WO2022106045A1 - Rohrbündelwärmetauscher - Google Patents

Rohrbündelwärmetauscher Download PDF

Info

Publication number
WO2022106045A1
WO2022106045A1 PCT/EP2021/000127 EP2021000127W WO2022106045A1 WO 2022106045 A1 WO2022106045 A1 WO 2022106045A1 EP 2021000127 W EP2021000127 W EP 2021000127W WO 2022106045 A1 WO2022106045 A1 WO 2022106045A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
tube
recess
tubes
tube bundle
Prior art date
Application number
PCT/EP2021/000127
Other languages
English (en)
French (fr)
Inventor
Harald GAIBLER
Achim Gotterbarm
Philipp Hofmann
Verena Obst
Michael Scheuss
Original Assignee
Wieland-Werke Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland-Werke Ag filed Critical Wieland-Werke Ag
Priority to CA3195755A priority Critical patent/CA3195755A1/en
Priority to CN202180074805.9A priority patent/CN116670459A/zh
Priority to MX2023005414A priority patent/MX2023005414A/es
Priority to EP21798942.5A priority patent/EP4248160A1/de
Priority to US18/246,410 priority patent/US20230392871A1/en
Priority to JP2023522815A priority patent/JP2023548673A/ja
Priority to KR1020237010569A priority patent/KR20230110247A/ko
Publication of WO2022106045A1 publication Critical patent/WO2022106045A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/162Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by using bonding or sealing substances, e.g. adhesives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/02Fastening; Joining by using bonding materials; by embedding elements in particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding
    • F28F2275/067Fastening; Joining by welding by laser welding

Definitions

  • the invention relates to a tube bundle heat exchanger according to the preamble of claim 1.
  • Shell and tube heat exchangers are used to transfer heat from a first fluid to a second fluid.
  • a shell-and-tube heat exchanger usually has a hollow cylinder inside which a large number of tubes are arranged.
  • One of the two fluids can be conducted through the tubes, the other fluid through the hollow cylinder, in particular around the tubes.
  • the tubes are attached with their ends to one or more tube sheets of the tube bundle heat exchanger along their circumference. In the course of the manufacturing process of a shell and tube heat exchanger, the ends of the tubes are bonded to the tube sheet, for example.
  • the publication WO 2017/025 184 A1 describes a method for connecting tubes of a tube bundle heat exchanger to a tube plate.
  • the tubes and the tube sheet are each made of aluminum or an aluminum alloy and are bonded to the tube sheet by means of laser welding.
  • the intensity of the generated laser beam is over 1 MW/cm2. It is also contemplated that the tubes of the tube bundle heat exchanger will be welded to the tube sheet before laser welding be positively connected.
  • the tube bundle heat exchanger to be produced has a large number of tubes, which are arranged inside a hollow cylinder.
  • the tube sheet can be designed as a plate and has bores whose diameter essentially corresponds to the outside diameter of the tubes. Each tube is attached with one of its ends to one of these bores.
  • the tubes can run in a straight line within the hollow cylinder as a straight-tube heat exchanger.
  • two tube sheets are provided, which are arranged at opposite ends of the straight-tube heat exchanger. Each tube is attached with one of its ends to one of these two tube sheets.
  • the tubes can also run in a U-shape within the hollow cylinder as a U-tube heat exchanger.
  • a U-tube heat exchanger usually has only one tube sheet.
  • the tubes since the tubes are bent into a U-shape, they can be attached to the same tube plate at both ends.
  • DE 10 2006 031 606 A1 discloses a method for laser welding a heat exchanger for exhaust gas cooling, in which an oscillating movement is also superimposed on a feed movement of the laser beam. This pendulum movement takes place essentially in the direction perpendicular to the feed direction. The pendulum movement is carried out for reasons of better bridging of gaps.
  • a method for connecting tubes of a tube bundle heat exchanger to a tube plate is known from publication WO 2017/125 253 A1.
  • the tubes are laser welded to the tube sheet materially connected.
  • a laser beam is generated and focused on a point to be welded in a connection area between tube and tube sheet.
  • the laser beam is moved in such a way that it completes a first movement across the connection area and a second movement that is superimposed on the first movement and that is different from the first movement.
  • the second movement specifically influences the melt pool dynamics and advantageously modifies a vapor capillary that is created.
  • the object of the invention is to connect tubes of a tube bundle heat exchanger to a tube plate reliably and with little effort and with high quality.
  • the invention includes a tube bundle heat exchanger with an enclosing outer shell and at least one tube sheet, which together define an interior space of the tube bundle heat exchanger.
  • the tube bundle heat exchanger comprises a tube bundle with a multiplicity of heat exchanger tubes, which, arranged in the interior, can be flowed through by a first fluid and are optionally supported by additional support plates.
  • the heat exchanger tubes have integral ribs with a rib foot, rib flanks and rib tip formed on the outside of the tube and formed in a helical manner, and a channel with a channel base is formed between the ribs.
  • the shell-and-tube heat exchanger includes at least one inlet on the outer shell, through which a second fluid can be introduced into the interior, and at least one outlet, through which the second fluid can be drained from the interior.
  • the shell and tube heat exchanger includes optionally at least one junction box arranged on the at least one tube sheet for distribution, deflection or collection of the first fluid.
  • the at least one tube sheet has recesses as passage points, each recess having an inner surface.
  • the heat exchanger tubes at least project with their outer ribbing into the recesses of the tube sheet, as a result of which a joint gap is formed between the inner surface of a recess and the outer ribbing of a heat exchanger tube located within the recess.
  • the heat exchanger tubes have a material connection with the tube plate by means of joining material and including the outer ribbing, which is only formed in a first section of the recess extending in the axial direction from the end face of a heat exchanger tube, in that the joining gap in this first section is filled with joining material is, so that a second section of the recess remains, in which the joint gap is not filled with joining material, wherein the heat exchanger tube in the region of the second section on the outside of the tube also has external ribbing.
  • the heat exchanger tubes have external ribbing within the passage points at which they pass into a tube sheet or through a tube sheet. This outer ribbing is surrounded by the material for a material connection and the passage of gas or liquid is thus hermetically sealed. For a pure material connection, combinations together with a force fit and a form fit can also be used in an advantageous manner.
  • the joining material penetrates into the joining gap in the axial direction only to a certain degree in a first partial section from the end face, since the outer ribs prevent free passage, as is the case with a smooth tube, for example.
  • the outer ribs consequently form barriers that must be flowed around or melted. The flow around is of particular importance in the joining processes of soldering and gluing.
  • the outer ribbing of the heat exchanger tube is partially melted on at the front.
  • the melt flow is then preferably stopped at one of the outer ribs as soon as the temperature of the melt is no longer sufficient to melt a rib lying further inside. This barrier stops further penetration of the melt into the joint gap. In this way, a defined flow process of the joining material is given during the joining process, which already completely closes the joint at or near the end face of the pipe.
  • a heat exchanger tube can also optionally have an internal structure.
  • the internal structure can be designed in the form of an internally circumferential helix with a predetermined helix angle.
  • the pitch of the encircling outer ribbing can be the same as, less than or greater than the pitch of the encircling helix predetermined by the twist angle.
  • the two structures can consequently differ in that for the integral connection of the outside of a heat exchanger tube to the container wall, the design of the external ribbing and the internal structure can be designed independently of one another and can thus be optimized.
  • the ratio of the maximum structure height of the outer ribbing and the maximum structure height of the inner structure is preferably in the range from 1.25 to 5 for condenser tubes and preferably in the range from 0.5 to 2 for evaporator tubes.
  • investment costs are to be saved, since the tube bundle heat exchanger according to the invention can be built much more compactly.
  • the outer ribbing continues into the tube sheet, which means that the number of heat exchanger tubes per unit can be significantly reduced.
  • the finned tubes enable more efficient use of energy or the reduction of filling quantities, which lowers operating costs.
  • the invention is based on the consideration that an integral connection of the heat exchanger tubes to the tube sheets is achieved in a particularly reliable and low-cost manner with high quality.
  • a heat exchanger tube with its external ribbing on the outside enters the tube sheet or passes through the tube sheet. The outer ribbing then remains immediately adjacent to the material connection of the tubes with the tube sheet.
  • the first partial section filled with joining material can be less than 70% of the length of the entire joining gap in the axial direction.
  • the filled-in first section of the joint gap covers only less than 50% of the total length.
  • the clear width between the fin tips of a heat exchanger tube and the inner surface of the recess can be a maximum of 30% of the fin height measured from the bottom of the channel to the fin tip.
  • the barrier effect of the outer ribs is over this clear width varies.
  • the joining material can be introduced in a targeted manner via this clear width of the joining gap to form the filled first subsection.
  • Another flow channel for the joining material is the channel formed by the molded, helically circumferential, integral ribs.
  • the channel cross section is predetermined by the rib height and the distance between adjacent ribs and is usually less pronounced than the selected clear width.
  • the material connection can be gas-tight and pressure-resistant.
  • hermetic sealing to prevent fluid exchange with the environment is important in any mode of operation.
  • the heat exchanger tubes have a
  • Inner tube diameter D2 which is larger than the inner tube diameter D1 of the heat exchanger tubes outside the passage points.
  • the process is based on a widening of the heat exchanger tube resulting in an enlarged inner passage diameter D2.
  • the outer ribbing is then squeezed within a penetration point by a widening. Nevertheless, the material connection ensures a stable hermetic seal.
  • the heat exchanger tubes can be soldered, glued or welded into the tube sheet.
  • others can also be added which reliably join the heat exchanger tubes to the tube sheet by means of a materially bonded connection.
  • the outer ribbing on the outside of the heat exchanger tubes can preferably run in the circumferential direction or in the axial direction parallel to the tube axis.
  • the outside of the heat exchanger tubes can have external ribbing running around in a spiral. In the case of spiral external ribbing, only a residual gap and the channel that runs around spirally with external ribbing must be reliably sealed by the material connection.
  • At least one first heat exchanger tube can consist of a first material and at least one second heat exchanger tube can consist of a second material which differs from the first material.
  • steel pipes with particularly high strength can offer a particular advantage.
  • Copper tubes result in optimization with regard to efficient heat transfer.
  • Other materials such as titanium, aluminum, aluminum alloys and copper-nickel alloys can also be considered.
  • 1 shows a schematic side view of a tube bundle heat exchanger with a detailed view of a heat exchanger tube with external fins
  • 2 shows a schematic front view of a section of a tube sheet with a passage point
  • FIG. 4 is a schematic, detailed view of a section of a materially bonded connection of the tube sheet to a heat exchanger tube.
  • the tube bundle heat exchanger 1 schematically shows a side view of a tube bundle heat exchanger 1 with an enveloping outer shell 2 and two tube sheets 3 which together define an interior space 4 of the tube bundle heat exchanger 1 .
  • the tube bundle heat exchanger 1 comprises a tube bundle with a multiplicity of heat exchanger tubes 5 which, arranged in the interior 4 , can be flowed through by a first fluid for heat transfer and are supported by additional support plates 6 . Such support plates 6 are also often used as guide plates for the flow of fluid.
  • the tube bundle heat exchanger 1 also includes connection boxes 7, which distribute, divert or collect the first fluid inside the heat exchanger tubes, depending on the requirement.
  • a heat exchanger tube 5 with external ribs 51 is enlarged. Integral ribs 51 encircling the tube axis A in a helical manner are formed on the outside of the tube by a otherwise known rolling process.
  • Fig. 2 shows a schematic front view of a section of a tube sheet 3 with passage points 31.
  • the recess is in the Tube plate 3 is preferably just large enough for a heat exchanger tube 5 to be introduced with its outer ribbing 51 and to be connected there with a material fit.
  • Welded, glued and soldered connections as a material connection 20 can be made at the passage point 31, starting from the end face, over a first partial section of the wall thickness of a tube plate 3 and enter into a fluid-tight connection.
  • an unfilled remainder of the joint gap in the tube base wall 3 remains, which is not visible in FIG.
  • FIG. 3 schematically shows a vertical section of the tube sheet 3 in the plane of the passage point 31 of a heat exchanger tube 5.
  • the heat exchanger tube 5 shown has external ribbing 51 on the outside.
  • the heat exchanger tube 5 passes through the tube plate 3 at the recess 31 as a passage point in the exemplary embodiment shown.
  • the heat exchanger tube 5 has continuous outer ribbing 51.
  • a material connection 20 that has not yet been introduced in Figure 3, for example in the form of a continuous weld seam around the tube circumference with the tube sheet 3, is located after the joining process in a partial section of the joining gap 10.
  • Laser welding in particular is a suitable method for producing a material connection with a locally limited melt flow.
  • Fig. 4 schematically shows a detailed view of a section of a material connection 20 of the tube sheet 3 with a heat exchanger tube 5.
  • the heat exchanger tube 5 is inserted in the direction of the tube axis A into the recess 31 made in the tube sheet 3 and closes with the end face 53 the outer tube sheet surface.
  • the heat exchanger tubes 5 have integral ribs 51 with rib base 511 , rib flanks 512 and rib tip 513 which are formed on the outside of the tube and run in the shape of a helical line.
  • a channel 52 with a channel base 521 is formed between adjacent ribs 51 .
  • a weld seam is shown as the integral connection 20, which is formed, for example, during laser welding.
  • suitable filler metals are used when joining. In this way, the flow of material and the quantity can be precisely matched to the desired joint.
  • certain areas of the tube sheet 3 as well as some outer ribs 51 on the heat exchanger tube 5 are at least partially melted and integrated as a joining material 20 due to the heat input from a laser.
  • the melt enters the joining gap 10 starting from the end face 53, but is blocked after a certain penetration depth, so that only a first partial section 101 on the end face of the joining gap 10, including the outer ribbing 51, is filled.
  • a rib 51 prevents further passage of the melt, which is no longer melted or flows around due to the decreasing temperature at the melt front and thus functions as a barrier. In this way, a defined flow process of the joining material 20 is given during the joining process, which can already completely close the joint at or near the end face 53 of the pipe.
  • the heat exchanger tubes 5 thus have an integral connection 20 with the tube plate 3 which is only formed in a first partial section 101 of the recess 31 extending from the end face 53 of a heat exchanger tube 5 in the axial direction.
  • a second section 102 of the recess 31 is not filled with joining material.
  • the heat exchanger tube 5 also has external ribbing 51 on the outside of the tube.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

Die Erfindung betrifft einen Rohrbündelwärmetauscher (1) mit einem Rohrboden (3), die zusammen einen Innenraum (4) des Rohrbündel Wärmetauschers (1) definieren. Der Rohrbündelwärmetauscher umfasst ein Rohrbündel mit einer Vielzahl von Wärmeaustauscherrohren (5), die im Innenraum (4) angeordnet von einem ersten Fluid durchströmbar sind und wahlweise durch zusätzliche Stützbleche (6) gestützt werden. Die Wärmeaustauscherrohre (5) weisen auf der Rohraußenseite ausgeformte schraubenlinienförmig umlaufende integrale Rippen (51) mit Rippenfuß, Rippenflanken und Rippenspitze auf und zwischen den Rippen (51) ist ein Kanal mit einem Kanalgrund ausgebildet. Der Rohrboden (3) weist Ausnehmungen als Durchtrittstellen auf, wobei jede Ausnehmung eine innere Oberfläche besitzt. Die Wärmeaustauscherrohre (5) ragen mit ihrer Außenberippung (51) in die Ausnehmungen des Rohrbodens (3) zumindest hinein, wodurch ein Fügespalt jeweils zwischen der inneren Oberfläche einer Ausnehmung und der innerhalb der Ausnehmung befindlichen Außenberippung (51) eines Wärmeaustauscherrohrs (5) ausgebildet ist. Die Wärmeaustauscherrohre (5) weisen mittels Fügematerial und unter Einbeziehung der Außenberippung (51) eine stoffschlüssige Verbindung mit dem Rohrboden (3) auf, welche lediglich in einem sich von der Stirnseite eines Wärmeaustauscherrohrs (5) in axialer Richtung erstreckenden, ersten Teilabschnitt der Ausnehmung ausgebildet ist, indem in diesem ersten Teilabschnitt der Fügespalt mit Fügematerial ausgefüllt ist, so dass ein zweiter Teilabschnitt der Ausnehmung verbleibt, in dem der Fügespalt nicht mit Fügematerial ausgefüllt ist, wobei das Wärmeaustauscherrohr (5) im Bereich des zweiten Teilabschnitts auf der Rohraußenseite weiterhin eine Außenberippung (51) aufweist.

Description

Beschreibung
Rohrbündelwärmetauscher
Die Erfindung betrifft einen Rohrbündelwärmetauscher gemäß dem Oberbegriff des Anspruchs 1.
Rohrbündelwärmetauscher dienen dazu, Wärme von einem ersten Fluid auf ein zweites Fluid zu übertragen. Zu diesem Zweck weist ein Rohrbündelwärmetauscher zumeist einen Hohlzylinder auf, in dessen Innerem eine Vielzahl von Rohren angeordnet ist. Eines der beiden Fluide kann durch die Rohre geleitet werden, das andere Fluid durch den Hohlzylinder, insbesondere um die Rohre herum. Die Rohre sind mit ihren Enden an einem Rohrboden oder mehreren Rohrböden des Rohrbündelwärmetauschers entlang ihres Umfangs befestigt. Im Zuge des Herstellungsprozesses eines Rohrbündelwärmetauschers werden die Rohre mit ihren Enden beispielsweise stoffschlüssig mit dem Rohrboden verbunden. Generell ist es wünschenswert, eine Möglichkeit bereitzustellen, um Rohre eines Rohrbündelwärmetauschers mit einem Rohrboden des Rohrbündelwärmetauschers auf aufwandsarme und kostengünstige Weise in hoher Qualität miteinander zu verbinden.
Aus der Druckschrift WO 2017/ 025 184 A1 ist ein Verfahren zum Verbinden von Rohren eines Rohrbündelwärmetauschers mit einem Rohrboden beschrieben. Die Rohre und der Rohrboden sind jeweils aus Aluminium oder einer Aluminium- Legierung gefertigt und werden mittels Laserschweißens mit dem Rohrboden stoffschlüssig verbunden. Die Intensität des erzeugten Laserstrahls liegt dabei über 1 MW/cm2. Auch ist angedacht, dass die Rohre des Rohrbündelwärmetauschers mit dem Rohrboden vor dem Laserschweißen formschlüssig verbunden werden.
Der herzustellende Rohrbündelwärmetauscher weist in seinem gefertigten, betriebsbereiten Zustand eine Vielzahl von Rohren auf, die im Inneren eines Hohlzylinders angeordnet sind. Der Rohrboden kann als eine Platte ausgebildet sein und weist Bohrungen auf, welche in ihrem Durchmesser im Wesentlichen den Außendurchmessern der Rohre entsprechen. Jedes Rohr ist mit einem seiner Enden jeweils an einer dieser Bohrungen befestigt.
Die Rohre können innerhalb des Hohlzylinders als Geradrohr-Wärmetauscher geradlinig verlaufen. In diesem Fall sind zwei Rohrböden vorgesehen, welche an gegenüberliegenden Enden des Geradrohr-Wärmetauschers angeordnet sind. Jedes Rohr ist mit jeweils einem seiner Enden dabei an jeweils einem dieser zwei Rohrböden befestigt.
Die Rohre können innerhalb des Hohlzylinders auch als U-Rohr-Wärmetauscher U-förmig verlaufen. Ein derartiger U-Rohr-Wärmetauscher weist üblicherweise nur einen Rohrboden auf. Da die Rohre in diesem Fall U-förmig gebogen sind, können sie jeweils mit ihren beiden Enden an demselben Rohrboden befestigt werden.
Aus der DE 10 2006 031 606 A1 ist ein Verfahren zum Laserschweißen eines Wärmetauschers zur Abgaskühlung bekannt, bei dem einer Vorschubbewegung des Laserstrahls zudem eine Pendelbewegung überlagert wird. Diese Pendelbewegung erfolgt im Wesentlichen in senkrechter Richtung zu der Vorschubrichtung. Die Pendelbewegung erfolgt aus Gründen der besseren Überbrückung von Spalten.
Des Weiteren ist aus der Druckschrift WO 2017/ 125 253 A1 ein Verfahren zum Verbinden von Rohren eines Rohrbündelwärmetauschers mit einem Rohrboden bekannt. Die Rohre werden mittels Laserschweißen mit dem Rohrboden stoffschlüssig verbunden. Zur Verbindung wird ein Laserstrahl erzeugt und auf eine zu schweißende Stelle in einem Verbindungsbereich zwischen Rohr und Rohrboden fokussiert. Hierbei wird der Laserstrahl derart bewegt, dass er eine erste Bewegung über den Verbindungsbereich hinweg und eine der ersten Bewegung überlagerte zweite Bewegung vollzieht, die unterschiedlich zu der ersten Bewegung ist. Durch die zweite Bewegung wird gezielt die Schmelzbaddynamik beeinflusst und eine entstehende Dampfkapillare vorteilhaft modifiziert.
Der Erfindung liegt die Aufgabe zugrunde, Rohre eines Rohrbündelwärmetauschers mit einem Rohrboden zuverlässig und in aufwandsarmer Weise in hoher Qualität zu verbinden.
Die Erfindung wird durch die Merkmale des Anspruchs 1 wiedergegeben. Die weiteren rückbezogenen Ansprüche betreffen vorteilhafte Aus- und Weiterbildungen der Erfindung.
Die Erfindung schließt einen Rohrbündelwärmetauscher mit einem umhüllenden Außenmantel sowie zumindest einem Rohrboden ein, die zusammen einen Innenraum des Rohrbündelwärmetauschers definieren. Der Rohrbündelwärmetauscher umfasst ein Rohrbündel mit einer Vielzahl von Wärmeaustauscherrohren, die im Innenraum angeordnet von einem ersten Fluid durchströmbar sind und wahlweise durch zusätzliche Stützbleche gestützt werden. Die Wärmeaustauscherrohre weisen auf der Rohraußenseite ausgeformte schraubenlinienförmig umlaufende integrale Rippen mit Rippenfuß, Rippenflanken und Rippenspitze auf und zwischen den Rippen ist ein Kanal mit einem Kanalgrund ausgebildet. Der Rohrbündelwärmetauscher umfasst zumindest einen Einlass am Außenmantel, über den ein zweites Fluid in den Innenraum eingeleitet werden kann, und zumindest einen Auslass, über den das zweite Fluid aus dem Innenraum abgeleitet werden kann. Der Rohrbündelwärmetauscher umfasst wahlweise mindestens einen an dem mindestens einen Rohrboden angeordneten Anschlusskasten zur Verteilung, Umlenkung oder Sammlung des ersten Fluids. Der mindestens eine Rohrboden weist Ausnehmungen als Durchtrittstellen auf, wobei jede Ausnehmung eine innere Oberfläche besitzt. Die Wärmeaustauscherrohre ragen mit ihrer Außenberippung in die Ausnehmungen des Rohrbodens zumindest hinein, wodurch ein Fügespalt jeweils zwischen der inneren Oberfläche einer Ausnehmung und der innerhalb der Ausnehmung befindlichen Außenberippung eines Wärmeaustauscherrohrs ausgebildet ist. Die Wärmeaustauscherrohre weisen mittels Fügematerial und unter Einbeziehung der Außenberippung eine stoffschlüssige Verbindung mit dem Rohrboden auf, welche lediglich in einem sich von der Stirnseite eines Wärmeaustauscherrohrs in axialer Richtung erstreckenden, ersten Teilabschnitt der Ausnehmung ausgebildet ist, indem in diesem ersten Teilabschnitt der Fügespalt mit Fügematerial ausgefüllt ist, so dass ein zweiter Teilabschnitt der Ausnehmung verbleibt, in dem der Fügespalt nicht mit Fügematerial ausgefüllt ist, wobei das Wärmeaustauscherrohr im Bereich des zweiten Teilabschnitts auf der Rohraußenseite weiterhin eine Außenberippung aufweist.
Mit anderen Worten: Die Wärmeaustauscherrohre weisen innerhalb der Durchtrittsstellen, an denen sie in einen Rohrboden ein oder durch einen Rohrboden hindurchtreten eine Außenberippung auf. Diese Außenberippung wird durch das Material für eine stoffschlüssige Verbindung umschlossen und so ein Durchtritt von Gas oder Flüssigkeit hermetisch abgedichtet. Zum reinen Stoffschluss können auch Kombination zusammen mit Kraftschluss und Formschluss in vorteilhafter Weise eingesetzt werden.
Das Fügematerial dringt in axialer Richtung nur zu einem gewissen Grad in einem ersten Teilabschnitt von der Stirnseite her in den Fügespalt ein, da die Außenrippen einem freien Durchtritt, wie beispielsweise bei einem Glattrohr gegeben, entgegenstehen. Die Außenrippen bilden folglich Barrieren, die umströmt oder aufgeschmolzen werden müssen. Das Umströmen ist insbesondere bei den Fügeverfahren Löten und Kleben von besonderer Bedeutung. Beim Schweißen wird stirnseitig die Außenberippung des Wärmeaustauscherrohrs zum Teil mit aufgeschmolzen. Der Schmelzefluss wird dann bevorzugt an einer der Außenrippen gestoppt, sobald die Temperatur der Schmelze nicht mehr ausreicht, eine weiter innen liegende Rippe aufzuschmelzen. Diese Barriere stoppt das weitere Eindringen der Schmelze im Fügespalt. Auf diese Weise ist ein definierter Fließvorgang des Fügematerials beim Fügevorgang gegeben, der die Fügestelle bereits an oder in der Nähe der Rohrstirnseite vollständig verschließt.
Zur Außenberippung kann ein Wärmeaustauscherrohr zudem wahlweise eine Innenstruktur aufweisen. Die Innenstruktur kann in Gestalt einer innen umlaufenden Helix mit einem vorgegebenen Drallwinkel ausgeführt sein. Für den Fall, dass die Außenseite der Wärmeaustauscherrohre eine spiralig umlaufende Außenberippung aufweist, kann die Steigung der umlaufenden Außenberippung gleich, geringer oder größer als die durch den Drallwinkel vorgegebene Steigung der umlaufenden Helix ausgebildet sein. Beide Strukturen können sich folglich dahingehend unterscheiden, dass zur stoffschlüssigen Verbindung der Außenseite eines Wärmeaustauscherrohrs mit der Behälterwandung die Gestaltung der Außenberippung und der Innenstruktur unabhängig voneinander gestaltet und so optimiert werden können.
Zur Optimierung des Wärmeaustauschs sind beiden Strukturen jedoch gewisse Grenzen vorgegeben. So liegt das Verhältnis der maximalen Strukturhöhe der Außenberippung und der maximalen Strukturhöhe der Innenstruktur für Verflüssigerrohre bevorzugt im Bereich von 1 ,25 bis 5 und für Verdampferrohre bevorzugt im Bereich von 0,5 bis 2. Vor allem Investitionskosten sollen gespart werden, da die erfindungsgemäßen Rohrbündelwärmetauscher wesentlich kompakter gebaut werden können. Hierbei setzt sich die Außenberippung bis in den Rohrboden hinein fort, wodurch die Anzahl der Wärmeaustauscherrohre pro Einheit deutlich reduziert werden kann.
Je nach Anforderung ermöglichen die Rippenrohre einen effizienteren Energieeinsatz oder die Reduzierung von Füllmengen, was die Betriebskosten senkt.
Die Erfindung geht dabei von der Überlegung aus, dass eine stoffschlüssige Verbindung der Wärmeaustauscherrohre mit den Rohrböden besonders zuverlässig und aufwandsarm in hoher Qualität erzielt wird. Erfindungsgemäß tritt ein Wärmeaustauscherrohr mit seiner außenseitigen Außenberippung in den Rohrboden ein oder durch den Rohrboden hindurch. An die stoffschlüssige Verbindung der Rohre mit dem Rohrboden verbleibt dann unmittelbar angrenzend die Außenberippung erhalten. Dies hat den besonderen Vorteil, dass im Inneren des Rohrbündelwärmetauschers die Wärmeaustauscherrohre für eine effiziente Wärmeübertragung eine durchgängige Außenberippung aufweisen.
Bei einer vorteilhaften Ausführungsform der Erfindung kann der mit Fügematerial ausgefüllte erste Teilabschnitt in axialer Richtung weniger als 70 % der Länge des gesamten Fügespalts betragen. Vorteilhafterweise umfasst der ausgefüllte erste Teilabschnitt des Fügespalts lediglich weniger als 50 % der Gesamtlänge.
Insbesondere bei Schweißverbindungen können bereits auch 20 % Füllgrad des ersten Teilabschnitts genügen, um eine fluiddichte stoffschlüssige Verbindung herzustellen.
Vorteilhafterweise kann die lichte Weite zwischen den Rippenspitzen eines Wärmeaustauscherrohrs und der inneren Oberfläche der Ausnehmung maximal 30 % der vom Kanalgrund bis zur Rippenspitze gemessenen Rippenhöhe betragen. Über diese lichte Weite wird die Barrierewirkung der Außenrippen variiert. Insbesondere bei den Fügeverfahren Löten und Kleben kann das Fügematerial über diese lichte Weite des Fügespalts zur Ausbildung des gefüllten ersten Teilabschnitts gezielt eingebracht werden. Ein weiterer Fließkanal für das Fügematerial stellt zudem der durch die ausgeformten schraubenlinienförmig umlaufenden integralen Rippen gebildete Kanal dar. Der Kanalquerschnitt ist allerdings durch die Rippenhöhe und des Abstandes benachbarter Rippen vorgegeben und üblicherweise gegenüber der gewählten lichten Weite geringer ausgeprägt.
Vorteilhafterweise kann die stoffschlüssige Verbindung gasdicht und druckbeständig ausgeführt sein. Über die Funktionen hinsichtlich mechanischer Stabilität verbunden mit einer effizienten Wärmeübertragung hinaus ist eine hermetische Abdichtung zur Verhinderung eines Fluidaustausches mit der Umgebung in jedem Betriebsmodus wichtig.
Bei einer vorteilhaften Ausführungsform der Erfindung weisen die Wärmeaustauscherrohre in den Durchtrittsstellen einen
Rohrinnendurchmesser D2 auf, der größer ist als der Rohrinnendurchmesser D1 der Wärmeaustauscherrohre außerhalb der Durchtrittsstellen.
Wenn die Wärmeaustauscherrohre innerhalb der Durchtrittsstellen, an denen sie in den Rohrboden ein oder durch den Rohrboden hindurchtreten immer noch eine Außenberippung aufweisen, liegt verfahrensseitig eine Aufweitung des Wärmeaustauscherrohrs mit der Folge eines vergrößerten Durchtrittsinnendurchmessers D2 zugrunde. Durch eine Aufweitung wird dann innerhalb einer Durchtrittsstelle die Außenberippung gequetscht. Dennoch sorgt die stoffschlüssige Verbindung für eine stabile hermetische Abdichtung.
Bei einer vorteilhaften Ausführungsform der Erfindung können die Wärmeaustauscherrohre in den Rohrboden gelötet, geklebt oder geschweißt sein. Zu den genannten bevorzugten Verbindungsarten können auch weitere hinzutreten, welche die Wärmeaustauscherrohre mittels einer stoffschlüssigen Verbindung mit dem Rohrboden zuverlässig fügen.
Prinzipiell kann die Außenberippung auf der Außenseite der Wärmeaustauscherrohre bevorzugt in umfänglicher Richtung oder in axialer Richtung parallel zur Rohrachse verlaufen. Bei einer vorteilhaften Ausführungsform der Erfindung kann die Außenseite der Wärmeaustauscherrohre eine spiralig umlaufende Außenberippung aufweisen. Bei einer spiraligen Außenberippung muss lediglich ein Restspalt und der spiralig mit einer Außenberippung umlaufende Kanal durch die stoffschlüssige Verbindung zuverlässig abgedichtet werden.
Auch wenn regelmäßig für die Wärmeaustauscherrohre ein geeignetes einheitliches Material bevorzugt ist, kann in vorteilhafter Ausgestaltung der Erfindung mindestens ein erstes Wärmeaustauscherrohr aus einem ersten Material bestehen und mindestens ein zweites Wärmeaustauscherrohr aus einem zweiten Material bestehen, welches sich vom ersten Material unterscheidet. Hinsichtlich der mechanischen Stabilität können Stahlrohre mit besonders hoher Festigkeit einen besonderen Vorteil bieten. Kupferrohre bewirken hingegen eine Optimierung hinsichtlich einer effizienten Wärmeübertragung. Auch andere Materialien, wie beispielsweise Titan, Aluminium, Aluminiumlegierungen sowie Kupfer-Nickel-Legierungen kommen in Betracht.
Ausführungsbeispiele der Erfindung werden anhand der schematischen Zeichnungen näher erläutert.
Darin zeigen:
Fig. 1 schematisch eine Seitenansicht eines Rohrbündelwärmetauschers mit Detailansicht eines Wärmeaustauscherrohrs mit Außenrippen, Fig. 2 schematisch eine Frontansicht eines Ausschnitts eines Rohrbodens mit Durchtrittsstelle,
Fig.3 schematisch einen senkrechten Schnitt des Rohrbodens in der Ebene der Durchtrittsstelle der Wärmeaustauscherrohre, und
Fig. 4 schematisch eine Detailansicht eines Schnittes einer stoffschlüssigen Verbindung des Rohrbodens mit einem Wärmeaustauscherrohr.
Einander entsprechende Teile sind in allen Figuren mit denselben Bezugszeichen versehen.
Fig. 1 zeigt schematisch eine Seitenansicht eines Rohrbündelwärmetauschers 1 mit einem umhüllenden Außenmantel 2 sowie zwei Rohrböden 3, die zusammen einen Innenraum 4 des Rohrbündelwärmetauschers 1 definieren. Der Rohrbündelwärmetauscher 1 umfasst ein Rohrbündel mit einer Vielzahl von Wärmeaustauscherrohren 5, die im Innenraum 4 angeordnet von einem ersten Fluid zur Wärmeübertragung durchströmbar sind und durch zusätzliche Stützbleche 6 gestützt werden. Derartige Stützbleche 6 werden oft auch zudem als Leitbleche für den Fluidfluss eingesetzt. Der Rohrbündelwärmetauscher 1 umfasst zudem Anschlusskästen 7, die das erste Fluid im Inneren der Wärmeaustauscherrohre je nach Anforderung verteilen, umlenken oder sammeln. Es ist zumindest ein Einlass 8 am Außenmantel 2 vorhanden, über den ein zweites Fluid zur Wärmeübertragung in den Innenraum eingeleitet werden kann, und zumindest ein Auslass 9 über den das zweite Fluid aus dem Innenraum abgeleitet werden kann. In der Detailansicht ist ein Wärmeaustauscherrohr 5 mit Außenrippen 51 herausvergrößert. Durch ein im Übrigen bekanntes Walzverfahren sind auf der Rohraußenseite ausgeformte schraubenlinienförmig um die Rohrachse A umlaufende integrale Rippen 51 ausgebildet.
Fig. 2 zeigt schematisch eine Frontansicht eines Ausschnitts eines Rohrbodens 3 mit Durchtrittsstellen 31. An einer Durchtrittsstelle 31 ist die Ausnehmung im Rohrboden 3 bevorzugt gerade so groß, dass ein Wärmeaustauscherrohr 5 mit seiner Außenberippung 51 eingebracht und dort stoffschlüssig verbunden werden kann. Schweiß-, Klebe- und Lötverbindungen als stoffschlüssige Verbindung 20 können an der Durchtrittsstelle 31 , ausgehend von der Stirnseite, über einen ersten Teilabschnitt der Wandstärke eines Rohrbodens 3 erfolgen und eine fluiddichte Verbindung eingehen. In einem in die Tiefe reichenden zweiten Teilabschnitt verbleibt ein, in Figur 2 nicht sichtbar, nicht ausgefüllter Rest des Fügespalts in der Rohrbodenwandung 3 erhalten.
Fig. 3 zeigt schematisch einen senkrechten Schnitt des Rohrbodens 3 in der Ebene der Durchtrittsstelle 31 eines Wärmeaustauscherrohrs 5. Das dargestellte Wärmeaustauscherrohr 5 weist auf der Außenseite eine Außenberippung 51 auf. Das Wärmeaustauscherrohr 5 tritt an der Ausnehmung 31 als Durchtrittsstelle im dargestellten Ausführungsbeispiel durch den Rohrboden 3 hindurch. An dieser Durchtrittsstelle 31 weist das Wärmeaustauscherrohr 5 eine durchgängige Außenberippung 51 auf. Eine in der Figur 3 noch nicht eingebrachte stoffschlüssige Verbindung 20, beispielsweise in Gestalt einer um den Rohrumfang durchgängigen Schweißnaht mit dem Rohrboden 3, befindet sich nach dem Fügevorgang in einem Teilabschnitt des Fügespalts 10. Je nach Materialkombination aus dem Rohrboden 3 und aus dem Wärmeaustauscherrohr 5 kann es an der Schweißstelle 20 zu vorteilhaften intermetallischen neuen Phasenbildungen im Schmelzebad kommen. Ein geeignetes Verfahren zur Herstellung einer stoffschlüssigen Verbindung mit einem örtlich begrenzten Schmelzefluss stellt insbesondere das Laserschweißen dar.
Fig. 4 zeigt schematisch eine Detailansicht eines Schnittes einer stoffschlüssigen Verbindung 20 des Rohrbodens 3 mit einem Wärmeaustauscherrohr 5. In der dargestellten Ausführung ist das Wärmeaustauscherrohr 5 in Richtung der Rohrachse A in die im Rohrboden 3 eingebrachte Ausnehmung 31 eingeschoben und schließt mit der Stirnseite 53 mit der äußeren Rohrbodenoberfläche ab. Die Wärmeaustauscherrohre 5 weisen auf der Rohraußenseite ausgeformte schraubenlinienförmig umlaufende integrale Rippen 51 mit Rippenfuß 511 , Rippenflanken 512 und Rippenspitze 513 auf. Zwischen benachbarten Rippen 51 ist ein Kanal 52 mit einem Kanalgrund 521 ausgebildet. In Figur 4 ist als stoffschlüssige Verbindung 20 eine Schweißnaht dargestellt, die sich beispielsweise beim Laserschweißen ausbildet. Gegebenenfalls werden materialseitig geeignete Schweißzusätze beim Fügen verwendet. Auf diese Weise kann auch der Materialfluss und die Menge genau auf die gewünschte Fügeverbindung abgestimmt werden. Bei der dargestellten stoffschlüssigen Verbindung wird verfahrensbedingt durch den Wärmeeintrag eines Lasers sowohl gewisse Bereiche des Rohrbodens 3 wie auch einige Außenrippen 51 am Wärmeaustauscherrohr 5 zumindest teilweise mit aufgeschmolzen und als Fügematerial 20 integriert. Beim Fügen tritt die Schmelze ausgehend von der Stirnseite 53 in den Fügespalt 10 ein, wird jedoch nach einer gewissen Eindringtiefe blockiert, so dass nur ein erster stirnseitiger Teilabschnitt 101 des Fügespalts 10 unter Einbeziehung der Außenberippung 51 ausgefüllt ist. Den weiteren Durchtritt der Schmelze verhindert eine Rippe 51 , die aufgrund der abnehmenden Temperatur an der Schmelzefront nicht mehr aufgeschmolzen oder umströmt wird und so als Barriere fungiert. Auf diese Weise ist ein definierter Fließvorgang des Fügematerials 20 beim Fügevorgang gegeben, der die Fügestelle bereits an oder in der Nähe der Rohrstirnseite 53 vollständig verschließen kann.
Die Wärmeaustauscherrohre 5 weisen so eine stoffschlüssige Verbindung 20 mit dem Rohrboden 3 auf, welche lediglich in einem sich von der Stirnseite 53 eines Wärmeaustauscherrohrs 5 in axialer Richtung erstreckenden, ersten Teilabschnitt 101 der Ausnehmung 31 ausgebildet ist. Ein zweiter Teilabschnitt 102 der Ausnehmung 31 ist nicht mit Fügematerial ausgefüllt. Im zweiten Teilabschnitt 102 weist Wärmeaustauscherrohr 5 auf der Rohraußenseite weiterhin eine Außenberippung 51 auf. Bezugszeichenliste
1 Rohrbündelwärmetauscher
2 Außenmantel
3 Rohrboden
31 Ausnehmung, Durchtrittstelle
311 innere Oberfläche der Ausnehmung Innenraum
5 Wärmeaustauscherrohr
51 integrale Rippen, Außenrippen
511 Rippenfuß
512 Rippeflanke
513 Rippespitze
52 Kanal
521 Kanalgrund
53 Stirnseite
6 Stützblech
7 Anschlusskasten
8 Einlass
9 Auslass
10 Fügespalt
101 ersten Teilabschnitt
102 zweiter Teilabschnitt
20 stoffschlüssige Verbindung, Fügematerial
A Rohrachse, axiale Richtung
D1 , D2 Rohrinnendurchmesser
Pfeil Fluidfluss

Claims

Patentansprüche Rohrbündelwärmetauscher (1 ) mit einem umhüllenden Außenmantel (2) sowie zumindest einem Rohrboden (3), die zusammen einen Innenraum (4) des Rohrbündelwärmetauschers (1 ) definieren, umfassend
- ein Rohrbündel mit einer Vielzahl von Wärmeaustauscherrohren (5), die im Innenraum (4) angeordnet von einem ersten Fluid durchströmbar sind und wahlweise durch zusätzliche Stützbleche (6) gestützt werden, wobei die Wärmeaustauscherrohre (5) auf der Rohraußenseite ausgeformte, schraubenlinienförmig umlaufende integrale Rippen (51 ) mit Rippenfuß (511 ), Rippenflanken (512) und Rippenspitze (513) aufweisen und zwischen den Rippen (51 ) ein Kanal (52) mit einem Kanalgrund (521 ) ausgebildet ist,
- zumindest einen Einlass (8) am Außenmantel (2), über den ein zweites Fluid in den Innenraum (4) eingeleitet werden kann, und zumindest einen Auslass (9), über den das zweite Fluid aus dem Innenraum (4) abgeleitet werden kann,
- wahlweise mindestens einen an dem mindestens einen Rohrboden (3) angeordneten Anschlusskasten (7) zur Verteilung, Umlenkung oder Sammlung des ersten Fluids, wobei der mindestens eine Rohrboden (3) Ausnehmungen (31 ) als Durchtrittstellen aufweist, wobei jede Ausnehmung (31 ) eine innere Oberfläche (311 ) besitzt, dadurch gekennzeichnet,
- dass die Wärmeaustauscherrohre (5) mit ihrer Außenberippung (51 ) in die Ausnehmungen (31 ) des Rohrbodens (3) zumindest hineinragen, wodurch ein Fügespalt (10) jeweils zwischen der inneren Oberfläche (311 ) einer Ausnehmung (31 ) und der innerhalb der Ausnehmung (31 ) befindlichen Außenberippung (51 ) eines Wärmeaustauscherrohrs (5) ausgebildet ist,
- dass die Wärmeaustauscherrohre (5) mittels Fügematerial (20) und unter Einbeziehung der Außenberippung (51 ) eine stoffschlüssige Verbindung (20) mit dem Rohrboden (3) aufweisen, welche lediglich in einem sich von der Stirnseite (53) eines Wärmeaustauscherrohrs (5) in axialer Richtung (A) erstreckenden, ersten Teilabschnitt (101 ) der Ausnehmung (31 ) ausgebildet ist, indem in diesem ersten Teilabschnitt (101 ) der Fügespalt (10) mit Fügematerial (20) ausgefüllt ist, so dass ein zweiter Teilabschnitt (102) der Ausnehmung (31 ) verbleibt, in dem der Fügespalt (10) nicht mit Fügematerial ausgefüllt ist, wobei das Wärmeaustauscherrohr (5) im Bereich des zweiten Teilabschnitts (102) auf der Rohraußenseite weiterhin eine Außenberippung (51 ) aufweist. Rohrbündelwärmetauscher (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass der mit Fügematerial (20) ausgefüllte erste Teilabschnitt (101 ) in axialer Richtung (A) weniger als 70 % der Länge des gesamten Fügespalts (10) beträgt. Rohrbündelwärmetauscher (1 ) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die lichte Weite zwischen den Rippenspitzen (513) eines Wärmeaustauscherrohrs (5) und der inneren Oberfläche (311 ) der Ausnehmung (31 ) maximal 30 % der vom Kanalgrund (521 ) bis zur Rippenspitze (513) gemessenen Rippenhöhe beträgt. Rohrbündelwärmetauscher (1 ) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die stoffschlüssige Verbindung (20) gasdicht und druckbeständig ausgeführt ist. Rohrbündelwärmetauscher (1 ) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Wärmeaustauscherrohre (5) in den Ausnehmungen als Durchtrittsstellen (31 ) einen Rohrinnendurchmesser D2 aufweisen, der größer ist als der Rohrinnendurchmesser D1 der Wärmeaustauscherrohre (5) außerhalb der Durchtrittsstellen (31 ). Rohrbündelwärmetauscher (1 ) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Wärmeaustauscherrohre (5) in den Rohrboden (3) gelötet, geklebt oder geschweißt sind.
PCT/EP2021/000127 2020-11-17 2021-10-21 Rohrbündelwärmetauscher WO2022106045A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA3195755A CA3195755A1 (en) 2020-11-17 2021-10-21 Tube bundle heat exchanger
CN202180074805.9A CN116670459A (zh) 2020-11-17 2021-10-21 管束热交换器
MX2023005414A MX2023005414A (es) 2020-11-17 2021-10-21 Intercambiador de calor de haz de tubos.
EP21798942.5A EP4248160A1 (de) 2020-11-17 2021-10-21 Rohrbündelwärmetauscher
US18/246,410 US20230392871A1 (en) 2020-11-17 2021-10-21 Tube bundle heat exchanger
JP2023522815A JP2023548673A (ja) 2020-11-17 2021-10-21 管束熱交換器
KR1020237010569A KR20230110247A (ko) 2020-11-17 2021-10-21 다관형 열교환기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020007022 2020-11-17
DE102020007022.1 2020-11-17

Publications (1)

Publication Number Publication Date
WO2022106045A1 true WO2022106045A1 (de) 2022-05-27

Family

ID=78413965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/000127 WO2022106045A1 (de) 2020-11-17 2021-10-21 Rohrbündelwärmetauscher

Country Status (9)

Country Link
US (1) US20230392871A1 (de)
EP (1) EP4248160A1 (de)
JP (1) JP2023548673A (de)
KR (1) KR20230110247A (de)
CN (1) CN116670459A (de)
CA (1) CA3195755A1 (de)
MX (1) MX2023005414A (de)
TW (1) TW202227771A (de)
WO (1) WO2022106045A1 (de)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342909A (ja) * 2000-06-05 2001-12-14 Hino Motors Ltd Egrクーラ
DE102006031606A1 (de) 2006-07-06 2008-01-17 Behr Gmbh & Co. Kg Wärmetauscher zur Abgaskühlung, Verfahren zur Herstellung eines Wärmetauschers
US20080235950A1 (en) * 2007-03-30 2008-10-02 Wolverine Tube, Inc. Condensing tube with corrugated fins
EP2331900B1 (de) * 2008-09-22 2016-08-17 Aktiebolaget K.A. Ekström & Son Russ konfigurierte anlage
WO2017025184A1 (de) 2015-08-11 2017-02-16 Linde Aktiengesellschaft Verfahren zum verbinden von rohren eines rohrbündelwärmetauschers mit einem rohrboden des rohrbündelwärmetauschers
WO2017125253A1 (de) 2016-01-19 2017-07-27 Linde Aktiengesellschaft Verfahren zum verbinden von rohren eines rohrbündelwärmetauschers mit einem rohrboden des rohrbündelwärmetauschers
US20180372427A1 (en) * 2015-12-23 2018-12-27 Brembana & Rolle S.P.A. Shell and tube heat exchanger, finned tubes for such heat exchanger and corresponding method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342909A (ja) * 2000-06-05 2001-12-14 Hino Motors Ltd Egrクーラ
DE102006031606A1 (de) 2006-07-06 2008-01-17 Behr Gmbh & Co. Kg Wärmetauscher zur Abgaskühlung, Verfahren zur Herstellung eines Wärmetauschers
US20080235950A1 (en) * 2007-03-30 2008-10-02 Wolverine Tube, Inc. Condensing tube with corrugated fins
EP2331900B1 (de) * 2008-09-22 2016-08-17 Aktiebolaget K.A. Ekström & Son Russ konfigurierte anlage
WO2017025184A1 (de) 2015-08-11 2017-02-16 Linde Aktiengesellschaft Verfahren zum verbinden von rohren eines rohrbündelwärmetauschers mit einem rohrboden des rohrbündelwärmetauschers
US20180372427A1 (en) * 2015-12-23 2018-12-27 Brembana & Rolle S.P.A. Shell and tube heat exchanger, finned tubes for such heat exchanger and corresponding method
WO2017125253A1 (de) 2016-01-19 2017-07-27 Linde Aktiengesellschaft Verfahren zum verbinden von rohren eines rohrbündelwärmetauschers mit einem rohrboden des rohrbündelwärmetauschers

Also Published As

Publication number Publication date
US20230392871A1 (en) 2023-12-07
JP2023548673A (ja) 2023-11-20
CA3195755A1 (en) 2022-05-27
MX2023005414A (es) 2023-05-22
KR20230110247A (ko) 2023-07-21
CN116670459A (zh) 2023-08-29
EP4248160A1 (de) 2023-09-27
TW202227771A (zh) 2022-07-16

Similar Documents

Publication Publication Date Title
DE60209994T2 (de) Wärmetauscherrohr
EP0660064B1 (de) Wärmetauscher
DE2209325A1 (de) Waermeaustauschrohr mit innenrippen und verfahren zu seiner herstellung
DE4442040A1 (de) Wärmetauscher mit einem Sammelrohr
EP1728038A1 (de) Vorrichtung zum austausch von wärme und verfahren zu deren herstellung
DE102007060116A1 (de) Verfahren zum Herstellen einer Rohrverbindung und Rohrverbindung
EP1906130A2 (de) Wärmetauscher zur Abgaskühlung, Verfahren zur Herstellung eines Wärmetauschers
DE112015003055T5 (de) Warmetauscher und verfahren für dessen herstellung
DE4203329A1 (de) Gasdichte verbindung zwischen rohren kleinen durchmessers
EP1139052B1 (de) Kühler für Kraftfahrzeuge sowie Herstellungsverfahren
DE102006002932A1 (de) Wärmetauscher und Herstellungsverfahren für Wärmetauscher
DE102011008119A1 (de) Doppelrohr, sowie Doppelrohr-Wärmetauscher
WO2022106045A1 (de) Rohrbündelwärmetauscher
DE112005000422T5 (de) Ein ein Flachrohr bildender plattenförmiger Körper, ein Flachrohr, ein Wärmetauscher und ein Verfahren zur Herstellung eines Wärmetauschers
EP1469085A1 (de) Ofenwand mit Kühlplatten für einen metallurgischen Ofen
DE10000288C1 (de) Spiralwärmeaustauscher
EP0822025B1 (de) Verfahren zur Herstellung von korrosionsbeständigen Wärmeübertragern
DE102015201808A1 (de) Wärmetauscherrohranordnung und Verfahren zum Herstellen derselben
DE3401853A1 (de) Waermetauscher und verfahren zu seiner herstellung
DE202020005654U1 (de) Rohrbündelwärmetauscher
EP1716377A1 (de) Vorrichtung zum austausch von wärme und verfahren zur herstellung einer derartigen vorrichtung
WO2007014561A1 (de) Wärmeübertrager für fahrzeuge und verfahren zu seiner herstellung
DE102006000736B4 (de) Verfahren zur Herstellung eines Rohr/Rippen-Blockes und Vorrichtung zur Durchführung des Verfahrens
DE102010003063A1 (de) Wärmetauscherelement
DE10339663A1 (de) Wärmetauschereinheit für Kraftfahrzeuge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21798942

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023522815

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3195755

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202180074805.9

Country of ref document: CN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023009539

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023009539

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230517

ENP Entry into the national phase

Ref document number: 2021798942

Country of ref document: EP

Effective date: 20230619