WO2022105738A1 - 用于制冷电器中的线性压缩机的可变容量驱动电路 - Google Patents

用于制冷电器中的线性压缩机的可变容量驱动电路 Download PDF

Info

Publication number
WO2022105738A1
WO2022105738A1 PCT/CN2021/130871 CN2021130871W WO2022105738A1 WO 2022105738 A1 WO2022105738 A1 WO 2022105738A1 CN 2021130871 W CN2021130871 W CN 2021130871W WO 2022105738 A1 WO2022105738 A1 WO 2022105738A1
Authority
WO
WIPO (PCT)
Prior art keywords
firing angle
state
positive
negative
quadrant
Prior art date
Application number
PCT/CN2021/130871
Other languages
English (en)
French (fr)
Inventor
威尔逊 莱瑟姆约瑟夫
威廉 哈恩格雷戈里
Original Assignee
海尔智家股份有限公司
青岛海尔电冰箱有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 青岛海尔电冰箱有限公司, 海尔美国电器解决方案有限公司 filed Critical 海尔智家股份有限公司
Priority to EP21893885.0A priority Critical patent/EP4230929A4/en
Priority to CN202180077520.0A priority patent/CN116472407A/zh
Publication of WO2022105738A1 publication Critical patent/WO2022105738A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/023Compressor arrangements of motor-compressor units with compressor of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/10Controlling by adding a dc current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/16Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using ac to ac converters without intermediate conversion to dc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0202Voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0204Frequency of the electric current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/073Linear compressors

Definitions

  • the present invention relates generally to linear compressors, and more particularly to a variable capacity drive circuit for powering linear compressors in refrigeration appliances.
  • refrigeration appliances typically include a cabinet defining one or more refrigerated compartments, such as a fresh food compartment for receiving food products for storage and/or a freezer compartment for receiving food products for freezing and storage. Some refrigeration appliances may also include a sealing system for cooling such refrigeration compartments.
  • a hermetic system typically includes a compressor that generates compressed refrigerant during its operation. The compressed refrigerant flows to the evaporator where heat exchange between the refrigerated compartment and the refrigerant is used to cool the refrigerated compartment and the food product located therein.
  • linear compressors for compressing refrigerant.
  • Linear compressors typically include a piston within a housing and a drive coil that generates a force for moving the piston back and forth within the housing. During movement of the piston within the housing, the piston compresses the refrigerant.
  • linear compressors are typically operated by single-phase variable frequency drives.
  • a variable frequency drive is a motor drive used to control the speed and force of a motor by varying the frequency and amplitude of the motor voltage input.
  • Single-phase variable frequency drives typically use inverters with front-end rectifiers.
  • H-bridge inverters and front-end rectifiers are complex, expensive systems that can have high switching losses.
  • the present invention relates to a linear compressor with an optional converter design that modulates the amplitude of the excitation voltage applied to the motor.
  • a method for operating a variable capacity drive circuit of a compressor includes a first four-quadrant switch, a second four-quadrant switch, and a motor.
  • the method includes operating a first four-quadrant switch and a second four-quadrant switch in a first state in which the first four-quadrant switch is closed and the second four-quadrant switch is open. It can be seen that, in the first state, the voltage experienced by the motor is equal to the alternating current (AC) line voltage.
  • the method also includes operating the first four-quadrant switch and the second four-quadrant switch in a second state in which the first four-quadrant switch is open and the second four-quadrant switch is closed.
  • the method also includes providing a positive firing angle and a negative firing angle.
  • the positive firing angle and the negative firing angle define when the first four-quadrant switch and the second four-quadrant switch operate in each of the first state and the second state.
  • the method includes transitioning between a first state and a second state using a positive firing angle and a negative firing angle at a switching frequency determined by the frequency of the AC line voltage to control the amount of power applied to the compressor during the positive and negative half cycles. percentage of voltage.
  • a linear compressor in another aspect, includes: a housing defining a piston-cylinder; a motor for driving the piston-cylinder; and a variable capacity drive circuit for driving the motor.
  • the variable capacity drive circuit includes a plurality of four-quadrant switches arranged in a totem pole configuration between the AC line voltage of the linear compressor and the motor.
  • the four-quadrant switch includes at least a first four-quadrant switch and a second four-quadrant switch.
  • the variable capacity drive circuit includes operating the first four-quadrant switch and the second four-quadrant switch in a first state and a second state.
  • variable capacity drive circuit includes a first state in which the first four-quadrant switch is closed and the second four-quadrant switch is open such that the voltage experienced by the motor is equal to the AC line voltage.
  • the variable capacity drive circuit also includes a second state in which the first four-quadrant switch is open and the second four-quadrant switch is closed such that the voltage experienced by the motor is zero.
  • the variable capacity drive circuit also includes a controller communicatively coupled to each of the four-quadrant switches. The controller is configured to perform a number of operations.
  • the plurality of operations may include, but are not limited to: providing a positive firing angle and a negative firing angle that define when the first four-quadrant switch and the second four-quadrant switch are open in each of the first state and the second state; and transitioning between the first state and the second state using a positive firing angle and a negative firing angle at a switching frequency determined by the AC line voltage frequency to control the percentage of voltage applied to the compressor during the positive and negative half cycles .
  • a refrigeration appliance in another aspect, includes a case having at least one chamber for receiving a food product. Further, the refrigeration appliance includes: a door body allowing access to the chamber; and a linear compressor for auxiliary cooling of the chamber.
  • the linear compressor includes: a housing defining a piston-cylinder; a motor for driving the piston-cylinder; and a variable capacity drive circuit for driving the motor.
  • the variable capacity drive circuit includes a plurality of four-quadrant switches arranged in a totem pole configuration between the AC line voltage of the linear compressor and the motor.
  • the four-quadrant switch includes at least a first four-quadrant switch and a second four-quadrant switch.
  • the variable capacity drive circuit includes operating the first four-quadrant switch and the second four-quadrant switch in a first state and a second state.
  • the variable-capacity drive circuit also includes operating the first four-quadrant switch and the second four-quadrant switch in a first state in which the first four-quadrant switch is closed and the second four-quadrant switch is open such that all of the motor is closed.
  • the voltage experienced is equal to the AC line voltage.
  • the variable capacity drive circuit includes operating the first four-quadrant switch and the second four-quadrant switch in a second state in which the first four-quadrant switch is open and the second four-quadrant switch is closed such that the motor experiences voltage is zero.
  • the variable capacity drive circuit also includes a controller communicatively coupled to the plurality of four-quadrant switches.
  • the controller is configured to perform a number of operations including, but not limited to: providing a positive firing angle and a negative firing angle that define when the first four-quadrant switch and the second four-quadrant switch operate in each of the first state and the second state a firing angle; and transitioning between the first state and the second state at a switching frequency determined by the AC line frequency using the positive firing angle and the negative firing angle to control the voltage applied to the compressor during the positive and negative half cycles percentage.
  • FIG. 1 is a front perspective view of a refrigeration appliance according to an exemplary embodiment of the present invention.
  • FIG. 2 is a schematic diagram of certain components of the exemplary refrigeration appliance of FIG. 1 .
  • FIG 3 is a perspective cross-sectional view of a linear compressor according to an exemplary embodiment of the present invention.
  • FIG. 4 is another perspective cross-sectional view of the exemplary linear compressor of FIG. 3 in accordance with an embodiment of the present invention.
  • FIG. 5 is a perspective view of a linear compressor according to an exemplary embodiment of the present invention, with the compressor casing removed for clarity.
  • FIG. 6 is a cross-sectional view of the exemplary linear compressor of FIG. 3 with the piston in an extended position, according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of the exemplary linear compressor of FIG. 3 with the piston in a retracted position, according to an embodiment of the present invention.
  • FIG. 8 provides a block diagram of one embodiment of a controller of a refrigeration appliance according to an exemplary embodiment of the present invention.
  • FIG. 9 provides a schematic diagram of a method for operating a variable capacity drive circuit of a compressor in accordance with an exemplary embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an exemplary linear compressor drive circuit according to an embodiment of the present invention.
  • Figure 11a is a schematic diagram of one embodiment of a four-quadrant switch configuration in accordance with an embodiment of the present invention.
  • Figure 11b is a schematic diagram of another embodiment of a four-quadrant switch configuration in accordance with an embodiment of the present invention.
  • Figure 11c is a schematic diagram of yet another embodiment of a four-quadrant switch configuration according to an embodiment of the present invention.
  • Figure 12a illustrates a graph of the application of firing angle to transition a variable capacity drive circuit between a first state and a second state in accordance with an embodiment of the present invention.
  • Figure 12b illustrates a graph of another application of firing angle to transition a variable capacity drive circuit between a first state and a second state in accordance with an embodiment of the present invention.
  • Figure 12c illustrates a graph of yet another application of the angle of transition of a variable capacity drive circuit between a first state and a second state in accordance with an embodiment of the present invention.
  • Figure 12d illustrates a graph of yet another application of the angle of transition of a variable capacity drive circuit between a first state and a second state in accordance with an embodiment of the present invention.
  • FIG. 1 depicts a refrigeration appliance 10 incorporating a hermetic refrigeration system 60 (FIG. 2).
  • the term "refrigeration appliance” is generally used herein to encompass any manner of refrigeration appliances, such as freezers, refrigerator/freezer combinations, and conventional refrigerators of any style or model. Additionally, it should be understood that the present invention is not limited to use in electrical appliances. Thus, the present invention may be used for any other suitable purpose, such as vapor compression in air conditioning units or air compression in air compressors.
  • the refrigeration appliance 10 is depicted as an upright refrigerator having at least one housing or case 12 defining a plurality of internal cooling storage compartments.
  • the refrigeration appliance 10 includes an upper food preservation compartment 14 having a door body 16 and a lower freezing compartment 18 having an upper drawer 20 and a lower drawer 22 .
  • the upper drawer 20 and the lower drawer 22 are "pull-out" drawers in that they can be manually moved in and out of the lower freezer compartment 18 on a suitable sliding mechanism.
  • the mechanical chamber 62 contains components for implementing a known vapor compression cycle for compressed air. These components include a compressor 64 connected in series and filled with refrigerant, a condenser 66 , an expansion device 68 and an evaporator 70 .
  • the refrigeration system 60 may include additional components, eg, at least one additional evaporator, compressor, expansion device, and/or condenser.
  • refrigeration system 60 may include two evaporators.
  • the refrigerant flows into a compressor 64 for increasing the pressure of the refrigerant.
  • the compression of the refrigerant increases the temperature of the refrigerant, which is lowered by passing the refrigerant through the condenser 66 .
  • the refrigerant is cooled by heat exchange with ambient air.
  • fan 72 is used to pull air through condenser 66 in order to provide forced convection for faster and efficient heat exchange between the refrigerant within condenser 66 and the ambient air.
  • increasing the airflow through the condenser 66 may increase the efficiency of the condenser 66, eg, by improving the cooling of the refrigerant contained therein.
  • Expansion device 68 receives refrigerant from condenser 66 .
  • Refrigerant enters evaporator 70 from expansion device 68 .
  • the pressure of the refrigerant drops.
  • the evaporator 70 is cold relative to the upper food preservation compartment 14 and the lower freezer compartment 18 of the refrigeration appliance 10 due to the pressure drop and/or phase change of the refrigerant. Therefore, cooling air can be generated and refrigerated the upper food preservation compartment 14 and the lower freezing compartment 18 of the refrigeration appliance 10 .
  • the evaporator 70 is a heat exchanger that transfers heat from the air passing through the evaporator 70 to the refrigerant flowing through the evaporator 70 .
  • vapor compression cycle components, associated fans, and associated compartments in a refrigeration circuit are sometimes referred to as a sealed refrigeration system that is used to force cold air through the upper food preservation compartment 14 and the lower freezer compartment 18 (figure 1).
  • the refrigeration system 60 depicted in FIG. 2 is provided by way of example only. Accordingly, other configurations using refrigeration systems are also within the scope of the present invention.
  • FIGS. 3-7 a linear compressor 100 according to an exemplary embodiment of the present invention is described. Specifically, Figures 3 and 4 provide a perspective cross-sectional view of the linear compressor 100, Figure 5 provides a perspective view of the linear compressor 100 with the compressor casing or housing 102 removed for clarity, and Figures 6 and 7, respectively A cross-sectional view of a linear compressor with pistons in extended and retracted positions is shown. It should be understood that the linear compressor 100 is used herein only as an exemplary embodiment to facilitate the description of various aspects of the present invention. Modifications and changes to linear compressor 100 may be made while remaining within the scope of the present invention.
  • the housing 102 may include a lower or lower housing 104 and an upper or upper housing 106 that join together to form a substantially enclosed cavity for housing the various components of the linear compressor 100 108.
  • cavity 108 may be a sealed or air-tight housing that may house the working components of linear compressor 100 and that may prevent or prevent refrigerant from leaking or escaping from refrigeration system 60 .
  • the linear compressor 100 generally defines an axial direction A, a radial direction R, and a circumferential direction C. It should be understood that the linear compressor 100 is described and exemplified herein only to describe various aspects of the present invention. Variations and modifications may be made to linear compressor 100 while remaining within the scope of the present invention.
  • the linear compressor 100 includes a housing 110 that extends between a first end 112 and a second end 114 along the axis A, for example.
  • the housing 110 includes a cylinder 117 that defines a chamber 118 .
  • the cylinder 117 is disposed at or adjacent to the first end 112 of the housing 110 .
  • the chamber 118 extends longitudinally along the axis A.
  • the linear compressor 100 may be used to increase fluid pressure within the chamber 118 of the linear compressor 100 .
  • linear compressor 100 may be used to compress any suitable fluid, such as refrigerant or air.
  • linear compressor 100 may be used in refrigeration appliances, such as refrigeration appliance 10 ( FIG. 1 ) in which linear compressor 100 may be used as compressor 64 ( FIG. 2 ).
  • the linear compressor 100 includes the stator 120 of the motor 808 ( FIG. 8 ) mounted or secured to the housing 110 .
  • the stator 120 generally includes an outer back iron 122 and a drive coil 124 extending around the circumference C within the housing 110 .
  • the linear compressor 100 also includes one or more valves that allow refrigerant to enter and leave the chamber 118 during operation of the linear compressor 100 .
  • a discharge muffler 126 is provided at one end of the chamber 118 for regulating the flow of refrigerant out of the chamber 118, and a suction valve 128 (shown only in Figures 6-7 for clarity) is used for regulating Refrigerant flow into chamber 118 .
  • Piston 130 with piston head 132 is slidably received within chamber 118 of cylinder 117 .
  • the piston 130 is slidable along the axis A.
  • the piston head 132 compresses the refrigerant within the chamber 118 .
  • the piston head 132 may slide within the chamber 118 from a top dead center position (see eg FIG. 6 ) along the axis A towards a bottom dead center position (see eg FIG. 7 ), ie, the expansion stroke of the piston head 132 .
  • linear compressor 100 may include additional piston heads and/or additional chambers at opposite ends of the linear compressor 100 .
  • linear compressor 100 may have multiple piston heads.
  • the linear compressor 100 also includes a mover 140 for compressing the refrigerant, generally driven by the stator 120 .
  • the mover 140 may include an inner back iron 142 disposed in the stator 120 of the motor 808 .
  • the outer back iron 122 and/or the drive coil 124 may extend around the inner back iron 142, eg, along the circumferential direction C.
  • the inner back iron 142 also has an outer surface facing the outer back iron 122 and/or the drive coil 124 .
  • At least one drive magnet 144 is mounted to the inner back iron 142 , eg, at the outer surface of the inner back iron 142 .
  • the drive magnet 144 may face and/or be exposed to the drive coil 124 .
  • the drive magnet 144 may be spaced apart from the drive coil 124 by an air gap along the radial direction R, for example.
  • an air gap may be defined between the opposing surfaces of the drive magnet 144 and the drive coil 124 .
  • the drive magnet 144 may also be mounted or secured to the inner back iron 142 such that the outer surface of the drive magnet 144 is substantially flush with the outer surface of the inner back iron 142 .
  • the driving magnet 144 can be inserted into the inner back iron 142 .
  • the magnetic field from the drive coil 124 may have to pass through only a single air gap between the outer back iron 122 and the inner back iron 142 , and the linear compressor 100 relative to the drive magnet 144 Linear compressors with air gaps on both sides may be more efficient.
  • the drive coil 124 extends around the inner back iron 142 , for example in the circumferential direction C.
  • the inner back iron 142 may extend along the circumferential direction C around the drive coil 124 .
  • the drive coil 124 is used to drive the inner back iron 142 to move along the axis A.
  • a current source (not shown) may induce a current within the drive coil 124 to generate a magnetic field that attracts the drive magnet 144 and urges the piston 130 in the axial direction A moves to compress the refrigerant in chamber 118 .
  • the magnetic field of the drive coil 124 may attract the drive magnet 144 to move the inner back iron 142 and the piston head 132 along the axis A.
  • the drive coil 124 may slide the piston 130 between the top dead center position and the bottom dead center position, eg, by moving the inner back iron 142 along the axis A.
  • the operation of the refrigeration appliance 10 may generally be controlled by a processing device or controller 1176 .
  • the controller 1176 may, for example, be operably coupled to the control panel 24 for manipulation by a user to select features and operations of the refrigeration appliance 10, such as temperature set points.
  • controller 1176 may operate various components of refrigeration appliance 10 to perform selected system cycles, processes, and/or features.
  • the controller 1176 is in operative communication (eg, electrical or wireless communication) with each of the chambers or compartments therein, eg, as described herein, for regulating temperature.
  • controller 1176 may include one or more processors 1178, computers or other suitable processing units and associated storage devices 1180, which may include suitable computer-readable instructions that, when implemented, The controller is configured to perform various functions, such as receiving, sending and/or executing signals (eg, performing the methods, steps, calculations, etc. disclosed herein).
  • processors 1178 computers or other suitable processing units and associated storage devices 1180, which may include suitable computer-readable instructions that, when implemented,
  • the controller is configured to perform various functions, such as receiving, sending and/or executing signals (eg, performing the methods, steps, calculations, etc. disclosed herein).
  • storage device 1180 may generally include storage elements including, but not limited to, computer-readable media (eg, random access memory (RAM)), computer-readable non-volatile media (eg, flash memory), floppy disks, optical disks, read-only media memory (CD-ROM), magneto-optical disk (MOD), digital versatile disk (DVD) and/or other suitable storage elements.
  • RAM random access memory
  • CD-ROM read-only media memory
  • MOD magneto-optical disk
  • DVD digital versatile disk
  • the memory may be a separate component from the processor, or may be included on a board within the processor.
  • Such storage device 1180 may generally be configured to store suitable computer-readable instructions that, when implemented by processor 1178, configure the controller to perform various functions as described herein.
  • the processor 1178 may include a microprocessor, CPU, etc., such as a general-purpose or special-purpose microprocessor, operable to execute programmed instructions or micro-control code related to the operation of the linear compressor 100 .
  • the controller 1176 may also include a communication module 1182 to facilitate communication between the controller and various components of the refrigeration appliance 10 .
  • An interface may include one or more circuits, terminals, pins, contacts, conductors, or other components for sending and receiving control signals.
  • the controller 1176 may include a sensor interface 1184 (eg, one or more analog-to-digital converters) to allow the signals transmitted from the temperature probe 1214 to be converted into signals that may be understood and processed by the processor 1178 . Additionally, the controller 1176 may optionally receive a second temperature signal from the thermistor 1216 configured to generate one or more second temperature signals indicative of the actual temperature of the item or chamber.
  • a sensor interface 1184 eg, one or more analog-to-digital converters
  • controller 1176 may use a combination of discrete analog and/or digital logic circuits (such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc.) without the use of a microprocessor, for example ) are built to perform control functions rather than relying on software.
  • discrete analog and/or digital logic circuits such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc.
  • the inner back iron 142 also includes an outer cylinder 146 and an inner sleeve 148 .
  • the outer cylinder 146 defines the outer surface of the inner back iron 142 and also has an inner surface disposed opposite the outer surface of the outer cylinder 146 .
  • the inner sleeve 148 is disposed on or at the inner surface of the outer cylinder 146 .
  • the first interference fit between the outer cylinder 146 and the inner sleeve 148 may couple or secure the outer cylinder 146 and the inner sleeve 148 together.
  • the inner sleeve 148 may be welded, glued, fastened or connected to the outer cylinder 146 via any other suitable mechanism or method.
  • the outer cylinder 146 may be constructed of or constructed from any suitable material.
  • the outer cylinder 146 may be constructed from or with multiple (eg, ferromagnetic) laminations.
  • the laminations are distributed along the circumferential direction C to form the outer cylinder 146, and are mounted or fixed to each other, eg, with rings pressed against the ends of the laminations.
  • the outer cylinder 146 may define a recess that extends inwardly from the outer surface of the outer cylinder 146 , eg, along the radial direction R .
  • the drive magnet 144 is disposed in a recess on the outer cylinder 146 , for example, so that the drive magnet 144 is embedded in the outer cylinder 146 .
  • the linear compressor 100 also includes a pair of flat springs 150 .
  • Each flat spring 150 may be coupled to a corresponding end of the inner back iron 142 along the axis A, for example.
  • the planar spring 150 supports the inner back iron 142 during operation of the drive coil 124 .
  • the inner back iron 142 is suspended within the stator or motor 808 of the linear compressor 100 by the planar spring 150 so that the movement of the inner back iron 142 in the radial direction R is prevented or restricted, while the movement in the axial direction A is relatively unhindered.
  • the stiffness of the planar spring 150 in the radial direction R may be greater than the stiffness in the axial direction A.
  • the planar spring 150 may assist in maintaining uniformity of the air gap between the drive magnet 144 and the drive coil 124, for example, along the radial direction R.
  • the flat spring 150 may also assist in preventing the side pull of the motor 808 from being transmitted to the piston 130 and reacting as frictional losses in the cylinder 117 .
  • a flexible mount 160 is mounted to and extends through the inner back iron 142 .
  • the flexible mount 160 is mounted to the inner back iron 142 via the inner sleeve 148 .
  • the flexible mount 160 may be coupled (eg, threaded) to the inner sleeve 148 at the inner sleeve 148 and/or an intermediate portion of the flexible mount 160 in order to mount or secure the flexible mount 160 to the Inner sleeve 148 .
  • Flexible mounts 160 may assist in forming coupling 162 .
  • the coupling 162 connects the inner back iron 142 and the piston 130 so that the movement of the inner back iron 142 is transmitted to the piston 130 along the axis A, for example.
  • Coupling 162 may be a compliant coupling that is compliant or flexible along the radial direction R. As shown in FIG. In particular, the coupling 162 may be sufficiently compliant along the radial direction R such that little or no movement of the inner back iron 142 is transmitted along the radial direction R through the coupling 162 to the piston 130 . In this way, the side pull of the motor 808 is decoupled from the piston 130 and/or the cylinder 117 and friction between the piston 130 and the cylinder 117 can be reduced.
  • the piston head 132 of the piston 130 has a piston cylindrical side wall 170 .
  • the cylindrical sidewall 170 may extend along the axis A from the piston head 132 to the inner back iron 142 .
  • the outer surface of the cylindrical side wall 170 may slide over the cylinder 117 at the chamber 118 , and the inner surface of the cylindrical side wall 170 may be positioned opposite the outer surface of the cylindrical side wall 170 .
  • the outer surface of the cylindrical sidewall 170 may face away from the center of the cylindrical sidewall 170 along the radial direction R, while the inner surface of the cylindrical sidewall 170 may face the center of the cylindrical sidewall 170 along the radial direction.
  • the flexible mount 160 extends between the first end 172 and the second end 174, for example along the axis A.
  • the inner surface of the cylindrical sidewall 170 defines a ball seat 176 proximate the first end.
  • the coupling 162 also includes a ball nose 178 .
  • the ball head 178 is provided at the first end 172 of the flex mount 160 where the ball head 178 may contact the flex mount 160 .
  • the ball nose 178 may contact the piston 130 at the ball seat 176 of the piston 130 .
  • the ball head 178 can rest on the ball seat 176 of the piston 130 such that the ball head 178 can slide and/or rotate on the ball seat 176 of the piston 130 .
  • the ball head 178 may have a frusto-spherical surface disposed against the ball seat 176 of the piston 130 , and the ball seat 176 may be shaped to complement the frusto-spherical surface of the ball head 178 .
  • the frusto-spherical surface of the ball head 178 may slide and/or rotate on the ball seat 176 of the piston 130 .
  • relative motion between the flexible mount 160 and the piston 130 at the interface between the ball nose 178 and the ball seat 176 of the piston 130 may be reduced as compared to a fixed connection between the flexible mount 160 and the piston 130 Friction between piston 130 and cylinder 117 .
  • the frusto-spherical surface of the ball head 178 may slide on the ball seat 176 of the piston 130, relative to the inner back iron 142.
  • the rigid connection between 142 and the piston 130 can reduce the friction between the piston 130 and the cylinder 117 .
  • the first end 172 of the flex mount 160 remote from the flex mount 160 is connected to the inner back iron 142 .
  • the flex mount 160 may be connected to the inner back iron 142 at the second end 174 of the flex mount 160 or between the first and second ends of the flex mount 160 .
  • the flexible mount 160 is disposed at or within the piston 130 at the first end 172 of the flexible mount 160, as discussed in more detail below.
  • the flexible mount 160 includes a tubular wall 190 between the inner back iron 142 and the piston 130 .
  • Channels 192 within tubular wall 190 are used to direct a compressible fluid, such as refrigerant or air, through flexible mount 160 and toward piston head 132 and/or into piston 130 .
  • the inner back iron 142 may be mounted to the flex mount 160 , for example, at an intermediate portion of the flex mount 160 between the first end 172 and the second end 174 of the flex mount 160 such that the inner back iron 142 surrounds
  • the tubular wall 190 extends.
  • Channel 192 may extend between first end 172 and second end 174 of flexible mount 160 within tubular wall 190 such that compressible fluid may pass through channel 192 from the first end of flexible mount 160 172 flows to the second end 174 of the flexible mount 160 . In this way, compressible fluid may flow through the inner back iron 142 within the flexible mount 160 during operation of the linear compressor 100 .
  • a muffler 194 may be disposed within the channel 192 within the tubular wall 190 , for example, to reduce noise from the compressible fluid flowing through the channel 192 .
  • the piston head 132 also defines at least one opening 196 .
  • the opening 196 of the piston head 132 extends through the piston head 132 in the axial direction A, for example.
  • a flow of fluid may pass through the piston head 132 and into the chamber 118 via the opening 196 of the piston head.
  • fluid compressed by the piston head 132 in the chamber 118
  • suction valve 128 may be provided on piston head 132 to regulate the flow of compressible fluid into chamber 118 through opening 196 .
  • the linear compressor 100 may also include a lubrication system 200 for circulating lubricant (eg, oil) through the working or moving parts of the linear compressor 100 to reduce friction, increase efficiency, and the like.
  • a lubrication system 200 for circulating lubricant (eg, oil) through the working or moving parts of the linear compressor 100 to reduce friction, increase efficiency, and the like.
  • the housing 102 may generally define a sump 202 for collecting oil.
  • the sump 202 may be defined in the bottom of the lower housing 104 .
  • the lubrication system 200 also includes a pump 206 for continuously circulating oil through the components of the linear compressor 100 that require lubrication.
  • the linear compressor 100 may include a suction port 220 for receiving a flow of refrigerant.
  • a suction port 220 may be defined on the housing 102 (eg, on the lower housing 104 ) and configured to receive a refrigerant supply conduit to provide refrigerant to the cavity 108 .
  • the flexible mount 160 includes a tubular wall 190 that defines a passage 192 for directing a compressible fluid, such as refrigerant gas, to flow through the flexible mount 160 to the piston head 132 .
  • the ideal flow path for the refrigerant gas is through suction port 220 , through passage 192 , through opening 196 and into chamber 118 .
  • the suction valve 128 may block the opening 196 during the compression stroke, and the discharge valve 116 may allow compressed gas to exit the chamber 118 when the desired pressure is reached.
  • FIG. 9 a flowchart of one embodiment of a method 1200 for operating a variable capacity drive circuit of a compressor of a refrigeration appliance is provided.
  • method 1200 is described herein with reference to refrigeration appliance 10 and assembly 100 of FIGS. 1-7 . It should be understood, however, that the disclosed method 1200 may be implemented with any other suitable refrigeration appliance having any other suitable configuration.
  • FIG. 9 depicts steps performed in a particular order for purposes of illustration and discussion, the methods discussed herein are not limited to any particular order or permutation. Using the disclosure provided herein, those skilled in the art will appreciate that various steps of the methods disclosed herein may be omitted, rearranged, combined, and/or adjusted in various ways without departing from the scope of the present invention.
  • method 1200 includes operating a first four-quadrant switch and a second four-quadrant switch in a first state in which the first four-quadrant switch is closed and the second four-quadrant switch is open , so that the voltage experienced by the motor is equal to the AC line voltage.
  • method 1220 includes operating the first four-quadrant switch and the second four-quadrant switch in a second state in which the first four-quadrant switch is open and the second four-quadrant switch is closed , so that the voltage experienced by the motor is zero.
  • method 1200 includes providing a positive firing angle and a negative firing angle.
  • method 1200 includes defining when the first four-quadrant switch and the second four-quadrant switch operate in each of the first state and the second state based on the positive firing angle and the negative firing angle.
  • method 1200 includes transitioning between a first state and a second state using a positive firing angle and a negative firing angle at a switching frequency determined by the AC line voltage frequency.
  • method 1200 includes controlling a percentage of voltage applied to the compressor during positive and negative half cycles based on transitions between the first state and the second state.
  • the linear compressor 100 may also include features for controlling the voltage applied to the linear compressor 100 .
  • the linear compressor 100 may be driven by the variable capacity driving circuit 800 for controlling the voltage applied to the stator 120 .
  • the variable capacity driving circuit 800 is described herein, it should be understood that variations and modifications may be made to the variable capacity driver circuit 800 while remaining within the scope of the present invention.
  • the variable capacity drive circuit 800 includes a plurality of four-quadrant switches (eg, first, first, and second) switches arranged in a totem pole configuration between the AC line voltage 802 of the linear compressor and the motor 808 .
  • Four-quadrant switch 804 and a second four-quadrant switch 806) are described below as being used with the stator 120 of the linear compressor 100 . It should be understood, however, that various aspects of the variable capacity drive circuit 800 may be used in other compressors while remaining within the scope of the present invention.
  • variable capacity drive circuit 800 (eg, in a refrigeration appliance) includes at least a first four-quadrant switch 804 and a second four-quadrant switch 806 .
  • the four-quadrant switch may have any suitable configuration.
  • four diodes eg, a first diode 910, a second diode 912, a third diode 914, and a fourth diode 916) may be used to edge along as appropriate Transistor 918 is connected in either direction to direct current in either direction. Also, when transistor 918 is off, the switching network can block voltages of either polarity.
  • a first voltage bidirectional switch 902 and a second voltage bidirectional switch 904 are used.
  • the first voltage bidirectional switch 902 and the second voltage bidirectional switch 904 are two-quadrant and can be placed in parallel such that either switch can block voltages of either polarity.
  • the first voltage bidirectional switch 902 may conduct negative current, while the second voltage bidirectional switch 904 may conduct positive current.
  • the first voltage bidirectional switch 902 and the second voltage bidirectional switch 904 in combination can conduct current of any polarity.
  • a first bidirectional switch 906 and a second bidirectional switch 908 are used.
  • the first bidirectional switch 906 and the second bidirectional switch 908 can be placed in series such that the first bidirectional switch 906 and the second bidirectional switch 908 can conduct current of both polarities.
  • the first bidirectional switch 906 can only block negative voltages, while the second bidirectional switch 908 can only block positive voltages.
  • voltages of both polarities can be blocked.
  • the four-quadrant switches 804, 806 described herein may operate in multiple states.
  • the first four-quadrant switch 804 and the second four-quadrant switch 806 may be opened and closed in different combinations.
  • the variable capacity drive circuit 800 operates the first four-quadrant switch 804 and the second four-quadrant switch 806 in a first state in which the first four-quadrant switch 804 is closed and the second four-quadrant switch 806 is open.
  • the voltage experienced by the motor 808 is equal to the AC line voltage 802 .
  • variable capacity drive circuit 800 may operate in a second state in which the first four-quadrant switch 804 is open and the second four-quadrant switch 806 is closed. In such an embodiment, the voltage experienced by the motor 808 is equal to zero.
  • the controller 1176 may provide a positive firing angle 1010 and a negative firing angle 1012 when the four-quadrant switches 804, 806 are operating in multiple states.
  • positive firing angle 1010 and negative firing angle 1012 may define when first four-quadrant switch 804 and second four-quadrant switch 806 operate in each of the first and second states.
  • a positive firing angle 1010 and a negative firing angle 1012 may be used to transition between the first state and the second state.
  • the controller 1176 may use the positive firing angle 1010 and the negative firing angle 1012 to transition between the first state and the second state at a switching frequency determined by the AC line voltage frequency to control the positive half Percentage of voltage applied to compressor 100 during cycle 1014 and negative half cycle 1016 .
  • the first four-quadrant switch 804 and the second four-quadrant switch 806 can transition between the first state and the second state, up to two transitions per half cycle.
  • the switching frequency may be equal to the low frequency value per half cycle.
  • the switching frequency may be equal to or less than about 60 Hz per half cycle.
  • the switching frequency may be synchronized with the AC line voltage such that the state of the four-quadrant switch transitions at most twice per half cycle.
  • the switching frequency is substantially twice the line voltage frequency (eg 120 Hz), at least when the firing angles are arranged as shown in Figures 12a and 12c. In such an embodiment, if switching occurs as shown in Figures 12b and 12d, the actual switching frequency is equal to 60 Hz.
  • the switching time may be determined by the firing angle.
  • the timing between the switching between the first state and the second state, particularly the firing angle may be used to modulate the voltage applied to the motor 808 .
  • the voltage applied to the electric machine 808 may include: an AC component, in particular, the AC component including multiple harmonics exceeding the frequency of the AC line voltage that contribute to total harmonic distortion; and a direct current (DC) component.
  • positive firing angle 1010 and negative firing angle 1012 may include different modulation levels for each of positive half-cycle 1014 and negative half-cycle 1016, respectively. As can be seen, different modulation levels can cause AC and DC components of the voltage in the motor 808 .
  • the timing between switching between the first state and the second state may further include biasing the oscillation point using the DC component of the voltage.
  • the DC component of the voltage may be used to bias, for example, the center point of oscillation of the piston 130 of the compressor (eg, to minimize the top dead center volume of the piston 130).
  • the difference between the positive firing angle and the negative firing angle may be used to modulate the voltage applied to the motor 808, and may also include using the AC component of the voltage to modulate the capacity of the compressor.
  • the AC component of the voltage can be used to modulate the capacity of the compressor via the stroke length of the piston 130 .
  • the positive firing angle 1010 and the negative firing angle 1012 may be applied at specific times during the half cycle.
  • the positive firing angle 1010 and the negative firing angle 1012 may be applied with respect to the zero crossing of the AC line voltage.
  • positive firing angle 1010 and negative firing angle 1012 may be applied at the beginning or end of a half cycle, as shown in Figures 12a, 12b, 12c and 12d. Applying the positive firing angle 1010 and the negative firing angle 1012 at specific times during the half cycle can minimize the effect on the total harmonic distortion of the AC component.
  • a positive firing angle 1010 may be applied at the beginning of a positive half cycle and a negative firing angle 1012 may be applied at the beginning of a negative half cycle.
  • a positive firing angle 1010 may be applied at the end of a positive half cycle and a negative firing angle 1012 may be applied at the end of a negative half cycle.
  • a positive firing angle 1010 and a negative firing angle 1012 may be applied such that the two second states are continuous.
  • a positive firing angle 1010 may be applied at the end of the positive half cycle and a negative firing angle 1012 may be applied at the beginning of the negative half cycle 1004.
  • a positive firing angle 1010 may be applied at the beginning of a positive half cycle and a negative firing angle 1012 may be applied at the end of the negative half cycle 1008.
  • applying a positive firing angle 1010 and a negative firing angle 1012 makes the two second states continuous and the switching frequency can be reduced.
  • the positive firing angle 1010 and the negative firing angle 1012 may be varied. Specifically, the positive firing angle 1010 and the negative firing angle 1012 may be increased. For example, the positive firing angle 1010 and the negative firing angle 1012 are increased equally. Varying the positive firing angle 1010 and the negative firing angle 1012 can reduce the AC component of the voltage in the motor 808 . Additionally, or alternatively, varying the positive firing angle 1010 and the negative firing angle 1012 may reduce the DC component of the voltage in the motor 808 . As another example, a difference may be injected in positive firing angle 1010 and negative firing angle 1012 . The difference between the positive firing angle 1010 and the negative firing angle 1012 can control the DC component of the voltage applied to the motor 808 .
  • the standard operating mode of the compressor may define a resonant frequency.
  • the standard operating mode of the compressor may define a resonant frequency equal to the AC line frequency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Compressor (AREA)

Abstract

一种用于操作压缩机(64, 100)的可变容量驱动电路(800)的方法包括:在第一状态中操作第一四象限开关(804)和第二四象限开关(806),在第一状态中,第一四象限开关(804)闭合并且第二四象限开关(806)断开(1202),使得电机(808)所经历的电压等于交流线路电压(802);在第二状态中操作第一四象限开关(804)和第二四象限开关(806),在第二状态中,第一四象限开关(804)断开并且第二四象限开关(806)闭合(1204),使得电机(808)所经历的电压为零;提供正触发角(1010)和负触发角(1012)(1206);基于正触发角(1010)和负触发角(1012)限定第一四象限开关(804)和第二四象限开关(806)何时在第一状态和第二状态的每一个中操作(1208);使用正触发角(1010)和负触发角(1012)以由交流线路电压频率确定的开关频率在第一状态与第二状态之间转变(1210)。

Description

用于制冷电器中的线性压缩机的可变容量驱动电路 技术领域
本发明总体涉及线性压缩机,更具体地涉及一种用于向制冷电器中的线性压缩机提供功率的可变容量驱动电路。
背景技术
通常,制冷电器包括箱体,该箱体限定一个或多个制冷间室,诸如用于接收食品以便储存的食物保鲜室和/或用于接收食品以便冷冻和储存的冷冻室。某些制冷电器还可包括用于冷却这种制冷间室的密封系统。密封系统通常包括压缩机,该压缩机在其运行期间生成压缩的制冷剂。压缩的制冷剂流到蒸发器,在该蒸发器处,制冷间室与制冷剂之间的热交换用于冷却制冷间室和位于其中的食品。
近来,某些制冷电器包括用于压缩制冷剂的线性压缩机。线性压缩机通常包括:位于壳体内的活塞和驱动线圈,该驱动线圈产生的力用于使活塞在壳体内前后移动。在活塞在壳体内的运动期间,活塞压缩制冷剂。此外,线性压缩机通常由单相变频驱动器操作。变频驱动器是一种用于通过改变电机电压输入频率和振幅来控制电机速度和力的电机驱动器。单相变频驱动器通常使用具有前端整流器的逆变器。然而,H桥逆变器和前端整流器是可能具有高开关损耗的复杂、昂贵的系统。
因此,解决上述问题的线性压缩机将是有用的。由此,本发明涉及一种线性压缩机,该线性压缩机具有调制施加到电机的激励电压的振幅的可选转换器设计。
发明内容
本发明的各个方面以及优点将会在下文的描述中进行阐述,或者是通过描述可以显而易见的,或者是可以通过实施本发明而学到的。
在一个方面,提供了一种用于操作压缩机的可变容量驱动电路的方法。该可变容量驱动器包括第一四象限开关、第二四象限开关和电机。该方法包括:在第一状态中操作第一四象限开关和第二四象限开关,在第一状态中,第一四象限开关闭合并且第二四象限开关断开。由此可见,在第一状态中,电机所经历的电压等于交流(AC)线路电压。该方法还包括:在第二状态中操作第一四象限开关和第二四象限开关,在第二状态中,第一四象限开关断开并且第二四象限开关闭合。由此,在第二状态中,电机所经历的电压等于零。该方法还包括:提供正触发角和负触发角。 正触发角和负触发角限定了第一四象限开关和第二四象限开关何时在第一状态和第二状态的每一个中操作。该方法包括:使用正触发角和负触发角以由AC线路电压频率确定的开关频率在第一状态与第二状态之间转变,以便控制在正半周期和负半周期内施加到压缩机的电压的百分比。
在另一方面,提供了一种线性压缩机。该线性压缩机包括:壳体,该壳体限定活塞-气缸;电机,该电机用于驱动活塞-气缸;以及可变容量驱动电路,该可变容量驱动电路用于驱动电机。可变容量驱动电路包括多个四象限开关,这些四象限开关以图腾柱配置布置在线性压缩机的AC线路电压与电机之间。四象限开关至少包括第一四象限开关和第二四象限开关。可变容量驱动电路包括在第一状态和第二状态中操作第一四象限开关和第二四象限开关。进一步地,可变容量驱动电路包括第一状态,在该第一状态中,第一四象限开关闭合并且第二四象限开关断开,使得电机所经历的电压等于AC线路电压。可变容量驱动电路还包括第二状态,在该第二状态中,第一四象限开关断开并且第二四象限开关闭合,使得电机所经历的电压为零。可变容量驱动电路还包括通信地耦合到各个四象限开关的控制器。控制器被配置为执行多个操作。例如,多个操作可以包括但不限于:提供限定第一四象限开关和第二四象限开关在第一状态和第二状态中的每一个中何时断开的正触发角和负触发角;以及使用正触发角和负触发角以由AC线路电压频率确定的开关频率在第一状态与第二状态之间转变,以便控制在正半周期和负半周期内施加到压缩机的电压的百分比。
在另一方面,提供了一种制冷电器。该制冷电器包括箱体,该箱体具有用于接收食品的至少一个腔室。进一步地,制冷电器包括:门体,该门体允许进入腔室;和线性压缩机,该线性压缩机用于辅助冷却腔室。该线性压缩机包括:壳体,该壳体限定活塞-气缸;电机,该电机用于驱动活塞-气缸;以及可变容量驱动电路,该可变容量驱动电路用于驱动电机。可变容量驱动电路包括多个四象限开关,这些四象限开关以图腾柱配置布置在线性压缩机的AC线路电压与电机之间。四象限开关至少包括第一四象限开关和第二四象限开关。可变容量驱动电路包括在第一状态和第二状态中操作第一四象限开关和第二四象限开关。可变容量驱动电路还包括在第一状态中操作第一四象限开关和第二四象限开关,在该第一状态中,第一四象限开关闭合并且第二四象限开关断开,使得电机所经历的电压等于AC线路电压。可变容量驱动电路包括在第二状态中操作第一四象限开关和第二四象限开关,在该第二状态中,第一四象限开关断开并且第二四象限开关闭合,使得电机所经历的电压为 零。可变容量驱动电路还包括通信地耦合到多个四象限开关的控制器。控制器被配置为执行多个操作,包括但不限于:提供限定第一四象限开关和第二四象限开关在第一状态和第二状态中的每一个中何时操作的正触发角和负触发角;以及使用正触发角和负触发角以由AC线路频率确定的开关频率在第一状态与第二状态之间转变,以便控制在正半周期和负半周期内施加到压缩机的电压的百分比。
参照下文的描述以及所附权利要求,本发明的这些和其它的特征、方面以及优点将变得更容易理解。结合在本说明书中并且构成本说明书一部分的附图显示了本发明的实施方式并且与描述一起用于对本发明的原理进行解释。
附图说明
参照附图,说明书中阐述了面向本领域普通技术人员的本发明的完整公开,这种公开使得本领域普通技术人员能够实现本发明,包括本发明的最佳实施例。
图1是根据本发明的示例性实施方式的制冷电器的前立体图。
图2是图1的示例性制冷电器的某些部件的示意图。
图3是根据本发明的示例性实施方式的线性压缩机的立体剖视图。
图4是根据本发明的实施方式的图3的示例性线性压缩机的另一个立体剖视图。
图5是根据本发明的示例性实施方式的线性压缩机的立体图,其中,为了清楚起见,去除压缩机壳体。
图6是根据本发明的实施方式的图3的示例性线性压缩机的剖视图,其中,活塞处于伸出位置。
图7是根据本发明的实施方式的图3的示例性线性压缩机的剖视图,其中,活塞处于缩回位置。
图8提供了根据本发明的示例性实施方式的制冷电器的控制器的一个实施方式的框图。
图9提供了根据本发明的示例性实施方式的用于操作压缩机的可变容量驱动回路的方法的示意图。
图10是根据本发明的实施方式的示例性线性压缩机驱动电路的示意图。
图11a是根据本发明的实施方式的四象限开关配置的一个实施方式的示意图。
图11b是根据本发明的实施方式的四象限开关配置的另一实施方式的示意图。
图11c是根据本发明的实施方式的四象限开关配置的再一实施方式的示意图。
图12a示例了根据本发明的实施方式的使可变容量驱动电路在第一状态与第二状态之间转变的触发角的应用的曲线图。
图12b示例了根据本发明的实施方式的使可变容量驱动电路在第一状态与第二状态之间转变的触发角的另一应用的曲线图。
图12c示例了根据本发明的实施方式的使可变容量驱动电路在第一状态与第二状态之间转变的角度的又一应用的曲线图。
图12d示例了根据本发明的实施方式的使可变容量驱动电路在第一状态与第二状态之间转变的角度的再一应用的曲线图。
附图标记在本说明书和附图中的重复使用旨在表示本发明的相同或相似的特征或元件。
具体实施方式
现在将详细地参照本发明的实施方式,其中的一个或多个示例示于附图中。每个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于本领域技术人员而言显而易见的是,能够在不偏离本发明的范围或者精神的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些改型以及变型。
现在参照附图,图1描述了并入有密封制冷系统60(图2)的制冷电器10。应当理解,术语“制冷电器”在本文中一般用于包含任意方式的制冷电器,诸如冰柜、冰箱/冰柜组合、以及任意样式或型号的常规冰箱。另外,应当理解,本发明不限于用于电器中。由此,本发明可以用于任意其他合适的目的,诸如空调单元内的蒸气压缩或空气压缩机内的空气压缩。
在图1所示的所例示示例性实施方式中,制冷电器10被描述为具有限定多个内部冷却储存间室的至少一个外壳或箱体12的直立式冰箱。特别地,制冷电器10包括具有门体16的上食物保鲜室14和具有上抽屉20和下抽屉22的下冷冻室18。进一步地,如图所示,上抽屉20和下抽屉22是“拉出式”抽屉,因为它们可以在合适的滑动机构上手动移入和移出下冷冻室18。
现在参照图2,示例了制冷电器10的某些部件的示意图,包括制冷电器10的密封制冷系统60。机械室62包含用于执行已知的用于压缩空气的蒸气压缩循环的部件。这些部件包括串联连接并填充有制冷剂的压缩机64、冷凝器66、膨胀装置68 以及蒸发器70。如本领域技术人员将理解的,制冷系统60可以包括额外部件,例如,至少一个额外的蒸发器、压缩机、膨胀装置和/或冷凝器。作为示例,制冷系统60可以包括两个蒸发器。
在制冷系统60内,制冷剂流入用于增大制冷剂的压力的压缩机64中。制冷剂的压缩使得制冷剂的温度升高,升高的温度通过使制冷剂穿过冷凝器66来降低。在冷凝器66内,通过与周围空气进行热交换来冷却制冷剂。如箭头AC例示,风扇72用于将空气拉过冷凝器66,以便提供强制对流,在冷凝器66内的制冷剂与周围空气之间进行更快且高效的热交换。由此,如本领域技术人员所知的,增大穿过冷凝器66的气流可以例如通过改善其中所含制冷剂的冷却来提高冷凝器66的效率。
膨胀装置68(例如,阀、毛细管或其他限制装置)接收来自冷凝器66的制冷剂。制冷剂从膨胀装置68进入蒸发器70。在离开膨胀装置68并进入蒸发器70时,制冷剂的压力下降。由于制冷剂的压降和/或相变,蒸发器70相对于制冷电器10的上食物保鲜室14和下冷冻室18是冷的。因此,可以产生冷却空气并且对制冷电器10的上食物保鲜室14和下冷冻室18进行制冷。由此,蒸发器70是一种热交换器,该热交换器将热量从经过蒸发器70的空气传递到流过蒸发器70的制冷剂。
总的来说,制冷回路中的蒸汽压缩循环部件、相关风扇以及相关间室有时被称为密封的制冷系统,密封的制冷系统用于迫使冷空气穿过上食物保鲜室14和下冷冻室18(图1)。图2中描述的制冷系统60仅以示例的方式来提供。由此,使用制冷系统的其他构造也在本发明的范围内。
现在总体参照图3至图7,描述了根据本发明的示例性实施方式的线性压缩机100。具体地,图3和图4提供了线性压缩机100的立体剖视图,图5提供了线性压缩机100的立体图,为了清楚起见而去除了压缩机壳或壳体102,图6和图7分别提供了活塞处于伸出位置和缩回位置时的线性压缩机的剖视图。应当理解,线性压缩机100在本文中仅用作示例性实施方式,以促进本发明的各个方面的描述。可以在保持在本发明的范围内的同时对线性压缩机100进行修改和变更。
如例如图3和图4示例,壳体102可以包括下部或下壳体104和上部或上壳体106,它们接合在一起来形成用于容纳线性压缩机100的各种部件的大致封闭的腔108。具体地,例如,腔108可以是密封或气密的外壳,腔108可以容纳线性压缩机100的工作部件,并且可以阻止或防止制冷剂从制冷系统60中泄漏或逸出。另外,线性压缩机100通常限定轴向A、径向R以及周向C。应当理解,线性压缩机100在本文中仅被描述并例示为描述本发明的各个方面。可以在保持在本发明的范围内 的同时对线性压缩机100进行变更和修改。
特别参照图3至图7,将描述根据示例性实施方式的线性压缩机100的各种零件和工作部件。如图所示,线性压缩机100包括外壳110,该外壳110例如沿着轴向A在第一端部112与第二端部114之间延伸。外壳110包括限定腔室118的气缸117。气缸117被设置在外壳110的第一端部112处或与其相邻。腔室118沿着轴向A纵向延伸。如下面更详细讨论的,线性压缩机100可用于增大线性压缩机100的腔室118内的流体压力。进一步地,线性压缩机100可以用于压缩任意合适的流体,诸如制冷剂或空气。特别地,线性压缩机100可以用于制冷电器中,诸如线性压缩机100可以用作压缩机64(图2)的制冷电器10(图1)。
而且,如图所示,线性压缩机100包括安装或固定到外壳110的电机808(图8)的定子120。例如,定子120通常包括在外壳110内围绕周向C延伸的外背铁122和驱动线圈124。线性压缩机100还包括一个或多个阀,这些阀允许制冷剂在线性压缩机100的操作期间进入和离开腔室118。例如,排放消声器126设置在腔室118的一端处,用于调节从腔室118流出的制冷剂流量,而吸入阀128(为了清楚起见,仅在图6至图7中示出)用于调节流入腔室118的制冷剂流量。
具有活塞头132的活塞130可滑动地接收在气缸117的腔室118内。特别地,活塞130可沿着轴向A滑动。在活塞头132在腔室118内的滑动期间,活塞头132压缩腔室118内的制冷剂。作为示例,活塞头132可以从上止点位置(参见例如图6)沿着轴向A朝向下止点位置(参见例如图7)在腔室118内滑动,即活塞头132的膨胀行程。当活塞头132到达下止点位置时,活塞头132改变方向并朝向上止点位置在腔室118中滑动返回,即,活塞头132的压缩行程。应当理解,线性压缩机100可以包括在线性压缩机100的相对端处的附加活塞头和/或附加腔室。由此,在可选的示例性实施方式中,线性压缩机100可以具有多个活塞头。
如图所示,线性压缩机100还包括通常由定子120驱动的用于压缩制冷剂的动子140。具体地,例如,动子140可以包括设置在电机808的定子120中的内背铁142。特别地,外背铁122和/或驱动线圈124可以例如沿着周向C围绕内背铁142延伸。内背铁142还具有面向外背铁122和/或驱动线圈124的外表面。至少一个驱动磁铁144安装到内背铁142,例如安装在内背铁142的外表面处。
驱动磁铁144可以面对和/或暴露于驱动线圈124。特别地,驱动磁铁144可以例如沿着径向R与驱动线圈124隔开一个气隙。由此,可以在驱动磁铁144与驱动线圈124的相对表面之间限定气隙。驱动磁铁144也可以安装或固定到内背铁142, 使得驱动磁铁144的外表面与内背铁142的外表面大致齐平。由此,驱动磁铁144可以插入在内背铁142内。这样,在线性压缩机100的操作期间,来自驱动线圈124的磁场可能必须仅穿过外背铁122与内背铁142之间的单个气隙,并且线性压缩机100相对于在驱动磁铁144的两侧上具有气隙的线性压缩机可能更高效。
如在图3中可以看到的,驱动线圈124例如沿着周向C围绕内背铁142延伸。在其他示例性实施方式中,内背铁142可以沿着周向C围绕驱动线圈124延伸。在驱动线圈124的操作期间,驱动线圈124用于驱动内背铁142沿着轴向A移动。作为示例,如上所述,本领域技术人员可以理解的,可通过电流源(未示出)在驱动线圈124内感应出电流以生成磁场,该磁场吸引驱动磁铁144并推动活塞130沿着轴向A移动,以便压缩腔室118内的制冷剂。特别地,在驱动线圈124的操作期间,驱动线圈124的磁场可以吸引驱动磁铁144,以使内背铁142和活塞头132沿着轴向A移动。由此,在驱动线圈124的操作期间,驱动线圈124可以使活塞130在上止点位置与下止点位置之间滑动,例如,通过使内背铁142沿着轴向A移动。
特别参照图8,制冷电器10的操作通常可以由处理装置或控制器1176控制。控制器1176可以例如可操作地耦合到控制面板24,以便用户操纵,以选择制冷电器10的特征和操作,诸如温度设定点。由此,控制器1176可以操作制冷电器10的各种部件,以执行选择的系统循环、过程和/或特征。在示例性实施方式中,控制器1176与其中的各个腔室或间室可操作地连通(例如,电气或无线连通),例如,如本文所述的,用于调节温度。
更具体地,如图8所示,示例了根据本发明的示例性方面的可包括在控制器1176内的合适部件的一个实施方式的框图。如图所示,控制器1176可以包括一个或多个处理器1178、计算机或其它合适的处理单元和相关联的存储装置1180,其可包括合适的计算机可读指令,当这些指令被实施时,将控制器配置为执行各种不同的功能,诸如接收、发送和/或执行信号(例如,执行本文所公开的方法、步骤、计算等)。
如本文所用的,术语“处理器”不仅指代本领域被称为包括在计算机中的集成电路,而且还指代控制器、微控制器、微型计算机、可编程逻辑控制器(PLC)、专用集成电路和其它可编程电路。另外,存储装置1180通常可以包括存储元件,包括但不限于计算机可读介质(例如,随机存取存储器(RAM))、计算机可读非易失性介质(例如,闪存)、软盘、光盘只读存储器(CD-ROM)、磁光盘(MOD)、数字通用光盘(DVD)和/或其他合适的存储元件。存储器可以是与处理器分开的部 件,或者可以包括在处理器内的板上。
这种存储装置1180通常可以被配置为存储合适的计算机可读指令,这些计算机可读指令在由处理器1178实施时将控制器配置为执行如本文所述的各种功能。特别地,处理器1178可以包括微处理器、CPU等,诸如通用或专用微处理器,该微处理器可操作为执行与线性压缩机100的操作相关的编程指令或微控制代码。另外,控制器1176还可以包括通信模块1182,以便于控制器与制冷电器10的各种部件之间的通信。接口可以包括一个或多个电路、端子、引脚、触点、导体或用于发送和接收控制信号的其他部件。而且,控制器1176可以包括传感器接口1184(例如,一个或多个模数转换器),以允许将从温度探针1214传输的信号转换成可以由处理器1178理解和处理的信号。此外,控制器1176可以可选地从热敏电阻1216接收第二温度信号,该热敏电阻被配置为生成表示物品或腔室的实际温度的一个或多个第二温度信号。
可选地,控制器1176可以在不使用微处理器的情况下,例如,使用离散的模拟和/或数字逻辑电路的组合(诸如开关、放大器、积分器、比较器、触发器、与门等)构建为执行控制功能,而不是依靠软件。
内背铁142还包括外缸146和内套筒148。外缸146限定内背铁142的外表面,并且还具有与外缸146的外表面相对设置的内表面。内套筒148设置在外缸146的内表面上或内表面处。外缸146与内套筒148之间的第一过盈配合可以将外缸146和内套筒148联结或固定在一起。在可选示例性实施方式中,内套筒148可以经由任意其他合适的机构或方法焊接、胶合、紧固或连接到外缸146。
外缸146可以由或用任意合适的材料构造。例如,外缸146可以由或用多个(例如,铁磁的)叠片来构造。叠片沿着周向C分布以形成外缸146,并且相互安装或固定在一起,例如,用环压在叠片的端部。外缸146可以限定凹部,该凹部例如沿着径向R从外缸146的外表面向内延伸。驱动磁铁144被设置在外缸146上的凹部中,例如使得驱动磁铁144嵌入外缸146内。
线性压缩机100还包括一对平面弹簧150。各个平面弹簧150可以例如沿着轴向A联接到内背铁142的相应端。在驱动线圈124的操作期间,平面弹簧150支撑内背铁142。特别地,内背铁142被平面弹簧150悬挂在线性压缩机100的定子或电机808内,使得内背铁142沿着径向R的运动被阻止或限制,而沿着轴向A的运动相对不受阻碍。由此,平面弹簧150沿着径向R的硬度可以大于沿着轴向A的硬度。这样,在电机808的操作和内背铁142在轴向A移动期间,平面弹簧150可以例如 沿着径向R辅助维持驱动磁铁144与驱动线圈124之间的气隙的均匀性。平面弹簧150还可以辅助阻止电机808的侧拉力传递到活塞130,并在气缸117中反应为摩擦损失。
挠性安装件160被安装到内背铁142并延伸穿过内背铁142。特别地,挠性安装件160经由内套筒148安装到内背铁142。由此,挠性安装件160可以在内套筒148和/或挠性安装件160的中间部分处联接(例如,螺纹连接)到内套筒148,以便将挠性安装件160安装或固定到内套筒148。挠性安装件160可以辅助形成联轴器162。联轴器162连接内背铁142和活塞130,使得内背铁142的运动例如沿着轴向A传递到活塞130。
联轴器162可以是沿着径向R顺应或挠性的顺应联轴器。特别地,联轴器162可以沿着径向R充分顺应,使得内背铁142沿着径向R通过联轴器162传递到活塞130的运动很少或没有。这样,电机808的侧拉力与活塞130和/或气缸117分离,并且可以减小活塞130与气缸117之间的摩擦。
如在图中可以看出的,活塞130的活塞头132具有活塞圆柱形侧壁170。该圆柱形侧壁170可以沿着轴向A从活塞头132向内背铁142延伸。圆柱形侧壁170的外表面可以在腔室118处的气缸117上滑动,并且,圆柱形侧壁170的内表面可以与圆柱形侧壁170的外表面相对设置。由此,圆柱形侧壁170的外表面可以沿着径向R背对圆柱形侧壁170的中心,而圆柱形侧壁170的内表面可以沿着径向面向圆柱形侧壁170的中心。
挠性安装件160例如沿着轴向A在第一端部172与第二端部174之间延伸。根据示例性实施方式,圆柱形侧壁170的内表面在接近第一端部的地方限定球座176。另外,联轴器162还包括球头178。具体地,例如,球头178设置在挠性安装件160的第一端部172处,球头178可以在挠性安装件160的第一端部172处接触挠性安装件160。另外,球头178可以在活塞130的球座176处接触活塞130。特别地,球头178可以搁在活塞130的球座176上,使得球头178可在活塞130的球座176上滑动和/或旋转。例如,球头178可以有一个紧靠活塞130的球座176设置的截头球形表面,球座176的形状可以与球头178的截头球形表面互补。球头178的截头球形表面可以在活塞130的球座176上滑动和/或旋转。
例如,与挠性安装件160与活塞130之间固定连接相比,挠性安装件160与活塞130之间在活塞130的球头178与球座176之间的界面处的相对运动可以减小活塞130与气缸117之间的摩擦。例如,当活塞130在气缸117内滑动的轴线相对于 内背铁142往复运动的轴线成角度时,球头178的截头球形表面可以在活塞130的球座176上滑动,相对于内背铁142与活塞130之间的刚性连接,可以减小活塞130与气缸117之间的摩擦。
进一步地,如图所示,挠性安装件160远离挠性安装件160的第一端部172连接到内背铁142。例如,挠性安装件160可以在挠性安装件160的第二端部174处或在挠性安装件160的第一端部与第二端部之间连接到内背铁142。相反,挠性安装件160在挠性安装件160的第一端部172处设置在活塞130处或活塞130内,如下面更详细地讨论的。
另外,挠性安装件160包括在内背铁142与活塞130之间的管状壁190。管状壁190内的通道192用于将诸如制冷剂或空气的可压缩流体穿过挠性安装件160并引向活塞头132和/或引导到活塞130中。内背铁142例如可以在挠性安装件160的第一端部172与第二端部174之间的挠性安装件160的中间部分处安装到挠性安装件160,使得内背铁142围绕管状壁190延伸。通道192可以在管状壁190内的挠性安装件160的第一端部172与第二端部174之间延伸,使得可压缩流体可穿过通道192从挠性安装件160的第一端部172流到挠性安装件160的第二端部174。这样,在线性压缩机100的操作期间,可压缩流体可在挠性安装件160内流过内背铁142。消声器194可以设置在管状壁190内的通道192内,例如,以减少流过通道192的可压缩流体的噪音。
活塞头132还限定至少一个开口196。活塞头132的开口196例如沿着轴向A延伸穿过活塞头132。由此,在线性压缩机100的操作期间,流体的流可以经由活塞头的开口196穿过活塞头132到达腔室118中。这样,流体(在腔室118内被活塞头132压缩的)可以在通道192内流经挠性安装件160和内背铁142而到达活塞130。如上所述,吸入阀128(图6至图7)可以设置在活塞头132上,以调节可压缩流体穿过开口196进入腔室118中的流量。
仍然参照图3至图7,线性压缩机100还可以包括润滑系统200,用于使润滑剂(例如油)循环通过线性压缩机100的工作或移动部件,以减小摩擦、提高效率等。例如,如图所示,壳体102可大体限定用于收集油的贮槽202。具体地,贮槽202可以限定在下壳体104的底部中。润滑系统200还包括泵206,该泵206用于使油连续循环穿过线性压缩机100中需要润滑的部件。
如图所示,线性压缩机100可以包括用于接收制冷剂流的吸入口220。具体地,如图所示,吸入口220可以被限定在壳体102上(例如在下壳体104上),并且被 配置为接收制冷剂供应管道,以向腔108提供制冷剂。如上所述,挠性安装件160包括管状壁190,该管状壁190限定通道192,该通道192用于引导诸如制冷剂气体的可压缩流体穿过挠性安装件160流向活塞头132。这样,制冷剂气体的理想流路是穿过吸入口220,穿过通道192,穿过开口196并进入腔室118中。吸入阀128在压缩行程期间可以阻塞开口196,排出阀116在达到期望压力时可以允许压缩气体离开腔室118。
现在参照图9,提供了用于操作制冷电器的压缩机的可变容量驱动电路的方法1200的一个实施方式的流程图。通常,方法1200在本文中参照图1至图7的制冷电器10和组件100进行描述。然而,应当理解,所公开的方法1200可以利用具有任何其他合适的配置的任何其他合适的制冷电器来实施。另外,尽管图9出于说明和讨论的目的描绘了以特定顺序执行的步骤,但是本文所讨论的方法不限于任何特定顺序或排列。使用本文所提供的公开内容,本领域技术人员将理解,本文公开的方法的各种步骤可以被省略、重新排列、组合和/或以各种方式调整,而不偏离本发明的范围。
如(1202)所示,方法1200包括:在第一状态中操作第一四象限开关和第二四象限开关,在该第一状态中,第一四象限开关闭合并且第二四象限开关断开,使得电机所经历的电压等于AC线路电压。
如(1204)所示,方法1220包括:在第二状态中操作第一四象限开关和第二四象限开关,在该第二状态中,第一四象限开关断开并且第二四象限开关闭合,使得电机所经历的电压为零。
仍然参照图9,如(1206)所示,方法1200包括:提供正触发角和负触发角。如(1208)所示,方法1200包括:基于正触发角和负触发角限定第一四象限开关和第二四象限开关何时在第一状态和第二状态的每一个中操作。如(1210)所示,方法1200包括:使用正触发角和负触发角以由AC线路电压频率确定的开关频率在第一状态与第二状态之间转变。如(1212)所示,方法1200包括:基于第一状态与第二状态之间的转变控制在正半周期和负半周期内施加到压缩机的电压的百分比。
图9的方法1200可以关于图10、图11a至图11d以及图12a至图12d来更好地理解。特别地,线性压缩机100还可以包括用于控制施加到线性压缩机100的电压的特征。具体地,根据示例性实施方式,线性压缩机100可以由用于控制施加到定子120的电压的可变容量驱动电路800来驱动。虽然本文描述了示例性驱动电路800,但应当理解,可以在保持在本发明的范围内的同时对可变容量驱动电路800进 行变更和修改。
根据所示例的实施方式,如图10所示,可变容量驱动电路800包括多个以图腾柱配置布置在线性压缩机的AC线路电压802与电机808之间的四象限开关(例如,第一四象限开关804和第二四象限开关806)。为了解释本发明的各个方面,可变容量驱动电路800在下面被描述为与线性压缩机100的定子120一起使用。然而,应当理解,可变容量驱动电路800的各个方面可用于其它压缩机中,同时保持在本发明的范围内。
通常,可变容量驱动电路800(例如,在制冷电器中)至少包括第一四象限开关804和第二四象限开关806。进一步地,如图11a、图11b和图11c中特别示出的,四象限开关可以具有任何合适的配置。在一个示例中,如图11a所示,四个二极管(例如,第一二极管910、第二二极管912、第三二极管914和第四二极管916)可以用于酌情沿任一方向连接晶体管918,以在任一方向上引导电流。而且,当晶体管918截止时,开关网络可以阻断任一极性的电压。
在另一个示例中,如图11b所示,使用了第一电压双向开关902和第二电压双向开关904。在这样的实施方式中,第一电压双向开关902和第二电压双向开关904是二象限的,并且可以并联放置,使得任一开关可以阻断任一极性的电压。而且,第一电压双向开关902可以传导负电流,而第二电压双向开关904可以传导正电流。由此,第一电压双向开关902和第二电压双向开关904组合起来可以传导任何极性的电流。
在又一个示例中,如图11c所示,使用了第一电流双向开关906和第二电流双向开关908。第一电流双向开关906和第二电流双向开关908可以串联放置,使得第一电流双向开关906和第二电流双向开关908可以传导两个极性的电流。而且,第一电流双向开关906仅可以阻断负电压,而第二电流双向开关908仅可以阻断正电压。由此,通过将第一电流双向开关906和第二电流双向开关908串联,可以阻断两个极性的电压。
进一步地,本文所述的四象限开关804、806可以在多个状态下操作。例如,在一实施方式中,第一四象限开关804和第二四象限开关806可以以不同的组合断开和闭合。更具体地,根据一个示例性实施方式,可变容量驱动电路800在第一状态中操作第一四象限开关804和第二四象限开关806,在该第一状态中,第一四象限开关804闭合且第二四象限开关806断开。在这样的实施方式中,电机808所经历的电压等于AC线路电压802。作为另一示例性实施方式,可变容量驱动电路800可以 在第二状态中操作,在该第二状态中,第一四象限开关804断开且第二四象限开关806闭合。在这样的实施方式中,电机808所经历的电压等于零。
现在特别参照图12a至图12d,当四象限开关804、806在多个状态中操作时,控制器1176可以提供正触发角1010和负触发角1012。例如,正触发角1010和负触发角1012可以限定第一四象限开关804和第二四象限开关806何时在第一状态和第二状态中的每一个中操作。
作为其他示例,正触发角1010和负触发角1012可用于在第一状态与第二状态之间转变。具体地,在一实施方式中,控制器1176可以使用正触发角1010和负触发角1012以由AC线路电压频率确定的开关频率在第一状态与第二状态之间转变,以控制在正半周期1014和负半周期1016内施加到压缩机100的电压的百分比。特别地,第一四象限开关804和第二四象限开关806可以在第一状态与第二状态之间转变,每半周期最多两次转变。
在特定实施方式中,例如,开关频率可以等于每半周期的低频值。例如,在一实施方式中,开关频率可以等于或小于每半周期大约60Hz。更特别地,在一实施方式中,开关频率可以与AC线路电压同步,使得四象限开关的状态每半周期最多转变两次。在该示例中,开关频率基本上是线路电压频率(例如120Hz)的两倍,至少当触发角如图12a和图12c所示布置时是如此。在这样的实施方式中,如果开关如图12b和图12d所示发生,则实际开关频率等于60Hz。此外,在实施方式中,开关时间可以由触发角确定。而且,在实施方式中,在第一状态与第二状态之间的开关之间的定时、特别是触发角可以用于调制施加到电机808的电压。进一步地,施加到电机808的电压可以包括:AC分量,具体地,AC分量包括超过AC线路电压频率的多个谐波,这些谐波促成总谐波失真;以及直流(DC)分量。特别地,正触发角1010和负触发角1012可以分别包括用于正半周期1014和负半周期1016中的每一个的不同调制级别。由此可见,不同的调制级别可以引起电机808中的电压的AC分量和DC分量。
另外,根据示例性实施方式,在第一状态与第二状态之间的开关之间的定时(即正触发角和负触发角)可进一步包括使用电压的DC分量来偏置振荡点。特别地,电压的DC分量可用于偏置例如压缩机的活塞130的振荡中心点(例如,以最小化活塞130的上止点容积)。正触发角与负触发角之间的差可用于调制施加到电机808的电压,还可包括使用电压的AC分量来调制压缩机的容量。特别地,电压的AC分量可用于经由活塞130的冲程长度来调制压缩机的容量。
另外,根据示例性实施方式,正触发角1010和负触发角1012可在半周期期间的特定时间应用。特别地,正触发角1010和负触发角1012可相对于AC线路电压的过零点应用。在一个示例中,正触发角1010和负触发角1012可以在半周期的开始或结束时应用,如图12a、图12b、图12c和图12d所示。在半周期期间的特定时间应用正触发角1010和负触发角1012可以最小化对AC分量的总谐波失真的影响。
现在特别参照图12a,正触发角1010可以在正半周期的开始时应用,负触发角1012可以在负半周期的开始时应用。
现在特别参照图12c,正触发角1010可以在正半周期的结束时应用,负触发角1012可以在负半周期的结束时应用。
另外,根据示例性实施方式,可以应用正触发角1010和负触发角1012,使得两个第二状态是连续的。现在特别参照图12b,正触发角1010可以在正半周期的结束时应用,负触发角1012可以在负半周期1004的开始时应用。现在特别参照图12d,正触发角1010可以在正半周期的开始时应用,负触发角1012可以在负半周期1008的结束时应用。如图12b和图12d所示,应用正触发角1010和负触发角1012使得两个第二状态是连续的,且可以降低开关频率。
另外,根据示例性实施方式,可以改变正触发角1010和负触发角1012。具体地,可以增大正触发角1010和负触发角1012。例如,相等地增大正触发角1010和负触发角1012。改变正触发角1010和负触发角1012可以减小电机808中的电压的AC分量。另外,或可选地,改变正触发角1010和负触发角1012可以减小电机808中的电压的DC分量。作为另一示例,可以在正触发角1010和负触发角1012中注入差。正触发角1010与负触发角1012之间的差可以控制施加到电机808的电压的DC分量。
另外,根据示例性实施方式,压缩机的标准操作模式可以限定谐振频率。具体地,压缩机的标准操作模式可以限定等于AC线路频率的谐振频率。
本书面描述使用示例对本发明进行了公开(其中包括最佳实施例),并且还使本领域技术人员能够实施本发明(其中包括制造和使用任意装置或系统并且执行所包含的任意方法)。本发明的可专利范围通过权利要求进行限定,并且可以包括本领域技术人员能够想到的其它的示例。如果这种其它的示例包括与权利要求的字面语言没有区别的结构元件,或者如果这种其它的示例包括与权利要求的字面语言没有实质区别的等同结构元件,则期望这种其它的示例落入权利要求的范围中。

Claims (20)

  1. 一种用于操作压缩机的可变容量驱动电路的方法,所述可变容量驱动电路至少具有第一四象限开关、第二四象限开关和电机,其特征在于,所述方法包括:
    在第一状态中操作所述第一四象限开关和所述第二四象限开关,在该第一状态中,所述第一四象限开关闭合并且所述第二四象限开关断开,其中,在所述第一状态中,所述电机所经历的电压等于交流线路电压;
    在第二状态中操作所述第一四象限开关和所述第二四象限开关,在该第二状态中,所述第一四象限开关断开并且所述第二四象限开关闭合,其中,在所述第二状态中,所述电机所经历的电压为零;
    提供正触发角和负触发角,所述正触发角和所述负触发角限定所述第一四象限开关和所述第二四象限开关何时在所述第一状态和所述第二状态中的每一个中操作;以及
    使用所述正触发角和所述负触发角以由所述交流线路电压确定的开关频率在所述第一状态与所述第二状态之间转变,以便控制在正半周期和负半周期内施加到所述压缩机的电压的百分比。
  2. 根据权利要求1所述的方法,其特征在于,通过所述交流线路电压频率确定所述开关频率包括将所述开关频率同步到所述交流线路电压,使得所述四象限开关每半周期最多转变两次。
  3. 根据权利要求2所述的方法,其特征在于,所述开关频率等于60Hz或120Hz。
  4. 根据权利要求1所述的方法,其特征在于,使用所述正触发角和所述负触发角在所述第一状态与所述第二状态之间转变还包括使用所述正触发角和所述负触发角来调制施加到所述电机的所述电压,所述电压包括交流分量和直流分量。
  5. 根据权利要求4所述的方法,其特征在于,所述正触发角和所述负触发角分别包括针对所述正半周期和所述负半周期中的每一个的不同调制级别,以在所述电机中引起所述电压的所述交流分量和所述直流分量。
  6. 根据权利要求4所述的方法,其特征在于,所述方法还包括在半周期的开始或半周期的结束时应用所述正触发角和所述负触发角,以最小化对施加到所述电机的所述电压的所述交流分量或所述直流分量中的至少一个的总谐波失真的影响。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括在所述正半周期 的结束时应用所述正触发角并且在所述负半周期的开始时应用负触发角,或者在所述正半周期的所述开始时应用所述正触发角并且在所述负半周期的所述结束时应用所述负触发角,使得两个第二状态是连续的,从而降低所述开关频率。
  8. 根据权利要求4所述的方法,其特征在于,所述方法还包括相等地增大所述正触发角和所述负触发角,以减小所述电机中的所述电压的所述交流分量。
  9. 根据权利要求4所述的方法,其特征在于,所述方法还包括注入所述正触发角与所述负触发角的差,以控制施加到所述电机的所述电压的所述直流分量。
  10. 根据权利要求4所述的方法,其特征在于,所述压缩机的标准操作模式定义一个等于交流线路频率的谐振频率。
  11. 根据权利要求10所述的方法,其特征在于,使用在所述第一状态与所述第二状态之间的开关之间的定时来调制施加到所述电机的所述电压还包括:
    使用所述电压的所述直流分量来偏置所述压缩机的活塞的振荡中心点,以最小化所述活塞的上止点容积;以及
    使用所述电压的所述交流分量来经由所述活塞的冲程长度调制所述压缩机的容量。
  12. 根据权利要求1所述的方法,其特征在于,所述方法还包括利用至少一个查找表来确定所述正触发角和所述负触发角。
  13. 一种线性压缩机,其特征在于,所述线性压缩机包括:
    壳体,所述壳体限定活塞-气缸;
    电机,所述电机用于驱动所述活塞-气缸;以及
    可变容量驱动电路,所述可变容量驱动电路用于驱动所述电机,所述可变容量驱动电路包括:
    多个四象限开关,这些四象限开关以图腾柱配置布置在所述线性压缩机的交流线路电压与所述电机之间,
    其中,所述多个四象限开关至少包括第一四象限开关和第二四象限开关,所述第一四象限开关和所述第二四象限开关在第一状态和第二状态中操作,其中,在所述第一状态中,所述第一四象限开关闭合并且所述第二四象限开关断开,使得所述电机所经历的电压等于交流线路电压,并且其中,在所述第二状态中,所述第一四象限开关断开并且所述第二四象限开关闭合,使得所述电机所经历的电压为零;以及
    控制器,该控制器通信地耦合到所述多个四象限开关,所述控制器被配置为执 行多个操作,所述多个操作包括:
    提供正触发角和负触发角,所述正触发角和所述负触发角限定所述第一四象限开关和所述第二四象限开关何时在所述第一状态和所述第二状态中的每一个中操作;以及
    使用所述正触发角和所述负触发角以由所述交流线路电压频率确定的开关频率在所述第一状态与所述第二状态之间转变,以便控制在正半周期和负半周期内施加到所述压缩机的电压的百分比。
  14. 根据权利要求13所述的线性压缩机,其特征在于,通过所述交流线路电压频率确定所述开关频率包括将所述开关频率同步到所述交流线路电压,使得所述四象限开关每半周期最多转变两次。
  15. 根据权利要求14所述的线性压缩机,其特征在于,所述开关频率等于60 Hz或120 Hz。
  16. 根据权利要求13所述的线性压缩机,其特征在于,使用所述正触发角和所述负触发角在所述第一状态与所述第二状态之间转变还包括使用所述第一状态与所述第二状态之间的开关之间的定时来调制施加到所述电机的所述电压,所述电压包括交流分量和直流分量。
  17. 根据权利要求16所述的线性压缩机,其特征在于,所述正触发角和所述负触发角分别包括针对所述正半周期和所述负半周期中的每一个的不同调制级别,以在所述电机中引起所述电压的所述交流分量和所述直流分量。
  18. 根据权利要求16所述的线性压缩机,其特征在于,还包括在半周期的开始或半周期的结束时应用所述正触发角和所述负触发角,以最小化对施加到所述电机的所述电压的所述交流分量或所述直流分量中的至少一个的总谐波失真的影响。
  19. 根据权利要求18所述的线性压缩机,其特征在于,还包括在所述正半周期的结束时应用所述正触发角并且在所述负半周期的开始时应用负触发角,或者在所述正半周期的所述开始时应用所述正触发角并且在所述负半周期的所述结束时应用所述负触发角,使得两个第二状态是连续的,从而降低所述开关频率。
  20. 一种制冷电器,其特征在于,所述制冷电器包括:
    箱体,所述箱体包括用于接收食品的至少一个腔室;
    门体,所述门体允许进入所述至少一个腔室;
    线性压缩机,所述线性压缩机用于辅助冷却所述至少一个腔室,所述线性压缩机包括:
    壳体,所述壳体限定活塞-气缸;
    电机,所述电机用于驱动所述活塞-气缸;以及
    可变容量驱动电路,所述可变容量驱动电路用于驱动所述电机,包括:
    多个四象限开关,这些四象限开关以图腾柱配置布置在所述线性压缩机的交流线路电压与所述电机之间,所述多个四象限开关至少包括第一四象限开关和第二四象限开关,所述第一四象限开关和所述第二四象限开关在第一状态和第二状态中操作,其中,在所述第一状态中,所述第一四象限开关闭合并且所述第二四象限开关断开,使得所述电机所经历的电压等于交流线路电压,并且其中,在所述第二状态中,所述第一四象限开关断开并且所述第二四象限开关闭合,使得所述电机所经历的电压为零;以及
    控制器,该控制器通信地耦合到所述多个四象限开关,所述控制器被配置为执行多个操作,所述多个操作包括:
    提供正触发角和负触发角,所述正触发角和所述负触发角限定所述第一四象限开关和所述第二四象限开关何时在所述第一状态和所述第二状态中的每一个中操作;以及
    使用所述正触发角和所述负触发角以由所述交流线路电压频率确定的开关频率在所述第一状态与所述第二状态之间转变,以便控制在正半周期和负半周期内施加到所述压缩机的电压的百分比。
PCT/CN2021/130871 2020-11-19 2021-11-16 用于制冷电器中的线性压缩机的可变容量驱动电路 WO2022105738A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21893885.0A EP4230929A4 (en) 2020-11-19 2021-11-16 VARIABLE CAPACITY DRIVER CIRCUIT FOR A LINEAR COMPRESSOR IN AN ELECTRIC REFRIGERATOR
CN202180077520.0A CN116472407A (zh) 2020-11-19 2021-11-16 用于制冷电器中的线性压缩机的可变容量驱动电路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/952,612 2020-11-19
US16/952,612 US11434883B2 (en) 2020-11-19 2020-11-19 Variable capacity drive circuit for a linear compressor in a refrigeration appliance

Publications (1)

Publication Number Publication Date
WO2022105738A1 true WO2022105738A1 (zh) 2022-05-27

Family

ID=81586606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130871 WO2022105738A1 (zh) 2020-11-19 2021-11-16 用于制冷电器中的线性压缩机的可变容量驱动电路

Country Status (4)

Country Link
US (1) US11434883B2 (zh)
EP (1) EP4230929A4 (zh)
CN (1) CN116472407A (zh)
WO (1) WO2022105738A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030069711A (ko) * 2002-02-22 2003-08-27 엘지전자 주식회사 왕복동식 압축기의 구동제어장치
CN1704590A (zh) * 2004-06-03 2005-12-07 Lg电子株式会社 用于控制压缩机的操作的装置及其方法
CN101495935A (zh) * 2006-08-04 2009-07-29 Lg电子株式会社 用于线性压缩机的控制设备
CN101836354A (zh) * 2007-10-26 2010-09-15 Lg电子株式会社 往复式压缩机
CN103052801A (zh) * 2010-07-06 2013-04-17 Lg电子株式会社 压缩机控制装置、方法及包括该压缩机控制装置的冰箱
CN110530083A (zh) * 2019-09-12 2019-12-03 宁波奥克斯电气股份有限公司 一种压缩机电机控制方法、装置及空调器
US20200240406A1 (en) * 2019-01-25 2020-07-30 Lg Electronics Inc. Linear compressor and method for controlling linear compressor

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3683316B2 (ja) 1995-07-24 2005-08-17 日東工器株式会社 リニアコンプレッサの励磁コイル給電装置
KR0176909B1 (ko) 1996-05-08 1999-10-01 구자홍 선형 압축기 구동장치
US5715693A (en) * 1996-07-19 1998-02-10 Sunpower, Inc. Refrigeration circuit having series evaporators and modulatable compressor
JP2000110732A (ja) 1998-10-08 2000-04-18 Matsushita Refrig Co Ltd リニアコンプレッサの制御装置
KR100317301B1 (ko) 2000-01-21 2001-12-22 구자홍 선형 압축기의 피스톤 위치 제어장치 및 방법
KR100378814B1 (ko) 2000-11-28 2003-04-07 엘지전자 주식회사 리니어 컴프레샤의 구동회로
EP1304792A1 (en) * 2001-10-19 2003-04-23 STMicroelectronics S.r.l. Circuit device for driving an AC electric load
JP2003309994A (ja) 2002-04-12 2003-10-31 Daikin Ind Ltd リニアコンプレッサ駆動装置
KR100486596B1 (ko) 2002-12-06 2005-05-03 엘지전자 주식회사 왕복동식 압축기의 운전장치 및 제어방법
WO2005045248A1 (en) 2003-11-11 2005-05-19 Lg Electronics Inc. Driving controlling appratus of linear compressor and method thereof
KR100652590B1 (ko) 2004-12-10 2006-12-01 엘지전자 주식회사 왕복동식 압축기의 모터 구동장치 및 방법
KR101234825B1 (ko) * 2005-05-13 2013-02-20 삼성전자주식회사 리니어 압축기의 제어 장치 및 방법
DE102010028506A1 (de) * 2010-05-03 2011-11-03 BSH Bosch und Siemens Hausgeräte GmbH Schaltung und Verfahren zur Ansteuerung eines Linearverdichters
JP2011244576A (ja) * 2010-05-18 2011-12-01 Panasonic Corp 誘導電動機の駆動装置
KR102070277B1 (ko) 2012-11-19 2020-01-28 엘지전자 주식회사 압축기 제어장치 및 압축기 제어방법
KR101955977B1 (ko) * 2012-01-30 2019-03-08 엘지전자 주식회사 압축기 제어 장치와 방법, 및 이를 포함한 냉장고
KR102115247B1 (ko) * 2013-12-19 2020-05-26 엘지전자 주식회사 리니어 압축기 제어 장치 및 제어 방법
US10208741B2 (en) * 2015-01-28 2019-02-19 Haier Us Appliance Solutions, Inc. Method for operating a linear compressor
US10113540B2 (en) * 2015-10-02 2018-10-30 Haier Us Appliance Solutions, Inc. Linear compressor
US10174753B2 (en) * 2015-11-04 2019-01-08 Haier Us Appliance Solutions, Inc. Method for operating a linear compressor
US10587211B2 (en) * 2018-04-12 2020-03-10 Haier Us Appliance Solutions, Inc. Linear compressor and methods of polarity detection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030069711A (ko) * 2002-02-22 2003-08-27 엘지전자 주식회사 왕복동식 압축기의 구동제어장치
CN1704590A (zh) * 2004-06-03 2005-12-07 Lg电子株式会社 用于控制压缩机的操作的装置及其方法
CN101495935A (zh) * 2006-08-04 2009-07-29 Lg电子株式会社 用于线性压缩机的控制设备
CN101836354A (zh) * 2007-10-26 2010-09-15 Lg电子株式会社 往复式压缩机
CN103052801A (zh) * 2010-07-06 2013-04-17 Lg电子株式会社 压缩机控制装置、方法及包括该压缩机控制装置的冰箱
US20200240406A1 (en) * 2019-01-25 2020-07-30 Lg Electronics Inc. Linear compressor and method for controlling linear compressor
CN110530083A (zh) * 2019-09-12 2019-12-03 宁波奥克斯电气股份有限公司 一种压缩机电机控制方法、装置及空调器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4230929A4 *

Also Published As

Publication number Publication date
US11434883B2 (en) 2022-09-06
EP4230929A1 (en) 2023-08-23
US20220154706A1 (en) 2022-05-19
CN116472407A (zh) 2023-07-21
EP4230929A4 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
US8714946B2 (en) Linear compressor with an electro-magnetic spring
US9086062B2 (en) Linear compressor with an electro-magnetic spring
US20150226210A1 (en) Linear compressor
US9739270B2 (en) Linear compressor
KR101955977B1 (ko) 압축기 제어 장치와 방법, 및 이를 포함한 냉장고
KR101904870B1 (ko) 압축기 제어 장치와 방법, 및 이를 포함한 냉장고
US10465671B2 (en) Compressor with a discharge muffler
US9322401B2 (en) Linear compressor
CN113795672A (zh) 具有防油溅板的线性压缩机
US20160208790A1 (en) Compressor
KR101772083B1 (ko) 압축기 제어 장치 및 이를 포함한 냉장고
WO2022105738A1 (zh) 用于制冷电器中的线性压缩机的可变容量驱动电路
US10113540B2 (en) Linear compressor
KR20120004297A (ko) 압축기 제어 장치와 방법, 및 이를 포함한 냉장고
KR20090128897A (ko) 냉동시스템
WO2020228753A1 (zh) 直线压缩机和设定点控制方法
US10830230B2 (en) Method for operating a linear compressor
US12018674B2 (en) Apparatus and method for controlling compressor
WO2022100542A1 (zh) 往复式压缩机及其阀门
CN112964003B (zh) 一种使用微型动磁式串联双级直线压缩机的冰箱的控制方法
KR20120004293A (ko) 리니어 압축기의 제어 장치, 제어 방법, 및 이들을 구비한 냉장고
KR102441949B1 (ko) 리니어 압축기의 제어장치 및 그를 포함하는 냉장고
KR20020048687A (ko) 냉장고의 운전 제어방법
US9470225B2 (en) Compressors and methods for determining optimal parking positions for compressor pistons

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893885

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180077520.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021893885

Country of ref document: EP

Effective date: 20230516

NENP Non-entry into the national phase

Ref country code: DE