WO2022107256A1 - User equipment - Google Patents

User equipment Download PDF

Info

Publication number
WO2022107256A1
WO2022107256A1 PCT/JP2020/043057 JP2020043057W WO2022107256A1 WO 2022107256 A1 WO2022107256 A1 WO 2022107256A1 JP 2020043057 W JP2020043057 W JP 2020043057W WO 2022107256 A1 WO2022107256 A1 WO 2022107256A1
Authority
WO
WIPO (PCT)
Prior art keywords
msgx
information element
specific message
type
random access
Prior art date
Application number
PCT/JP2020/043057
Other languages
French (fr)
Japanese (ja)
Inventor
春陽 越後
大輔 栗田
浩樹 原田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2020/043057 priority Critical patent/WO2022107256A1/en
Priority to JP2022563317A priority patent/JPWO2022107256A1/ja
Publication of WO2022107256A1 publication Critical patent/WO2022107256A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present disclosure relates to a terminal that performs wireless communication, in particular a terminal that transmits a message via a physical uplink shared channel in a random access channel procedure.
  • the 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also known as 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
  • 5G New Radio
  • NG Next Generation
  • FR1 410MHz-7.125GHz
  • FR2 24.25GHz-52.6GHz
  • a random access channel (RACH (RandomAccessChannel) procedure) is defined as a procedure for a terminal (UE (User Equipment)) to connect to a network.
  • the RACH procedure includes a four-step procedure 4 -A step RACH procedure and a 2-step RACH procedure including a two-step procedure are specified (for example, Non-Patent Document 1).
  • the following disclosure was made in view of such a situation, and aims to provide a terminal capable of reducing the overhead and the delay of the random access procedure.
  • the present disclosure comprises a transmission unit that is a terminal and transmits a first specific message not including a random access preamble when a predetermined condition is satisfied in the random access channel procedure, and the first in the random access channel procedure.
  • the gist is that the response message to the specific message includes a receiving unit that receives the second specific message that does not include the timing advance command.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram showing a frequency range used in the wireless communication system 10.
  • FIG. 3 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • FIG. 4 is a functional block configuration diagram of the UE 200.
  • FIG. 5 is a diagram for explaining the RACH procedure of type 1.
  • FIG. 6 is a diagram for explaining the RACH procedure of type 2.
  • FIG. 7 is a diagram for explaining the RACH procedure of type 3.
  • FIG. 8 is a diagram showing an example of the hardware configuration of the UE 200.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the embodiment.
  • the wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a terminal 200 (hereinafter, UE200)).
  • NR 5G New Radio
  • NG-RAN20 Next Generation-Radio Access Network
  • UE200 terminal 200
  • the wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution or 6G.
  • NG-RAN20 includes a radio base station 100A (hereinafter, gNB100A) and a radio base station 100B (hereinafter, gNB100B).
  • gNB100A radio base station 100A
  • gNB100B radio base station 100B
  • the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • the NG-RAN20 actually contains multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G.
  • NG-RAN20 and 5GC may be simply expressed as "network”.
  • GNB100A and gNB100B are radio base stations according to 5G, and execute wireless communication according to UE200 and 5G.
  • the gNB100A, gNB100B and UE200 are Massive MIMO (Multiple-Input Multiple-Output) and multiple component carriers (CC) that generate beam BM with higher directivity by controlling radio signals transmitted from multiple antenna elements. ) Can be bundled and used for carrier aggregation (CA), and dual connectivity (DC) for simultaneously communicating with two or more transport blocks between the UE and each of the two NG-RAN Nodes.
  • Massive MIMO Multiple-Input Multiple-Output
  • CC component carriers
  • CA carrier aggregation
  • DC dual connectivity
  • the wireless communication system 10 supports a plurality of frequency ranges (FR).
  • FIG. 2 shows the frequency range used in the wireless communication system 10.
  • the wireless communication system 10 corresponds to FR1 and FR2.
  • the frequency bands of each FR are as follows.
  • FR1 410 MHz to 7.125 GHz
  • FR2 24.25 GHz to 52.6 GHz
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 has a higher frequency than FR1, and SCS of 60, or 120 kHz (240 kHz may be included) is used, and a bandwidth (BW) of 50 to 400 MHz may be used.
  • SCS may be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier interval in the frequency domain.
  • the wireless communication system 10 also supports a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 corresponds to a frequency band exceeding 52.6 GHz and up to 114.25 GHz. Such a high frequency band may be referred to as "FR2x" for convenience.
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
  • DFT- Discrete Fourier Transform-Spread
  • SCS Sub-Carrier Spacing
  • FIG. 3 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period).
  • the SCS is not limited to the interval (frequency) shown in FIG. For example, 480 kHz, 960 kHz, etc. may be used.
  • the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28, 56 symbols).
  • the number of slots per subframe may vary from SCS to SCS.
  • the time direction (t) shown in FIG. 3 may be referred to as a time domain, a symbol period, a symbol time, or the like.
  • the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a bandwidth part (BWP: Bandwidth part), or the like.
  • DMRS is a kind of reference signal and is prepared for various channels.
  • it may mean a downlink data channel, specifically, a DMRS for PDSCH (Physical Downlink Shared Channel).
  • the upstream data channel specifically, the DMRS for PUSCH (Physical Uplink Shared Channel) may be interpreted in the same manner as the DMRS for PDSCH.
  • DMRS can be used for channel estimation in UE200 as part of a device, eg, coherent demodulation.
  • DMRS may only be present in the resource block (RB) used for PDSCH transmission.
  • DMRS may have multiple mapping types. Specifically, DMRS has mapping type A and mapping type B. In mapping type A, the first DMRS is placed in the second or third symbol of the slot. In mapping type A, DMRS may be mapped relative to the slot boundaries, regardless of where the actual data transmission begins in the slot. The reason why the first DMRS is placed in the second or third symbol of the slot may be interpreted as placing the first DMRS after the control resource sets (CORESET).
  • CORESET control resource sets
  • mapping type B the first DMRS may be placed in the first symbol of the data allocation. That is, the DMRS position may be given relative to where the data is located, rather than relative to the slot boundaries.
  • DMRS may have multiple types. Specifically, DMRS has Type 1 and Type 2. Type 1 and Type 2 differ in the maximum number of mappings and orthogonal reference signals in the frequency domain. Type 1 can output up to 4 orthogonal signals with a single-symbol DMRS, and Type 2 can output up to 8 orthogonal signals with a double-symbol DMRS.
  • FIG. 4 is a functional block configuration diagram of UE200.
  • the UE 200 includes a radio signal transmission / reception unit 210, an amplifier unit 220, a modulation / demodulation unit 230, a control signal / reference signal processing unit 240, a coding / decoding unit 250, a data transmission / reception unit 260, and a control unit 270. ..
  • the radio signal transmission / reception unit 210 transmits / receives a radio signal according to NR.
  • the radio signal transmission / reception unit 210 corresponds to Massive MIMO, a CA that bundles a plurality of CCs, and a DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes.
  • the radio signal transmission / reception unit 210 executes a random access procedure (hereinafter, RACH (RandomAccessChannel) procedure).
  • RACH Random AccessChannel
  • a 4-step RACH procedure and a 2-step RACH procedure are known, but in the embodiment, the radio signal transmission / reception unit 210 can execute the RACH procedure shown below.
  • the 4-step RACH procedure may be referred to as type 1, and the 2-step RACH procedure may be referred to as type 2.
  • the RACH procedure shown below may be referred to as type 3.
  • the radio signal transmission / reception unit 210 constitutes a transmission unit that transmits a first specific message that does not include a random access preamble (hereinafter referred to as RACH preamble) when a predetermined condition is satisfied in the RACH procedure.
  • RACH preamble a random access preamble
  • the radio signal transmission / reception unit 210 receives a second specific message that does not include a timing advance command (hereinafter, simply TA (Timing Advance)) as a response message to the first specific message in the RACH procedure.
  • TA is a command used by the UE 200 to adjust the transmission timing of the uplink signal.
  • the first specific message may be referred to as message X (hereinafter, MsgX)
  • message Y hereinafter, MsgY
  • the predetermined conditions are the condition that the reception quality of the signal notified from the network (for example, NG RAN20) is better than the specific quality and the condition that the number of transmissions of the first specific message (MsgX) does not exceed the maximum number of transmission attempts. Includes at least one.
  • the signal notified from the NG RAN 20 may include an SS / PBCH (Synchronization Signals / Physical Broadcast Channel) block.
  • the reception quality may include RSRP (Reference Signal Received Power).
  • the radio signal transmission / reception unit 210 may receive system information from the network including an information element indicating at least one of a specific threshold value and a maximum number of transmissions.
  • the information element indicating the specific quality is an information element indicating a threshold value for determining whether or not to apply the RACH procedure of type 3.
  • the information element indicating the specific quality may be the same information element as the information element indicating the threshold value for determining whether or not to apply the RACH procedure of type 2 (for example, msgA-RSRP-Threshold).
  • the information element indicating the specific quality may be an information element different from the information element indicating the threshold value for determining whether or not to apply the RACH procedure of type 2.
  • the specific quality may be smaller than the threshold for determining whether to apply the type 2 RACH procedure.
  • the information element indicating a specific quality may be referred to as msgX-RSRP-Threshold.
  • the information element indicating the maximum number of transmission attempts is an information element indicating the maximum number of times that MsgX can be retransmitted in the type 3 RACH procedure.
  • the information element indicating the maximum number of transmission attempts may be the same as the information element indicating the maximum number of times MsgA can be retransmitted in the type 2 RACH procedure (for example, msgA-transMax).
  • the information element indicating the maximum number of transmission attempts may be different from the information element indicating the maximum number of times MsgA can be retransmitted in the type 2 RACH procedure (for example, msgA-transMax).
  • the information element indicating the maximum number of transmission attempts may be referred to as msgX-TransMax.
  • the wireless signal transmission / reception unit 210 sets at least the reference signal used for demodulating the first specific message (MsgX), the resource setting of the transmission opportunity of the first specific message (MsgX), and the reception window length of the second specific message (MsgY).
  • System information including an information element indicating any one may be received from the network.
  • the information element indicating the setting of the reference signal used for demodulation of MsgX may be the same value as the information element (msgA-DMRS-Config) indicating the setting of the reference signal used for demodulation of MsgA in the RACH procedure of type 2.
  • the information element indicating the setting of the reference signal used for demodulation of MsgX may be different from the information element (msgA-DMRS-Config) indicating the setting of the reference signal used for demodulation of MsgA in the RACH procedure of type 2. ..
  • the reference signal setting used for demodulation of MsgX may be referred to as msgX-DMRS-Config.
  • At least a part of the reference signal setting used for demodulation of MsgX may overlap with the setting of the reference signal used for demodulation of MsgA.
  • at least part of the reference signal settings used for MsgA demodulation may be shared with the reference signal settings used for MsgX demodulation.
  • the information element indicating the resource setting of the transmission opportunity of MsgX may be the same information element as the resource setting (MsgA-PUSCH-Resource config) of the transmission opportunity (PUSCH Occasion) of MsgA in the RACH procedure of type 2.
  • the information element indicating the resource setting of the transmission opportunity of MsgX may be different from the resource setting (MsgA-PUSCH-Resource config) of the transmission opportunity (PUSCH Occasion) of MsgA in the RACH procedure of type 2.
  • the information element indicating the resource setting of the transmission opportunity of MsgX may be referred to as MsgX-PUSCH-Resource config.
  • At least part of the MsgX transmission opportunity resource settings may overlap with the MsgA transmission opportunity resource settings. In other words, at least a portion of MsgA's transmission opportunity resource settings may be shared with MsgX's transmission opportunity resource settings.
  • the reception window length of MsgY may be the same value as the reception window of MsgB (for example, msgB-ResponseWindow) in the RACH procedure of type 2.
  • the reception window length of MsgY may be a value different from the reception window of MsgB (for example, msgB-ResponseWindow) in the RACH procedure of type 2.
  • the reception window length of MsgY may be referred to as msgY-ResponseWindow.
  • the amplifier unit 220 is composed of PA (Power Amplifier) / LNA (Low Noise Amplifier) and the like.
  • the amplifier unit 220 amplifies the signal output from the modulation / demodulation unit 230 to a predetermined power level. Further, the amplifier unit 220 amplifies the RF signal output from the radio signal transmission / reception unit 210.
  • the modulation / demodulation unit 230 executes data modulation / demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100 or other gNB).
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-S-OFDM) may be applied to the modulation / demodulation unit 230. Further, the DFT-S-OFDM may be used not only for the uplink (UL) but also for the downlink (DL).
  • the control signal / reference signal processing unit 240 executes processing related to various control signals transmitted / received by the UE 200 and processing related to various reference signals transmitted / received by the UE 200.
  • control signal / reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, control signals of the radio resource control layer (RRC). Further, the control signal / reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
  • a predetermined control channel for example, control signals of the radio resource control layer (RRC).
  • RRC radio resource control layer
  • the control signal / reference signal processing unit 240 executes processing using a reference signal (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
  • RS reference signal
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • DMRS is a reference signal (pilot signal) known between the base station and the terminal of each terminal for estimating the fading channel used for data demodulation.
  • the PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
  • the reference signal may include ChannelStateInformation-ReferenceSignal (CSI-RS), SoundingReferenceSignal (SRS), and PositioningReferenceSignal (PRS) for location information.
  • CSI-RS ChannelStateInformation-ReferenceSignal
  • SRS SoundingReferenceSignal
  • PRS PositioningReferenceSignal
  • control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel), Random Access Radio Network Temporary Identifier (RA-RNTI), Downlink Control Information (DCI), and Physical Broadcast Channel (PBCH) etc. are included.
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • RACH Random Access Channel
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • DCI Downlink Control Information
  • PBCH Physical Broadcast Channel
  • the data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • Data means data transmitted over a data channel.
  • the data channel may be read as a shared channel.
  • control signal / reference signal processing unit 240 constitutes a receiving unit that receives downlink control information (DCI).
  • DCI has existing fields such as DCI Formats, Carrier indicator (CI), BWP indicator, FDRA (Frequency Domain Resource Allocation), TDRA (Time Domain Resource Allocation), MCS (Modulation and Coding Scheme), HPN (HARQ Process Number). , NDI (NewDataIndicator), RV (RedundancyVersion), etc. are included.
  • the value stored in the DCI Format field is an information element that specifies the DCI format.
  • the value stored in the CI field is an information element that specifies the CC to which DCI applies.
  • the value stored in the BWP indicator field is an information element that specifies the BWP to which DCI applies.
  • the BWP that can be specified by the BWP indicator is set by the information element (BandwidthPart-Config) contained in the RRC message.
  • the value stored in the FDRA field is an information element that specifies the frequency domain resource to which DCI applies.
  • the frequency domain resource is specified by the value stored in the FDRA field and the information element (RAType) contained in the RRC message.
  • the value stored in the TDRA field is an information element that specifies the time domain resource to which DCI applies.
  • the time domain resource is specified by the value stored in the TDRA field and the information elements (pdsch-TimeDomainAllocationList, push-TimeDomainAllocationList) contained in the RRC message.
  • Time domain resources may be specified by the values stored in the TDRA field and the default table.
  • the value stored in the MCS field is an information element that specifies the MCS to which DCI is applied.
  • MCS is specified by the values stored in MCS and the MCS table.
  • the MCS table may be specified by RRC messages or specified by RNTI scrambling.
  • the value stored in the HPN field is an information element that specifies the HARQ Process to which DCI is applied.
  • the value stored in the NDI is an information element for specifying whether or not the data to which DCI is applied is the initial data.
  • the value stored in the RV field is an information element that specifies the redundancy of the data to which DCI is applied.
  • DCI includes Time Domain Resource Allocation (TDRA) for Uplink Channel (PUSCH).
  • TDRA Time Domain Resource Allocation
  • PUSCH Uplink Channel
  • the DCI including the TDRA of PUSCH may be a DCI of Format 0_0, Format 0_1 or Format 0_2.
  • the coding / decoding unit 250 executes data division / concatenation and channel coding / decoding for each predetermined communication destination (gNB100 or other gNB).
  • the coding / decoding unit 250 divides the data output from the data transmission / reception unit 260 into predetermined sizes, and executes channel coding for the divided data. Further, the coding / decoding unit 250 decodes the data output from the modulation / demodulation unit 230 and concatenates the decoded data.
  • the data transmission / reception unit 260 executes transmission / reception of Protocol Data Unit (PDU) and Service Data Unit (SDU).
  • the data transmitter / receiver 260 is a PDU / SDU in a plurality of layers (such as a medium access control layer (MAC), a radio link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble / disassemble the.
  • the data transmission / reception unit 260 executes data error correction and retransmission control based on the hybrid ARQ (Hybrid automatic repeat request).
  • the control unit 270 controls each functional block constituting the UE 200.
  • the control unit 270 controls the RACH procedure described above.
  • step S10 the UE 200 receives a signal notified from the NG RAN 20.
  • the signal notified from the NG RAN 20 may include an SS / PBCH block.
  • the signal notified from the NG RAN 20 may include system information.
  • the system information may include settings related to RACH procedures (eg, RACH-Config).
  • RACH-Config may be included in SIB (System Information Block).
  • RACH-Config may be an RRC information element (TS38.331 V16.1.0 (see ⁇ 6.3.2 “Radio resource control Information elements”).
  • step S11 UE200 sends a first message (Msg1) including RACH preamble to NG RAN20.
  • the UE200 may repeat the transmission of Msg1 while increasing the transmission power of Msg1 (powerRamping).
  • step S12 UE200 receives a second message (Msg2) from NG RAN20 as a response message to Msg1.
  • Msg2 includes RAR (RandomAccessResponse) and TA.
  • Msg3 contains a UE ID that identifies the UE 200.
  • the UEID contained in Msg3 is used for Msg3 conflict resolution.
  • the UE ID may include C-RNTI (Cell-Radio Network Temporary Identifier).
  • UE200 receives a fourth message (Msg4) from NG RAN20 as a response message to Msg3.
  • Msg4 includes a UE ID (hereinafter, Contention resolution ID) that identifies the UE 200.
  • the Contention resolution ID may be the same as the UE ID included in Msg3.
  • the UE200 may determine whether or not Msg4 can be received based on the Contention resolution ID, and if Msg4 cannot be received, execute the retransmission control of Msg3.
  • step S15 the UE 200 transmits a response signal (HARQ-ACK) indicating whether or not Msg4 has been received to the NG RAN 20.
  • HARQ-ACK response signal
  • step S11 the procedure specified in 3GPP TS38.321 V16.2.1 ⁇ 5.1 “Random Access procedure” may be used.
  • step S20 the UE 200 receives a signal notified from the NG RAN 20.
  • the signal notified from the NG RAN 20 may include an SS / PBCH block.
  • the signal notified from the NG RAN 20 may include system information.
  • the system information may include settings related to RACH procedures (eg, RACH-Config).
  • RACH-Config may be included in SIB (System Information Block).
  • RACH-Config may be an RRC information element (TS38.331 V16.1.0 (see ⁇ 6.3.2 “Radio resource control Information elements”).
  • UE200 sends MsgA including RACH preamble to NG RAN20.
  • the UE200 may repeat the transmission of MsgA while increasing the transmission power of Msg1 (power ramping).
  • MsgA also has the functions of Msg1 and Msg3 described above. Therefore, MsgA includes the UEID used for conflict resolution in addition to the RACH preamble.
  • step S22 UE200 receives MsgB as a response message to MsgA.
  • MsgB also has the functions of Msg2 and Msg4 described above. Therefore, MsgB includes RAR, TA and Contention resolution ID.
  • the UE200 may determine whether or not MsgB can be received based on the Contention resolution ID, and if MsgB cannot be received, execute MsgA retransmission control.
  • step S23 the UE 200 transmits a response signal (HARQ-ACK) indicating whether or not MsgB has been received to the NG RAN 20.
  • HARQ-ACK response signal
  • step S21 the procedure specified in 3GPP TS38.321 V16.2.1 ⁇ 5.1 “Random Access procedure” may be used.
  • step S30 the UE 200 receives a signal notified from the NG RAN 20.
  • the signal notified from the NG RAN 20 may include an SS / PBCH block.
  • the signal notified from the NG RAN 20 may include system information.
  • the system information may include settings related to RACH procedures (eg, RACH-Config).
  • RACH-Config may be included in SIB (System Information Block).
  • RACH-Config may be an RRC information element (TS38.331 V16.1.0 (see ⁇ 6.3.2 “Radio resource control Information elements”).
  • the RACH-Config may include an information element (for example, msgX-RSRP-Threshold) indicating a specific quality to be compared with the reception quality of the signal notified from the NG RAN 20.
  • RACH-Config may include an information element (eg, msgX-TransMax) indicating the maximum number of MsgX retransmission attempts.
  • RACH-Config may include an information element indicating the setting of the reference signal used for demodulation of MsgX.
  • RACH-Config may include an information element (eg, msgX-DMRS-Config) indicating the setting of the reference signal used for demodulation of MsgX.
  • RACH-Config may include an information element (for example, MsgX-PUSCH-Resource config) indicating the resource setting of the transmission opportunity of MsgX.
  • RACH-Config may include an information element indicating the reception window length (msgY-ResponseWindow) of MsgY.
  • step S31 the UE 200 sends MsgX without the RACH preamble to the NG RAN 20 when the predetermined conditions are met.
  • MsgX also has the functions of Msg1 and Msg3 described above. Therefore, MsgX includes a UE ID used for conflict resolution. However, it should be noted that MsgX, unlike MsgA, does not contain RACH preambles.
  • the predetermined condition may include a condition in which the reception quality of the signal (for example, SS / PBCH block) notified from the NG RAN 20 is better than the specific quality.
  • the predetermined condition may include a condition in which the number of transmissions of MsgX does not exceed the maximum number of transmission attempts.
  • step S32 UE200 receives MsgY as a response message to MsgX.
  • MsgY also has the functions of Msg2 and Msg4 described above. Therefore, MsgY includes TA, RAR and Contention resolution ID.
  • NGRAN20 cannot consider the time difference due to the delay when receiving the PUSCH of MsgX. However, NGRAN20 can notify TA instructions with MsgY by referring to PUSCHDMRS of MsgX.
  • the UE200 may determine whether or not MsgY can be received based on the Contention resolution ID, and if MsgY cannot be received, execute MsgX retransmission control.
  • step S33 the UE 200 transmits a response signal (HARQ-ACK) indicating whether or not MsgY has been received to the NG RAN 20.
  • HARQ-ACK response signal
  • the UE 200 transmits MsgX without RACH preamble and receives MsgY without TA in the RACH procedure.
  • a new RACH procedure using MsgX without RACH preamble and MsgY without TA (eg, type 3 RACH procedure) is introduced.
  • the overhead can be reduced and the delay can be reduced by the new RACH procedure.
  • the TA applied to the UE 200 is small in a small cell using a high frequency, it is effective to apply the type 3 RACH procedure in such a case.
  • Modification 1 describes a method of applying the maximum number of retransmission attempts of MsgX described above.
  • a case where the UE 200 can execute the RACH procedure of type 1, type 2, and type 3 as the RACH procedure will be described.
  • a new information element for example, msgX-TransMax
  • the information element for example, msgA-TransMax
  • the maximum number of retransmission attempts of type 2 MsgA is defined separately from msgX-TransMax.
  • the UE200 ends the type 3 RACH procedure and starts the type 2 RACH procedure. If the RACH procedure of type 2 does not succeed even if the number of transmissions of MsgA reaches the maximum number of retransmission attempts specified by msgA-TransMax, the UE200 terminates the RACH procedure of type 2 and RACH of type 1. Start the procedure.
  • the RACH procedure of type 3 does not succeed even if the number of transmissions of MsgX reaches the maximum number of retransmission attempts specified by msgX-TransMax.
  • UE200 ends the type 3 RACH procedure and starts the type 1 RACH procedure.
  • a method of skipping the RACH procedure of type 2 a method of setting a value larger than the maximum number of retransmission attempts of MsgA as the maximum number of retransmission attempts of MsgX may be used, and the RACH procedure of type 2 may be used. It may be a method of notifying in advance an information element indicating that the above is skipped.
  • msgA-TransMax may include an information element indicating the maximum number of retransmission attempts of MsgX in addition to the information element indicating the maximum number of retransmission attempts of MsgA.
  • msgA-TransMax may include an information element indicating the maximum number of retransmission attempts of MsgA without including an information element indicating the maximum number of retransmission attempts of MsgX. In such a case, the maximum number of retransmission attempts of MsgX may be treated as the same as the maximum number of retransmission attempts of MsgA.
  • the UE200 ends the type 3 RACH procedure and starts the type 2 RACH procedure. If the RACH procedure of type 2 does not succeed even if the number of transmissions of MsgA reaches the maximum number of retransmission attempts specified by msgA-TransMax, the UE200 terminates the RACH procedure of type 2 and RACH of type 1. Start the procedure.
  • the RACH procedure of type 3 does not succeed even if the number of transmissions of MsgX reaches the maximum number of retransmission attempts specified by msgA-TransMax.
  • UE200 ends the type 3 RACH procedure and starts the type 1 RACH procedure.
  • the method of skipping the type 2 RACH procedure may be a method in which the information element indicating the maximum number of MsgA retransmission attempts is not included in msgA-TransMax, and the type 2 RACH procedure is skipped. It may be a method of notifying in advance an information element indicating that effect.
  • the UE 200 may receive system information from the network that includes information elements that specify the trial order of three or more types of RACH procedures.
  • Information elements that specify the trial order of RACH procedures may be included in the SS / PBCH block described above.
  • Information elements that specify the trial order of RACH procedures may be included in the RACH-Config described above.
  • the information element that specifies the trial order of the RACH procedure may be an information element (flag information) indicating that the RACH procedure of type 2 is skipped.
  • the information element that specifies the trial order of the RACH procedure may be considered to be an information element (for example, msgX-TransMax) that indicates the maximum number of retransmission attempts of MsgX for which a value larger than the maximum number of retransmission attempts of MsgA is set. ..
  • the information element that specifies the trial order of the RACH procedure may be considered to be msgA-TransMax that does not include the information element indicating the maximum number of retransmission attempts of MsgA in order to skip the type 2 RACH procedure.
  • the UE200 may include the C-RNTI in MsgX as a UEID for conflict resolution.
  • CCCH Common Control Channel
  • SDU Service Data Unit
  • the CCCH SDU may contain information that can identify the UE 200.
  • UE200 may repeat the transmission of MsgX while increasing the transmission power of MsgX (power ramping). In such a case, the UE 200 may receive an information element indicating the power ramping setting from the NG RAN 20.
  • UE200 may repeat the transmission of MsgX without changing the transmission power of MsgX. In such a case, the UE200 does not have to receive the information element indicating the power ramping setting from the NG RAN 20.
  • a new PUSCH occurrence is defined as a PUSCH occupation used for transmission of MsgX (RACH procedure of type 3)
  • the UE200 receives an information element that specifies the PUSCH occurrence and DMRS port used in the RACH procedure of type 3 from the NG RAN 20 for each SS / PBCH block.
  • Such an information element may include an information element indicating the number of PUSCH occurrences and DMRS ports.
  • the NG RAN20 is the PUSCH occurrence used in the type 3 RACH procedure in the order of frequency, DMRS port and time in the PUSCH resource associated with the SS / PBCH block index (eg, SSBIndex). May be assigned.
  • the existing PUSCH occurrence is used as the PUSCH occurrence used for MsgX transmission (type 3 RACH procedure).
  • the existing PUSCH occurrence may be the PUSCH occurrence used for transmitting MsgA.
  • the UE 200 may use the frequency and time resources specified by the MsgA-PUSCH-Resource config as the PUSCH occurrence used in the type 3 RACH procedure.
  • UE200 receives MsgY as a response message of MsgX. If the UE200 stores the C-RNTI, the UE200 may decode the PDCCH (MsgY) based on the C-RNTI. If the UE200 does not remember the C-RNTI, the UE200 may decode the PDCCH (MsgY) based on the RNTI corresponding to the PUSCH time and frequency resources.
  • the RNTI corresponding to the MsgX PUSCH resource may be referred to as the MsgY-RNTI.
  • NGRAN20 If NGRAN20 succeeds in receiving MsgX, it sends MsgY including at least ContentionresolutionID to UE200.
  • MsgY may include information related to TPC (Transmission Power Command), C-RNTI and PUCCH.
  • NG RAN20 does not send MsgY to UE200 if it fails to receive MsgX.
  • the UE200 determines that the transmission of MsgX has failed when MsgY is not transmitted from NGRAN20 and MsgY cannot be received from NGRAN20.
  • the RNTI (MsgY-RNTI) corresponding to the MsgX PUSCH resource may be calculated as shown below based on the MsgX PUSCH resource.
  • the block configuration diagram (FIG. 4) used in the description of the above-described embodiment shows a block of functional units.
  • These functional blocks are realized by any combination of at least one of hardware and software.
  • the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't.
  • a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • the realization method is not particularly limited.
  • FIG. 8 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 8, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function in the device is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (eg Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (eg RRC signaling, Medium Access Control (MAC) signaling, Master Information Block). (MIB), System Information Block (SIB)), other signals or combinations thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling eg RRC signaling, Medium Access Control (MAC) signaling, Master Information Block). (MIB), System Information Block (SIB)
  • RRC signaling may also be referred to as an RRC message, eg, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobileBroadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand
  • Bluetooth® Ultra-WideBand
  • other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them. It may be applied to one.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in this disclosure may be performed by its upper node (upper node).
  • various operations performed for communication with the terminal are the base station and other network nodes other than the base station (eg, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table.
  • the input / output information may be overwritten, updated, or added.
  • the output information may be deleted.
  • the entered information may be transmitted to other devices.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit notification, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software may use at least one of wired technology (coaxial cable, fiber optic cable, twist pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.) to create a website.
  • wired technology coaxial cable, fiber optic cable, twist pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a remote radio for indoor use). Communication services can also be provided by Head: RRH).
  • RRH Remote Radio Head
  • cell refers to a part or all of the coverage area of at least one of the base station providing communication services in this coverage and the base station subsystem.
  • MS Mobile Station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same shall apply hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the functions of the base station.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
  • the subframe may be further composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval: TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time region.
  • the slot may be a unit of time based on numerology.
  • the slot may include a plurality of mini slots.
  • Each minislot may be composed of one or more symbols in the time domain. Further, the mini-slot may be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • Wireless frames, subframes, slots, mini slots and symbols all represent time units when transmitting signals.
  • the radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. May be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • a base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • TTI with a time length of 1 ms may be called normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
  • Physical RB Physical RB: PRB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) may represent a subset of consecutive common resource blocks for a neurology in a carrier. good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, as well as the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-comprehensive examples, the radio frequency region.
  • Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc. can be considered to be “connected” or “coupled” to each other.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applied standard.
  • RS Reference Signal
  • Pilot pilot
  • each of the above devices may be replaced with a "part”, a “circuit”, a “device”, or the like.
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as “judgment” or “decision”.
  • judgment and “decision” are considered to be “judgment” and “decision” when the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming", “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Radio communication system 20 NG-RAN 100 gNB 200 UE 210 Wireless signal transmitter / receiver 220 Amplifier 230 Modulator / demodulator 240 Control signal / reference signal processing 250 Encoding / decoding 260 Data transmitter / receiver 270 Control 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This user equipment comprises: a transmission unit that, during a random access channel procedure, transmits a first specific message if a prescribed condition is not met, said first specific message not including a random access preamble; and a reception unit that, during the random access channel procedure, receives a second specific message as a response message to the first specific message, said second specific message not including a timing advance command.

Description

端末Terminal
 本開示は、無線通信を実行する端末、特に、ランダムアクセスチャネル手順において物理上りリンク共有チャネルを介してメッセージを送信する端末に関する。 The present disclosure relates to a terminal that performs wireless communication, in particular a terminal that transmits a message via a physical uplink shared channel in a random access channel procedure.
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also known as 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
 3GPPのRelease 15及びRelease 16(NR)では、複数の周波数レンジ、具体的には、FR1(410 MHz~7.125 GHz)及びFR2(24.25 GHz~52.6 GHz)を含む帯域の動作が仕様化されている。 In 3GPP Release 15 and Release 16 (NR), the operation of multiple frequency ranges, specifically, the band including FR1 (410MHz-7.125GHz) and FR2 (24.25GHz-52.6GHz) is specified. ..
 3GPPでは、端末(UE(User Equipment))がネットワークに接続するための手順として、ランダムアクセスチャネル(RACH(Random Access Channel)手順が定義されている。RACH手順としては、4段階の手順を含む4-step RACH手順と、2段階の手順を含む2-step RACH手順と、が規定されている(例えば、非特許文献1)。 In 3GPP, a random access channel (RACH (RandomAccessChannel) procedure) is defined as a procedure for a terminal (UE (User Equipment)) to connect to a network. The RACH procedure includes a four-step procedure 4 -A step RACH procedure and a 2-step RACH procedure including a two-step procedure are specified (for example, Non-Patent Document 1).
 このような背景下において、発明者等は、将来的に要求される超低遅延通信に着目し、鋭意検討の結果、RACH手順のオーバーヘッド削減及び低遅延化を実現する方法を見出した。 Against this background, the inventors have focused on ultra-low latency communication that will be required in the future, and as a result of diligent studies, have found a method for reducing the overhead and lower latency of the RACH procedure.
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、ランダムアクセス手順のオーバーヘッド削減及び低遅延化を実現し得る端末の提供を目的とする。 Therefore, the following disclosure was made in view of such a situation, and aims to provide a terminal capable of reducing the overhead and the delay of the random access procedure.
 本開示は、端末であって、ランダムアクセスチャネル手順において、所定条件が満たされる場合に、ランダムアクセスプリアンブルを含まない第1特定メッセージを送信する送信部と、前記ランダムアクセスチャネル手順において、前記第1特定メッセージに対する応答メッセージとして、タイミングアドバンスコマンドを含まない第2特定メッセージを受信する受信部と、を備える、ことを要旨とする。 The present disclosure comprises a transmission unit that is a terminal and transmits a first specific message not including a random access preamble when a predetermined condition is satisfied in the random access channel procedure, and the first in the random access channel procedure. The gist is that the response message to the specific message includes a receiving unit that receives the second specific message that does not include the timing advance command.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10. 図2は、無線通信システム10において用いられる周波数レンジを示す図である。FIG. 2 is a diagram showing a frequency range used in the wireless communication system 10. 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。FIG. 3 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10. 図4は、UE200の機能ブロック構成図である。FIG. 4 is a functional block configuration diagram of the UE 200. 図5は、type 1のRACH手順を説明するための図である。FIG. 5 is a diagram for explaining the RACH procedure of type 1. 図6は、type 2のRACH手順を説明するための図である。FIG. 6 is a diagram for explaining the RACH procedure of type 2. 図7は、type 3のRACH手順を説明するための図である。FIG. 7 is a diagram for explaining the RACH procedure of type 3. 図8は、UE200のハードウェア構成の一例を示す図である。FIG. 8 is a diagram showing an example of the hardware configuration of the UE 200.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. The same functions and configurations are designated by the same or similar reference numerals, and the description thereof will be omitted as appropriate.
 [実施形態]
 (1)無線通信システムの全体概略構成
 図1は、実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(以下、UE200)を含む。
[Embodiment]
(1) Overall Schematic Configuration of Wireless Communication System FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the embodiment. The wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a terminal 200 (hereinafter, UE200)).
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。 The wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution or 6G.
 NG-RAN20は、無線基地局100A(以下、gNB100A)及び無線基地局100B(以下、gNB100B)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 NG-RAN20 includes a radio base station 100A (hereinafter, gNB100A) and a radio base station 100B (hereinafter, gNB100B). The specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。 The NG-RAN20 actually contains multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G. In addition, NG-RAN20 and 5GC may be simply expressed as "network".
 gNB100A及びgNB100Bは、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100A、gNB100B及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時2以上のトランスポートブロックに通信を行うデュアルコネクティビティ(DC)などに対応することができる。 GNB100A and gNB100B are radio base stations according to 5G, and execute wireless communication according to UE200 and 5G. The gNB100A, gNB100B and UE200 are Massive MIMO (Multiple-Input Multiple-Output) and multiple component carriers (CC) that generate beam BM with higher directivity by controlling radio signals transmitted from multiple antenna elements. ) Can be bundled and used for carrier aggregation (CA), and dual connectivity (DC) for simultaneously communicating with two or more transport blocks between the UE and each of the two NG-RAN Nodes.
 また、無線通信システム10は、複数の周波数レンジ(FR)に対応する。図2は、無線通信システム10において用いられる周波数レンジを示す。 In addition, the wireless communication system 10 supports a plurality of frequency ranges (FR). FIG. 2 shows the frequency range used in the wireless communication system 10.
 図2に示すように、無線通信システム10は、FR1及びFR2に対応する。各FRの周波数帯は、次のとおりである。 As shown in FIG. 2, the wireless communication system 10 corresponds to FR1 and FR2. The frequency bands of each FR are as follows.
 ・FR1:410 MHz~7.125 GHz
 ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30または60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60,または120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
・ FR1: 410 MHz to 7.125 GHz
・ FR2: 24.25 GHz to 52.6 GHz
In FR1, Sub-Carrier Spacing (SCS) of 15, 30 or 60 kHz is used, and a bandwidth (BW) of 5 to 100 MHz may be used. FR2 has a higher frequency than FR1, and SCS of 60, or 120 kHz (240 kHz may be included) is used, and a bandwidth (BW) of 50 to 400 MHz may be used.
 なお、SCSは、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける一つのサブキャリア間隔と対応する。 SCS may be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier interval in the frequency domain.
 さらに、無線通信システム10は、FR2の周波数帯よりも高周波数帯にも対応する。具体的には、無線通信システム10は、52.6GHzを超え、114.25GHzまでの周波数帯に対応する。このような高周波数帯は、便宜上「FR2x」と呼ばれてもよい。 Furthermore, the wireless communication system 10 also supports a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 corresponds to a frequency band exceeding 52.6 GHz and up to 114.25 GHz. Such a high frequency band may be referred to as "FR2x" for convenience.
 このような問題を解決するため、52.6GHzを超える帯域を用いる場合、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。 To solve this problem, when using a band exceeding 52.6 GHz, Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-) with a larger Sub-Carrier Spacing (SCS) S-OFDM) may be applied.
 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。 FIG. 3 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
 図3に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。SCSは、図3に示す間隔(周波数)に限定されない。例えば、480kHz、960kHzなどが用いられてもよい。 As shown in FIG. 3, one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period). The SCS is not limited to the interval (frequency) shown in FIG. For example, 480 kHz, 960 kHz, etc. may be used.
 また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28、56シンボル)。さらに、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。 Further, the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28, 56 symbols). In addition, the number of slots per subframe may vary from SCS to SCS.
 なお、図3に示す時間方向(t)は、時間領域、シンボル期間またはシンボル時間などと呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、バンド幅部分(BWP: Bandwidth part)などと呼ばれてもよい。 The time direction (t) shown in FIG. 3 may be referred to as a time domain, a symbol period, a symbol time, or the like. Further, the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a bandwidth part (BWP: Bandwidth part), or the like.
 DMRSは、参照信号の一種であり、各種チャネル用に準備される。ここでは、特に断りがない限り、下りデータチャネル、具体的には、PDSCH(Physical Downlink Shared Channel)用のDMRSを意味してよい。但し、上りデータチャネル、具体的には、PUSCH(Physical Uplink Shared Channel)用のDMRSは、PDSCH用のDMRSと同様と解釈されてもよい。 DMRS is a kind of reference signal and is prepared for various channels. Here, unless otherwise specified, it may mean a downlink data channel, specifically, a DMRS for PDSCH (Physical Downlink Shared Channel). However, the upstream data channel, specifically, the DMRS for PUSCH (Physical Uplink Shared Channel) may be interpreted in the same manner as the DMRS for PDSCH.
 DMRSは、デバイス、例えば、コヒーレント復調の一部分として、UE200におけるチャネル推定に用い得る。DMRSは、PDSCH送信に使用されるリソースブロック(RB)のみに存在してよい。 DMRS can be used for channel estimation in UE200 as part of a device, eg, coherent demodulation. DMRS may only be present in the resource block (RB) used for PDSCH transmission.
 DMRSは、複数のマッピングタイプを有してよい。具体的には、DMRSは、マッピングタイプA及びマッピングタイプBを有する。マッピングタイプAでは、最初のDMRSは、スロットの2または3番目のシンボルに配置される。マッピングタイプAでは、DMRSは、実際のデータ送信がスロットのどこで開始されるかに関係なく、スロット境界を基準にしてマッピングされてよい。最初のDMRSがスロットの2または3番目のシンボルに配置される理由は、制御リソースセット(CORESET:control resource sets)の後に最初のDMRSを配置するためと解釈されてもよい。 DMRS may have multiple mapping types. Specifically, DMRS has mapping type A and mapping type B. In mapping type A, the first DMRS is placed in the second or third symbol of the slot. In mapping type A, DMRS may be mapped relative to the slot boundaries, regardless of where the actual data transmission begins in the slot. The reason why the first DMRS is placed in the second or third symbol of the slot may be interpreted as placing the first DMRS after the control resource sets (CORESET).
 マッピングタイプBでは、最初のDMRSがデータ割り当ての最初のシンボルに配置されてよい。すなわち、DMRSの位置は、スロット境界に対してではなく、データが配置されている場所に対して相対的に与えられてよい。 In mapping type B, the first DMRS may be placed in the first symbol of the data allocation. That is, the DMRS position may be given relative to where the data is located, rather than relative to the slot boundaries.
 また、DMRSは、複数の種類(Type)を有してよい。具体的には、DMRSは、Type 1及びType 2を有する。Type 1とType 2とは、周波数領域におけるマッピング及び直交参照信号(orthogonal reference signals)の最大数が異なる。Type 1は、単一シンボル(single-symbol)DMRSで最大4本の直交信号を出力でき、Type 2は、二重シンボル(double-symbol)DMRSで最大8本の直交信号を出力できる。 Also, DMRS may have multiple types. Specifically, DMRS has Type 1 and Type 2. Type 1 and Type 2 differ in the maximum number of mappings and orthogonal reference signals in the frequency domain. Type 1 can output up to 4 orthogonal signals with a single-symbol DMRS, and Type 2 can output up to 8 orthogonal signals with a double-symbol DMRS.
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、UE200の機能ブロック構成について説明する。
(2) Functional block configuration of the wireless communication system Next, the functional block configuration of the wireless communication system 10 will be described. Specifically, the functional block configuration of UE200 will be described.
 図4は、UE200の機能ブロック構成図である。図4に示すように、UE200は、無線信号送受信部210、アンプ部220、変復調部230、制御信号・参照信号処理部240、符号化/復号部250、データ送受信部260及び制御部270を備える。 FIG. 4 is a functional block configuration diagram of UE200. As shown in FIG. 4, the UE 200 includes a radio signal transmission / reception unit 210, an amplifier unit 220, a modulation / demodulation unit 230, a control signal / reference signal processing unit 240, a coding / decoding unit 250, a data transmission / reception unit 260, and a control unit 270. ..
 無線信号送受信部210は、NRに従った無線信号を送受信する。無線信号送受信部210は、Massive MIMO、複数のCCを束ねて用いるCA、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うDCなどに対応する。 The radio signal transmission / reception unit 210 transmits / receives a radio signal according to NR. The radio signal transmission / reception unit 210 corresponds to Massive MIMO, a CA that bundles a plurality of CCs, and a DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes.
 実施形態では、無線信号送受信部210は、ランダムアクセス手順(以下、RACH(Random Access Channel)手順)を実行する。RACH手順としては、4-step RACH手順及び2-step RACH手順が知られているが、実施形態では、無線信号送受信部210は、以下に示すRACH手順を実行し得る。4-step RACH手順は、type 1と呼称されてもよく、2-step RACH手順は、type 2と呼称されてもよい。以下に示すRACH手順は、type 3と呼称されてもよい。 In the embodiment, the radio signal transmission / reception unit 210 executes a random access procedure (hereinafter, RACH (RandomAccessChannel) procedure). As the RACH procedure, a 4-step RACH procedure and a 2-step RACH procedure are known, but in the embodiment, the radio signal transmission / reception unit 210 can execute the RACH procedure shown below. The 4-step RACH procedure may be referred to as type 1, and the 2-step RACH procedure may be referred to as type 2. The RACH procedure shown below may be referred to as type 3.
 具体的には、無線信号送受信部210は、RACH手順において、所定条件が満たされる場合に、ランダムアクセスプリアンブル(以下、RACHプリアンブル)を含まない第1特定メッセージを送信する送信部を構成する。無線信号送受信部210は、RACH手順において、RACH手順において、第1特定メッセージに対する応答メッセージとして、タイミングアドバンスコマンド(以下、単にTA(Timing Advance))を含まない第2特定メッセージを受信する受信部を構成する。TAは、UE200が上りリンク信号の送信タイミングを調整するために用いられるコマンドである。ここで、第1特定メッセージは、メッセージX(以下、MsgX)と呼称されてもよく、第2特定メッセージは、メッセージY(以下、MsgY)と呼称されてもよい。 Specifically, the radio signal transmission / reception unit 210 constitutes a transmission unit that transmits a first specific message that does not include a random access preamble (hereinafter referred to as RACH preamble) when a predetermined condition is satisfied in the RACH procedure. In the RACH procedure, the radio signal transmission / reception unit 210 receives a second specific message that does not include a timing advance command (hereinafter, simply TA (Timing Advance)) as a response message to the first specific message in the RACH procedure. Configure. TA is a command used by the UE 200 to adjust the transmission timing of the uplink signal. Here, the first specific message may be referred to as message X (hereinafter, MsgX), and the second specific message may be referred to as message Y (hereinafter, MsgY).
 所定条件は、ネットワーク(例えば、NG RAN20)から報知される信号の受信品質が特定品質よりも良好である条件及び第1特定メッセージ(MsgX)の送信回数が最大送信試行回数を超えていない条件の少なくともいずれか1つを含む。NG RAN20から報知される信号は、SS/PBCH(Synchronization Signals/Physical Broadcast Channel)ブロックを含んでもよい。受信品質は、RSRP(Reference Signal Received Power)を含んでもよい。 The predetermined conditions are the condition that the reception quality of the signal notified from the network (for example, NG RAN20) is better than the specific quality and the condition that the number of transmissions of the first specific message (MsgX) does not exceed the maximum number of transmission attempts. Includes at least one. The signal notified from the NG RAN 20 may include an SS / PBCH (Synchronization Signals / Physical Broadcast Channel) block. The reception quality may include RSRP (Reference Signal Received Power).
 無線信号送受信部210は、特定閾値及び最大送信回数の少なくともいずれか1つを示す情報要素を含むシステム情報をネットワークから受信してもよい。 The radio signal transmission / reception unit 210 may receive system information from the network including an information element indicating at least one of a specific threshold value and a maximum number of transmissions.
 特定品質を示す情報要素は、type 3のRACH手順を適用するか否かを判定するための閾値を示す情報要素である。特定品質を示す情報要素は、type 2のRACH手順を適用するか否かを判定するための閾値を示す情報要素(例えば、msgA-RSRP-Threshold)と同じ情報要素であってもよい。特定品質を示す情報要素は、type 2のRACH手順を適用するか否かを判定するための閾値を示す情報要素と異なる情報要素であってもよい。特定品質は、type 2のRACH手順を適用するか否かを判定するための閾値よりも小さくてもよい。特定品質を示す情報要素は、msgX-RSRP-Thresholdと呼称されてもよい。 The information element indicating the specific quality is an information element indicating a threshold value for determining whether or not to apply the RACH procedure of type 3. The information element indicating the specific quality may be the same information element as the information element indicating the threshold value for determining whether or not to apply the RACH procedure of type 2 (for example, msgA-RSRP-Threshold). The information element indicating the specific quality may be an information element different from the information element indicating the threshold value for determining whether or not to apply the RACH procedure of type 2. The specific quality may be smaller than the threshold for determining whether to apply the type 2 RACH procedure. The information element indicating a specific quality may be referred to as msgX-RSRP-Threshold.
 最大送信試行回数を示す情報要素は、type 3のRACH手順において、MsgXの再送を試行可能な最大回数を示す情報要素である。最大送信試行回数を示す情報要素は、type 2のRACH手順においてMsgAの再送を試行可能な最大回数を示す情報要素(例えば、msgA-transMax)と同じ情報要素であってもよい。最大送信試行回数を示す情報要素は、type 2のRACH手順においてMsgAの再送を試行可能な最大回数を示す情報要素(例えば、msgA-transMax)と異なる情報要素であってもよい。最大送信試行回数を示す情報要素は、msgX-TransMaxと呼称されてもよい。 The information element indicating the maximum number of transmission attempts is an information element indicating the maximum number of times that MsgX can be retransmitted in the type 3 RACH procedure. The information element indicating the maximum number of transmission attempts may be the same as the information element indicating the maximum number of times MsgA can be retransmitted in the type 2 RACH procedure (for example, msgA-transMax). The information element indicating the maximum number of transmission attempts may be different from the information element indicating the maximum number of times MsgA can be retransmitted in the type 2 RACH procedure (for example, msgA-transMax). The information element indicating the maximum number of transmission attempts may be referred to as msgX-TransMax.
 無線信号送受信部210は、第1特定メッセージ(MsgX)の復調に用いる参照信号の設定、第1特定メッセージ(MsgX)の送信機会のリソース設定及び第2特定メッセージ(MsgY)の受信ウインドウ長の少なくともいずれか1つを示す情報要素を含むシステム情報をネットワークから受信してもよい。 The wireless signal transmission / reception unit 210 sets at least the reference signal used for demodulating the first specific message (MsgX), the resource setting of the transmission opportunity of the first specific message (MsgX), and the reception window length of the second specific message (MsgY). System information including an information element indicating any one may be received from the network.
 MsgXの復調に用いる参照信号の設定を示す情報要素は、type 2のRACH手順においてMsgAの復調に用いる参照信号の設定を示す情報要素(msgA-DMRS-Config)と同じ値であってもよい。MsgXの復調に用いる参照信号の設定を示す情報要素は、type 2のRACH手順においてMsgAの復調に用いる参照信号の設定を示す情報要素(msgA-DMRS-Config)と異なる情報要素であってもよい。MsgXの復調に用いる参照信号の設定は、msgX-DMRS-Configと呼称されてもよい。このようなケースにおいて、MsgXの復調に用いる参照信号の設定の少なくとも一部は、MsgAの復調に用いる参照信号の設定と重複してもよい。言い換えると、MsgAの復調に用いる参照信号の設定の少なくとも一部は、MsgXの復調に用いる参照信号の設定と共有されてもよい。 The information element indicating the setting of the reference signal used for demodulation of MsgX may be the same value as the information element (msgA-DMRS-Config) indicating the setting of the reference signal used for demodulation of MsgA in the RACH procedure of type 2. The information element indicating the setting of the reference signal used for demodulation of MsgX may be different from the information element (msgA-DMRS-Config) indicating the setting of the reference signal used for demodulation of MsgA in the RACH procedure of type 2. .. The reference signal setting used for demodulation of MsgX may be referred to as msgX-DMRS-Config. In such a case, at least a part of the reference signal setting used for demodulation of MsgX may overlap with the setting of the reference signal used for demodulation of MsgA. In other words, at least part of the reference signal settings used for MsgA demodulation may be shared with the reference signal settings used for MsgX demodulation.
 MsgXの送信機会のリソース設定を示す情報要素は、type 2のRACH手順においてMsgAの送信機会(PUSCH occasion)のリソース設定(MsgA-PUSCH-Resource config)と同じ情報要素であってもよい。MsgXの送信機会のリソース設定を示す情報要素は、type 2のRACH手順においてMsgAの送信機会(PUSCH occasion)のリソース設定(MsgA-PUSCH-Resource config)と異なる情報要素であってもよい。MsgXの送信機会のリソース設定を示す情報要素は、MsgX-PUSCH-Resource configと呼称されてもよい。このようなケースにおいて、MsgXの送信機会のリソース設定の少なくとも一部は、MsgAの送信機会のリソース設定と重複してもよい。言い換えると、MsgAの送信機会のリソース設定の少なくとも一部は、MsgXの送信機会のリソース設定と共有されてもよい。 The information element indicating the resource setting of the transmission opportunity of MsgX may be the same information element as the resource setting (MsgA-PUSCH-Resource config) of the transmission opportunity (PUSCH Occasion) of MsgA in the RACH procedure of type 2. The information element indicating the resource setting of the transmission opportunity of MsgX may be different from the resource setting (MsgA-PUSCH-Resource config) of the transmission opportunity (PUSCH Occasion) of MsgA in the RACH procedure of type 2. The information element indicating the resource setting of the transmission opportunity of MsgX may be referred to as MsgX-PUSCH-Resource config. In such cases, at least part of the MsgX transmission opportunity resource settings may overlap with the MsgA transmission opportunity resource settings. In other words, at least a portion of MsgA's transmission opportunity resource settings may be shared with MsgX's transmission opportunity resource settings.
 MsgYの受信ウインドウ長は、type 2のRACH手順におけるMsgBの受信ウインドウ(例えば、msgB-ResponseWindow)と同じ値であってもよい。MsgYの受信ウインドウ長は、type 2のRACH手順におけるMsgBの受信ウインドウ(例えば、msgB-ResponseWindow)と異なる値であってもよい。MsgYの受信ウインドウ長は、msgY-ResponseWindowと呼称されてもよい。 The reception window length of MsgY may be the same value as the reception window of MsgB (for example, msgB-ResponseWindow) in the RACH procedure of type 2. The reception window length of MsgY may be a value different from the reception window of MsgB (for example, msgB-ResponseWindow) in the RACH procedure of type 2. The reception window length of MsgY may be referred to as msgY-ResponseWindow.
 アンプ部220は、PA (Power Amplifier)/LNA (Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。 The amplifier unit 220 is composed of PA (Power Amplifier) / LNA (Low Noise Amplifier) and the like. The amplifier unit 220 amplifies the signal output from the modulation / demodulation unit 230 to a predetermined power level. Further, the amplifier unit 220 amplifies the RF signal output from the radio signal transmission / reception unit 210.
 変復調部230は、所定の通信先(gNB100または他のgNB)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部230では、Cyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも用いられてもよい。 The modulation / demodulation unit 230 executes data modulation / demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100 or other gNB). Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-S-OFDM) may be applied to the modulation / demodulation unit 230. Further, the DFT-S-OFDM may be used not only for the uplink (UL) but also for the downlink (DL).
 制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号に関する処理、及びUE200が送受信する各種の参照信号に関する処理を実行する。 The control signal / reference signal processing unit 240 executes processing related to various control signals transmitted / received by the UE 200 and processing related to various reference signals transmitted / received by the UE 200.
 具体的には、制御信号・参照信号処理部240は、gNB100から所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部240は、gNB100に向けて、所定の制御チャネルを介して各種の制御信号を送信する。 Specifically, the control signal / reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, control signals of the radio resource control layer (RRC). Further, the control signal / reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
 制御信号・参照信号処理部240は、Demodulation Reference Signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行する。 The control signal / reference signal processing unit 240 executes processing using a reference signal (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。 DMRS is a reference signal (pilot signal) known between the base station and the terminal of each terminal for estimating the fading channel used for data demodulation. The PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)が含まれてもよい。 In addition to DMRS and PTRS, the reference signal may include ChannelStateInformation-ReferenceSignal (CSI-RS), SoundingReferenceSignal (SRS), and PositioningReferenceSignal (PRS) for location information.
 また、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel)、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれる。 Further, the channel includes a control channel and a data channel. Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel), Random Access Radio Network Temporary Identifier (RA-RNTI), Downlink Control Information (DCI), and Physical Broadcast Channel (PBCH) etc. are included.
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味する。データチャネルは、共有チャネルと読み替えられてもよい。 The data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel). Data means data transmitted over a data channel. The data channel may be read as a shared channel.
 ここで、制御信号・参照信号処理部240は、下りリンク制御情報(DCI)を受信する受信部を構成する。DCIは、既存のフィールドとして、DCI Formats、Carrier indicator(CI)、BWP indicator、FDRA(Frequency Domain Resource Allocation)、TDRA(Time Domain Resource Allocation)、MCS(Modulation and Coding Scheme)、HPN(HARQ Process Number)、NDI(New Data Indicator)、RV(Redundancy Version)などを格納するフィールドを含む。 Here, the control signal / reference signal processing unit 240 constitutes a receiving unit that receives downlink control information (DCI). DCI has existing fields such as DCI Formats, Carrier indicator (CI), BWP indicator, FDRA (Frequency Domain Resource Allocation), TDRA (Time Domain Resource Allocation), MCS (Modulation and Coding Scheme), HPN (HARQ Process Number). , NDI (NewDataIndicator), RV (RedundancyVersion), etc. are included.
 DCI Formatフィールドに格納される値は、DCIのフォーマットを指定する情報要素である。CIフィールドに格納される値は、DCIが適用されるCCを指定する情報要素である。BWP indicatorフィールドに格納される値は、DCIが適用されるBWPを指定する情報要素である。BWP indicatorによって指定され得るBWPは、RRCメッセージに含まれる情報要素(BandwidthPart-Config)によって設定される。FDRAフィールドに格納される値は、DCIが適用される周波数ドメインリソースを指定する情報要素である。周波数ドメインリソースは、FDRAフィールドに格納される値及びRRCメッセージに含まれる情報要素(RA Type)によって特定される。TDRAフィールドに格納される値は、DCIが適用される時間ドメインリソースを指定する情報要素である。時間ドメインリソースは、TDRAフィールドに格納される値及びRRCメッセージに含まれる情報要素(pdsch-TimeDomainAllocationList、pusch-TimeDomainAllocationList)によって特定される。時間ドメインリソースは、TDRAフィールドに格納される値及びデフォルトテーブルによって特定されてもよい。MCSフィールドに格納される値は、DCIが適用されるMCSを指定する情報要素である。MCSは、MCSに格納される値及びMCSテーブルによって特定される。MCSテーブルは、RRCメッセージによって指定されてもよく、RNTIスクランブリングによって特定されてもよい。HPNフィールドに格納される値は、DCIが適用されるHARQ Processを指定する情報要素である。NDIに格納される値は、DCIが適用されるデータが初送データであるか否かを特定するための情報要素である。RVフィールドに格納される値は、DCIが適用されるデータの冗長性を指定する情報要素である。 The value stored in the DCI Format field is an information element that specifies the DCI format. The value stored in the CI field is an information element that specifies the CC to which DCI applies. The value stored in the BWP indicator field is an information element that specifies the BWP to which DCI applies. The BWP that can be specified by the BWP indicator is set by the information element (BandwidthPart-Config) contained in the RRC message. The value stored in the FDRA field is an information element that specifies the frequency domain resource to which DCI applies. The frequency domain resource is specified by the value stored in the FDRA field and the information element (RAType) contained in the RRC message. The value stored in the TDRA field is an information element that specifies the time domain resource to which DCI applies. The time domain resource is specified by the value stored in the TDRA field and the information elements (pdsch-TimeDomainAllocationList, push-TimeDomainAllocationList) contained in the RRC message. Time domain resources may be specified by the values stored in the TDRA field and the default table. The value stored in the MCS field is an information element that specifies the MCS to which DCI is applied. MCS is specified by the values stored in MCS and the MCS table. The MCS table may be specified by RRC messages or specified by RNTI scrambling. The value stored in the HPN field is an information element that specifies the HARQ Process to which DCI is applied. The value stored in the NDI is an information element for specifying whether or not the data to which DCI is applied is the initial data. The value stored in the RV field is an information element that specifies the redundancy of the data to which DCI is applied.
 実施形態では、DCIは、上りリンクチャネル(PUSCH)の時間ドメインリソース割当(TDRA)を含む。PUSCHのTDRAを含むDCIは、Format 0_0、Format 0_1又はFormat 0_2のDCIであってもよい。 In embodiments, DCI includes Time Domain Resource Allocation (TDRA) for Uplink Channel (PUSCH). The DCI including the TDRA of PUSCH may be a DCI of Format 0_0, Format 0_1 or Format 0_2.
 符号化/復号部250は、所定の通信先(gNB100または他のgNB)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。 The coding / decoding unit 250 executes data division / concatenation and channel coding / decoding for each predetermined communication destination (gNB100 or other gNB).
 具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。 Specifically, the coding / decoding unit 250 divides the data output from the data transmission / reception unit 260 into predetermined sizes, and executes channel coding for the divided data. Further, the coding / decoding unit 250 decodes the data output from the modulation / demodulation unit 230 and concatenates the decoded data.
 データ送受信部260は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、ハイブリッドARQ(Hybrid automatic repeat request)に基づいて、データの誤り訂正及び再送制御を実行する。 The data transmission / reception unit 260 executes transmission / reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmitter / receiver 260 is a PDU / SDU in a plurality of layers (such as a medium access control layer (MAC), a radio link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble / disassemble the. Further, the data transmission / reception unit 260 executes data error correction and retransmission control based on the hybrid ARQ (Hybrid automatic repeat request).
 制御部270は、UE200を構成する各機能ブロックを制御する。例えば、実施形態では、制御部270は、上述したRACH手順を制御する。 The control unit 270 controls each functional block constituting the UE 200. For example, in the embodiment, the control unit 270 controls the RACH procedure described above.
 (3)動作例
 以下において、動作例について説明する。ここでは、RACH手順としては、type 1のRACH手順(4-step RACH手順)、type 2のRACH手順(2-step RACH手順)、type 3のRACH手順について説明する。type 3のRACH手順は、新たに定義されるRACH手順である。
(3) Operation example The operation example will be described below. Here, as the RACH procedure, a type 1 RACH procedure (4-step RACH procedure), a type 2 RACH procedure (2-step RACH procedure), and a type 3 RACH procedure will be described. The type 3 RACH procedure is a newly defined RACH procedure.
 (3.1)type 1のRACH手順
 図5に示すように、ステップS10において、UE200は、NG RAN20から報知される信号を受信する。NG RAN20から報知される信号は、SS/PBCHブロックを含んでもよい。NG RAN20から報知される信号は、システム情報を含んでもよい。システム情報は、RACH手順に関する設定(例えば、RACH-Config)を含んでもよい。RACH-Configは、SIB(System Information Block)に含まれてもよい。RACH-Configは、RRC情報要素であってもよい(TS38.331 V16.1.0(§6.3.2 “Radio resource control Information elements”を参照)。
(3.1) RACH procedure of type 1 As shown in FIG. 5, in step S10, the UE 200 receives a signal notified from the NG RAN 20. The signal notified from the NG RAN 20 may include an SS / PBCH block. The signal notified from the NG RAN 20 may include system information. The system information may include settings related to RACH procedures (eg, RACH-Config). RACH-Config may be included in SIB (System Information Block). RACH-Config may be an RRC information element (TS38.331 V16.1.0 (see §6.3.2 “Radio resource control Information elements”).
 ステップS11において、UE200は、RACHプリアンブルを含む第1メッセージ(Msg1)をNG RAN20に送信する。UE200は、Msg1の送信電力を上げながらMsg1の送信を繰り返してもよい(power Ramping)。 In step S11, UE200 sends a first message (Msg1) including RACH preamble to NG RAN20. The UE200 may repeat the transmission of Msg1 while increasing the transmission power of Msg1 (powerRamping).
 ステップS12において、UE200は、Msg1に対する応答メッセージとして第2メッセージ(Msg2)をNG RAN20から受信する。Msg2は、RAR(Random Access Response)及びTAを含む。 In step S12, UE200 receives a second message (Msg2) from NG RAN20 as a response message to Msg1. Msg2 includes RAR (RandomAccessResponse) and TA.
 ステップS13において、UE200は、PUSCHを介して第3メッセージ(Msg3)をNG RAN20に送信する。Msg3は、UE200を識別するUE IDを含む。Msg3に含まれるUE IDは、Msg3の衝突解決に用いられる。UE IDは、C-RNTI(Cell-Radio Network Temporary Identifier)を含んでもよい。 In step S13, UE200 sends a third message (Msg3) to NG RAN20 via PUSCH. Msg3 contains a UE ID that identifies the UE 200. The UEID contained in Msg3 is used for Msg3 conflict resolution. The UE ID may include C-RNTI (Cell-Radio Network Temporary Identifier).
 ステップS14において、UE200は、Msg3に対する応答メッセージとして第4メッセージ(Msg4)をNG RAN20から受信する。Msg4は、UE200を識別するUE ID(以下、Contention resolution ID)を含む。Contention resolution IDは、Msg3に含まれるUE IDと同じであってもよい。 In step S14, UE200 receives a fourth message (Msg4) from NG RAN20 as a response message to Msg3. Msg4 includes a UE ID (hereinafter, Contention resolution ID) that identifies the UE 200. The Contention resolution ID may be the same as the UE ID included in Msg3.
 なお、UE200は、Contention resolution IDに基づいてMsg4を受信できたか否かを判定し、Msg4を受信できない場合には、Msg3の再送制御を実行してもよい。 Note that the UE200 may determine whether or not Msg4 can be received based on the Contention resolution ID, and if Msg4 cannot be received, execute the retransmission control of Msg3.
 ステップS15において、UE200は、Msg4を受信したか否かを示す応答信号(HARQ-ACK)をNG RAN20に送信する。 In step S15, the UE 200 transmits a response signal (HARQ-ACK) indicating whether or not Msg4 has been received to the NG RAN 20.
 なお、ステップS11~ステップS14の手順としては、3GPP TS38.321 V16.2.1 §5.1 “Random Access procedureに規定された手順を用いてもよい。 As the procedure from step S11 to step S14, the procedure specified in 3GPP TS38.321 V16.2.1 §5.1 “Random Access procedure” may be used.
 (3.2)type 2のRACH手順
 図6に示すように、ステップS20において、UE200は、NG RAN20から報知される信号を受信する。NG RAN20から報知される信号は、SS/PBCHブロックを含んでもよい。NG RAN20から報知される信号は、システム情報を含んでもよい。システム情報は、RACH手順に関する設定(例えば、RACH-Config)を含んでもよい。RACH-Configは、SIB(System Information Block)に含まれてもよい。RACH-Configは、RRC情報要素であってもよい(TS38.331 V16.1.0(§6.3.2 “Radio resource control Information elements”を参照)。
(3.2) RACH procedure of type 2 As shown in FIG. 6, in step S20, the UE 200 receives a signal notified from the NG RAN 20. The signal notified from the NG RAN 20 may include an SS / PBCH block. The signal notified from the NG RAN 20 may include system information. The system information may include settings related to RACH procedures (eg, RACH-Config). RACH-Config may be included in SIB (System Information Block). RACH-Config may be an RRC information element (TS38.331 V16.1.0 (see §6.3.2 “Radio resource control Information elements”).
 ステップS21において、UE200は、RACHプリアンブルを含むMsgAをNG RAN20に送信する。UE200は、Msg1の送信電力を上げながらMsgAの送信を繰り返してもよい(power ramping)。MsgAは、上述したMsg1及びMsg3の機能を兼ねている。従って、MsgAは、RACHプリアンブルに加えて、衝突解決に用いるUE IDを含む。 In step S21, UE200 sends MsgA including RACH preamble to NG RAN20. The UE200 may repeat the transmission of MsgA while increasing the transmission power of Msg1 (power ramping). MsgA also has the functions of Msg1 and Msg3 described above. Therefore, MsgA includes the UEID used for conflict resolution in addition to the RACH preamble.
 ステップS22において、UE200は、MsgAに対する応答メッセージとしてMsgBを受信する。MsgBは、上述したMsg2及びMsg4の機能を兼ねている。従って、MsgBは、RAR、TA及びContention resolution IDを含む。 In step S22, UE200 receives MsgB as a response message to MsgA. MsgB also has the functions of Msg2 and Msg4 described above. Therefore, MsgB includes RAR, TA and Contention resolution ID.
 なお、UE200は、Contention resolution IDに基づいてMsgBを受信できたか否かを判定し、MsgBを受信できない場合には、MsgAの再送制御を実行してもよい。 Note that the UE200 may determine whether or not MsgB can be received based on the Contention resolution ID, and if MsgB cannot be received, execute MsgA retransmission control.
 ステップS23において、UE200は、MsgBを受信したか否かを示す応答信号(HARQ-ACK)をNG RAN20に送信する。 In step S23, the UE 200 transmits a response signal (HARQ-ACK) indicating whether or not MsgB has been received to the NG RAN 20.
 なお、ステップS21~ステップS22の手順としては、3GPP TS38.321 V16.2.1 §5.1 “Random Access procedureに規定された手順を用いてもよい。 As the procedure from step S21 to step S22, the procedure specified in 3GPP TS38.321 V16.2.1 §5.1 “Random Access procedure” may be used.
 (3.3)type 3のRACH手順
 図7に示すように、ステップS30において、UE200は、NG RAN20から報知される信号を受信する。NG RAN20から報知される信号は、SS/PBCHブロックを含んでもよい。NG RAN20から報知される信号は、システム情報を含んでもよい。システム情報は、RACH手順に関する設定(例えば、RACH-Config)を含んでもよい。RACH-Configは、SIB(System Information Block)に含まれてもよい。RACH-Configは、RRC情報要素であってもよい(TS38.331 V16.1.0(§6.3.2 “Radio resource control Information elements”を参照)。
(3.3) RACH procedure of type 3 As shown in FIG. 7, in step S30, the UE 200 receives a signal notified from the NG RAN 20. The signal notified from the NG RAN 20 may include an SS / PBCH block. The signal notified from the NG RAN 20 may include system information. The system information may include settings related to RACH procedures (eg, RACH-Config). RACH-Config may be included in SIB (System Information Block). RACH-Config may be an RRC information element (TS38.331 V16.1.0 (see §6.3.2 “Radio resource control Information elements”).
 なお、RACH-Configは、NG RAN20から報知される信号の受信品質と比較される特定品質を示す情報要素(例えば、msgX-RSRP-Threshold)を含んでもよい。RACH-Configは、MsgXの最大再送試行回数を示す情報要素(例えば、msgX-TransMax)を含んでもよい。RACH-Configは、MsgXの復調に用いる参照信号の設定を示す情報要素を含んでもよい。RACH-Configは、MsgXの復調に用いる参照信号の設定を示す情報要素(例えば、msgX-DMRS-Config)を含んでもよい。RACH-Configは、MsgXの送信機会のリソース設定を示す情報要素(例えば、MsgX-PUSCH-Resource config)を含んでもよい。RACH-Configは、MsgYの受信ウインドウ長(msgY-ResponseWindow)を示す情報要素を含んでもよい。 The RACH-Config may include an information element (for example, msgX-RSRP-Threshold) indicating a specific quality to be compared with the reception quality of the signal notified from the NG RAN 20. RACH-Config may include an information element (eg, msgX-TransMax) indicating the maximum number of MsgX retransmission attempts. RACH-Config may include an information element indicating the setting of the reference signal used for demodulation of MsgX. RACH-Config may include an information element (eg, msgX-DMRS-Config) indicating the setting of the reference signal used for demodulation of MsgX. RACH-Config may include an information element (for example, MsgX-PUSCH-Resource config) indicating the resource setting of the transmission opportunity of MsgX. RACH-Config may include an information element indicating the reception window length (msgY-ResponseWindow) of MsgY.
 ステップS31において、UE200は、所定条件が満たされる場合に、RACHプリアンブルを含まないMsgXをNG RAN20に送信する。MsgXは、上述したMsg1及びMsg3の機能を兼ねている。従って、MsgXは、衝突解決に用いるUE IDを含む。但し、MsgXは、MsgAと異なり、RACHプリアンブルを含まないことに留意すべきである。 In step S31, the UE 200 sends MsgX without the RACH preamble to the NG RAN 20 when the predetermined conditions are met. MsgX also has the functions of Msg1 and Msg3 described above. Therefore, MsgX includes a UE ID used for conflict resolution. However, it should be noted that MsgX, unlike MsgA, does not contain RACH preambles.
 なお、所定条件は、NG RAN20から報知される信号(例えば、SS/PBCHブロック)の受信品質が特定品質よりも良好である条件を含んでもよい。所定条件は、MsgXの送信回数が最大送信試行回数を超えていない条件を含んでもよい。 Note that the predetermined condition may include a condition in which the reception quality of the signal (for example, SS / PBCH block) notified from the NG RAN 20 is better than the specific quality. The predetermined condition may include a condition in which the number of transmissions of MsgX does not exceed the maximum number of transmission attempts.
 ステップS32において、UE200は、MsgXに対する応答メッセージとしてMsgYを受信する。MsgYは、上述したMsg2及びMsg4の機能を兼ねている。従って、MsgYは、TA, RAR及びContention resolution IDを含む。このとき、MsgXがRACHプリアンブルを含まないため、NG RAN20は、MsgXのPUSCH受信時に遅延による時間差を考慮することができない。但し、NG RAN20は、MsgXのPUSCH DMRSを参照することで、TA指示の通知をMsgYで行うことができる。 In step S32, UE200 receives MsgY as a response message to MsgX. MsgY also has the functions of Msg2 and Msg4 described above. Therefore, MsgY includes TA, RAR and Contention resolution ID. At this time, since MsgX does not include the RACH preamble, NGRAN20 cannot consider the time difference due to the delay when receiving the PUSCH of MsgX. However, NGRAN20 can notify TA instructions with MsgY by referring to PUSCHDMRS of MsgX.
 なお、UE200は、Contention resolution IDに基づいてMsgYを受信できたか否かを判定し、MsgYを受信できない場合には、MsgXの再送制御を実行してもよい。 Note that the UE200 may determine whether or not MsgY can be received based on the Contention resolution ID, and if MsgY cannot be received, execute MsgX retransmission control.
 ステップS33において、UE200は、MsgYを受信したか否かを示す応答信号(HARQ-ACK)をNG RAN20に送信する。 In step S33, the UE 200 transmits a response signal (HARQ-ACK) indicating whether or not MsgY has been received to the NG RAN 20.
 (4)作用及び効果
 実施形態では、UE200は、RACH手順において、RACHプリアンブルを含まないMsgXを送信し、TAを含まないMsgYを受信する。言い換えると、RACHプリアンブルを含まないMsgX及びTAを含まないMsgYを用いる新たなRACH手順(例えば、type 3のRACH手順)が導入される。このような構成によれば、新たなRACH手順によって、オーバーヘッド削減及び低遅延化を図ることができる。特に、高い周波数を用いる小さなセルにおいて、UE200に適用するTAが小さい点に着目し、このようなケースにおいてtype 3のRACH手順を適用することが有効である。
(4) Actions and Effects In an embodiment, the UE 200 transmits MsgX without RACH preamble and receives MsgY without TA in the RACH procedure. In other words, a new RACH procedure using MsgX without RACH preamble and MsgY without TA (eg, type 3 RACH procedure) is introduced. According to such a configuration, the overhead can be reduced and the delay can be reduced by the new RACH procedure. In particular, paying attention to the fact that the TA applied to the UE 200 is small in a small cell using a high frequency, it is effective to apply the type 3 RACH procedure in such a case.
 [変更例1]
 以下において、実施形態の変更例1について説明する。以下においては、実施形態に対する相違点について主として説明する。
[Change example 1]
Hereinafter, modification 1 of the embodiment will be described. In the following, the differences from the embodiments will be mainly described.
 変更例1では、上述したMsgXの最大再送試行回数の適用方法について説明する。ここでは、UE200は、RACH手順として、type 1、type 2及びtype 3のRACH手順を実行し得るケースについて説明する。 Modification 1 describes a method of applying the maximum number of retransmission attempts of MsgX described above. Here, a case where the UE 200 can execute the RACH procedure of type 1, type 2, and type 3 as the RACH procedure will be described.
 第1に、MsgXの最大再送試行回数を示す情報要素として、新たな情報要素(例えば、msgX-TransMax)が導入されるケースについて説明する。このようなケースにおいては、type 2のMsgAの最大再送試行回数を示す情報要素(例えば、msgA-TransMax)は、msgX-TransMaxとは別に定義される。 First, a case where a new information element (for example, msgX-TransMax) is introduced as an information element indicating the maximum number of retransmission attempts of MsgX will be described. In such a case, the information element (for example, msgA-TransMax) indicating the maximum number of retransmission attempts of type 2 MsgA is defined separately from msgX-TransMax.
 例えば、type 3、type 2及びtype 1の順にRACH手順が実行される場合には、msgX-TransMaxによって指定される最大再送試行回数にMsgXの送信回数が達してもtype 3のRACH手順が成功しない場合に、UE200は、type 3のRACH手順を終了して、type 2のRACH手順を開始する。なお、msgA-TransMaxによって指定される最大再送試行回数にMsgAの送信回数が達してもtype 2のRACH手順が成功しない場合に、UE200は、type 2のRACH手順を終了して、type 1のRACH手順を開始する。 For example, if the RACH procedure is executed in the order of type 3, type 2, and type 1, the RACH procedure of type 3 will not succeed even if the number of MsgX transmissions reaches the maximum number of retransmission attempts specified by msgX-TransMax. In this case, the UE200 ends the type 3 RACH procedure and starts the type 2 RACH procedure. If the RACH procedure of type 2 does not succeed even if the number of transmissions of MsgA reaches the maximum number of retransmission attempts specified by msgA-TransMax, the UE200 terminates the RACH procedure of type 2 and RACH of type 1. Start the procedure.
 或いは、type 3及びtype 1の順にRACH手順が実行される場合には、msgX-TransMaxによって指定される最大再送試行回数にMsgXの送信回数が達してもtype 3のRACH手順が成功しない場合に、UE200は、type 3のRACH手順を終了して、type 1のRACH手順を開始する。このようなケースにおいて、type 2のRACH手順をスキップする方法としては、MsgAの最大再送試行回数よりも大きな値をMsgXの最大再送試行回数として設定する方法であってもよく、type 2のRACH手順をスキップする旨を示す情報要素を予め通知する方法であってもよい。 Alternatively, if the RACH procedure is executed in the order of type 3 and type 1, the RACH procedure of type 3 does not succeed even if the number of transmissions of MsgX reaches the maximum number of retransmission attempts specified by msgX-TransMax. UE200 ends the type 3 RACH procedure and starts the type 1 RACH procedure. In such a case, as a method of skipping the RACH procedure of type 2, a method of setting a value larger than the maximum number of retransmission attempts of MsgA as the maximum number of retransmission attempts of MsgX may be used, and the RACH procedure of type 2 may be used. It may be a method of notifying in advance an information element indicating that the above is skipped.
 第2に、MsgXの最大再送試行回数を示す情報要素として、既存の情報要素(例えば、msgA-TransMax)を流用するケースについて説明する。このようなケースにおいて、msgA-TransMaxは、MsgAの最大再送試行回数を示す情報要素に加えて、MsgXの最大再送試行回数を示す情報要素を含んでもよい。或いは、msgA-TransMaxは、MsgXの最大再送試行回数を示す情報要素を含まずに、MsgAの最大再送試行回数を示す情報要素を含んでもよい。このようなケースにおいて、MsgXの最大再送試行回数は、MsgAの最大再送試行回数と同じであると扱われてもよい。 Second, a case where an existing information element (for example, msgA-TransMax) is diverted as an information element indicating the maximum number of retransmission attempts of MsgX will be described. In such a case, msgA-TransMax may include an information element indicating the maximum number of retransmission attempts of MsgX in addition to the information element indicating the maximum number of retransmission attempts of MsgA. Alternatively, msgA-TransMax may include an information element indicating the maximum number of retransmission attempts of MsgA without including an information element indicating the maximum number of retransmission attempts of MsgX. In such a case, the maximum number of retransmission attempts of MsgX may be treated as the same as the maximum number of retransmission attempts of MsgA.
 例えば、type 3、type 2及びtype 1の順にRACH手順が実行される場合には、msgA-TransMaxによって指定される最大再送試行回数にMsgXの送信回数が達してもtype 3のRACH手順が成功しない場合に、UE200は、type 3のRACH手順を終了して、type 2のRACH手順を開始する。なお、msgA-TransMaxによって指定される最大再送試行回数にMsgAの送信回数が達してもtype 2のRACH手順が成功しない場合に、UE200は、type 2のRACH手順を終了して、type 1のRACH手順を開始する。 For example, if the RACH procedure is executed in the order of type 3, type 2, and type 1, the RACH procedure of type 3 will not succeed even if the maximum number of retransmission attempts specified by msgA-TransMax is reached. In this case, the UE200 ends the type 3 RACH procedure and starts the type 2 RACH procedure. If the RACH procedure of type 2 does not succeed even if the number of transmissions of MsgA reaches the maximum number of retransmission attempts specified by msgA-TransMax, the UE200 terminates the RACH procedure of type 2 and RACH of type 1. Start the procedure.
 或いは、type 3及びtype 1の順にRACH手順が実行される場合には、msgA-TransMaxによって指定される最大再送試行回数にMsgXの送信回数が達してもtype 3のRACH手順が成功しない場合に、UE200は、type 3のRACH手順を終了して、type 1のRACH手順を開始する。このようなケースにおいて、type 2のRACH手順をスキップする方法としては、MsgAの最大再送試行回数を示す情報要素をmsgA-TransMaxに含めない方法であってもよく、type 2のRACH手順をスキップする旨を示す情報要素を予め通知する方法であってもよい。 Alternatively, if the RACH procedure is executed in the order of type 3 and type 1, the RACH procedure of type 3 does not succeed even if the number of transmissions of MsgX reaches the maximum number of retransmission attempts specified by msgA-TransMax. UE200 ends the type 3 RACH procedure and starts the type 1 RACH procedure. In such a case, the method of skipping the type 2 RACH procedure may be a method in which the information element indicating the maximum number of MsgA retransmission attempts is not included in msgA-TransMax, and the type 2 RACH procedure is skipped. It may be a method of notifying in advance an information element indicating that effect.
 このようなケースにおいて、UE200は、3以上のタイプのRACH手順の試行順序を指定する情報要素を含むシステム情報をネットワークから受信してもよい。RACH手順の試行順序を指定する情報要素は、上述したSS/PBCHブロックに含まれてもよい。RACH手順の試行順序を指定する情報要素は、上述したRACH-Configに含まれてもよい。 In such cases, the UE 200 may receive system information from the network that includes information elements that specify the trial order of three or more types of RACH procedures. Information elements that specify the trial order of RACH procedures may be included in the SS / PBCH block described above. Information elements that specify the trial order of RACH procedures may be included in the RACH-Config described above.
 例えば、上述したケースにおいて、RACH手順の試行順序を指定する情報要素は、type 2のRACH手順をスキップする旨を示す情報要素(フラグ情報)であってもよい。RACH手順の試行順序を指定する情報要素は、MsgAの最大再送試行回数よりも大きな値が設定されたMsgXの最大再送試行回数を示す情報要素(例えば、msgX-TransMax)であると考えてもよい。RACH手順の試行順序を指定する情報要素は、type 2のRACH手順をスキップするために、MsgAの最大再送試行回数を示す情報要素を含まないmsgA-TransMaxであると考えてもよい。 For example, in the above case, the information element that specifies the trial order of the RACH procedure may be an information element (flag information) indicating that the RACH procedure of type 2 is skipped. The information element that specifies the trial order of the RACH procedure may be considered to be an information element (for example, msgX-TransMax) that indicates the maximum number of retransmission attempts of MsgX for which a value larger than the maximum number of retransmission attempts of MsgA is set. .. The information element that specifies the trial order of the RACH procedure may be considered to be msgA-TransMax that does not include the information element indicating the maximum number of retransmission attempts of MsgA in order to skip the type 2 RACH procedure.
 [変更例2]
 以下において、実施形態の変更例2について説明する。以下においては、実施形態に対する相違点について主として説明する。変更例2では、上述したMsgXの詳細について説明する。
[Change example 2]
Hereinafter, modification 2 of the embodiment will be described. In the following, the differences from the embodiments will be mainly described. In the second modification, the details of the above-mentioned MsgX will be described.
 第1に、MsgXに含まれる衝突解決のためのUE IDについて説明する。 First, the UE ID for conflict resolution included in MsgX will be explained.
 UE200は、C-RNTIを記憶している場合には、衝突解決のためのUE IDとしてC-RNTIをMsgXに含めてもよい。UE200は、C-RNTIを記憶していない場合には、衝突解決のためのUE IDとしてCCCH(Common Control Channel) SDU(Service Data Unit)をMsgXに含めてもよい。CCCH SDUは、UE200を識別可能な情報を含んでいればよい。 If the UE200 stores the C-RNTI, the UE200 may include the C-RNTI in MsgX as a UEID for conflict resolution. When the UE200 does not store the C-RNTI, CCCH (Common Control Channel) SDU (Service Data Unit) may be included in MsgX as a UE ID for conflict resolution. The CCCH SDU may contain information that can identify the UE 200.
 第2に、MsgXの送信電力について説明する。 Second, I will explain the transmission power of MsgX.
 UE200は、Msg 1及びMsgAと同様に、MsgXの送信電力を上げながらMsgXの送信を繰り返してもよい(power ramping)。このようなケースにおいては、UE200は、power ramping設定を示す情報要素をNG RAN20から受信してもよい。 Like Msg1 and MsgA, UE200 may repeat the transmission of MsgX while increasing the transmission power of MsgX (power ramping). In such a case, the UE 200 may receive an information element indicating the power ramping setting from the NG RAN 20.
 或いは、UE200は、Msg 1及びMsgAとは異なり、MsgXの送信電力を変えずにMsgXの送信を繰り返してもよい。このようなケースにおいては、UE200は、power ramping設定を示す情報要素をNG RAN20から受信しなくてもよい。 Alternatively, unlike Msg1 and MsgA, UE200 may repeat the transmission of MsgX without changing the transmission power of MsgX. In such a case, the UE200 does not have to receive the information element indicating the power ramping setting from the NG RAN 20.
 [変更例3]
 以下において、実施形態の変更例3について説明する。以下においては、実施形態に対する相違点について主として説明する。変更例3では、上述したMsgXの送信機会のリソース設定について説明する。
[Change example 3]
Hereinafter, modification 3 of the embodiment will be described. In the following, the differences from the embodiments will be mainly described. In the third modification, the resource setting of the transmission opportunity of MsgX described above will be described.
 第1に、MsgXの送信(type 3のRACH手順)に用いるPUSCH occasionとして、新たなPUSCH occasionが定義されるケースについて説明する。このようなケースにおいて、UE200は、type 3のRACH手順で用いるPUSCH occasion及びDMRS portを指定する情報要素をSS/PBCHブロック毎にNG RAN20から受信する。このような情報要素は、PUSCH occasion及びDMRS portの数を示す情報要素を含んでもよい。このようなケースにおいて、NG RAN20は、SS/PBCHブロックのインデックス(例えば、SSB Index)に対応付けられたPUSCHリソースにおいて、周波数、DMRSポート及び時間の順で、type 3のRACH手順で用いるPUSCH occasionを割り当ててもよい。 First, a case where a new PUSCH occurrence is defined as a PUSCH occupation used for transmission of MsgX (RACH procedure of type 3) will be described. In such a case, the UE200 receives an information element that specifies the PUSCH occurrence and DMRS port used in the RACH procedure of type 3 from the NG RAN 20 for each SS / PBCH block. Such an information element may include an information element indicating the number of PUSCH occurrences and DMRS ports. In such a case, the NG RAN20 is the PUSCH occurrence used in the type 3 RACH procedure in the order of frequency, DMRS port and time in the PUSCH resource associated with the SS / PBCH block index (eg, SSBIndex). May be assigned.
 第2に、MsgXの送信(type 3のRACH手順)に用いるPUSCH occasionとして、既存のPUSCH occasionを流用するケースについて説明する。既存のPUSCH occasionは、MsgAの送信に用いるPUSCH occasionであってもよい。このようなケースにおいて、UE200は、MsgA-PUSCH-Resource configによって特定される周波数及び時間リソースをtype 3のRACH手順で用いるPUSCH occasionとして用いてもよい。 Second, we will explain the case where the existing PUSCH occurrence is used as the PUSCH occurrence used for MsgX transmission (type 3 RACH procedure). The existing PUSCH occurrence may be the PUSCH occurrence used for transmitting MsgA. In such cases, the UE 200 may use the frequency and time resources specified by the MsgA-PUSCH-Resource config as the PUSCH occurrence used in the type 3 RACH procedure.
 [変更例4]
 以下において、実施形態の変更例4について説明する。以下においては、実施形態に対する相違点について主として説明する。変更例4では、上述したMsgYの復号について説明する。
[Change example 4]
Hereinafter, modification 4 of the embodiment will be described. In the following, the differences from the embodiments will be mainly described. In the fourth modification, the above-mentioned decoding of MsgY will be described.
 上述したように、UE200は、MsgXの応答メッセージとしてMsgYを受信する。C-RNTIをUE200が記憶している場合には、UE200は、C-RNTIに基づいてPDCCH(MsgY)を復号してもよい。C-RNTIをUE200が記憶していない場合には、UE200は、PUSCHの時間及び周波数リソースに対応するRNTIに基づいてPDCCH(MsgY)を復号してもよい。MsgXのPUSCHリソースに対応するRNTIは、MsgY-RNTIと呼称されてもよい。 As mentioned above, UE200 receives MsgY as a response message of MsgX. If the UE200 stores the C-RNTI, the UE200 may decode the PDCCH (MsgY) based on the C-RNTI. If the UE200 does not remember the C-RNTI, the UE200 may decode the PDCCH (MsgY) based on the RNTI corresponding to the PUSCH time and frequency resources. The RNTI corresponding to the MsgX PUSCH resource may be referred to as the MsgY-RNTI.
 なお、NG RAN20は、MsgXの受信に成功した場合には、Contention resolution IDを少なくとも含むMsgYをUE200に送信する。MsgYは、TPC(Transmission Power Command)、C-RNTI及びPUCCHに関連する情報を含んでもよい。NG RAN20は、MsgXの受信に失敗した場合には、MsgYをUE200に送信しない。UE200は、NG RAN20からMsgYが送信されず、NG RAN20からMsgYを受信できなかった場合に、MsgXの送信に失敗したと判定する。 If NGRAN20 succeeds in receiving MsgX, it sends MsgY including at least ContentionresolutionID to UE200. MsgY may include information related to TPC (Transmission Power Command), C-RNTI and PUCCH. NG RAN20 does not send MsgY to UE200 if it fails to receive MsgX. The UE200 determines that the transmission of MsgX has failed when MsgY is not transmitted from NGRAN20 and MsgY cannot be received from NGRAN20.
 ここで、MsgXのPUSCHリソースに対応するRNTI(MsgY-RNTI)は、MsgXのPUSCHリソースに基づいて、以下に示すように算出されてもよい。 Here, the RNTI (MsgY-RNTI) corresponding to the MsgX PUSCH resource may be calculated as shown below based on the MsgX PUSCH resource.
 MsgY-RNTI = 1 + (first OFDM symbol index) + 14×(first slot index) + 14×80×(first frequency resource index) + 14×80×8×(UL = 0 or SUL = 1) + 14×80×8×2 MsgY-RNTI = 1 + (first OFDM symbol index) + 14 × (first slot index) + 14 × 80 × (first frequency resource index) + 14 × 80 × 8 × (UL = 0 or SUL = 1) + 14 × 80 × 8 × 2
 [その他の実施形態]
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
[Other embodiments]
Although the contents of the present invention have been described above according to the embodiments, it is obvious to those skilled in the art that the present invention is not limited to these descriptions and can be modified and improved in various ways.
 上述した実施形態の説明に用いたブロック構成図(図4)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 The block configuration diagram (FIG. 4) used in the description of the above-described embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼ばれる。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't. For example, a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter). In each case, as described above, the realization method is not particularly limited.
 さらに、上述したUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図8は、当該装置のハードウェア構成の一例を示す図である。図8に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Further, the above-mentioned UE200 (the device) may function as a computer that processes the wireless communication method of the present disclosure. FIG. 8 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 8, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
 当該装置の各機能ブロック(図4参照)は、当該コンピュータ装置の何れかのハードウェア要素、又は当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 In addition, each function in the device is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. Further, the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. Storage 1003 may be referred to as auxiliary storage. The recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 In addition, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Furthermore, the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA). The hardware may implement some or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Further, the notification of information is not limited to the embodiment / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (eg Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (eg RRC signaling, Medium Access Control (MAC) signaling, Master Information Block). (MIB), System Information Block (SIB)), other signals or combinations thereof. RRC signaling may also be referred to as an RRC message, eg, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LongTermEvolution (LTE), LTE-Advanced (LTE-A), SUPER3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), FutureRadioAccess (FRA), NewRadio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UltraMobileBroadband (UMB), IEEE802.11 (Wi-Fi (registered trademark)) , IEEE802.16 (WiMAX®), IEEE802.20, Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them. It may be applied to one. In addition, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operation performed by the base station in this disclosure may be performed by its upper node (upper node). In a network consisting of one or more network nodes having a base station, various operations performed for communication with the terminal are the base station and other network nodes other than the base station (eg, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.). Although the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information and signals (information, etc.) can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、又は追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. The input / output information may be overwritten, updated, or added. The output information may be deleted. The entered information may be transmitted to other devices.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or may be switched and used according to the execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit notification, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Further, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the software may use at least one of wired technology (coaxial cable, fiber optic cable, twist pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.) to create a website. When transmitted from a server or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 Further, the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those expressly disclosed in this disclosure. Since various channels (eg, PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)", "Wireless Base Station", "Fixed Station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", "cell group", " Terms such as "carrier" and "component carrier" may be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 The base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a remote radio for indoor use). Communication services can also be provided by Head: RRH).
 「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The term "cell" or "sector" refers to a part or all of the coverage area of at least one of the base station providing communication services in this coverage and the base station subsystem.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "Mobile Station (MS)", "user terminal", "user equipment (UE)", and "terminal" may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read as a mobile station (user terminal, the same shall apply hereinafter). For example, communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the mobile station may have the functions of the base station. Further, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the upstream channel, the downstream channel, and the like may be read as a side channel.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。 Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions of the mobile station.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。 The wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
 サブフレームはさらに時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The subframe may be further composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel. Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval: TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time region. The slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. Further, the mini-slot may be referred to as a sub-slot. A minislot may consist of a smaller number of symbols than the slot. PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Wireless frames, subframes, slots, mini slots and symbols all represent time units when transmitting signals. The radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be referred to as a transmission time interval (TTI), a plurality of consecutive subframes may be referred to as TTI, and one slot or one minislot may be referred to as TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. May be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 TTI with a time length of 1 ms may be called normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 The resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Further, the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth) may represent a subset of consecutive common resource blocks for a neurology in a carrier. good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples. For example, the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB. The number of subcarriers, as well as the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two "connected" or "combined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-comprehensive examples, the radio frequency region. , Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc., can be considered to be "connected" or "coupled" to each other.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applied standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The statement "based on" used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with a "part", a "circuit", a "device", or the like.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first" and "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as inclusive as the term "comprising". Is intended. Moreover, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include the plural nouns following these articles.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as "judgment" or "decision". Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as "judgment" or "decision". In addition, "judgment" and "decision" are considered to be "judgment" and "decision" when the things such as solving, selecting, choosing, establishing, and comparing are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include considering some action as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as amendments and modifications without departing from the spirit and scope of the present disclosure as determined by the description of the scope of claims. Therefore, the description of this disclosure is for purposes of illustration and does not have any limiting meaning to this disclosure.
 10 無線通信システム
 20 NG-RAN
 100 gNB
 200 UE
 210 無線信号送受信部
 220 アンプ部
 230 変復調部
 240 制御信号・参照信号処理部
 250 符号化/復号部
 260 データ送受信部
 270 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
10 Radio communication system 20 NG-RAN
100 gNB
200 UE
210 Wireless signal transmitter / receiver 220 Amplifier 230 Modulator / demodulator 240 Control signal / reference signal processing 250 Encoding / decoding 260 Data transmitter / receiver 270 Control 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Claims (5)

  1.  ランダムアクセスチャネル手順において、所定条件が満たされる場合に、ランダムアクセスプリアンブルを含まない第1特定メッセージを送信する送信部と、
     前記ランダムアクセスチャネル手順において、前記第1特定メッセージに対する応答メッセージとして、タイミングアドバンスコマンドを含まない第2特定メッセージを受信する受信部と、を備える、端末。
    A transmitter that sends a first specific message that does not include a random access preamble when certain conditions are met in the random access channel procedure.
    A terminal comprising a receiving unit for receiving a second specific message that does not include a timing advance command as a response message to the first specific message in the random access channel procedure.
  2.  前記所定条件は、ネットワークから報知される信号の受信品質が特定品質よりも良好である条件及び前記第1特定メッセージの送信回数が最大送信試行回数を超えていない条件の少なくともいずれか1つを含む、端末。 The predetermined condition includes at least one of a condition in which the reception quality of the signal notified from the network is better than the specific quality and a condition in which the number of transmissions of the first specific message does not exceed the maximum number of transmission attempts. , Terminal.
  3.  前記受信部は、前記特定閾値及び前記最大送信試行回数の少なくともいずれか1つを示す情報要素を含むシステム情報をネットワークから受信する、請求項2に記載の端末。 The terminal according to claim 2, wherein the receiving unit receives system information from a network including an information element indicating at least one of the specific threshold value and the maximum number of transmission attempts.
  4.  前記受信部は、前記第1特定メッセージの復調に用いる参照信号の設定、前記第1特定メッセージの送信機会のリソース設定及び前記第2特定メッセージの受信ウインドウ長の少なくともいずれか1つを示す情報要素を含むシステム情報をネットワークから受信する、請求項1乃至請求項3のいずれか1項に記載の端末。 The receiving unit is an information element indicating at least one of a reference signal setting used for demodulating the first specific message, a resource setting for a transmission opportunity of the first specific message, and a reception window length of the second specific message. The terminal according to any one of claims 1 to 3, which receives system information including the above from the network.
  5.  前記ランダムアクセスチャネル手順は、少なくとも3以上のタイプのランダムアクセス手順を含み、
     前記第1特定メッセージの送信及び前記第2特定メッセージの受信を含む手順は、前記3以上のタイプのランダムアクセス手順の1つであり、
     前記受信部は、前記3以上のタイプのランダムアクセス手順の試行順序を指定する情報要素を含むシステム情報をネットワークから受信する、請求項1乃至請求項4のいずれか1項に記載の端末。
    The random access channel procedure comprises at least three or more types of random access procedures.
    The procedure including the transmission of the first specific message and the reception of the second specific message is one of the three or more types of random access procedures.
    The terminal according to any one of claims 1 to 4, wherein the receiving unit receives system information from a network including an information element that specifies a trial order of the three or more types of random access procedures.
PCT/JP2020/043057 2020-11-18 2020-11-18 User equipment WO2022107256A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/043057 WO2022107256A1 (en) 2020-11-18 2020-11-18 User equipment
JP2022563317A JPWO2022107256A1 (en) 2020-11-18 2020-11-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/043057 WO2022107256A1 (en) 2020-11-18 2020-11-18 User equipment

Publications (1)

Publication Number Publication Date
WO2022107256A1 true WO2022107256A1 (en) 2022-05-27

Family

ID=81708595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043057 WO2022107256A1 (en) 2020-11-18 2020-11-18 User equipment

Country Status (2)

Country Link
JP (1) JPWO2022107256A1 (en)
WO (1) WO2022107256A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200107372A1 (en) * 2018-09-28 2020-04-02 Samsung Electronics Co., Ltd. Random access method and apparatus in wireless communication system
JP2020065095A (en) * 2017-02-20 2020-04-23 シャープ株式会社 Terminal device, base station device, communication method, and integrated circuit
CN111567126A (en) * 2020-04-08 2020-08-21 北京小米移动软件有限公司 Configuration information transmission method and device, communication equipment and storage medium
WO2020196614A1 (en) * 2019-03-27 2020-10-01 京セラ株式会社 Communication control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020065095A (en) * 2017-02-20 2020-04-23 シャープ株式会社 Terminal device, base station device, communication method, and integrated circuit
US20200107372A1 (en) * 2018-09-28 2020-04-02 Samsung Electronics Co., Ltd. Random access method and apparatus in wireless communication system
WO2020196614A1 (en) * 2019-03-27 2020-10-01 京セラ株式会社 Communication control method
CN111567126A (en) * 2020-04-08 2020-08-21 北京小米移动软件有限公司 Configuration information transmission method and device, communication equipment and storage medium

Also Published As

Publication number Publication date
JPWO2022107256A1 (en) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2022079876A1 (en) Terminal
WO2021171594A1 (en) Terminal
EP4007397A1 (en) Terminal
WO2022107256A1 (en) User equipment
WO2022149270A1 (en) Terminal, base station and radio communication method
WO2022137569A1 (en) Terminal, base station, and wireless communication method
WO2022137570A1 (en) Terminal, base station, and wireless communication method
WO2022085201A1 (en) Terminal
WO2022149269A1 (en) Terminal, base station, and radio communication method
WO2022029972A1 (en) Terminal
WO2022239081A1 (en) Terminal and wireless communication method
WO2022137559A1 (en) Terminal and wireless communication method
WO2022190289A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022239080A1 (en) Terminal and radio communication method
WO2022074842A1 (en) Terminal
WO2022079861A1 (en) Terminal
WO2022029973A1 (en) Terminal
WO2022190287A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022074843A1 (en) Terminal
WO2022244504A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022029982A1 (en) Terminal
WO2021191982A1 (en) Terminal
WO2022097724A1 (en) Terminal
WO2022249721A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022215271A1 (en) Terminal, wireless communication system, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022563317

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962420

Country of ref document: EP

Kind code of ref document: A1