WO2022105698A1 - 一种适用于海上气田复杂采出液处理的系统和方法 - Google Patents

一种适用于海上气田复杂采出液处理的系统和方法 Download PDF

Info

Publication number
WO2022105698A1
WO2022105698A1 PCT/CN2021/130509 CN2021130509W WO2022105698A1 WO 2022105698 A1 WO2022105698 A1 WO 2022105698A1 CN 2021130509 W CN2021130509 W CN 2021130509W WO 2022105698 A1 WO2022105698 A1 WO 2022105698A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation
oil
water
pipe
phase
Prior art date
Application number
PCT/CN2021/130509
Other languages
English (en)
French (fr)
Inventor
杨强
刘懿谦
卢浩
李裕东
代品一
潘志程
Original Assignee
华东理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东理工大学 filed Critical 华东理工大学
Publication of WO2022105698A1 publication Critical patent/WO2022105698A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities

Definitions

  • the invention belongs to the fields of petrochemical industry and environmental protection, and in particular relates to a system and method suitable for the treatment of complex produced fluid in offshore gas fields.
  • An offshore gas field platform production water treatment method and device (CN201710661499.4) and an offshore gas field platform production water treatment method (CN201910985653.2) do not perform condensate treatment, produced water turbidity removal, and produced water solid removal. Explanation, it is an improvement to the production water process of the existing gas field platform.
  • a special oil-absorbing felt cloth for marine degreasing and a method for preparing the oil-absorbing felt cloth (CN201510205874.5) and an intelligent petroleum machine for marine degreasing (CN201810852081.6) are both methods for handling oil spills on water, It is not suitable for the oil removal treatment of the produced water produced in the production process of the offshore oil and gas field platform.
  • the integrated degreasing and turbidity removal device (CN201810617958.3) introduces a degreasing and turbidity removal device suitable for the iron and steel industry, and does not involve a treatment system matching the device. Therefore, there is an urgent need for a process flow and related devices for deep oil and turbidity removal and condensate deep dehydration suitable for complex production water conditions of offshore gas field platforms in my country.
  • the present invention provides a system and method suitable for the treatment of complex produced fluid in offshore gas fields, and is suitable for deep oil and turbidity removal and deep dehydration of condensate oil in complex production water conditions of offshore gas field platforms in my country.
  • a complex produced liquid processing system suitable for offshore gas fields including an integrated separator for desolidification and oil removal, a vortex bubble generator, a compact air flotation device, a security filter, a modularized Combined fiber degreaser, filter, bag filter, modular combined fiber dehydrator;
  • the top of the integrated desolidification and degreasing separator is provided with an oil-rich phase outlet, the bottom is provided with a solid sediment discharge port, and the bottom is provided with a water phase outlet, the water phase outlet is connected to the first mixing demulsifier, and the The outlet of the first mixing demulsifier communicates with the vortex bubble generator;
  • the top of the compact air flotation device is provided with an exhaust port to communicate with the vortex bubble generator, the bottom is provided with a solid sediment discharge port, the upper portion is provided with an oil phase outlet to communicate with the second mixing demulsifier, and the lower portion is provided with a water phase outlet Connected to the security filter, and a device inlet is opened in the middle to communicate with the vortex bubble generator;
  • the security filter communicates with the inlet of the modular combined fiber degreaser
  • the top of the modular combined fiber degreaser is provided with an oil phase outlet to communicate with the second mixing demulsifier, and the inlets of the second mixing demulsifier and the first mixing demulsifier pass through the medicament tank pipeline connection;
  • the top of the filter is provided with an inlet that communicates with the outlet of the modular combined fiber degreaser, and an oil phase outlet is provided on the top of the filter to communicate with the second mixing demulsifier;
  • the second hybrid demulsifier is connected to the bag filter, and the bag filter is connected to the modular combined fiber dehydrator.
  • the top of the modular combined fiber dehydrator is provided with an oil phase outlet, and the bottom is opened.
  • a water phase outlet communicates with the modular combined fiber degreaser.
  • the integrated de-solidification and oil-removal separator includes a casing and at least one integrated separation core tube, and the integrated separation core tube includes a separation main pipe, a separation auxiliary pipe, and a connection between the separation main pipe and the separation pipe.
  • the main and sub-pipe communicating pipes of the separation sub-pipes, two or more of the separation sub-pipes are arranged around one of the separation main pipes; the bottom inlet of the separation main pipe is provided with a spin generator, and the spin generator produces The swirl field converts the liquid flowing through the separation main pipe from axial motion to rotational motion; the separation auxiliary pipe is provided with a tangential swirling port for the separation auxiliary pipe along the axial direction, and the tangential swirling port for the separation auxiliary pipe is arranged in the axial direction.
  • the liquid flowing through the separation sub-pipe enters the separation sub-tube through a tangential direction to make a rotary motion; the bottom of the separation sub-tube is provided with a conical or convex-shaped heavy-phase separation cone.
  • the present invention further provides that the main separation pipe is a main separation cavity, and the auxiliary separation pipe is a secondary separation cavity; the upper part of the main separation pipe is provided with a light-phase drainage cone of the main separation cavity, and the upper part of the auxiliary separation pipe is provided with a light-phase drainage cone of the main separation cavity. There is a secondary separation chamber light-phase drainage cone.
  • the inclination angle of the light-phase drainage cone of the main separation chamber is 10-75°, and a drainage channel with an included angle of 0-10° is opened in the middle of the light-phase drainage cone of the main separation chamber, and the drainage channel
  • the diameter of the secondary separation chamber is 0.1 to 0.8 times the diameter of the main separation chamber; the inclined angle of the light phase drainage cone of the secondary separation chamber is 10 to 75°, and the middle of the secondary separation chamber light phase drainage cone has an included angle of 0-10° drainage channel, the diameter of the drainage channel is 0.1-0.8 times the diameter of the auxiliary separation cavity.
  • the top of the separation main pipe is provided with a main separation cavity anti-flushing cap
  • the top of the separation auxiliary pipe is provided with a secondary separation cavity anti-flushing cap
  • the spinner is a spinner blade, and the helix angle of the spinner blade is 10-75°; or, the spinner is a tangential inlet, and the number of the tangential inlets is 1-6 indivual.
  • the inner diameter of the separation auxiliary pipe is 0.1 to 0.8 times the inner diameter of the separation main pipe; the main and auxiliary pipe communication pipes are respectively tangent to the separation main pipe and the separation auxiliary pipe, and the pipe diameter thereof is the separation auxiliary pipe. 0.5 to 2 times the inner diameter.
  • the present invention further provides that a distribution pipe is connected to the bottom of each separation main pipe, a communication pipe is commonly connected to the sides of the distribution pipe, a distribution pipe is commonly connected to the bottom of the distribution pipe, and the end of the distribution pipe is connected to the distribution pipe.
  • a distribution tank is connected together, the bottom of the distribution tank is connected with an inlet pipe, and the distribution pipes are evenly distributed radially and radially with the center of the distribution tank as the center of the circle.
  • the compact air flotation device includes a tank body, the top of the tank body is provided with an air supply port, the middle part of the tank body is provided with a weak cyclone separator, and the top of the weak cyclone separator is provided A top flow port is opened and an anti-shock cap is connected.
  • the tank body above the anti-shock cap is connected with an oil collecting groove.
  • a backflow tank is arranged below the flow separator, a nano-micro bubble water distributor is arranged below the backflow tank, a foam breaking module is arranged below the nano-micro bubble water distributor, and a foam breaking module is arranged below the foam breaking module coalescing module.
  • the oil collecting groove is an annular groove connected with the inner wall of the tank, the circular channel in the middle of the annular groove is a fluid flow channel, and the height of the tangent line from the top of the oil collecting groove to the top of the tank body is 0.5 to 5 times the diameter of the tank body;
  • the nano-micro bubble water distributor is a ring or disc with small holes in the range of 0.1mm-5mm, and the diameter of the nano-micro bubble water distributor is 0.2 of the diameter of the fluid flow channel. to 0.8 times.
  • the present invention further provides that the anti-shock cap is in the shape of an umbrella, the inclination angle is 120°-150°, and the projection of the umbrella top of the anti-shock cap should completely cover the top flow opening in the top view projection.
  • the present invention further provides that the thickness of the foam breaking module is 50mm-200mm, and the thickness of the coalescing module is 100mm-500mm.
  • a nano-micro-bubble water inlet is further arranged between the water-phase outlet and the feed inlet of the compact air flotation device, and above the foam breaking module, and one end of the nano-micro-bubble water inlet is connected to the nano-micro bubble water inlet.
  • the bubble water distributor is connected with the nano-micro bubble generator at one end.
  • an outlet is opened at the bottom of the filter, and the outlet of the filter can be used as a backwash inlet, and the backwash inlet is connected to the nano-micro-bubble generator.
  • the present invention also provides a method for treating complex produced fluids in offshore gas fields, comprising the following steps:
  • the complex produced fluid from the offshore gas field to be treated first enters the integrated de-solidification and oil-removal separator, and the oil-rich phase to the oil-rich phase storage tank enters the system again as the liquid phase to be treated, and is separated from the system after the solid phase is removed.
  • step (2) the mixing process of the demulsification agent and the water phase from step (1) occurs in the first mixing demulsifier, and the water phase and the demulsification agent enter the vortex bubble generator after being uniformly mixed in the first mixing demulsifier;
  • step (3) the compact air flotation device completes the coalescence growth and separation of tiny oil droplets in the water phase based on the principle of air flotation, and the water phase treated by the compact air flotation device enters the security filter, and the oil phase and the The scum enters the second mixing demulsifier uniformly;
  • the modular combined fiber degreaser, filter After the water phase entering the security filter in step (4) is de-solidified, to prevent the partial solids entrained in the water phase from affecting the subsequent water treatment process, the modular combined fiber degreaser, filter The water phase after treatment reaches the standard and enters the open drainage tank, or directly drains into the sea, or injects back into the formation, or goes to other water-requiring locations in the process for backwashing water, modularized combination of fiber degreaser and filter The oil phase separated after treatment by the device enters the second mixing demulsifier;
  • step (6) the bag filter separates the floc and the scum, and the oil-rich phase after the floc and the scum are removed enters the modular combined fiber dehydrator;
  • step (7) After the oil-rich phase in step (7) is treated by the modular combined fiber dehydrator, the water phase is returned to the modular combined fiber oil degreaser to meet the standard treatment and then discharged to the subsequent process, and the oil phase is sent to the platform booster pump to enter the sea after reaching the standard. Pipe delivery, or to other required locations.
  • the integrated separator for desolidification and oil removal includes at least one integrated separation core tube
  • the integrated separation core tube includes a casing, a separation main tube and a separation auxiliary tube parallel to each other, and the separation auxiliary tube
  • the acceleration in the separation main pipe is 5-10,000 times the acceleration of gravity g, and the acceleration in the auxiliary separation pipe is 10,000 times the acceleration of gravity g 10-20000 times;
  • the processing capacity of a single integrated separation core tube is 1m 3 /h-30m 3 /h.
  • the present invention further provides that there is more than one vortex bubble generator, if there are more than one, the parallel mode is adopted, and the processing capacity of a single mixer is controlled at 1m 3 /h-40m 3 /h.
  • the present invention is further provided that the liquid flow velocity at the equipment inlet of the compact air flotation device does not exceed 5 m/s; the acceleration in the centrifugal field of the weak cyclone separator is 0.1-1000 times the acceleration of gravity g; The flow velocity of the fluid flow passage of the oil tank is lower than 10 m/s.
  • a nano-micro-bubble water inlet is arranged between the water-phase outlet and the feed port of the compact air flotation device, and above the foam breaking module; in step (4), there is another nano-micro-bubble water inlet.
  • the water is blown in from the inlet of the nano-bubble water to realize secondary air flotation and enhance the separation effect of the compact air flotation device on the dispersed oil phase.
  • the nano-bubble water comes from the nano-bubble generator.
  • the water after the filter has reached the standard in addition to entering the open drain tank, or directly draining the sea, or back into the formation, or going to other water-requiring locations in the process for backwash water , and another part is sent to the nano-micro bubble generator as circulating water, and the amount of circulating water accounts for 5%-50% of the normal operation processing capacity.
  • the present invention is further provided that, in step (4), the nano-micro bubble water is generated by the nano-micro bubble generator, and the nano-micro bubble water generated by the nano-micro bubble generator is used for the compact air flotation device under the normal operation state, in addition, it can be used for It is used for each equipment of the backwashing equipment required in the backwashing state.
  • the system can purify the produced water and condensate.
  • the minimum oil content in the system outlet water can be lower than 10mg/L, the oil content in the water can usually be lower than 20mg/L, and the minimum water content in the oil can be lower than 50mg/L.
  • L usually can be lower than 200mg/L, the minimum suspended solids concentration can be lower than 5mg/L, the suspended solids concentration can usually be lower than 10mg/L, and 100% removal of solids above 0.1mm can be achieved;
  • the system has high flexibility in operation, and can be applied to harsh process conditions such as high emulsification, high oil content, high suspension and solid content in the liquid phase.
  • the oil content is up to 90%
  • the suspended solids (SS) concentration is up to 5%
  • the percentage of solids (above 0.1 mm) (vt%) does not exceed 5%.
  • the process system involved in the present invention has a smaller footprint and higher treatment accuracy than the current commonly used processes and equipment under the same processing capacity, and can also be widely used in petrochemical, coal chemical and other industries. Oil removal of oily/turbid production wastewater and clarification.
  • Fig. 1 is the production water and condensate processing flow chart of the present invention
  • Figure 2-1 is a schematic diagram of the structure of the integrated separation core pipe
  • Figure 2-2 is a schematic diagram of the connection between the separation auxiliary pipe and the separation main pipe;
  • Figure 3-1 is a schematic diagram of the structure of the separation main pipe
  • Figure 3-2 is a schematic diagram of the structure of the separation sub-pipe
  • Figure 4-1 is a schematic diagram of the assembly of multiple integrated separation core tubes (multiple distribution tubes, only one integrated separation core tube is shown);
  • Figure 4-2 is a partial structure top view of Figure 4-1;
  • Figure 5 is a schematic structural diagram of a compact air flotation device
  • Figure 7-1 is the state diagram of the imported emulsified water feed
  • Figure 7-2 is the state diagram of the imported complex produced liquid feed
  • Figure 7-3 is the state diagram of the outlet oil phase obtained by processing
  • Figure 7-4 is the status diagram of the outlet water phase obtained by processing
  • FIG. 8 is a schematic diagram of the connection structure of the circulating cleaning tank and the filter.
  • 1 integrated separator for removing solids and oil
  • 1-1 separation main pipe
  • 1-2 separation auxiliary pipe
  • 1-3 main and auxiliary pipe connecting pipe
  • 1-1-1 spinner
  • 1- 1-2 main separation chamber
  • 1-1-3 main separation chamber light-phase drainage cone
  • 1-1-4 main separation chamber anti-flushing cap
  • 1-1-6 main drainage channel
  • 1-2-1 tangential swirl port of separation auxiliary pipe
  • 1-2-2 heavy phase separation cone
  • 1-2-3 auxiliary separation cavity
  • 1-2-4 auxiliary separation cavity light phase drainage cone
  • 1-2-5 Anti-flushing cap of auxiliary separation chamber
  • 1-2-6 auxiliary drainage channel
  • 1-0-1 integrated separation core pipe
  • 1-0-2 distribution pipe
  • 1-0-3 distribution pipe
  • 1- 0-4 inlet pipe
  • 1-0-5 connecting pipe
  • 1-0-6 distribution tank
  • 2-1 first mixing demulsifier
  • 2-2 second mixing demulsifier
  • 3 vortex Bubble generator
  • 4 Compact air flotation device
  • 4-1 Equipment inlet
  • 4-2 Weak cyclone separator
  • the bag filter can be selected as a bag filter or a filter with the same function.
  • the operation mode of one open and one standby or two open and one standby can be set to ensure the continuous operation of the system.
  • the vortex bubble generator can be selected from the relevant structure of the shear channel in "A method and device for regulating and controlling the fractal structure of large and small bubbles in CN201910587103.5", which can be built into a compact air flotation device in addition to being used as a pipeline equipment. According to the processing capacity of the system, it is recommended that the eddy current bubble generator be placed in a compact air flotation device in parallel, and the processing capacity of a single mixing demulsifier should be controlled at 1m 3 /h-40m 3 /h. The processing capacity of a single root can be enlarged or reduced.
  • the modular combined fiber degreaser can be selected from CN103964545B, a method and device for deep degreasing of wastewater containing low-concentration slop oil and a device suitable for deep degreasing of wastewater containing low-concentration slop oil (refer to the figure in CN103964545B).
  • the core component module with oil removal function uses an ⁇ -type fiber weaving method suitable for oil-water depth separation in CN103952852B, and an X-type fiber weaving method suitable for oil-water separation in CN103952853B
  • the ⁇ -type braided structure and the X-type braided method are woven.
  • the core component module with oil removal function is the X-type braided layer and the ⁇ -type braided layer formed by the X-type braided method or the ⁇ -type braided method. Fastened.
  • the modular combined fiber dehydrator can be selected from a method and device for deep dehydration of oil products in CN103980934B (refer to Figure 6 in CN103980934B) suitable for deep dehydration of oil products containing trace water, or other structures with the same function,
  • Its core component module with dehydration function uses an ⁇ -type fiber weaving method suitable for oil-water depth separation in CN103952852B, an ⁇ -type weaving structure and an X-type weaving method in an X-type fiber weaving method suitable for oil-water separation in CN103952853B
  • the core component module with degreasing function is made of X-type braided layer and ⁇ -type braided layer formed by X-type weaving method or ⁇ -type braided method, which are stacked and fastened layer by layer.
  • the foam breaking module and the coalescing module respectively play the function of quickly separating the entrained air bubbles and large oil droplets.
  • the traditional wire mesh demister structure can be used, or the woven structure can be used.
  • CN103952852B is recommended.
  • the structure is a foam-breaking module, and the structure formed by the ⁇ -type weaving method is a coalescing module.
  • the platform can only be treated by connecting equipment in series, which is not conducive to the production capacity improvement of the platform in the middle and later stages of production. For this reason, the production water effluent that is difficult to be treated on the platform is treated by a set of 5m 3 /h production water and condensate treatment device of the present invention, so that the water phase meets the sea discharge standard (the oil content in the water is less than 30mg/L).
  • the oil phase meets the requirements of the sea inlet pipe (water content in the oil is less than 200mg/L), in addition, the solid particles in the water are completely removed, and the concentration of suspended solids in the water is less than 10mg/L.
  • the platform adopts the following process (can be combined with Figure 1):
  • the liquid phase to be treated first enters the integrated separator 1 for desolidification and degreasing. Specifically, the material to be treated enters the distribution tank 1-0-6 through the inlet pipe 1-0-4, and passes through the distribution tank 1-0-6 After buffering, the material to be processed enters the distribution pipe 1-0-3, the material reaches the distribution pipe 1-0-2 through the distribution pipe 1-0-3, and the distribution pipes 1-0-2 are connected through the communication pipe 1-0-5 To ensure uniform distribution of materials, the materials enter the integrated separation core tube 1-0-1 through the distribution pipe 1-0-2; the materials to be processed first enter the separation main pipe 1-1 of the integrated separation core pipe 1-0-1, and pass through The swirl field in the separation main pipe 1-1 removes large air bubbles, large oil droplets and suspended solids adhering to the large air bubbles and large oil droplets; the remaining liquid phase after separation passes through the main and auxiliary pipes.
  • the oil-rich phase to the oil-rich phase storage tank enters the system again as the liquid phase to be treated, the solid phase is removed and separated from the system, and the water phase is sent to the first mixing demulsifier 2-1.
  • the mixing process of the demulsification agent and the water phase in the step (1) occurs in the first mixing demulsifier 2-1, and a static mixer is used, and the processing capacity of the single first mixing demulsifier 2-1 is 5m . /h, use only 1 root.
  • the water phase and the medicament are uniformly mixed in the first mixing demulsifier 2-1 and then enter the vortex bubble generator 3.
  • Micron-sized bubbles are generated in the vortex bubble generator 3 in step (2), and the vortex bubble generator 3 adopts the shear channel of "CN201910587103.5 A method and device for regulating the fractal structure of large and small bubbles to enhance mass transfer".
  • the related structure is externally placed on the pipeline, the processing capacity of the vortex bubble generator 3 is 5m 3 /h, and only one is used.
  • the gas phase comes from the compact air flotation device 4 , and the water phase mixed with micron-sized air bubbles enters the compact air flotation device 4 .
  • step (3) the compact air flotation device 4 completes the coalescence growth and separation of tiny oil droplets in the water phase based on the principle of air flotation.
  • the bottom end is inflated to achieve secondary air flotation and enhance the separation effect of the dispersed oil phase.
  • the equipment inlet 4-1 is the total inlet of the liquid phase, and the nozzle is DN50.
  • the weak cyclone separator 4-2 is connected with the equipment inlet 4-1 through a straight pipe section, and the cyclone is directly selected, and the acceleration a in the centrifugal field is 20 times the acceleration of gravity.
  • the backflow groove 4-3 is located at the liquid-phase backflow member of the bottom flow outlet of the weak cyclone separator 4-2, so that the liquid phase is turned out from the backflow groove 4-3 to prevent the liquid phase impact caused by the direct liquid outlet from the bottom flow outlet,
  • the anti-shock cap 4-4 is located at the upper part of the top orifice of the weak cyclone separator 4-2.
  • the umbrella top projection completely covers the top flow opening of the weak cyclone separator 4-2.
  • the structure of the oil collecting tank 4-5 is an annular groove directly connected to the barrel wall of the equipment, which can collect all the oil phase and flocs generated during the operation of the equipment within 0.2h-5h.
  • the circular channel in the middle of the annular groove is a fluid flow channel.
  • Oil collecting tank 4-5 and oil discharge port 4-6 adopt DN25 nozzle.
  • the exhaust port 4-7 is used in combination with the air supply port 4-8, and the DN25 nozzle is selected.
  • the nano-micro bubble water inlets 4-9 provide nano-micro bubble water for the secondary air flotation during the operation of the tank.
  • the foam breaking module 4-11 and the coalescing module 4-12 have the function of rapidly separating the entrained air bubbles and large oil droplets respectively.
  • h D4 100mm.
  • the water phase outlet 4-13 is the total outlet of the liquid phase after treatment, and the interface size is DN50.
  • the equipment also has the necessary pressure, liquid level, interface local and remote instrumentation.
  • the water phase treated by the compact air flotation device 4 enters the security filter 5, and the oil phase and the scum enter the second mixing demulsifier 2-2.
  • the second mixing demulsifier 2-2 adopts a static mixer, and a single The processing capacity of the second mixing demulsifier 2-2 is 5 m 3 /h, and only one is used.
  • step (4) After the water phase entering the security filter 5 in step (4) is subjected to desolidification treatment, to prevent the partial solids entrained in the water phase from affecting the subsequent water treatment process, the modular combined fiber degreaser 6, The filter 7 is subjected to deep oil removal treatment, and the water phase after the treatment reaches the standard is directly discharged to the sea, and the other part is sent to the nano-micro bubble generator 10 as circulating water.
  • the circulating water volume accounts for 10% of the normal operation processing volume.
  • the separated oil phase enters the second mixing demulsifier 2-2;
  • step (6) the bag filter 8 plays the role of separating the flocs and scum produced by various methods such as mixing of various chemicals and liquid phases, and the formation of self-contained scum. After the flocs and scum are removed The oil-rich phase enters the modular combined fiber dehydrator 9;
  • step (7) after the oil-rich phase is processed by the modular combined fiber dehydrator 9, the water phase is returned to the modular combined fiber degreasing device 6 for up-to-standard treatment and then discharged to the subsequent process, and the oil phase is processed up to the standard to the platform booster pump Inlet pipeline transportation;
  • the nano-micro bubble water is generated by the nano-micro bubble generator 10, and the generated nano-micro bubble water is used for the air flotation device in the normal operation state, and in addition, it can be used for backwashing required in the backwashing state.
  • Each device of the device is used.
  • the filter 7 and the nano-micro-bubble generator 10 should have the functions of adsorption and oil removal, and nano-micro-bubble water generation respectively.
  • Offshore oil and gas field platforms are compact in space, and have strict requirements on the length of the process flow, equipment size and treatment effect, and the produced fluid has poor properties (the oil-water ratio fluctuates greatly, and the emulsified oil and emulsified water content in the particle size range of 1-10 ⁇ m are high, Contains a large amount of dissolved gas, high concentration of suspended particles and a wide distribution of particle sizes in the range of less than 1 ⁇ m to 100 ⁇ m, containing solid particles), traditional produced liquid treatment process (production separator, inclined plate degreaser, hydrocyclone, gas
  • the produced liquid treatment process composed of core equipment such as flotation equipment, walnut shell filter, electric dehydrator, buffer tank, etc.
  • core equipment such as flotation equipment, walnut shell filter, electric dehydrator, buffer tank, etc.
  • the present invention consists of a pretreatment demulsification module (including a desolidification and oil removal integrated separator 1, a first mixed demulsifier 2-1, a second mixed demulsifier 2-2, a vortex bubble generator 3 and a compact air flotation device) 4), water-phase high-efficiency degreasing module (including security filter 5 and modular combined fiber degreaser 6), dissolved oil adsorption module (including filter 7), oil-phase high-efficiency dehydration module (including bag filter 8) It is composed of a modular combined fiber dehydrator 9) and a nano-micro bubble water generating module (including a nano-micro bubble generator 10).
  • a pretreatment demulsification module including a desolidification and oil removal integrated separator 1, a first mixed demulsifier 2-1, a second mixed demulsifier 2-2, a vortex bubble generator 3 and a compact air flotation device
  • water-phase high-efficiency degreasing module including security filter 5 and modular combined fiber degreaser 6
  • Separation accuracy refers to the minimum particle size of fine oil droplets that can be separated. It also realizes the functions of industrial application online cleaning and other functions while efficiently processing, meeting the requirements of various types of oil and suspended particulate matter (SS) indicators in the discharge and re-injection production water, and meeting the needs of condensate oil pipeline transportation, especially suitable for offshore gas fields (also It can be applied to liquid phase treatment such as produced fluid/produced water/condensate in offshore oil fields or onshore oil and gas fields.
  • the process system involved in the invention has smaller footprint and higher processing precision than the current common process equipment under the same processing capacity, and can also be widely used in oil removal and clarification of oily/turbid production wastewater in petrochemical, coal chemical and other industries.
  • the inlet of the system can be fluctuating feed, and can be all emulsified water, condensate oil, or a mixture containing condensate oil, impurities, emulsified water, etc., but the system treatment situation is relatively stable, as shown in Figure 7-1 and Figure 7-2 Figure 7-3 and Figure 7-4 can be used to feed the system respectively, and see Figure 7-3 and Figure 7-4 for the water and oil output to illustrate the stability of the system.
  • the nano-micro bubble generator 10 can be used as a generating device for nano-micro bubble water, and can also be used as a backwashing device.
  • the nano-micro bubble generator 10 is located in the circulating cleaning tank 12 , the circulating cleaning tank 12 includes a tank body, and the bottom surface of the nano-micro bubble generator 10 is connected with a free gas releaser 13 , a separation distributor 14 is fixed in the tank above the nano-micro bubble generator 10, and the separation distributor 14 communicates with the backwash outlet 32 of each device, such as the backwash outlet 32 at the top of the filter 7, and the backwash outlet 32 at the bottom of the free gas releaser 13.
  • the tank body is provided with a cleaning liquid discharge port 15, the bottom of the tank body is provided with a hopper 16, the bottom of the hopper 16 is provided with a hopper sewage outlet 17, and the tank body above the hopper 16 is provided with a circulating pump port 18.
  • the port 18 is connected to the external circulation pump 19 .
  • the top of the tank is provided with a circulating air port 20, the tank body below the separation distributor 14 is provided with a circulating water port 21 and a dissolved air pump port 22, the dissolved air pump port 22 is connected to the free gas releaser 13, and the circulating air port 20 and the circulating water port 21 pass through the pipeline.
  • the dissolved gas pump 23 is communicated, and the dissolved gas pump 23 is connected to the dissolved gas pump port 22 through a pipeline.
  • the tank body is provided with an air supply port 4-8 and a water supply port, and the air supply port 4-8 and the water supply port are the same opening or different openings.
  • the circulating cleaning state in the circulating cleaning tank 12 is continuous closed circulation or non-closed circulation. In the form of continuous closed circulation, if it is found that the gas/liquid phase in the circulating cleaning tank 12 is insufficient, it can also be carried out through the water supply port/air supply port 4-8. Replenish.
  • the free gas releaser 13 is a pressure release tank
  • the dissolved gas releaser is an aeration disk (a microporous disk or a disk with a labyrinth structure, which is an existing structure).
  • the specific structure of the separation distributor 14 can be selected from ZL201210162354.7 (CN201210162354) gas-liquid inertial separation and distribution coupling unit and the gas-liquid inertial separation and distribution coupling unit in the separator using the same.
  • the filter 7 includes a casing, and the casing is provided with a water distribution plate 24, a boiler stopper 25 and a filter material layer 26 in order from top to bottom, and the bottom surface of the filter material layer 26 is evenly fixed with a plurality of Drain cap 27.
  • the casing is provided with a filtrate inlet 28 that communicates with the water distribution plate 24, and the bottom of the casing is provided with a filtrate outlet 29, a backwash inlet 29, a backflush gas pipeline 30 and a backflush water pipeline 31, and the filtrate outlet 29 and backwash
  • the inlet 29 is the same opening or different openings
  • the backflushing gas pipeline 30 and the backflushing water pipeline 31 are connected to the backflushing inlet 29, and the top of the casing is provided with a backflushing outlet 32.
  • a circulating washing liquid inlet 33 is provided on the outer shell of the filter material layer 26 , and the circulating pump 19 is connected through pipelines between the backwashing outlet 32 and the circulating washing liquid inlet 33 and between the backwashing inlet 29 .
  • the filter material layer 26 includes a single filter material, two different filter materials or a plurality of different filter materials, the particle size gradually decreases from top to bottom, and the density gradually increases. No matter what kind of filter media is composed of the filter layer, it is suitable for backwashing with the method of the present invention, and the selected filter material is not required.
  • the filter material layer 26 as shown in FIG. 8 includes a pre-filter layer with a large particle size and a small density in the upper part, a middle filter layer with a medium size particle size and a medium size density in the middle, and a fine filter layer with a small particle size and a large density in the lower part. .
  • the above-mentioned circulating cleaning tank 12 can clean various devices of the present invention, and the filter 7 is taken as an example below but is not limited to the filter 7.
  • the filter 7 is taken as an example below but is not limited to the filter 7.
  • the raw material water passes through the filtrate inlet 28, passes through the water distribution plate 24 and the boiler stopper 25 to reach the filter material layer 26 in turn, and is discharged from the filtrate outlet 29 after the deep oil removal and turbidity removal treatment is performed on the filter material layer 26. or enter the follow-up process;
  • Subsequent procedures include backwash procedures, including the following steps:
  • Deep circulating cleaning inject multi-scale bubble circulating liquid through the backwash inlet 29 and circulating washing liquid inlet 33 through the circulating pump 19, maintain the fluidization of the bubble circulating liquid, induce a weak swirling flow field in the shell, and pass the multi-scale bubbles and weak swirling flow.
  • the coupling of field shear strengthening completes the cleaning of the filter material layer 26; wherein, the bubble circulating liquid refers to the multi-scale bubble water containing micron to nano-scale bubbles generated by the nano-micro bubble generator 10.
  • cleaning agent can be added to the circulating cleaning tank 12 .

Abstract

本发明提供一种适用于海上气田复杂采出液处理的系统和方法。处理系统包括脱固除油一体化分离器、涡流气泡发生器、紧凑气浮装置、保安过滤器、模块化组合纤维除油器、滤清器、袋式过滤器、模块化组合纤维脱水器。各装置协同作用将系统分离精度提升至1μm以上,高效处理的同时实现工业化应用在线清洗等功能,满足各类排海、回注生产水中石油类及悬浮颗粒物指标的要求,满足凝析油海管输送需求,尤其适用于海上气田,亦可应用于海上油田或陆地油气田的采出液/生产水/凝析油等液相处理。本发明在相同处理量下较目前常用流程设备占地面积小、处理精度高,亦可广泛应用于石油化工、煤化工等行业含油/含浊生产废水的除油及澄清。

Description

一种适用于海上气田复杂采出液处理的系统和方法 技术领域
本发明属于石油化工和环保领域,具体涉及一种适用于海上气田复杂采出液处理的系统和方法。
背景技术
到2020年海洋油气产量将达到世界油气产量的40%,海洋油气生产在我国和世界油气生产中均占有重要地位。中海油“海上大庆油田”的建成使我国海域成为陆上油气开发最重要、最现实的接替区,我国能源开发步入“海洋时代”。乳化态含油生产水是海洋油气开采过程中体量最大的副产物,这也导致了日常排放的生产水是海洋石油工业中最严重污染类型——油污染的主要非事故性来源。在“加快建设海洋强国”的战略背景下,结合新修订的《海洋环境保护法》,相关标准、法规对生产水中油含量的指标监测将日益严苛,越来越多的国家、地区致力于实现“生产水零排放”,这对生产水处理提出了更高的要求。
我国油气田平台在从渤海到南海的广阔领海范围内均有分布,这就导致了各油气田开采产生的生产水中有机及无机组分、油品乳化程度,甚至pH等基本理化特性参数均有很大差异。而各油气田平台当前在水处理流程设计上往往采用“照搬”模式:将重力沉降、强化重力沉降、水旋、气浮、介质过滤等常规技术中的一种或几种串联起来形成海上油气田平台生产水处理流程。但随着我国各平台开采进入中后期,生产水乳化程度加剧,油田综合含水率显著提高,受常规生产水处理技术设备尺寸、重量、处理效果等多方面因素的限制,通过增加常规设备并联级数提高生产水处理量和增加串联级数提升生产水处理效果的流程设计方案将带来极高的平台基建、改造投入和运行维护成本。此外,系统中的凝析油作为一种可回收资源也需进行进一步深度处理,将凝析油中的水进行脱除,达到海管输送要求,输送至陆地终端进行深加工处理或直接在平台就地利用。
一种海上气田平台生产水处理方法及其装置(CN201710661499.4)与一种海上气田平台生产水处理方法(CN201910985653.2)并未对凝析油处理、生产水除浊、生产水除固进行说明,是对现有气田平台生产水流程的改进。一种海上除油专用吸油 毡布及其制备吸油毡布的方法(CN201510205874.5)与一种用于海上除油的智能石油机械(CN201810852081.6)均是针对水上溢油情况的处置方法,并不适用于海上油气田平台生产过程中所产生的生产水的除油处理。一体化除油除浊装置(CN201810617958.3)介绍了一种适用于钢铁行业的除油除浊装置,并未涉及与装置相匹配的处理系统。为此,亟需一种适用于我国海上气田平台复杂生产水状况的深度除油除浊、凝析油深度脱水的工艺流程及相关装置。
发明内容
本发明针对现有技术存在的不足,提供一种适用于海上气田复杂采出液处理的系统和方法,适用于我国海上气田平台复杂生产水状况的深度除油除浊、凝析油深度脱水。
本发明解决上述技术问题的技术方案如下:一种适用于海上气田复杂采出液处理系统,包括脱固除油一体化分离器、涡流气泡发生器、紧凑气浮装置、保安过滤器、模块化组合纤维除油器、滤清器、袋式过滤器、模块化组合纤维脱水器;
所述脱固除油一体化分离器的顶部开有富油相出口,底部开有固体沉积物排放口,下部开有水相出口,所述水相出口连通第一混合破乳器,所述第一混合破乳器的出口连通所述涡流气泡发生器;
所述紧凑气浮装置的顶部开有排气口连通所述涡流气泡发生器,底部开有固体沉积物排放口,上部开有油相出口连通第二混合破乳器,下部开有水相出口连通所述保安过滤器,中部开有设备进口连通所述涡流气泡发生器;
所述保安过滤器连通所述模块化组合纤维除油器的进口;
所述模块化组合纤维除油器的顶部开有油相出口连通所述第二混合破乳器,所述第二混合破乳器和所述第一混合破乳器的进口均与药剂罐通过管线连接;
所述滤清器的顶部开有进口连通所述模块化组合纤维除油器的出口,所述滤清器的上部开有油相出口连通所述第二混合破乳器;
所述第二混合破乳器连通所述袋式过滤器,所述袋式过滤器连通所述模块化组合纤维脱水器,所述模块化组合纤维脱水器的顶部开有油相出口,底部开有水相出口连通所述模块化组合纤维除油器。
本发明进一步设置为,所述脱固除油一体化分离器包括外壳和至少一根一体化分 离芯管,所述一体化分离芯管包括分离主管、分离副管以及连通所述分离主管和所述分离副管的主副管联通管,一个所述分离主管的周围设有2个及以上所述分离副管;所述分离主管的底部进口设有造旋器,所述造旋器产生的旋流场使流过所述分离主管的液体由轴向运动变换为旋转运动;所述分离副管沿轴向设有分离副管切向造旋口,所述分离副管切向造旋口使流过所述分离副管的液体通过切向进入分离副管做旋转运动;所述分离副管内的底部设有锥形或凸台形的重相分离锥。
本发明进一步设置为,所述分离主管内为主分离腔,所述分离副管内为副分离腔;所述分离主管的上部设有主分离腔轻相引流锥,所述分离副管的上部设有副分离腔轻相引流锥。
进一步地,所述主分离腔轻相引流锥的倾斜夹角为10~75°,所述主分离腔轻相引流锥的中间开有夹角为0~10°的引流孔道,所述引流孔道的直径为所述主分离腔直径的0.1~0.8倍;所述副分离腔轻相引流锥的倾斜夹角为10~75°,所述副分离腔轻相引流锥的中间开有夹角为0~10°的引流孔道,所述引流孔道的直径为所述副分离腔直径的0.1~0.8倍。
进一步地,所述分离主管的顶部设有主分离腔防冲帽,所述分离副管的顶部设有副分离腔防冲帽。
进一步地,所述造旋器为造旋叶片,所述造旋叶片的螺旋倾角为10~75°;或者,所述造旋器为切向进口,所述切向进口的数量为1~6个。
进一步地,所述分离副管内径为所述分离主管内径的0.1至0.8倍;所述主副管联通管分别与所述分离主管及所述分离副管相切,其管径为分离副管内径的0.5至2倍。
本发明进一步设置为,每个所述分离主管的底部连接有一个分布管,所述分布管的侧面共同连接有联通管,所述分布管的底部共同连接分配管,所述分配管的端部共同连接有分配罐,所述分配罐的底部连接有进口管,所述分配管以所述分配罐的中心为圆心呈放射状沿径向均匀分布。
本发明进一步设置为,所述紧凑气浮装置包括罐体,所述罐体的顶部开有补气口,所述罐体内的中部设有弱旋流分离器,所述弱旋流分离器的顶部开有顶流口且连接有防冲帽,所述防冲帽上方的所述罐体上连接有收油槽,所述收油槽外的所述罐体上开有排油口,所述弱旋流分离器的下方设有返流槽,所述返流槽的下方设有纳微气泡水 分布器,所述纳微气泡水分布器下方设有破沫模块,所述破沫模块下方设有聚结模块。
本发明进一步设置为,所述收油槽为与所述罐体内壁相连的环形槽,所述环形槽中间圆形通道为流体流道,所述收油槽顶部至所述罐体顶部的切线高度为所述罐体直径的0.5至5倍;所述返流槽为圆柱桶型或上大底小的凸台型桶,其高度为所述流体流道直径的0.5至2倍,台体倾斜角γ=90°-150°,其底部距所述弱旋流分离器底部的距离200mm-500mm。
本发明进一步设置为,所述纳微气泡水分布器为开有孔径范围0.1mm-5mm小孔的圆环或圆盘,所述纳微气泡水分布器直径为所述流体流道直径的0.2至0.8倍。
本发明进一步设置为,所述防冲帽为伞状,倾斜角为120°-150°,在俯视投影上,防冲帽的伞顶投影应完全覆盖所述顶流口。
本发明进一步设置为,所述破沫模块的厚度为50mm-200mm,所述聚结模块的厚度为100mm-500mm。
本发明进一步设置为,所述紧凑气浮装置的水相出口和进料口之间、所述破沫模块上方设有纳微气泡水进口,所述纳微气泡水进口一端连通所述纳微气泡水分布器,一端连通纳微气泡发生器。
本发明进一步设置为,所述滤清器的底部开有出口,所述滤清器的出口可做反冲洗入口,所述反冲洗入口连通纳微气泡发生器。
本发明还提供了一种适用于海上气田复杂采出液处理方法,包括以下步骤:
(1)待处理海上气田复杂采出液首先进入脱固除油一体化分离器,富油相至富油相储罐再次作为待处理液相进入系统,固相脱除后自系统中分离,水相至第一混合破乳器;
(2)第一混合破乳器中发生破乳药剂与来自步骤(1)的水相的混合过程,水相与破乳药剂在第一混合破乳器混合均匀后进入涡流气泡发生器;
(3)微米级气泡在涡流气泡发生器中发生,混有微米级气泡的水相进入紧凑气浮装置,气相自顶部进入紧凑气浮装置;
(4)步骤(3)中紧凑气浮装置以气浮为原理完成水相中微小油滴的聚结长大及分离,经紧凑气浮装置处理后的水相进入保安过滤器,油相及浮渣统一进入第二混合破乳器;
(5)步骤(4)中进入保安过滤器的水相经脱固处理后,防止水相中夹带的部分 固相对后续水处理流程产生影响,依次由模块化组合纤维除油器、滤清器进行深度除油处理,处理达标后的水相进入开排罐、或直接排海、或回注入地层、或去流程其他需水位置做反洗水,模块化组合纤维除油器和滤清器处理后分离出的油相进入第二混合破乳器;
(6)步骤(4)中紧凑气浮装置分离的浮渣及油相、步骤(5)中模块化组合纤维除油器和滤清器分离出的油相一并进入第二混合破乳器,将破乳药剂与油相进行混合,混合后液相进入袋式过滤器;
(7)步骤(6)中袋式过滤器分离絮状物及浮渣,絮状物及浮渣去除后的富油相进入模块化组合纤维脱水器;
(8)步骤(7)中富油相经模块化组合纤维脱水器处理后,水相返回模块化组合纤维除油器达标处理后排放至后续流程,油相处理达标后至平台增压泵进海管输送,或至其他需求位置。
本发明进一步设置为,所述脱固除油一体化分离器包括至少一根一体化分离芯管,所述一体化分离芯管包括外壳、互相平行的分离主管和分离副管,所述分离副管有多根且均匀分布在所述分离主管的周围,所述分离主管和所述分离副管之间连通有主副管联通管,所述分离主管的内壁下部设有造旋叶片,所述分离主管内的上部设有导流锥;如果是多根一体化分离芯管,则并联设置;分离主管内的加速度为重力加速度g的5-10000倍,分离副管内的加速度为重力加速度g的10-20000倍;单根一体化分离芯管的处理量为1m 3/h-30m 3/h。
本发明进一步设置为,涡流气泡发生器有一个以上,如果有多个则采用并联方式,单根混合器处理量控制在1m 3/h-40m 3/h。
本发明进一步设置为,所述紧凑气浮装置的所述设备进口的液相流速不超过5m/s;弱旋流分离器的离心场内加速度为重力加速度g的0.1-1000倍;所述收油槽的流体流道的流速低于10m/s。
本发明进一步设置为,所述紧凑气浮装置的水相出口和进料口之间、所述破沫模块上方设有纳微气泡水进口;在步骤(4)中,另有一股纳微气泡水从纳微气泡水进口鼓入,实现二次气浮,增强紧凑气浮装置对分散油相的分离效果,纳微气泡水从纳微气泡发生器来,此部分水为循环水,水量占正常操作处理量的5%-50%;所述滤清器处理达标后的水,除进入开排罐、或直接排海、或回注入地层、或去流程其他需水 位置做反洗水外,另有部分至纳微气泡发生器作为循环水,循环水水量占正常操作处理量的5%-50%。
本发明进一步设置为,步骤(4)中纳微气泡水由纳微气泡发生器发生,纳微气泡发生器所产生的纳微气泡水供正常操作状态下紧凑气浮装置使用,此外,可供反洗状态下所需反洗设备的各设备使用。
本发明具有以下有益效果:
(1)系统对生产水及凝析油均有净化作用,系统出口水中油含量最低可低于10mg/L,水中油含量通常可低于20mg/L,油中水含量最低可低于50mg/L,通常可低于200mg/L,悬浮物浓度最低可低于5mg/L,悬浮物浓度通常可低于10mg/L,对0.1mm以上固体可实现100%去除;
(2)系统操作弹性大,可适用于液相为高乳化态、高含油、高含悬、含固等苛刻工艺条件,可去除的乳化油滴最小滴粒径为0.1-1μm,所处理物料油含量最高为90%,悬浮物(SS)浓度最高为5%,固体(0.1mm以上)百分比(vt%)不超过5%。
(3)本发明所涉及工艺系统在相同处理量下较目前常用流程、设备占地面积小、处理精度高,亦可广泛应用于石油化工、煤化工等行业含油/含浊生产废水的除油及澄清。
附图说明
图1是本发明生产水及凝析油处理流程图;
图2-1是一体化分离芯管的结构示意图;图2-2是分离副管和分离主管的连接示意图;
图3-1是分离主管的的结构示意图;图3-2是分离副管的结构示意图;
图4-1是多个一体化分离芯管的装配示意图(多个分布管,仅画了一个一体化分离芯管示意);图4-2是图4-1的部分结构俯视图;
图5是紧凑气浮装置的结构示意图;
图6是本发明的模块图;
图7-1为进口乳化水进料的状态图;图7-2为进口复杂采出液进料的状态图;
图7-3为处理得到的出口油相的状态图;图7-4为处理得到的出口水相的状态图;
图8为循环清洗罐和滤清器的连接结构示意图。
其中,1:脱固除油一体化分离器;1-1:分离主管;1-2:分离副管;1-3:主副管联通管;1-1-1:造旋器;1-1-2:主分离腔;1-1-3:主分离腔轻相引流锥;1-1-4:主分离腔防冲帽;1-1-6、主引流孔道;1-2-1:分离副管切向造旋口;1-2-2:重相分离锥;1-2-3:副分离腔;1-2-4:副分离腔轻相引流锥;1-2-5:副分离腔防冲帽;1-2-6、副引流孔道;1-0-1:一体化分离芯管;1-0-2:分布管;1-0-3:分配管;1-0-4:进口管;1-0-5:联通管;1-0-6:分配罐;2-1:第一混合破乳器;2-2:第二混合破乳器;3:涡流气泡发生器;4:紧凑气浮装置;4-1:设备进口;4-2:弱旋流分离器;4-3:返流槽;4-4:防冲帽;4-5:收油槽;4-6:排油口;4-7:排气口;4-8:补气口;4-9:纳微气泡水进口;4-10:纳微气泡水分布器;4-11:破沫模块;4-12:聚结模块;4-13:水相出口;5:保安过滤器;6:模块化组合纤维除油器;7:滤清器;8:袋式过滤器;9:模块化组合纤维脱水器;10:纳微气泡发生器;11、药剂罐;12、循环清洗罐;13、自由气释放器;14、分离分布器;15、清洗液排放口;16、收料斗;17、料斗排污口;18、循环泵口;19、循环泵;20、循环气口;21、循环水口;22、溶气泵口;23、溶气泵;24、配水盘;25、止沸器;26、滤料层;27、滤水帽;28、滤液入口;29、滤液出口/反冲洗入口;30、反冲气路管路;31、反冲水路管路;32、反洗出口;33、循环洗液入口。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明中:
保安过滤器可选用商业化过滤器,如篮式滤器等。袋式过滤器可选袋式过滤器或具备相同功能的过滤器,较优地,可设置一开一备或两开一备的操作形式,保证系统的连续运行。
涡流气泡发生器可选“CN201910587103.5中一种调控大小气泡分形结构强化传质的方法及装置”中剪切通道的相关结构,除外置做管道式设备外,也可内置于紧凑气浮装置中,根据系统处理量,建议将涡流气泡发生器采用并联方式外置于紧凑气浮 装置,单根混合破乳器处理量控制在1m 3/h-40m 3/h,若有特殊处理需求也可将单根处理量进行放大或缩减。
模块化组合纤维除油器可选用CN103964545B中一种对含低浓度污油的废水进行深度除油的方法及装置中适用于含低浓度污油废水的深度除油的装置(参照CN103964545B中的图6)或其他具有相同功能的结构,其具备除油功能的核心部件模块使用CN103952852B中一种适用于油水深度分离的Ω型纤维编织方法、CN103952853B中一种适用于油水分离的X型纤维编织方法中的Ω型编制结构和X型编织方法编织而成,具备除油功能的核心部件模块为采用X型编制方法或Ω型编制方法所形成的X型编织层和Ω型编织层逐层堆叠后紧固而成。
模块化组合纤维脱水器可选用CN103980934B中一种油品深度脱水的方法及装置中的适用于含微量水的油品深度脱水的装置(参照CN103980934B中的图6)或其他具有相同功能的结构,其具备脱水功能的核心部件模块使用CN103952852B中一种适用于油水深度分离的Ω型纤维编织方法、CN103952853B中一种适用于油水分离的X型纤维编织方法中的Ω型编制结构和X型编织方法编织而成,具备除油功能的核心部件模块为采用X型编制方法或Ω型编制方法所形成的X型编织层和Ω型编织层逐层堆叠后紧固而成。
破沫模块与聚结模块,分别起到对夹带的气泡及大油滴进行快速分离的功能,可采用传统丝网除沫器结构,也可采用编织结构,当采用编织结构时,推荐使用CN103952852B中一种适用于油水深度分离的Ω型纤维编织方法、CN103952853B中一种适用于油水分离的X型纤维编织方法中Ω型编制结构和X型编制方法编制而成,其中X型编织方法形成的结构为破沫模块,Ω型编织方法形成的结构为聚结模块。
针对现有某气田生产水处理流程已无法满足当前排海要求,平台不得已只能通过串接设备进行处理,不利于平台生产中后期的产能提升。为此,通过本发明的一套5m 3/h生产水及凝析油处理装置对平台难以处理的生产水积液进行处理,使水相满足排海标准(水中油含量低于30mg/L),油相满足进海管要求(油中水含量低于200mg/L),此外,完全去除了水中的固体颗粒物,水中悬浮物浓度低于10mg/L。平台采用以下流程(可结合图1):
(1)待处理液相首先进入脱固除油一体化分离器1,具体的,待处理物料经过进口管1-0-4进入分配罐1-0-6,经分配罐1-0-6缓冲后,待处理物料进入分配管1-0-3, 物料通过分配管1-0-3到达分布管1-0-2,分布管1-0-2间通过联通管1-0-5相连确保物料的均匀分配,物料通过分布管1-0-2进入一体化分离芯管1-0-1;待处理物料先进入一体化分离芯管1-0-1的分离主管1-1,通过分离主管1-1内的旋流场作用,去除大气泡、大粒径油滴以及粘附在大气泡、大粒径油滴上的悬浮固体;分离后的其余液相经过主副管联通管1-3进入分离副管1-2,通过分离副管切向造旋口1-2-1后在分离副管1-2内做旋转流动,进一步去除对小气泡、小粒径油滴以及粘附在所述小气泡、小粒径油滴上的剩余悬浮固体;分离后得到的洁净液相从重相分离锥1-2-2周边排出。
最终,富油相至富油相储罐再次作为待处理液相进入系统,固相脱除后自系统中分离,水相至第一混合破乳器2-1。其中,造旋器1-1-1为顺时针分布的螺旋角α=35°;参见图2,分离副管1-2内径为d A,其处理主相在分离副管1-2内的加速度a d为重力加速度g的1200倍,分布数量n=3;分离主管1-1内径为D A,其处理主相在分离主管1-1内的加速度a D为重力加速度g的500倍;主分离腔轻相引流锥1-1-3于分离主管1-1顶端居中布置,形状为锥体,其直径d=0.4D A,高度L=D A;主副管联通管1-3分别与分离主管1-1及分离副管1-2相切,其管径为0.5倍d A;仅使用1根一体化分离芯管1-0-1,其处理量为5m 3/h。
(2)第一混合破乳器2-1中发生破乳药剂与步骤(1)中水相的混合过程,采用静态混合器,单根第一混合破乳器2-1处理量为5m 3/h,仅使用1根。水相与药剂在第一混合破乳器2-1中混合均匀后进入涡流气泡发生器3。
(3)微米级气泡在步骤(2)中涡流气泡发生器3中发生,涡流气泡发生器3采用“CN201910587103.5一种调控大小气泡分形结构强化传质的方法及装置”中剪切通道的相关结构,外置于管道上,涡流气泡发生器3处理量5m 3/h,仅使用1根。气相自紧凑气浮装置4来,混有微米级气泡的水相进入紧凑气浮装置4。
(4)步骤(3)中紧凑气浮装置4以气浮为原理完成水相中微小油滴的聚结长大及分离,于此同时,另有一股纳微气泡水从紧凑气浮装置4底端鼓入,实现二次气浮,增强对分散油相的分离效果。可参见图5,设备进口4-1为液相总进口,管口DN50。弱旋流分离器4-2与设备进口4-1通过直管段相连,直接选用旋流器,其离心场内加速度a为20倍重力加速度。返流槽4-3位于弱旋流分离器4-2底流口的液相返流构件,使液相从返流槽4-3内翻出,防止底流口直接出液造成的液相冲击,返流槽4-3为圆柱桶型,其高度h D2=d D,台体倾斜角γ=90°,其底部距弱旋流分离器4-2底部的距 离为200mm。防冲帽4-4位于弱旋流分离器4-2顶流口上部的轻相防喷射构件,其外观为伞状,倾斜角β=145°,俯视投影上,防冲帽4-4的伞顶投影完全覆盖弱旋流分离器4-2的顶流口。收油槽4-5结构为与设备筒壁直接相连的环形槽,可收集设备运行0.2h-5h时间范围内产生的所有油相及絮状物,环形槽中间圆形通道为流体流道,圆形通道直径d D=0.5D D(D D为罐体直径),收油槽4-5顶部至罐体顶部切线高度h D1=2D D。收油槽4-5和排油口4-6均采用DN25管口。排气口4-7结合补气口4-8使用,选用DN25管口。纳微气泡水进口4-9为罐体操作过程中的二次气浮提供纳微气泡水,纳微气泡水从纳微气泡发生器10来,此部分水为循环水,水量占正常操作处理量的10%;纳微气泡水分布器4-10,起到纳微气泡水分布功能,其结构为上开有3mm圆孔的圆环,纳微气泡水分布器4-10直径D=0.4D D,纳微气泡水在整个设备界面上的均匀分布。破沫模块4-11与聚结模块4-12,分别起到对夹带的气泡及大油滴进行快速分离的功能,破沫模块4-11厚度h D3=50mm,聚结模块4-12厚度h D4=100mm。水相出口4-13为处理后液相总出口,接口尺寸DN50。该设备还具备必要的压力、液位、界位就地及远传仪器仪表。经紧凑气浮装置4处理后的水相进入保安过滤器5,油相及浮渣统一进入第二混合破乳器2-2,第二混合破乳器2-2采用静态混合器,单根第二混合破乳器2-2处理量5m 3/h,仅使用1根。
(5)步骤(4)中进入保安过滤器5的水相经脱固处理后,防止水相中夹带的部分固相对后续水处理流程产生影响,依次由模块化组合纤维除油器6、滤清器7进行深度除油处理,处理达标后的水相直接排海,另有部分至纳微气泡发生器10作为循环水,循环水水量占正常操作处理量的10%,二者处理后分离出的油相进入第二混合破乳器2-2;
(6)步骤(4)中紧凑气浮装置4分离的浮渣及油相、步骤(5)中模块化组合纤维除油器6与滤清器7分离出的油相一并进入第二混合破乳器2-2,将破乳药剂与油相进行混合,混合后液相进入袋式过滤器8;
(7)步骤(6)中袋式过滤器8起到分离各种药剂与液相混合、地层自带等多种途径产生的絮状物及浮渣的作用,絮状物及浮渣去除后的富油相进入模块化组合纤维脱水器9;
(8)步骤(7)中富油相经模块化组合纤维脱水器9处理后,水相返回模块化组合纤维除油器6达标处理后排放至后续流程,油相处理达标后至平台增压泵进海管输 送;
(9)步骤(4)中纳微气泡水由纳微气泡发生器10发生,所产生的纳微气泡水供正常操作状态下气浮装置使用,此外,可供反洗状态下所需反洗设备的各设备使用。滤清器7、纳微气泡发生器10应分别具备吸附除油、纳微气泡水发生的功能,选用“一种纳微气泡耦合旋流场循环清洗过滤介质的方法及装置”中描述的滤清器7及纳微气泡发生器10的结构。
海上油气田平台空间紧凑,对工艺流程长度、设备尺寸及处理效果都有严格要求,且采出液性质恶劣(油水比例波动大,粒径在1-10μm范围内的乳化油、乳化水含量高,含大量溶解气,悬浮颗粒物浓度高且粒径在小于1μm至100μm范围内分布广泛,含固体颗粒),传统采出液处理流程(生产分离器、斜板除油器、水力旋流器、气浮选设备、核桃壳过滤器、电脱水器、缓冲罐等核心设备组成的采出液处理流程)中设备体积大、工艺流程长,且无法完成对上述高乳化态、含絮、含浊、含固采出液的处理。此外,在本实施例相同处理量的条件下,本发明所设计的工艺系统较上述传统采出液处理流程占地面积缩小30%以上。本发明由预处理破乳模块(包括脱固除油一体化分离器1、第一混合破乳器2-1、第二混合破乳器2-2、涡流气泡发生器3和紧凑气浮装置4)、水相高效除油模块(包括保安过滤器5和模块化组合纤维除油器6)、溶解油吸附模块(包括滤清器7)、油相高效脱水模块(包括袋式过滤器8和模块化组合纤维脱水器9)、纳微气泡水发生模块(包括纳微气泡发生器10)组成,各模块协同作用将系统对微细油滴的分离精度提升至1μm以上,对微细油滴的分离精度是指能分离的微细油滴的最小粒径。高效处理的同时实现工业化应用在线清洗等功能,满足各类排海、回注生产水中石油类及悬浮颗粒物(SS)指标的要求,满足凝析油海管输送需求,尤其适用于海上气田(亦可应用于海上油田或陆地油气田)采出液/生产水/凝析油等液相处理。本发明所涉及工艺系统在相同处理量下较目前常用流程设备占地面积小、处理精度高,亦可广泛应用于石油化工、煤化工等行业含油/含浊生产废水的除油及澄清。
系统进口可以为波动性进料,可以为全部乳化水、凝析油或者为含凝析油、杂质、乳化水的混合物等,但系统处理情况相对稳定,以图7-1和图7-2分别做系统进料,出水及出油情况可参见图7-3和图7-4,说明系统的稳定性。
作为本发明的拓展装置,纳微气泡发生器10可以作为纳微气泡水的发生装置, 还可以作为反冲洗装置。作为一种反冲洗装置的结构,可参见图8,纳微气泡发生器10位于循环清洗罐12内,循环清洗罐12包括罐体,纳微气泡发生器10的底面连接有自由气释放器13,纳微气泡发生器10上方的罐体内固定有分离分布器14,分离分布器14连通各个设备的反洗出口32,例如滤清器7顶部的反洗出口32,自由气释放器13下部的罐体上设有清洗液排放口15,罐体的底部设有收料斗16,收料斗16的底部设有料斗排污口17,收料斗16上方的罐体上设有循环泵口18,循环泵口18外接循环泵19。罐体的顶部设有循环气口20,分离分布器14下方的罐体上设有循环水口21和溶气泵口22,溶气泵口22连通自由气释放器13,循环气口20和循环水口21通过管线连通溶气泵23,溶气泵23通过管线连通溶气泵口22。
罐体上设有补气口4-8和补水口,补气口4-8和补水口为同一开口或不同开口。循环清洗罐12内的循环清洗状态为连续密闭循环或非密闭循环,在连续密闭循环形式下,若发现循环清洗罐12内气/液相不足,也可通过补水口/补气口4-8进行补充。
具体的,自由气释放器13为一个释压罐,溶气释放器为曝气盘(微孔盘或迷宫结构的盘,为现有结构)。分离分布器14的具体结构可选ZL201210162354.7(CN201210162354)气液惯性分离与分布耦合单元及应用其的分离器中的气液惯性分离与分布耦合单元。
进一步地,仍参见图8,滤清器7包括壳体,壳体内从上到下依次设置有配水盘24、止沸器25和滤料层26,滤料层26的底面均匀固定有多个滤水帽27。壳体上设有连通配水盘24的滤液入口28,壳体的底部设有滤液出口29、反冲洗入口29、反冲气路管路30和反冲水路管路31,滤液出口29和反冲洗入口29为同一开口或不同开口,反冲气路管路30和反冲水路管路31连通反冲洗入口29,壳体的顶部设有反洗出口32。滤料层26外侧的壳体上设有循环洗液入口33,反洗出口32和循环洗液入口33之间以及和反冲洗入口29之间通过管线连接循环泵19。
进一步地,滤料层26包含单一滤料、两种不同滤料或多种不同滤料,由上至下粒径逐渐降低,密度逐渐升高。不论何种过滤介质组成的滤层都可,均适用与本发明中的方法进行反洗,不对选择的过滤材料进行要求。如图8中的滤料层26包括上部的大粒径、小密度的预过滤层,中部的中等大小粒径、中等大小密度的中部过滤层和下部的小粒径、大密度的精细过滤层。
上述循环清洗罐12可以对本发明的各个装置进行清洗,下面以滤清器7为例但 不局限于滤清器7。作为上述拓展装置的应用,原料水由滤液入口28,依次通过配水盘24、止沸器25到达滤料层26,在滤料层26进行深度除油除浊处理后,由滤液出口29外排或进入后续流程;
后续流程包括反冲洗流程,包括以下步骤:
(1)通过反冲气路管路30向反冲洗入口29注入反洗气,反洗气经滤料层27进行粗分布后,对滤料层26进行膨化,停止反洗气;
(2)通过反冲水路管路31向反冲洗入口29注入反洗水,反洗水经滤料层27分布后,对滤料层26进行初步反洗;
(3)通过反冲气路管路30和反冲水路管路31同时注入反洗气和反洗水,反洗气和反洗水经滤料层27分布后,对滤料层26进行气水联合反洗;
深度循环清洗:经由循环泵19通过反冲洗入口29和循环洗液入口33注入多尺度气泡循环液,维持气泡循环液流化,在壳体内引发弱旋流场,通过多尺度气泡与弱旋流场剪切强化的耦合,完成滤料层26的清洗;其中,所述气泡循环液是指含有纳微气泡发生器10产生的微米至纳米级气泡的多尺度气泡水,根据原料水中污染物形式可选择向循环清洗罐12中添加清洗剂。
(4)停止反洗气,仅注入反洗水,反洗水经所述滤料层27分布后,对滤料层26进行稳床,恢复滤料层26的正常工作状态。
以上仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种适用于海上气田复杂采出液处理的系统,其特征在于,包括脱固除油一体化分离器、涡流气泡发生器、紧凑气浮装置、保安过滤器、模块化组合纤维除油器、滤清器、袋式过滤器、模块化组合纤维脱水器;
    所述脱固除油一体化分离器的顶部开有富油相出口,底部开有固体沉积物排放口,下部开有水相出口,所述水相出口连通第一混合破乳器,所述第一混合破乳器的出口连通所述涡流气泡发生器;
    所述紧凑气浮装置的顶部开有排气口连通所述涡流气泡发生器,底部开有固体沉积物排放口,上部开有油相出口连通第二混合破乳器,下部开有水相出口连通所述保安过滤器,中部开有设备进口连通所述涡流气泡发生器;
    所述保安过滤器连通所述模块化组合纤维除油器的进口;
    所述模块化组合纤维除油器的顶部开有油相出口连通所述第二混合破乳器;
    所述第一混合破乳器和所述第二混合破乳器的进口均与药剂罐通过管线连接;
    所述滤清器的顶部开有进口连通所述模块化组合纤维除油器的出口,所述滤清器的上部开有油相出口连通所述第二混合破乳器;
    所述第二混合破乳器连通所述袋式过滤器,所述袋式过滤器连通所述模块化组合纤维脱水器,所述模块化组合纤维脱水器的顶部开有油相出口,底部开有水相出口连通所述模块化组合纤维除油器。
  2. 根据权利要求1所述的适用于海上气田复杂采出液处理系统,其特征在于,所述脱固除油一体化分离器包括外壳和至少一根一体化分离芯管,所述一体化分离芯管包括分离主管、分离副管以及连通所述分离主管和所述分离副管的主副管联通管,一个所述分离主管的周围设有2个及以上所述分离副管;所述分离主管的底部进口设有造旋器,所述造旋器产生的旋流场使流过所述分离主管的液体由轴向运动变换为旋转运动;所述分离副管沿轴向设有分离副管切向造旋口,所述分离副管切向造旋口使流过所述分离副管的液体通过切向进入分离副管做旋转运动;所述分离副管内的底部设有锥形或凸台形的重相分离锥。
  3. 根据权利要求2所述的适用于海上气田复杂采出液处理系统,其特征在于,所述分离主管内为主分离腔,所述分离副管内为副分离腔;所述分离主管的上部设有 主分离腔轻相引流锥,所述分离副管的上部设有副分离腔轻相引流锥。
  4. 根据权利要求2所述的适用于海上气田复杂采出液处理系统,其特征在于,每个所述分离主管的底部连接有一个分布管,所述分布管的侧面共同连接有联通管,所述分布管的底部共同连接分配管,所述分配管的端部共同连接有分配罐,所述分配罐的底部连接有进口管,所述分配管以所述分配罐的中心为圆心呈放射状沿径向均匀分布。
  5. 根据权利要求1所述的适用于海上气田复杂采出液处理系统,其特征在于,所述紧凑气浮装置包括罐体,所述罐体的顶部开有补气口,所述罐体内的中部设有弱旋流分离器,所述弱旋流分离器的顶部开有顶流口且连接有防冲帽,所述防冲帽上方的所述罐体上连接有收油槽,所述收油槽外的所述罐体上开有排油口,所述弱旋流分离器的下方设有返流槽,所述返流槽的下方设有纳微气泡水分布器,所述纳微气泡水分布器下方设有破沫模块,所述破沫模块下方设有聚结模块。
  6. 根据权利要求5所述的适用于海上气田复杂采出液处理系统,其特征在于,所述收油槽为与所述罐体内壁相连的环形槽,所述环形槽中间圆形通道为流体流道,所述收油槽顶部至所述罐体顶部的切线高度为所述罐体直径的0.5至5倍;所述返流槽为圆柱桶型或上大底小的凸台型桶,其高度为所述流体流道直径的0.5至2倍,台体倾斜角γ=90°-150°,其底部距所述弱旋流分离器底部的距离为200mm-500mm。
  7. 根据权利要求5所述的适用于海上气田复杂采出液处理系统,其特征在于,所述纳微气泡水分布器为开有孔径范围0.1mm-5mm小孔的圆环或圆盘,所述纳微气泡水分布器直径为所述流体流道直径的0.2至0.8倍。
  8. 根据权利要求5所述的适用于海上气田复杂采出液处理系统,其特征在于,所述防冲帽为伞状,倾斜角为120°-150°,在俯视投影上,所述防冲帽的伞顶投影应完全覆盖所述顶流口。
  9. 根据权利要求5所述的适用于海上气田复杂采出液处理系统,其特征在于,所述破沫模块的厚度为50mm-200mm,所述聚结模块的厚度为100mm-500mm。
  10. 根据权利要求5所述的适用于海上气田复杂采出液处理系统,其特征在于,所述紧凑气浮装置的水相出口和进料口之间、所述破沫模块上方设有纳微气泡水进口,所述纳微气泡水进口一端连通所述纳微气泡水分布器,一端连通纳微气泡发生器。
  11. 根据权利要求1所述的适用于海上气田复杂采出液处理系统,其特征在于, 所述滤清器通常设置一台作为备用设备,所述滤清器的底部开有出口,所述滤清器的出口可做反冲洗入口,所述反冲洗入口连通纳微气泡发生器。
  12. 一种适用于海上气田复杂采出液处理方法,其特征在于,包括以下步骤:
    (1)待处理海上气田复杂采出液首先进入脱固除油一体化分离器,富油相至富油相储罐再次作为待处理液相进入系统,固相脱除后自系统中分离,水相至第一混合破乳器;
    (2)第一混合破乳器中发生破乳药剂与来自步骤(1)的水相的混合过程,水相与破乳药剂在第一混合破乳器混合均匀后进入涡流气泡发生器;
    (3)微米级气泡在涡流气泡发生器中发生,混有微米级气泡的水相进入紧凑气浮装置,气相自顶部进入紧凑气浮装置;
    (4)步骤(3)中紧凑气浮装置以气浮为原理完成水相中微小油滴的聚结长大及分离,经紧凑气浮装置处理后的水相进入保安过滤器,油相及浮渣统一进入第二混合破乳器;
    (5)步骤(4)中进入保安过滤器的水相经脱固处理后,防止水相中夹带的部分固相对后续水处理流程产生影响,依次由模块化组合纤维除油器、滤清器进行深度除油处理,处理达标后的水相进入开排罐、或直接排海、或回注入地层、或去流程其他需水位置做反洗水,模块化组合纤维除油器和滤清器处理后分离出的油相进入第二混合破乳器;
    (6)步骤(4)中紧凑气浮装置分离的浮渣及油相、步骤(5)中模块化组合纤维除油器和滤清器分离出的油相一并进入第二混合破乳器,将破乳药剂与油相进行混合,混合后液相进入袋式过滤器;
    (7)步骤(6)中袋式过滤器分离絮状物及浮渣,絮状物及浮渣去除后的富油相进入模块化组合纤维脱水器;
    (8)步骤(7)中富油相经模块化组合纤维脱水器处理后,水相返回模块化组合纤维除油器达标处理后排放至后续流程,油相处理达标后至平台增压泵进海管输送,或至其他需求位置。
  13. 根据权利要求12所述的适用于海上气田复杂采出液处理方法,其特征在于,所述脱固除油一体化分离器包括至少一根一体化分离芯管,所述一体化分离芯管包括外壳、互相平行的分离主管和分离副管,所述分离副管有多根且均匀分布在所述分离 主管的周围,所述分离主管和所述分离副管之间连通有主副管联通管,所述分离主管的内壁下部设有造旋叶片,所述分离主管内的上部设有导流锥;如果是多根一体化分离芯管,则并联设置;分离主管内的加速度为重力加速度g的5-10000倍,分离副管内的加速度为重力加速度g的10-20000倍;单根一体化分离芯管的处理量为1m 3/h-30m 3/h。
  14. 根据权利要求12所述的适用于海上气田复杂采出液处理方法,其特征在于,涡流气泡发生器有一个以上,如果有多个则采用并联方式,单根混合器处理量控制在1m 3/h-40m 3/h。
  15. 根据权利要求12所述的适用于海上气田复杂采出液处理方法,其特征在于,所述紧凑气浮装置的所述设备进口的液相流速不超过5m/s;弱旋流分离器的离心场内加速度为重力加速度g的0.1-1000倍;所述收油槽的流体流道的流速低于10m/s。
  16. 根据权利要求12所述的适用于海上气田复杂采出液处理方法,其特征在于,所述紧凑气浮装置的水相出口和进料口之间、所述破沫模块上方设有纳微气泡水进口;在步骤(4)中,另有一股纳微气泡水从纳微气泡水进口鼓入,纳微气泡水从纳微气泡发生器来,此部分水为循环水,水量占正常操作处理量的5%-50%;所述滤清器处理达标后的水,除进入开排罐、或直接排海、或回注入地层、或去流程其他需水位置做反洗水外,另有部分至纳微气泡发生器作为循环水,循环水水量占正常操作处理量的5%-50%。
PCT/CN2021/130509 2020-11-17 2021-11-15 一种适用于海上气田复杂采出液处理的系统和方法 WO2022105698A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011283919.8 2020-11-17
CN202011283919.8A CN112390420B (zh) 2020-11-17 2020-11-17 一种适用于海上气田复杂采出液处理的系统和方法

Publications (1)

Publication Number Publication Date
WO2022105698A1 true WO2022105698A1 (zh) 2022-05-27

Family

ID=74600890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130509 WO2022105698A1 (zh) 2020-11-17 2021-11-15 一种适用于海上气田复杂采出液处理的系统和方法

Country Status (2)

Country Link
CN (1) CN112390420B (zh)
WO (1) WO2022105698A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115806325A (zh) * 2022-12-15 2023-03-17 上海兰典安全科技有限公司 一种常减压电脱盐后日常工况下污水处理系统及其方法
CN116040739A (zh) * 2022-12-08 2023-05-02 海洋石油工程股份有限公司 一种海上平台含油污水处理单元的标准化处理流程
CN116177794A (zh) * 2023-02-01 2023-05-30 大庆市普罗石油科技有限公司 一种单井采出液回注撬装装置和采出液处理方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112390420B (zh) * 2020-11-17 2023-07-25 华东理工大学 一种适用于海上气田复杂采出液处理的系统和方法
CN114524482B (zh) * 2022-01-18 2023-12-05 华东理工大学 一种乙丙烷脱氢装置工艺水除油脱固一体化装置及方法
CN114477494B (zh) * 2022-01-18 2023-07-25 华东理工大学 一种脱气及轻重油分级处理的酚氨废水处理装置和工艺
CN116379346B (zh) * 2023-06-06 2023-07-28 成都伊斯顿过滤器有限公司 一种天然气增压输送除油系统
CN117534176A (zh) * 2023-12-18 2024-02-09 宁波海崇科技有限公司 一种原油切水处理的装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309130A1 (en) * 2016-10-11 2018-04-18 Suez International Process and facility for treating produced water from an oil & gas field
CN109942103A (zh) * 2019-04-10 2019-06-28 上海米素环保科技有限公司 一种海上油气田平台生产废水脱气除油脱固的方法及其装置
CN110078236A (zh) * 2019-04-15 2019-08-02 华东理工大学 一种适用于海上油田平台的水处理系统及其处理方法
CN111039434A (zh) * 2019-12-17 2020-04-21 深圳科力迩科技有限公司 一种含油污水处理工艺及系统
CN111378488A (zh) * 2018-12-28 2020-07-07 中国石油化工股份有限公司 一种原油预处理装置和方法
CN112390420A (zh) * 2020-11-17 2021-02-23 华东理工大学 一种适用于海上气田复杂采出液处理的系统和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157007B2 (en) * 2003-06-20 2007-01-02 National Tank Company Vertical gas induced flotation cell
CN102198984A (zh) * 2010-03-26 2011-09-28 北京石油化工学院 含油废水处理用多相分离方法与系统
US8460555B2 (en) * 2010-06-24 2013-06-11 Gang Yuan Centralized sump oil and acid oil treatment process and system
CN102807291B (zh) * 2011-06-02 2014-05-07 中国科学院生态环境研究中心 一种油田采出水处理方法及处理设备
CN105604535B (zh) * 2016-02-26 2018-06-08 北京石油化工学院 一种海上油田油气水集输系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309130A1 (en) * 2016-10-11 2018-04-18 Suez International Process and facility for treating produced water from an oil & gas field
CN111378488A (zh) * 2018-12-28 2020-07-07 中国石油化工股份有限公司 一种原油预处理装置和方法
CN109942103A (zh) * 2019-04-10 2019-06-28 上海米素环保科技有限公司 一种海上油气田平台生产废水脱气除油脱固的方法及其装置
CN110078236A (zh) * 2019-04-15 2019-08-02 华东理工大学 一种适用于海上油田平台的水处理系统及其处理方法
CN111039434A (zh) * 2019-12-17 2020-04-21 深圳科力迩科技有限公司 一种含油污水处理工艺及系统
CN112390420A (zh) * 2020-11-17 2021-02-23 华东理工大学 一种适用于海上气田复杂采出液处理的系统和方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116040739A (zh) * 2022-12-08 2023-05-02 海洋石油工程股份有限公司 一种海上平台含油污水处理单元的标准化处理流程
CN115806325A (zh) * 2022-12-15 2023-03-17 上海兰典安全科技有限公司 一种常减压电脱盐后日常工况下污水处理系统及其方法
CN116177794A (zh) * 2023-02-01 2023-05-30 大庆市普罗石油科技有限公司 一种单井采出液回注撬装装置和采出液处理方法
CN116177794B (zh) * 2023-02-01 2024-04-09 大庆市普罗石油科技有限公司 一种单井采出液回注撬装装置和采出液处理方法

Also Published As

Publication number Publication date
CN112390420B (zh) 2023-07-25
CN112390420A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
WO2022105698A1 (zh) 一种适用于海上气田复杂采出液处理的系统和方法
CN100579917C (zh) 三相旋流分离器和含油污水净化处理系统
CN100525926C (zh) 采用多级充气旋流技术处理炼油污水的方法
CN201046371Y (zh) 含油污水净化三相旋流分离器
CN102807291B (zh) 一种油田采出水处理方法及处理设备
WO2022105699A1 (zh) 一种自适应多相一体化分离装置和方法
CN101347687B (zh) 一种带微细气泡含油水的发生装置
CN102743898B (zh) 管道式两级导流片型油水分离器及其应用方法
CN102642884B (zh) 一种含油污水的处理方法及方法专用设备涡能速旋分离系统
CN106587243A (zh) 一种高效旋流气浮一体化装置
CN103121734A (zh) 一种旋流气浮选分离器
CN111039434A (zh) 一种含油污水处理工艺及系统
WO2021032127A1 (zh) 一种生活污水的处理系统
JP3676208B2 (ja) 固液分離槽
CN102226100B (zh) 一种高效原油脱盐/脱水方法及设备
CN100457227C (zh) 旋转流微孔过滤器
CN110615553B (zh) 一种用烟气深度处理稠油采出水的方法
CN203820565U (zh) 一种含油污水气浮悬浮层过滤装置
CN114477494B (zh) 一种脱气及轻重油分级处理的酚氨废水处理装置和工艺
CN114538639B (zh) 一种含油污水进生化前的预处理系统及方法
CN115557631A (zh) 一种集旋流-气浮-介质聚结于一体的油水分离装置和方法
CN205803170U (zh) 一种含煤废水处理系统
CN201240885Y (zh) 含油污水处理装置
CN203440116U (zh) 一种高效气浮装置
CN110510798A (zh) 一种用微气泡深度处理三元复合驱采出水的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893845

Country of ref document: EP

Kind code of ref document: A1