appb-img-000032
Figure PCTKR2021017281-appb-img-000032
Figure PCTKR2021017281-appb-img-000033
Figure PCTKR2021017281-appb-img-000033
Figure PCTKR2021017281-appb-img-000034
Figure PCTKR2021017281-appb-img-000034
여기서,
Figure PCTKR2021017281-appb-img-000035
는 서브루트 임피던스, 내부방향(in), 외부방향(out) 구분을 한 것이고,
Figure PCTKR2021017281-appb-img-000036
는 고장 임피던스이다.
here,
Figure PCTKR2021017281-appb-img-000035
is divided into sub-root impedance, inward (in), and outward (out) directions,
Figure PCTKR2021017281-appb-img-000036
is the fault impedance.
HV 1선 지락 고장 시 LV측은 영상회로가 개방되어 영상전류가 흐르지 않는다.In case of HV 1-line ground fault, the zero-phase current does not flow on the LV side because the zero-phase circuit is opened.
즉, 컨버터에서 발생하는 영상전류는 수학식 6에서와 같이 정의된다.That is, the zero-phase current generated in the converter is defined as in Equation (6).
[수학식 6][Equation 6]
Figure PCTKR2021017281-appb-img-000037
Figure PCTKR2021017281-appb-img-000037
역상 및 영상전류 중 외부 AC계통 방향 전류는 다음과 같이 계산한다.Among reverse-phase and zero-phase currents, the current in the direction of the external AC system is calculated as follows.
[수학식 7][Equation 7]
Figure PCTKR2021017281-appb-img-000038
Figure PCTKR2021017281-appb-img-000038
Figure PCTKR2021017281-appb-img-000039
Figure PCTKR2021017281-appb-img-000039
여기서,
Figure PCTKR2021017281-appb-img-000040
는 컨버터에서 발생하여 외부 계통측으로 흐르는 전류, 영상(0), 역상(2) 구분을 한 것이다.
here,
Figure PCTKR2021017281-appb-img-000040
is divided into zero (0) and reversed (2) current, which is generated in the converter and flows to the external system side.
AC측 SM Source로부터 발생하는 전류는 다음과 같이 계산한다.The current generated from the AC side SM Source is calculated as follows.
[수학식 8][Equation 8]
Figure PCTKR2021017281-appb-img-000041
Figure PCTKR2021017281-appb-img-000041
Figure PCTKR2021017281-appb-img-000042
Figure PCTKR2021017281-appb-img-000042
Figure PCTKR2021017281-appb-img-000043
Figure PCTKR2021017281-appb-img-000043
Figure PCTKR2021017281-appb-img-000044
Figure PCTKR2021017281-appb-img-000044
Figure PCTKR2021017281-appb-img-000045
Figure PCTKR2021017281-appb-img-000045
Figure PCTKR2021017281-appb-img-000046
Figure PCTKR2021017281-appb-img-000046
Figure PCTKR2021017281-appb-img-000047
Figure PCTKR2021017281-appb-img-000047
여기서,
Figure PCTKR2021017281-appb-img-000048
는 외부계통에서 발생하는 전류를 나타낸 것으로, 내부방향(in) 외부방향(out) 구분, 정상분(1), 역상분(2) 구분을 한 것이다.
here,
Figure PCTKR2021017281-appb-img-000048
represents the current generated in the external system, and is divided into internal (in) and external (out) directions, normal component (1), and reverse phase component (2).
Figure PCTKR2021017281-appb-img-000049
는 외부방향, 내부방향 전류를 구하기 위해 적용하는 루트 임피던스이다.
Figure PCTKR2021017281-appb-img-000049
is the root impedance applied to find outward and inward currents.
HV 1선 지락 고장 시 LV측은 영상회로가 개방되어 영상전류가 흐르지 않는다.In case of HV 1-line ground fault, the zero-phase current does not flow on the LV side because the zero-phase circuit is opened.
즉, 수학식 9에서와 같이 정의된다.That is, it is defined as in Equation 9.
[수학식 9][Equation 9]
Figure PCTKR2021017281-appb-img-000050
Figure PCTKR2021017281-appb-img-000050
역상 및 영상전류 중 외부 AC계통 방향 전류는 다음과 같이 계산한다.Among reverse-phase and zero-phase currents, the current in the direction of the external AC system is calculated as follows.
[수학식 10][Equation 10]
Figure PCTKR2021017281-appb-img-000051
Figure PCTKR2021017281-appb-img-000051
Figure PCTKR2021017281-appb-img-000052
Figure PCTKR2021017281-appb-img-000052
여기서,
Figure PCTKR2021017281-appb-img-000053
는 외부계통에서 발생하는 내부방향(in) 전류이고, 영상분(0), 역상분(2) 구분을 한 것이다.
here,
Figure PCTKR2021017281-appb-img-000053
is the inward (in) current generated from the external system, and is divided into zero (0) and reverse phase (2).
이상과 같이 각 Source별 Superposition으로 계산한 전류로부터, HV 1선 지락 고장 시 HV측의 Ry 전류는 다음과 같다.As described above, from the current calculated by the superposition for each source, the Ry current on the HV side in case of a ground fault in HV 1 line is as follows.
[수학식 11][Equation 11]
Figure PCTKR2021017281-appb-img-000054
Figure PCTKR2021017281-appb-img-000054
Figure PCTKR2021017281-appb-img-000055
Figure PCTKR2021017281-appb-img-000055
Figure PCTKR2021017281-appb-img-000056
Figure PCTKR2021017281-appb-img-000056
Figure PCTKR2021017281-appb-img-000057
Figure PCTKR2021017281-appb-img-000057
Figure PCTKR2021017281-appb-img-000058
Figure PCTKR2021017281-appb-img-000058
Figure PCTKR2021017281-appb-img-000059
Figure PCTKR2021017281-appb-img-000059
여기서, HV는 최종적으로 high voltage side에 흐르는 전류이다.Here, HV is the current that finally flows to the high voltage side.
HV 1선 지락 고장 시 HV측의 외부계통 전류는 다음과 같다.In case of HV 1-line ground fault, the external system current on the HV side is as follows.
[수학식 12][Equation 12]
Figure PCTKR2021017281-appb-img-000060
Figure PCTKR2021017281-appb-img-000060
Figure PCTKR2021017281-appb-img-000061
Figure PCTKR2021017281-appb-img-000061
Figure PCTKR2021017281-appb-img-000062
Figure PCTKR2021017281-appb-img-000062
Figure PCTKR2021017281-appb-img-000063
Figure PCTKR2021017281-appb-img-000063
Figure PCTKR2021017281-appb-img-000064
Figure PCTKR2021017281-appb-img-000064
Figure PCTKR2021017281-appb-img-000065
Figure PCTKR2021017281-appb-img-000065
여기서,
Figure PCTKR2021017281-appb-img-000066
는 최종적으로 외부계통에 흐르는 전류이다.
here,
Figure PCTKR2021017281-appb-img-000066
is the current that finally flows into the external system.
HV 1선 지락 고장 시 HV측 전압은 다음과 같다.In case of HV 1-line ground fault, the HV side voltage is as follows.
[수학식 13][Equation 13]
Figure PCTKR2021017281-appb-img-000067
Figure PCTKR2021017281-appb-img-000067
Figure PCTKR2021017281-appb-img-000068
Figure PCTKR2021017281-appb-img-000068
Figure PCTKR2021017281-appb-img-000069
Figure PCTKR2021017281-appb-img-000069
Figure PCTKR2021017281-appb-img-000070
Figure PCTKR2021017281-appb-img-000070
Figure PCTKR2021017281-appb-img-000071
Figure PCTKR2021017281-appb-img-000071
Figure PCTKR2021017281-appb-img-000072
Figure PCTKR2021017281-appb-img-000072
여기서,
Figure PCTKR2021017281-appb-img-000073
는 최종적으로 high voltage side에 측정되는 전압이다.
here,
Figure PCTKR2021017281-appb-img-000073
is the voltage finally measured on the high voltage side.
HV 1선 지락 고장 시 LV측의 Converter 전류는 다음과 같다.In case of HV 1-line ground fault, the converter current on the LV side is as follows.
[수학식 14][Equation 14]
Figure PCTKR2021017281-appb-img-000074
Figure PCTKR2021017281-appb-img-000074
Figure PCTKR2021017281-appb-img-000075
Figure PCTKR2021017281-appb-img-000075
Figure PCTKR2021017281-appb-img-000076
Figure PCTKR2021017281-appb-img-000076
Figure PCTKR2021017281-appb-img-000077
Figure PCTKR2021017281-appb-img-000077
Figure PCTKR2021017281-appb-img-000078
Figure PCTKR2021017281-appb-img-000078
Figure PCTKR2021017281-appb-img-000079
Figure PCTKR2021017281-appb-img-000079
여기서,
Figure PCTKR2021017281-appb-img-000080
는 최종적으로 low voltage side, 즉 컨버터 단에 흐르는 전류이다.
here,
Figure PCTKR2021017281-appb-img-000080
is the final low voltage side, that is, the current flowing through the converter stage.
HV 1선 지락 고장 시 LV측 전압은 다음과 같다.In case of HV 1-line ground fault, the LV side voltage is as follows.
[수학식 15][Equation 15]
Figure PCTKR2021017281-appb-img-000081
Figure PCTKR2021017281-appb-img-000081
Figure PCTKR2021017281-appb-img-000082
Figure PCTKR2021017281-appb-img-000082
Figure PCTKR2021017281-appb-img-000083
Figure PCTKR2021017281-appb-img-000083
Figure PCTKR2021017281-appb-img-000084
Figure PCTKR2021017281-appb-img-000084
Figure PCTKR2021017281-appb-img-000085
Figure PCTKR2021017281-appb-img-000085
Figure PCTKR2021017281-appb-img-000086
Figure PCTKR2021017281-appb-img-000086
여기서,
Figure PCTKR2021017281-appb-img-000087
는 최종적으로 low voltage side, 즉 컨버터 단에 형성되는 전압이다.
here,
Figure PCTKR2021017281-appb-img-000087
is the final low voltage side, that is, the voltage formed at the converter stage.
이상 HV측 1선 지락 고장 시 각 수식에서, 축약하여 표시한 임피던스
Figure PCTKR2021017281-appb-img-000088
은 다음과 같다.
Abnormal HV side 1-wire ground fault In each equation, abbreviated impedance
Figure PCTKR2021017281-appb-img-000088
Is as follows.
[수학식 16][Equation 16]
Figure PCTKR2021017281-appb-img-000089
Figure PCTKR2021017281-appb-img-000089
중요한 점은 전통적인 고장 해석과는 달리, Superposition으로 도출한 1선 지락 고장 시 건전상 전류가 0이 될 수 없다는 것이다.The important point is that, unlike traditional failure analysis, the healthy current cannot be zero in the case of a one-wire ground fault derived by superposition.
이는
Figure PCTKR2021017281-appb-img-000090
Figure PCTKR2021017281-appb-img-000091
크기가 달라지면서 각 sequence current 성분이 모두 다른 값을 가지기 때문이다. 이에 따라 a상 전류 뿐 아니라 b, c상 전류 또한 GFM의 전압
Figure PCTKR2021017281-appb-img-000092
에 따른 함수로 결정되며, 고장 초기에는 b, c상 전류가 0에 가깝지만
Figure PCTKR2021017281-appb-img-000093
을 축소해 나감에 따라 b, c상 전류가 증가한다.
this is
Figure PCTKR2021017281-appb-img-000090
class
Figure PCTKR2021017281-appb-img-000091
This is because each sequence current component has a different value as the size changes. Accordingly, not only the a-phase current but also the b and c-phase currents are the voltage of the GFM.
Figure PCTKR2021017281-appb-img-000092
It is determined as a function according to
Figure PCTKR2021017281-appb-img-000093
As , the b and c phase currents increase.
최종적으로
Figure PCTKR2021017281-appb-img-000094
이면서
Figure PCTKR2021017281-appb-img-000095
이면 고장 시 Current Limiting의 successful, 즉 FRT에 문제가 없다.
Finally
Figure PCTKR2021017281-appb-img-000094
while
Figure PCTKR2021017281-appb-img-000095
In this case, there is no problem with current limiting successful, that is, FRT in case of failure.
절대값을 취한 이유는 각 상 전류가 forward 방향 일수도, reverse 방향 일수도 있기 때문이다. 이 수식이 만족되지 않으면 limiting에 실패하고 왜곡된 전류파형이 출력되며 고장 제거 후에도 재동기화가 되지 않음으로써 FRT는 실패(Unstable)된다. 이 경우 컨버터를 Blocking 하여 IGBT를 보호해야 하는데, 이 경우 설비는 보호할 수는 있지만 Grid Forming property를 상실하므로 계통운영 측면에서 안정성이 떨어지고, 고장전류를 공급하지 못하여 Protective Relay의 올바른 동작을 유도할 수 없다.The reason for taking the absolute value is that each phase current can be either in the forward direction or in the reverse direction. If this formula is not satisfied, limiting fails, a distorted current waveform is output, and the FRT fails (unstable) because resynchronization is not performed even after the fault is removed. In this case, it is necessary to protect the IGBT by blocking the converter. In this case, the equipment can be protected, but the grid forming property is lost, so the stability in terms of system operation is deteriorated, and the correct operation of the protective relay cannot be induced because the fault current cannot be supplied. none.
이상과 같은 해석을 확인하기 위하여, AC 계통과 연계된 GFM Source의 HV측 PCC지점 1선 지락 고장 시 Fault Current Graph는 다음과 같다.(좌상,우상,좌하,우하로 갈수록 접속 임피던스가 증가하는 케이스)In order to confirm the above analysis, the Fault Current Graph in the case of a ground fault in the HV side PCC point of the GFM source connected to the AC system is as follows. )
도 8은 AC 계통과 연계된 GFM Source의 HV측 PCC지점 1선 지락 고장 시 Fault Current 그래프이다.8 is a Fault Current graph in case of a ground fault in the HV side PCC point 1-line of the GFM Source linked to the AC system.
Balanced Fault와는 달리, GFM Voltage를 낮추더라도 Current Limiting이 불가능한 DC MVA 영역이 있음을 확인할 수 있다. 이는 일정 수준 이상 DC MVA가 증가하게 되면 single line to ground fault에서 GFM 운전을 유지할 수 없다는 사실을 의미한다.Unlike Balanced Fault, it can be seen that there is a DC MVA area where current limiting is not possible even if the GFM Voltage is lowered. This means that if DC MVA increases over a certain level, GFM operation cannot be maintained in a single line to ground fault.
선간 단락 고장의 고장 모델은 다음과 같다.The failure model of line-to-line short circuit failure is as follows.
도 9는 선간 단락 고장의 고장 모델 구성도이다.9 is a configuration diagram of a failure model of a line-to-line short circuit failure.
이 경우 고장 임피던스의 위치에 따라 각각 다른 고장유형의 생성이 가능하다. 고장 상간의 임피던스는 없고 고장점과 대지 사이의 지락 임피던스가 있는 경우만 고려한다.In this case, it is possible to create different types of failures depending on the location of the failure impedance. Only the case where there is no impedance between the fault phases and there is a ground fault impedance between the fault point and earth is considered.
Grid Forming 환경에서는 도 9에서와 같은 선간 단락 고장회로를 GFM과 AC Source별로 각 Parallel Circuit으로 작성하고, Superposition으로 문제를 해석한다.In the Grid Forming environment, the line-to-line short circuit fault circuit as shown in FIG. 9 is written as a parallel circuit for each GFM and AC source, and the problem is analyzed by superposition.
각 Seq Circuit은 병렬 구조로서, +측끼리 연결하고, -측끼리 연결한다. 고장 임피던스는 Zero Seq의 +측에 3Zf를 연결한다.Each Seq Circuit is a parallel structure, connecting the + sides and connecting the - sides. The fault impedance connects 3Zf to the + side of Zero Seq.
HV Side Fault의 경우는 다음과 같이 계산한다.HV Side Fault is calculated as follows.
도 10은 선간 단락 고장의 HV Side Fault의 계산 모델 구성도이다.10 is a configuration diagram of a calculation model of HV Side Fault of line-to-line short circuit failure.
[수학식 17][Equation 17]
Figure PCTKR2021017281-appb-img-000096
Figure PCTKR2021017281-appb-img-000096
Figure PCTKR2021017281-appb-img-000097
Figure PCTKR2021017281-appb-img-000097
Figure PCTKR2021017281-appb-img-000098
Figure PCTKR2021017281-appb-img-000098
Figure PCTKR2021017281-appb-img-000099
Figure PCTKR2021017281-appb-img-000099
Figure PCTKR2021017281-appb-img-000100
Figure PCTKR2021017281-appb-img-000100
Figure PCTKR2021017281-appb-img-000101
Figure PCTKR2021017281-appb-img-000101
Figure PCTKR2021017281-appb-img-000102
Figure PCTKR2021017281-appb-img-000102
Figure PCTKR2021017281-appb-img-000103
Figure PCTKR2021017281-appb-img-000103
여기서,
Figure PCTKR2021017281-appb-img-000104
가 Neg.Seq방향
Figure PCTKR2021017281-appb-img-000105
와 Zero Seq방향
Figure PCTKR2021017281-appb-img-000106
로 나뉘므로,
here,
Figure PCTKR2021017281-appb-img-000104
A Neg.Seq direction
Figure PCTKR2021017281-appb-img-000105
with Zero Seq direction
Figure PCTKR2021017281-appb-img-000106
Since it is divided into
Figure PCTKR2021017281-appb-img-000107
와 같이 정의한다.
Figure PCTKR2021017281-appb-img-000107
is defined as
[수학식 18][Equation 18]
Figure PCTKR2021017281-appb-img-000108
Figure PCTKR2021017281-appb-img-000108
Figure PCTKR2021017281-appb-img-000109
Figure PCTKR2021017281-appb-img-000109
Figure PCTKR2021017281-appb-img-000110
Figure PCTKR2021017281-appb-img-000110
Figure PCTKR2021017281-appb-img-000111
Figure PCTKR2021017281-appb-img-000111
HV 선간 단락 고장 시 LV측은 영상회로가 개방되어 영상전류가 흐르지 않는다.In the event of a short circuit between HV lines, the LV side has an open video circuit and no zero current flows.
즉, 수학식 19에서와 같이 정의된다.That is, it is defined as in Equation 19.
[수학식 19][Equation 19]
Figure PCTKR2021017281-appb-img-000112
Figure PCTKR2021017281-appb-img-000112
역상 및 영상전류 중 외부 AC계통 방향 전류는 다음과 같이 계산한다.Among reverse-phase and zero-phase currents, the current in the direction of the external AC system is calculated as follows.
[수학식 20][Equation 20]
Figure PCTKR2021017281-appb-img-000113
Figure PCTKR2021017281-appb-img-000113
Figure PCTKR2021017281-appb-img-000114
Figure PCTKR2021017281-appb-img-000114
AC측 SM Source로부터 발생하는 전류는 다음과 같이 계산한다.The current generated from the AC side SM Source is calculated as follows.
[수학식 21][Equation 21]
Figure PCTKR2021017281-appb-img-000115
Figure PCTKR2021017281-appb-img-000115
Figure PCTKR2021017281-appb-img-000116
Figure PCTKR2021017281-appb-img-000116
Figure PCTKR2021017281-appb-img-000117
Figure PCTKR2021017281-appb-img-000117
Figure PCTKR2021017281-appb-img-000118
Figure PCTKR2021017281-appb-img-000118
Figure PCTKR2021017281-appb-img-000119
Figure PCTKR2021017281-appb-img-000119
Figure PCTKR2021017281-appb-img-000120
Figure PCTKR2021017281-appb-img-000120
Figure PCTKR2021017281-appb-img-000121
Figure PCTKR2021017281-appb-img-000121
Figure PCTKR2021017281-appb-img-000122
Figure PCTKR2021017281-appb-img-000122
Figure PCTKR2021017281-appb-img-000123
Figure PCTKR2021017281-appb-img-000123
HV 선간 단락 고장 시 LV측은 영상회로가 개방되어 영상전류가 흐르지 않는다. In the event of a short circuit between HV lines, the LV side has an open video circuit and no zero current flows.
즉, 수학식 22에서와 같이 정의된다.That is, it is defined as in Equation 22.
[수학식 22][Equation 22]
Figure PCTKR2021017281-appb-img-000124
Figure PCTKR2021017281-appb-img-000124
역상 및 영상전류 중 외부 AC계통 방향 전류는 다음과 같이 계산한다.Among reverse-phase and zero-phase currents, the current in the direction of the external AC system is calculated as follows.
[수학식 23][Equation 23]
Figure PCTKR2021017281-appb-img-000125
Figure PCTKR2021017281-appb-img-000125
Figure PCTKR2021017281-appb-img-000126
Figure PCTKR2021017281-appb-img-000126
이상과 같이 각 Source별 Superposition으로 계산한 전류로부터, HV 선간 단락 고장 시 HV측의 Ry 전류는 다음과 같이 정의된다.As described above, from the current calculated by the superposition for each source, the Ry current on the HV side is defined as follows in case of a short circuit between HV lines.
[수학식 24][Equation 24]
Figure PCTKR2021017281-appb-img-000127
Figure PCTKR2021017281-appb-img-000127
Figure PCTKR2021017281-appb-img-000128
Figure PCTKR2021017281-appb-img-000128
Figure PCTKR2021017281-appb-img-000129
Figure PCTKR2021017281-appb-img-000129
HV 선간 단락 고장 시 HV측의 외부계통 전류는 다음과 같다.In case of a short circuit between HV lines, the external system current on the HV side is as follows.
[수학식 25][Equation 25]
Figure PCTKR2021017281-appb-img-000130
Figure PCTKR2021017281-appb-img-000130
Figure PCTKR2021017281-appb-img-000131
Figure PCTKR2021017281-appb-img-000131
Figure PCTKR2021017281-appb-img-000132
Figure PCTKR2021017281-appb-img-000132
HV 선간 단락 고장 시 HV측 전압은 다음과 같다.In case of short circuit between HV lines, the voltage on the HV side is as follows.
[수학식 26][Equation 26]
Figure PCTKR2021017281-appb-img-000133
Figure PCTKR2021017281-appb-img-000133
Figure PCTKR2021017281-appb-img-000134
Figure PCTKR2021017281-appb-img-000134
Figure PCTKR2021017281-appb-img-000135
Figure PCTKR2021017281-appb-img-000135
HV 선간 단락 고장 시 LV측의 Converter 전류는 다음과 같다.In case of short circuit between HV lines, the converter current on the LV side is as follows.
[수학식 27][Equation 27]
Figure PCTKR2021017281-appb-img-000136
Figure PCTKR2021017281-appb-img-000136
Figure PCTKR2021017281-appb-img-000137
Figure PCTKR2021017281-appb-img-000137
Figure PCTKR2021017281-appb-img-000138
Figure PCTKR2021017281-appb-img-000138
HV 고장유형이 지락을 포함하지 않은 선간 단락인 경우는 영상성분이 제거되어 다음과 같이 간략화된다.In case the HV failure mode is a short circuit between lines without including a ground fault, the image component is removed and it is simplified as follows.
[수학식 28][Equation 28]
Figure PCTKR2021017281-appb-img-000139
Figure PCTKR2021017281-appb-img-000139
Figure PCTKR2021017281-appb-img-000140
Figure PCTKR2021017281-appb-img-000140
HV 선간 단락 고장 시 LV측 전압은 다음과 같다.In case of a short circuit between HV lines, the voltage on the LV side is as follows.
[수학식 29][Equation 29]
Figure PCTKR2021017281-appb-img-000141
Figure PCTKR2021017281-appb-img-000141
Figure PCTKR2021017281-appb-img-000142
Figure PCTKR2021017281-appb-img-000142
Figure PCTKR2021017281-appb-img-000143
Figure PCTKR2021017281-appb-img-000143
이상 HV측 선간 단락 고장 시 각 수식에서, 축약 표시한 임피던스Abnormal HV side short circuit failure, abbreviated impedance in each formula
Figure PCTKR2021017281-appb-img-000144
는 다음과 같다.
Figure PCTKR2021017281-appb-img-000144
is as follows
[수학식 30][Equation 30]
Figure PCTKR2021017281-appb-img-000145
Figure PCTKR2021017281-appb-img-000145
Figure PCTKR2021017281-appb-img-000146
Figure PCTKR2021017281-appb-img-000146
Figure PCTKR2021017281-appb-img-000147
Figure PCTKR2021017281-appb-img-000147
마찬가지로, Superposition으로 도출한 선간 단락 고장 시 건전상 전류가 0이 되지 않는다.Similarly, the healthy current does not become 0 in case of a short circuit between lines derived from Superposition.
최종적으로
Figure PCTKR2021017281-appb-img-000148
이면서
Figure PCTKR2021017281-appb-img-000149
이면 고장 시 Current Limiting 의 successful, 즉 FRT 가 성공한 케이스다.
Finally
Figure PCTKR2021017281-appb-img-000148
while
Figure PCTKR2021017281-appb-img-000149
In case of failure, current limiting is successful, that is, FRT is successful.
절대값을 취한 이유는 각 상 전류가 forward 방향 일수도, reverse 방향 일수도 있기 때문이다. The reason for taking the absolute value is that each phase current can be either in the forward direction or in the reverse direction.
앞서 1선 지락 고장 시와 마찬가지로 이 수식이 만족되지 않으면 limiting에 실패하여 전류파형이 왜곡되고 고장제거 후 재동기화가 되지 않으며 FRT는 Unstable 하다.As in the case of the previous 1-wire ground fault, if this formula is not satisfied, limiting fails and the current waveform is distorted.
이상과 같은 해석을 확인하기 위하여, AC 계통과 연계된 GFM Source의 HV측 PCC지점 선간 단락 고장 시 Fault Current Graph는 다음과 같다.(좌상,우상, 좌하, 우하로 갈수록 접속 임피던스가 증가하는 케이스) 지락 고장을 포함하지 않은 선간 단락인 경우에는
Figure PCTKR2021017281-appb-img-000150
을 적용한다.
In order to confirm the above analysis, the Fault Current Graph in case of a short circuit failure between the HV side PCC point of the GFM Source connected to the AC system is as follows. In the case of a line-to-line short circuit that does not include a ground fault,
Figure PCTKR2021017281-appb-img-000150
apply
도 11 및 도 12는 AC 계통과 연계된 GFM Source의 HV측 PCC지점 선간 단락 고장 시 Fault Current 그래프이다.11 and 12 are Fault Current graphs in case of a short circuit failure between the HV side PCC points of the GFM Source connected to the AC system.
Balanced Fault와는 달리, GFM Voltage를 낮추더라도 Current Limiting이 불가능한 접속 임피던스 영역이 있음을 확인할 수 있다. 이는 일정 수준 이상 접속 임피던스가 확보되지 않으면 single line to ground fault에서 GFM 운전을 유지할 수 없다는 사실을 보여준다.Unlike Balanced Fault, it can be seen that there is a connection impedance region where current limiting is not possible even if the GFM Voltage is lowered. This shows that GFM operation cannot be maintained in a single line to ground fault if the connection impedance is not secured over a certain level.
또한, 선간 단지락보다는 선간 단락 고장에서 Limiting에 실패하는 DC MVA의 한계치가 더욱 낮다.In addition, the limit value of DC MVA, which fails to limit in line-to-line short-circuit failure, is lower than that of line-to-line short circuit.
즉, 지금까지 분석한 결과, GFM에서는 선간 단락 고장 가장 Severe하다. That is, as a result of the analysis so far, in GFM, the short-circuit failure between lines is the most severe.
또한, 상기 1선 지락 및 선간 단락, 선간 단지락 고장계산을 바탕으로 하는 전압제어부의 설정값으로 사용될 최적전압, 한계전압, 최소전압을 계산하면 다음과 같다.In addition, the optimum voltage, the limit voltage, and the minimum voltage to be used as the setting values of the voltage control unit based on the above-mentioned 1-line ground fault, line-to-line short circuit, and line short-circuit fault calculation are as follows.
최적전압은 전력변환장치가 최상의 FRT 성능을 낼 수 있을 것으로 기대하는 전압이다. 최적전압에서 전력변환장치는 전류제한치를 넘지 않는 범위 내에서 최대의 고장전류를 공급하게 된다. The optimum voltage is the voltage at which the power converter is expected to produce the best FRT performance. At the optimum voltage, the power converter supplies the maximum fault current within the range that does not exceed the current limit.
최적전압은 선간 단락 고장의 상전류가 제한치와 같아지는 조건으로부터 구해진다. 수식은 다음과 같다.The optimum voltage is obtained from the condition that the phase current of the line-to-line short circuit becomes equal to the limit value. The formula is:
[수학식 31][Equation 31]
Figure PCTKR2021017281-appb-img-000151
Figure PCTKR2021017281-appb-img-000151
Figure PCTKR2021017281-appb-img-000152
Figure PCTKR2021017281-appb-img-000152
Figure PCTKR2021017281-appb-img-000153
Figure PCTKR2021017281-appb-img-000153
Figure PCTKR2021017281-appb-img-000154
로 축약표시하면, 수학식 32 및 수학식 33에서와 같다.
Figure PCTKR2021017281-appb-img-000154
If abbreviated as , it is the same as in Equations 32 and 33.
[수학식 32][Equation 32]
Figure PCTKR2021017281-appb-img-000155
Figure PCTKR2021017281-appb-img-000155
Figure PCTKR2021017281-appb-img-000156
Figure PCTKR2021017281-appb-img-000156
Figure PCTKR2021017281-appb-img-000157
Figure PCTKR2021017281-appb-img-000157
Figure PCTKR2021017281-appb-img-000158
Figure PCTKR2021017281-appb-img-000158
Figure PCTKR2021017281-appb-img-000159
Figure PCTKR2021017281-appb-img-000159
Figure PCTKR2021017281-appb-img-000160
Figure PCTKR2021017281-appb-img-000160
Figure PCTKR2021017281-appb-img-000161
Figure PCTKR2021017281-appb-img-000161
Figure PCTKR2021017281-appb-img-000162
Figure PCTKR2021017281-appb-img-000162
Figure PCTKR2021017281-appb-img-000163
Figure PCTKR2021017281-appb-img-000163
Figure PCTKR2021017281-appb-img-000164
Figure PCTKR2021017281-appb-img-000164
여기서, s는 컨버터 임피던스 축약표시, g는 컨버터에서 바라본 테브난 등가 임피던스 축약표시, e는 외부계통에서 바라본 테브난 등가 임피던스 축약표시, b는 외부계통 임피던스 축약표시, L은 전류제한 축약표시이다.Here, s is an abbreviated display of converter impedance, g is an abbreviated display of Thevenin equivalent impedance viewed from the converter, e is an abbreviated display of the Thevenin equivalent impedance viewed from an external system, b is an abbreviated display of external system impedance, and L is an abbreviated display of current limit.
[수학식 33][Equation 33]
Figure PCTKR2021017281-appb-img-000165
Figure PCTKR2021017281-appb-img-000165
Figure PCTKR2021017281-appb-img-000166
Figure PCTKR2021017281-appb-img-000166
Figure PCTKR2021017281-appb-img-000167
Figure PCTKR2021017281-appb-img-000167
Figure PCTKR2021017281-appb-img-000168
Figure PCTKR2021017281-appb-img-000168
Figure PCTKR2021017281-appb-img-000169
Figure PCTKR2021017281-appb-img-000169
Figure PCTKR2021017281-appb-img-000170
Figure PCTKR2021017281-appb-img-000170
Figure PCTKR2021017281-appb-img-000171
Figure PCTKR2021017281-appb-img-000171
Figure PCTKR2021017281-appb-img-000172
Figure PCTKR2021017281-appb-img-000172
단, 임피던스 제약 평가를 만족하지 않으면 전류제한에 성공하지 못하므로 최적전압이 원천적으로 존재하지 않는다. 따라서 임피던스 제약 만족이 제어부 운영에 우선한다.However, if the impedance constraint evaluation is not satisfied, the current limit does not succeed, so the optimal voltage does not exist fundamentally. Therefore, impedance constraint satisfaction takes precedence over control unit operation.
전류제한에 성공한다는 의미는 정격주파수의 sinusoidal 한 3상 교류 파형으로 3상 중 최대 파고 값이 제한치를 넘지 않도록 공급되는 결과를 뜻한다.The success of current limit means that it is a sinusoidal three-phase AC waveform of the rated frequency, and the result is supplied so that the maximum wave height value among three phases does not exceed the limit.
한계전압은 고장 전류와 역전류의 크기가 같아지는 지점의 전압이다. 한계전압에서 전력변환장치는 전압을 더 낮추는 이득을 더 이상 얻을 수 없다. 전압을 한계전압보다 더 낮추면 역전류(RC)가 고장전류를 초과하므로 최대전류를 낮추는 실익은 없는 반면 낮아진 전압 탓에 회복역전류(RRC)가 커져 재동기화가 어렵다. 따라서 전압제어부는 한계전압보다 전압을 낮추지 않는 제어를 수행한다.The limit voltage is the voltage at the point where the magnitude of the fault current and the reverse current are equal. At the limit voltage, the power converter can no longer obtain the gain of lowering the voltage further. If the voltage is lowered than the limit voltage, the reverse current (RC) exceeds the fault current, so there is no real benefit of lowering the maximum current. Therefore, the voltage control unit performs control not to lower the voltage than the limit voltage.
한계전압은 선간 단락 고장의 두 상전류가 같아지는 조건으로부터 구해진다. 수식은 다음과 같다.The limit voltage is obtained from the condition that the two phase currents of the line-to-line short circuit fault are equal. The formula is:
[수학식 34][Equation 34]
Figure PCTKR2021017281-appb-img-000173
로 축약표시하면, 수학식 35 및 수학식 36에서와 같다.
Figure PCTKR2021017281-appb-img-000173
If abbreviated as , it is the same as in Equations 35 and 36.
t는 컨버터에서 바라본 테브난 등가 임피던스와 외부계통 임피던스의 병렬합성 임피던스 축약표시이다.t is an abbreviation of the parallel composite impedance of the Thevenin equivalent impedance and the external system impedance viewed from the converter.
[수학식 35][Equation 35]
Figure PCTKR2021017281-appb-img-000174
Figure PCTKR2021017281-appb-img-000174
Figure PCTKR2021017281-appb-img-000175
Figure PCTKR2021017281-appb-img-000175
Figure PCTKR2021017281-appb-img-000176
Figure PCTKR2021017281-appb-img-000176
Figure PCTKR2021017281-appb-img-000177
Figure PCTKR2021017281-appb-img-000177
Figure PCTKR2021017281-appb-img-000178
Figure PCTKR2021017281-appb-img-000178
Figure PCTKR2021017281-appb-img-000179
Figure PCTKR2021017281-appb-img-000179
Figure PCTKR2021017281-appb-img-000180
Figure PCTKR2021017281-appb-img-000180
Figure PCTKR2021017281-appb-img-000181
Figure PCTKR2021017281-appb-img-000181
Figure PCTKR2021017281-appb-img-000182
Figure PCTKR2021017281-appb-img-000182
Figure PCTKR2021017281-appb-img-000183
Figure PCTKR2021017281-appb-img-000183
Figure PCTKR2021017281-appb-img-000184
Figure PCTKR2021017281-appb-img-000184
Figure PCTKR2021017281-appb-img-000185
Figure PCTKR2021017281-appb-img-000185
Figure PCTKR2021017281-appb-img-000186
Figure PCTKR2021017281-appb-img-000186
[수학식 36][Equation 36]
Figure PCTKR2021017281-appb-img-000187
Figure PCTKR2021017281-appb-img-000187
Figure PCTKR2021017281-appb-img-000188
Figure PCTKR2021017281-appb-img-000188
Figure PCTKR2021017281-appb-img-000189
Figure PCTKR2021017281-appb-img-000189
Figure PCTKR2021017281-appb-img-000190
Figure PCTKR2021017281-appb-img-000190
한계전압이 스칼라 값이어야 하므로 θk는 우변의 위상각이 0이 되도록 정해진다.Since the limit voltage must be a scalar value, θk is set so that the phase angle of the right side becomes 0.
한계전압은 임피던스 제약 평가 만족여부와 무관하게 항상 존재한다. 따라서 한계전압에서의 한계전류가 전류제한치를 넘지 않으면 임피던스 제약이 만족된 것으로 본다. The limit voltage is always present regardless of whether the impedance constraint evaluation is satisfied. Therefore, if the limit current at the limit voltage does not exceed the current limit value, the impedance constraint is considered to be satisfied.
최소전압은 전력변환장치가 성공적인 FRT 범위를 벗어나지 않고 운전할 수 있는 가장 낮은 크기의 전압이다. 최소전압은 1선 지락 고장에서 전압을 낮추었을 때 역전류가 전류제한치를 초과하는 지점과, 고장 유형과 무관하게 회복역전류가 한계를 초과하는 지점의 전압을 모두 의미한다. 계통 임피던스의 예상치 못한 변경 등으로 인해 운전 중 임피던스 제약을 벗어나게 되면 전압제어부에서 최소전압 이하로 지령할 우려가 있다. 이에 대한 안전조치로써 전압지령치가 최소전압보다 낮아지면 anti-wind-up clamping을 수행한다. Anti-wind-up clamping은 전압제어부 적분기를 reset하는 제어이다. 즉 PI제어에서 P제어로 바뀌고, error가 쌓이지 않는 효과를 얻을 수 있다. 이에 따라 전류파형은 왜곡되는 것을 피할 수는 없지만 고장제거 후 재동기화는 이룰 수 있다. 따라서 anti-wind-up은 불완전한 FRT를 대비한 안전조치로써 시행된다. The minimum voltage is the lowest voltage the power converter can operate without leaving the range of a successful FRT. The minimum voltage means both the voltage at the point where the reverse current exceeds the current limit when the voltage is lowered in a 1-line ground fault, and the voltage at the point where the recovery reverse current exceeds the limit regardless of the fault type. If the impedance limit is exceeded during operation due to an unexpected change in the system impedance, there is a risk that the voltage control unit will command the minimum voltage or less. As a safety measure, if the voltage command value is lower than the minimum voltage, anti-wind-up clamping is performed. Anti-wind-up clamping is a control that resets the voltage control unit integrator. That is, it is changed from PI control to P control, and the effect that errors do not accumulate can be obtained. Accordingly, distortion of the current waveform cannot be avoided, but resynchronization can be achieved after the fault is removed. Therefore, anti-wind-up is implemented as a safety measure in case of incomplete FRT.
최소전압을 계산하기 위해서는 두 가지 조건을 고려하는데, 첫째 회복역전류(RRC) 조건으로부터 다음과 같이 구해진다.Two conditions are considered to calculate the minimum voltage. First, it is obtained as follows from the RRC condition.
[수학식 37][Equation 37]
Figure PCTKR2021017281-appb-img-000191
Figure PCTKR2021017281-appb-img-000191
Figure PCTKR2021017281-appb-img-000192
Figure PCTKR2021017281-appb-img-000192
Figure PCTKR2021017281-appb-img-000193
Figure PCTKR2021017281-appb-img-000193
Figure PCTKR2021017281-appb-img-000194
Figure PCTKR2021017281-appb-img-000194
Figure PCTKR2021017281-appb-img-000195
Figure PCTKR2021017281-appb-img-000195
*최소전압이 스칼라 값이어야 하므로 θk는 우변의 위상각이 0이 되도록 정해진다.* Since the minimum voltage must be a scalar value, θk is set so that the phase angle of the right side becomes 0.
둘째 1선 지락 고장의 역전류(RC) 조건으로부터 다음과 같이 구해진다.Second, it is obtained as follows from the reverse current (RC) condition of 1-line ground fault.
[수학식 38][Equation 38]
Figure PCTKR2021017281-appb-img-000196
Figure PCTKR2021017281-appb-img-000196
Figure PCTKR2021017281-appb-img-000197
Figure PCTKR2021017281-appb-img-000197
Figure PCTKR2021017281-appb-img-000198
Figure PCTKR2021017281-appb-img-000198
Figure PCTKR2021017281-appb-img-000199
Figure PCTKR2021017281-appb-img-000199
로 축약표시하면, 수학식 39 및 수학식 40에서와 같다.If abbreviated as , it is the same as in Equations 39 and 40.
t0,t2는 축약표시한 임피던스 t의 영상분, 역상분이고, m은 컨버터에서 바라본 테브난 등가 임피던스 중 영상분과 역상분의 합 축약표시, 세모는 루프 임피던스 축약표시이다.t0 and t2 are the zero-phase and inverse parts of the abbreviated impedance t, m is the abbreviated display of the sum of the zero-phase and inverse parts of the Thevenin equivalent impedance seen from the converter, and the triangle is the abbreviated display of the loop impedance.
[수학식 39][Equation 39]
Figure PCTKR2021017281-appb-img-000200
Figure PCTKR2021017281-appb-img-000200
Figure PCTKR2021017281-appb-img-000201
Figure PCTKR2021017281-appb-img-000201
Figure PCTKR2021017281-appb-img-000202
Figure PCTKR2021017281-appb-img-000202
Figure PCTKR2021017281-appb-img-000203
Figure PCTKR2021017281-appb-img-000203
Figure PCTKR2021017281-appb-img-000204
Figure PCTKR2021017281-appb-img-000204
Figure PCTKR2021017281-appb-img-000205
Figure PCTKR2021017281-appb-img-000205
Figure PCTKR2021017281-appb-img-000206
Figure PCTKR2021017281-appb-img-000206
Figure PCTKR2021017281-appb-img-000207
Figure PCTKR2021017281-appb-img-000207
Figure PCTKR2021017281-appb-img-000208
Figure PCTKR2021017281-appb-img-000208
[수학식 40][Equation 40]
Figure PCTKR2021017281-appb-img-000209
Figure PCTKR2021017281-appb-img-000209
Figure PCTKR2021017281-appb-img-000210
Figure PCTKR2021017281-appb-img-000210
Figure PCTKR2021017281-appb-img-000211
Figure PCTKR2021017281-appb-img-000211
Figure PCTKR2021017281-appb-img-000212
Figure PCTKR2021017281-appb-img-000212
Figure PCTKR2021017281-appb-img-000213
Figure PCTKR2021017281-appb-img-000213
Figure PCTKR2021017281-appb-img-000214
Figure PCTKR2021017281-appb-img-000214
Figure PCTKR2021017281-appb-img-000215
Figure PCTKR2021017281-appb-img-000215
Figure PCTKR2021017281-appb-img-000216
Figure PCTKR2021017281-appb-img-000216
Figure PCTKR2021017281-appb-img-000217
Figure PCTKR2021017281-appb-img-000217
Figure PCTKR2021017281-appb-img-000218
Figure PCTKR2021017281-appb-img-000218
Figure PCTKR2021017281-appb-img-000219
Figure PCTKR2021017281-appb-img-000219
따라서 두 조건 모두 동일하게 EGFM,MINIMUM의 크기가 구해진다.Therefore, the sizes of EGFM and MINIMUM are obtained in the same way in both conditions.
최적전압과 마찬가지로 임피던스 제약 평가를 만족하지 않으면 최적전압이 원천적으로 존재하지 않는다. 따라서 임피던스 제약 만족이 제어부 운영에 우선한다.Like the optimal voltage, if the impedance constraint evaluation is not satisfied, the optimal voltage does not exist fundamentally. Therefore, impedance constraint satisfaction takes precedence over control unit operation.
이하에서는 첨부된 도면들을 참조하여 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법의 실시예들을 설명한다. Hereinafter, embodiments of an output frequency control method of a grid-forming power conversion control apparatus will be described with reference to the accompanying drawings.
도 13은 본 발명에 따른 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법의 개요를 예시한 순서도이다. 도 13을 참조하면, 본 실시예에 의한 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법은: 그리드 포밍 전력변환부(100)에 제공되는 직류 전압에 상응하는 주파수를 연산하는 단계(S1310) 및 그리드 포밍 전력변환부(100)가 제공된 직류 전압에 상응하는 주파수를 출력하는 단계(S1320)를 포함하되, 연산된 주파수를 출력하는 단계는 그리드 포밍 전력변환부(100)에 제공되는 직류 전류를 제어하지 않고 수행된다. 13 is a flowchart illustrating an outline of an output frequency control method of a grid-forming power conversion control apparatus according to the present invention. Referring to FIG. 13 , the output frequency control method of the grid-forming power conversion control apparatus according to the present embodiment includes: calculating a frequency corresponding to the DC voltage provided to the grid-forming power conversion unit 100 ( S1310 ) and the grid The forming power conversion unit 100 includes a step (S1320) of outputting a frequency corresponding to the provided DC voltage, but outputting the calculated frequency does not control the DC current provided to the grid forming power conversion unit 100 is performed without
도 14는 본 발명에 따른 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어부를 개략적으로 나타낸 블록 구성도이다. 본 실시예에 따른 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어부(400)는 입력부(410), 출력부(420), 프로세서(450), 메모리(440) 및 데이터베이스(430)를 포함한다. 도 14의 출력 주파수 제어부(400)는 일 실시예에 따른 것으로서, 도 14에 도시된 모든 블록이 필수 구성요소는 아니며, 다른 실시예에서 출력 주파수 제어부(400)에 포함된 일부 블록이 추가, 변경 또는 삭제될 수 있다. 한편, 출력 주파수 제어부(400)는 그리드 포밍 전력변환부(100)를 제어하는 컴퓨팅 장치로 구현될 수 있으며, 출력 주파수 제어부(400)에 포함된 각 구성요소들은 각각 별도의 소프트웨어 장치로 구현되거나, 소프트웨어가 결합된 별도의 하드웨어 장치로 구현될 수 있다.14 is a block diagram schematically showing an output frequency control unit of the grid-forming power conversion control apparatus according to the present invention. The output frequency control unit 400 of the grid-forming power conversion control apparatus according to the present embodiment includes an input unit 410 , an output unit 420 , a processor 450 , a memory 440 , and a database 430 . The output frequency control unit 400 of FIG. 14 is according to an embodiment, and not all blocks shown in FIG. 14 are essential components, and in another embodiment, some blocks included in the output frequency control unit 400 are added or changed. Or it can be deleted. On the other hand, the output frequency control unit 400 may be implemented as a computing device for controlling the grid forming power conversion unit 100, each component included in the output frequency control unit 400 is implemented as a separate software device, It may be implemented as a separate hardware device combined with software.
출력 주파수 제어부(400)는 그리드 포밍 전력변환부(100)에 제공되는 직류 전압에 상응하는 주파수를 연산하고, 그리드 포밍 전력변환부(100)가 제공된 직류 전압에 상응하는 주파수를 출력하도록 제어하되, 연산된 주파수를 출력하는 단계는 그리드 포밍 전력변환부(100)에 제공되는 직류 전류를 제어하지 않고 수행된다. The output frequency control unit 400 calculates a frequency corresponding to the DC voltage provided to the grid forming power conversion unit 100, and controls the grid forming power conversion unit 100 to output a frequency corresponding to the provided DC voltage, The step of outputting the calculated frequency is performed without controlling the DC current provided to the grid-forming power conversion unit 100 .
입력부(410)는 그리드 포밍 전력변환부(100)를 제어하기 위한 신호 또는 데이터를 입력하거나 획득하는 수단을 의미한다. 입력부(410)는 프로세서(450)와 연동하여 다양한 형태의 신호 또는 데이터를 입력하거나, 외부 장치와 연동하여 직접 데이터를 획득하여 프로세서(450)로 전달할 수도 있다. 입력부(410)는 그리드 포밍 전력변환부(100)의 출력 전압, 출력 주파수, 드룹 율, 셋포인트 정보 등을 입력하거나 입력 받기 위한 장치 또는 서버 일수 있으나 반드시 이에 한정되는 것은 아니다. The input unit 410 means a means for inputting or obtaining a signal or data for controlling the grid-forming power conversion unit 100 . The input unit 410 may input various types of signals or data in association with the processor 450 , or may directly acquire data in association with an external device and transmit the data to the processor 450 . The input unit 410 may be a device or a server for inputting or receiving an output voltage, an output frequency, a droop rate, set point information, etc. of the grid forming power conversion unit 100, but is not necessarily limited thereto.
출력부(420)는 프로세서(450)와 연동하여 그리드 포밍 전력변환부(100)의 출력 전압, 출력 주파수, 드룹 율, 셋포인트 정보 등을 표시할 수 있다. 출력부(420)는 소정의 정보를 출력하기 위하여 출력 주파수 제어부(400)에 구비된 디스플레이(미도시), 스피커 등을 통해 다양한 정보를 표시하는 것이 바람직하나 반드시 이에 한정되는 것은 아니다. The output unit 420 may display an output voltage, an output frequency, a droop rate, setpoint information, and the like of the grid forming power conversion unit 100 in conjunction with the processor 450 . The output unit 420 preferably displays various information through a display (not shown), a speaker, etc. provided in the output frequency control unit 400 in order to output predetermined information, but is not necessarily limited thereto.
프로세서(450)는 메모리(440)에 포함된 적어도 하나의 명령어 또는 프로그램을 실행시키는 기능을 수행한다.The processor 450 performs a function of executing at least one instruction or program included in the memory 440 .
본 실시예에 따른 프로세서(450)는 입력부(410) 또는 데이터베이스(430)로부터 획득한 데이터를 기반으로 그리드 포밍 전력변환부(100)에 제공되는 직류 전압에 상응하는 주파수를 연산하고, 그리드 포밍 전력변환부(100)가 제공된 직류 전압에 상응하는 주파수를 출력하도록 제어하는 동작을 수행한다. The processor 450 according to this embodiment calculates a frequency corresponding to the DC voltage provided to the grid forming power converter 100 based on the data obtained from the input unit 410 or the database 430, and the grid forming power An operation of controlling the converter 100 to output a frequency corresponding to the provided DC voltage is performed.
메모리(440)는 프로세서(450)에 의해 실행 가능한 적어도 하나의 명령어 또는 프로그램을 포함한다. 메모리(440)는 처리를 수행하기 위한 명령어 또는 프로그램을 포함할 수 있다. 메모리(440)는 주파수를 연산하는 프로그램, 연산된 주파수 값들을 저장할 수 있다.The memory 440 includes at least one instruction or program executable by the processor 450 . The memory 440 may include instructions or programs for performing processing. The memory 440 may store a program for calculating a frequency and the calculated frequency values.
데이터베이스(430)는 데이터베이스 관리 프로그램(DBMS)을 이용하여 컴퓨터 시스템의 저장공간(하드디스크 또는 메모리)에 구현된 일반적인 데이터구조를 의미하는 것으로, 데이터의 검색(추출), 삭제, 편집, 추가 등을 자유롭게 행할 수 있는 데이터 저장형태를 뜻하는 것으로, 오라클(Oracle), 인포믹스(Infomix), 사이베이스(Sybase), DB2와 같은 관계형 데이타베이스 관리 시스템(RDBMS)이나, 겜스톤(Gemston), 오리온(Orion), O2 등과 같은 객체 지향 데이타베이스 관리 시스템(OODBMS) 및 엑셀론(Excelon), 타미노(Tamino), 세카이주(Sekaiju) 등의 XML 전용 데이터베이스(XML Native Database)를 이용하여 본 발명의 일 실시예의 목적에 맞게 구현될 수 있고, 자신의 기능을 달성하기 위하여 적당한 필드(Field) 또는 엘리먼트들을 가지고 있다.The database 430 refers to a general data structure implemented in the storage space (hard disk or memory) of a computer system using a database management program (DBMS), and performs data search (extraction), deletion, editing, addition, etc. Relational database management system (RDBMS) such as Oracle, Infomix, Sybase, DB2, Gemston, Orion ), an object-oriented database management system (OODBMS) such as O2, and an XML Native Database such as Excelon, Tamino, Sekaiju, etc. It can be implemented according to the requirements, and has appropriate fields or elements to achieve its function.
본 실시예에 따른 데이터베이스(430)는 그리드 포밍 전력변환부(100)의 주파수를 연산하는 알고리즘 등을 저장하고, 저장된 데이터를 제공할 수 있다. 한편, 데이터베이스(140)는 출력 주파수 제어부(400) 내에 구현되는 것으로 기재하고 있으나 반드시 이에 한정되는 것은 아니며, 별도의 데이터 저장장치로 구현될 수도 있다.The database 430 according to the present embodiment may store an algorithm for calculating the frequency of the grid forming power converter 100, and the like, and may provide the stored data. Meanwhile, although the database 140 is described as being implemented in the output frequency control unit 400, it is not necessarily limited thereto, and may be implemented as a separate data storage device.
도 15는 본 발명의 일 실시예에 따른 발전 계통과 그리드 포밍 전력변환부가 부하에 전력을 분담하여 제공하는 것을 예시한 드룹 선도(droop plot)이다. 도 15는 발전 계통과 그리드 포밍 전력변환부가 동일한 부하에 전력을 공급하는 경우를 예시한다. 도 15에서 AC droop’은 발전 계통이 부하에 제공하는 전력 대비 출력 주파수를 도시한 선도(plot) 이며, GFM Droop은 그리드 포밍 전력변환부(100)가 부하에 제공하는 전력 대비 출력 주파수를 도시한 선도(plot)이다. 15 is a droop plot illustrating that the power generation system and the grid-forming power converter according to an embodiment of the present invention share and provide power to a load. 15 illustrates a case in which the power generation system and the grid-forming power conversion unit supply power to the same load. In FIG. 15, AC droop' is a plot showing the output frequency versus the power provided by the power generation system to the load, and the GFM droop shows the output frequency versus the power provided by the grid forming power converter 100 to the load. It is a plot.
도 15로 예시된 실시예에서, AC droop’ 선도와 GFM droop 선도는 모두 부하에 제공하는 전력이 증가함에 따라 출력 주파수가 감소하는 특징이 있다. 여기서 AC droop’ 선도를 좌우 반전하면 AC droop 선도를 형성할 수 있으며, GFM droop 선도와 교점인 셋 포인트(Psp, set point)가 형성된다. In the embodiment illustrated in Fig. 15, both the AC droop' diagram and the GFM droop diagram have a characteristic that the output frequency decreases as the power provided to the load increases. Here, if the AC droop' diagram is inverted left and right, an AC droop diagram can be formed, and a set point (Psp, set point), which is an intersection point with the GFM droop diagram, is formed.
발전 계통과 그리드 포밍 전력변환부(100)는 셋 포인트(Psp)를 기준으로 부하에 제공하는 전력을 분담하는 비율을 달리한다. 도시된 실시예에서, PGFM이 50MW이고, PAC가 10MW로, 그리드 포밍 전력변환부(100)와 발전 계통이 총 60MW를 부하에 제공하는 경우를 가정한다. 즉 50 MW는 그리드 포밍 전력변환부(100)가 부하에 전력을 제공하며, 나머지 10MW는 외부 교류 발전 계통이 부하에 전력을 제공한다.The power generation system and the grid-forming power converter 100 have different ratios of sharing the power provided to the load based on the set point Psp. In the illustrated embodiment, it is assumed that the PGFM is 50 MW, the PAC is 10 MW, and the grid forming power conversion unit 100 and the power generation system provide a total of 60 MW to the load. That is, the 50 MW grid-forming power conversion unit 100 provides power to the load, and the remaining 10 MW provides power to the load by the external AC power generation system.
그리드 포밍 전력변환부(100)가 무부하 상태에서 출력하는 주파수는 무부하 주파수(fNLGFM)이며, 부하에 제공하는 전력이 증가함에 따라 최대 부하 주파수(fFLGFM)까지 감소한다. 셋 포인트(Psp)에서 그리드 포밍 전력변환부(100)와 발전 계통은 공통의 주파수를 출력하며, 그 때의 주파수를 셋 포인트 주파수(fsp)라고 한다. The frequency output by the grid forming power converter 100 in the no-load state is the no-load frequency (fNLGFM), and as the power provided to the load increases, it decreases to the maximum load frequency (fFLGFM). At the set point (Psp), the grid forming power converter 100 and the power generation system output a common frequency, and the frequency at that time is referred to as the set point frequency (fsp).
그리드 포밍 전력변환부(100)가 종래의 발전 계통과 함께 운전되어 부하에 전력을 제공할 때, 그리드 포밍 전력변환부(100)가 부하에 제공하는 전력에 대한 제어는 그리드 포밍 전력변환부(100)의 드룹 선도(GFM Droop)를 제어하여 수행될 수 있다. When the grid forming power conversion unit 100 is operated together with the conventional power generation system to provide power to the load, the grid forming power conversion unit 100 controls the power provided to the load by the grid forming power conversion unit 100 ) can be performed by controlling the GFM Droop.
일 예로, 그리드 포밍 전력변환부(100)의 드룹 선도(GFM Droop)는 그리드 포밍 전력변환부(100)의 드룹 선도(GFM droop)의 기울기에 상응하는 드룹 율(droop rate), 목적하는 셋 포인트, 그리드 포밍 전력변환부(100)가 무부하 상태에서 출력하는 무부하 주파수(fNLGFM) 및 그리드 포밍 전력변환부(100)가 최대 부하 상태에서 출력하는 최대 부하 주파수(fFLGFM)를 조절하여 이루어질 수 있다. 여기서 드룹(droop)이란 병렬 운전하는 발전기들이 공동으로 공급하는 전력부하를 비례 분담하는 제어 원칙을 통칭하며, 이 때 각 발전기 또는 컨버터가 실제로 분담하는 전력 MW 에 따라 생성하는 주파수 Hz 관계를 나타낸 기울기를 드룹 율(droop rate)이라고 한다. 즉 droop rate는 아래의 수학식 41과 같이 정의된다.As an example, the droop diagram (GFM Droop) of the grid-forming power converter 100 is a droop rate corresponding to the slope of the droop diagram (GFM droop) of the grid-forming power converter 100, a target set point , It can be made by adjusting the no-load frequency (fNLGFM) output by the grid-forming power converter 100 in a no-load state and the maximum load frequency (fFLGFM) output by the grid-forming power converter 100 in a maximum load state. Here, droop refers to the control principle for proportionally sharing the power load jointly supplied by generators running in parallel. This is called the droop rate. That is, the droop rate is defined as in Equation 41 below.
[수학식 41][Equation 41]
Figure PCTKR2021017281-appb-img-000220
Figure PCTKR2021017281-appb-img-000220
도 16은 종래 기술에 따른 그리드 포밍 전력변환부의 출력 주파수 제어 방법의 개요를 도 15로 예시된 드룹 선도와 함께 도시한 도면이다. 도 16에서 1 사분면에는 도 15로 예시된 드룹 선도를 도시하였고, 2 사분면에는 그리드 포밍 전력변환부(100)의 출력 주파수를 제공되는 직류 전압(VDC)에 대한 함수가 도시되었다. FIG. 16 is a diagram illustrating an overview of an output frequency control method of a grid forming power converter according to the prior art together with a droop diagram illustrated in FIG. 15 . In FIG. 16, the droop diagram illustrated in FIG. 15 is shown in the first quadrant, and in the second quadrant, a function for the DC voltage (VDC) provided with the output frequency of the grid forming power converter 100 is shown.
도 16을 참조하면, 그리드 포밍 전력변환부(100)를 드룹제어 하는 경우, 드룹 선도(GFM Droop)에서 그리드 포밍 전력변환부(100)는 출력 주파수를 최대 부하 주파수 fFLGFM 에서 무부하 주파수인 fNLGFM 까지 변화하여 출력하여 발전 계통과 함께 연동되어 부하에 전력을 제공할 수 있다.Referring to Figure 16, when the droop control of the grid forming power conversion unit 100, the grid forming power conversion unit 100 in the droop diagram (GFM Droop) changes the output frequency from the maximum load frequency fFLGFM to the no-load frequency fNLGFM It can be outputted and interlocked with the power generation system to provide power to the load.
그리드 포밍 전력변환부(100)를 매칭 제어 하는 경우, 제공된 직류 전압에 따라 출력 주파수가 제어된다. 즉, 그리드 포밍 전력변환부(100)의 출력 주파수는 원점을 지나는 1차 함수의 형태를 가진다. 따라서, 그리드 포밍 전력변환부(100)의 출력 주파수가 최대 부하 주파수인 fFLGFM 에서 무부하 출력 주파수인 fNLGFM 까지 변화하기 위하여는 그리드 포밍 전력변환부(100)에 제공되는 전압이 ΔVDC의 범위 내에서 변화하여야 한다. When the grid-forming power conversion unit 100 is matched and controlled, the output frequency is controlled according to the provided DC voltage. That is, the output frequency of the grid-forming power converter 100 has the form of a linear function passing through the origin. Therefore, in order for the output frequency of the grid forming power conversion unit 100 to change from the maximum load frequency fFLGFM to the no-load output frequency fNLGFM, the voltage provided to the grid forming power conversion unit 100 must change within the range of ΔVDC. do.
종래 기술에 의하면, 그리드 포밍 전력변환부(100)의 매칭 제어는 출력 주파수를 전압에 상응하도록 제어하기 위해서 도 17로 예시된 것과 같이 제공된 직류 전압(VDC), 정격 직류 전압(VDC*) 및 정격 전력(P*) 및 전력 손실(Ploss)로부터 형성된 직류 전류(idc)가 제어되고, 그리드 포밍 전력변환부(100)에 제공되어야 한다. 이와 같이 직류 전류가 제어되어야 그리드 포밍 전력변환부(100)에 제공되는 전압이 ΔVDC의 범위 내에 존재하고, 그에 따라 출력 주파수가 최대 부하시 출력 주파수인 fFLGFM 에서 무부하시 출력 주파수인 fNLGFM 까지 변화한다.According to the prior art, the matching control of the grid forming power converter 100 is provided as illustrated in FIG. 17 in order to control the output frequency to correspond to the voltage (VDC), the rated DC voltage (VDC*) and the rating The direct current (idc) formed from the power (P*) and the power loss (Ploss) is controlled and must be provided to the grid forming power converter 100 . In this way, the DC current must be controlled so that the voltage provided to the grid forming power converter 100 exists within the range of ΔVDC, and accordingly, the output frequency changes from fFLGFM, which is the output frequency at maximum load, to fNLGFM, which is the output frequency at no load.
도 17로 예시된 제어 루프에 포함된 kdc는 아래의 수학식 42와 같이 표시될 수 있다. The kdc included in the control loop illustrated in FIG. 17 may be expressed as in Equation 42 below.
[수학식 42][Equation 42]
Figure PCTKR2021017281-appb-img-000221
Figure PCTKR2021017281-appb-img-000221
(η: 종래의 그리드 포밍 전력변환부(100) 직류 전압에 대한 출력 주파수의 기울기, mp: 드룹 율, vdc*: 정격 전압)(η: the slope of the output frequency with respect to the DC voltage of the conventional grid-forming power conversion unit 100, mp: the droop rate, vdc*: the rated voltage)
상기한 수학식에 기재된 바와 같이 kdc의 분모에는 드룹 율(droop rate, mp)이 포함되어 있다. 즉 매칭 제어를 위해서는 교류 주파수를 생성하는 제어부와는 별도로, 드룹 특성을 구현하기 위한 직류 전류 제어가 필요하며, 해당 직류 전류 제어시 그리드 포밍 전력변환부(100)의 전력 분담 비율인 드룹 율 반영이 필요하여 복잡하고 정교한 제어기를 구현하여야 한다는 난점이 있다. As described in the above equation, the denominator of kdc includes a droop rate (mp). That is, for the matching control, DC current control is required to implement the droop characteristic separately from the control unit that generates the AC frequency, and the droop rate, which is the power sharing ratio of the grid forming power conversion unit 100, is reflected during the DC current control. There is a difficulty in that it is necessary to implement a complex and sophisticated controller.
도 18은 본 발명에 따른 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법의 개요를 도 15로 예시된 드룹 선도와 함께 도시한 도면이다. 도 18에서 1 사분면은 도 15로 예시된 드룹 선도이고, 2 사분면에 도시된 선도는 본 실시예에 의한 그리드 포밍 전력변환 제어 장치의 출력 주파수를 제공되는 직류 전압(VDC)에 대한 함수로 나타낸 것이다. 18 is a diagram illustrating an outline of an output frequency control method of a grid-forming power conversion control apparatus according to the present invention together with the droop diagram illustrated in FIG. 15 . In FIG. 18, the first quadrant is a droop diagram illustrated in FIG. 15, and the diagram shown in the second quadrant shows the output frequency of the grid-forming power conversion control device according to this embodiment as a function of the DC voltage (VDC) provided. .
본 실시예에 따르면, 그리드 포밍 전력변환부(100)의 굵은 실선으로 도시된 출력 주파수는 입력된 직류 전압(VDC)에 대한 1차 함수에 따라 변화할 수 있다. 일 예로, 1차 함수는 최대 부하시 출력 주파수(fFLGFM)를 지나며 기울기 η‘인 1차 함수일 수 있다. 1차 함수는 아래의 수학식 43과 같이 표시될 수 있다.According to this embodiment, the output frequency shown by the thick solid line of the grid-forming power converter 100 may change according to a linear function with respect to the input DC voltage (VDC). As an example, the first-order function may be a first-order function having a slope η′ passing through the output frequency fFLGFM at maximum load. The linear function can be expressed as Equation 43 below.
[수학식 43] [Equation 43]
Figure PCTKR2021017281-appb-img-000222
Figure PCTKR2021017281-appb-img-000222
다른 예로, 1차 함수는 무부하 출력 주파수(fNLGFM)를 지나며 기울기 η‘인 1차 함수일 수 있다. 1차 함수는 무부하시 출력 주파수(fNLGFM)와 최대 부하시 출력 주파수(fFLGFM)를 지나는 1차 함수일 수 있다.As another example, the linear function may be a linear function having a slope η′ over the no-load output frequency fNLGFM. The first-order function may be a first-order function passing through the no-load output frequency (fNLGFM) and the maximum-load output frequency (fFLGFM).
1차 함수의 기울기(η‘)는 아래의 수학식 44로부터 얻을 수 있다. The slope (η′) of the linear function can be obtained from Equation 44 below.
[수학식 44][Equation 44]
Figure PCTKR2021017281-appb-img-000223
Figure PCTKR2021017281-appb-img-000223
(f*: 정격 주파수, VDC*: 정격 직류 전압, droop%: 드룹 율)(f*: rated frequency, VDC*: rated DC voltage, droop%: droop rate)
정격 주파수는 국내의 경우 60Hz, 해외의 경우 50Hz 또는 60Hz로 정해지며, 정격 직류 전압은 설비의 제작사양에 따라 정해지는 값이다. 본 실시예에 의한 그리드 포밍 전력변환 제어 장치의 주파수 제어 방법은 도 17로 예시된 종래 기술과 달리 그리드 포밍 전력변환부(100)에 제공된 직류 전압(VDC)이 0인 경우에 그리드 포밍 전력변환부(100)가 최대 부하시 출력 주파수(fFLGFM)를 출력하고, 그리드 포밍 전력변환부(100)에 제공되는 직류 전압(VDC)이 증가함에 따라 출력 주파수(f)는 기울기 η’을 따라 증가한다. 또한, 그리드 포밍 전력변환부(100)에 제공된 직류 전압(VDC)이 최대 전압이 제공될 때 그리드 포밍 전력변환 제어 장치는 무부하시 출력 주파수(fNLGFM)를 출력한다. The rated frequency is set to 60Hz in Korea and 50Hz or 60Hz in the case of overseas, and the rated DC voltage is a value determined according to the manufacturing specifications of the equipment. The frequency control method of the grid-forming power conversion control apparatus according to this embodiment is a grid-forming power conversion unit when the DC voltage (VDC) provided to the grid-forming power conversion unit 100 is 0, unlike the prior art illustrated in FIG. 17 . (100) outputs the output frequency (fFLGFM) at the maximum load, and as the DC voltage (VDC) provided to the grid forming power converter 100 increases, the output frequency (f) increases along the slope η'. In addition, when the maximum voltage of the DC voltage VDC provided to the grid forming power conversion unit 100 is provided, the grid forming power conversion control device outputs an output frequency fNLGFM at no load.
또한, 종래 기술에 의한 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법은 목적하는 범위 내의 출력 주파수를 얻기 위하여 그리드 포밍 전력변환부(100)에 제공되는 직류 전류를 제어하여 그리드 포밍 전력변환부(100)에 제공되는 직류 전압을 목적하는 범위 내로 유지하였다. 종래 기술에 의하면 직류 전류를 제어하는 컨트롤러가 필수적으로 요청되었으나, 이러한 컨트롤러는 복잡하고, 비용적인 면에서 비경제적이었다.In addition, the method for controlling the output frequency of the grid-forming power conversion control apparatus according to the prior art controls the DC current provided to the grid-forming power conversion unit 100 to obtain an output frequency within a desired range, thereby controlling the grid-forming power conversion unit 100 ) was maintained within the desired range. According to the prior art, a controller for controlling a direct current has been required, but such a controller is complicated and uneconomical in terms of cost.
그러나, 본 실시예에 의하면 직류 전류의 제어 없이 그리드 포밍 주파수에 제공되는 직류 전압으로부터 출력 주파수를 형성할 수 있다. 따라서, 복잡한 전류를 제어하는 컨트롤러가 불필요하며 따라서, 경제적이라는 장점이 제공된다. However, according to the present embodiment, the output frequency can be formed from the DC voltage provided to the grid forming frequency without controlling the DC current. Accordingly, a controller for controlling a complicated current is unnecessary, and thus an advantage of economical efficiency is provided.
이하에서는 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법의 제2 실시예를 설명한다. Hereinafter, a second embodiment of the output frequency control method of the grid-forming power conversion control device will be described.
도 19는 본 발명의 제2 실시예에 의한 그리드 포밍 전력변환부에 제공되는 직류 전압(VDC)에 대한 출력 주파수를 나타낸 도면이다. 도 19를 참조하면 본 실시예에 의한 출력 주파수 제어 방법에서, 그리드 포밍 전력변환부(100)는 입력 전압(VDC)이 변화할 때 지수함수적으로 변화한다.19 is a diagram illustrating an output frequency for a DC voltage (VDC) provided to a grid-forming power converter according to a second embodiment of the present invention. Referring to FIG. 19 , in the output frequency control method according to the present embodiment, the grid-forming power converter 100 changes exponentially when the input voltage VDC changes.
그리드 포밍 전력변환부(100)를 발전기로 대비하였을 때, 발전기 로터의 회전 속도 오차(g)를 그리드 포밍 발전기에 제공되는 직류 전압(VDC)의 항으로 표시하고, 아래의 수학식 45의 ①식과 같이 지수 함수의 형태로 표현될 수 있는 것으로 가정하면, 이를 미분한 가속도(g’)는 수학식 ②로 표시될 수 있다. When the grid-forming power conversion unit 100 is prepared as a generator, the rotational speed error (g) of the generator rotor is expressed in terms of the DC voltage (VDC) provided to the grid-forming generator, and Equation ① and Assuming that it can be expressed in the form of an exponential function, the acceleration (g') obtained by differentiating it can be expressed by Equation (2).
[수학식 45][Equation 45]
Figure PCTKR2021017281-appb-img-000224
...①
Figure PCTKR2021017281-appb-img-000224
...①
Figure PCTKR2021017281-appb-img-000225
...②
Figure PCTKR2021017281-appb-img-000225
...②
(a, b, c, d, k: 미정 상수인 설계 파라미터)(a, b, c, d, k: design parameters that are undetermined constants)
수학식 45로 표시된 결과로부터 그리드 포밍 주파수의 출력 주파수(f)를 회전 속도(g)와 가속도(g’)로 표시하면 아래의 수학식 46과 같다. From the result expressed by Equation 45, the output frequency (f) of the grid forming frequency is expressed as the rotation speed (g) and the acceleration (g') as shown in Equation 46 below.
[수학식 46][Equation 46]
Figure PCTKR2021017281-appb-img-000226
Figure PCTKR2021017281-appb-img-000226
계수 a, b, c 및 d 는 설계 파라미터이다. 아래의 수학식 47로 예시된 것과 같이 계수 a는 드룹 특성(droop characteristic)과 관련되고, b는 관성(inertia) 특성과 관련된다. c는 그리드 포밍 전력변환부(100)가 최대부하 주파수 출력시 그리드 포밍 전력변환부(100)에 제공되는 직류 전압에 - 부호를 부가한 -Vd0에 상응한다.The coefficients a, b, c and d are design parameters. As exemplified by Equation 47 below, a coefficient a is related to a droop characteristic, and b is related to an inertia characteristic. c corresponds to -Vd0 in which a minus sign is added to the DC voltage provided to the grid-forming power converter 100 when the grid-forming power converter 100 outputs the maximum load frequency.
경계 조건으로 VDC = Vd0 일 때, 출력 주파수 f = fNLGFM 이고, VDC = 0일 때 출력 주파수 f= fFLGFM 인 것을 이용하여 미정 상수 d와 k를 구한다. a, b, c, d 및 k는 아래의 수학식과 같다.As boundary conditions, when VDC = Vd0, the output frequency f = fNLGFM, and when VDC = 0, the output frequency f = fFLGFM is used to obtain the indeterminate constants d and k. a, b, c, d, and k are the same as in the following equation.
[수학식 47][Equation 47]
Figure PCTKR2021017281-appb-img-000227
Figure PCTKR2021017281-appb-img-000227
Figure PCTKR2021017281-appb-img-000228
Figure PCTKR2021017281-appb-img-000228
(droop%: 드룹율, H: 관성, Vd0: 최대 부하 주파수 출력시 DC 전압, fNLGFM: 무부하 주파수)(droop%: droop rate, H: inertia, Vd0: DC voltage at full load frequency output, fNLGFM: no-load frequency)
이로부터 그리드 포밍 주파수의 출력 주파수(f)를 표시하면 아래의 수학식 48과 같다.From this, the output frequency f of the grid forming frequency is expressed as Equation 48 below.
[수학식 48][Equation 48]
Figure PCTKR2021017281-appb-img-000229
Figure PCTKR2021017281-appb-img-000229
수학식 48로 얻어진 그리드 포밍 전력변환부(100)에 제공된 직류 전압 - 출력 주파수의 관계는 도 19로 도시된 것과 같이 아래로 볼록인 지수 함수의 형태이다. 제2 실시예에 있어서도 그리드 포밍 전력변환부(100)에 형성되는 전류를 제어하지 않고 그리드 포밍 전력변환부(100)에 제공되는 전압으로 출력 주파수를 형성할 수 있다. 따라서, 별도의 복잡한 별도의 전류 콘트롤러를 도입할 필요가 없다는 장점이 제공된다.The DC voltage provided to the grid forming power converter 100 obtained by Equation 48 - the relationship between the output frequency is in the form of an exponential function convex downward as shown in FIG. 19 . Even in the second embodiment, it is possible to form an output frequency with the voltage provided to the grid-forming power converter 100 without controlling the current formed in the grid-forming power converter 100 . Accordingly, there is provided an advantage that there is no need to introduce a separate and complicated current controller.
이하에서는 도 20을 참조하여 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법의 제3 실시예를 설명한다. 간결하고 명확한 설명을 위하여 위에서 설명된 실시예들과 동일하거나, 이와 유사한 요소들에 대한 설명은 생략할 수 있다. 도 20을 참조하면 본 실시예에 의한 출력 주파수 제어 방법에서, 그리드 포밍 전력변환부(100)는 입력 전압(VDC)이 변화할 때 지수함수적으로 변화한다.Hereinafter, a third embodiment of the output frequency control method of the grid-forming power conversion control apparatus will be described with reference to FIG. 20 . For concise and clear description, the description of elements that are the same as or similar to those of the above-described embodiments may be omitted. Referring to FIG. 20 , in the output frequency control method according to the present embodiment, the grid-forming power converter 100 changes exponentially when the input voltage VDC changes.
위에서 설명된 실시예와 마찬가지로 제2 그리드 포밍 전력변환부(100)를 발전기로 치환하였을 때, 발전기 로터의 회전 속도 오차(g)를 그리드 포밍 발전기에 제공되는 직류 전압(VDC)의 항으로 표시하면 아래의 수학식 49의 ①식과 같이 지수 함수의 형태로 표현될 수 있는 것으로 가정하면, 이를 미분한 가속도(g’)는 수학식 ②로 표시될 수 있다. 수학식 49는 위에서 서술한 수학식 6에서 계수 a, b에 - 부호가 부가된다.As in the embodiment described above, when the second grid-forming power conversion unit 100 is replaced with a generator, the rotational speed error (g) of the generator rotor is expressed in terms of the DC voltage (VDC) provided to the grid-forming generator. Assuming that it can be expressed in the form of an exponential function as in Equation (1) of Equation 49 below, an acceleration (g') obtained by differentiating it can be expressed as Equation (2). In Equation 49, a minus sign is added to the coefficients a and b in Equation 6 described above.
[수학식 49][Equation 49]
Figure PCTKR2021017281-appb-img-000230
...①
Figure PCTKR2021017281-appb-img-000230
...①
Figure PCTKR2021017281-appb-img-000231
...②
Figure PCTKR2021017281-appb-img-000231
...②
수학식 48로 표시된 결과로부터 그리드 포밍 주파수의 출력 주파수(f)를 회전 속도(g)와 가속도(g’)으로 표시하면 아래의 수학식 50과 같다. From the result expressed by Equation 48, the output frequency (f) of the grid forming frequency is expressed as the rotation speed (g) and the acceleration (g') as shown in Equation 50 below.
[수학식 50][Equation 50]
Figure PCTKR2021017281-appb-img-000232
Figure PCTKR2021017281-appb-img-000232
계수 a, b, c 및 d 는 설계 파라미터이다. 아래의 수학식 51로 예시된 것과 같이 계수 a는 드룹 특성(droop characteristic)과 관련되고, b는 관성(inertia) 특성과 관련된다. c는 그리드 포밍 전력변환부(100)가 최대부하 주파수 출력 시 그리드 포밍 전력변환부(100)에 제공되는 직류 전압에 - 부호를 부가한 -Vd0에 상응한다.The coefficients a, b, c and d are design parameters. As exemplified by Equation 51 below, a coefficient a is related to a droop characteristic, and b is related to an inertia characteristic. c corresponds to -Vd0 by adding a minus sign to the DC voltage provided to the grid-forming power conversion unit 100 when the grid-forming power conversion unit 100 outputs the maximum load frequency.
경계 조건으로 VDC = Vd0 일 때, 출력 주파수 f = fNLGFM 이고, VDC = 0일 때 출력 주파수 f= fFLGFM 인 것을 이용하여 미정 상수 d와 k를 구한다. a, b, c, d 및 k는 아래의 수학식과 같다.As boundary conditions, when VDC = Vd0, the output frequency f = fNLGFM, and when VDC = 0, the output frequency f = fFLGFM is used to obtain the indeterminate constants d and k. a, b, c, d, and k are the same as in the following equation.
[수학식 51][Equation 51]
Figure PCTKR2021017281-appb-img-000233
Figure PCTKR2021017281-appb-img-000233
Figure PCTKR2021017281-appb-img-000234
Figure PCTKR2021017281-appb-img-000234
이로부터 그리드 포밍 주파수의 출력 주파수(f)를 표시하면 아래의 수학식 52와 같다.From this, the output frequency f of the grid forming frequency is expressed as in Equation 52 below.
[수학식 52][Equation 52]
Figure PCTKR2021017281-appb-img-000235
Figure PCTKR2021017281-appb-img-000235
수학식 52로 얻어진 그리드 포밍 전력변환부(100)에 제공된 직류 전압 - 출력 주파수의 관계는 도 20으로 도시된 것과 같이 위로 볼록인 지수 함수의 형태이다. 제3 실시예에 있어서도 그리드 포밍 전력변환부(100)에 형성되는 전류를 제어하지 않고 그리드 포밍 전력변환부(100)에 제공되는 전압으로 출력 주파수를 형성할 수 있다. 따라서, 별도의 복잡한 별도의 전류 콘트롤러를 도입할 필요가 없다는 장점이 제공된다.The DC voltage provided to the grid forming power converter 100 obtained by Equation 52 - the relationship between the output frequency is in the form of an exponential function convex upward as shown in FIG. 20 . Even in the third embodiment, it is possible to form an output frequency with the voltage provided to the grid-forming power converter 100 without controlling the current formed in the grid-forming power converter 100 . Accordingly, there is provided an advantage that there is no need to introduce a separate and complicated current controller.
이하에서는 도 21을 참조하여 본 발명에 따른 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법의 제4 실시예를 설명한다. 간결하고 명확한 설명을 위하여 위에서 설명된 실시예들과 동일하거나, 이와 유사한 요소들에 대한 설명은 생략할 수 있다. Hereinafter, a fourth embodiment of the output frequency control method of the grid-forming power conversion control apparatus according to the present invention will be described with reference to FIG. 21 . For concise and clear description, the description of elements that are the same as or similar to those of the above-described embodiments may be omitted.
수학식 49,50으로부터, 앞서 설정된 경계 조건과 달리 VDC = 0일 때 출력 주파수 f= 0, 이고 VDC = Vd0 일 때, 출력 주파수 f = fNLGFM 로 설정한다. 따라서, 본 실시예의 직류 전압대 주파수 곡선은 원점과 VDC = Vd0 일 때, 출력 주파수 f = fNLGFM 점을 지난다. 이 경계 조건을 이용하여 미정 상수 d와 k를 얻으면 아래의 수학식 53과 같다. From Equations 49 and 50, unlike the previously set boundary condition, when VDC = 0, the output frequency f = 0, and when VDC = Vd0, the output frequency f = fNLGFM is set. Accordingly, the DC voltage versus frequency curve of this embodiment passes through the origin and the output frequency f = fNLGFM when VDC = Vd0. Using this boundary condition to obtain undetermined constants d and k, it is expressed in Equation 53 below.
[수학식 53][Equation 53]
Figure PCTKR2021017281-appb-img-000236
Figure PCTKR2021017281-appb-img-000236
Figure PCTKR2021017281-appb-img-000237
Figure PCTKR2021017281-appb-img-000237
이로부터 그리드 포밍 주파수의 출력 주파수(f)를 표시하면 아래의 수학식 54와 같다.From this, the output frequency f of the grid forming frequency is expressed as in Equation 54 below.
[수학식 54][Equation 54]
Figure PCTKR2021017281-appb-img-000238
Figure PCTKR2021017281-appb-img-000238
수학식 54로 얻어진 그리드 포밍 전력변환부(100)에 제공된 직류 전압 - 출력 주파수의 관계는 도 21로 도시된 것과 같이 원점을 지나며 위로 볼록인 지수 함수의 형태이다. 제4 실시예에 있어서도 그리드 포밍 전력변환부(100)에 형성되는 전류를 제어하지 않고 그리드 포밍 전력변환부(100)에 제공되는 전압으로 출력 주파수를 형성할 수 있다. 따라서, 별도의 복잡한 별도의 전류 콘트롤러를 도입할 필요가 없다는 장점이 제공된다.The DC voltage provided to the grid-forming power converter 100 obtained by Equation 54-output frequency relationship is in the form of an exponential function convex upwards passing through the origin as shown in FIG. 21 . Even in the fourth embodiment, it is possible to form an output frequency with the voltage provided to the grid-forming power converter 100 without controlling the current formed in the grid-forming power converter 100 . Accordingly, there is provided an advantage that there is no need to introduce a separate and complicated current controller.
이하에서는 도 22를 참조하여 본 발명에 따른 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법의 제5 실시예를 설명한다. 간결하고 명확한 설명을 위하여 위에서 설명된 실시예들과 동일하거나, 이와 유사한 요소들에 대한 설명은 생략할 수 있다. 도 22(a)는 종래 기술에 의한 직류 전압대 주파수 관계와 본 실시예에 의한 전압대 주파수를 도시한 도면이고, 도 22(b)는 도 22(a)에서 운전점 부분을 확대하여 도시한 도면이다. Hereinafter, a fifth embodiment of the output frequency control method of the grid-forming power conversion control apparatus according to the present invention will be described with reference to FIG. 22 . For concise and clear description, the description of elements that are the same as or similar to those of the above-described embodiments may be omitted. 22 (a) is a diagram illustrating a DC voltage versus frequency relationship according to the prior art and a voltage versus frequency according to the present embodiment, and FIG. 22 (b) is an enlarged view of the operating point in FIG. 22 (a). It is a drawing.
도 22(a)에서, (221)은 종래 기술에 의한 주파수 변화를 나타내고, (222)는 정상 상태의 주파수(fss)가 최대 부하 주파수인 경우를 나타내고, (223)은 정상 상태의 주파수(fss)가 무부하 주파수인 경우를 나타내며, (224)는 정상 상태의 주파수(fss)가 정격 주파수인 경우를 나타낸다. 일 예로, 한국의 정격 주파수는 60Hz이고, 외국의 정격 주파수는 50Hz 또는 60Hz이다. 또한, 도 22(b)에서, (225)는 전부하 상태 출력 주파수, (226)은 전부하 상태에서 정상상태 출력 주파수를 나타내며, (227)은 무부하 상태에서 출력 주파수, (228)은 무부하 상태에서 정상상태 출력 주파수를 나타낸다. (229)는 종래 기술에 의한 출력 주파수를 나타내고, (230)은 셋 포인트에서의 출력 주파수를 나타낸다. In Fig. 22(a), reference numeral 221 denotes a frequency change according to the prior art, 222 denotes a case where the steady-state frequency fss is the maximum load frequency, and 223 denotes the steady-state frequency fss. ) represents the case of no-load frequency, and (224) represents the case where the steady-state frequency (fss) is the rated frequency. For example, the rated frequency in Korea is 60 Hz, and the rated frequency in foreign countries is 50 Hz or 60 Hz. Also, in Fig. 22(b), reference numeral 225 denotes a full load state output frequency, 226 denotes a steady state output frequency in a full load state, 227 denotes an output frequency in a no-load state, and 228 denotes a no-load state. represents the steady-state output frequency. Reference numeral 229 denotes the output frequency according to the prior art, and 230 denotes the output frequency at the set point.
제2, 제3 및 제4 실시예에서는 의도한 droop 비율과 관성 성질을 수학식의 각 파라미터에 사전에 반영 후 경계조건을 적용하여 상향식(bottom up)으로 주파수 변환 수식을 도출하였다. 본 실시예에서는 경계조건을 먼저 적용 후 각 파라미터의 적정값을 도출하는 하향식(top down)방법을 취한다. 위에서 설명된 실시예와 마찬가지로 제2 그리드 포밍 전력변환부(100)를 발전기로 치환하였을 때, 발전기 로터의 회전속도를 그리드 포밍 전력변환부(100)로부터 제공되는 직류 전압(VDC )의 항으로 표시하면, 수학식 55와 같이 지수 함수의 형태 gVDC로 표현될 수 있는 것으로 정의한다. In the second, third, and fourth embodiments, the frequency conversion equation was derived in a bottom-up manner by applying the boundary condition after reflecting the intended droop ratio and inertia property to each parameter of the equation in advance. In this embodiment, a top-down method of deriving an appropriate value of each parameter after first applying a boundary condition is adopted. As in the embodiment described above, when the second grid-forming power conversion unit 100 is replaced with a generator, the rotational speed of the generator rotor is displayed in terms of DC voltage (VDC) provided from the grid-forming power conversion unit 100 Then, it is defined as being able to be expressed in the form of an exponential function gVDC as in Equation 55.
[수학식 55][Equation 55]
Figure PCTKR2021017281-appb-img-000239
Figure PCTKR2021017281-appb-img-000239
(a, d: 양수이며, 시간에 따라 변화하는 미정 계수, b, c: 양수로 시간에 따라 변화하지 않는 계수)(a, d: positive numbers, undetermined coefficients that change with time, b, c: positive numbers and coefficients that do not change with time)
수학식 55의 각 파라미터 a, b, c, d들은 아래에 설명되는 바와 같이 정해진다. c는 직류 전압이 정격일 때의 조건을 결정하기 위해 c=Vd0으로 둔다. (Vd0: 정격 DC 전압)Each parameter a, b, c, and d in Equation 55 is determined as described below. c is set to c=Vd0 to determine the condition when the DC voltage is rated. (Vd0: rated DC voltage)
임의의 직류 전압 VDC에 대해서는, 해당 지점이 정상상태에 도달한 것으로 간주한다. 이러한 상태는 상태를 발전기에 비유하면, 물리법칙(Generator Swing Equation, 수학식 64 참조)에 따라 로터의 속도로부터 회전방향과 반대방향으로 동일한 힘이 작용하여 로터의 가속도가 0이 되어 평형을 이루고 난 이후에 나타나는 정상 상태의 주파수 f만 고려한다. For any DC voltage VDC, the point is considered to have reached the steady state. If this state is compared to a generator, the same force acts from the rotor speed in the direction opposite to the rotational direction from the speed of the rotor according to the laws of physics (Generator Swing Equation, see Equation 64), so that the acceleration of the rotor becomes 0 and equilibrium is achieved. Only the frequencies f of the steady state appearing later are considered.
이에 따라 이전 실시예의 g(VDC)의 미분을 고려하지 않고, 평형을 이룬 회전속도가 직류 전압으로 나타나는 것으로 파악하고, 지수함수를 통해 주파수로 변환한다. 따라서, 직류 전압이 정격 전압과 동일하다면 무부하 상태로 간주하여 무부하주파수 fFLGFM를 출력하고, 직류 전압이 정상 운전 범위 내 최저 전압까지 하강하면 부하가 전부하인 상태로 간주하여 전부하주파수 fFLGFM를 출력한다. Accordingly, without considering the differentiation of g(VDC) in the previous embodiment, it is understood that the balanced rotational speed appears as a DC voltage, and is converted into a frequency through an exponential function. Therefore, if the DC voltage is the same as the rated voltage, it is regarded as a no-load state and the no-load frequency fFLGFM is output.
마찬가지로 무부하(no load)와 전부하(full load) 사이 임의의 전압 VDC로부터는 해당 부하에 대응하는 droop 제어 주파수 fss를 출력한다. fss는 독립운전인 경우 정격 주파수인 fs=60[Hz]로 설정하며, 타 발전기 또는 컨버터와 병렬운전인 경우 아래의 수학식 56에 따른 주파수를 적용한다.Similarly, from any voltage VDC between no load and full load, a droop control frequency fss corresponding to the load is output. fss is set to fs=60 [Hz], which is the rated frequency for independent operation, and applies the frequency according to Equation 56 below in case of parallel operation with other generators or converters.
[수학식 56][Equation 56]
Figure PCTKR2021017281-appb-img-000240
Figure PCTKR2021017281-appb-img-000240
각 전압 수준별 변환되는 주파수를 수식으로 나타내면 수학식 57과 같이 파라미터 a와 d 관계가 정리된다. 수학식 57의 ① 식, ② 식, ③ 식 및 ④식은 각각 직류 전압이 정격인 상태, 부하공급으로 전압이 임의의 수치로 하강한 상태, 전부하 공급으로 전압이 가장 하강한 상태, 전압이 0인 상태에 상응한다. 이로부터 제5 실시예의 파라미터들은 이전 실시예와는 달리 상수로 결정되지 않고, 측정한 전압 수준과 목표한 droop fss를 일치시키기 위해 전압 수준에 따라 변화하는 VDC의 함수로 정해짐을 알 수 있다.When the frequency converted for each voltage level is expressed as an equation, the relationship between parameters a and d is arranged as shown in Equation 57. In Equation 57 ①, ②, ③ and ④ respectively, the DC voltage is rated, the voltage is dropped to an arbitrary value by the load supply, the voltage is the lowest by the full load supply, and the voltage is 0 corresponding to the state of being From this, it can be seen that the parameters of the fifth embodiment are not determined as constants, unlike the previous embodiment, but are determined as a function of VDC that changes according to the voltage level in order to match the measured voltage level and the target droop fss.
지수함수의 미정 계수 b에 대해서는, g(VDC = Vdo) =FNLGFM의 조건 1, g(VDC = Vop) =Fss의 조건 2, g(VDC = VFL) =FFLGFM의 조건 3, g(VDC = 0) =0의 조건 4를 이용하여 연산한다. 조건 1, 조건 2, 조건 3 및 조건 4로부터 얻어진 결과는 각각 아래의 수학식 57의 ① 식, ② 식, ③ 식 및 ④식과 같다.For the undetermined coefficient b of the exponential function, condition 1 of g(VDC = Vdo) =FNLGFM, condition 2 of g(VDC = Vop) =Fss, condition 3 of g(VDC = VFL) =FFLGFM, g(VDC = 0) ) is calculated using condition 4 of =0. Results obtained from condition 1, condition 2, condition 3, and condition 4 are the same as Equations ①, ②, ③ and ④ of Equation 57 below, respectively.
[수학식 57][Equation 57]
Figure PCTKR2021017281-appb-img-000241
...①
Figure PCTKR2021017281-appb-img-000241
...①
Figure PCTKR2021017281-appb-img-000242
...②
Figure PCTKR2021017281-appb-img-000242
...②
Figure PCTKR2021017281-appb-img-000243
...③
Figure PCTKR2021017281-appb-img-000243
...③
Figure PCTKR2021017281-appb-img-000244
...④
Figure PCTKR2021017281-appb-img-000244
...④
주어진 droop에 대해 무부하 운전점을 기준으로, g(0)=0, g(Vdo)=fNLGFM, g(VFL)=fFLGFM 세 지점을 모두 통과하도록 선정한다. 이 조건에서 수학식 57의 ① 식, ③ 식, ④ 식은 모두 같은 a 값을 갖는다. 이를 만족하는 양수인 b의 값은 수학식 58로 표시될 수 있다.For a given droop, it is selected to pass through all three points, g(0)=0, g(Vdo)=fNLGFM, and g(VFL)=fFLGFM based on the no-load operating point. Under this condition, expressions ①, ③, and ④ in Equation 57 all have the same value of a. The value of b, which is a positive number satisfying this, may be expressed by Equation 58.
[수학식 58][Equation 58]
Figure PCTKR2021017281-appb-img-000245
Figure PCTKR2021017281-appb-img-000245
한편, b는 직류전압이 VFL에서만 유효하며, 목적하는 정상 상태 주파수 fss를 도출하기 위해서는 수학식 59와 같이 모든 전압 지점 VDC에서 b의 값이 결정되어야 한다.On the other hand, for b, the DC voltage is valid only at VFL, and in order to derive the desired steady-state frequency fss, the value of b must be determined at all voltage points VDC as in Equation 59.
[수학식 59][Equation 59]
Figure PCTKR2021017281-appb-img-000246
Figure PCTKR2021017281-appb-img-000246
b는 전압이 변하더라도 VFL을 기준으로 산정된 값을 그대로 적용하고, 대신 파라미터 a에 변화를 적용한다. a는 전압 수준에 따라 달라지며, 부하가 작은 값일수록 fNL와 원점을 지나는 곡선에 가깝고, 부하가 큰 값일수록 fNL와 fss를 지나는 곡선에 가깝다. 그러므로 부하율 i=(Pmeasured/Pmax)에 따라, 수학식 59의 우변에 부하율 i를 곱하고 좌변에 (1-i)를 곱하여 가중 평균한 a를 실제에 적용한다. 이에 따라 최종 결정된 a와 d는 수학식 60을 따른다.For b, even if the voltage changes, the value calculated based on VFL is applied as it is, and the change is applied to parameter a instead. a varies depending on the voltage level, and the smaller the load, the closer to the curve passing through fNL and the origin, and the larger the load, the closer to the curve passing through fNL and fss. Therefore, according to the load factor i=(Pmeasured/Pmax), the weighted average a is actually applied by multiplying the right side of Equation 59 by the load factor i and the left side by (1-i). Accordingly, the finally determined a and d follow Equation (60).
[수학식 60][Equation 60]
Figure PCTKR2021017281-appb-img-000247
...(1)
Figure PCTKR2021017281-appb-img-000247
...(One)
Figure PCTKR2021017281-appb-img-000248
...(2)
Figure PCTKR2021017281-appb-img-000248
...(2)
위와 같은 설정을 통한 최종 주파수는 수학식 61과 같이 연산된다.The final frequency through the above setting is calculated as in Equation 61.
[수학식 61][Equation 61]
Figure PCTKR2021017281-appb-img-000249
Figure PCTKR2021017281-appb-img-000249
Figure PCTKR2021017281-appb-img-000250
Figure PCTKR2021017281-appb-img-000250
Figure PCTKR2021017281-appb-img-000251
Figure PCTKR2021017281-appb-img-000251
수학식 60에서, a는 수학식 60의 (1)식으로 표시될 수 있다. b는 수학식 59와 같이 정의될 수 있다. 그러나, 상술한 바와 같이 전부하(Full load)를 기준으로 선택된 값(수학식 58 참조)을 사용할 수 있다. In Equation 60, a may be expressed by Equation (1) of Equation 60. b may be defined as in Equation 59. However, as described above, a value selected based on the full load (refer to Equation 58) may be used.
수학식 61을 참조하면,(wc/(s+wc))는 저주파 대역 통과 필터를 의미한다. 즉 지수항은 순시 동작하고 bar a와 bar d는 지연 동작함으로써 과도구간에 직류 전압으로부터 관성효과가 발현되며, 최종적으로는 목적하는 정상 상태 주파수 fss에 수렴한다.Referring to Equation 61, (wc/(s+wc)) denotes a low-frequency bandpass filter. That is, the exponential term operates instantaneously and bar a and bar d operate with a delay, so that the inertia effect is expressed from the DC voltage in the transient section, and finally converges to the desired steady-state frequency fss.
본 실시예에 의한 입력 직류 전압(VDC)와 출력 주파수의 관계는 도 61로 예시된 실시예와 유사할 수 있으나, 본 실시예는 출력주파수 최종 값이 droop이 의도하는 주파수 fss에 따라 결정되므로 하나의 VDC에 대해서도 각기 다른 다양한 곡선을 그린다는 점에서 차이가 있다.The relationship between the input DC voltage (VDC) and the output frequency according to this embodiment may be similar to the embodiment illustrated in FIG. 61, but in this embodiment, the final value of the output frequency is determined according to the frequency fss intended by the droop. It is different in that it draws a variety of different curves for the VDC.
제5 실시예에 있어서도 그리드 포밍 전력변환부(100)에 형성되는 전류를 제어하지 않고 그리드 포밍 전력변환부(100)에 제공되는 전압으로 출력 주파수를 형성할 수 있다. 따라서, 별도의 복잡한 별도의 전류 콘트롤러를 도입할 필요가 없다는 장점이 제공된다. 또한 직류전압을 순시치 그대로 제어에 사용하므로 droop 대비 빠른 제어가 가능하다.Even in the fifth embodiment, it is possible to form an output frequency with the voltage provided to the grid-forming power converter 100 without controlling the current formed in the grid-forming power converter 100 . Accordingly, there is provided an advantage that there is no need to introduce a separate and complicated current controller. In addition, it is possible to control faster than droop because DC voltage is used for control as it is.
이하에서는 도 23을 참조하여 본 발명에 따른 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법의 제6 실시예를 설명한다. 간결하고 명확한 설명을 위하여 위에서 설명된 실시예들과 동일하거나, 이와 유사한 요소들에 대한 설명은 생략할 수 있다. 도 23을 참조하면 본 실시예에 의한 출력 주파수 제어 방법에서, 그리드 포밍 전력변환부(100)의 출력주파수는 입력 전압(VDC)이 변화할 때 선형으로 변화한다. Hereinafter, a sixth embodiment of the output frequency control method of the grid-forming power conversion control apparatus according to the present invention will be described with reference to FIG. 23 . For concise and clear description, the description of elements that are the same as or similar to those of the above-described embodiments may be omitted. Referring to FIG. 23 , in the output frequency control method according to the present embodiment, the output frequency of the grid forming power converter 100 is linearly changed when the input voltage VDC is changed.
제6 실시예의 동작은 다음과 같다. The operation of the sixth embodiment is as follows.
다수의 발전기의 병렬운전으로부터 원하는 부하분담을 이루기 위해서는 수학식 62과 같이 드룹 원리에 따른 제어가 일반적이다. 모든 물리량은 per unit 단위법에 따라 기재한다.In order to achieve a desired load sharing from parallel operation of a plurality of generators, control according to the droop principle as shown in Equation 62 is common. All physical quantities are described according to the per unit unit method.
[수학식 62][Equation 62]
Figure PCTKR2021017281-appb-img-000252
Figure PCTKR2021017281-appb-img-000252
fout: 출력주파수, m: 드룹, P: 출력 측정값, Psp: 출력 셋포인트, f0: 정격주파수fout: output frequency, m: droop, P: output measured value, Psp: output setpoint, f0: rated frequency
드룹을 이용하여 GFM 컨버터를 제어하면 여타 병렬 운전원과의 상호작용에 따라 정상 상태 주파수 fss로 수렴하며 부하 분담을 더 하기를 원하는 경우 드룹 m을 낮추거나 셋포인트 PSP를 늘림으로써 가능하다. 부하 분담을 줄이기를 원하는 경우 m을 높이거나 PSP를 줄임으로써 가능하다. PSP 계통이 f0에 도달하였을 때 나오는 출력이며, 따라서 fss에 따라 실제출력은 PSP보다 높거나 낮을 수 있다.Controlling the GFM converter with droop converges to the steady-state frequency fss depending on interaction with other parallel operators, and if you want more load sharing, you can do this by lowering the droop m or increasing the setpoint PSP. If you want to reduce the load sharing, you can do it by increasing m or decreasing PSP. This is the output when the PSP system reaches f0, so the actual output may be higher or lower than the PSP depending on the fss.
본 실시예의 목적은 P가 아닌 다른 측정값을 사용하여 드룹과 동등한 부하분담 성능을 이루는 제어를 달성함에 있다. 기존 Matching 제어의 원리에 따르면, 주파수 fout는 직류전압과 비례관계를 가지는 것으로 제어 가능하므로 수학식 63에 따라 제어함으로써 드룹 제어를 대체할 수 있는 것으로 주장되고 있다.An object of the present embodiment is to achieve control that achieves load sharing performance equivalent to droop by using a measurement value other than P. According to the principle of the existing matching control, it is claimed that the frequency fout can be controlled by having a proportional relationship with the DC voltage, so that the droop control can be replaced by controlling it according to Equation 63.
[수학식 63][Equation 63]
Figure PCTKR2021017281-appb-img-000253
(단위: per unit)
Figure PCTKR2021017281-appb-img-000253
(Unit: per unit)
다만 이 제어가 성립하기 위해서는, 임의의 부하 변동에 대해, 드룹 m에 따라 fout가 변동하는 비율과, 측정한 전압 VDC가 변동하는 비율이 동일하여야 한다. 따라서 이를 보장하는 별도의 컨트롤러 없이는 Matching 제어를 제대로 구현할 수 없다.However, in order for this control to be established, the rate at which fout fluctuates according to the droop m and the rate at which the measured voltage VDC fluctuates for any load change must be the same. Therefore, matching control cannot be properly implemented without a separate controller that guarantees this.
한편, 발전기의 동요방정식인 수학식 64에 따라, 직류 전압이 곧 동기 발전기 로터의 회전속도를 의미한다는 Matching 원리에 착안하여, VDC를 통해 P 또한 간접적으로 파악할 수 있다는 사실을 알 수 있다.On the other hand, according to Equation 64, which is the fluctuation equation of the generator, it can be seen that P can also be indirectly grasped through VDC, paying attention to the matching principle that DC voltage means the rotation speed of the synchronous generator rotor.
[수학식 64][Equation 64]
Figure PCTKR2021017281-appb-img-000254
(단위: per unit)
Figure PCTKR2021017281-appb-img-000254
(Unit: per unit)
H: 관성계수 K: 댐핑계수 w,w’: 로터 회전각속도, 각가속도H: coefficient of inertia K: damping coefficient w, w’: rotor rotation angular velocity, angular acceleration
즉 로터가 더 이상 감속하지도 가속하지도 않는 평형상태에서는, 로터의 회전속도로부터 출력을 알 수 있다. 또한 회전속도는 직류전압으로부터 알 수 있으므로 결과적으로 직류전압으로부터 출력을 알 수 있다. 따라서 ① 직류전압과 출력의 관계, ② 직류전압과 주파수의 관계 ③ 출력과 주파수의 관계를 정확하게 정의하면 직류전압측정을 통해 드룹제어를 대체할 수 있다.That is, in the equilibrium state in which the rotor does not decelerate or accelerate any more, the output can be known from the rotational speed of the rotor. Also, since the rotation speed can be known from the DC voltage, the output can be known from the DC voltage as a result. Therefore, if ① the relationship between DC voltage and output, ② relationship between DC voltage and frequency, and ③ relationship between output and frequency, is accurately defined, then droop control can be replaced by DC voltage measurement.
컨버터가 무부하에서는 직류전압이 정격에 가깝게 유지되며 전부하에서는 직류전압이 최소로 변화하여 VFL에 이른다. 이에 따라 직류전압과 출력의 관계는 수학식 65와 같다. When the converter is no-load, the DC voltage is maintained close to the rated voltage, and at full load, the DC voltage changes to the minimum and reaches VFL. Accordingly, the relationship between the DC voltage and the output is shown in Equation 65.
[수학식 65][Equation 65]
Figure PCTKR2021017281-appb-img-000255
...(1)
Figure PCTKR2021017281-appb-img-000255
...(One)
Figure PCTKR2021017281-appb-img-000256
...(2)
Figure PCTKR2021017281-appb-img-000256
...(2)
(단위: per unit) VFL: 전부하 전압, VNL: 무부하 전압(unit: per unit) VFL: full-load voltage, VNL: no-load voltage
상기 수식 65의 2는 p.u. 단위 기준 직류전압과 회전속도를 동일시 하는 기존 Matching 원리를 적용한 것이다.2 in Equation 65 is p.u. The existing matching principle of equalizing unit reference DC voltage and rotation speed is applied.
컨버터 전압이 정격이면 무부하 상태이므로 무부하 주파수를 출력하고, 직류전압이
Figure PCTKR2021017281-appb-img-000257
까지 하강하면 전부하 상태이므로 전부하 주파수를 출력한다. 이에 따른 직류전압과 주파수의 관계는 수학식 66과 같다.
If the converter voltage is rated, it is in the no-load state, so the no-load frequency is output and the DC voltage is
Figure PCTKR2021017281-appb-img-000257
If it falls to , the full load frequency is output. Accordingly, the relationship between the DC voltage and the frequency is shown in Equation 66.
[수학식 66][Equation 66]
Figure PCTKR2021017281-appb-img-000258
...(1)
Figure PCTKR2021017281-appb-img-000258
...(One)
Figure PCTKR2021017281-appb-img-000259
...(2)
Figure PCTKR2021017281-appb-img-000259
...(2)
fNL : 무부하주파수, fFL : 전부하주파수, (단위: per unit)fNL : No-load frequency, fFL : Full-load frequency, (unit: per unit)
출력과 주파수의 관계는 드룹을 의미하며, 수학식 62를 직류전압과의 관계에 따라 다시 쓰면 수학식 67과 같다.The relationship between output and frequency means droop, and if Equation 62 is rewritten according to the relationship with DC voltage, Equation 67 is obtained.
[수학식 67][Equation 67]
Figure PCTKR2021017281-appb-img-000260
Figure PCTKR2021017281-appb-img-000260
(단위: per unit)(Unit: per unit)
또한, 도 23에서 입력 전압이 0일 때의 주파수는 f(v=0)=fNL-m/(vNL-vFL)=(1+mP)-m/(vNL-vFL)에 상응한다. Also, in FIG. 23 , the frequency when the input voltage is 0 corresponds to f(v=0)=fNL-m/(vNL-vFL)=(1+mP)-m/(vNL-vFL).
수학식 67은 수학식 68로 표현 가능하다.Equation 67 can be expressed as Equation 68.
[수학식 68][Equation 68]
Figure PCTKR2021017281-appb-img-000261
Figure PCTKR2021017281-appb-img-000261
Figure PCTKR2021017281-appb-img-000262
Figure PCTKR2021017281-appb-img-000262
k: 제어 파라미터, wc: 저주파수필터k: control parameter, wc: low-frequency filter
따라서 수학식 68와 같이 주파수를 제어하면 정상 상태에서 수학식 62와 동일한 드룹 주파수 달성이 가능하며, 직류전류를 제어하는 별도의 제어부 없이도 직류전압 측정만으로 주파수 제어를 수행할 수 있다. 제어 파라미터 k의 목적은 직류전압의 고주파수 성분이 심한 경우 k를 높임으로써 노이즈를 경감하여 원활한 튜닝이 가능하다.Therefore, if the frequency is controlled as in Equation 68, the same droop frequency as Equation 62 can be achieved in a steady state, and frequency control can be performed only by measuring the DC voltage without a separate control unit for controlling the DC current. The purpose of the control parameter k is to reduce noise by increasing k when the high frequency component of the DC voltage is severe and to enable smooth tuning.
모의실험 결과Simulation result
도 24는 그리드 포밍 전력변환부가 각각 제1 실시예, 제2 실시예 및 제3 실시예로 제어될 때, 그리드 포밍 전력변환부에 제공되는 직류 전압과 출력 주파수를 도시한 도면이다. 도 24를 참조하면, 그리드 포밍 전력변환부(100)에 제공되는 직류 전압이 증가함에 따라서 제1 실시예에 의하여 제어되는 그리드 포밍 전력변환부(100)는 1차 함수적으로 증가하는 주파수를 출력하고, 제2 실시예에 의하여 제어되는 그리드 포밍 전력변환부(100)는 아래로 볼록인 지수 함수적으로 증가하는 주파수를 출력하며, 제3 실시예에 의하여 제어되는 그리드 포밍 전력변환부(100)는 위로 볼록인 지수 함수적으로 증가하는 주파수를 출력하는 것을 확인할 수 있다.24 is a diagram illustrating a DC voltage and an output frequency provided to the grid-forming power converter when the grid-forming power converter is controlled in the first embodiment, the second embodiment, and the third embodiment, respectively. Referring to FIG. 24 , as the DC voltage provided to the grid-forming power converter 100 increases, the grid-forming power converter 100 controlled by the first embodiment outputs a frequency that increases in a first-order function. And, the grid forming power conversion unit 100 controlled by the second embodiment outputs a frequency increasing exponentially convex downwards, and the grid forming power conversion unit 100 controlled by the third embodiment It can be seen that outputs an exponentially increasing frequency that is convex upwards.
도 25(a)는 종래 기술 및 제1 실시예, 제2 실시예에 따라 그리드 포밍 전력변환부에 제공되는 직류 전압대 출력 주파수를 도시한 선도이다. 도 25(b)는 도 25(a)의 225kV 내지 245KV 의 범위를 확대하여 도시한 도면이다. 도 25(a)를 참조하면, 그리드 포밍 전력변환부(100)에 0~ 250kV의 직류 전압이 제공되면 종래 기술에 의하여 제어되는 그리드 포밍 전력변환부(100)는 제공된 직류 전압의 크기에 선형적으로 비례하는 주파수를 가지는 전압을 출력한다. 그러나, 이것은 별도의 직류 전류 콘트롤러를 이용하여 그리드 포밍 전력변환부(100)에 제공되는 전류를 제어하여 수행되는 것이다. 25 (a) is a diagram showing the output frequency versus the DC voltage provided to the grid-forming power converter according to the prior art and the first embodiment and the second embodiment. FIG. 25(b) is an enlarged view of the range of 225kV to 245KV of FIG. 25(a). Referring to FIG. 25 ( a ), when a DC voltage of 0 to 250 kV is provided to the grid forming power conversion unit 100 , the grid forming power conversion unit 100 controlled by the prior art is linear in the magnitude of the provided DC voltage. Outputs a voltage with a frequency proportional to . However, this is performed by controlling the current provided to the grid forming power conversion unit 100 using a separate DC current controller.
그러나 제1 실시예는 직류 전압에 대하여 선형으로 변화하고 및 제2 실시예는 지수함수적으로 변화하여도 주파수의 변화폭이 상대적으로 작은 것을 알 수 있으며, 도 25(b)와 같이 확대하여야 제1 실시예와 제2 실시예에 의한 주파수의 변화폭을 알 수 있다. However, it can be seen that the change width of the frequency is relatively small even when the first embodiment changes linearly with respect to the DC voltage and the second embodiment changes exponentially. The range of change in frequency according to the embodiment and the second embodiment can be seen.
본 실시예들에 의하면 직류 전류 제어부를 채택하지 않고도 제공된 직류 전압에 상응하는 주파수를 형성하여 출력할 수 있다는 장점이 제공되는 것을 확인할 수 있다. According to the present embodiments, it can be confirmed that the advantage that a frequency corresponding to the provided DC voltage can be formed and output is provided without employing a DC current controller.
도 26 내지 도 30은 전력 계통(점선)과 그리드 포밍 전력변환부(100)(실선)가 부하에 전력을 공급하는 경우에, 2초, 3초, 4초에 외란이 발생할 때 시간에 따른 전력 변동 및 시간에 따른 주파수 변동을 도시한 도면들이다. 각 외란 이후 두 전원의 출력이 새로운 운전점에 수렴하면 안정화가 된 것으로 판단한다.26 to 30 show when the power system (dotted line) and the grid-forming power conversion unit 100 (solid line) supply power to the load, and when disturbance occurs at 2 seconds, 3 seconds, and 4 seconds, power according to time It is a figure which shows the fluctuation|variation and frequency fluctuation|variation with time. When the outputs of the two power sources converge to a new operating point after each disturbance, it is judged to be stable.
도 26(a) 및 도 26(b)는 종래 기술로 제어되는 그리드 포밍 전력변환부(실선)와 전력 계통(점선)의 실험 결과를 도시한다. 도 26(a)를 참조하면 대략 1.3초 이후부터 그리드 포밍 전력변환부(100)와 전력 계통은 부하에 각각 30Mw씩 전력을 공급한다. 2.0초에 외란이 발생하였을 때, 전력 계통과 그리드 포밍 전력변환부(100)는 모두 진동하는 것을 확인하며 대략 2.5초 이후에 진동이 안정화된다. 또한 3초에 발생하는 외란에 의하여 마찬가지로 공급하는 전력에 진동이 발생하며 3.5 초 이후에 진동이 안정화된다. 4초 이후에는 그리드 포밍 전력변환부(100)가 부하에 60MW 를 제공한다. 도 26(b)를 살펴보면 외란이 발생할 때마다 큰 폭으로 출력 주파수에 변동이 발생하는 것을 확인할 수 있다. 26(a) and 26(b) show experimental results of a grid-forming power conversion unit (solid line) and a power system (dotted line) controlled by the prior art. Referring to FIG. 26( a ), the grid-forming power conversion unit 100 and the power system supply power to the load by 30Mw each from approximately 1.3 seconds. When a disturbance occurs in 2.0 seconds, it is confirmed that both the power system and the grid-forming power conversion unit 100 vibrate, and the vibration is stabilized after approximately 2.5 seconds. Also, vibration occurs in the power supplied by the disturbance generated in 3 seconds, and the vibration is stabilized after 3.5 seconds. After 4 seconds, the grid-forming power conversion unit 100 provides 60MW to the load. Referring to FIG. 26(b) , it can be seen that the output frequency fluctuates significantly whenever a disturbance occurs.
도 27(a), 도 27(b)는 제1 실시예로 제어되는 그리드 포밍 전력변환부(실선)와 전력 계통(점선)의 실험 결과를 도시하며, 도 28(a), 도 28(b)는 제2 실시예로 제어되는 그리드 포밍 전력변환부(실선)와 전력 계통(점선)의 실험 결과를 도시하며, 도 29(a), 도 29(b)는 제3 실시예로 제어되는 그리드 포밍 전력변환부(실선)와 전력 계통(점선)의 실험 결과를 도시하고, 도 30(a), 도 30(b)는 제4 실시예로 제어되는 그리드 포밍 전력변환부(100)(실선)와 전력 계통(점선)의 실험 결과를 도시한다.27 (a) and 27 (b) show the experimental results of the grid forming power conversion unit (solid line) and the power system (dotted line) controlled in the first embodiment, FIGS. 28 (a), 28 (b) ) shows the experimental results of the grid forming power conversion unit (solid line) and the power system (dotted line) controlled in the second embodiment, and FIGS. 29 (a) and 29 (b) are the grids controlled by the third embodiment Showing the experimental results of the forming power conversion unit (solid line) and the power system (dotted line), FIGS. 30 (a) and 30 (b) are grid forming power conversion unit 100 (solid line) controlled in the fourth embodiment and the experimental results of the power system (dotted line) are shown.
도 27(a) 내지 도 30(b)를 참조하면 대략 1.3초 이후부터 그리드 포밍 전력변환부(100)와 전력 계통은 부하에 각각 30Mw씩 전력을 공급한다. 2.0초에 외란이 발생하였을 때, 전력 계통과 그리드 포밍 전력변환부(100)는 모두 진동하는 것을 확인하며 대략 2.2초 이후에 진동이 안정화된다. 또한 3초에 발생하는 외란의 경우에도 15.2 초 이후에 진동이 안정화된다. 4초 이후에는 그리드 포밍 전력변환부(100)가 부하에 60MW 를 제공한다. Referring to FIGS. 27(a) to 30(b), the grid-forming power conversion unit 100 and the power system supply power to the load by 30Mw, respectively, from about 1.3 seconds later. When a disturbance occurs at 2.0 seconds, it is confirmed that both the power system and the grid-forming power conversion unit 100 vibrate, and the vibration is stabilized after approximately 2.2 seconds. Also, in the case of a disturbance occurring in 3 seconds, the vibration is stabilized after 15.2 seconds. After 4 seconds, the grid-forming power conversion unit 100 provides 60MW to the load.
다만, 도 28(a) 및 도 29(a)에 도시된 제2 실시예 및 제3 실시예에 의하면 2.0 초에 발생하는 외란에 의하여 오버슈트(overshoot)가 크게 발생하는 것을 확인할 수 있으며, 도 30(a)로 도시된 제4 실시예에서는 비교적 작은 크기의 오버슈트가 발생한다. However, according to the second and third embodiments shown in FIGS. 28( a ) and 29 ( a ), it can be seen that overshoot occurs largely due to disturbance occurring at 2.0 seconds, and FIG. In the fourth embodiment shown as 30(a), a relatively small size of overshoot occurs.
도 27 내지 도 30에 도시된 바와 같이, 제1 내지 제4 실시예로 제어되는 그리드 포밍 전력변환부(100)는 외란이 발생하여도 종래 기술에 비하여 신속하게 진동이 안정화되는 것을 확인할 수 있으며, 외란이 발생하여도 종래 기술에 비하여 그리드 포밍 전력변환부(100)가 출력하는 주파수의 변동폭은 크지 않은 것을 알 수 있다. As shown in FIGS. 27 to 30, the grid-forming power conversion unit 100 controlled by the first to fourth embodiments can confirm that the vibration is stably stabilized faster than in the prior art even when a disturbance occurs, It can be seen that even when disturbance occurs, the range of variation of the frequency output by the grid-forming power conversion unit 100 is not large compared to the prior art.
도 31(a)는 제5 실시예로 제어되는 그리드 포밍 전력변환부(실선)와 전력 계통(점선)의 실험 결과를 도시하며, 도 31(b)는 도 31(a)의 1.2초에서 3.2초 부분을 확대하여 도시한 도면이다. 도 31(a) 및 도 31(b)를 참조하면, 1.5초에 그리드 포밍 전력변환부(100)와 AC 발전계통이 연계된다. 3.0초에 부하가 증가하는 외란이 발생하여 4.5초에 그리드 포밍 컨버터의 set-point가 감소하고, AC 발전계통 set-point는 유지된다. 6.0초에는 AC 발전계통 발전기 탈락하는 외란이 발생하였다. 도 31(c)를 참조하면, 출력주파수는 도 31(c)와 같다. 부하 수준에 따라 서로 다른 정상상태의 주파수를 가짐으로써 AC계통과 원활한 부하분담을 이루는 것을 확인할 수 있다.Figure 31 (a) shows the experimental results of the grid forming power conversion unit (solid line) and the power system (dotted line) controlled in the fifth embodiment, Figure 31 (b) is from 1.2 seconds to 3.2 seconds in Figure 31 (a) It is an enlarged view of the second part. Referring to FIGS. 31 ( a ) and 31 ( b ), the grid-forming power conversion unit 100 and the AC power generation system are connected in 1.5 seconds. At 3.0 seconds, a disturbance occurs that increases the load, and the set-point of the grid forming converter decreases in 4.5 seconds, and the set-point of the AC power generation system is maintained. At 6.0 seconds, there was a disturbance in which the AC power generation system generator fell off. Referring to Figure 31 (c), the output frequency is the same as Figure 31 (c). It can be confirmed that smooth load sharing with the AC system is achieved by having different steady-state frequencies according to the load level.
제3 안내선(G3), 제1 안내선(G1), 제2 안내선(G2)은 각각 해당 시점에서 의도한 droop에 따른 출력 분담을 도시한다. 빨간색 실선으로 도시된 그리드 포밍 전력변환부(100)의 출력이 각 안내선에 수렴하므로 목적하는 부하 분담을 수행하는 것을 확인할 수 있다. The third guide line G3, the first guide line G1, and the second guide line G2 each show an output distribution according to an intended droop at the corresponding time point. Since the output of the grid forming power converter 100 shown by the red solid line converges on each guide line, it can be confirmed that the desired load sharing is performed.
또한, 4.5초 시점에서 확인된 바와 같이 직류 전류의 제어 없이도 의도한 대로 부하 분담을 할 수 있다는 것을 확인할 수 있으며, DC 직류전압의 측정을 통해 빠르게 제어하므로, 기존 droop만으로 제어했을 때 보다 정상상태에 빠르게 도달한다.In addition, as confirmed at the time of 4.5 seconds, it can be confirmed that the load can be shared as intended without DC current control, and since it is controlled quickly through DC DC voltage measurement, it is more stable than the conventional droop control. reach quickly
도 32(a) 및 도 32(b)는 도 19로 예시된 실험 조건에서 종래 기술에 의한 드룹 제어로 제어를 수행하는 경우를 도시한다. 도 31(b)로 예시된 본 실시예에서 진동이 대략 0.35초 만에 감쇠되는 것을 확인할 수 있으나, 도 32(a)로 예시된 종래 기술에 의하면 본 실시예보다 대략 두 배의 시간인 0.6초가 경과하여 진동이 감쇠되는 것을 확인할 수 있다. 나아가 종래 기술에 의한 드룹 제어로 본 실시예와 같이 고속으로 제어하고자 하는 경우에는 도 32(b)와 같이 크게 진동이 발생하는 것을 확인할 수 있으며, 종래 기술에 의한 드룹 제어는 고속으로 제어할 수 없음을 확인할 수 있다.32(a) and 32(b) show a case in which control is performed by droop control according to the prior art in the experimental condition illustrated in FIG. 19 . It can be seen that the vibration is attenuated in about 0.35 seconds in the present embodiment illustrated in FIG. 31(b), but according to the prior art illustrated in FIG. 32(a), 0.6 seconds, which is approximately twice the time of this embodiment, is It can be seen that the vibration is attenuated over time. Furthermore, when the droop control according to the prior art is to be controlled at high speed as in the present embodiment, it can be confirmed that a large vibration occurs as shown in FIG. 32(b), and the droop control according to the prior art cannot be controlled at high speed. can confirm.
도 33 및 도 34는 제6 실시예로 제어되는 그리드 포밍 전력변환(실선)와 전력 계통(점선)의 실험 결과를 도시한 도면이다. 도 33 및 도 34를 참조하면 대략 1초 이후부터 그리드 포밍 전력변환부(100)와 전력 계통은 부하에 각각 30Mw씩 전력을 공급한다. 1.3초에 외란이 발생하였을 때, 전력 계통과 그리드 포밍 전력변환부(100)는 모두 진동하는 것을 확인하며 대략 2.0초 이후에 진동이 안정화된다. 또한 3초 및 4.2초에 발생하는 외란의 경우에도 외란 발생 후 대략 0.3초 이후 진동이 안정화된다. 6초 이후에는 그리드 포밍 전력변환부(100)가 단독으로 부하에 전력를 제공한다. 33 and 34 are diagrams showing experimental results of grid forming power conversion (solid line) and power system (dashed line) controlled in the sixth embodiment. Referring to FIGS. 33 and 34 , the grid-forming power conversion unit 100 and the power system supply power to the load by 30Mw each from about 1 second. When a disturbance occurs at 1.3 seconds, it is confirmed that both the power system and the grid-forming power conversion unit 100 vibrate, and the vibration is stabilized after approximately 2.0 seconds. Also, in the case of disturbances occurring at 3 seconds and 4.2 seconds, the vibration is stabilized after approximately 0.3 seconds after the disturbance occurs. After 6 seconds, the grid-forming power conversion unit 100 provides power to the load alone.
도 33 및 도 34에 도시된 바와 같이, 제6 실시예에 따라 제어되는 그리드 포밍 전력변환부(100)는 외란이 발생하여도 종래 기술에 비하여 신속하게 진동이 안정화되는 것을 확인할 수 있으며, 외란이 발생하여도 종래 기술에 비하여 그리드 포밍 전력변환부(100)가 출력하는 주파수의 변동폭은 크지 않은 것을 알 수 있다. As shown in FIGS. 33 and 34 , the grid forming power conversion unit 100 controlled according to the sixth embodiment can confirm that the vibration is stably stabilized faster than in the prior art even when a disturbance occurs, and the disturbance is Even if it occurs, it can be seen that the range of variation of the frequency output by the grid-forming power conversion unit 100 is not large compared to the prior art.
이상에서의 설명에서와 같이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 본 발명이 구현되어 있음을 이해할 수 있을 것이다.As described above, it will be understood that the present invention is implemented in a modified form without departing from the essential characteristics of the present invention.
그러므로 명시된 실시 예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 하고, 본 발명의 범위는 전술한 설명이 아니라 특허청구 범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.Therefore, the specified embodiments are to be considered in an illustrative rather than a restrictive point of view, the scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the scope equivalent thereto are included in the present invention. will have to be interpreted.
발명의 실시를 위한 형태는 위의 발명의 실시를 위한 최선의 형태에서 함께 기술되었다.Modes for carrying out the invention have been described together in the best mode for carrying out the invention above.
본 발명은 그리드 포밍 전력변환 제어 장치에 관한 것으로, 접속하는 전력변환장치의 정보와 연결되는 계통정보를 바탕으로 안정적인 운전 환경을 제공할 수 있으므로 산업상 이용 가능성이 있다.The present invention relates to a grid-forming power conversion control device, and since it can provide a stable operating environment based on system information connected with information of a power conversion device to be connected, there is potential for industrial application.

Claims (31)

  1. 신재생에너지 발전기에서 공급된 전력을 계통 전원에 공급하기 위한 전압으로 변환하여 전력을 공급하는 그리드 포밍 전력변환부;a grid-forming power conversion unit for supplying power by converting the power supplied from the renewable energy generator into a voltage for supplying power to the grid;
    그리드 포밍 전력변환부에 연결되어 고장 발생시에 고장전류 산출 및 고장 시 전압을 낮추게 되면 발생하는 역전류(Reverse Current), 고장제거시 발생하는 회복 역전류(Recovery Reverse Current)를 산출하여 계통이 요구하는 고장전류 공급특성에 따른 과전류가 최소화되는 운전점을 찾고 전력변환장치가 공급할 수 있는 전류의 한계를 초과하지 않는 범위에서 최대한 전력계통의 요구사항을 만족시키는 운전점을 찾는 최적 전압 제어를 하는 최적 전압 제어부; 및It is connected to the grid forming power converter and calculates the fault current when a fault occurs and calculates the reverse current that occurs when the voltage is lowered in case of a fault and the recovery reverse current that occurs when the fault is removed. Optimal voltage control that finds an operating point at which overcurrent is minimized according to fault current supply characteristics and finds an operating point that satisfies the requirements of the power system as much as possible within the range that does not exceed the limit of current that the power converter can supply control unit; and
    전력계통의 정보를 이용하여 임피던스 평가를 위한 파라미터를 수집하고, 기준 MVA 접속 임피던스 입력 및 GFM(Grid Forming Source) 전압 설정을 하여 전력변환장치가 공급할 수 있는 전류의 한계를 초과하지 않는 최소 임피던스를 구하는 임피던스 제약 평가 제어부를 포함하는 그리드 포밍 전력변환 제어 장치.It collects parameters for impedance evaluation using power system information, sets the reference MVA connection impedance input and GFM (Grid Forming Source) voltage to obtain the minimum impedance that does not exceed the limit of the current that the power converter can supply. A grid-forming power conversion control device comprising an impedance constraint evaluation control unit.
  2. 제1 항에 있어서, According to claim 1,
    최적 전압 제어부는,The optimum voltage control unit is
    최적 전압 제어부의 FRT 전압 지령치로서 최적전압 산출을 하는 최적전압 산출부와,an optimum voltage calculation unit that calculates the optimum voltage as the FRT voltage command value of the optimum voltage control unit;
    최적 전압 제어부의 FRT 전압 제어하한치로서 한계전압 산출을 하는 한계전압 산출부와,a limit voltage calculator that calculates a limit voltage as the FRT voltage control lower limit of the optimal voltage controller;
    최적 전압 제어부의 전압 불완전 제어 시 안전조치 하한치로서 최소전압 산출을 하는 최소전압 산출부와,A minimum voltage calculator that calculates the minimum voltage as a lower limit of safety measures in case of incomplete voltage control of the optimal voltage controller;
    계통이 요구하는 고장전류 공급특성을 고려하여 과전류가 최소화되는 운전점을 찾고 전력변환장치가 공급할 수 있는 전류의 한계를 초과하지 않는 범위에서 최대한 전력계통의 요구사항을 만족시키는 운전점을 찾는 최적 전압 제어를 하는 고장전류 공급특성 제어부를 포함하는 그리드 포밍 전력변환 제어 장치.The optimum voltage to find the operating point where overcurrent is minimized considering the fault current supply characteristics required by the system and to find the operating point that satisfies the requirements of the power system as much as possible within the range that does not exceed the limit of the current that the power converter can supply A grid-forming power conversion control device comprising a fault current supply characteristic control unit for controlling.
  3. 제1 항에 있어서, According to claim 1,
    최적 전압 제어부의 최적 전압 제어는,The optimum voltage control of the optimum voltage control unit is
    전류가 초과하면 전압을 낮추고, 역전류가 전류 제한치를 초과하는 특정구간에서는 전압을 높여서 과전류를 해소하며, 계통 여건의 변경 등으로 FRT 전압 지령치가 최소전압까지 낮아지면 안전조치로써 Anti-wind-up clamping으로 적분제어기를 우회하고 고장제거후 재동기화 성공을 도모하는 그리드 포밍 전력변환 제어 장치.When the current exceeds the voltage, the voltage is lowered, and the overcurrent is resolved by raising the voltage in a specific section where the reverse current exceeds the current limit. A grid-forming power conversion control device that bypasses the integral controller by clamping and promotes resynchronization success after removing a fault.
  4. 제3 항에 있어서, 4. The method of claim 3,
    전류가 낮아져 제한치에 여유가 생기면 전압을 높이고 전압이 과도하게 낮으면 역전류 및 회복역전류가 커지므로 한계 전압 이하로는 낮추지 않는 그리드 포밍 전력변환 제어 장치.A grid-forming power conversion control device that does not lower the voltage below the limit voltage because the voltage is raised when the current is low and the limit is free, and when the voltage is excessively low, the reverse current and recovery reverse current increase.
  5. 제1 항에 있어서, According to claim 1,
    임피던스 제약 평가 제어부는,Impedance constraint evaluation control unit,
    전력계통의 정보를 이용하여 임피던스 평가를 위한 파라미터를 수집하는 파라미터 수집부;a parameter collecting unit that collects parameters for impedance evaluation by using information on the power system;
    기준 MVA 접속 임피던스 입력 및 GFM 전압 설정을 하는 입력 설정부;Input setting unit for setting the reference MVA connection impedance input and GFM voltage;
    전력변환장치가 공급할 수 있는 전류의 한계를 초과하지 않는 최소 임피던스를 구하기 위한 고장 전류를 산출하는 고장전류 계산부;a fault current calculation unit for calculating a fault current to obtain a minimum impedance that does not exceed the limit of the current that the power converter can supply;
    전력변환장치 전류가 설정 제한 값을 초과하는지 판단하여 현재의 GFM 전압을 저장하고 회복 역전류를 계산하고, 회복 역전류가 설정 제한 값을 초과하는지 판단하는 회복 역전류 산출 및 판단부; 및a recovery reverse current calculation and determination unit that determines whether the power converter current exceeds a set limit value, stores the current GFM voltage, calculates a recovery reverse current, and determines whether the recovery reverse current exceeds a set limit value; and
    회복 역전류가 설정 제한 값을 초과하지 않으면 입력 임피던스로 운전 가능한 것으로 판단하는 임피던스 평가부를 포함하는 그리드 포밍 전력변환 제어 장치.A grid-forming power conversion control device including an impedance evaluation unit that determines that it is possible to operate with the input impedance when the recovery reverse current does not exceed the set limit value.
  6. 제5 항에 있어서, 6. The method of claim 5,
    고장전류 계산부는,The fault current calculator,
    3상단락 고장전류, 선간 단락 고장전류, 선간 단지락 고장전류, 1선 지락 고장전류 산출을 하는 그리드 포밍 전력변환 제어 장치.A grid-forming power conversion control device that calculates 3-phase short-circuit fault current, line-to-line short-circuit fault current, line-to-line short-circuit fault current, and 1-line ground fault fault current.
  7. 계통 전원에 고장이 발생하면, 고장전류 산출 및 역전류 산출을 하여 고장전류 공급 특성 제어를 하고, 전력계통의 정보를 이용하여 파라미터 수집을 하는 단계;When a failure occurs in the system power supply, calculating the fault current and the reverse current to control the fault current supply characteristics, and collecting parameters using the information of the power system;
    입력 설정부에서 기준 MVA 접속 임피던스 입력 및 GFM(Grid Forming Source) 전압 설정을 하는 단계;setting the reference MVA connection impedance input and GFM (Grid Forming Source) voltage in the input setting unit;
    고장전류 계산부에서 3상단락 고장전류, 선간 단락 고장전류, 선간 단지락 고장전류, 1선 지락 고장전류 산출을 하는 단계;calculating three-phase short-circuit fault current, line-to-line short-circuit fault current, line-to-line short-circuit fault current, and 1-line ground fault current in the fault current calculation unit;
    현재의 GFM 전압을 저장하고 회복 역전류(Recovery reverse current)를 계산하는 단계; 및storing the current GFM voltage and calculating a recovery reverse current; and
    계산된 회복 역전류(Recovery reverse current)가 설정 제한 값을 초과하는지 판단하여 입력 임피던스로 운전 가능 여부를 판단하는 단계를 포함하는 그리드 포밍 전력변환 제어 방법.Grid forming power conversion control method comprising the step of determining whether the calculated recovery reverse current (Recovery reverse current) exceeds a set limit value to determine whether operation with the input impedance.
  8. 제7 항에 있어서, 8. The method of claim 7,
    산출된 전력변환장치 전류가 설정 제한 값을 초과하는지 판단하여 전류가 설정 제한 값을 초과하지 않으면 현재의 GFM 전압을 저장하고 회복 역전류(Recovery reverse current)를 계산하는 그리드 포밍 전력변환 제어 방법.A grid-forming power conversion control method that determines whether the calculated power converter current exceeds the set limit value, and if the current does not exceed the set limit value, saves the current GFM voltage and calculates the recovery reverse current.
  9. 제7 항에 있어서, 8. The method of claim 7,
    산출된 전력변환장치 전류가 설정 제한 값을 초과하면 GFM 전압이 최소전압 이상인 범위 내에서 1 step 감소하고 고장 전류를 다시 산출하는 그리드 포밍 전력변환 제어 방법.When the calculated power converter current exceeds the set limit value, the GFM voltage is reduced by 1 step within the range above the minimum voltage and the fault current is recalculated.
  10. 제7 항에 있어서, 8. The method of claim 7,
    계산된 회복 역전류가 설정 제한 값을 초과하면 입력 임피던스로 운전 불가능한 것으로 판단하여 기준 MVA 접속 임피던스를 1 step 증가하고 고장 전류를 다시 산출하는 그리드 포밍 전력변환 제어 방법.If the calculated recovery reverse current exceeds the set limit value, it is judged that operation with the input impedance is impossible, and the reference MVA connection impedance is increased by 1 step and the fault current is calculated again.
  11. 제7 항에 있어서, 8. The method of claim 7,
    입력 설정부에서 접속 임피던스 설정을 하는 단계에서 100MVA를 기준 임피던스로 입력하고, GFM 전압을 1.0[pu]으로 설정하는 그리드 포밍 전력변환 제어 방법.A grid-forming power conversion control method in which 100MVA is input as the reference impedance in the step of setting the connection impedance in the input setting unit and the GFM voltage is set to 1.0 [pu].
  12. 제9 항 또는 제10 항에 있어서, 11. The method of claim 9 or 10,
    GFM 전압을 1 step 감소하고 고장 전류를 다시 산출하는 과정 및 다시 1 step 증가된 접속 임피던스를 적용하는 과정은 전력변환장치가 공급할 수 있는 전류의 한계를 초과하지 않는 최소 임피던스를 구할 때까지 반복하는 그리드 포밍 전력변환 제어 방법.The process of reducing the GFM voltage by 1 step, calculating the fault current again, and applying the connection impedance increased by 1 step again is repeated until the minimum impedance that does not exceed the limit of the current that the power converter can supply is found. Forming power conversion control method.
  13. 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법으로, 상기 제어 방법은:An output frequency control method of a grid-forming power conversion control device, the control method comprising:
    그리드 포밍 전력변환부에 제공되는 직류 전압에 상응하는 주파수를 연산하는 단계 및 calculating a frequency corresponding to the DC voltage provided to the grid forming power converter; and
    상기 그리드 포밍 전력변환부가 제공된 직류 전압에 상응하는 주파수를 출력하는 단계를 포함하되, Comprising the step of outputting a frequency corresponding to the DC voltage provided by the grid-forming power converter,
    상기 연산된 주파수를 출력하는 단계는 상기 그리드 포밍 전력변환부에 제공되는 직류 전류를 제어하지 않고 수행되는 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법.The outputting of the calculated frequency is an output frequency control method of a grid-forming power conversion control device that is performed without controlling the DC current provided to the grid-forming power conversion unit.
  14. 제13 항에 있어서,14. The method of claim 13,
    상기 그리드 포밍 전력변환부에 제공되는 직류 전압에 상응하는 주파수를 연산하는 단계는Calculating a frequency corresponding to the DC voltage provided to the grid-forming power converter includes:
    상기 그리드 포밍 전력변환부가 무부하일 때 무부하 출력 주파수를 지나고, 전부하일 때 전부하 출력 주파수를 출력하는 함수로부터 상기 그리드 포밍 전력변환부에 제공되는 직류 전압에 대한 주파수를 연산하여 수행하는 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법.Grid-forming power conversion performed by calculating the frequency for the DC voltage provided to the grid-forming power converter from a function of passing the no-load output frequency when the grid-forming power converter is no load and outputting the full-load output frequency when it is full load How to control the output frequency of the control device.
  15. 제14 항에 있어서,15. The method of claim 14,
    상기 함수는 1차 함수로, The function is a first-order function,
    상기 1차 함수의 기울기는, The slope of the linear function is,
    수학식 formula
    Figure PCTKR2021017281-appb-img-000263
    Figure PCTKR2021017281-appb-img-000263
    으로 정해지는 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법.A method of controlling the output frequency of a grid-forming power conversion control device determined by
    (η‘: 기울기, f*: 정격 주파수, vdc*: 정격 전압, droop%: 드룹(droop) 기울기)(η‘: slope, f*: rated frequency, vdc*: rated voltage, droop%: droop slope)
  16. 제14 항에 있어서,15. The method of claim 14,
    상기 함수는, The function is
    Figure PCTKR2021017281-appb-img-000264
    Figure PCTKR2021017281-appb-img-000264
    로 표현되는 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법.A method of controlling the output frequency of a grid-forming power conversion control device expressed as .
    (dra: 드룹 율, Vd: 직류 전압, f: 직류 전압(Vd)에 대한 출력 주파수, fNL: 무부하시 출력 주파수, H: 관성, Vd0: 정격 DC 전압)(dra: droop rate, Vd: DC voltage, f: output frequency for DC voltage (Vd), fNL: no-load output frequency, H: inertia, Vd0: rated DC voltage)
  17. 제14 항에 있어서,15. The method of claim 14,
    상기 함수는, The function is
    Figure PCTKR2021017281-appb-img-000265
    Figure PCTKR2021017281-appb-img-000265
    로 표현되는 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법.A method of controlling the output frequency of a grid-forming power conversion control device expressed as .
    (dra: 드룹 율, Vd: 직류 전압, f: 직류 전압(Vd)에 대한 출력 주파수, fNL: 무부하시 출력 주파수, H: 관성, Vd0: 정격 DC 전압)(dra: droop rate, Vd: DC voltage, f: output frequency for DC voltage (Vd), fNL: no-load output frequency, H: inertia, Vd0: rated DC voltage)
  18. 제14 항에 있어서,15. The method of claim 14,
    상기 함수는, The function is
    Figure PCTKR2021017281-appb-img-000266
    Figure PCTKR2021017281-appb-img-000266
    로 표현되는 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법.A method of controlling the output frequency of a grid-forming power conversion control device expressed as .
    (dra : 드룹 율, Vd: 직류 전압, f: 직류 전압(Vd)에 대한 출력 주파수, fNL: 무부하시 출력 주파수, H: 관성, Vd0: 정격 DC 전압)(dra: droop rate, Vd: DC voltage, f: output frequency for DC voltage (Vd), fNL: no-load output frequency, H: inertia, Vd0: rated DC voltage)
  19. 제14 항에 있어서,15. The method of claim 14,
    상기 함수는, The function is
    Figure PCTKR2021017281-appb-img-000267
    Figure PCTKR2021017281-appb-img-000267
    로 표현되는 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법.A method of controlling the output frequency of a grid-forming power conversion control device expressed as .
    (dra : 드룹 율, Vd: 직류 전압, f: 직류 전압(Vd)에 대한 출력 주파수, fNL: 무부하시 출력 주파수, H: 관성, Vd0: 정격 DC 전압)(dra: droop rate, Vd: DC voltage, f: output frequency for DC voltage (Vd), fNL: no-load output frequency, H: inertia, Vd0: rated DC voltage)
  20. 제14 항에 있어서,15. The method of claim 14,
    상기 함수는, The function is
    수학식 formula
    Figure PCTKR2021017281-appb-img-000268
    Figure PCTKR2021017281-appb-img-000268
    으로 표시되고,is displayed as
    파라미터 a 는 수학식Parameter a is the formula
    Figure PCTKR2021017281-appb-img-000269
    를 만족하고,
    Figure PCTKR2021017281-appb-img-000269
    satisfied with
    파라미터 b는 수학식 Parameter b is the formula
    Figure PCTKR2021017281-appb-img-000270
    을 만족하는 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법.
    Figure PCTKR2021017281-appb-img-000270
    An output frequency control method of a grid-forming power conversion control device that satisfies
    (Vd: 직류 전압, f: 직류 전압(Vd)에 대한 출력 주파수, fNL: 무부하시 출력 주파수, fFL: 전부하시 출력 주파수, Vd0: 정격 DC 전압, i: 부하율, fss: droop에 따른 정상 상태 주파수)(Vd: DC voltage, f: output frequency for DC voltage (Vd), fNL: output frequency at no-load, fFL: output frequency at full load, Vd0: rated DC voltage, i: load factor, fss: steady-state frequency according to droop )
  21. 제14 항에 있어서,15. The method of claim 14,
    상기 함수는, The function is
    Figure PCTKR2021017281-appb-img-000271
    Figure PCTKR2021017281-appb-img-000271
    로 표현되는 그리드 포밍 전력변환 제어 장치의 출력 주파수 제어 방법.A method of controlling the output frequency of a grid-forming power conversion control device expressed as .
    (fout: 출력 주파수, ωc:로터 회전 각속도, VDC: 입력 직류 전압, VFL: 전부하 전압, m: 드룹, k: 제어 파라미터, PSP: 출력 셋 포인트)(fout: output frequency, ωc: rotor rotation angular velocity, VDC: input DC voltage, VFL: full-load voltage, m: droop, k: control parameter, PSP: output setpoint)
  22. 그리드 포밍 전력변환부와 연결되어 주파수를 제어하는 출력 주파수 제어부는:The output frequency control unit connected to the grid forming power conversion unit to control the frequency includes:
    적어도 하나 이상의 프로세서; 및at least one processor; and
    상기 프로세서에 의해 실행되는 하나 이상의 프로그램을 저장하는 메모리를 포함하며, 상기 프로그램들은 하나 이상의 프로세서에 의해 실행될 때, 상기 하나 이상의 프로세서들에서,a memory storing one or more programs executed by the processor, wherein the programs, when executed by the one or more processors, in the one or more processors;
    상기 그리드 포밍 전력변환부에 제공되는 직류 전압에 상응하는 주파수를 연산하는 단계 및 calculating a frequency corresponding to the DC voltage provided to the grid-forming power converter; and
    상기 그리드 포밍 전력변환부가 제공된 직류 전압에 상응하는 주파수를 출력하도록 제어하는 단계를 포함하되, Comprising the step of controlling the grid-forming power converter to output a frequency corresponding to the provided DC voltage,
    상기 연산된 주파수를 출력하도록 제어하는 단계는 상기 그리드 포밍 전력변환부에 제공되는 직류 전류를 제어하지 않고 수행되는 그리드 포밍 전력변환 제어 장치.The controlling to output the calculated frequency is a grid-forming power conversion control device that is performed without controlling the DC current provided to the grid-forming power conversion unit.
  23. 제22 항에 있어서,23. The method of claim 22,
    상기 그리드 포밍 전력변환부에 제공되는 직류 전압에 상응하는 주파수를 연산하는 단계는 Calculating a frequency corresponding to the DC voltage provided to the grid-forming power converter includes:
    상기 그리드 포밍 전력변환부가 무부하일 때의 출력 주파수를 지나는 1차 함수로부터 상기 그리드 포밍 전력변환부에 제공되는 직류 전압에 대한 주파수를 연산하여 수행하는 그리드 포밍 전력변환 제어 장치.Grid-forming power conversion control device for performing by calculating the frequency of the DC voltage provided to the grid-forming power conversion unit from a linear function passing the output frequency when the grid-forming power conversion unit is no load.
  24. 제23 항에 있어서,24. The method of claim 23,
    상기 1차 함수의 기울기는, The slope of the linear function is,
    수학식 formula
    Figure PCTKR2021017281-appb-img-000272
    Figure PCTKR2021017281-appb-img-000272
    으로 정해지는 그리드 포밍 전력변환 제어 장치.A grid-forming power conversion control device determined by
    (η‘: 기울기, f*: 정격 주파수, vdc*: 정격 전압, droop%: 드룹(droop) 기울기)(η‘: slope, f*: rated frequency, vdc*: rated voltage, droop%: droop slope)
  25. 제22 항에 있어서,23. The method of claim 22,
    상기 그리드 포밍 전력변환부에 제공되는 직류 전압에 상응하는 주파수를 연산하는 단계는 Calculating a frequency corresponding to the DC voltage provided to the grid-forming power converter includes:
    상기 그리드 포밍 전력변환부가 무부하일 때의 출력 주파수를 지나는 함수로부터 상기 그리드 포밍 전력변환부에 제공되는 직류 전압에 대한 주파수를 연산하여 수행하는 그리드 포밍 전력변환 제어 장치.Grid-forming power conversion control device for performing by calculating the frequency for the DC voltage provided to the grid-forming power conversion unit from a function passing the output frequency when the grid-forming power conversion unit is no load.
  26. 제25 항에 있어서,26. The method of claim 25,
    상기 함수는, The function is
    Figure PCTKR2021017281-appb-img-000273
    Figure PCTKR2021017281-appb-img-000273
    로 표현되는 그리드 포밍 전력변환 제어 장치.A grid-forming power conversion control device represented by .
    (dra: 드룹 율, Vd: 직류 전압, f: 직류 전압(Vd)에 대한 출력 주파수, fNL: 무부하시 출력 주파수, H: 관성, Vd0: 정격 DC 전압)(dra: droop rate, Vd: DC voltage, f: output frequency for DC voltage (Vd), fNL: no-load output frequency, H: inertia, Vd0: rated DC voltage)
  27. 제25 항에 있어서,26. The method of claim 25,
    상기 함수는, The function is
    Figure PCTKR2021017281-appb-img-000274
    Figure PCTKR2021017281-appb-img-000274
    로 표현되는 그리드 포밍 전력변환 제어 장치.A grid-forming power conversion control device represented by .
    (Vd: 직류 전압, f: 직류 전압(Vd)에 대한 출력 주파수, fNL: 무부하시 출력 주파수, H: 관성, Vd0: 정격 DC 전압)(Vd: DC voltage, f: Output frequency for DC voltage (Vd), fNL: No-load output frequency, H: Inertia, Vd0: Rated DC voltage)
  28. 제25 항에 있어서,26. The method of claim 25,
    상기 함수는, The function is
    Figure PCTKR2021017281-appb-img-000275
    Figure PCTKR2021017281-appb-img-000275
    로 표현되는 그리드 포밍 전력변환 제어 장치.A grid-forming power conversion control device represented by .
    (Vd: 직류 전압, f: 직류 전압(Vd)에 대한 출력 주파수, fNL: 무부하시 출력 주파수, H: 관성, Vd0: 정격 DC 전압)(Vd: DC voltage, f: Output frequency for DC voltage (Vd), fNL: No-load output frequency, H: Inertia, Vd0: Rated DC voltage)
  29. 제25 항에 있어서,26. The method of claim 25,
    상기 함수는, The function is
    Figure PCTKR2021017281-appb-img-000276
    Figure PCTKR2021017281-appb-img-000276
    로 표현되는 그리드 포밍 전력변환 제어 장치.A grid-forming power conversion control device represented by .
    (dra: 드룹 율, Vd: 직류 전압, f: 직류 전압(Vd)에 대한 출력 주파수, fNL: 무부하시 출력 주파수, H: 관성, Vd0: 정격 DC 전압)(dra: droop rate, Vd: dc voltage, f: output frequency for dc voltage (Vd), fNL: no-load output frequency, H: inertia, Vd0: rated DC voltage)
  30. 제25 항에 있어서,26. The method of claim 25,
    상기 함수는, The function is
    Figure PCTKR2021017281-appb-img-000277
    Figure PCTKR2021017281-appb-img-000277
    로 표현되고,is expressed as
    a 와 b는 각각 수학식a and b are each
    Figure PCTKR2021017281-appb-img-000278
    Figure PCTKR2021017281-appb-img-000278
    Figure PCTKR2021017281-appb-img-000279
    Figure PCTKR2021017281-appb-img-000279
    를 만족하는 그리드 포밍 전력변환 제어 장치.A grid-forming power conversion control device that satisfies
    (Vd: 직류 전압, f: 직류 전압(Vd)에 대한 출력 주파수, fNL: 무부하시 출력 주파수, fFL: 전부하시 출력 주파수, Vd0: 정격 DC 전압, i: 부하율, fss: droop에 따른 정상 상태 주파수)(Vd: DC voltage, f: output frequency for DC voltage (Vd), fNL: output frequency at no-load, fFL: output frequency at full load, Vd0: rated DC voltage, i: load factor, fss: steady-state frequency according to droop )
  31. 제25 항에 있어서,26. The method of claim 25,
    상기 함수는, The function is
    Figure PCTKR2021017281-appb-img-000280
    Figure PCTKR2021017281-appb-img-000280
    로 표현되는 그리드 포밍 전력변환 제어 장치.A grid-forming power conversion control device represented by .
    (fout: 출력 주파수, ωc:로터 회전 각속도, VDC: 입력 직류 전압, VFL: 전부하 전압, m: 드룹, k: 제어 파라미터, PSP: 출력 셋 포인트)(fout: output frequency, ωc: rotor rotation angular velocity, VDC: input DC voltage, VFL: full-load voltage, m: droop, k: control parameter, PSP: output setpoint)
PCT/KR2021/017281 2020-11-23 2021-11-23 Apparatus and method for controlling grid-forming power conversion WO2022108420A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020200158245A KR102379169B1 (en) 2020-11-23 2020-11-23 Apparatus and method for optimal voltage tracking control and impedance constraint evaluation of grid forming power converter
KR10-2020-0158245 2020-11-23
KR1020200164432A KR102390466B1 (en) 2020-11-30 2020-11-30 Control method of output frequency of grid forming converter and control appratus of grid forming converter
KR10-2020-0164432 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022108420A1 true WO2022108420A1 (en) 2022-05-27

Family

ID=81709567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017281 WO2022108420A1 (en) 2020-11-23 2021-11-23 Apparatus and method for controlling grid-forming power conversion

Country Status (1)

Country Link
WO (1) WO2022108420A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117081160A (en) * 2023-10-17 2023-11-17 广州菲利斯太阳能科技有限公司 Parallel-off-grid switching system for micro-grid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269843A (en) * 2004-03-22 2005-09-29 Mitsubishi Electric Engineering Co Ltd Parallel operation device
KR20150035277A (en) * 2013-09-27 2015-04-06 한국전력공사 fault clearing system and its method for microgrid
KR20160099914A (en) * 2015-02-13 2016-08-23 울산과학기술원 Power control apparatus using DC bus signal based on switching frequency modulation type in DC Grid system and method thereof
US20190260201A1 (en) * 2016-10-31 2019-08-22 Nr Electric Co., Ltd Fault current limiting control and protection coordination method for converter of flexible direct current power transmission system operating in islanding state
KR20190132855A (en) * 2018-05-21 2019-11-29 데스틴파워 주식회사 Power conversion system connected grid for supporting grid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269843A (en) * 2004-03-22 2005-09-29 Mitsubishi Electric Engineering Co Ltd Parallel operation device
KR20150035277A (en) * 2013-09-27 2015-04-06 한국전력공사 fault clearing system and its method for microgrid
KR20160099914A (en) * 2015-02-13 2016-08-23 울산과학기술원 Power control apparatus using DC bus signal based on switching frequency modulation type in DC Grid system and method thereof
US20190260201A1 (en) * 2016-10-31 2019-08-22 Nr Electric Co., Ltd Fault current limiting control and protection coordination method for converter of flexible direct current power transmission system operating in islanding state
KR20190132855A (en) * 2018-05-21 2019-11-29 데스틴파워 주식회사 Power conversion system connected grid for supporting grid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117081160A (en) * 2023-10-17 2023-11-17 广州菲利斯太阳能科技有限公司 Parallel-off-grid switching system for micro-grid
CN117081160B (en) * 2023-10-17 2023-12-26 广州菲利斯太阳能科技有限公司 Parallel-off-grid switching system for micro-grid

Similar Documents

Publication Publication Date Title
WO2009157715A2 (en) Codebook design method for multiple input multiple output system and method for using the codebook
WO2012050262A1 (en) Method and system for monitoring the performance of plant instruments using ffvr and glrt
WO2022108420A1 (en) Apparatus and method for controlling grid-forming power conversion
WO2016148423A1 (en) Motor driving apparatus
WO2018052163A1 (en) Pcs efficiency-considered microgrid operation device and operation method
WO2014069710A1 (en) Low-cost digital predistortion device of envelope detection feedback method and method therefor
WO2014077596A1 (en) Apparatus for compensating for ripple and offset of inverter, and method therefor
WO2019151639A1 (en) Drop frequency controller for maintaining different frequency qualities in independent type multi-microgrid system, and independent type multi-microgrid system using same
WO2022031059A1 (en) System and method for optimizing current excitation for identifying battery electrochemical parameter on basis of analytical sensitivity formula
WO2018182170A1 (en) System for speed-power analysis of sailing vessel in standard sailing conditions
WO2021010808A4 (en) System for preemptively detecting and preventing electric disasters using iot technology
WO2018232818A1 (en) Method and device for obtaining effective value of alternating current voltage of pfc power supply
WO2021230593A1 (en) Virtual power plant system using renewable cogeneration power plant, and method for operating virtual power plant by using same
WO2020242260A1 (en) Method and device for machine learning-based image compression using global context
WO2010032909A1 (en) Pitch control device and system for wind power generator
WO2018182171A1 (en) Method for performing standard sailing conditions speed-power analysis of sailing vessel
WO2023017913A1 (en) Solar power generation device having uniform focus area
WO2020242163A1 (en) Grid voltage phase detection device
WO2021096309A1 (en) Control system for compensating for voltage synthesis error caused by inverter nonlinearity
WO2011002260A2 (en) Rotating reference codebook that is used in a multiple-input multiple-output (mimo) communication system
WO2022124860A1 (en) Method and apparatus for optimizing tilt angle of antenna of base station
WO2021221270A1 (en) Apparatus and method for improving power generation efficiency of distributed power generation facilities
WO2021100936A1 (en) Power factor adjustment method and apparatus in a waveguide circuit and a transmission line circuit, and power generating transmission line system using the same
WO2021235750A1 (en) Beamforming method using online likelihood maximization combined with steering vector estimation for robust speech recognition, and apparatus therefor
WO2017018593A1 (en) Device and method for determining transmission power in device-to-device communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21895187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21895187

Country of ref document: EP

Kind code of ref document: A1