WO2017018593A1 - Device and method for determining transmission power in device-to-device communication system - Google Patents

Device and method for determining transmission power in device-to-device communication system Download PDF

Info

Publication number
WO2017018593A1
WO2017018593A1 PCT/KR2015/009814 KR2015009814W WO2017018593A1 WO 2017018593 A1 WO2017018593 A1 WO 2017018593A1 KR 2015009814 W KR2015009814 W KR 2015009814W WO 2017018593 A1 WO2017018593 A1 WO 2017018593A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
channel
equation
channel state
Prior art date
Application number
PCT/KR2015/009814
Other languages
French (fr)
Korean (ko)
Inventor
이웅섭
반태원
정방철
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Publication of WO2017018593A1 publication Critical patent/WO2017018593A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the following embodiments are related to an apparatus and method for determining transmission power in an inter-terminal communication system.
  • the present invention relates to a transmission power for maximizing data transmission speed between terminals while maintaining the influence of interference on a base station below a threshold.
  • the present invention relates to determining.
  • D2D communication is a distributed communication technology that directly passes traffic between adjacent nodes without using infrastructure such as base stations.
  • each node such as a mobile terminal, finds another terminal physically adjacent to itself, establishes a communication session, and transmits traffic. Since D2D communication can solve the traffic overload problem by distributing the traffic concentrated at the base station, it is getting the spotlight as an element technology of the next generation mobile communication technology after 4G.
  • the interference signal generated during the communication degrades the performance of the base station. That is, while the terminals perform the D2D communication, a technique for maintaining the performance of the base station is required.
  • An object of the following embodiments is to determine the transmission power for D2D communication between terminals without degrading the performance of the base station.
  • a terminal located within the coverage of a base station wherein the third terminal located within the coverage of the base station to the second terminal paired with the terminal during the time for transmitting the first data to the base station;
  • the apparatus may further include a channel state estimator and a receiver configured to estimate a second channel state from the second terminal to the terminal, wherein the transmitter transmits the second channel state to the base station and the receiver transmits the second channel state.
  • the transmission power determined in consideration of the state may be received from the base station.
  • the apparatus may further include a transmit power determiner configured to update and transmit the transmit power according to Equation 1 below.
  • Is the first channel state Is the effect of the multipath fading channel of the channel from the terminal to the base station, Is the channel gain according to the distance from the terminal to the base station.
  • Is a second channel state which is a channel state from the second terminal to the terminal, Is the influence of the multipath fading channel of the channel from the terminal to the second terminal, Is a channel gain according to the distance from the second terminal to the terminal.
  • Is the power of thermal noise Is the strength of the interference transmitted from the terminal to the base station, Is the maximum transmit power of the terminal. Is It is the larger of internal value and '0'.
  • Updated Is the value of, Is a threshold of the sum of interference signals received by the base station. Is the number of terminals transmitting interference to the base station, Is the value of the previous transmit power. Is any constant.
  • the apparatus may further include a transmit power determiner configured to determine the transmit power according to Equation 3 below.
  • I is a threshold of the sum of interference signals received by the base station.
  • Is the first channel state Is the effect of the multipath fading channel of the channel from the terminal to the base station, Is the channel gain according to the distance from the terminal to the base station.
  • Is a second channel state which is a channel state from the second terminal to the terminal, Is the effect of the multipath fading channel of the channel from the terminal to the second terminal, Is a channel gain according to the distance from the second terminal to the terminal.
  • Is the power of thermal noise Is the strength of the interference transmitted from the terminal to the base station, Is the maximum transmit power of the terminal. Is It is the larger of internal value and '0'.
  • I is a threshold of the sum of interference signals received by the base station.
  • a base station in which terminals located within coverage directly transmit data to each other, the pilot receiving unit receiving a pilot signal from a first terminal among the terminals, and using the received pilot signal;
  • a channel state estimator for estimating a first channel state from a first terminal to the base station, and a channel state receiver for receiving a second channel state from the first terminal to a second terminal included in the terminals from the first terminal
  • a transmission power determiner for determining a transmission power for the first terminal in consideration of the first channel state and the second channel state, and a transmitter for transmitting the determined transmission power to the first terminal.
  • the transmission power determiner may determine the transmission power according to Equation 7 and Equation 8 below.
  • I is a threshold of the sum of interference signals received by the base station.
  • Transmit power Is a set of terminals having a value of 0 Transmit power Has a value of Is a set of terminals.
  • Is the first channel state Is the effect of the multipath fading channel of the channel from the terminal to the base station, Is the channel gain according to the distance from the terminal to the base station.
  • Is a second channel state which is a channel state from the second terminal to the terminal, Is the influence of the multipath fading channel of the channel from the terminal to the second terminal, Is a channel gain according to the distance from the second terminal to the terminal.
  • Is the power of thermal noise Is the strength of the interference transmitted from the terminal to the base station, Is the maximum transmit power of the terminal. Is It is the larger of internal value and '0'.
  • the transmission power determiner may update the transmission power by repeating Equation 7 and Equation 8 until the determined transmission power satisfies Equation 9 below.
  • the third terminal located within the coverage of the base station is paired with the terminal during the time for transmitting the first data to the base station
  • a method of operating a terminal comprising directly transmitting second data to a second terminal at a transmission power determined in consideration of a first channel state from the terminal to the base station.
  • the method may further include receiving from a base station.
  • the method may further include updating and determining the transmission power according to Equation 10 below.
  • Is the value of the updated transmit power Is updated as in Equation 11 below.
  • Is the first channel state Is the effect of the multipath fading channel of the channel from the terminal to the base station, Is the channel gain according to the distance from the terminal to the base station.
  • Is a second channel state which is a channel state from the second terminal to the terminal, Is the influence of the multipath fading channel of the channel from the terminal to the second terminal, Is a channel gain according to the distance from the second terminal to the terminal.
  • Is the power of thermal noise Is the strength of the interference transmitted from the terminal to the base station, Is the maximum transmit power of the terminal. Is It is the larger of internal value and '0'.
  • Updated Is the value of, Is a threshold of the sum of interference signals received by the base station. Is the number of terminals transmitting interference to the base station, Is the value of the previous transmit power. Is any constant.
  • the method may further include determining the transmission power according to Equation 12 below.
  • I is a threshold of the sum of interference signals received by the base station.
  • the method may further include determining the transmission power according to Equation 14 below.
  • Is the first channel state Is the effect of the multipath fading channel of the channel from the terminal to the base station, Is the channel gain according to the distance from the terminal to the base station.
  • Is a second channel state which is a channel state from the second terminal to the terminal, Is the effect of the multipath fading channel of the channel from the terminal to the second terminal, Is a channel gain according to the distance from the second terminal to the terminal.
  • Is the power of thermal noise Is the strength of the interference transmitted from the terminal to the base station, Is the maximum transmit power of the terminal. Is It is the larger of internal value and '0'.
  • I is a threshold of the sum of interference signals received by the base station.
  • FIG. 1 is a diagram illustrating a concept of D2D communication according to an exemplary embodiment.
  • FIG. 2 is a flowchart illustrating a step-by-step method of D2D communication according to an exemplary embodiment.
  • FIG. 3 is a block diagram illustrating a structure of a terminal for performing D2D communication according to another exemplary embodiment.
  • Fig. 4 is a flowchart illustrating a step-by-step method of operating a terminal performing D2D communication according to another exemplary embodiment.
  • Fig. 5 is a block diagram showing the structure of a base station for determining transmission power for D2D communication according to another exemplary embodiment.
  • Fig. 6 is a flowchart illustrating step by step a D2D communication method according to yet another exemplary embodiment.
  • a terminal located within the coverage of a base station wherein the third terminal located within the coverage of the base station to the second terminal paired with the terminal during the time for transmitting the first data to the base station;
  • the apparatus may further include a channel state estimator and a receiver configured to estimate a second channel state from the second terminal to the terminal, wherein the transmitter transmits the second channel state to the base station and the receiver transmits the second channel state.
  • the transmission power determined in consideration of the state may be received from the base station.
  • the apparatus may further include a transmit power determiner configured to update and transmit the transmit power according to Equation 1 below.
  • Is the value of the updated transmit power Is updated as in Equation 2 below.
  • Is the first channel state Is the effect of the multipath fading channel of the channel from the terminal to the base station, Is the channel gain according to the distance from the terminal to the base station.
  • Is a second channel state which is a channel state from the second terminal to the terminal, Is the influence of the multipath fading channel of the channel from the terminal to the second terminal, Is a channel gain according to the distance from the second terminal to the terminal.
  • Is the power of thermal noise Is the strength of the interference transmitted from the terminal to the base station, Is the maximum transmit power of the terminal. Is It is the larger of internal value and '0'.
  • Updated Is the value of, Is a threshold of the sum of interference signals received by the base station. Is the number of terminals transmitting interference to the base station, Is the value of the previous transmit power. Is any constant.
  • the apparatus may further include a transmit power determiner configured to determine the transmit power according to Equation 3 below.
  • Is the first channel state Is the effect of the multipath fading channel of the channel from the terminal to the base station, Is the channel gain according to the distance from the terminal to the base station.
  • Is a second channel state which is a channel state from the second terminal to the terminal, Is the effect of the multipath fading channel of the channel from the terminal to the second terminal, Is a channel gain according to the distance from the second terminal to the terminal.
  • Is the power of thermal noise Is the strength of the interference transmitted from the terminal to the base station, Is the maximum transmit power of the terminal. Is It is the larger of internal value and '0'.
  • I is a threshold of the sum of interference signals received by the base station.
  • the transmission power may further include a transmission power determination unit to determine according to the following equation (5).
  • Is the first channel state Is the effect of the multipath fading channel of the channel from the terminal to the base station, Is the channel gain according to the distance from the terminal to the base station.
  • Is a second channel state which is a channel state from the second terminal to the terminal, Is the effect of the multipath fading channel of the channel from the terminal to the second terminal, Is a channel gain according to the distance from the second terminal to the terminal.
  • Is the power of thermal noise Is the strength of the interference transmitted from the terminal to the base station, Is the maximum transmit power of the terminal. Is It is the larger of internal value and '0'.
  • I is a threshold of the sum of interference signals received by the base station.
  • a base station in which terminals located within coverage directly transmit data to each other, the pilot receiving unit receiving a pilot signal from a first terminal among the terminals, and using the received pilot signal;
  • a channel state estimator for estimating a first channel state from a first terminal to the base station, and a channel state receiver for receiving a second channel state from the first terminal to a second terminal included in the terminals from the first terminal
  • a transmission power determiner for determining a transmission power for the first terminal in consideration of the first channel state and the second channel state, and a transmitter for transmitting the determined transmission power to the first terminal.
  • the transmission power determiner may determine the transmission power according to Equation 7 and Equation 8 below.
  • I is a threshold of the sum of interference signals received by the base station.
  • Transmit power Is a set of terminals having a value of 0 Transmit power Has a value of Is a set of terminals.
  • Is the first channel state Is the effect of the multipath fading channel of the channel from the terminal to the base station, Is the channel gain according to the distance from the terminal to the base station.
  • Is a second channel state which is a channel state from the second terminal to the terminal, Is the influence of the multipath fading channel of the channel from the terminal to the second terminal, Is a channel gain according to the distance from the second terminal to the terminal.
  • Is the power of thermal noise Is the strength of the interference transmitted from the terminal to the base station, Is the maximum transmit power of the terminal. Is It is the larger of internal value and '0'.
  • the transmission power determiner may update the transmission power by repeating Equation 7 and Equation 8 until the determined transmission power satisfies Equation 9 below.
  • the third terminal located within the coverage of the base station is paired with the terminal during the time for transmitting the first data to the base station
  • a method of operating a terminal comprising directly transmitting second data to a second terminal at a transmission power determined in consideration of a first channel state from the terminal to the base station.
  • the method may further include receiving from a base station.
  • the method may further include updating and determining the transmission power according to Equation 10 below.
  • Is the value of the updated transmit power Is updated as in Equation 11 below.
  • Is the first channel state Is the effect of the multipath fading channel of the channel from the terminal to the base station, Is the channel gain according to the distance from the terminal to the base station.
  • Is a second channel state which is a channel state from the second terminal to the terminal, Is the influence of the multipath fading channel of the channel from the terminal to the second terminal, Is a channel gain according to the distance from the second terminal to the terminal.
  • Is the power of thermal noise Is the strength of the interference transmitted from the terminal to the base station, Is the maximum transmit power of the terminal. Is It is the larger of internal value and '0'.
  • Updated Is the value of, Is a threshold of the sum of interference signals received by the base station. Is the number of terminals transmitting interference to the base station, Is the value of the previous transmit power. Is any constant.
  • the method may further include determining the transmission power according to Equation 12 below.
  • I is a threshold of the sum of interference signals received by the base station.
  • the method may further include determining the transmission power according to Equation 14 below.
  • Is the first channel state Is the effect of the multipath fading channel of the channel from the terminal to the base station, Is the channel gain according to the distance from the terminal to the base station.
  • Is a second channel state which is a channel state from the second terminal to the terminal, Is the effect of the multipath fading channel of the channel from the terminal to the second terminal, Is a channel gain according to the distance from the second terminal to the terminal.
  • Is the power of thermal noise Is the strength of the interference transmitted from the terminal to the base station, Is the maximum transmit power of the terminal. Is It is the larger of internal value and '0'.
  • I is a threshold of the sum of interference signals received by the base station.
  • FIG. 1 is a diagram illustrating a concept of D2D communication according to an exemplary embodiment.
  • Each of the terminals 121, 122, 131, 132, 140 may transmit data according to a device-to-device (D2D) communication method of directly transmitting data to other terminals, or via the base station 110 to another terminal. You can also send data.
  • D2D device-to-device
  • Terminals using the D2D communication scheme form a pair (pair, 120, 130) with other terminals for transmitting and receiving data.
  • the terminal 121 configures a first D2D pair 120 with the terminal 122, and the terminal 121 directly transmits data to the terminal 122 according to a D2D communication scheme.
  • the terminal 131 forms a second D2D pair 130 with the terminal 132, and the terminal 131 directly transmits data to the terminal 132 according to a D2D communication scheme.
  • the terminal 140 transmits data to the other terminal through the base station 110.
  • a terminal for transmitting data using a D2D communication method is referred to as a D2D transmitting terminal and a terminal for receiving data using a D2D communication method is referred to as a D2D receiving terminal.
  • each pair 120, 130 is Assume that they are spaced apart by the above distance. Also, in each D2D pair 120, 130, the D2D transmitting terminals 121, 131 are connected to the D2D receiving terminals 122, 132 in another D2D pair. Assume that we transmit as much interference.
  • the D2D transmitting terminal (121, 131) transmits data to the D2D receiving terminal (122, 132) at the same time as the terminal 140 for transmitting data to the base station. Therefore, the D2D transmission terminals 121 and 131 transmit the interference signal to the base station 140, and as a result, the data reception performance of the base station 140 is degraded.
  • the base station 140 may determine the transmission power of the D2D transmitting terminals to maximize the data rate of each D2D pair while maintaining the strength of the interference signal received from all the D2D transmitting terminals to a certain level or less.
  • a channel gain according to a distance from a D2D transmitting terminal (called an i-th D2D transmitting terminal) included in an i-th D2D pair to a base station 140 is calculated.
  • the effects of multipath fading channels The channel state from the i-th D2D transmitting terminal to the base station 140 can be expressed as
  • the channel gain according to the distance from the ith D2D transmitting terminal to the ith D2D receiving terminal The effects of multipath fading channels , The channel state from the i th D2D transmitting terminal to the i th D2D receiving terminal Can be expressed.
  • the channel gain according to the distance from the ith D2D transmitting terminal to the ith D2D receiving terminal The effects of multipath fading channels , The channel state from the i th D2D transmitting terminal to the i th D2D receiving terminal Can be expressed.
  • Equation 1 the sum of normalized data rates of each D2D pair may be expressed by Equation 1 below.
  • the threshold value of the strength of the interference signal received by the D2D base station 140 In this case, the base station 140 receives a certain level (the strength of the interference signal received from all the D2D transmitting terminals). Keeping below) can be expressed as Equation 2 below.
  • each D2D transmission terminal Has a limiting condition as shown in Equation 3 below. here, Transmit power Is the maximum value that can have.
  • the base station 140 determines the transmission power of the D2D transmission terminals so that the data rate of each D2D pair is maximized while maintaining the strength of the interference signal received from all the D2D transmission terminals below a certain level. Satisfying Equations 2 and 3 To maximize Equation 1 It can be modeled as yielding a combination of these. To satisfy these conditions A specific method for calculating the combination of these will be described in detail with reference to FIGS. 2 to 7.
  • the transmission power determination method according to an exemplary embodiment can be largely divided into four embodiments according to a subject that determines the transmission power and a parameter that is considered for determining the transmission power.
  • FIG. 2 is a flowchart illustrating a step-by-step method of D2D communication according to an exemplary embodiment.
  • the base station 110 considers a channel state from the D2D transmitting terminals 121 and 131 to the base station 110 and a channel state from the D2D transmitting terminals 121 and 131 to the D2D receiving terminals 122 and 132.
  • An embodiment of determining the transmission power of the D2D transmission terminals 121 and 131 is shown.
  • step 230 the D2D transmitting terminal 210 transmits a pilot signal to the base station 220.
  • the base station estimates a first channel state from the D2D transmitting terminal 210 to the base station 220 using the pilot signal received from the D2D transmitting terminal 210.
  • the first channel state is a channel gain according to the distance from the D2D transmitting terminal 210 to the base station 220
  • multipath fading channel effects Considering It can be expressed as
  • the D2D transmitting terminal 210 estimates a second channel state from the D2D transmitting terminal 210 to the D2D receiving terminal (not shown).
  • the second channel state is a channel gain according to the distance from the D2D transmitting terminal 210 to the D2D receiving terminal
  • multipath fading channel effects Considering It can be expressed as
  • step 241 the D2D transmitting terminal 210 transmits the second channel state to the base station 220.
  • the base station 220 determines the transmit power of the D2D transmitting terminal 210 in consideration of the first channel state and the second channel state. According to one side, the base station maintains the transmission power of the D2D transmission terminals to the maximum data rate of each D2D pair while maintaining the strength of the interference signal received from all the D2D transmission terminals for a K terminal pair below a certain level. You can decide.
  • Equation 1 This satisfies Equations 2 and 3 To maximize Equation 1 It can be thought of as yielding a combination of these.
  • the base station 220 using the following equation (4) and (5), according to the following algorithm Can be calculated.
  • base station 220 is To the empty set ( Can be initialized to here, Transmit power Is a set of D2D transmitting terminals with a value of 0.)
  • base station 220 is To the empty set ( Can be initialized to here, Transmit power Has a value of Is a set of D2D transmission terminals.)
  • K is a set of D2D transmission terminals.
  • Step 5 Determine whether the following inequality (Equation 6) is satisfied
  • step 5 If the inequality is satisfied in step 5, the determined The value is finally determined as the transmission power of the D2D transmitting terminal. If the inequality is not satisfied, the following steps 6 and 9 are repeated until the inequality is satisfied.
  • Step 8 According to Equation 4 Calculation
  • step 260 the base station 220 calculates the calculated transmit power To the D2D transmitting terminal 210.
  • step 261 the D2D transmitting terminal 210 receives the received transmit power.
  • the second data is transmitted to the D2D receiving terminal (second terminal, not shown).
  • the interference signal is transmitted to the base station 220, but the total sum of the interference signals received by the base station 220 is kept below the threshold. Therefore, even when the base station 220 receives the first data at the same time as the D2D transmitting terminal 210, the performance of the base station 220 is maintained.
  • the terminal according to the exemplary embodiment includes a channel state estimator 310, a transmitter 320, and a receiver 330.
  • the terminal 300 and the second terminal 350 are terminals included in the same terminal pair, the terminal 300 operates as a D2D transmitting terminal, and the second terminal 350 operates as a D2D receiving terminal.
  • the transmitter 320 transmits a pilot signal to the base station 340.
  • the pilot signal transmitted to the base station 340 is used to estimate the first channel state from the terminal 300 to the base station 340.
  • the channel state estimator 310 estimates a second channel state from the second terminal 350 to the terminal 300.
  • the receiver 330 receives a pilot signal from the second terminal 350, the channel state estimator 310 using the pilot signal received from the second terminal 350, the second terminal 350
  • the second channel state from the terminal to the terminal 300 can be estimated.
  • the transmitter 320 transmits the second channel state to the base station 340.
  • the second channel state may be used by the base station 340 to determine the transmit power of the terminal 300.
  • the base station 340 may determine the transmission power of the terminal 300 in consideration of both the first channel state and the second channel state.
  • the base station 340 maintains the strength of the interference signal received from all the D2D transmitting terminals for the K terminal pairs below a certain level, so that the data rate of each D2D pair to the maximum D2D transmitting terminal Can determine their transmit power.
  • the base station 340 may determine the transmit power of the terminal 300 by using the algorithm according to the steps 1 to 9 described above.
  • the receiver 330 receives the transmission power determined by the base station 340 from the base station 340.
  • a third terminal may be additionally located within the coverage of the base station 340.
  • the third terminal may transmit the first data to the base station without directly transmitting the data to another terminal.
  • the transmitter 320 transmits the second data to the second terminal 350 while the third terminal transmits the first data to the base station 340.
  • the transmitter 320 may transmit the second data with the received transmission power.
  • the interference signal is transmitted from the terminal 300 to the base station 340.
  • the total sum of the interference signals received by the base station 340 is maintained below the threshold.
  • Fig. 4 is a flowchart illustrating a step-by-step method of operating a terminal performing D2D communication according to another exemplary embodiment.
  • step 410 the terminal transmits a pilot signal to the base station.
  • the pilot signal transmitted to the base station is used to estimate the first channel state from the terminal to the base station.
  • the terminal estimates a second channel state from the second terminal to the terminal.
  • the second terminal is a terminal included in the same terminal pair as the terminal.
  • the terminal operates as a D2D transmitting terminal and the second terminal operates as a D2D receiving terminal.
  • the terminal transmits a second channel state to the base station.
  • the second channel state may be used by the base station to determine the transmit power of the terminal.
  • the base station maintains the transmission power of the D2D transmission terminals to the maximum data rate of each D2D pair while maintaining the strength of the interference signal received from all the D2D transmission terminals for a K terminal pair below a certain level. You can decide.
  • the base station may determine the transmit power of the terminal using the algorithm according to the steps 1 to 9 described above.
  • step 440 the terminal receives the transmission power determined by the base station from the base station.
  • the terminal transmits the second data to the second terminal during the time that the third terminal transmits the first data to the base station.
  • the third terminal is a terminal located within the coverage of the base station and is a terminal for directly transmitting data to the base station.
  • the terminal may transmit the second data at the received transmission power.
  • the interference signal is transmitted from the terminal to the base station.
  • the total sum of the interference signals received by the base station remains below the threshold.
  • Fig. 5 is a block diagram showing the structure of a base station for determining transmission power for D2D communication according to another exemplary embodiment.
  • Another base station 500 includes a pilot receiver 510, a channel state estimator 520, a channel state receiver 530, a transmit power determiner 540, and a transmitter 550.
  • the pilot receiver 510 receives a pilot signal from the terminal 560.
  • the channel state estimator 520 estimates a first channel state from the terminal 560 to the base station using the received pilot signal.
  • the channel state receiver 530 receives the second channel state from the terminal 560.
  • the second channel state is a channel state from the second terminal 570 to the terminal 560.
  • the terminal 560 may receive a second pilot signal from the second terminal 570 and estimate the second channel state using the received second pilot signal.
  • the transmit power determiner 540 determines the transmit power of the terminal 560 using the second channel state and the first channel state. According to one side, the transmission power determiner 540 maintains the strength of the interference signal received from all the D2D transmission terminals for the K terminal pairs below a certain level, D2D so that the data rate of each D2D pair to the maximum It is possible to determine the transmit power of the transmitting terminals. According to another aspect, the transmit power determiner 540 may determine the transmit power of the terminal 560 by using the algorithm according to the steps 1 to 9 described above.
  • the transmitter 550 transmits the determined transmission power to the terminal 560.
  • the terminal 560 receives the transmission power from the base station 500.
  • the third terminal may be located in the coverage of the base station 500.
  • the third terminal may transmit data to the base station 500 without directly transmitting data to another terminal.
  • the terminal 560 transmits the second data to the second terminal 570 during the time when the third terminal transmits the first data to the base station 500.
  • the terminal 560 may transmit the second data with the received transmission power.
  • the interference signal is transmitted from the terminal 560 to the base station 500.
  • the total sum of the interference signals received by the base station 500 remains below the threshold.
  • Fig. 6 is a flowchart illustrating step by step a D2D communication method according to yet another exemplary embodiment.
  • step 630 the terminal 610 transmits a pilot signal to the base station 620.
  • the base station estimates a first channel state from the terminal 610 to the base station 620 using the received pilot signal.
  • step 640 the terminal 610 receives the first channel state from the base station 620.
  • the terminal 610 receives the first channel state estimated by the base station 620 is described. According to another embodiment, the terminal 610 is downward from the base station 620 to the terminal 610.
  • the link channel state may be used as the first channel state.
  • the terminal 610 estimates a second channel state from the second terminal to the terminal 610.
  • the terminal 610 may receive a second pilot signal from the second terminal, and estimate the second channel state from the second terminal to the terminal 610 using the received second pilot signal.
  • step 660 the terminal 610 determines the transmit power.
  • the terminal 610 determines the transmission power according to some assumptions of a distributed power control scheme, a power control scheme based on average, and a power average based on a channel average value. It can be classified into a technique (Power Control Scheme Based on Averaged Channel Value).
  • the terminal 610 may determine the transmit power. Accordingly, the terminal 610 does not need to feed back the second channel state to the base station 620.
  • the terminal 610 is a utility for the i-th D2D pair according to Equation 7 below. Can be defined.
  • the first item is the data rate between the i-th D2D pair
  • the second item is the influence of interference transmitted by the D2D transmitting terminal 610 included in the i-th D2D pair to the base station.
  • Equation 7 a utility Is proportional to the data rate between the D2D pairs and is inversely proportional to the effect of interference transmitted by the D2D transmitting terminal 620 to the base station 620.
  • the normalization cost of interference If appropriately determined, it is possible to control the effect of the interference on the base station 620 due to the D2D transmission.
  • the terminal 610 is a utility Transmit power to maximize Can be determined.
  • utility Using the derivative of, the transmit power May be updated as in Equation 8 below.
  • I a value determined by the base station 620 at time t, and may be determined as shown in Equation 9 below.
  • step 660 the terminal is defined in Equation 9 from the base station And transmit power in accordance with Equation (8). Can be updated.
  • the base station 620 may not know the second channel state between the terminal 610 and the second terminal. Can be updated. Accordingly, the terminal 610 does not have to feed back the second channel state every time, and can greatly reduce the signaling overhead.
  • the transmission power may be determined according to average channel information, rather than instantaneous channel information.
  • the average data rate between the D2D pairs is maximized, and the average value of the interference transmitted to the base station is controlled below the threshold.
  • the average power control technique may be expressed as Equation 10 below.
  • Is Is a vector whose elements are Is Vector whose elements are elements. Is the normalization cost of the interference taking the average value into account.
  • the terminal 610 is optimal to satisfy the equation (10) sign
  • the value of can be calculated according to the following equation (11).
  • Equation 12 the condition Can be expressed as in Equation 13.
  • Equation 15 the first item of Equation 12 may be expressed as Equation 15 below.
  • Equation 16 Equation 16
  • the terminal 610 is optimal May be calculated using Equations 11, 15, and 16.
  • the terminal 610 is An approximation of can be calculated according to the following equation (17).
  • the terminal 610 is a threshold value of the sum of the number K of D2D pairs and the interference signal received by the base station. Using bay You can simply determine the approximation of.
  • the terminal 610 may be affected by multipath fading. , Can be assumed to be 1. In this case, the cost of interference May be determined according to Equation 18 below.
  • Equation 19 The optimal solution of equation (18) can be summarized as a value satisfying Equation 19 below.
  • the terminal 610 is An approximation of can be calculated according to the following equation (20).
  • the terminal 610 is a threshold value of the sum of the number K of D2D pairs and the interference signal received by the base station. Using bay You can simply determine the approximation of.
  • the terminal 610 may transmit second data to the second terminal at the determined transmission power. According to one side, the terminal 610 may transmit the second data during the time that the third terminal located in the coverage of the base station 620 transmits the first data to the base station 620. In this case, the interference signal is transmitted from the terminal 610 to the base station 620. However, the total sum of the interference signals received by the base station 620 remains below the threshold.
  • the terminal 700 is a block diagram illustrating a structure of a terminal for performing D2D communication according to another exemplary embodiment.
  • the terminal 700 according to an exemplary embodiment includes a transmission power determiner 710 and a transmitter 720.
  • the transmit power determiner 710 determines the transmit power of the terminal 700.
  • the transmission power determination unit 710 is a distributed power control scheme (Distributed Power Control Scheme) described above, a power control scheme based on the average (Power Control Scheme Based on Expectation) and a channel average value based on the power control scheme (The transmission power may be determined according to any one of Power Control Scheme Based on Averaged Channel Value.
  • distributed Power Control Scheme distributed Power Control Scheme
  • the transmission power may be determined according to any one of Power Control Scheme Based on Averaged Channel Value.
  • the transmit power determiner 710 may determine transmit power according to a distributed power control technique.
  • the terminal 700 costs the normalization cost of the interference from the base station (not shown).
  • Receive the received The transmission power may be determined by substituting Equation (8).
  • the transmission power determiner 710 may determine the transmission power according to the average power control technique.
  • the transmission power determiner 710 may use the equations 11, 15, and 16 to optimize And calculate The transmission power may be determined by substituting into Equation 10.
  • the transmit power determiner 710 may determine the transmit power according to a power control scheme based on the channel average value. In this case, the transmission power determining unit 710 according to the equation (19) interference cost And calculate By substituting into Equation 18, the transmission power may be determined.
  • the transmitter 720 transmits the second data to the second terminal 630 according to the determined transmission power. According to one side, the transmitter 720 may transmit the second data during the time that the third terminal located in the coverage of the base station transmits the first data to the base station. In this case, the interference signal is transmitted from the transmitter 720 to the base station. However, the total sum of the interference signals received by the base station remains below the threshold.
  • FIG. 8 is a flowchart illustrating a method of operating a terminal for performing D2D communication according to another exemplary embodiment.
  • the terminal determines the transmit power.
  • the terminal is a distributed power control scheme (Distributed Power Control Scheme) described above, a Power Control Scheme Based on Expectation and a power control scheme based on the channel average value (Power Control Scheme Based on Averaged) Channel Value) can be used to determine the transmit power according to any one of the techniques.
  • the terminal may determine the transmit power according to a distributed power control technique.
  • the terminal costs the normalization cost of the interference from the base station (not shown).
  • Receive the received The transmission power may be determined by substituting Equation (8).
  • the terminal may determine the transmission power according to the average power control scheme.
  • the terminal uses the equations 11, 15, and 16 to optimize And calculate The transmission power may be determined by substituting into Equation 10.
  • the terminal uses Equation 17 You can simply determine the approximation of.
  • the terminal may determine the transmit power according to a power control scheme based on the channel average value.
  • the terminal costs the interference according to equation (19). And calculate By substituting into Equation 18, the transmission power may be determined.
  • the terminal uses Equation 20 You can simply determine the approximation of.
  • the terminal transmits the second data to the second terminal according to the determined transmission power.
  • the terminal may transmit the second data during the time that the third terminal located in the coverage of the base station transmits the first data to the base station.
  • the interference signal is transmitted from the terminal to the base station.
  • the total sum of the interference signals received by the base station remains below the threshold.
  • the method according to the embodiment may be embodied in the form of program instructions that can be executed by various computer means and recorded in a computer readable medium.
  • the computer readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • the program instructions recorded on the media may be those specially designed and constructed for the purposes of the embodiments, or they may be of the kind well-known and available to those having skill in the computer software arts.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tape, optical media such as CD-ROMs, DVDs, and magnetic disks, such as floppy disks.
  • Examples of program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
  • the hardware device described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.
  • D2D device-to-device
  • the total sum of the interference signals transmitted from the terminal to the base station can be controlled to a threshold or less while maximally improving the data rate of the terminal-to-terminal communication.

Abstract

A technique for determining transmission power in device-to-device (D2D) communication is disclosed. According to the disclosed transmission power technique, the total sum of interference signals transmitted from a terminal to a base station can be controlled to be a threshold value or less even while maximally improving a data transmission rate of the D2D communication.

Description

단말간 통신 시스템에서 전송 전력을 결정하는 장치 및 방법Apparatus and method for determining transmission power in an end-to-end communication system
하기의 실시예들은 단말간 통신 시스템에서 전송 전력을 결정하는 장치 및 방법에 관한 것으로, 구체적으로는 기지국에 미치는 간섭의 영향을 임계값 이하로 유지하면서 단말간 데이터 전송 속도를 최대화할 수 있도록 전송 전력을 결정하는 발명에 관한 것이다.The following embodiments are related to an apparatus and method for determining transmission power in an inter-terminal communication system. Specifically, the present invention relates to a transmission power for maximizing data transmission speed between terminals while maintaining the influence of interference on a base station below a threshold. The present invention relates to determining.
최근 스마트폰과 태블릿 PC가 보급되고 고용량 멀티미디어 통신이 활성화되면서 모바일 트래픽이 급격하게 증가 하고 있다. 이러한 모바 일 트래픽의 대부분은 기지국을 통해 전송되고 있기 때문에 통신 서비스 사업자들은 당장 심각한 망 부하 문제에 직면해 있다. 이에 통신 사업자들은 증가하는 트래픽을 처리하기 위해 망 설비를 증가하고, 모바일 WiMAX, LTE(Long Term Evolution)와 같이 많은 양의 트래픽을 효율적으로 처리할 수 있는 차세대 이동통신 표준을 서둘러 상용화해왔다. 하지만 앞으로 더욱 급증하게 될 트래픽의 양을 감당하기 위해서는 또 다른 해결책이 필요한 시점이다.Recently, with the spread of smartphones and tablet PCs and the activation of high-capacity multimedia communications, mobile traffic is rapidly increasing. Since most of this mobile traffic is transmitted through base stations, telecommunications service providers are faced with serious network load issues at the moment. As a result, service providers have increased network facilities to handle increasing traffic, and hastened to commercialize next-generation mobile communication standards that can efficiently handle large amounts of traffic such as mobile WiMAX and Long Term Evolution (LTE). But it's time for another solution to handle the ever-increasing volume of traffic.
기기 간 직접(device-to-device, D2D) 통신은 기지국과 같은 기반 시설을 이용하지 않고 인접한 노드 사이에 트 래픽을 직접 전달하는 분산형 통신 기술이다. D2D 통신 환경에서 휴대 단말 등 각 노드는 스스로 물리적으로 인 접한 다른 단말을 찾고, 통신 세션을 설정한 뒤 트래픽을 전송한다. 이처럼 D2D 통신은 기지국으로 집중되는 트래픽을 분산시켜 트래픽 과부화 문제를 해결할 수 있기 때문에 4G 이후의 차세대 이동통신 기술의 요소 기술로 써 각광을 받고 있다.Device-to-device (D2D) communication is a distributed communication technology that directly passes traffic between adjacent nodes without using infrastructure such as base stations. In a D2D communication environment, each node, such as a mobile terminal, finds another terminal physically adjacent to itself, establishes a communication session, and transmits traffic. Since D2D communication can solve the traffic overload problem by distributing the traffic concentrated at the base station, it is getting the spotlight as an element technology of the next generation mobile communication technology after 4G.
그러나, 단말기들이 D2D 통신을 수행한다면, 통신 과정에서 발생한 간섭 신호는 기지국의 성능을 저하시킨다. 즉, 단말기들이 D2D 통신을 수행하면서도, 기지국의 성능을 유지하는 기술이 요구된다.However, if the terminals perform D2D communication, the interference signal generated during the communication degrades the performance of the base station. That is, while the terminals perform the D2D communication, a technique for maintaining the performance of the base station is required.
하기의 실시예들의 목적은 기지국의 성능 저하 없이 단말기들간의 D2D 통신을 위한 전송 전력을 결정하는 것이다.An object of the following embodiments is to determine the transmission power for D2D communication between terminals without degrading the performance of the base station.
예시적 실시예에 따르면, 기지국의 커버리지 내에 위치하는 단말기에 있어서, 상기 기지국의 커버리지 내에 위치하는 제3 단말기가 상기 기지국으로 제1 데이터를 전송하는 시간 동안 상기 단말기와 페어링된 제2 단말기로 상기 단말기로부터 상기 기지국까지의 제1 채널 상태를 고려하여 결정된 전송 전력으로 제2 데이터를 직접 전송하는 전송부를 포함하는 단말기가 제공된다.According to an exemplary embodiment, a terminal located within the coverage of a base station, wherein the third terminal located within the coverage of the base station to the second terminal paired with the terminal during the time for transmitting the first data to the base station; Provided is a terminal including a transmitter for directly transmitting second data at a transmission power determined in consideration of a first channel state from the base station to the base station.
여기서, 상기 제2 단말기로부터 상기 단말기까지의 제2 채널 상태를 추정하는 채널 상태 추정부 및 수신부를 더 포함하고, 상기 전송부는 상기 제2 채널 상태를 상기 기지국으로 전송하고 상기 수신부는 상기 제2 채널 상태를 추가적으로 고려하여 결정된 전송 전력을 상기 기지국으로부터 수신할 수 있다.The apparatus may further include a channel state estimator and a receiver configured to estimate a second channel state from the second terminal to the terminal, wherein the transmitter transmits the second channel state to the base station and the receiver transmits the second channel state. The transmission power determined in consideration of the state may be received from the base station.
그리고, 상기 전송 전력을 하기 수학식 1에 따라서 업데이트하여 결정하는 전송 전력 결정부를 더 포함할 수 있다.The apparatus may further include a transmit power determiner configured to update and transmit the transmit power according to Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2015009814-appb-I000001
Figure PCTKR2015009814-appb-I000001
여기서,
Figure PCTKR2015009814-appb-I000002
는 업데이트된 전송 전력의 값이고,
Figure PCTKR2015009814-appb-I000003
는 하기 수학식
here,
Figure PCTKR2015009814-appb-I000002
Is the value of the updated transmit power,
Figure PCTKR2015009814-appb-I000003
Is the following equation
2와 같이 업데이트된다.
Figure PCTKR2015009814-appb-I000004
는 제1 채널 상태로서,
Figure PCTKR2015009814-appb-I000005
는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000006
는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000007
는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
Figure PCTKR2015009814-appb-I000008
는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000009
는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000010
는 열잡음의 전력이고,
Figure PCTKR2015009814-appb-I000011
는 단말기로부터 기지국으로 전송되는 간섭의 세기이고,
Figure PCTKR2015009814-appb-I000012
는 단말기의 최대 전송 전력이다.
Figure PCTKR2015009814-appb-I000013
Figure PCTKR2015009814-appb-I000014
내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
Is updated as shown in 2.
Figure PCTKR2015009814-appb-I000004
Is the first channel state,
Figure PCTKR2015009814-appb-I000005
Is the effect of the multipath fading channel of the channel from the terminal to the base station,
Figure PCTKR2015009814-appb-I000006
Is the channel gain according to the distance from the terminal to the base station.
Figure PCTKR2015009814-appb-I000007
Is a second channel state which is a channel state from the second terminal to the terminal,
Figure PCTKR2015009814-appb-I000008
Is the influence of the multipath fading channel of the channel from the terminal to the second terminal,
Figure PCTKR2015009814-appb-I000009
Is a channel gain according to the distance from the second terminal to the terminal.
Figure PCTKR2015009814-appb-I000010
Is the power of thermal noise,
Figure PCTKR2015009814-appb-I000011
Is the strength of the interference transmitted from the terminal to the base station,
Figure PCTKR2015009814-appb-I000012
Is the maximum transmit power of the terminal.
Figure PCTKR2015009814-appb-I000013
Is
Figure PCTKR2015009814-appb-I000014
It is the larger of internal value and '0'.
[수학식 2][Equation 2]
Figure PCTKR2015009814-appb-I000015
Figure PCTKR2015009814-appb-I000015
여기서,
Figure PCTKR2015009814-appb-I000016
는 업데이트된
Figure PCTKR2015009814-appb-I000017
의 값이며,
Figure PCTKR2015009814-appb-I000018
는 상기 기지국이 수신하는 간섭 신호의 총합의 임계값이다.
Figure PCTKR2015009814-appb-I000019
는 기지국으로 간섭을 전송하는 단말기들의 개수이고,
Figure PCTKR2015009814-appb-I000020
는 이전 전송 전력의 값이다.
Figure PCTKR2015009814-appb-I000021
는 임의의 상수이다.
here,
Figure PCTKR2015009814-appb-I000016
Updated
Figure PCTKR2015009814-appb-I000017
Is the value of,
Figure PCTKR2015009814-appb-I000018
Is a threshold of the sum of interference signals received by the base station.
Figure PCTKR2015009814-appb-I000019
Is the number of terminals transmitting interference to the base station,
Figure PCTKR2015009814-appb-I000020
Is the value of the previous transmit power.
Figure PCTKR2015009814-appb-I000021
Is any constant.
또한, 상기 전송 전력을 하기 수학식 3에 따라서 결정하는 전송 전력 결정부를 더 포함할 수 있다.The apparatus may further include a transmit power determiner configured to determine the transmit power according to Equation 3 below.
[수학식 3][Equation 3]
Figure PCTKR2015009814-appb-I000022
Figure PCTKR2015009814-appb-I000022
여기서,
Figure PCTKR2015009814-appb-I000023
는 하기 수학식 4에 따라서 결정된다.
Figure PCTKR2015009814-appb-I000024
는 제1 채널 상태로서,
Figure PCTKR2015009814-appb-I000025
는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000026
는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
here,
Figure PCTKR2015009814-appb-I000023
Is determined according to the following equation (4).
Figure PCTKR2015009814-appb-I000024
Is the first channel state,
Figure PCTKR2015009814-appb-I000025
Is the effect of the multipath fading channel of the channel from the terminal to the base station,
Figure PCTKR2015009814-appb-I000026
Is the channel gain according to the distance from the terminal to the base station.
Figure PCTKR2015009814-appb-I000027
는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
Figure PCTKR2015009814-appb-I000028
는 는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000029
는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000030
는 열잡음의 전력이고,
Figure PCTKR2015009814-appb-I000031
는 단말기로부터 기지국으로 전송되는 간섭의 세기이고,
Figure PCTKR2015009814-appb-I000032
는 단말기의 최대 전송 전력이다.
Figure PCTKR2015009814-appb-I000033
Figure PCTKR2015009814-appb-I000034
내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
Figure PCTKR2015009814-appb-I000027
Is a second channel state which is a channel state from the second terminal to the terminal,
Figure PCTKR2015009814-appb-I000028
Is the effect of the multipath fading channel of the channel from the terminal to the second terminal,
Figure PCTKR2015009814-appb-I000029
Is a channel gain according to the distance from the second terminal to the terminal.
Figure PCTKR2015009814-appb-I000030
Is the power of thermal noise,
Figure PCTKR2015009814-appb-I000031
Is the strength of the interference transmitted from the terminal to the base station,
Figure PCTKR2015009814-appb-I000032
Is the maximum transmit power of the terminal.
Figure PCTKR2015009814-appb-I000033
Is
Figure PCTKR2015009814-appb-I000034
It is the larger of internal value and '0'.
[수학식 4][Equation 4]
Figure PCTKR2015009814-appb-I000035
Figure PCTKR2015009814-appb-I000035
Figure PCTKR2015009814-appb-I000036
Figure PCTKR2015009814-appb-I000036
여기서,
Figure PCTKR2015009814-appb-I000037
는 상기 기지국이 수신하는 간섭 신호의 총합의 임계값이다.
here,
Figure PCTKR2015009814-appb-I000037
Is a threshold of the sum of interference signals received by the base station.
여기서, 상기 전송 전력을 하기 수학식 5에 따라서 결정하는 전송 전력 결정Here, the transmission power to determine the transmission power according to the following equation (5)
부를 더 포함할 수 있다.It may further include wealth.
[수학식 5][Equation 5]
Figure PCTKR2015009814-appb-I000038
Figure PCTKR2015009814-appb-I000038
여기서,
Figure PCTKR2015009814-appb-I000039
는 하기 수학식 6에 따라서 결정된다.
Figure PCTKR2015009814-appb-I000040
는 제1채널 상태로서,
Figure PCTKR2015009814-appb-I000041
는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000042
는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000043
는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
Figure PCTKR2015009814-appb-I000044
는 는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000045
는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000046
는 열잡음의 전력이고,
Figure PCTKR2015009814-appb-I000047
는 단말기로부터 기지국으로 전송되는 간섭의 세기이고,
Figure PCTKR2015009814-appb-I000048
는 단말기의 최대 전송 전력이다.
Figure PCTKR2015009814-appb-I000049
Figure PCTKR2015009814-appb-I000050
내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
here,
Figure PCTKR2015009814-appb-I000039
Is determined according to the following equation (6).
Figure PCTKR2015009814-appb-I000040
Is the first channel state,
Figure PCTKR2015009814-appb-I000041
Is the effect of the multipath fading channel of the channel from the terminal to the base station,
Figure PCTKR2015009814-appb-I000042
Is the channel gain according to the distance from the terminal to the base station.
Figure PCTKR2015009814-appb-I000043
Is a second channel state which is a channel state from the second terminal to the terminal,
Figure PCTKR2015009814-appb-I000044
Is the effect of the multipath fading channel of the channel from the terminal to the second terminal,
Figure PCTKR2015009814-appb-I000045
Is a channel gain according to the distance from the second terminal to the terminal.
Figure PCTKR2015009814-appb-I000046
Is the power of thermal noise,
Figure PCTKR2015009814-appb-I000047
Is the strength of the interference transmitted from the terminal to the base station,
Figure PCTKR2015009814-appb-I000048
Is the maximum transmit power of the terminal.
Figure PCTKR2015009814-appb-I000049
Is
Figure PCTKR2015009814-appb-I000050
It is the larger of internal value and '0'.
[수학식 6][Equation 6]
Figure PCTKR2015009814-appb-I000051
Figure PCTKR2015009814-appb-I000051
여기서,
Figure PCTKR2015009814-appb-I000052
는 상기 기지국이 수신하는 간섭 신호의 총합의 임계값이다.
here,
Figure PCTKR2015009814-appb-I000052
Is a threshold of the sum of interference signals received by the base station.
또 다른 예시적 실시예에 따르면, 커버리지 내에 위치한 단말기들이 서로 데이터를 직접 전송하는 기지국에 있어서, 상기 단말기들 중에서 제1 단말기로부터 파일럿 신호를 수신하는 파일럿 수신부, 상기 수신한 파일럿 신호를 이용하여 상기 제1 단말기로부터 상기 기지국까지의 제1 채널 상태를 추정하는 채널 상태 추정부, 상기 제1 단말기로부터 상기 단말기들에 포함된 제2 단말기까지의 제2 채널 상태를 상기 제1 단말기로부터 수신하는 채널 상태 수신부, 상기 제1 채널 상태 및 상기 제2 채널 상태를 고려하여 상기 제1 단말기에 대한 전송 전력을 결정하는 전송 전력 결정부 및 상기 결정된 전송 전력을 상기 제1 단말기로 전송하는 전송부를 포함하고, 상기 기지국의 커버리지 내에 위치하는 제3 단말기가 상기 기지국으로 제1 데이터를 전송하는 시간 동안, 상기 전송된 전송 전력에 따라서 상기 제1 단말기는 상기 제2 단말기로 제2 데이터를 직접 전송하는 기지국이 제공된다.According to still another exemplary embodiment, a base station in which terminals located within coverage directly transmit data to each other, the pilot receiving unit receiving a pilot signal from a first terminal among the terminals, and using the received pilot signal; A channel state estimator for estimating a first channel state from a first terminal to the base station, and a channel state receiver for receiving a second channel state from the first terminal to a second terminal included in the terminals from the first terminal And a transmission power determiner for determining a transmission power for the first terminal in consideration of the first channel state and the second channel state, and a transmitter for transmitting the determined transmission power to the first terminal. When the third terminal located within the coverage of the first data is transmitted to the base station While, according to the transmission power of the transmission of the first station is a base station directly transmits the second data to the second terminal is provided.
여기서, 상기 전송 전력 결정부는 하기 수학식 7 및 하기 수학식 8에 따라서 상기 전송 전력을 결정할 수 있다,Here, the transmission power determiner may determine the transmission power according to Equation 7 and Equation 8 below.
[수학식 7][Equation 7]
Figure PCTKR2015009814-appb-I000053
Figure PCTKR2015009814-appb-I000053
여기서,
Figure PCTKR2015009814-appb-I000054
는 상기 기지국이 수신하는 간섭 신호의 총합의 임계값이다.
here,
Figure PCTKR2015009814-appb-I000054
Is a threshold of the sum of interference signals received by the base station.
Figure PCTKR2015009814-appb-I000055
는 전송 전력
Figure PCTKR2015009814-appb-I000056
의 값이 0인 단말기들의 집합이고,
Figure PCTKR2015009814-appb-I000057
는 전송 전력
Figure PCTKR2015009814-appb-I000058
의 값이
Figure PCTKR2015009814-appb-I000059
인 단말기들의 집합이다.
Figure PCTKR2015009814-appb-I000055
Transmit power
Figure PCTKR2015009814-appb-I000056
Is a set of terminals having a value of 0,
Figure PCTKR2015009814-appb-I000057
Transmit power
Figure PCTKR2015009814-appb-I000058
Has a value of
Figure PCTKR2015009814-appb-I000059
Is a set of terminals.
Figure PCTKR2015009814-appb-I000060
는 제1 채널 상태로서,
Figure PCTKR2015009814-appb-I000061
는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000062
는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000063
는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
Figure PCTKR2015009814-appb-I000064
는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000065
는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000066
는 열잡음의 전력이고,
Figure PCTKR2015009814-appb-I000067
는 단말기로부터 기지국으로 전송되는 간섭의 세기이고,
Figure PCTKR2015009814-appb-I000068
는 단말기의 최대 전송 전력이다.
Figure PCTKR2015009814-appb-I000069
Figure PCTKR2015009814-appb-I000070
내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
Figure PCTKR2015009814-appb-I000060
Is the first channel state,
Figure PCTKR2015009814-appb-I000061
Is the effect of the multipath fading channel of the channel from the terminal to the base station,
Figure PCTKR2015009814-appb-I000062
Is the channel gain according to the distance from the terminal to the base station.
Figure PCTKR2015009814-appb-I000063
Is a second channel state which is a channel state from the second terminal to the terminal,
Figure PCTKR2015009814-appb-I000064
Is the influence of the multipath fading channel of the channel from the terminal to the second terminal,
Figure PCTKR2015009814-appb-I000065
Is a channel gain according to the distance from the second terminal to the terminal.
Figure PCTKR2015009814-appb-I000066
Is the power of thermal noise,
Figure PCTKR2015009814-appb-I000067
Is the strength of the interference transmitted from the terminal to the base station,
Figure PCTKR2015009814-appb-I000068
Is the maximum transmit power of the terminal.
Figure PCTKR2015009814-appb-I000069
Is
Figure PCTKR2015009814-appb-I000070
It is the larger of internal value and '0'.
[수학식 8][Equation 8]
Figure PCTKR2015009814-appb-I000071
Figure PCTKR2015009814-appb-I000071
그리고, 상기 전송 전력 결정부는 상기 결정된 전송 전력이 하기 수학식 9를 만족할 때까지 상기 수학식 7 및 상기 수학식 8을 반복하여 상기 전송 전력을 업데이트할 수 있다.The transmission power determiner may update the transmission power by repeating Equation 7 and Equation 8 until the determined transmission power satisfies Equation 9 below.
[수학식 9][Equation 9]
Figure PCTKR2015009814-appb-I000072
Figure PCTKR2015009814-appb-I000072
또 다른 예시적 실시예에 따르면, 기지국의 커버리지 내에 위치하는 단말기의 동작 방법에 있어서, 상기 기지국의 커버리지 내에 위치하는 제3 단말기가 상기 기지국으로 제1 데이터를 전송하는 시간 동안 상기 단말기와 페어링된 제2 단말기로 상기 단말기로부터 상기 기지국까지의 제1 채널 상태를 고려하여 결정된 전송 전력으로 제2 데이터를 직접 전송하는 단계를 포함하는 단말기의 동작 방법이 제공된다.According to another exemplary embodiment, in a method of operating a terminal located within the coverage of a base station, the third terminal located within the coverage of the base station is paired with the terminal during the time for transmitting the first data to the base station A method of operating a terminal is provided, comprising directly transmitting second data to a second terminal at a transmission power determined in consideration of a first channel state from the terminal to the base station.
여기서, 상기 제2 단말기로부터 상기 단말기까지의 제2 채널 상태를 추정하는 단계, 상기 전송부는 상기 제2 채널 상태를 상기 기지국으로 전송하는 단계 및 상기 제2 채널 상태를 추가적으로 고려하여 결정된 전송 전력을 상기 기지국으로부터 수신하는 단계를 더 포함할 수 있다.Estimating a second channel state from the second terminal to the terminal, wherein the transmitter is further configured to transmit the second channel state to the base station and the transmission power determined in consideration of the second channel state. The method may further include receiving from a base station.
그리고, 하기 수학식 10에 따라서 상기 전송 전력을 업데이트하여 결정하는 단계를 더 포함할 수 있다.The method may further include updating and determining the transmission power according to Equation 10 below.
[수학식 10][Equation 10]
Figure PCTKR2015009814-appb-I000073
Figure PCTKR2015009814-appb-I000073
여기서,
Figure PCTKR2015009814-appb-I000074
는 업데이트된 전송 전력의 값이고,
Figure PCTKR2015009814-appb-I000075
는 하기 수학식 11과 같이 업데이트된다.
Figure PCTKR2015009814-appb-I000076
는 제1 채널 상태로서,
Figure PCTKR2015009814-appb-I000077
는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000078
는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000079
는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
Figure PCTKR2015009814-appb-I000080
는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000081
는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000082
는 열잡음의 전력이고,
Figure PCTKR2015009814-appb-I000083
는 단말기로부터 기지국으로 전송되는 간섭의 세기이고,
Figure PCTKR2015009814-appb-I000084
는 단말기의 최대 전송 전력이다.
Figure PCTKR2015009814-appb-I000085
Figure PCTKR2015009814-appb-I000086
내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
here,
Figure PCTKR2015009814-appb-I000074
Is the value of the updated transmit power,
Figure PCTKR2015009814-appb-I000075
Is updated as in Equation 11 below.
Figure PCTKR2015009814-appb-I000076
Is the first channel state,
Figure PCTKR2015009814-appb-I000077
Is the effect of the multipath fading channel of the channel from the terminal to the base station,
Figure PCTKR2015009814-appb-I000078
Is the channel gain according to the distance from the terminal to the base station.
Figure PCTKR2015009814-appb-I000079
Is a second channel state which is a channel state from the second terminal to the terminal,
Figure PCTKR2015009814-appb-I000080
Is the influence of the multipath fading channel of the channel from the terminal to the second terminal,
Figure PCTKR2015009814-appb-I000081
Is a channel gain according to the distance from the second terminal to the terminal.
Figure PCTKR2015009814-appb-I000082
Is the power of thermal noise,
Figure PCTKR2015009814-appb-I000083
Is the strength of the interference transmitted from the terminal to the base station,
Figure PCTKR2015009814-appb-I000084
Is the maximum transmit power of the terminal.
Figure PCTKR2015009814-appb-I000085
Is
Figure PCTKR2015009814-appb-I000086
It is the larger of internal value and '0'.
[수학식 11][Equation 11]
Figure PCTKR2015009814-appb-I000087
Figure PCTKR2015009814-appb-I000087
여기서,
Figure PCTKR2015009814-appb-I000088
는 업데이트된
Figure PCTKR2015009814-appb-I000089
의 값이며,
Figure PCTKR2015009814-appb-I000090
는 상기 기지국이 수신하는 간섭 신호의 총합의 임계값이다.
Figure PCTKR2015009814-appb-I000091
는 기지국으로 간섭을 전송하는 단말기들의 개수이고,
Figure PCTKR2015009814-appb-I000092
는 이전 전송 전력의 값이다.
Figure PCTKR2015009814-appb-I000093
는 임의의 상수이다.
here,
Figure PCTKR2015009814-appb-I000088
Updated
Figure PCTKR2015009814-appb-I000089
Is the value of,
Figure PCTKR2015009814-appb-I000090
Is a threshold of the sum of interference signals received by the base station.
Figure PCTKR2015009814-appb-I000091
Is the number of terminals transmitting interference to the base station,
Figure PCTKR2015009814-appb-I000092
Is the value of the previous transmit power.
Figure PCTKR2015009814-appb-I000093
Is any constant.
또한, 하기 수학식 12에 따라서 상기 전송 전력을 결정하는 단계를 더 포함할 수 있다.The method may further include determining the transmission power according to Equation 12 below.
[수학식 12][Equation 12]
Figure PCTKR2015009814-appb-I000094
Figure PCTKR2015009814-appb-I000094
여기서,
Figure PCTKR2015009814-appb-I000095
는 하기 수학식 13에 따라서 결정된다.
Figure PCTKR2015009814-appb-I000096
는 제1 채널 상태로서,
Figure PCTKR2015009814-appb-I000097
는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000098
는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000099
는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
Figure PCTKR2015009814-appb-I000100
는 는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000101
는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000102
는 열잡음의 전력이고,
Figure PCTKR2015009814-appb-I000103
는 단말기로부터 기지국으로 전송되는 간섭의 세기이고,
Figure PCTKR2015009814-appb-I000104
는 단말기의 최대 전송 전력이다.
Figure PCTKR2015009814-appb-I000105
Figure PCTKR2015009814-appb-I000106
내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
here,
Figure PCTKR2015009814-appb-I000095
Is determined according to the following equation (13).
Figure PCTKR2015009814-appb-I000096
Is the first channel state,
Figure PCTKR2015009814-appb-I000097
Is the effect of the multipath fading channel of the channel from the terminal to the base station,
Figure PCTKR2015009814-appb-I000098
Is the channel gain according to the distance from the terminal to the base station.
Figure PCTKR2015009814-appb-I000099
Is a second channel state which is a channel state from the second terminal to the terminal,
Figure PCTKR2015009814-appb-I000100
Is the effect of the multipath fading channel of the channel from the terminal to the second terminal,
Figure PCTKR2015009814-appb-I000101
Is a channel gain according to the distance from the second terminal to the terminal.
Figure PCTKR2015009814-appb-I000102
Is the power of thermal noise,
Figure PCTKR2015009814-appb-I000103
Is the strength of the interference transmitted from the terminal to the base station,
Figure PCTKR2015009814-appb-I000104
Is the maximum transmit power of the terminal.
Figure PCTKR2015009814-appb-I000105
Is
Figure PCTKR2015009814-appb-I000106
It is the larger of internal value and '0'.
[수학식 13][Equation 13]
Figure PCTKR2015009814-appb-I000107
Figure PCTKR2015009814-appb-I000107
Figure PCTKR2015009814-appb-I000108
Figure PCTKR2015009814-appb-I000108
여기서,
Figure PCTKR2015009814-appb-I000109
는 상기 기지국이 수신하는 간섭 신호의 총합의 임계값이다.
here,
Figure PCTKR2015009814-appb-I000109
Is a threshold of the sum of interference signals received by the base station.
여기서, 하기 수학식 14에 따라서 상기 전송 전력을 결정하는 단계를 더 포함할 수 있다.Here, the method may further include determining the transmission power according to Equation 14 below.
[수학식 14][Equation 14]
Figure PCTKR2015009814-appb-I000110
Figure PCTKR2015009814-appb-I000110
여기서,
Figure PCTKR2015009814-appb-I000111
는 하기 수학식 15에 따라서 결정된다.
Figure PCTKR2015009814-appb-I000112
는 제1 채널 상태로서,
Figure PCTKR2015009814-appb-I000113
는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000114
는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000115
는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
Figure PCTKR2015009814-appb-I000116
는 는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000117
는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000118
는 열잡음의 전력이고,
Figure PCTKR2015009814-appb-I000119
는 단말기로부터 기지국으로 전송되는 간섭의 세기이고,
Figure PCTKR2015009814-appb-I000120
는 단말기의 최대 전송 전력이다.
Figure PCTKR2015009814-appb-I000121
Figure PCTKR2015009814-appb-I000122
내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
here,
Figure PCTKR2015009814-appb-I000111
Is determined according to the following equation (15).
Figure PCTKR2015009814-appb-I000112
Is the first channel state,
Figure PCTKR2015009814-appb-I000113
Is the effect of the multipath fading channel of the channel from the terminal to the base station,
Figure PCTKR2015009814-appb-I000114
Is the channel gain according to the distance from the terminal to the base station.
Figure PCTKR2015009814-appb-I000115
Is a second channel state which is a channel state from the second terminal to the terminal,
Figure PCTKR2015009814-appb-I000116
Is the effect of the multipath fading channel of the channel from the terminal to the second terminal,
Figure PCTKR2015009814-appb-I000117
Is a channel gain according to the distance from the second terminal to the terminal.
Figure PCTKR2015009814-appb-I000118
Is the power of thermal noise,
Figure PCTKR2015009814-appb-I000119
Is the strength of the interference transmitted from the terminal to the base station,
Figure PCTKR2015009814-appb-I000120
Is the maximum transmit power of the terminal.
Figure PCTKR2015009814-appb-I000121
Is
Figure PCTKR2015009814-appb-I000122
It is the larger of internal value and '0'.
[수학식 15][Equation 15]
Figure PCTKR2015009814-appb-I000123
Figure PCTKR2015009814-appb-I000123
여기서,
Figure PCTKR2015009814-appb-I000124
는 상기 기지국이 수신하는 간섭 신호의 총합의 임계값이다.
here,
Figure PCTKR2015009814-appb-I000124
Is a threshold of the sum of interference signals received by the base station.
하기의 실시예들에 따르면, 기지국의 성능 저하 없이 단말기들간의 D2D 통신을 위한 전송 전력을 결정할 수 있다.According to the following embodiments, it is possible to determine the transmission power for D2D communication between terminals without degrading the performance of the base station.
도 1은 예시적 실시예에 따른 D2D 통신의 개념을 도시한 도면이다.1 is a diagram illustrating a concept of D2D communication according to an exemplary embodiment.
도 2는 예시적 실시예에 따른 D2D 통신 방법을 단계별로 설명한 순서도이다.2 is a flowchart illustrating a step-by-step method of D2D communication according to an exemplary embodiment.
도 3은 또 다른 예시적 실시예에 따라서 D2D 통신을 수행하는 단말기의 구조를 도시한 블록도이다.3 is a block diagram illustrating a structure of a terminal for performing D2D communication according to another exemplary embodiment.
도 4는 또 다른 예시적 실시예에 따라서 D2D 통신을 수행하는 단말기의 동작 방법을 단계별로 설명한 순서도이다.Fig. 4 is a flowchart illustrating a step-by-step method of operating a terminal performing D2D communication according to another exemplary embodiment.
도 5는 또 다른 예시적 실시예에 따라서 D2D 통신을 위한 전송 전력을 결정하는 기지국의 구조를 도시한 블록도이다.Fig. 5 is a block diagram showing the structure of a base station for determining transmission power for D2D communication according to another exemplary embodiment.
도 6은 또 다른 예시적 실시예에 따른 D2D 통신 방법을 단계별로 설명한 순서도이다.Fig. 6 is a flowchart illustrating step by step a D2D communication method according to yet another exemplary embodiment.
예시적 실시예에 따르면, 기지국의 커버리지 내에 위치하는 단말기에 있어서, 상기 기지국의 커버리지 내에 위치하는 제3 단말기가 상기 기지국으로 제1 데이터를 전송하는 시간 동안 상기 단말기와 페어링된 제2 단말기로 상기 단말기로부터 상기 기지국까지의 제1 채널 상태를 고려하여 결정된 전송 전력으로 제2 데이터를 직접 전송하는 전송부를 포함하는 단말기가 제공된다.According to an exemplary embodiment, a terminal located within the coverage of a base station, wherein the third terminal located within the coverage of the base station to the second terminal paired with the terminal during the time for transmitting the first data to the base station; Provided is a terminal including a transmitter for directly transmitting second data at a transmission power determined in consideration of a first channel state from the base station to the base station.
여기서, 상기 제2 단말기로부터 상기 단말기까지의 제2 채널 상태를 추정하는 채널 상태 추정부 및 수신부를 더 포함하고, 상기 전송부는 상기 제2 채널 상태를 상기 기지국으로 전송하고 상기 수신부는 상기 제2 채널 상태를 추가적으로 고려하여 결정된 전송 전력을 상기 기지국으로부터 수신할 수 있다.The apparatus may further include a channel state estimator and a receiver configured to estimate a second channel state from the second terminal to the terminal, wherein the transmitter transmits the second channel state to the base station and the receiver transmits the second channel state. The transmission power determined in consideration of the state may be received from the base station.
그리고, 상기 전송 전력을 하기 수학식 1에 따라서 업데이트하여 결정하는 전송 전력 결정부를 더 포함할 수 있다.The apparatus may further include a transmit power determiner configured to update and transmit the transmit power according to Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2015009814-appb-I000125
Figure PCTKR2015009814-appb-I000125
여기서,
Figure PCTKR2015009814-appb-I000126
는 업데이트된 전송 전력의 값이고,
Figure PCTKR2015009814-appb-I000127
는 하기 수학식 2와 같이 업데이트된다.
Figure PCTKR2015009814-appb-I000128
는 제1 채널 상태로서,
Figure PCTKR2015009814-appb-I000129
는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000130
는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000131
는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
Figure PCTKR2015009814-appb-I000132
는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000133
는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000134
는 열잡음의 전력이고,
Figure PCTKR2015009814-appb-I000135
는 단말기로부터 기지국으로 전송되는 간섭의 세기이고,
Figure PCTKR2015009814-appb-I000136
는 단말기의 최대 전송 전력이다.
Figure PCTKR2015009814-appb-I000137
Figure PCTKR2015009814-appb-I000138
내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
here,
Figure PCTKR2015009814-appb-I000126
Is the value of the updated transmit power,
Figure PCTKR2015009814-appb-I000127
Is updated as in Equation 2 below.
Figure PCTKR2015009814-appb-I000128
Is the first channel state,
Figure PCTKR2015009814-appb-I000129
Is the effect of the multipath fading channel of the channel from the terminal to the base station,
Figure PCTKR2015009814-appb-I000130
Is the channel gain according to the distance from the terminal to the base station.
Figure PCTKR2015009814-appb-I000131
Is a second channel state which is a channel state from the second terminal to the terminal,
Figure PCTKR2015009814-appb-I000132
Is the influence of the multipath fading channel of the channel from the terminal to the second terminal,
Figure PCTKR2015009814-appb-I000133
Is a channel gain according to the distance from the second terminal to the terminal.
Figure PCTKR2015009814-appb-I000134
Is the power of thermal noise,
Figure PCTKR2015009814-appb-I000135
Is the strength of the interference transmitted from the terminal to the base station,
Figure PCTKR2015009814-appb-I000136
Is the maximum transmit power of the terminal.
Figure PCTKR2015009814-appb-I000137
Is
Figure PCTKR2015009814-appb-I000138
It is the larger of internal value and '0'.
[수학식 2][Equation 2]
Figure PCTKR2015009814-appb-I000139
Figure PCTKR2015009814-appb-I000139
여기서,
Figure PCTKR2015009814-appb-I000140
는 업데이트된
Figure PCTKR2015009814-appb-I000141
의 값이며,
Figure PCTKR2015009814-appb-I000142
는 상기 기지국이 수신하는 간섭 신호의 총합의 임계값이다.
Figure PCTKR2015009814-appb-I000143
는 기지국으로 간섭을 전송하는 단말기들의 개수이고,
Figure PCTKR2015009814-appb-I000144
는 이전 전송 전력의 값이다.
Figure PCTKR2015009814-appb-I000145
는 임의의 상수이다.
here,
Figure PCTKR2015009814-appb-I000140
Updated
Figure PCTKR2015009814-appb-I000141
Is the value of,
Figure PCTKR2015009814-appb-I000142
Is a threshold of the sum of interference signals received by the base station.
Figure PCTKR2015009814-appb-I000143
Is the number of terminals transmitting interference to the base station,
Figure PCTKR2015009814-appb-I000144
Is the value of the previous transmit power.
Figure PCTKR2015009814-appb-I000145
Is any constant.
또한, 상기 전송 전력을 하기 수학식 3에 따라서 결정하는 전송 전력 결정부를 더 포함할 수 있다.The apparatus may further include a transmit power determiner configured to determine the transmit power according to Equation 3 below.
[수학식 3][Equation 3]
Figure PCTKR2015009814-appb-I000146
Figure PCTKR2015009814-appb-I000146
여기서,
Figure PCTKR2015009814-appb-I000147
는 하기 수학식 4에 따라서 결정된다.
Figure PCTKR2015009814-appb-I000148
는 제1 채널 상태로서,
Figure PCTKR2015009814-appb-I000149
는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000150
는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000151
는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
Figure PCTKR2015009814-appb-I000152
는 는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000153
는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000154
는 열잡음의 전력이고,
Figure PCTKR2015009814-appb-I000155
는 단말기로부터 기지국으로 전송되는 간섭의 세기이고,
Figure PCTKR2015009814-appb-I000156
는 단말기의 최대 전송 전력이다.
Figure PCTKR2015009814-appb-I000157
Figure PCTKR2015009814-appb-I000158
내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
here,
Figure PCTKR2015009814-appb-I000147
Is determined according to the following equation (4).
Figure PCTKR2015009814-appb-I000148
Is the first channel state,
Figure PCTKR2015009814-appb-I000149
Is the effect of the multipath fading channel of the channel from the terminal to the base station,
Figure PCTKR2015009814-appb-I000150
Is the channel gain according to the distance from the terminal to the base station.
Figure PCTKR2015009814-appb-I000151
Is a second channel state which is a channel state from the second terminal to the terminal,
Figure PCTKR2015009814-appb-I000152
Is the effect of the multipath fading channel of the channel from the terminal to the second terminal,
Figure PCTKR2015009814-appb-I000153
Is a channel gain according to the distance from the second terminal to the terminal.
Figure PCTKR2015009814-appb-I000154
Is the power of thermal noise,
Figure PCTKR2015009814-appb-I000155
Is the strength of the interference transmitted from the terminal to the base station,
Figure PCTKR2015009814-appb-I000156
Is the maximum transmit power of the terminal.
Figure PCTKR2015009814-appb-I000157
Is
Figure PCTKR2015009814-appb-I000158
It is the larger of internal value and '0'.
[수학식 4][Equation 4]
Figure PCTKR2015009814-appb-I000159
Figure PCTKR2015009814-appb-I000159
Figure PCTKR2015009814-appb-I000160
Figure PCTKR2015009814-appb-I000160
여기서,
Figure PCTKR2015009814-appb-I000161
는 상기 기지국이 수신하는 간섭 신호의 총합의 임계값이다.
here,
Figure PCTKR2015009814-appb-I000161
Is a threshold of the sum of interference signals received by the base station.
여기서, 상기 전송 전력을 하기 수학식 5에 따라서 결정하는 전송 전력 결정부를 더 포함할 수 있다.Here, the transmission power may further include a transmission power determination unit to determine according to the following equation (5).
[수학식 5][Equation 5]
Figure PCTKR2015009814-appb-I000162
Figure PCTKR2015009814-appb-I000162
여기서,
Figure PCTKR2015009814-appb-I000163
는 하기 수학식 6에 따라서 결정된다.
Figure PCTKR2015009814-appb-I000164
는 제1 채널 상태로서,
Figure PCTKR2015009814-appb-I000165
는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000166
는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000167
는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
Figure PCTKR2015009814-appb-I000168
는 는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000169
는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000170
는 열잡음의 전력이고,
Figure PCTKR2015009814-appb-I000171
는 단말기로부터 기지국으로 전송되는 간섭의 세기이고,
Figure PCTKR2015009814-appb-I000172
는 단말기의 최대 전송 전력이다.
Figure PCTKR2015009814-appb-I000173
Figure PCTKR2015009814-appb-I000174
내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
here,
Figure PCTKR2015009814-appb-I000163
Is determined according to the following equation (6).
Figure PCTKR2015009814-appb-I000164
Is the first channel state,
Figure PCTKR2015009814-appb-I000165
Is the effect of the multipath fading channel of the channel from the terminal to the base station,
Figure PCTKR2015009814-appb-I000166
Is the channel gain according to the distance from the terminal to the base station.
Figure PCTKR2015009814-appb-I000167
Is a second channel state which is a channel state from the second terminal to the terminal,
Figure PCTKR2015009814-appb-I000168
Is the effect of the multipath fading channel of the channel from the terminal to the second terminal,
Figure PCTKR2015009814-appb-I000169
Is a channel gain according to the distance from the second terminal to the terminal.
Figure PCTKR2015009814-appb-I000170
Is the power of thermal noise,
Figure PCTKR2015009814-appb-I000171
Is the strength of the interference transmitted from the terminal to the base station,
Figure PCTKR2015009814-appb-I000172
Is the maximum transmit power of the terminal.
Figure PCTKR2015009814-appb-I000173
Is
Figure PCTKR2015009814-appb-I000174
It is the larger of internal value and '0'.
[수학식 6][Equation 6]
Figure PCTKR2015009814-appb-I000175
Figure PCTKR2015009814-appb-I000175
여기서,
Figure PCTKR2015009814-appb-I000176
는 상기 기지국이 수신하는 간섭 신호의 총합의 임계값이다.
here,
Figure PCTKR2015009814-appb-I000176
Is a threshold of the sum of interference signals received by the base station.
또 다른 예시적 실시예에 따르면, 커버리지 내에 위치한 단말기들이 서로 데이터를 직접 전송하는 기지국에 있어서, 상기 단말기들 중에서 제1 단말기로부터 파일럿 신호를 수신하는 파일럿 수신부, 상기 수신한 파일럿 신호를 이용하여 상기 제1 단말기로부터 상기 기지국까지의 제1 채널 상태를 추정하는 채널 상태 추정부, 상기 제1 단말기로부터 상기 단말기들에 포함된 제2 단말기까지의 제2 채널 상태를 상기 제1 단말기로부터 수신하는 채널 상태 수신부, 상기 제1 채널 상태 및 상기 제2 채널 상태를 고려하여 상기 제1 단말기에 대한 전송 전력을 결정하는 전송 전력 결정부 및 상기 결정된 전송 전력을 상기 제1 단말기로 전송하는 전송부를 포함하고, 상기 기지국의 커버리지 내에 위치하는 제3 단말기가 상기 기지국으로 제1 데이터를 전송하는 시간 동안, 상기 전송된 전송 전력에 따라서 상기 제1 단말기는 상기 제2 단말기로 제2 데이터를 직접 전송하는 기지국이 제공된다.According to still another exemplary embodiment, a base station in which terminals located within coverage directly transmit data to each other, the pilot receiving unit receiving a pilot signal from a first terminal among the terminals, and using the received pilot signal; A channel state estimator for estimating a first channel state from a first terminal to the base station, and a channel state receiver for receiving a second channel state from the first terminal to a second terminal included in the terminals from the first terminal And a transmission power determiner for determining a transmission power for the first terminal in consideration of the first channel state and the second channel state, and a transmitter for transmitting the determined transmission power to the first terminal. When the third terminal located within the coverage of the first data is transmitted to the base station While, according to the transmission power of the transmission of the first station is a base station directly transmits the second data to the second terminal is provided.
여기서, 상기 전송 전력 결정부는 하기 수학식 7 및 하기 수학식 8에 따라서 상기 전송 전력을 결정할 수 있다,Here, the transmission power determiner may determine the transmission power according to Equation 7 and Equation 8 below.
[수학식 7][Equation 7]
Figure PCTKR2015009814-appb-I000177
Figure PCTKR2015009814-appb-I000177
여기서,
Figure PCTKR2015009814-appb-I000178
는 상기 기지국이 수신하는 간섭 신호의 총합의 임계값이다.
here,
Figure PCTKR2015009814-appb-I000178
Is a threshold of the sum of interference signals received by the base station.
Figure PCTKR2015009814-appb-I000179
는 전송 전력
Figure PCTKR2015009814-appb-I000180
의 값이 0인 단말기들의 집합이고,
Figure PCTKR2015009814-appb-I000181
는 전송 전력
Figure PCTKR2015009814-appb-I000182
의 값이
Figure PCTKR2015009814-appb-I000183
인 단말기들의 집합이다.
Figure PCTKR2015009814-appb-I000179
Transmit power
Figure PCTKR2015009814-appb-I000180
Is a set of terminals having a value of 0,
Figure PCTKR2015009814-appb-I000181
Transmit power
Figure PCTKR2015009814-appb-I000182
Has a value of
Figure PCTKR2015009814-appb-I000183
Is a set of terminals.
Figure PCTKR2015009814-appb-I000184
는 제1 채널 상태로서,
Figure PCTKR2015009814-appb-I000185
는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000186
는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000187
는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
Figure PCTKR2015009814-appb-I000188
는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000189
는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000190
는 열잡음의 전력이고,
Figure PCTKR2015009814-appb-I000191
는 단말기로부터 기지국으로 전송되는 간섭의 세기이고,
Figure PCTKR2015009814-appb-I000192
는 단말기의 최대 전송 전력이다.
Figure PCTKR2015009814-appb-I000193
Figure PCTKR2015009814-appb-I000194
내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
Figure PCTKR2015009814-appb-I000184
Is the first channel state,
Figure PCTKR2015009814-appb-I000185
Is the effect of the multipath fading channel of the channel from the terminal to the base station,
Figure PCTKR2015009814-appb-I000186
Is the channel gain according to the distance from the terminal to the base station.
Figure PCTKR2015009814-appb-I000187
Is a second channel state which is a channel state from the second terminal to the terminal,
Figure PCTKR2015009814-appb-I000188
Is the influence of the multipath fading channel of the channel from the terminal to the second terminal,
Figure PCTKR2015009814-appb-I000189
Is a channel gain according to the distance from the second terminal to the terminal.
Figure PCTKR2015009814-appb-I000190
Is the power of thermal noise,
Figure PCTKR2015009814-appb-I000191
Is the strength of the interference transmitted from the terminal to the base station,
Figure PCTKR2015009814-appb-I000192
Is the maximum transmit power of the terminal.
Figure PCTKR2015009814-appb-I000193
Is
Figure PCTKR2015009814-appb-I000194
It is the larger of internal value and '0'.
[수학식 8][Equation 8]
Figure PCTKR2015009814-appb-I000195
Figure PCTKR2015009814-appb-I000195
그리고, 상기 전송 전력 결정부는 상기 결정된 전송 전력이 하기 수학식 9를 만족할 때까지 상기 수학식 7 및 상기 수학식 8을 반복하여 상기 전송 전력을 업데이트할 수 있다The transmission power determiner may update the transmission power by repeating Equation 7 and Equation 8 until the determined transmission power satisfies Equation 9 below.
[수학식 9][Equation 9]
Figure PCTKR2015009814-appb-I000196
Figure PCTKR2015009814-appb-I000196
또 다른 예시적 실시예에 따르면, 기지국의 커버리지 내에 위치하는 단말기의 동작 방법에 있어서, 상기 기지국의 커버리지 내에 위치하는 제3 단말기가 상기 기지국으로 제1 데이터를 전송하는 시간 동안 상기 단말기와 페어링된 제2 단말기로 상기 단말기로부터 상기 기지국까지의 제1 채널 상태를 고려하여 결정된 전송 전력으로 제2 데이터를 직접 전송하는 단계를 포함하는 단말기의 동작 방법이 제공된다.According to another exemplary embodiment, in a method of operating a terminal located within the coverage of a base station, the third terminal located within the coverage of the base station is paired with the terminal during the time for transmitting the first data to the base station A method of operating a terminal is provided, comprising directly transmitting second data to a second terminal at a transmission power determined in consideration of a first channel state from the terminal to the base station.
여기서, 상기 제2 단말기로부터 상기 단말기까지의 제2 채널 상태를 추정하는 단계, 상기 전송부는 상기 제2 채널 상태를 상기 기지국으로 전송하는 단계 및 상기 제2 채널 상태를 추가적으로 고려하여 결정된 전송 전력을 상기 기지국으로부터 수신하는 단계를 더 포함할 수 있다.Estimating a second channel state from the second terminal to the terminal, wherein the transmitter is further configured to transmit the second channel state to the base station and the transmission power determined in consideration of the second channel state. The method may further include receiving from a base station.
그리고, 하기 수학식 10에 따라서 상기 전송 전력을 업데이트하여 결정하는 단계를 더 포함할 수 있다.The method may further include updating and determining the transmission power according to Equation 10 below.
[수학식 10][Equation 10]
Figure PCTKR2015009814-appb-I000197
Figure PCTKR2015009814-appb-I000197
여기서,
Figure PCTKR2015009814-appb-I000198
는 업데이트된 전송 전력의 값이고,
Figure PCTKR2015009814-appb-I000199
는 하기 수학식 11과 같이 업데이트된다.
Figure PCTKR2015009814-appb-I000200
는 제1 채널 상태로서,
Figure PCTKR2015009814-appb-I000201
는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000202
는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000203
는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
Figure PCTKR2015009814-appb-I000204
는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000205
는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000206
는 열잡음의 전력이고,
Figure PCTKR2015009814-appb-I000207
는 단말기로부터 기지국으로 전송되는 간섭의 세기이고,
Figure PCTKR2015009814-appb-I000208
는 단말기의 최대 전송 전력이다.
Figure PCTKR2015009814-appb-I000209
Figure PCTKR2015009814-appb-I000210
내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
here,
Figure PCTKR2015009814-appb-I000198
Is the value of the updated transmit power,
Figure PCTKR2015009814-appb-I000199
Is updated as in Equation 11 below.
Figure PCTKR2015009814-appb-I000200
Is the first channel state,
Figure PCTKR2015009814-appb-I000201
Is the effect of the multipath fading channel of the channel from the terminal to the base station,
Figure PCTKR2015009814-appb-I000202
Is the channel gain according to the distance from the terminal to the base station.
Figure PCTKR2015009814-appb-I000203
Is a second channel state which is a channel state from the second terminal to the terminal,
Figure PCTKR2015009814-appb-I000204
Is the influence of the multipath fading channel of the channel from the terminal to the second terminal,
Figure PCTKR2015009814-appb-I000205
Is a channel gain according to the distance from the second terminal to the terminal.
Figure PCTKR2015009814-appb-I000206
Is the power of thermal noise,
Figure PCTKR2015009814-appb-I000207
Is the strength of the interference transmitted from the terminal to the base station,
Figure PCTKR2015009814-appb-I000208
Is the maximum transmit power of the terminal.
Figure PCTKR2015009814-appb-I000209
Is
Figure PCTKR2015009814-appb-I000210
It is the larger of internal value and '0'.
[수학식 11][Equation 11]
Figure PCTKR2015009814-appb-I000211
Figure PCTKR2015009814-appb-I000211
여기서,
Figure PCTKR2015009814-appb-I000212
는 업데이트된
Figure PCTKR2015009814-appb-I000213
의 값이며,
Figure PCTKR2015009814-appb-I000214
는 상기 기지국이 수신하는 간섭 신호의 총합의 임계값이다.
Figure PCTKR2015009814-appb-I000215
는 기지국으로 간섭을 전송하는 단말기들의 개수이고,
Figure PCTKR2015009814-appb-I000216
는 이전 전송 전력의 값이다.
Figure PCTKR2015009814-appb-I000217
는 임의의 상수이다.
here,
Figure PCTKR2015009814-appb-I000212
Updated
Figure PCTKR2015009814-appb-I000213
Is the value of,
Figure PCTKR2015009814-appb-I000214
Is a threshold of the sum of interference signals received by the base station.
Figure PCTKR2015009814-appb-I000215
Is the number of terminals transmitting interference to the base station,
Figure PCTKR2015009814-appb-I000216
Is the value of the previous transmit power.
Figure PCTKR2015009814-appb-I000217
Is any constant.
또한, 하기 수학식 12에 따라서 상기 전송 전력을 결정하는 단계를 더 포함할 수 있다.The method may further include determining the transmission power according to Equation 12 below.
[수학식 12][Equation 12]
Figure PCTKR2015009814-appb-I000218
Figure PCTKR2015009814-appb-I000218
여기서,
Figure PCTKR2015009814-appb-I000219
는 하기 수학식 13에 따라서 결정된다.
Figure PCTKR2015009814-appb-I000220
는 제1 채널 상태로서,
Figure PCTKR2015009814-appb-I000221
는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000222
는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000223
는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
Figure PCTKR2015009814-appb-I000224
는 는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000225
는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000226
는 열잡음의 전력이고,
Figure PCTKR2015009814-appb-I000227
는 단말기로부터 기지국으로 전송되는 간섭의 세기이고,
Figure PCTKR2015009814-appb-I000228
는 단말기의 최대 전송 전력이다.
Figure PCTKR2015009814-appb-I000229
Figure PCTKR2015009814-appb-I000230
내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
here,
Figure PCTKR2015009814-appb-I000219
Is determined according to the following equation (13).
Figure PCTKR2015009814-appb-I000220
Is the first channel state,
Figure PCTKR2015009814-appb-I000221
Is the effect of the multipath fading channel of the channel from the terminal to the base station,
Figure PCTKR2015009814-appb-I000222
Is the channel gain according to the distance from the terminal to the base station.
Figure PCTKR2015009814-appb-I000223
Is a second channel state which is a channel state from the second terminal to the terminal,
Figure PCTKR2015009814-appb-I000224
Is the effect of the multipath fading channel of the channel from the terminal to the second terminal,
Figure PCTKR2015009814-appb-I000225
Is a channel gain according to the distance from the second terminal to the terminal.
Figure PCTKR2015009814-appb-I000226
Is the power of thermal noise,
Figure PCTKR2015009814-appb-I000227
Is the strength of the interference transmitted from the terminal to the base station,
Figure PCTKR2015009814-appb-I000228
Is the maximum transmit power of the terminal.
Figure PCTKR2015009814-appb-I000229
Is
Figure PCTKR2015009814-appb-I000230
It is the larger of internal value and '0'.
[수학식 13][Equation 13]
Figure PCTKR2015009814-appb-I000231
Figure PCTKR2015009814-appb-I000231
Figure PCTKR2015009814-appb-I000232
Figure PCTKR2015009814-appb-I000232
여기서,
Figure PCTKR2015009814-appb-I000233
는 상기 기지국이 수신하는 간섭 신호의 총합의 임계값이다.
here,
Figure PCTKR2015009814-appb-I000233
Is a threshold of the sum of interference signals received by the base station.
여기서, 하기 수학식 14에 따라서 상기 전송 전력을 결정하는 단계를 더 포함할 수 있다.Here, the method may further include determining the transmission power according to Equation 14 below.
[수학식 14][Equation 14]
Figure PCTKR2015009814-appb-I000234
Figure PCTKR2015009814-appb-I000234
여기서,
Figure PCTKR2015009814-appb-I000235
는 하기 수학식 15에 따라서 결정된다.
Figure PCTKR2015009814-appb-I000236
는 제1 채널 상태로서,
Figure PCTKR2015009814-appb-I000237
는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000238
는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000239
는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
Figure PCTKR2015009814-appb-I000240
는 는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
Figure PCTKR2015009814-appb-I000241
는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
Figure PCTKR2015009814-appb-I000242
는 열잡음의 전력이고,
Figure PCTKR2015009814-appb-I000243
는 단말기로부터 기지국으로 전송되는 간섭의 세기이고,
Figure PCTKR2015009814-appb-I000244
는 단말기의 최대 전송 전력이다.
Figure PCTKR2015009814-appb-I000245
Figure PCTKR2015009814-appb-I000246
내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
here,
Figure PCTKR2015009814-appb-I000235
Is determined according to the following equation (15).
Figure PCTKR2015009814-appb-I000236
Is the first channel state,
Figure PCTKR2015009814-appb-I000237
Is the effect of the multipath fading channel of the channel from the terminal to the base station,
Figure PCTKR2015009814-appb-I000238
Is the channel gain according to the distance from the terminal to the base station.
Figure PCTKR2015009814-appb-I000239
Is a second channel state which is a channel state from the second terminal to the terminal,
Figure PCTKR2015009814-appb-I000240
Is the effect of the multipath fading channel of the channel from the terminal to the second terminal,
Figure PCTKR2015009814-appb-I000241
Is a channel gain according to the distance from the second terminal to the terminal.
Figure PCTKR2015009814-appb-I000242
Is the power of thermal noise,
Figure PCTKR2015009814-appb-I000243
Is the strength of the interference transmitted from the terminal to the base station,
Figure PCTKR2015009814-appb-I000244
Is the maximum transmit power of the terminal.
Figure PCTKR2015009814-appb-I000245
Is
Figure PCTKR2015009814-appb-I000246
It is the larger of internal value and '0'.
[수학식 15][Equation 15]
Figure PCTKR2015009814-appb-I000247
Figure PCTKR2015009814-appb-I000247
여기서,
Figure PCTKR2015009814-appb-I000248
는 상기 기지국이 수신하는 간섭 신호의 총합의 임계값이다.
here,
Figure PCTKR2015009814-appb-I000248
Is a threshold of the sum of interference signals received by the base station.
이하, 실시예를 첨부된 도면을 참조하여 상세하게 설명한다. Hereinafter, embodiments will be described in detail with reference to the accompanying drawings.
도 1은 예시적 실시예에 따른 D2D 통신의 개념을 도시한 도면이다.1 is a diagram illustrating a concept of D2D communication according to an exemplary embodiment.
여러 개의 단말기들(121, 122, 131, 132, 140)은 기지국(110)의 커버리지 내에 위치한다. 각 단말기들(121, 122, 131, 132, 140)은 다른 단말기들로 직접 데이터를 전송하는 D2D(Device to Device) 통신 방식에 따라서 데이터를 전송할 수도 있고, 기지국(110)을 경유하여 다른 단말기로 데이터를 전송할 수도 있다. Several terminals 121, 122, 131, 132, 140 are located within the coverage of the base station 110. Each of the terminals 121, 122, 131, 132, and 140 may transmit data according to a device-to-device (D2D) communication method of directly transmitting data to other terminals, or via the base station 110 to another terminal. You can also send data.
D2D 통신 방식을 이용하는 단말기들은 데이터를 송수신할 다른 단말기와 페어(pair, 120, 130)를 구성한다. 도 1에서, 단말기(121)는 단말기(122)와 제1 D2D 페어(120)를 구성하고, 단말기(121)은 단말기(122)로 D2D 통신 방식에 따라 데이터를 직접 전송한다. 또한, 단말기(131)는 단말기(132)와 제2 D2D 페어(130)를 구성하고, 단말기(131)은 단말기(132)로 D2D 통신 방식에 따라 데이터를 직접 전송한다. 단말기(140)은 기지국(110)을 통해 다른 단말기로 데이터를 전송한다.Terminals using the D2D communication scheme form a pair (pair, 120, 130) with other terminals for transmitting and receiving data. In FIG. 1, the terminal 121 configures a first D2D pair 120 with the terminal 122, and the terminal 121 directly transmits data to the terminal 122 according to a D2D communication scheme. In addition, the terminal 131 forms a second D2D pair 130 with the terminal 132, and the terminal 131 directly transmits data to the terminal 132 according to a D2D communication scheme. The terminal 140 transmits data to the other terminal through the base station 110.
이하 설명의 편의를 위하여, D2D 통신 방식을 이용하여 데이터를 전송하는 단말기를 D2D 전송 단말기, D2D 통신 방식을 이용하여 데이터를 수신하는 단말기를 D2D 수신 단말기라고 한다.For convenience of description, a terminal for transmitting data using a D2D communication method is referred to as a D2D transmitting terminal and a terminal for receiving data using a D2D communication method is referred to as a D2D receiving terminal.
도 1에서, 각 페어들(120, 130)은
Figure PCTKR2015009814-appb-I000249
이상의 거리만큼 이격되어 있다고 가정한다. 또한, 각 D2D 페어(120, 130)에서, D2D 전송 단말기(121, 131)들은 다른 D2D 페어에서의 D2D 수신 단말기(122, 132)들로
Figure PCTKR2015009814-appb-I000250
만큼의 간섭을 전송한다고 가정한다.
In FIG. 1, each pair 120, 130 is
Figure PCTKR2015009814-appb-I000249
Assume that they are spaced apart by the above distance. Also, in each D2D pair 120, 130, the D2D transmitting terminals 121, 131 are connected to the D2D receiving terminals 122, 132 in another D2D pair.
Figure PCTKR2015009814-appb-I000250
Assume that we transmit as much interference.
일측에 따르면, D2D 전송 단말기(121, 131)는 기지국으로 데이터를 전송하는 단말기(140)와 동일한 시간에 D2D 수신 단말기(122, 132)로 데이터를 전송한다. 따라서, D2D 전송 단말기(121, 131)는 기지국(140)으로 간섭 신호를 전송하고, 그 결과로 기지국(140)의 데이터 수신 성능은 저하된다.According to one side, the D2D transmitting terminal (121, 131) transmits data to the D2D receiving terminal (122, 132) at the same time as the terminal 140 for transmitting data to the base station. Therefore, the D2D transmission terminals 121 and 131 transmit the interference signal to the base station 140, and as a result, the data reception performance of the base station 140 is degraded.
일측에 따르면, 기지국(140)이 모든 D2D 전송 단말기들로부터 수신한 간섭 신호의 세기를 일정 수준 이하로 유지하면서, 각 D2D 페어의 데이터 전송률이 최대가 되도록 D2D 전송 단말기들의 전송 전력을 결정할 수 있다.According to one side, the base station 140 may determine the transmission power of the D2D transmitting terminals to maximize the data rate of each D2D pair while maintaining the strength of the interference signal received from all the D2D transmitting terminals to a certain level or less.
도 1에서, i번째 D2D 페어에 포함된 D2D 전송 단말기(i번째 D2D 전송 단말기라고 함)로부터 기지국(140)까지의 거리에 따른 채널 이득을
Figure PCTKR2015009814-appb-I000251
라고 하고, 멀티 패스 페이딩 채널의 영향을
Figure PCTKR2015009814-appb-I000252
라고 한다면, i번째 D2D 전송 단말기로부터 기지국(140)까지의 채널 상태를
Figure PCTKR2015009814-appb-I000253
로 표현할 수 있다.
In FIG. 1, a channel gain according to a distance from a D2D transmitting terminal (called an i-th D2D transmitting terminal) included in an i-th D2D pair to a base station 140 is calculated.
Figure PCTKR2015009814-appb-I000251
The effects of multipath fading channels
Figure PCTKR2015009814-appb-I000252
, The channel state from the i-th D2D transmitting terminal to the base station 140
Figure PCTKR2015009814-appb-I000253
Can be expressed as
또한, i번째 D2D 전송 단말기로부터 i번째 D2D 수신 단말기까지의 거리에 따른 채널 이득을
Figure PCTKR2015009814-appb-I000254
라고 하고, 멀티 패스 페이딩 채널의 영향을
Figure PCTKR2015009814-appb-I000255
라고 한다면, i번째 D2D 전송 단말기로부터 i번째 D2D 수신 단말기까지의 채널 상태를
Figure PCTKR2015009814-appb-I000256
라고 표현할 수 있다.
In addition, the channel gain according to the distance from the ith D2D transmitting terminal to the ith D2D receiving terminal
Figure PCTKR2015009814-appb-I000254
The effects of multipath fading channels
Figure PCTKR2015009814-appb-I000255
, The channel state from the i th D2D transmitting terminal to the i th D2D receiving terminal
Figure PCTKR2015009814-appb-I000256
Can be expressed.
또한, i번째 D2D 전송 단말기로부터 i번째 D2D 수신 단말기까지의 거리에 따른 채널 이득을
Figure PCTKR2015009814-appb-I000257
라고 하고, 멀티 패스 페이딩 채널의 영향을
Figure PCTKR2015009814-appb-I000258
라고 한다면, i번째 D2D 전송 단말기로부터 i번째 D2D 수신 단말기까지의 채널 상태를
Figure PCTKR2015009814-appb-I000259
라고 표현할 수 있다.
In addition, the channel gain according to the distance from the ith D2D transmitting terminal to the ith D2D receiving terminal
Figure PCTKR2015009814-appb-I000257
The effects of multipath fading channels
Figure PCTKR2015009814-appb-I000258
, The channel state from the i th D2D transmitting terminal to the i th D2D receiving terminal
Figure PCTKR2015009814-appb-I000259
Can be expressed.
여기서, 멀티 패스 페이딩의 영향인
Figure PCTKR2015009814-appb-I000260
,
Figure PCTKR2015009814-appb-I000261
는 상대적으로 신속히 변경되는 값이고, 거리에 따른 채널 이득
Figure PCTKR2015009814-appb-I000262
,
Figure PCTKR2015009814-appb-I000263
는 상대적으로 천천히 변경되는 값이다.
Where the effect of multipath fading
Figure PCTKR2015009814-appb-I000260
,
Figure PCTKR2015009814-appb-I000261
Is a value that changes relatively quickly, and the channel gain over distance
Figure PCTKR2015009814-appb-I000262
,
Figure PCTKR2015009814-appb-I000263
Is a value that changes relatively slowly.
i번째 D2D 전송 단말기의 전송 전력을
Figure PCTKR2015009814-appb-I000264
라고 한다면, 각 D2D 페어의 정규화한 데이터 전송률의 합(normalized sum rate)은 하기 수학식 1과 같이 표현될 수 있다.
transmit power of the i-th D2D transmitting terminal
Figure PCTKR2015009814-appb-I000264
In this case, the sum of normalized data rates of each D2D pair may be expressed by Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2015009814-appb-I000265
Figure PCTKR2015009814-appb-I000265
여기서, K는 D2D 페어의 개수이고,
Figure PCTKR2015009814-appb-I000266
는 열잡음의 전력,
Figure PCTKR2015009814-appb-I000267
는 밑이 2인 로그(
Figure PCTKR2015009814-appb-I000268
)를 나타낸다.
Where K is the number of D2D pairs,
Figure PCTKR2015009814-appb-I000266
Power of thermal noise,
Figure PCTKR2015009814-appb-I000267
Is the base 2 log (
Figure PCTKR2015009814-appb-I000268
).
또한, D2D 기지국(140)이 수신하는 간섭 신호의 세기의 임계값을
Figure PCTKR2015009814-appb-I000269
라고 한다면, 기지국(140)이 모든 D2D 전송 단말기들로부터 수신한 간섭 신호의 세기를 일정 수준(
Figure PCTKR2015009814-appb-I000270
) 이하로 유지하는 것은 하기 수학식 2와 같이 표현할 수 있다.
In addition, the threshold value of the strength of the interference signal received by the D2D base station 140
Figure PCTKR2015009814-appb-I000269
In this case, the base station 140 receives a certain level (the strength of the interference signal received from all the D2D transmitting terminals).
Figure PCTKR2015009814-appb-I000270
Keeping below) can be expressed as Equation 2 below.
[수학식 2][Equation 2]
Figure PCTKR2015009814-appb-I000271
Figure PCTKR2015009814-appb-I000271
또한, 각 D2D 전송 단말기의 전송 전력
Figure PCTKR2015009814-appb-I000272
는 하기 수학식 3과 같은 제한 조건을 가진다. 여기서,
Figure PCTKR2015009814-appb-I000273
는 전송 전력
Figure PCTKR2015009814-appb-I000274
가 가질 수 있는 최대 값이다.
In addition, the transmission power of each D2D transmission terminal
Figure PCTKR2015009814-appb-I000272
Has a limiting condition as shown in Equation 3 below. here,
Figure PCTKR2015009814-appb-I000273
Transmit power
Figure PCTKR2015009814-appb-I000274
Is the maximum value that can have.
[수학식 3][Equation 3]
Figure PCTKR2015009814-appb-I000275
Figure PCTKR2015009814-appb-I000275
이상 살펴본 바에 따르면, 기지국(140)이 모든 D2D 전송 단말기들로부터 수신한 간섭 신호의 세기를 일정 수준 이하로 유지하면서, 각 D2D 페어의 데이터 전송률이 최대가 되도록 D2D 전송 단말기들의 전송 전력을 결정하는 것은 수학식 2, 3을 만족하는
Figure PCTKR2015009814-appb-I000276
들 중에서 수학식 1을 최대화하는
Figure PCTKR2015009814-appb-I000277
들의 조합을 산출하는 것으로 모델링할 수 있다. 이하 이러한 조건을 만족하는
Figure PCTKR2015009814-appb-I000278
들의 조합을 산출하는 구체적인 방법에 대해서 도 2 내지 도 7에서 구체적으로 설명한다.
As described above, the base station 140 determines the transmission power of the D2D transmission terminals so that the data rate of each D2D pair is maximized while maintaining the strength of the interference signal received from all the D2D transmission terminals below a certain level. Satisfying Equations 2 and 3
Figure PCTKR2015009814-appb-I000276
To maximize Equation 1
Figure PCTKR2015009814-appb-I000277
It can be modeled as yielding a combination of these. To satisfy these conditions
Figure PCTKR2015009814-appb-I000278
A specific method for calculating the combination of these will be described in detail with reference to FIGS. 2 to 7.
예시적 실시예에 따른 전송 전력 결정 방법은 전송 전력을 결정하는 주체 및 전송 전력을 결정하기 위하여 고려하는 파라미터에 따라서 크게 4가지 실시예로 구분될 수 있다.The transmission power determination method according to an exemplary embodiment can be largely divided into four embodiments according to a subject that determines the transmission power and a parameter that is considered for determining the transmission power.
<실시예 1: 중앙 집중형 전력 제어 방식(Centralized Power Control Scheme)>Example 1 Centralized Power Control Scheme
도 2는 예시적 실시예에 따른 D2D 통신 방법을 단계별로 설명한 순서도이다. 도 2에서는 D2D 전송 단말기(121, 131)로부터 기지국(110)까지의 채널 상태 및 D2D 전송 단말기(121, 131)로부터 D2D 수신 단말기(122, 132)까지의 채널 상태를 고려하여 기지국(110)이 D2D 전송 단말기(121, 131)의 전송 전력을 결정하는 실시예가 도시되었다.2 is a flowchart illustrating a step-by-step method of D2D communication according to an exemplary embodiment. In FIG. 2, the base station 110 considers a channel state from the D2D transmitting terminals 121 and 131 to the base station 110 and a channel state from the D2D transmitting terminals 121 and 131 to the D2D receiving terminals 122 and 132. An embodiment of determining the transmission power of the D2D transmission terminals 121 and 131 is shown.
단계(230)에서, D2D 전송 단말기(210)는 기지국(220)으로 파일럿 신호를 전송한다.In step 230, the D2D transmitting terminal 210 transmits a pilot signal to the base station 220.
단계(231)에서, 기지국은 D2D 전송 단말기(210)로부터 수신한 파일럿 신호를 이용하여 D2D 전송 단말기(210)로부터 기지국(220)까지의 제1 채널 상태를 추정한다. 일측에 따르면, 제1 채널 상태는 D2D 전송 단말기(210)로부터 기지국(220)까지의 거리에 따른 채널 이득
Figure PCTKR2015009814-appb-I000279
및 멀티 패스 페이딩 채널의 영향
Figure PCTKR2015009814-appb-I000280
를 고려하여
Figure PCTKR2015009814-appb-I000281
와 같이 표현될 수 있다.
In step 231, the base station estimates a first channel state from the D2D transmitting terminal 210 to the base station 220 using the pilot signal received from the D2D transmitting terminal 210. According to one side, the first channel state is a channel gain according to the distance from the D2D transmitting terminal 210 to the base station 220
Figure PCTKR2015009814-appb-I000279
And multipath fading channel effects
Figure PCTKR2015009814-appb-I000280
Considering
Figure PCTKR2015009814-appb-I000281
It can be expressed as
단계(240)에서, D2D 전송 단말기(210)는 D2D 전송 단말기(210)로부터 D2D 수신 단말기(미도시)까지의 제2 채널 상태를 추정한다. 일측에 따르면, 제2 채널 상태는 D2D 전송 단말기(210)로부터 D2D 수신 단말기까지의 거리에 따른 채널 이득
Figure PCTKR2015009814-appb-I000282
및 멀티 패스 페이딩 채널의 영향
Figure PCTKR2015009814-appb-I000283
를 고려하여
Figure PCTKR2015009814-appb-I000284
와 같이 표현될 수 있다.
In operation 240, the D2D transmitting terminal 210 estimates a second channel state from the D2D transmitting terminal 210 to the D2D receiving terminal (not shown). According to one side, the second channel state is a channel gain according to the distance from the D2D transmitting terminal 210 to the D2D receiving terminal
Figure PCTKR2015009814-appb-I000282
And multipath fading channel effects
Figure PCTKR2015009814-appb-I000283
Considering
Figure PCTKR2015009814-appb-I000284
It can be expressed as
단계(241)에서, D2D 전송 단말기(210)는 제2 채널 상태를 기지국(220)으로 전송한다.In step 241, the D2D transmitting terminal 210 transmits the second channel state to the base station 220.
단계(250)에서, 기지국(220)은 제1 채널 상태 및 제2 채널 상태를 고려하여 D2D 전송 단말기(210)의 전송 전력을 결정한다. 일측에 따르면, 기지국은 K개의 단말기 페어들에 대하여 모든 D2D 전송 단말기들로부터 수신한 간섭 신호의 세기를 일정 수준 이하로 유지하면서, 각 D2D 페어의 데이터 전송률이 최대가 되도록 D2D 전송 단말기들의 전송 전력을 결정할 수 있다.In step 250, the base station 220 determines the transmit power of the D2D transmitting terminal 210 in consideration of the first channel state and the second channel state. According to one side, the base station maintains the transmission power of the D2D transmission terminals to the maximum data rate of each D2D pair while maintaining the strength of the interference signal received from all the D2D transmission terminals for a K terminal pair below a certain level. You can decide.
이는 수학식 2, 3을 만족하는
Figure PCTKR2015009814-appb-I000285
들 중에서 수학식 1을 최대화하는
Figure PCTKR2015009814-appb-I000286
들의 조합을 산출하는 것으로 생각할 수 있다.
This satisfies Equations 2 and 3
Figure PCTKR2015009814-appb-I000285
To maximize Equation 1
Figure PCTKR2015009814-appb-I000286
It can be thought of as yielding a combination of these.
일측에 따르면, 기지국(220)은 하기 수학식 4 및 수학식 5를 이용하여, 하기 알고리즘에 따라
Figure PCTKR2015009814-appb-I000287
들의 조합을 산출할 수 있다.
According to one side, the base station 220 using the following equation (4) and (5), according to the following algorithm
Figure PCTKR2015009814-appb-I000287
Can be calculated.
스텝 1:
Figure PCTKR2015009814-appb-I000288
초기화
Step 1:
Figure PCTKR2015009814-appb-I000288
reset
(일측에 따르면, 기지국(220)은
Figure PCTKR2015009814-appb-I000289
을 공집합(
Figure PCTKR2015009814-appb-I000290
)로 초기화 할 수 있다. 여기서,
Figure PCTKR2015009814-appb-I000291
는 전송 전력
Figure PCTKR2015009814-appb-I000292
의 값이 0인 D2D 전송 단말기들의 집합이다.)
(According to one side, base station 220 is
Figure PCTKR2015009814-appb-I000289
To the empty set (
Figure PCTKR2015009814-appb-I000290
Can be initialized to here,
Figure PCTKR2015009814-appb-I000291
Transmit power
Figure PCTKR2015009814-appb-I000292
Is a set of D2D transmitting terminals with a value of 0.)
스텝 2:
Figure PCTKR2015009814-appb-I000293
초기화
Step 2:
Figure PCTKR2015009814-appb-I000293
reset
(일측에 따르면, 기지국(220)은
Figure PCTKR2015009814-appb-I000294
을 공집합(
Figure PCTKR2015009814-appb-I000295
)로 초기화 할 수 있다. 여기서,
Figure PCTKR2015009814-appb-I000296
는 전송 전력
Figure PCTKR2015009814-appb-I000297
의 값이
Figure PCTKR2015009814-appb-I000298
인 D2D 전송 단말기들의 집합이다.)
(According to one side, base station 220 is
Figure PCTKR2015009814-appb-I000294
To the empty set (
Figure PCTKR2015009814-appb-I000295
Can be initialized to here,
Figure PCTKR2015009814-appb-I000296
Transmit power
Figure PCTKR2015009814-appb-I000297
Has a value of
Figure PCTKR2015009814-appb-I000298
Is a set of D2D transmission terminals.)
스텝 3: 하기 수학식 4에 따라서
Figure PCTKR2015009814-appb-I000299
계산
Step 3: According to Equation 4 below
Figure PCTKR2015009814-appb-I000299
Calculation
[수학식 4][Equation 4]
Figure PCTKR2015009814-appb-I000300
Figure PCTKR2015009814-appb-I000300
여기서, K는 D2D 전송 단말기들의 집합이다.Here, K is a set of D2D transmission terminals.
스텝 4: 하기 수학식 5에 따라서
Figure PCTKR2015009814-appb-I000301
계산
Step 4: According to Equation 5 below
Figure PCTKR2015009814-appb-I000301
Calculation
[수학식 5][Equation 5]
Figure PCTKR2015009814-appb-I000302
Figure PCTKR2015009814-appb-I000302
여기서,
Figure PCTKR2015009814-appb-I000303
는 중앙 집중형 전력 제어 방식(Centralized Power Control Scheme)에 따라 결정된 i번째 D2D 전송 단말기의 전송 전력이다. 또한,
Figure PCTKR2015009814-appb-I000304
Figure PCTKR2015009814-appb-I000305
내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
here,
Figure PCTKR2015009814-appb-I000303
Is the transmit power of the i-th D2D transmitting terminal determined according to the centralized power control scheme. Also,
Figure PCTKR2015009814-appb-I000304
Is
Figure PCTKR2015009814-appb-I000305
It is the larger of internal value and '0'.
스텝 5: 하기 부등식(수학식 6)을 만족하는지 여부를 판단Step 5: Determine whether the following inequality (Equation 6) is satisfied
[수학식 6][Equation 6]
Figure PCTKR2015009814-appb-I000306
Figure PCTKR2015009814-appb-I000306
스텝 5에서 부등식을 만족하는 경우, 결정된
Figure PCTKR2015009814-appb-I000307
값을 D2D 전송 단말기의 전송 전력으로 최종 결정한다. 부등식을 만족하지 않는 경우 부등식이 만족될때까지 하기 스텝 6 스텝 9를 반복하여 수행한다.
If the inequality is satisfied in step 5, the determined
Figure PCTKR2015009814-appb-I000307
The value is finally determined as the transmission power of the D2D transmitting terminal. If the inequality is not satisfied, the following steps 6 and 9 are repeated until the inequality is satisfied.
스텝 6:
Figure PCTKR2015009814-appb-I000308
업데이트
Step 6:
Figure PCTKR2015009814-appb-I000308
update
(스텝 4에서 산출된
Figure PCTKR2015009814-appb-I000309
값에 따라서
Figure PCTKR2015009814-appb-I000310
를 업데이트 한다.)
(Calculated in step 4
Figure PCTKR2015009814-appb-I000309
According to the value
Figure PCTKR2015009814-appb-I000310
Update it.)
스텝 7:
Figure PCTKR2015009814-appb-I000311
업데이트
Step 7:
Figure PCTKR2015009814-appb-I000311
update
(스텝 4에서 산출된
Figure PCTKR2015009814-appb-I000312
값에 따라서
Figure PCTKR2015009814-appb-I000313
를 업데이트 한다.)
(Calculated in step 4
Figure PCTKR2015009814-appb-I000312
According to the value
Figure PCTKR2015009814-appb-I000313
Update it.)
스텝 8: 수학식 4에 따라서
Figure PCTKR2015009814-appb-I000314
계산
Step 8: According to Equation 4
Figure PCTKR2015009814-appb-I000314
Calculation
(스텝 6, 7에서 업데이트된
Figure PCTKR2015009814-appb-I000315
,
Figure PCTKR2015009814-appb-I000316
를 이용하여
Figure PCTKR2015009814-appb-I000317
계산)
(Updated in steps 6 and 7
Figure PCTKR2015009814-appb-I000315
,
Figure PCTKR2015009814-appb-I000316
Using
Figure PCTKR2015009814-appb-I000317
Calculation)
스텝 9: 수학식 5에 따라서
Figure PCTKR2015009814-appb-I000318
계산
Step 9: According to Equation 5
Figure PCTKR2015009814-appb-I000318
Calculation
(스텝 6, 7에서 업데이트된
Figure PCTKR2015009814-appb-I000319
,
Figure PCTKR2015009814-appb-I000320
및 스텝 8에서 업데이트된
Figure PCTKR2015009814-appb-I000321
를 이용하여
Figure PCTKR2015009814-appb-I000322
를 계산)
(Updated in steps 6 and 7
Figure PCTKR2015009814-appb-I000319
,
Figure PCTKR2015009814-appb-I000320
And updated in step 8
Figure PCTKR2015009814-appb-I000321
Using
Figure PCTKR2015009814-appb-I000322
Calculate
단계(260)에서, 기지국(220)은 산출된 전송 전력
Figure PCTKR2015009814-appb-I000323
를 D2D 전송 단말기(210)로 전송한다.
In step 260, the base station 220 calculates the calculated transmit power
Figure PCTKR2015009814-appb-I000323
To the D2D transmitting terminal 210.
단계(261)에서, D2D 전송 단말기(210)는 수신한 전송 전력
Figure PCTKR2015009814-appb-I000324
에 따라서 제2 데이터를 D2D 수신 단말기(제2 단말기, 미도시)로 전송한다. 간섭 신호가 기지국(220)으로 전송되나, 기지국(220)이 수신한 간섭 신호의 총 합은 임계값 이하로 유지된다. 따라서, D2D 전송 단말기(210)와 동시에 기지국(220)이 제1 데이터를 수신하는 경우에도 기지국(220)의 성능은 유지된다.
In step 261, the D2D transmitting terminal 210 receives the received transmit power.
Figure PCTKR2015009814-appb-I000324
The second data is transmitted to the D2D receiving terminal (second terminal, not shown). The interference signal is transmitted to the base station 220, but the total sum of the interference signals received by the base station 220 is kept below the threshold. Therefore, even when the base station 220 receives the first data at the same time as the D2D transmitting terminal 210, the performance of the base station 220 is maintained.
도 3은 또 다른 예시적 실시예에 따라서 D2D 통신을 수행하는 단말기의 구조를 도시한 블록도이다. 예시적 실시예에 따른 단말기는 채널 상태 추정부(310), 전송부(320) 및 수신부(330)를 포함한다.3 is a block diagram illustrating a structure of a terminal for performing D2D communication according to another exemplary embodiment. The terminal according to the exemplary embodiment includes a channel state estimator 310, a transmitter 320, and a receiver 330.
도 3에서 단말기(300)와 제2 단말기(350)는 동일한 단말기 페어에 포함된 단말기이며, 단말기(300)는 D2D 전송 단말기로 동작하고, 제2 단말기(350)는 D2D 수신 단말기로 동작한다.In FIG. 3, the terminal 300 and the second terminal 350 are terminals included in the same terminal pair, the terminal 300 operates as a D2D transmitting terminal, and the second terminal 350 operates as a D2D receiving terminal.
전송부(320)는 기지국(340)으로 파일럿 신호를 전송한다. 기지국(340)으로 전송된 파일럿 신호는 단말기(300)로부터 기지국(340)까지의 제1 채널 상태를 추정하기 위하여 사용된다.The transmitter 320 transmits a pilot signal to the base station 340. The pilot signal transmitted to the base station 340 is used to estimate the first channel state from the terminal 300 to the base station 340.
채널 상태 추정부(310)는 제2 단말기(350)로부터 단말기(300)까지의 제2 채널 상태를 추정한다. 일측에 따르면, 수신부(330)는 제2 단말기(350)로부터 파일럿 신호를 수신하고, 채널 상태 추정부(310)는 제2 단말기(350)로부터 수신한 파일럿 신호를 이용하여 제2 단말기(350)로부터 단말기(300)까지의 제2 채널 상태를 추정할 수 있다.The channel state estimator 310 estimates a second channel state from the second terminal 350 to the terminal 300. According to one side, the receiver 330 receives a pilot signal from the second terminal 350, the channel state estimator 310 using the pilot signal received from the second terminal 350, the second terminal 350 The second channel state from the terminal to the terminal 300 can be estimated.
전송부(320)는 제2 채널 상태를 기지국(340)으로 전송한다. 제2 채널 상태는 기지국(340)이 단말기(300)의 전송 전력을 결정하기 위하여 사용될 수 있다. 일측에 따르면, 기지국(340)은 제1 채널 상태 및 제2 채널 상태를 모두 고려하여 단말기(300)의 전송 전력을 결정할 수 있다. 다른 측면에 따르면, 기지국(340)은 K개의 단말기 페어들에 대하여 모든 D2D 전송 단말기들로부터 수신한 간섭 신호의 세기를 일정 수준 이하로 유지하면서, 각 D2D 페어의 데이터 전송률이 최대가 되도록 D2D 전송 단말기들의 전송 전력을 결정할 수 있다. 또 다른 측면에 따르면, 기지국(340)은 위에서 설명된 스텝 1 내지 스텝 9에 따른 알고리즘을 이용하여 단말기(300)의 전송 전력을 결정할 수 있다.The transmitter 320 transmits the second channel state to the base station 340. The second channel state may be used by the base station 340 to determine the transmit power of the terminal 300. According to one side, the base station 340 may determine the transmission power of the terminal 300 in consideration of both the first channel state and the second channel state. According to another aspect, the base station 340 maintains the strength of the interference signal received from all the D2D transmitting terminals for the K terminal pairs below a certain level, so that the data rate of each D2D pair to the maximum D2D transmitting terminal Can determine their transmit power. According to another aspect, the base station 340 may determine the transmit power of the terminal 300 by using the algorithm according to the steps 1 to 9 described above.
수신부(330)는 기지국(340)으로부터 기지국(340)이 결정한 전송 전력을 수신한다.The receiver 330 receives the transmission power determined by the base station 340 from the base station 340.
도 3에서는 미도시되었으나, 기지국(340)의 커버리지 내에는 제3 단말기가 추가적으로 위치할 수 있다. 제3 단말기는 다른 단말기로 데이터를 직접 전송하지 않고, 기지국으로 제1 데이터를 전송할 수 있다.Although not shown in FIG. 3, a third terminal may be additionally located within the coverage of the base station 340. The third terminal may transmit the first data to the base station without directly transmitting the data to another terminal.
전송부(320)는 제3 단말기가 기지국(340)으로 제1 데이터를 전송하는 시간 동안 제2 단말기(350)로 제2 데이터를 전송한다. 전송부(320)는 수신된 전송 전력으로 제2 데이터를 전송할 수 있다. 이 경우에, 단말기(300)로부터 기지국(340)으로 간섭 신호가 전송된다. 그러나, 기지국(340)이 수신한 간섭 신호의 총 합은 임계값 이하로 유지된다.The transmitter 320 transmits the second data to the second terminal 350 while the third terminal transmits the first data to the base station 340. The transmitter 320 may transmit the second data with the received transmission power. In this case, the interference signal is transmitted from the terminal 300 to the base station 340. However, the total sum of the interference signals received by the base station 340 is maintained below the threshold.
도 4는 또 다른 예시적 실시예에 따라서 D2D 통신을 수행하는 단말기의 동작 방법을 단계별로 설명한 순서도이다.Fig. 4 is a flowchart illustrating a step-by-step method of operating a terminal performing D2D communication according to another exemplary embodiment.
단계(410)에서, 단말기는 기지국으로 파일럿 신호를 전송한다. 기지국으로 전송된 파일럿 신호는 단말기로부터 기지국까지의 제1 채널 상태를 추정하기 위하여 사용된다.In step 410, the terminal transmits a pilot signal to the base station. The pilot signal transmitted to the base station is used to estimate the first channel state from the terminal to the base station.
단계(420)에서, 단말기는 제2 단말기로부터 단말기까지의 제2 채널 상태를 추정한다. 여기서, 제2 단말기는 단말기와 동일한 단말기 페어에 포함된 단말기이다. 이 경우에, 단말기는 D2D 전송 단말기로 동작하고, 제2 단말기는 D2D 수신 단말기로 동작한다.In step 420, the terminal estimates a second channel state from the second terminal to the terminal. Here, the second terminal is a terminal included in the same terminal pair as the terminal. In this case, the terminal operates as a D2D transmitting terminal and the second terminal operates as a D2D receiving terminal.
단계(430)에서, 단말기는 제2 채널 상태를 기지국으로 전송한다. 제2 채널 상태는 기지국이 단말기의 전송 전력을 결정하기 위하여 사용될 수 있다. 일측에 따르면, 기지국은 K개의 단말기 페어들에 대하여 모든 D2D 전송 단말기들로부터 수신한 간섭 신호의 세기를 일정 수준 이하로 유지하면서, 각 D2D 페어의 데이터 전송률이 최대가 되도록 D2D 전송 단말기들의 전송 전력을 결정할 수 있다. 또 다른 측면에 따르면, 기지국은 위에서 설명된 스텝 1 내지 스텝 9에 따른 알고리즘을 이용하여 단말기의 전송 전력을 결정할 수 있다.In step 430, the terminal transmits a second channel state to the base station. The second channel state may be used by the base station to determine the transmit power of the terminal. According to one side, the base station maintains the transmission power of the D2D transmission terminals to the maximum data rate of each D2D pair while maintaining the strength of the interference signal received from all the D2D transmission terminals for a K terminal pair below a certain level. You can decide. According to another aspect, the base station may determine the transmit power of the terminal using the algorithm according to the steps 1 to 9 described above.
단계(440)에서, 단말기는 기지국으로부터 기지국이 결정한 전송 전력을 수신한다.In step 440, the terminal receives the transmission power determined by the base station from the base station.
단계(450)에서, 단말기는 제3 단말기가 기지국으로 제1 데이터를 전송하는 시간 동안 제2 단말기로 제2 데이터를 전송한다. 제3 단말기는 기지국의 커버리지 내에 위치하는 단말기로서, 기지국으로 데이터를 직접 전송하는 단말기이다.In step 450, the terminal transmits the second data to the second terminal during the time that the third terminal transmits the first data to the base station. The third terminal is a terminal located within the coverage of the base station and is a terminal for directly transmitting data to the base station.
단계(450)에서, 단말기는 수신된 전송 전력으로 제2 데이터를 전송할 수 있다. 그 경우, 단말기로부터 기지국으로 간섭 신호가 전송된다. 그러나, 기지국이 수신한 간섭 신호의 총 합은 임계값 이하로 유지된다.In step 450, the terminal may transmit the second data at the received transmission power. In that case, the interference signal is transmitted from the terminal to the base station. However, the total sum of the interference signals received by the base station remains below the threshold.
도 5는 또 다른 예시적 실시예에 따라서 D2D 통신을 위한 전송 전력을 결정하는 기지국의 구조를 도시한 블록도이다. 예시적 실시예에 다른 기지국(500)은 파일럿 수신부(510), 채널 상태 추정부(520), 채널 상태 수신부(530), 전송 전력 결정부(540) 및 전송부(550)를 포함한다.Fig. 5 is a block diagram showing the structure of a base station for determining transmission power for D2D communication according to another exemplary embodiment. Another base station 500 according to the exemplary embodiment includes a pilot receiver 510, a channel state estimator 520, a channel state receiver 530, a transmit power determiner 540, and a transmitter 550.
파일럿 수신부(510)는 단말기(560)로부터 파일럿 신호를 수신한다.The pilot receiver 510 receives a pilot signal from the terminal 560.
채널 상태 추정부(520)는 수신한 파일럿 신호를 사용하여 단말기(560)으로부터 기지국까지의 제1 채널 상태를 추정한다.The channel state estimator 520 estimates a first channel state from the terminal 560 to the base station using the received pilot signal.
채널 상태 수신부(530)는 단말기(560)로부터 제2 채널 상태를 수신한다. 제2 채널 상태는 제2 단말기(570)로부터 단말기(560)까지의 채널 상태이다. 일측에 따르면, 단말기(560)는 제2 단말기(570)로부터 제2 파일럿 신호를 수신하고, 수신된 제2 파일럿 신호를 사용하여 제2 채널 상태를 추정할 수 있다.The channel state receiver 530 receives the second channel state from the terminal 560. The second channel state is a channel state from the second terminal 570 to the terminal 560. According to one side, the terminal 560 may receive a second pilot signal from the second terminal 570 and estimate the second channel state using the received second pilot signal.
전송 전력 결정부(540)는 제2 채널 상태 및 제1 채널 상태를 이용하여 단말기(560)의 전송 전력을 결정한다. 일측에 따르면, 전송 전력 결정부(540)는 K개의 단말기 페어들에 대하여 모든 D2D 전송 단말기들로부터 수신한 간섭 신호의 세기를 일정 수준 이하로 유지하면서, 각 D2D 페어의 데이터 전송률이 최대가 되도록 D2D 전송 단말기들의 전송 전력을 결정할 수 있다. 또 다른 측면에 따르면, 전송 전력 결정부(540)는 위에서 설명된 스텝 1 내지 스텝 9에 따른 알고리즘을 이용하여 단말기(560)의 전송 전력을 결정할 수 있다.The transmit power determiner 540 determines the transmit power of the terminal 560 using the second channel state and the first channel state. According to one side, the transmission power determiner 540 maintains the strength of the interference signal received from all the D2D transmission terminals for the K terminal pairs below a certain level, D2D so that the data rate of each D2D pair to the maximum It is possible to determine the transmit power of the transmitting terminals. According to another aspect, the transmit power determiner 540 may determine the transmit power of the terminal 560 by using the algorithm according to the steps 1 to 9 described above.
전송부(550)는 결정된 전송 전력을 단말기(560)로 전송한다.The transmitter 550 transmits the determined transmission power to the terminal 560.
단말기(560)는 기지국(500)으로부터 전송 전력을 수신한다. 기지국(500)의 커버리지에는 제3 단말기가 위치할 수 있다. 제3 단말기는 다른 단말기로 데이터를 직접 전송하지 않고, 기지국(500)으로 데이터를 전송할 수 있다.The terminal 560 receives the transmission power from the base station 500. The third terminal may be located in the coverage of the base station 500. The third terminal may transmit data to the base station 500 without directly transmitting data to another terminal.
단말기(560)는 제3 단말기가 기지국(500)으로 제1 데이터를 전송하는 시간 동안 제2 단말기(570)로 제2 데이터를 전송한다. 단말기(560)는 수신된 전송 전력으로 제2 데이터를 전송할 수 있다. 이 경우에, 단말기(560)로부터 기지국(500)으로 간섭 신호가 전송된다. 그러나, 기지국(500)이 수신한 간섭 신호의 총 합은 임계값 이하로 유지된다.The terminal 560 transmits the second data to the second terminal 570 during the time when the third terminal transmits the first data to the base station 500. The terminal 560 may transmit the second data with the received transmission power. In this case, the interference signal is transmitted from the terminal 560 to the base station 500. However, the total sum of the interference signals received by the base station 500 remains below the threshold.
도 6은 또 다른 예시적 실시예에 따른 D2D 통신 방법을 단계별로 설명한 순서도이다.Fig. 6 is a flowchart illustrating step by step a D2D communication method according to yet another exemplary embodiment.
단계(630)에서, 단말기(610)는 기지국(620)으로 파일럿 신호를 전송한다.In step 630, the terminal 610 transmits a pilot signal to the base station 620.
단계(631)에서, 기지국은 수신한 파일럿 신호를 이용하여 단말기(610)로부터 기지국(620)까지의 제1 채널 상태를 추정한다.In step 631, the base station estimates a first channel state from the terminal 610 to the base station 620 using the received pilot signal.
단계(640)에서, 단말기(610)는 기지국(620)으로부터 제1 채널 상태를 수신한다.In step 640, the terminal 610 receives the first channel state from the base station 620.
도 6에서는 기지국(620)이 추정한 제1 채널 상태를 단말기(610)가 수신하는 실시예가 설명되었으나, 다른 실시예에 따르면, 단말기(610)는 기지국(620)으로부터 단말기(610)까지의 하향링크 채널 상태를 제1 채널 상태로 사용할 수도 있다. In FIG. 6, an embodiment in which the terminal 610 receives the first channel state estimated by the base station 620 is described. According to another embodiment, the terminal 610 is downward from the base station 620 to the terminal 610. The link channel state may be used as the first channel state.
단계(650)에서, 단말기(610)는 제2 단말기로부터 단말기(610)까지의 제2 채널 상태를 추정한다. 일측에 따르면, 단말기(610)는 제2 단말기로부터 제2 파일럿 신호를 수신하고, 수신된 제2 파일럿 신호를 이용하여 제2 단말기로부터 단말기(610)까지의 제2 채널 상태를 추정할 수 있다.In step 650, the terminal 610 estimates a second channel state from the second terminal to the terminal 610. According to one side, the terminal 610 may receive a second pilot signal from the second terminal, and estimate the second channel state from the second terminal to the terminal 610 using the received second pilot signal.
단계(660)에서, 단말기(610)는 전송 전력을 결정한다.In step 660, the terminal 610 determines the transmit power.
단말기(610)가 전송 전력을 결정하는 방법은 몇 가지 가정에 따라서 분산형 전력 제어 기법(Distributed Power Control Scheme), 평균에 기반한 전력 제어 기법(Power Control Scheme Based on Expectation) 및 채널 평균값에 기반한 전력 제어 기법(Power Control Scheme Based on Averaged Channel Value) 등으로 구분될 수 있다.The terminal 610 determines the transmission power according to some assumptions of a distributed power control scheme, a power control scheme based on average, and a power average based on a channel average value. It can be classified into a technique (Power Control Scheme Based on Averaged Channel Value).
<실시예 2: 분산형 전력 제어 기법(Distributed Power Control Scheme)>Example 2: Distributed Power Control Scheme
분산형 전력 제어 기법에서는 단말기(610)가 전송 전력을 결정할 수 있다. 따라서, 단말기(610)는 기지국(620)으로 제2 채널 상태를 피드백할 필요가 없다.In the distributed power control scheme, the terminal 610 may determine the transmit power. Accordingly, the terminal 610 does not need to feed back the second channel state to the base station 620.
분산형 전력 제어 기법에 따르면, 단말기(610)는 하기 수학식 7에 따라서 i번째 D2D 페어에 대한 유틸리티(Utility)
Figure PCTKR2015009814-appb-I000325
를 정의할 수 있다.
According to the distributed power control scheme, the terminal 610 is a utility for the i-th D2D pair according to Equation 7 below.
Figure PCTKR2015009814-appb-I000325
Can be defined.
[수학식 7][Equation 7]
Figure PCTKR2015009814-appb-I000326
Figure PCTKR2015009814-appb-I000326
수학식 7에서, 첫 번째 항목은 i번째 D2D 페어간의 데이터 전송률이고, 두 번째 항목은 i번째 D2D 페어에 포함된 D2D 전송 단말기(610)가 기지국으로 전송하는 간섭의 영향이다. 여기서,
Figure PCTKR2015009814-appb-I000327
는 간섭의 정규화 비용(normalized price of interference)이다.
In Equation 7, the first item is the data rate between the i-th D2D pair, and the second item is the influence of interference transmitted by the D2D transmitting terminal 610 included in the i-th D2D pair to the base station. here,
Figure PCTKR2015009814-appb-I000327
Is the normalized price of interference.
수학식 7에서, 유틸리티
Figure PCTKR2015009814-appb-I000328
는 D2D 페어간의 데이터 전송률에 비례하고, D2D 전송 단말기(620)가 기지국(620)으로 전송하는 간섭의 영향에 반비례한다. 따라서, 간섭의 정규화 비용
Figure PCTKR2015009814-appb-I000329
를 적절히 결정한다면, D2D 전송으로 인하여 기지국(620)에 미치는 간섭의 영향을 제어할 수 있다.
In Equation 7, a utility
Figure PCTKR2015009814-appb-I000328
Is proportional to the data rate between the D2D pairs and is inversely proportional to the effect of interference transmitted by the D2D transmitting terminal 620 to the base station 620. Thus, the normalization cost of interference
Figure PCTKR2015009814-appb-I000329
If appropriately determined, it is possible to control the effect of the interference on the base station 620 due to the D2D transmission.
일측에 따르면, 단말기(610)는 유틸리티
Figure PCTKR2015009814-appb-I000330
를 최대화하도록 전송 전력
Figure PCTKR2015009814-appb-I000331
를 결정할 수 있다. 유틸리티
Figure PCTKR2015009814-appb-I000332
의 도함수(derivative)를 사용하면, 전송 전력
Figure PCTKR2015009814-appb-I000333
는 하기 수학식 8과 같이 업데이트될 수 있다.
According to one side, the terminal 610 is a utility
Figure PCTKR2015009814-appb-I000330
Transmit power to maximize
Figure PCTKR2015009814-appb-I000331
Can be determined. utility
Figure PCTKR2015009814-appb-I000332
Using the derivative of, the transmit power
Figure PCTKR2015009814-appb-I000333
May be updated as in Equation 8 below.
[수학식 8][Equation 8]
Figure PCTKR2015009814-appb-I000334
Figure PCTKR2015009814-appb-I000334
여기서,
Figure PCTKR2015009814-appb-I000335
는 시간 t에서 기지국(620)이 결정하는 값으로서, 하기 수학식 9와 같이 결정될 수 있다.
here,
Figure PCTKR2015009814-appb-I000335
Is a value determined by the base station 620 at time t, and may be determined as shown in Equation 9 below.
[수학식 9][Equation 9]
Figure PCTKR2015009814-appb-I000336
Figure PCTKR2015009814-appb-I000336
여기서,
Figure PCTKR2015009814-appb-I000337
Figure PCTKR2015009814-appb-I000338
의 업데이트 속도를 결정하는 상수이다.
here,
Figure PCTKR2015009814-appb-I000337
Is
Figure PCTKR2015009814-appb-I000338
Constant that determines the update rate of.
수학식 8, 9를 참고하면, 단계(660)에서, 단말기는 기지국으로부터 수학식 9에 정의된
Figure PCTKR2015009814-appb-I000339
를 수신하고, 수학식 8에 따라서 전송 전력
Figure PCTKR2015009814-appb-I000340
를 업데이트할 수 있다.
Referring to Equations 8 and 9, in step 660, the terminal is defined in Equation 9 from the base station
Figure PCTKR2015009814-appb-I000339
And transmit power in accordance with Equation (8).
Figure PCTKR2015009814-appb-I000340
Can be updated.
분산형 전력 제어 기법(Distributed Power Control Scheme)에 따르면, 기지국(620)은 단말기(610)와 제2 단말기간의 제2 채널 상태를 알지 못하고도
Figure PCTKR2015009814-appb-I000341
를 업데이트 할 수 있다. 따라서, 단말기(610)는 매번 제2 채널 상태를 피드백하지 않아도 되며, 시그널링 오버헤드(signaling overhead)를 크게 감소시킬 수 있다.
According to the distributed power control scheme, the base station 620 may not know the second channel state between the terminal 610 and the second terminal.
Figure PCTKR2015009814-appb-I000341
Can be updated. Accordingly, the terminal 610 does not have to feed back the second channel state every time, and can greatly reduce the signaling overhead.
<실시예 3: 평균에 기반한 전력 제어 기법(Power Control Scheme Based on Expectation)>Example 3: Power Control Scheme Based on Expectation
평균에 기반한 전력 제어 기법에서는 실시간 채널 상태(instantaneous channel information)가 아니라, 평균 채널 상태(average channel information)에 따라서 전송 전력을 결정할 수 있다.In the average-based power control scheme, the transmission power may be determined according to average channel information, rather than instantaneous channel information.
평균에 기반한 전력 제어 기법에 따르면, D2D 페어간의 평균 데이터 전송률이 최대화되며, 기지국으로 전송되는 간섭의 평균값이 임계값 이하로 제어된다. 수학식 1, 2, 5 등을 참고하면, 평균에 기반한 전력 제어 기법은 하기 수학식 10과 같이 표현할 수 있다.According to the average-based power control scheme, the average data rate between the D2D pairs is maximized, and the average value of the interference transmitted to the base station is controlled below the threshold. Referring to Equations 1, 2, and 5, the average power control technique may be expressed as Equation 10 below.
[수학식 10][Equation 10]
Figure PCTKR2015009814-appb-I000342
Figure PCTKR2015009814-appb-I000342
여기서,
Figure PCTKR2015009814-appb-I000343
Figure PCTKR2015009814-appb-I000344
들을 원소로 하는 벡터이고,
Figure PCTKR2015009814-appb-I000345
Figure PCTKR2015009814-appb-I000346
들을 원소로 하는 벡터이다.
Figure PCTKR2015009814-appb-I000347
는 평균값을 고려한 간섭의 정규화 비용이다.
here,
Figure PCTKR2015009814-appb-I000343
Is
Figure PCTKR2015009814-appb-I000344
Is a vector whose elements are
Figure PCTKR2015009814-appb-I000345
Is
Figure PCTKR2015009814-appb-I000346
Vector whose elements are elements.
Figure PCTKR2015009814-appb-I000347
Is the normalization cost of the interference taking the average value into account.
일측에 따르면, 단말기(610)은 수학식 10을 만족하는 최적의
Figure PCTKR2015009814-appb-I000348
Figure PCTKR2015009814-appb-I000349
의 값을 하기 수학식 11에 따라서 계산할 수 있다.
According to one side, the terminal 610 is optimal to satisfy the equation (10)
Figure PCTKR2015009814-appb-I000348
sign
Figure PCTKR2015009814-appb-I000349
The value of can be calculated according to the following equation (11).
[수학식 11][Equation 11]
Figure PCTKR2015009814-appb-I000350
Figure PCTKR2015009814-appb-I000350
수학식 11의 좌변은 하기 수학식 12와 같이 표현할 수 있다.The left side of the equation (11) can be expressed as shown in the following equation (12).
[수학식 12][Equation 12]
Figure PCTKR2015009814-appb-I000351
Figure PCTKR2015009814-appb-I000351
수학식 12에서, 조건
Figure PCTKR2015009814-appb-I000352
은 하기 수학식 13과 같이 표현할 수 있다.
In Equation 12, the condition
Figure PCTKR2015009814-appb-I000352
Can be expressed as in Equation 13.
[수학식 13][Equation 13]
Figure PCTKR2015009814-appb-I000353
Figure PCTKR2015009814-appb-I000353
유사한 방법으로,
Figure PCTKR2015009814-appb-I000354
는 하기 수학식 14와 같이 표현할 수 있다.
In a similar way,
Figure PCTKR2015009814-appb-I000354
Can be expressed as in Equation 14 below.
[수학식 14][Equation 14]
Figure PCTKR2015009814-appb-I000355
Figure PCTKR2015009814-appb-I000355
수학식 13, 14를 이용하면, 수학식 12의 첫 번째 항목은 하기 수학식 15와 같이 표현할 수 있다.Using Equations 13 and 14, the first item of Equation 12 may be expressed as Equation 15 below.
[수학식 15][Equation 15]
Figure PCTKR2015009814-appb-I000356
Figure PCTKR2015009814-appb-I000356
또한, 수학식 12의 두 번째 항목은 하기 수학식 16과 같이 표현할 수 있다.In addition, the second item of Equation 12 may be expressed as Equation 16 below.
[수학식 16][Equation 16]
Figure PCTKR2015009814-appb-I000357
Figure PCTKR2015009814-appb-I000357
여기서, 단말기(610)는 최적의
Figure PCTKR2015009814-appb-I000358
는 수학식 11, 15, 16을 이용하여 계산할 수 있다.
Here, the terminal 610 is optimal
Figure PCTKR2015009814-appb-I000358
May be calculated using Equations 11, 15, and 16.
또 다른 실시예에 따르면, 단말기(610)는
Figure PCTKR2015009814-appb-I000359
의 근사값을 하기 수학식 17에 따라서 계산할 수 있다.
According to another embodiment, the terminal 610 is
Figure PCTKR2015009814-appb-I000359
An approximation of can be calculated according to the following equation (17).
[수학식 17][Equation 17]
Figure PCTKR2015009814-appb-I000360
Figure PCTKR2015009814-appb-I000360
수학식 17을 이용하면, 단말기(610)는 D2D 페어의 개수 K와 기지국이 수신하는 간섭 신호의 총합의 임계값
Figure PCTKR2015009814-appb-I000361
만을 이용하여
Figure PCTKR2015009814-appb-I000362
의 근사값을 간단히 결정할 수 있다.
Using Equation 17, the terminal 610 is a threshold value of the sum of the number K of D2D pairs and the interference signal received by the base station.
Figure PCTKR2015009814-appb-I000361
Using bay
Figure PCTKR2015009814-appb-I000362
You can simply determine the approximation of.
<실시예 4: 채널 평균값에 기반한 전력 제어 기법(Power Control Scheme Based on Averaged Channel Value)>Example 4 Power Control Scheme Based on Averaged Channel Value
채널 평균값에 기반한 전력 제어 기법에 따르면, 단말기(610)는 멀티 패스 페이딩의 영향인
Figure PCTKR2015009814-appb-I000363
,
Figure PCTKR2015009814-appb-I000364
을 1이라고 가정할 수 있다. 이 경우에, 간섭 비용
Figure PCTKR2015009814-appb-I000365
는 하기 수학식 18에 따라서 결정될 수 있다.
According to the power control scheme based on the channel average value, the terminal 610 may be affected by multipath fading.
Figure PCTKR2015009814-appb-I000363
,
Figure PCTKR2015009814-appb-I000364
Can be assumed to be 1. In this case, the cost of interference
Figure PCTKR2015009814-appb-I000365
May be determined according to Equation 18 below.
[수학식 18]Equation 18
Figure PCTKR2015009814-appb-I000366
Figure PCTKR2015009814-appb-I000366
수학식 18의 최적해인
Figure PCTKR2015009814-appb-I000367
는 하기 수학식 19을 만족하는 값으로 정리할 수 있다.
The optimal solution of equation (18)
Figure PCTKR2015009814-appb-I000367
Can be summarized as a value satisfying Equation 19 below.
[수학식 19][Equation 19]
Figure PCTKR2015009814-appb-I000368
Figure PCTKR2015009814-appb-I000368
또 다른 실시예에 따르면, 단말기(610)는
Figure PCTKR2015009814-appb-I000369
의 근사값을 하기 수학식 20에 따라서 계산할 수 있다.
According to another embodiment, the terminal 610 is
Figure PCTKR2015009814-appb-I000369
An approximation of can be calculated according to the following equation (20).
[수학식 20][Equation 20]
Figure PCTKR2015009814-appb-I000370
Figure PCTKR2015009814-appb-I000370
수학식 20을 이용하면, 단말기(610)는 D2D 페어의 개수 K와 기지국이 수신하는 간섭 신호의 총합의 임계값
Figure PCTKR2015009814-appb-I000371
만을 이용하여
Figure PCTKR2015009814-appb-I000372
의 근사값을 간단히 결정할 수 있다.
Using Equation 20, the terminal 610 is a threshold value of the sum of the number K of D2D pairs and the interference signal received by the base station.
Figure PCTKR2015009814-appb-I000371
Using bay
Figure PCTKR2015009814-appb-I000372
You can simply determine the approximation of.
단계(670)에서, 단말기(610)는 결정된 전송 전력으로 제2 데이터를 제2 단말기로 전송할 수 있다. 일측에 따르면, 단말기(610)는 기지국(620)의 커버리지에 위치하는 제3 단말기가 제1 데이터를 기지국(620)으로 전송하는 시간동안 제2 데이터를 전송할 수 있다. 이 경우에, 단말기(610)으로부터 기지국(620)으로 간섭 신호가 전송된다. 그러나, 기지국(620)이 수신한 간섭 신호의 총 합은 임계값 이하로 유지된다.In operation 670, the terminal 610 may transmit second data to the second terminal at the determined transmission power. According to one side, the terminal 610 may transmit the second data during the time that the third terminal located in the coverage of the base station 620 transmits the first data to the base station 620. In this case, the interference signal is transmitted from the terminal 610 to the base station 620. However, the total sum of the interference signals received by the base station 620 remains below the threshold.
도 7은 또 다른 예시적 실시예에 따라서 D2D 통신을 수행하는 단말기의 구조를 도시한 블록도이다. 예시적 실시예에 따른 단말기(700)는 전송 전력 결정부(710) 및 전송부(720)를 포함한다.7 is a block diagram illustrating a structure of a terminal for performing D2D communication according to another exemplary embodiment. The terminal 700 according to an exemplary embodiment includes a transmission power determiner 710 and a transmitter 720.
전송 전력 결정부(710)는 단말기(700)의 전송 전력을 결정한다. 일측에 따르면, 전송 전력 결정부(710)는 위에서 설명된 분산형 전력 제어 기법(Distributed Power Control Scheme), 평균에 기반한 전력 제어 기법(Power Control Scheme Based on Expectation) 및 채널 평균값에 기반한 전력 제어 기법(Power Control Scheme Based on Averaged Channel Value) 중에서 어느 하나의 기법에 따라서 전송 전력을 결정할 수 있다.The transmit power determiner 710 determines the transmit power of the terminal 700. According to one side, the transmission power determination unit 710 is a distributed power control scheme (Distributed Power Control Scheme) described above, a power control scheme based on the average (Power Control Scheme Based on Expectation) and a channel average value based on the power control scheme ( The transmission power may be determined according to any one of Power Control Scheme Based on Averaged Channel Value.
예를 들어, 전송 전력 결정부(710)는 분산형 전력 제어 기법에 따라서 전송 전력을 결정할 수 있다. 이 경우에, 단말기(700)는 기지국(미도시)로부터 간섭의 정규화 비용
Figure PCTKR2015009814-appb-I000373
를 수신하고, 수신된
Figure PCTKR2015009814-appb-I000374
를 수학식 8에 대입하여 전송 전력을 결정할 수 있다.
For example, the transmit power determiner 710 may determine transmit power according to a distributed power control technique. In this case, the terminal 700 costs the normalization cost of the interference from the base station (not shown).
Figure PCTKR2015009814-appb-I000373
Receive the received
Figure PCTKR2015009814-appb-I000374
The transmission power may be determined by substituting Equation (8).
또 다른 실시예에 따르면, 전송 전력 결정부(710)는 평균에 기반한 전력 제어 기법에 따라서 전송 전력을 결정할 수 있다. 이 경우에, 전송 전력 결정부(710)는 수학식 11, 15, 16을 이용하여 최적의
Figure PCTKR2015009814-appb-I000375
를 계산하고, 계산된
Figure PCTKR2015009814-appb-I000376
를 수학식 10에 대입하여 전송 전력을 결정할 수 있다.
According to another embodiment, the transmission power determiner 710 may determine the transmission power according to the average power control technique. In this case, the transmission power determiner 710 may use the equations 11, 15, and 16 to optimize
Figure PCTKR2015009814-appb-I000375
And calculate
Figure PCTKR2015009814-appb-I000376
The transmission power may be determined by substituting into Equation 10.
또 다른 실시예에 따르면, 전송 전력 결정부(710)는 수학식 17을 이용하여
Figure PCTKR2015009814-appb-I000377
의 근사값을 간단히 결정할 수 있다.
According to another embodiment, the transmission power determiner 710 using Equation 17
Figure PCTKR2015009814-appb-I000377
You can simply determine the approximation of.
또 다른 실시예에 따르면, 전송 전력 결정부(710)는 채널 평균값에 기반한 전력 제어 기법에 따라서 전송 전력을 결정할 수 있다. 이 경우에, 전송 전력 결정부(710)는 수학식 19에 따라서 간섭 비용
Figure PCTKR2015009814-appb-I000378
를 계산하고, 계산된
Figure PCTKR2015009814-appb-I000379
를 수학식 18에 대입하여 전송 전력을 결정할 수 있다.
According to another embodiment, the transmit power determiner 710 may determine the transmit power according to a power control scheme based on the channel average value. In this case, the transmission power determining unit 710 according to the equation (19) interference cost
Figure PCTKR2015009814-appb-I000378
And calculate
Figure PCTKR2015009814-appb-I000379
By substituting into Equation 18, the transmission power may be determined.
또 다른 실시예에 따르면, 전송 전력 결정부(710)는 수학식 20을 이용하여
Figure PCTKR2015009814-appb-I000380
의 근사값을 간단히 결정할 수 있다.
According to another embodiment, the transmission power determiner 710 using Equation 20
Figure PCTKR2015009814-appb-I000380
You can simply determine the approximation of.
전송부(720)는 결정된 전송 전력에 따라서 제2 데이터를 제2 단말기(630)로 전송한다. 일측에 따르면, 전송부(720)는 기지국의 커버리지에 위치하는 제3 단말기가 제1 데이터를 기지국으로 전송하는 시간 동안 제2 데이터를 전송할 수 있다. 이 경우에, 전송부(720)로부터 기지국으로 간섭 신호가 전송된다. 그러나, 기지국이 수신한 간섭 신호의 총 합은 임계값 이하로 유지된다.The transmitter 720 transmits the second data to the second terminal 630 according to the determined transmission power. According to one side, the transmitter 720 may transmit the second data during the time that the third terminal located in the coverage of the base station transmits the first data to the base station. In this case, the interference signal is transmitted from the transmitter 720 to the base station. However, the total sum of the interference signals received by the base station remains below the threshold.
도 8은 또 다른 예시적 실시예에 따라서 D2D 통신을 수행하는 단말기의 동작 방법을 단계별로 설명한 순서도이다.8 is a flowchart illustrating a method of operating a terminal for performing D2D communication according to another exemplary embodiment.
단계(810)에서, 단말기는 전송 전력을 결정한다. 일측에 따르면, 단말기는 위에서 설명된 분산형 전력 제어 기법(Distributed Power Control Scheme), 평균에 기반한 전력 제어 기법(Power Control Scheme Based on Expectation) 및 채널 평균값에 기반한 전력 제어 기법(Power Control Scheme Based on Averaged Channel Value) 중에서 어느 하나의 기법에 따라서 전송 전력을 결정할 수 있다.In step 810, the terminal determines the transmit power. According to one side, the terminal is a distributed power control scheme (Distributed Power Control Scheme) described above, a Power Control Scheme Based on Expectation and a power control scheme based on the channel average value (Power Control Scheme Based on Averaged) Channel Value) can be used to determine the transmit power according to any one of the techniques.
예를 들어, 단말기는 분산형 전력 제어 기법에 따라서 전송 전력을 결정할 수 있다. 이 경우에, 단말기는 기지국(미도시)로부터 간섭의 정규화 비용
Figure PCTKR2015009814-appb-I000381
를 수신하고, 수신된
Figure PCTKR2015009814-appb-I000382
를 수학식 8에 대입하여 전송 전력을 결정할 수 있다.
For example, the terminal may determine the transmit power according to a distributed power control technique. In this case, the terminal costs the normalization cost of the interference from the base station (not shown).
Figure PCTKR2015009814-appb-I000381
Receive the received
Figure PCTKR2015009814-appb-I000382
The transmission power may be determined by substituting Equation (8).
또 다른 실시예에 따르면, 단말기는 평균에 기반한 전력 제어 기법에 따라서 전송 전력을 결정할 수 있다. 이 경우에, 단말기는 수학식 11, 15, 16을 이용하여 최적의
Figure PCTKR2015009814-appb-I000383
를 계산하고, 계산된
Figure PCTKR2015009814-appb-I000384
를 수학식 10에 대입하여 전송 전력을 결정할 수 있다. 또 다른 실시예에 따르면, 단말기는 수학식 17을 이용하여
Figure PCTKR2015009814-appb-I000385
의 근사값을 간단히 결정할 수 있다.
According to another embodiment, the terminal may determine the transmission power according to the average power control scheme. In this case, the terminal uses the equations 11, 15, and 16 to optimize
Figure PCTKR2015009814-appb-I000383
And calculate
Figure PCTKR2015009814-appb-I000384
The transmission power may be determined by substituting into Equation 10. According to another embodiment, the terminal uses Equation 17
Figure PCTKR2015009814-appb-I000385
You can simply determine the approximation of.
또 다른 실시예에 따르면, 단말기는 채널 평균값에 기반한 전력 제어 기법에 따라서 전송 전력을 결정할 수 있다. 이 경우에, 단말기는 수학식 19에 따라서 간섭 비용
Figure PCTKR2015009814-appb-I000386
를 계산하고, 계산된
Figure PCTKR2015009814-appb-I000387
를 수학식 18에 대입하여 전송 전력을 결정할 수 있다. 또 다른 실시예에 따르면, 단말기는 수학식 20을 이용하여
Figure PCTKR2015009814-appb-I000388
의 근사값을 간단히 결정할 수 있다.
According to another embodiment, the terminal may determine the transmit power according to a power control scheme based on the channel average value. In this case, the terminal costs the interference according to equation (19).
Figure PCTKR2015009814-appb-I000386
And calculate
Figure PCTKR2015009814-appb-I000387
By substituting into Equation 18, the transmission power may be determined. According to another embodiment, the terminal uses Equation 20
Figure PCTKR2015009814-appb-I000388
You can simply determine the approximation of.
단계(820)에서, 단말기는 결정된 전송 전력에 따라서 제2 데이터를 제2 단말기로 전송한다. 일측에 따르면, 단말기는 기지국의 커버리지에 위치하는 제3 단말기가 제1 데이터를 기지국으로 전송하는 시간 동안 제2 데이터를 전송할 수 있다. 이 경우에, 단말기로부터 기지국으로 간섭 신호가 전송된다. 그러나, 기지국이 수신한 간섭 신호의 총 합은 임계값 이하로 유지된다.In step 820, the terminal transmits the second data to the second terminal according to the determined transmission power. According to one side, the terminal may transmit the second data during the time that the third terminal located in the coverage of the base station transmits the first data to the base station. In this case, the interference signal is transmitted from the terminal to the base station. However, the total sum of the interference signals received by the base station remains below the threshold.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.The method according to the embodiment may be embodied in the form of program instructions that can be executed by various computer means and recorded in a computer readable medium. The computer readable medium may include program instructions, data files, data structures, etc. alone or in combination. The program instructions recorded on the media may be those specially designed and constructed for the purposes of the embodiments, or they may be of the kind well-known and available to those having skill in the computer software arts. Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tape, optical media such as CD-ROMs, DVDs, and magnetic disks, such as floppy disks. Magneto-optical media, and hardware devices specifically configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like. Examples of program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like. The hardware device described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.Although the embodiments have been described by the limited embodiments and the drawings as described above, various modifications and variations are possible to those skilled in the art from the above description. For example, the described techniques may be performed in a different order than the described method, and / or components of the described systems, structures, devices, circuits, etc. may be combined or combined in a different form than the described method, or other components. Or even if replaced or substituted by equivalents, an appropriate result can be achieved.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.Therefore, other implementations, other embodiments, and equivalents to the claims are within the scope of the claims that follow.
단말간 통신(D2D: Device-to-Device)에 있어 전송 전력을 결정하는 기법에 개시된다. 개시된 전송 전력 기법에 따르면, 단말간 통신의 데이터 전송률을 최대로 향상시키면서도, 단말기로부터 기지국으로 전송되는 간섭 신호의 총합은 임계값 이하로 제어할 수 있다.Disclosed is a technique for determining transmission power in device-to-device (D2D). According to the disclosed transmission power scheme, the total sum of the interference signals transmitted from the terminal to the base station can be controlled to a threshold or less while maximally improving the data rate of the terminal-to-terminal communication.

Claims (18)

  1. 기지국의 커버리지 내에 위치하는 단말기에 있어서,A terminal located within the coverage of a base station,
    상기 기지국의 커버리지 내에 위치하는 제3 단말기가 상기 기지국으로 제1 데이터를 전송하는 시간 동안 상기 단말기와 페어링된 제2 단말기로 상기 단말기로부터 상기 기지국까지의 제1 채널 상태를 고려하여 결정된 전송 전력으로 제2 데이터를 직접 전송하는 전송부The third terminal located within the coverage of the base station transmits the first power to the second terminal paired with the terminal during transmission of the first data to the base station at a transmission power determined in consideration of the first channel state from the terminal to the base station. 2 Transmitter that sends data directly
    를 포함하는 단말기.Terminal comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 제2 단말기로부터 상기 단말기까지의 제2 채널 상태를 추정하는 채널 상태 추정부; 및A channel state estimator for estimating a second channel state from the second terminal to the terminal; And
    수신부Receiver
    를 더 포함하고,More,
    상기 전송부는 상기 제2 채널 상태를 상기 기지국으로 전송하고The transmitter transmits the second channel state to the base station.
    상기 수신부는 상기 제2 채널 상태를 추가적으로 고려하여 결정된 전송 전력을 상기 기지국으로부터 수신하는 단말기.The receiving unit receives a transmission power determined from the base station in consideration of the second channel state additionally.
  3. 제1항에 있어서,The method of claim 1,
    상기 전송 전력을 하기 수학식 1에 따라서 업데이트하여 결정하는 전송 전력 결정부A transmission power determining unit which updates and determines the transmission power according to Equation 1 below
    를 더 포함하는 단말기.The terminal further comprising.
    [수학식 1][Equation 1]
    Figure PCTKR2015009814-appb-I000389
    Figure PCTKR2015009814-appb-I000389
    여기서,
    Figure PCTKR2015009814-appb-I000390
    는 업데이트된 전송 전력의 값이고,
    Figure PCTKR2015009814-appb-I000391
    는 하기 수학식 2와 같이 업데이트된다.
    Figure PCTKR2015009814-appb-I000392
    는 제1 채널 상태로서,
    Figure PCTKR2015009814-appb-I000393
    는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
    Figure PCTKR2015009814-appb-I000394
    는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
    Figure PCTKR2015009814-appb-I000395
    는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
    Figure PCTKR2015009814-appb-I000396
    는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
    Figure PCTKR2015009814-appb-I000397
    는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
    Figure PCTKR2015009814-appb-I000398
    는 열잡음의 전력이고,
    Figure PCTKR2015009814-appb-I000399
    는 단말기로부터 기지국으로 전송되는 간섭의 세기이고,
    Figure PCTKR2015009814-appb-I000400
    는 단말기의 최대 전송 전력이다.
    Figure PCTKR2015009814-appb-I000401
    Figure PCTKR2015009814-appb-I000402
    내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
    here,
    Figure PCTKR2015009814-appb-I000390
    Is the value of the updated transmit power,
    Figure PCTKR2015009814-appb-I000391
    Is updated as in Equation 2 below.
    Figure PCTKR2015009814-appb-I000392
    Is the first channel state,
    Figure PCTKR2015009814-appb-I000393
    Is the effect of the multipath fading channel of the channel from the terminal to the base station,
    Figure PCTKR2015009814-appb-I000394
    Is the channel gain according to the distance from the terminal to the base station.
    Figure PCTKR2015009814-appb-I000395
    Is a second channel state which is a channel state from the second terminal to the terminal,
    Figure PCTKR2015009814-appb-I000396
    Is the influence of the multipath fading channel of the channel from the terminal to the second terminal,
    Figure PCTKR2015009814-appb-I000397
    Is a channel gain according to the distance from the second terminal to the terminal.
    Figure PCTKR2015009814-appb-I000398
    Is the power of thermal noise,
    Figure PCTKR2015009814-appb-I000399
    Is the strength of the interference transmitted from the terminal to the base station,
    Figure PCTKR2015009814-appb-I000400
    Is the maximum transmit power of the terminal.
    Figure PCTKR2015009814-appb-I000401
    Is
    Figure PCTKR2015009814-appb-I000402
    It is the larger of internal value and '0'.
    [수학식 2][Equation 2]
    Figure PCTKR2015009814-appb-I000403
    Figure PCTKR2015009814-appb-I000403
    여기서,
    Figure PCTKR2015009814-appb-I000404
    는 업데이트된
    Figure PCTKR2015009814-appb-I000405
    의 값이며,
    Figure PCTKR2015009814-appb-I000406
    는 상기 기지국이 수신하는 간섭 신호의 총합의 임계값이다.
    Figure PCTKR2015009814-appb-I000407
    는 기지국으로 간섭을 전송하는 단말기들의 개수이고,
    Figure PCTKR2015009814-appb-I000408
    는 이전 전송 전력의 값이다.
    Figure PCTKR2015009814-appb-I000409
    는 임의의 상수이다.
    here,
    Figure PCTKR2015009814-appb-I000404
    Updated
    Figure PCTKR2015009814-appb-I000405
    Is the value of,
    Figure PCTKR2015009814-appb-I000406
    Is a threshold of the sum of interference signals received by the base station.
    Figure PCTKR2015009814-appb-I000407
    Is the number of terminals transmitting interference to the base station,
    Figure PCTKR2015009814-appb-I000408
    Is the value of the previous transmit power.
    Figure PCTKR2015009814-appb-I000409
    Is any constant.
  4. 제1항에 있어서,The method of claim 1,
    상기 전송 전력을 하기 수학식 3에 따라서 결정하는 전송 전력 결정부A transmit power determiner configured to determine the transmit power according to Equation 3 below
    를 더 포함하는 단말기.The terminal further comprising.
    [수학식 3][Equation 3]
    Figure PCTKR2015009814-appb-I000410
    Figure PCTKR2015009814-appb-I000410
    여기서,
    Figure PCTKR2015009814-appb-I000411
    는 하기 수학식 4에 따라서 결정된다.
    Figure PCTKR2015009814-appb-I000412
    는 제1 채널 상태로서,
    Figure PCTKR2015009814-appb-I000413
    는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
    Figure PCTKR2015009814-appb-I000414
    는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
    Figure PCTKR2015009814-appb-I000415
    는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
    Figure PCTKR2015009814-appb-I000416
    는 는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
    Figure PCTKR2015009814-appb-I000417
    는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
    Figure PCTKR2015009814-appb-I000418
    는 열잡음의 전력이고,
    Figure PCTKR2015009814-appb-I000419
    는 단말기로부터 기지국으로 전송되는 간섭의 세기이고,
    Figure PCTKR2015009814-appb-I000420
    는 단말기의 최대 전송 전력이다.
    Figure PCTKR2015009814-appb-I000421
    Figure PCTKR2015009814-appb-I000422
    내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
    here,
    Figure PCTKR2015009814-appb-I000411
    Is determined according to the following equation (4).
    Figure PCTKR2015009814-appb-I000412
    Is the first channel state,
    Figure PCTKR2015009814-appb-I000413
    Is the effect of the multipath fading channel of the channel from the terminal to the base station,
    Figure PCTKR2015009814-appb-I000414
    Is the channel gain according to the distance from the terminal to the base station.
    Figure PCTKR2015009814-appb-I000415
    Is a second channel state which is a channel state from the second terminal to the terminal,
    Figure PCTKR2015009814-appb-I000416
    Is the effect of the multipath fading channel of the channel from the terminal to the second terminal,
    Figure PCTKR2015009814-appb-I000417
    Is a channel gain according to the distance from the second terminal to the terminal.
    Figure PCTKR2015009814-appb-I000418
    Is the power of thermal noise,
    Figure PCTKR2015009814-appb-I000419
    Is the strength of the interference transmitted from the terminal to the base station,
    Figure PCTKR2015009814-appb-I000420
    Is the maximum transmit power of the terminal.
    Figure PCTKR2015009814-appb-I000421
    Is
    Figure PCTKR2015009814-appb-I000422
    It is the larger of internal value and '0'.
    [수학식 4][Equation 4]
    Figure PCTKR2015009814-appb-I000423
    Figure PCTKR2015009814-appb-I000423
    Figure PCTKR2015009814-appb-I000424
    Figure PCTKR2015009814-appb-I000424
    여기서,
    Figure PCTKR2015009814-appb-I000425
    는 상기 기지국이 수신하는 간섭 신호의 총합의 임계값이다.
    here,
    Figure PCTKR2015009814-appb-I000425
    Is a threshold of the sum of interference signals received by the base station.
  5. 제1항에 있어서,The method of claim 1,
    상기 전송 전력을 하기 수학식 5에 따라서 결정하는 전송 전력 결정부A transmit power determiner configured to determine the transmit power according to Equation 5 below
    를 더 포함하는 단말기.The terminal further comprising.
    [수학식 5][Equation 5]
    Figure PCTKR2015009814-appb-I000426
    Figure PCTKR2015009814-appb-I000426
    여기서,
    Figure PCTKR2015009814-appb-I000427
    는 하기 수학식 6에 따라서 결정된다.
    Figure PCTKR2015009814-appb-I000428
    는 제1 채널 상태로서,
    Figure PCTKR2015009814-appb-I000429
    는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
    Figure PCTKR2015009814-appb-I000430
    는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
    Figure PCTKR2015009814-appb-I000431
    는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
    Figure PCTKR2015009814-appb-I000432
    는 는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
    Figure PCTKR2015009814-appb-I000433
    는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
    Figure PCTKR2015009814-appb-I000434
    는 열잡음의 전력이고,
    Figure PCTKR2015009814-appb-I000435
    는 단말기로부터 기지국으로 전송되는 간섭의 세기이고,
    Figure PCTKR2015009814-appb-I000436
    는 단말기의 최대 전송 전력이다.
    Figure PCTKR2015009814-appb-I000437
    Figure PCTKR2015009814-appb-I000438
    내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
    here,
    Figure PCTKR2015009814-appb-I000427
    Is determined according to the following equation (6).
    Figure PCTKR2015009814-appb-I000428
    Is the first channel state,
    Figure PCTKR2015009814-appb-I000429
    Is the effect of the multipath fading channel of the channel from the terminal to the base station,
    Figure PCTKR2015009814-appb-I000430
    Is the channel gain according to the distance from the terminal to the base station.
    Figure PCTKR2015009814-appb-I000431
    Is a second channel state which is a channel state from the second terminal to the terminal,
    Figure PCTKR2015009814-appb-I000432
    Is the effect of the multipath fading channel of the channel from the terminal to the second terminal,
    Figure PCTKR2015009814-appb-I000433
    Is a channel gain according to the distance from the second terminal to the terminal.
    Figure PCTKR2015009814-appb-I000434
    Is the power of thermal noise,
    Figure PCTKR2015009814-appb-I000435
    Is the strength of the interference transmitted from the terminal to the base station,
    Figure PCTKR2015009814-appb-I000436
    Is the maximum transmit power of the terminal.
    Figure PCTKR2015009814-appb-I000437
    Is
    Figure PCTKR2015009814-appb-I000438
    It is the larger of internal value and '0'.
    [수학식 6][Equation 6]
    Figure PCTKR2015009814-appb-I000439
    Figure PCTKR2015009814-appb-I000439
    여기서, K는 상기 기지국의 커버리지 내에 위치하며 서로 직접 데이터를 전송하는 단말기들(D2D 단말기 페어)의 개수를 나타낸다.Here, K represents the number of terminals (D2D terminal pair) which are located within the coverage of the base station and directly transmit data to each other.
  6. 제1항에 있어서,The method of claim 1,
    상기 전송 전력을 하기 수학식 7에 따라서 결정하는 전송 전력 결정부A transmit power determiner configured to determine the transmit power according to Equation 7 below
    를 더 포함하는 단말기.The terminal further comprising.
    [수학식 7][Equation 7]
    Figure PCTKR2015009814-appb-I000440
    Figure PCTKR2015009814-appb-I000440
    여기서,
    Figure PCTKR2015009814-appb-I000441
    는 하기 수학식 8에 따라서 결정된다.
    Figure PCTKR2015009814-appb-I000442
    는 제1 채널 상태로서,
    Figure PCTKR2015009814-appb-I000443
    는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
    Figure PCTKR2015009814-appb-I000444
    는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
    Figure PCTKR2015009814-appb-I000445
    는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
    Figure PCTKR2015009814-appb-I000446
    는 는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
    Figure PCTKR2015009814-appb-I000447
    는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
    Figure PCTKR2015009814-appb-I000448
    는 열잡음의 전력이고,
    Figure PCTKR2015009814-appb-I000449
    는 단말기로부터 기지국으로 전송되는 간섭의 세기이고,
    Figure PCTKR2015009814-appb-I000450
    는 단말기의 최대 전송 전력이다.
    Figure PCTKR2015009814-appb-I000451
    Figure PCTKR2015009814-appb-I000452
    내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
    here,
    Figure PCTKR2015009814-appb-I000441
    Is determined according to the following equation (8).
    Figure PCTKR2015009814-appb-I000442
    Is the first channel state,
    Figure PCTKR2015009814-appb-I000443
    Is the effect of the multipath fading channel of the channel from the terminal to the base station,
    Figure PCTKR2015009814-appb-I000444
    Is the channel gain according to the distance from the terminal to the base station.
    Figure PCTKR2015009814-appb-I000445
    Is a second channel state which is a channel state from the second terminal to the terminal,
    Figure PCTKR2015009814-appb-I000446
    Is the effect of the multipath fading channel of the channel from the terminal to the second terminal,
    Figure PCTKR2015009814-appb-I000447
    Is a channel gain according to the distance from the second terminal to the terminal.
    Figure PCTKR2015009814-appb-I000448
    Is the power of thermal noise,
    Figure PCTKR2015009814-appb-I000449
    Is the strength of the interference transmitted from the terminal to the base station,
    Figure PCTKR2015009814-appb-I000450
    Is the maximum transmit power of the terminal.
    Figure PCTKR2015009814-appb-I000451
    Is
    Figure PCTKR2015009814-appb-I000452
    It is the larger of internal value and '0'.
    [수학식 8][Equation 8]
    Figure PCTKR2015009814-appb-I000453
    Figure PCTKR2015009814-appb-I000453
    여기서,
    Figure PCTKR2015009814-appb-I000454
    는 상기 기지국이 수신하는 간섭 신호의 총합의 임계값이다.
    here,
    Figure PCTKR2015009814-appb-I000454
    Is a threshold of the sum of interference signals received by the base station.
  7. 제1항에 있어서,The method of claim 1,
    상기 전송 전력을 하기 수학식 9에 따라서 결정하는 전송 전력 결정부A transmit power determiner configured to determine the transmit power according to Equation 9 below
    를 더 포함하는 단말기.The terminal further comprising.
    [수학식 9][Equation 9]
    Figure PCTKR2015009814-appb-I000455
    Figure PCTKR2015009814-appb-I000455
    여기서,
    Figure PCTKR2015009814-appb-I000456
    는 하기 수학식 10에 따라서 결정된다.
    Figure PCTKR2015009814-appb-I000457
    는 제1 채널 상태로서,
    Figure PCTKR2015009814-appb-I000458
    는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
    Figure PCTKR2015009814-appb-I000459
    는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
    Figure PCTKR2015009814-appb-I000460
    는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
    Figure PCTKR2015009814-appb-I000461
    는 는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
    Figure PCTKR2015009814-appb-I000462
    는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
    Figure PCTKR2015009814-appb-I000463
    는 열잡음의 전력이고,
    Figure PCTKR2015009814-appb-I000464
    는 단말기로부터 기지국으로 전송되는 간섭의 세기이고, 는 단말기의 최대 전송 전력이다.
    Figure PCTKR2015009814-appb-I000466
    Figure PCTKR2015009814-appb-I000467
    내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
    here,
    Figure PCTKR2015009814-appb-I000456
    Is determined according to the following equation (10).
    Figure PCTKR2015009814-appb-I000457
    Is the first channel state,
    Figure PCTKR2015009814-appb-I000458
    Is the effect of the multipath fading channel of the channel from the terminal to the base station,
    Figure PCTKR2015009814-appb-I000459
    Is the channel gain according to the distance from the terminal to the base station.
    Figure PCTKR2015009814-appb-I000460
    Is a second channel state which is a channel state from the second terminal to the terminal,
    Figure PCTKR2015009814-appb-I000461
    Is the effect of the multipath fading channel of the channel from the terminal to the second terminal,
    Figure PCTKR2015009814-appb-I000462
    Is a channel gain according to the distance from the second terminal to the terminal.
    Figure PCTKR2015009814-appb-I000463
    Is the power of thermal noise,
    Figure PCTKR2015009814-appb-I000464
    Is the strength of the interference transmitted from the terminal to the base station, Is the maximum transmit power of the terminal.
    Figure PCTKR2015009814-appb-I000466
    Is
    Figure PCTKR2015009814-appb-I000467
    It is the larger of internal value and '0'.
    [수학식 10][Equation 10]
    Figure PCTKR2015009814-appb-I000468
    Figure PCTKR2015009814-appb-I000468
    여기서, K는 상기 기지국의 커버리지 내에 위치하며 서로 직접 데이터를 전송하는 단말기들(D2D 단말기 페어)의 개수를 나타낸다.Here, K represents the number of terminals (D2D terminal pair) which are located within the coverage of the base station and directly transmit data to each other.
  8. 커버리지 내에 위치한 단말기들이 서로 데이터를 직접 전송하는 기지국에 있어서,A base station in which terminals located within coverage directly transmit data to each other,
    상기 단말기들 중에서 제1 단말기로부터 파일럿 신호를 수신하는 파일럿 수신부;A pilot receiver for receiving a pilot signal from a first terminal among the terminals;
    상기 수신한 파일럿 신호를 이용하여 상기 제1 단말기로부터 상기 기지국까지의 제1 채널 상태를 추정하는 채널 상태 추정부;A channel state estimator estimating a first channel state from the first terminal to the base station using the received pilot signal;
    상기 제1 단말기로부터 상기 단말기들에 포함된 제2 단말기까지의 제2 채널 상태를 상기 제1 단말기로부터 수신하는 채널 상태 수신부;A channel state receiver configured to receive, from the first terminal, a second channel state from the first terminal to a second terminal included in the terminals;
    상기 제1 채널 상태 및 상기 제2 채널 상태를 고려하여 상기 제1 단말기에 대한 전송 전력을 결정하는 전송 전력 결정부; 및A transmission power determination unit determining transmission power for the first terminal in consideration of the first channel state and the second channel state; And
    상기 결정된 전송 전력을 상기 제1 단말기로 전송하는 전송부Transmitter for transmitting the determined transmission power to the first terminal
    를 포함하고,Including,
    상기 기지국의 커버리지 내에 위치하는 제3 단말기가 상기 기지국으로 제1 데이터를 전송하는 시간 동안, 상기 전송된 전송 전력에 따라서 상기 제1 단말기는 상기 제2 단말기로 제2 데이터를 직접 전송하는 기지국.The base station directly transmits the second data to the second terminal according to the transmitted power during the time that the third terminal located within the coverage of the base station transmits the first data to the base station.
  9. 제8항에 있어서,The method of claim 8,
    상기 전송 전력 결정부는 하기 수학식 11 및 하기 수학식 12에 따라서 상기 전송 전력을 결정하는 기지국.The base station for determining the transmission power according to the following equation (11) and (12).
    [수학식 11][Equation 11]
    Figure PCTKR2015009814-appb-I000469
    Figure PCTKR2015009814-appb-I000469
    여기서,
    Figure PCTKR2015009814-appb-I000470
    는 상기 기지국이 수신하는 간섭 신호의 총합의 임계값이다.
    here,
    Figure PCTKR2015009814-appb-I000470
    Is a threshold of the sum of interference signals received by the base station.
    Figure PCTKR2015009814-appb-I000471
    는 전송 전력
    Figure PCTKR2015009814-appb-I000472
    의 값이 0인 단말기들의 집합이고,
    Figure PCTKR2015009814-appb-I000473
    는 전송 전력
    Figure PCTKR2015009814-appb-I000474
    의 값이
    Figure PCTKR2015009814-appb-I000475
    인 단말기들의 집합이다.
    Figure PCTKR2015009814-appb-I000471
    Transmit power
    Figure PCTKR2015009814-appb-I000472
    Is a set of terminals having a value of 0,
    Figure PCTKR2015009814-appb-I000473
    Transmit power
    Figure PCTKR2015009814-appb-I000474
    Has a value of
    Figure PCTKR2015009814-appb-I000475
    Is a set of terminals.
    Figure PCTKR2015009814-appb-I000476
    는 제1 채널 상태로서,
    Figure PCTKR2015009814-appb-I000477
    는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
    Figure PCTKR2015009814-appb-I000478
    는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
    Figure PCTKR2015009814-appb-I000479
    는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
    Figure PCTKR2015009814-appb-I000480
    는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
    Figure PCTKR2015009814-appb-I000481
    는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
    Figure PCTKR2015009814-appb-I000482
    는 열잡음의 전력이고,
    Figure PCTKR2015009814-appb-I000483
    는 단말기로부터 기지국으로 전송되는 간섭의 세기이고,
    Figure PCTKR2015009814-appb-I000484
    는 단말기의 최대 전송 전력이다.
    Figure PCTKR2015009814-appb-I000485
    Figure PCTKR2015009814-appb-I000486
    내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
    Figure PCTKR2015009814-appb-I000476
    Is the first channel state,
    Figure PCTKR2015009814-appb-I000477
    Is the effect of the multipath fading channel of the channel from the terminal to the base station,
    Figure PCTKR2015009814-appb-I000478
    Is the channel gain according to the distance from the terminal to the base station.
    Figure PCTKR2015009814-appb-I000479
    Is a second channel state which is a channel state from the second terminal to the terminal,
    Figure PCTKR2015009814-appb-I000480
    Is the influence of the multipath fading channel of the channel from the terminal to the second terminal,
    Figure PCTKR2015009814-appb-I000481
    Is a channel gain according to the distance from the second terminal to the terminal.
    Figure PCTKR2015009814-appb-I000482
    Is the power of thermal noise,
    Figure PCTKR2015009814-appb-I000483
    Is the strength of the interference transmitted from the terminal to the base station,
    Figure PCTKR2015009814-appb-I000484
    Is the maximum transmit power of the terminal.
    Figure PCTKR2015009814-appb-I000485
    Is
    Figure PCTKR2015009814-appb-I000486
    It is the larger of internal value and '0'.
    [수학식 12][Equation 12]
    Figure PCTKR2015009814-appb-I000487
    Figure PCTKR2015009814-appb-I000487
  10. 제9항에 있어서,The method of claim 9,
    상기 전송 전력 결정부는 상기 결정된 전송 전력이 하기 수학식 13을 만족할 때까지 상기 수학식 11 및 상기 수학식 12를 반복하여 상기 전송 전력을 업데이트하는 기지국.And the transmission power determiner is configured to update the transmission power by repeating Equation 11 and Equation 12 until the determined transmission power satisfies Equation 13.
    [수학식 13][Equation 13]
    Figure PCTKR2015009814-appb-I000488
    Figure PCTKR2015009814-appb-I000488
  11. 기지국의 커버리지 내에 위치하는 단말기의 동작 방법에 있어서,In the operating method of a terminal located within the coverage of the base station,
    상기 기지국의 커버리지 내에 위치하는 제3 단말기가 상기 기지국으로 제1 데이터를 전송하는 시간 동안 상기 단말기와 페어링된 제2 단말기로 상기 단말기로부터 상기 기지국까지의 제1 채널 상태를 고려하여 결정된 전송 전력으로 제2 데이터를 직접 전송하는 단계The third terminal located within the coverage of the base station transmits the first power to the second terminal paired with the terminal during transmission of the first data to the base station at a transmission power determined in consideration of the first channel state from the terminal to the base station. 2 Steps to Transfer Data Directly
    를 포함하는 단말기의 동작 방법.Method of operation of a terminal comprising a.
  12. 제11항에 있어서,The method of claim 11,
    상기 제2 단말기로부터 상기 단말기까지의 제2 채널 상태를 추정하는 단계;Estimating a second channel condition from the second terminal to the terminal;
    상기 전송부는 상기 제2 채널 상태를 상기 기지국으로 전송하는 단계; 및The transmitting unit transmitting the second channel state to the base station; And
    상기 제2 채널 상태를 추가적으로 고려하여 결정된 전송 전력을 상기 기지국으로부터 수신하는 단계Receiving transmission power determined from the base station in consideration of the second channel state
    를 더 포함하는 단말기의 동작 방법.Operation method of the terminal further comprising.
  13. 제11항에 있어서,The method of claim 11,
    하기 수학식 14에 따라서 상기 전송 전력을 업데이트하여 결정하는 단계Determining by updating the transmit power according to Equation 14
    를 더 포함하는 단말기의 동작 방법.Operation method of the terminal further comprising.
    [수학식 14][Equation 14]
    Figure PCTKR2015009814-appb-I000489
    Figure PCTKR2015009814-appb-I000489
    여기서,
    Figure PCTKR2015009814-appb-I000490
    는 업데이트된 전송 전력의 값이고,
    Figure PCTKR2015009814-appb-I000491
    는 하기 수학식 15와 같이 업데이트된다.
    Figure PCTKR2015009814-appb-I000492
    는 제1 채널 상태로서,
    Figure PCTKR2015009814-appb-I000493
    는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
    Figure PCTKR2015009814-appb-I000494
    는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
    Figure PCTKR2015009814-appb-I000495
    는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
    Figure PCTKR2015009814-appb-I000496
    는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
    Figure PCTKR2015009814-appb-I000497
    는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
    Figure PCTKR2015009814-appb-I000498
    는 열잡음의 전력이고,
    Figure PCTKR2015009814-appb-I000499
    는 단말기로부터 기지국으로 전송되는 간섭의 세기이고,
    Figure PCTKR2015009814-appb-I000500
    는 단말기의 최대 전송 전력이다.
    Figure PCTKR2015009814-appb-I000501
    Figure PCTKR2015009814-appb-I000502
    내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
    here,
    Figure PCTKR2015009814-appb-I000490
    Is the value of the updated transmit power,
    Figure PCTKR2015009814-appb-I000491
    Is updated as in Equation 15 below.
    Figure PCTKR2015009814-appb-I000492
    Is the first channel state,
    Figure PCTKR2015009814-appb-I000493
    Is the effect of the multipath fading channel of the channel from the terminal to the base station,
    Figure PCTKR2015009814-appb-I000494
    Is the channel gain according to the distance from the terminal to the base station.
    Figure PCTKR2015009814-appb-I000495
    Is a second channel state which is a channel state from the second terminal to the terminal,
    Figure PCTKR2015009814-appb-I000496
    Is the influence of the multipath fading channel of the channel from the terminal to the second terminal,
    Figure PCTKR2015009814-appb-I000497
    Is a channel gain according to the distance from the second terminal to the terminal.
    Figure PCTKR2015009814-appb-I000498
    Is the power of thermal noise,
    Figure PCTKR2015009814-appb-I000499
    Is the strength of the interference transmitted from the terminal to the base station,
    Figure PCTKR2015009814-appb-I000500
    Is the maximum transmit power of the terminal.
    Figure PCTKR2015009814-appb-I000501
    Is
    Figure PCTKR2015009814-appb-I000502
    It is the larger of internal value and '0'.
    [수학식 15][Equation 15]
    Figure PCTKR2015009814-appb-I000503
    Figure PCTKR2015009814-appb-I000503
    여기서,
    Figure PCTKR2015009814-appb-I000504
    는 업데이트된
    Figure PCTKR2015009814-appb-I000505
    의 값이며,
    Figure PCTKR2015009814-appb-I000506
    는 상기 기지국이 수신하는 간섭 신호의 총합의 임계값이다.
    Figure PCTKR2015009814-appb-I000507
    는 기지국으로 간섭을 전송하는 단말기들의 개수이고,
    Figure PCTKR2015009814-appb-I000508
    는 이전 전송 전력의 값이다.
    Figure PCTKR2015009814-appb-I000509
    는 임의의 상수이다.
    here,
    Figure PCTKR2015009814-appb-I000504
    Updated
    Figure PCTKR2015009814-appb-I000505
    Is the value of,
    Figure PCTKR2015009814-appb-I000506
    Is a threshold of the sum of interference signals received by the base station.
    Figure PCTKR2015009814-appb-I000507
    Is the number of terminals transmitting interference to the base station,
    Figure PCTKR2015009814-appb-I000508
    Is the value of the previous transmit power.
    Figure PCTKR2015009814-appb-I000509
    Is any constant.
  14. 제11항에 있어서,The method of claim 11,
    하기 수학식 16에 따라서 상기 전송 전력을 결정하는 단계Determining the transmit power according to Equation 16
    를 더 포함하는 단말기의 동작 방법.Operation method of the terminal further comprising.
    [수학식 16][Equation 16]
    Figure PCTKR2015009814-appb-I000510
    Figure PCTKR2015009814-appb-I000510
    여기서,
    Figure PCTKR2015009814-appb-I000511
    는 하기 수학식 17에 따라서 결정된다.
    Figure PCTKR2015009814-appb-I000512
    는 제1 채널 상태로서,
    Figure PCTKR2015009814-appb-I000513
    는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
    Figure PCTKR2015009814-appb-I000514
    는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
    Figure PCTKR2015009814-appb-I000515
    는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
    Figure PCTKR2015009814-appb-I000516
    는 는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
    Figure PCTKR2015009814-appb-I000517
    는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
    Figure PCTKR2015009814-appb-I000518
    는 열잡음의 전력이고,
    Figure PCTKR2015009814-appb-I000519
    는 단말기로부터 기지국으로 전송되는 간섭의 세기이고,
    Figure PCTKR2015009814-appb-I000520
    는 단말기의 최대 전송 전력이다.
    Figure PCTKR2015009814-appb-I000521
    Figure PCTKR2015009814-appb-I000522
    내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
    here,
    Figure PCTKR2015009814-appb-I000511
    Is determined according to the following equation (17).
    Figure PCTKR2015009814-appb-I000512
    Is the first channel state,
    Figure PCTKR2015009814-appb-I000513
    Is the effect of the multipath fading channel of the channel from the terminal to the base station,
    Figure PCTKR2015009814-appb-I000514
    Is the channel gain according to the distance from the terminal to the base station.
    Figure PCTKR2015009814-appb-I000515
    Is a second channel state which is a channel state from the second terminal to the terminal,
    Figure PCTKR2015009814-appb-I000516
    Is the effect of the multipath fading channel of the channel from the terminal to the second terminal,
    Figure PCTKR2015009814-appb-I000517
    Is a channel gain according to the distance from the second terminal to the terminal.
    Figure PCTKR2015009814-appb-I000518
    Is the power of thermal noise,
    Figure PCTKR2015009814-appb-I000519
    Is the strength of the interference transmitted from the terminal to the base station,
    Figure PCTKR2015009814-appb-I000520
    Is the maximum transmit power of the terminal.
    Figure PCTKR2015009814-appb-I000521
    Is
    Figure PCTKR2015009814-appb-I000522
    It is the larger of internal value and '0'.
    [수학식 17][Equation 17]
    Figure PCTKR2015009814-appb-I000523
    Figure PCTKR2015009814-appb-I000523
    Figure PCTKR2015009814-appb-I000524
    Figure PCTKR2015009814-appb-I000524
    여기서,
    Figure PCTKR2015009814-appb-I000525
    는 상기 기지국이 수신하는 간섭 신호의 총합의 임계값이다.
    here,
    Figure PCTKR2015009814-appb-I000525
    Is a threshold of the sum of interference signals received by the base station.
  15. 제11항에 있어서,The method of claim 11,
    하기 수학식 18에 따라서 상기 전송 전력을 결정하는 단계Determining the transmit power according to Equation 18
    를 더 포함하는 단말기의 동작 방법.Operation method of the terminal further comprising.
    [수학식 18]Equation 18
    Figure PCTKR2015009814-appb-I000526
    Figure PCTKR2015009814-appb-I000526
    여기서,
    Figure PCTKR2015009814-appb-I000527
    는 하기 수학식 19에 따라서 결정된다.
    Figure PCTKR2015009814-appb-I000528
    는 제1 채널 상태로서,
    Figure PCTKR2015009814-appb-I000529
    는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
    Figure PCTKR2015009814-appb-I000530
    는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
    Figure PCTKR2015009814-appb-I000531
    는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
    Figure PCTKR2015009814-appb-I000532
    는 는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
    Figure PCTKR2015009814-appb-I000533
    는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
    Figure PCTKR2015009814-appb-I000534
    는 열잡음의 전력이고,
    Figure PCTKR2015009814-appb-I000535
    는 단말기로부터 기지국으로 전송되는 간섭의 세기이고,
    Figure PCTKR2015009814-appb-I000536
    는 단말기의 최대 전송 전력이다.
    Figure PCTKR2015009814-appb-I000537
    Figure PCTKR2015009814-appb-I000538
    내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
    here,
    Figure PCTKR2015009814-appb-I000527
    Is determined according to the following equation (19).
    Figure PCTKR2015009814-appb-I000528
    Is the first channel state,
    Figure PCTKR2015009814-appb-I000529
    Is the effect of the multipath fading channel of the channel from the terminal to the base station,
    Figure PCTKR2015009814-appb-I000530
    Is the channel gain according to the distance from the terminal to the base station.
    Figure PCTKR2015009814-appb-I000531
    Is a second channel state which is a channel state from the second terminal to the terminal,
    Figure PCTKR2015009814-appb-I000532
    Is the effect of the multipath fading channel of the channel from the terminal to the second terminal,
    Figure PCTKR2015009814-appb-I000533
    Is a channel gain according to the distance from the second terminal to the terminal.
    Figure PCTKR2015009814-appb-I000534
    Is the power of thermal noise,
    Figure PCTKR2015009814-appb-I000535
    Is the strength of the interference transmitted from the terminal to the base station,
    Figure PCTKR2015009814-appb-I000536
    Is the maximum transmit power of the terminal.
    Figure PCTKR2015009814-appb-I000537
    Is
    Figure PCTKR2015009814-appb-I000538
    It is the larger of internal value and '0'.
    [수학식 19][Equation 19]
    Figure PCTKR2015009814-appb-I000539
    Figure PCTKR2015009814-appb-I000539
    여기서, K는 상기 기지국의 커버리지 내에 위치하며 서로 직접 데이터를 전송하는 단말기들(D2D 단말기 페어)의 개수를 나타낸다.Here, K represents the number of terminals (D2D terminal pair) which are located within the coverage of the base station and directly transmit data to each other.
  16. 제11항에 있어서,The method of claim 11,
    하기 수학식 20에 따라서 상기 전송 전력을 결정하는 단계Determining the transmit power according to Equation 20
    를 더 포함하는 단말기의 동작 방법.Operation method of the terminal further comprising.
    [수학식 20][Equation 20]
    Figure PCTKR2015009814-appb-I000540
    Figure PCTKR2015009814-appb-I000540
    여기서,
    Figure PCTKR2015009814-appb-I000541
    는 하기 수학식 21에 따라서 결정된다.
    Figure PCTKR2015009814-appb-I000542
    는 제1 채널 상태로서,
    Figure PCTKR2015009814-appb-I000543
    는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
    Figure PCTKR2015009814-appb-I000544
    는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
    Figure PCTKR2015009814-appb-I000545
    는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
    Figure PCTKR2015009814-appb-I000546
    는 는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
    Figure PCTKR2015009814-appb-I000547
    는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
    Figure PCTKR2015009814-appb-I000548
    는 열잡음의 전력이고,
    Figure PCTKR2015009814-appb-I000549
    는 단말기로부터 기지국으로 전송되는 간섭의 세기이고,
    Figure PCTKR2015009814-appb-I000550
    는 단말기의 최대 전송 전력이다.
    Figure PCTKR2015009814-appb-I000551
    Figure PCTKR2015009814-appb-I000552
    내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
    here,
    Figure PCTKR2015009814-appb-I000541
    Is determined according to the following equation (21).
    Figure PCTKR2015009814-appb-I000542
    Is the first channel state,
    Figure PCTKR2015009814-appb-I000543
    Is the effect of the multipath fading channel of the channel from the terminal to the base station,
    Figure PCTKR2015009814-appb-I000544
    Is the channel gain according to the distance from the terminal to the base station.
    Figure PCTKR2015009814-appb-I000545
    Is a second channel state which is a channel state from the second terminal to the terminal,
    Figure PCTKR2015009814-appb-I000546
    Is the effect of the multipath fading channel of the channel from the terminal to the second terminal,
    Figure PCTKR2015009814-appb-I000547
    Is a channel gain according to the distance from the second terminal to the terminal.
    Figure PCTKR2015009814-appb-I000548
    Is the power of thermal noise,
    Figure PCTKR2015009814-appb-I000549
    Is the strength of the interference transmitted from the terminal to the base station,
    Figure PCTKR2015009814-appb-I000550
    Is the maximum transmit power of the terminal.
    Figure PCTKR2015009814-appb-I000551
    Is
    Figure PCTKR2015009814-appb-I000552
    It is the larger of internal value and '0'.
    [수학식 21][Equation 21]
    Figure PCTKR2015009814-appb-I000553
    Figure PCTKR2015009814-appb-I000553
    여기서,
    Figure PCTKR2015009814-appb-I000554
    는 상기 기지국이 수신하는 간섭 신호의 총합의 임계값이다.
    here,
    Figure PCTKR2015009814-appb-I000554
    Is a threshold of the sum of interference signals received by the base station.
  17. 제11항에 있어서,The method of claim 11,
    하기 수학식 22에 따라서 상기 전송 전력을 결정하는 단계Determining the transmit power according to Equation 22
    를 더 포함하는 단말기의 동작 방법.Operation method of the terminal further comprising.
    [수학식 22][Equation 22]
    Figure PCTKR2015009814-appb-I000555
    Figure PCTKR2015009814-appb-I000555
    여기서,
    Figure PCTKR2015009814-appb-I000556
    는 하기 수학식 23에 따라서 결정된다.
    Figure PCTKR2015009814-appb-I000557
    는 제1 채널 상태로서,
    Figure PCTKR2015009814-appb-I000558
    는 단말기로부터 기지국까지 채널의 멀티 패스 페이딩 채널의 영향이고,
    Figure PCTKR2015009814-appb-I000559
    는 단말기로부터 기지국까지의 거리에 따른 채널 이득이다.
    Figure PCTKR2015009814-appb-I000560
    는 상기 제2 단말기로부터 상기 단말기까지의 채널 상태인 제2 채널 상태로서,
    Figure PCTKR2015009814-appb-I000561
    는 는 상기 단말기로부터 상기 제2 단말기까지 채널의 멀티 패스 페이딩 채널의 영향이고,
    Figure PCTKR2015009814-appb-I000562
    는 상기 제2 단말기로부터 상기 단말기까지의 거리에 따른 채널 이득이다.
    Figure PCTKR2015009814-appb-I000563
    는 열잡음의 전력이고,
    Figure PCTKR2015009814-appb-I000564
    는 단말기로부터 기지국으로 전송되는 간섭의 세기이고,
    Figure PCTKR2015009814-appb-I000565
    는 단말기의 최대 전송 전력이다.
    Figure PCTKR2015009814-appb-I000566
    Figure PCTKR2015009814-appb-I000567
    내부의 값과 '0' 중에서 더 큰 값을 나타낸다.
    here,
    Figure PCTKR2015009814-appb-I000556
    Is determined according to the following equation (23).
    Figure PCTKR2015009814-appb-I000557
    Is the first channel state,
    Figure PCTKR2015009814-appb-I000558
    Is the effect of the multipath fading channel of the channel from the terminal to the base station,
    Figure PCTKR2015009814-appb-I000559
    Is the channel gain according to the distance from the terminal to the base station.
    Figure PCTKR2015009814-appb-I000560
    Is a second channel state which is a channel state from the second terminal to the terminal,
    Figure PCTKR2015009814-appb-I000561
    Is the effect of the multipath fading channel of the channel from the terminal to the second terminal,
    Figure PCTKR2015009814-appb-I000562
    Is a channel gain according to the distance from the second terminal to the terminal.
    Figure PCTKR2015009814-appb-I000563
    Is the power of thermal noise,
    Figure PCTKR2015009814-appb-I000564
    Is the strength of the interference transmitted from the terminal to the base station,
    Figure PCTKR2015009814-appb-I000565
    Is the maximum transmit power of the terminal.
    Figure PCTKR2015009814-appb-I000566
    Is
    Figure PCTKR2015009814-appb-I000567
    It is the larger of internal value and '0'.
    [수학식 23][Equation 23]
    Figure PCTKR2015009814-appb-I000568
    Figure PCTKR2015009814-appb-I000568
    여기서, K는 상기 기지국의 커버리지 내에 위치하며 서로 직접 데이터를 전송하는 단말기들(D2D 단말기 페어)의 개수를 나타낸다.Here, K represents the number of terminals (D2D terminal pair) which are located within the coverage of the base station and directly transmit data to each other.
  18. 제11항 내지 제17항 중에서 어느 하나의 항의 방법을 실행시키기 위한 프로그램이 기록된 컴퓨터 판독 가능한 기록 매체.A computer-readable recording medium having recorded thereon a program for executing the method of any one of claims 11 to 17.
PCT/KR2015/009814 2015-07-27 2015-09-18 Device and method for determining transmission power in device-to-device communication system WO2017018593A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150105695A KR101662505B1 (en) 2015-07-27 2015-07-27 Apparatus and method for ditermining transmit power in d2d communication system
KR10-2015-0105695 2015-07-27

Publications (1)

Publication Number Publication Date
WO2017018593A1 true WO2017018593A1 (en) 2017-02-02

Family

ID=57153839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009814 WO2017018593A1 (en) 2015-07-27 2015-09-18 Device and method for determining transmission power in device-to-device communication system

Country Status (2)

Country Link
KR (1) KR101662505B1 (en)
WO (1) WO2017018593A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246504A1 (en) * 2022-06-21 2023-12-28 中移(成都)信息通信科技有限公司 Processing method and apparatus, device, and storage medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102568492B1 (en) * 2022-03-17 2023-08-18 경상국립대학교산학협력단 D2d communication system based on neural network using binary feedback
KR102568491B1 (en) * 2022-03-22 2023-08-18 경상국립대학교산학협력단 D2d communication system based on neural network using partial feedback

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091420A2 (en) * 2010-12-27 2012-07-05 한국전자통신연구원 Method for establishing a device-to-device link connection and scheduling for device-to-device communication and terminal relaying
WO2013137580A1 (en) * 2012-03-12 2013-09-19 엘지전자 주식회사 Method for transmitting and receiving control information and apparatus for same
WO2013141592A1 (en) * 2012-03-22 2013-09-26 엘지전자 주식회사 Channel information transmitting method and device
WO2013191518A1 (en) * 2012-06-22 2013-12-27 엘지전자 주식회사 Scheduling method for device-to-device communication and apparatus for same
WO2015053514A1 (en) * 2013-10-08 2015-04-16 삼성전자 주식회사 Method and apparatus for transmit signal power control and discovery signal resource multiplexing in wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091420A2 (en) * 2010-12-27 2012-07-05 한국전자통신연구원 Method for establishing a device-to-device link connection and scheduling for device-to-device communication and terminal relaying
WO2013137580A1 (en) * 2012-03-12 2013-09-19 엘지전자 주식회사 Method for transmitting and receiving control information and apparatus for same
WO2013141592A1 (en) * 2012-03-22 2013-09-26 엘지전자 주식회사 Channel information transmitting method and device
WO2013191518A1 (en) * 2012-06-22 2013-12-27 엘지전자 주식회사 Scheduling method for device-to-device communication and apparatus for same
WO2015053514A1 (en) * 2013-10-08 2015-04-16 삼성전자 주식회사 Method and apparatus for transmit signal power control and discovery signal resource multiplexing in wireless communication system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246504A1 (en) * 2022-06-21 2023-12-28 中移(成都)信息通信科技有限公司 Processing method and apparatus, device, and storage medium

Also Published As

Publication number Publication date
KR101662505B1 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
WO2009157715A2 (en) Codebook design method for multiple input multiple output system and method for using the codebook
WO2018174661A1 (en) Resource selection method in vehicle to everything communication and apparatus therefore
WO2015183051A1 (en) Soft buffer processing method and apparatus
WO2011136627A2 (en) Multiple input multiple output communication system using codebook corresponding to each reporting mode
WO2014208844A1 (en) Beam training device and method
WO2015142037A1 (en) Power control method and user equipment in a system configured with serving cells having d2d sub-frames
WO2009131376A2 (en) Multiple antenna communication system including adaptive updating and changing of codebooks
EP3574694A1 (en) Resource selection method in vehicle to everything communication and apparatus therefore
WO2016117980A1 (en) Method and auxiliary method, apparatus, base station and user equipment for interference cancellation
WO2016163803A1 (en) Device and method for position measurement in wireless communication system
WO2013073869A1 (en) Method and apparatus for managing security keys for communication authentication with mobile station in wireless communication system
WO2015005745A1 (en) Apparatus and method for distributed scheduling in wireless communication system
WO2012165794A2 (en) System and method for simultaneous data transmission service in heterogeneous network
WO2019139405A1 (en) Method and apparatus for transmitting hybrid automatic repeat and request information in a wireless communication system
WO2020067812A1 (en) An apparatus and a method for configurating and reporting of minimization of drive tests measurement and access network device
WO2017078279A1 (en) Method for transmitting synchronization signal using codebook in wireless communication system
WO2022015031A1 (en) Method and apparatus for selecting beam pairs in a beamforming based communication system
WO2017018593A1 (en) Device and method for determining transmission power in device-to-device communication system
WO2020009432A1 (en) Method and device for performing beamforming in wireless communication system
WO2017155137A1 (en) Beamforming method and device therefor
WO2011002260A2 (en) Rotating reference codebook that is used in a multiple-input multiple-output (mimo) communication system
WO2011040707A2 (en) Multiple-input multiple-output communication system using explicit feedback
WO2022124860A1 (en) Method and apparatus for optimizing tilt angle of antenna of base station
WO2021235750A1 (en) Beamforming method using online likelihood maximization combined with steering vector estimation for robust speech recognition, and apparatus therefor
WO2011083900A1 (en) Codebook design method for multiple-input multiple-output (mimo) communication system and method for using the codebook

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15899737

Country of ref document: EP

Kind code of ref document: A1