WO2022105429A1 - 一种既有建筑物注浆加固抬升智能监控方法、装置、系统及计算机可读存介质 - Google Patents

一种既有建筑物注浆加固抬升智能监控方法、装置、系统及计算机可读存介质 Download PDF

Info

Publication number
WO2022105429A1
WO2022105429A1 PCT/CN2021/120851 CN2021120851W WO2022105429A1 WO 2022105429 A1 WO2022105429 A1 WO 2022105429A1 CN 2021120851 W CN2021120851 W CN 2021120851W WO 2022105429 A1 WO2022105429 A1 WO 2022105429A1
Authority
WO
WIPO (PCT)
Prior art keywords
grouting
height
speed
lifting
reinforcement
Prior art date
Application number
PCT/CN2021/120851
Other languages
English (en)
French (fr)
Inventor
崔学栋
崔腾跃
吴继光
Original Assignee
北京恒祥宏业基础加固技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京恒祥宏业基础加固技术有限公司 filed Critical 北京恒祥宏业基础加固技术有限公司
Publication of WO2022105429A1 publication Critical patent/WO2022105429A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D15/00Handling building or like materials for hydraulic engineering or foundations
    • E02D15/02Handling of bulk concrete specially for foundation or hydraulic engineering purposes
    • E02D15/04Placing concrete in mould-pipes, pile tubes, bore-holes or narrow shafts
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D35/00Straightening, lifting, or lowering of foundation structures or of constructions erected on foundations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B3/00Audible signalling systems; Audible personal calling systems
    • G08B3/10Audible signalling systems; Audible personal calling systems using electric transmission; using electromagnetic transmission

Definitions

  • the present application relates to the technical field of grouting reinforcement and lifting of buildings, and in particular, to an intelligent monitoring method and system for grouting reinforcement and lifting of existing buildings.
  • the method of grouting reinforcement and deviation correction applied to high-rise existing building structures came into being.
  • multiple grouting strengthening and lifting points should be selected first, and the building's strengthening and deviation correction should be completed through multi-point grouting.
  • the construction personnel need to adjust many details in the reinforcement and lifting process according to the specific conditions of the reinforcement and lifting site, such as data measurement, adjustment of the grouting pump, adjustment of the grouting liquid, the drilling depth of the grouting pipe, different Different operations of grouting reinforcement and lifting points, etc., to ensure the construction quality of grouting reinforcement and lifting.
  • There are many factors affecting the construction quality of grouting reinforcement and lifting and at the same time there are various differences in the influence of each factor, which makes it difficult to achieve unified monitoring and management of the construction site.
  • the purpose of this application is to provide an intelligent monitoring method, device, system and computer-readable storage medium for grouting reinforcement and lifting of existing buildings.
  • the purpose of this application is to provide an intelligent monitoring method for grouting reinforcement and lifting of existing buildings, including:
  • each reinforcement lifting point is configured with multiple grouting Pump;
  • a stop signal is output to the grouting pump, so that the grouting pump stops working.
  • the grouting reinforcement and lifting of buildings are generally grouting at multiple points at the same time, and the buildings are lifted simultaneously at multiple points.
  • each reinforcement and lifting point needs to be equipped with grouting pipes and multiple grouting pumps. It is necessary to consider the balance of grouting pressure between each point in the multi-point lifting process, the overall lifting rate of the building, and the grouting reinforcement lifting control problem at each point, etc., resulting in the need for different personnel on the reinforcement and lifting site.
  • the phenomenon of collecting and analyzing different data, and the communication and calculation between different personnel cause delays or errors in the control of various aspects of the reinforcement and lifting site, which seriously affects the quality and safety of the reinforcement and lifting of buildings.
  • the present application can be further configured as: the grouting reinforcement and lifting process includes multiple grouting stages, and each grouting stage adopts a grouting pump adjustment method and/or a grouting liquid adjustment method; In the grouting stage of the pump adjustment method, the speed of the injected grouting liquid is changed by outputting a speed adjustment signal to the grouting pump, thereby changing the reinforcement and lifting speed of the building; in the grouting stage of the grouting liquid adjustment method, the injection The slurry pump outputs a ratio adjustment signal to change the solidification speed of the grouting liquid, thereby changing the reinforcement and lifting speed of the building.
  • the grouting pump adjustment method and the grouting liquid adjustment method provide two methods for adjusting the lifting speed of grouting reinforcement, so as to adapt to various lifting conditions on the reinforcement and lifting site.
  • the present application can be further configured as: according to the data of the height, the change speed of the lifting height and the grouting pressure, the method of outputting a speed adjustment signal to the grouting pump to change the speed of injecting the grouting liquid is:
  • the grouting pressure value of the reinforcement lifting point is greater than the standard grouting pressure value, output a speed reduction signal to the grouting pump to reduce the speed at which the grouting pump injects grouting liquid.
  • the calculation of the standard grouting pressure value provides the data basis for controlling the output power of the grouting pump.
  • the difference between the value of the speed increase signal and the speed decrease signal and the value of the grouting pressure and the value of the standard grouting pressure conforms to a pre-stored speed adjustment curve.
  • the preset storage of the speed adjustment curve simplifies the difference between the value of the speed increase signal and the speed decrease signal and the value of the grouting pressure and the standard grouting pressure during the control process of the grouting pump.
  • the calculation steps of the changing relationship reduce the calculation requirements of the equipment.
  • the present application can be further configured as: the method of outputting a ratio adjustment signal to the grouting pump according to the height and the height change speed to change the grouting liquid ratio, thereby changing the solidification speed of the grouting liquid for:
  • a water-cement ratio reduction signal is output to the grouting pump to reduce the solidification speed of the grouting liquid.
  • the calculation of the standard grouting pressure value provides the data basis for controlling the output power of the grouting pump.
  • the difference between the value of the water-cement ratio increase signal and the water-cement ratio decrease signal and the value of the grouting pressure and the value of the standard grouting pressure conforms to a pre-stored water-cement ratio Curve.
  • the preset storage of the water-cement ratio change curve simplifies the change of the value of the water-cement ratio increase signal and the water-cement ratio decrease signal with the grouting pressure value and the standard grouting during the control process of the grouting pump.
  • the calculation steps of the difference change relationship of the pressure values reduce the calculation requirements for the equipment.
  • the present application can be further configured as: if the change speed of the lifting height is greater than the maximum value of the preset reinforcement lifting speed, synchronously output a speed reduction signal to the grouting pump to synchronously reduce the injection rate of the grouting liquid by the grouting pump. speed, and/or output a water-cement ratio reduction signal to the grouting pump to simultaneously reduce the solidification speed of the grouting liquid;
  • a speed increase signal is synchronously output to the grouting pump to synchronously increase the speed of the grouting pump injecting grouting liquid, and/or output water ash to the grouting pump ratio to increase the signal to simultaneously increase the solidification speed of the grouting fluid;
  • the maximum value of the preset reinforcement lifting speed is not less than the minimum value of the preset reinforcement lifting speed.
  • the overall lifting speed of the building should be reduced first, and then each grouting reinforcement lifting point should be finely adjusted.
  • the grouting pump is used to realize the synchronous action of all grouting reinforcement lifting points on the building.
  • the grouting solution is a single slurry or a double slurry.
  • the preset height includes a preset stage height and a preset final height, and when the value of the height is equal to or greater than the preset final height, a stop signal is output to the grouting pump , and within the preset monitoring time after outputting the stop signal, the height drop range exceeds the preset stability range, output a start signal to the grouting pump until the height drops within the preset monitoring time after outputting the stop signal The amplitude is within the preset stable range.
  • the present application also provides an intelligent monitoring device for grouting reinforcement and lifting of existing buildings, including:
  • the data acquisition module is used to obtain the height and grouting pressure data of each reinforcement lifting point during the grouting reinforcement lifting process
  • a change speed calculation module configured to calculate the change speed of the lift height of the building according to the height
  • control module When the height is in a decreasing trend, the control module outputs a stop signal to the grouting pump, so that the grouting pump stops working;
  • a stop signal is output to the grouting pump, so that the grouting pump stops working.
  • the present application can be further configured as: the grouting reinforcement and lifting process includes multiple grouting stages, and each grouting stage adopts a grouting pump adjustment method and/or a grouting liquid adjustment method;
  • the control module In the grouting stage of the pump adjustment method, the control module outputs a speed adjustment signal to the grouting pump to change the speed of the grouting liquid injected, thereby changing the reinforcement and lifting speed of the building; in the grouting stage of the grouting liquid adjustment method, The control module outputs a ratio adjustment signal to the grouting pump to change the solidification speed of the grouting liquid, thereby changing the strengthening and lifting speed of the building.
  • the present application also provides an intelligent monitoring system for grouting reinforcement and lifting of existing buildings, including:
  • One or more processors for invoking and executing the instructions from the memory to perform the above method.
  • the present application also provides a computer-readable storage medium, the computer-readable storage medium comprising:
  • a program when the program is executed by the processor, the above-mentioned intelligent monitoring method for grouting reinforcement and lifting of existing buildings is executed.
  • Figure 1 is a schematic diagram of multiple reinforcement and lifting points in the grouting reinforcement and lifting of buildings.
  • Fig. 2 is a construction topology diagram of a single reinforcement lifting point in the present application.
  • FIG. 3 is a flowchart of an intelligent monitoring method for grouting reinforcement and lifting in Embodiment 1 of the present application.
  • FIG. 4 is a flow chart of adjusting the output power of the grouting pump according to the height change speed in the first embodiment of the present application.
  • FIG. 5 is a system diagram of the intelligent monitoring device for grouting reinforcement and lifting in the present application.
  • FIG. 6 is a flowchart of an intelligent monitoring method for grouting reinforcement and lifting in Embodiment 2 of the present application.
  • construction grouting refers to a method of injecting certain solidified slurries into the rock foundation with appropriate methods, and improving its physical and mechanical properties through replacement, filling, extrusion, etc.
  • Building grouting reinforcement and lifting refers to the grouting reinforcement and lifting of the building at multiple pre-set grouting reinforcement and lifting points around the building. For different buildings, the preset grouting reinforcement and lifting points are different, but in the same reinforcement and lifting project, the reinforcement and lifting of each reinforcement and lifting point need to be synchronized, and one or a certain area should be avoided. The supporting force of the reinforcement lifting point on the building is too large.
  • the intelligent monitoring method and system for grouting reinforcement and lifting provided by the present application are to realize the detection of reinforcement and lifting process data and further automatic intelligent adjustment of grouting speed in the process of grouting reinforcement and lifting of existing buildings.
  • the grouting reinforcement and lifting of the building described in the embodiment is to use the grouting pump 2 to inject the grouting liquid in the grouting tank through the grouting pipe 1 below the designated reinforcement and lifting point, and inject it below the reinforcement and lifting point. After the grouting liquid solidifies, it plays a supporting role for the building.
  • the grouting solution in this embodiment is a single slurry or a double slurry, preferably a double slurry.
  • the composition of the double slurry includes at least cement and water glass. Some other raw materials can be added at the construction site according to the geological conditions to change the characteristics of the double slurry itself.
  • the grouting tank as the material source 3, is a storage structure used to temporarily store the raw materials for grouting, and is generally equipped with a stirring device to realize the stirring of the slurry in the grouting tank and prevent the slurry from solidifying.
  • the storage structure with this function has been conventionally designed in the prior art, so the specific structure of the grouting tank is not uniquely limited in this application, as long as the liquid grouting liquid can be temporarily stored, it is within the scope of the description of this embodiment.
  • the quantity of the grouting tank that is, the quantity of the material source 3 corresponds to the quantity of the raw material of the grouting liquid.
  • the lifting point corresponds to the grouting hole and the grouting pipe 1 one-to-one.
  • this embodiment provides an intelligent monitoring method for grouting reinforcement and lifting, which is a real-time monitoring method for the overall reinforcement and lifting of buildings. Specifically include:
  • a stop signal is output to the grouting pump 2, so that the grouting pump 2 stops working.
  • the methods for obtaining the height of the reinforcement lifting point include, but are not limited to, manual measurement and automatic acquisition.
  • the process of manual measurement is generally that workers measure the real-time height of the reinforcement lifting point according to the level measurement tool, such as a spirit level, and then manually enter the measured height; the process of automatic acquisition is generally to realize the reinforcement lifting point through automatic positioning. real-time altitude measurement.
  • an automatic acquisition method is used to measure the horizontal height of the reinforcement and lifting point.
  • a Beidou monitoring station is fixedly installed at each reinforcement and lifting point, and Beidou positioning technology is used to measure the height of the Beidou monitoring station.
  • the height of the reinforcement lifting point is measured to obtain the height of the reinforcement lifting point.
  • the building is an integral structure, in general, the structure of the building itself will not change during the process of grouting reinforcement and lifting. Therefore, in another example, the height of the building can also be directly measured. Then, the height of each reinforcement lifting point is calculated by the height of the building. For example, for a building with a rectangular raft foundation, its height can be the height of the four corners of the building, and then the height of each reinforcement lifting point is calculated from the heights of the four corners of the building.
  • the grouting pressure data can be obtained by directly collecting the pressure gauge data on the grouting pump 2 .
  • the grouting reinforcement and lifting process includes multiple grouting stages, each grouting stage includes a grouting period and a stable period. During the grouting period, grouting is injected into the grouting hole, and the grouting is stopped during the stable period. At the beginning of grouting, due to the interaction between the grouting liquid injected into the grouting hole and the soil layer at the grouting position, the height of the reinforcement lifting point will decrease during the grouting period, that is, the height is in a decreasing trend. After the situation occurs, it will cause potential safety hazards, and it is not suitable for automatic grouting adjustment. At this time, a stop signal is output to the grouting pump 2, so that the grouting pump 2 stops working, and then the on-site staff is transferred to the grouting pump 2. The position of grouting liquid or grouting hole should be adjusted manually to ensure the safety of grouting reinforcement and lifting process.
  • the speed adjustment signal based on which the output power of the grouting pump 2 is changed includes a speed increase signal and a speed decrease signal.
  • the grouting pump 2 outputs a speed reduction signal synchronously to synchronize Reduce the output power of the grouting pump 2, that is, reduce the speed at which the grouting pump 2 delivers the grouting liquid; if the height change speed is less than the minimum value of the preset reinforcement lifting speed, it means that the building lifting speed is lower than the preset speed, and the The grouting pump 2 outputs a speed increase signal synchronously, so as to increase the output power of the grouting pump 2 synchronously, that is, synchronously increase the speed of the grouting pump 2 to deliver the slurry.
  • the "synchronization" expressed in this example refers to the following adjustment method for the grouting pump 2: during the building lifting process, the slurry injected by the grouting pump 2 located at different reinforcement and lifting points can fill the space left by the building lifting.
  • the foundation is vacant.
  • the three reinforcement and lifting points included in the reinforcement and lifting process are A, B and C which are equidistant and collinear.
  • the height of point A remains unchanged, the height of point B is raised by h, and point C is raised for 2 hours, and the height will be increased synchronously.
  • the speed of grouting pump 2 at point B and point C is v and 2v respectively, so that the ratio of the amount of grouting liquid injected at point B and point C due to increasing the power of grouting pump 2 is 1/2. Therefore, when the reinforcement lifting point is set, the grouting speed of the grouting pump 2 is changed synchronously. If one of the reinforcement lifting points is selected as the base point, the speed change factor of the other reinforcement lifting points will be a value that can be calculated. The value of , that is, each reinforcement lifting point will have a known variation factor in the process of simultaneous reinforcement and lifting of the building.
  • the maximum value of the preset reinforcement lifting speed and the minimum value of the preset reinforcement lifting speed constitute the range of the preset reinforcement lifting speed, and the maximum value of the preset reinforcement lifting speed is not less than the minimum value of the preset reinforcement lifting speed; the preset reinforcement lifting speed
  • the speed range is pre-calculated based on the site conditions where the building is located.
  • the output power is used to change the grouting speed during the grouting period, and the speed adjustment signal based on which the output power of the grouting pump 2 is changed is also included in the speed increase signal and the speed decrease signal.
  • the standard grouting pressure value is calculated in real time according to the height of each grouting reinforcement lifting point, the value of the height change speed of the lifting point and the grouting pressure data value.
  • the supporting force that needs to be applied to the building to strengthen the lifting point is generally obtained by looking up the table for the height and the speed of change of the height of the lifting point.
  • the data is the standard data, but the uplift of the building by the grouting liquid will be affected by the stress, composition and structure of the underground soil.
  • the standard grouting pressure value is calculated separately. , the standard data will not be directly assigned to the standard grouting pressure value.
  • the standard grouting pressure data is calculated in the following way:
  • Fv Fn-k*(Fn-Fc), wherein: Fv is the standard grouting pressure, Fn is the standard data, Fc is the collected grouting pressure, and k is a constant and less than 1.
  • the magnitude of the numerical change of the output power of the grouting pump 2 and the difference between the numerical value of the grouting pressure data and the value of the standard grouting pressure conform to the change law of the binary curve, and the change relationship is a pre-stored speed adjustment change curve, so as to calculate the final speed increase signal or speed decrease signal according to the change curve and the difference between the value of the grouting pressure data and the value of the standard grouting pressure.
  • the grouting pressure value of the reinforcement lifting point is less than the standard grouting pressure value, it means that the supporting strength of the corresponding reinforcement lifting point to the building is small, and the speed increase signal is output to the grouting pump 2 to increase the injection rate of the grouting pump 2.
  • a speed reduction signal is output to the grouting pump 2 to reduce the speed at which the grouting pump 2 injects the grouting liquid, thereby reducing the support force of the reinforcement and lifting point on the building.
  • the output power of the grouting pump 2 is preset with a plurality of different linearly changing values, and the output power of the grouting pump 2 is adjusted according to the speed increase signal or the speed decrease signal for a given injection.
  • the power of the slurry pump 2 jumps between different values, and the change rate of the height change speed and the difference between the value of the grouting pressure data and the value of the standard grouting pressure are the basis for setting the jump size. If the output power of the grouting pump 2 is ⁇ 1, ⁇ 2, ⁇ 3...
  • the difference between the height change speed and the preset reinforcement lifting speed and the difference between the grouting pressure value of the reinforcement lifting point and the standard grouting pressure value can be used.
  • the output power of the given grouting pump 2 is ⁇ k-1, ⁇ k-2 or ⁇ k-5, etc., where n and k are both natural numbers.
  • a stop signal is output to the grouting pump 2 .
  • the preset heights mentioned here include the preset stage height and the preset final height.
  • the preset stage height and the preset final height respectively correspond to the target height of the building in a single grouting stage, and the building for the overall reinforcement and lifting project. Raise the target height.
  • the value of the height is equal to or greater than the preset stage height, it means that the height of the building exceeds the standard during the grouting process in a single grouting stage.
  • the output is output to the grouting pump 2 Stop signal to make the grouting pump 2 stop working; if the value of the height is greater than the preset final height, input a stop signal to the grouting pump 2, and the height drop within the preset monitoring time after the output of the stop signal exceeds the preset height In the stable range, the control module outputs a start signal to the grouting pump 2, and starts grouting again until the height drop within the preset monitoring time is within the preset stable range.
  • the present application also provides an intelligent monitoring device for grouting reinforcement and lifting of existing buildings.
  • the system includes:
  • the data acquisition module is used to obtain the height and grouting pressure data of each reinforcement lifting point during the grouting reinforcement lifting process
  • a change speed calculation module configured to calculate the change speed of the lift height of the building according to the height
  • a speed adjustment signal is output to the grouting pump 2 according to the height, the change speed of the lifting height and the grouting pressure data to change the injected grouting liquid speed, and/or output a ratio adjustment signal to the grouting pump 2 according to the height, height change speed and grouting pressure data to change the grouting solution ratio, thereby changing the solidification speed of the grouting solution;
  • a stop signal is output to the grouting pump 2, so that the grouting pump 2 stops working.
  • the control module outputs a speed adjustment signal to the grouting pump 2 according to the height, the change speed of the lifting height and the grouting pressure data to change the speed of the grouting pump 2 injecting the slurry.
  • the Beidou monitoring station is fixedly installed at the reinforcement and lifting point to realize the real-time measurement of the height of the reinforcement and lifting point through the Beidou positioning technology.
  • the pressure gauge data of the grouting pump 2 By reading the pressure gauge data of the grouting pump 2, the said injection Slurry pressure data.
  • the data acquisition module, the change speed calculation module and the control module are integrated into a central controller with integrated control functions, such as a computer, an industrial computer, and the like.
  • the central controller connects the additional equipment and the cloud database through wired or wireless means.
  • the additional equipment includes at least a mobile phone and an alarm device.
  • electronic equipment with mobile communication functions, electronic display and data processing functions can be used as additional equipment.
  • the mobile handset described in the example is not the only limitation for additional equipment.
  • the central controller is connected to the mobile phone through a 4G network, and is connected to the alarm device through a wired connection of a field bus.
  • the central controller obtains the altitude detected by the Beidou monitoring station through the Beidou positioning network; on the other hand, the staff can obtain the altitude, grouting pressure data and altitude change speed and other data received by the central controller through additional equipment. And through additional equipment, the central controller is used to change the value of the preset data such as the range of the preset reinforcement and lifting speed, the preset height, and the change curve applied in the process of implementing the existing building grouting reinforcement and lifting intelligent monitoring method.
  • the preset data such as the range of the preset reinforcement and lifting speed, the preset height, and the change curve applied in the process of implementing the existing building grouting reinforcement and lifting intelligent monitoring method.
  • the central controller When the height is in a decreasing trend and any one of the conditions that the value of the height is equal to or greater than the preset height exists, the central controller simultaneously outputs an alarm driving signal to the mobile phone and the alarm device , to alarm by mobile phone and alarm device.
  • the alarm device for generating the alarm signal in the alarm device is preferably a buzzer.
  • the central controller automatically collects the height and grouting pressure data of each reinforcement and lifting point, and automatically calculates and controls the grouting of each reinforcement and lifting point.
  • the grouting speed of pump 2 realizes the automatic monitoring of the entire grouting reinforcement and lifting process, which not only improves the automation performance of the grouting reinforcement and lifting project, but also greatly simplifies the control complexity and hysteresis of the reinforcement and lifting site. High safety and high quality construction for grouting reinforcement and lifting of buildings.
  • the embodiment of the present application also discloses an intelligent monitoring system for grouting reinforcement and lifting of existing buildings, which is mainly composed of one or more memories and one or more processors:
  • the processor is used to call and run the instructions from the memory, and execute the intelligent monitoring method for grouting reinforcement and lifting of existing buildings as described in the above content.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be ROM, programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM) ) or flash memory.
  • Volatile memory can be RAM, which acts as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate Synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct memory bus random access memory access memory direct memory bus random access memory access memory.
  • the processor mentioned in any one of the above may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits for executing programs for controlling the above-mentioned method for transmitting feedback information.
  • the processing unit and the storage unit can be decoupled, respectively disposed on different physical devices, and connected in a wired or wireless manner to implement the respective functions of the processing unit and the storage unit, so as to support the system chip to implement the above embodiments various functions in .
  • the processing unit and the memory may also be coupled on the same device.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer-readable computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a computer-readable storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned computer-readable storage medium includes: U disk, removable hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other various programs that can store programs medium of code.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the difference between this embodiment and the first embodiment is that in the process of building grouting reinforcement and lifting described in this embodiment, the supporting strength of each reinforcement and lifting point to the building is adjusted by adjusting the solidification speed of the grouting liquid The overall adjustment of the strengthening and lifting speed of the building.
  • Embodiment 1 The differences between this embodiment and Embodiment 1 are described below only from the perspective of the intelligent monitoring method for grouting reinforcement and lifting of existing buildings.
  • each reinforcement and lifting point is provided with a grouting pipe 1, and each grouting pipe 1 is connected with a variety of material sources, and each material source and the grouting pipe 1 are connected by a grouting pump 2.
  • a grouting pump 2 After the slurry in the source enters the grouting pipe 1, it is mixed inside the grouting pipe 1 to form a grouting liquid.
  • the proportion of the grouting liquid can be adjusted, thereby changing the solidification speed of the grouting liquid.
  • the water-cement ratio reduction signal is output to the grouting pump 2 to synchronously reduce the solidification speed of the grouting liquid; if the change speed of the lift height is less than the preset reinforcement lift If the speed is the minimum value, the water-cement ratio increasing signal is output to the grouting pump 2 synchronously, so as to simultaneously increase the solidification speed of the grouting liquid.
  • the ratio adjustment signal based on changing the grouting liquid ratio is also included in the speed increase signal and the speed decrease signal.
  • the ratio adjustment signal includes a water-cement ratio increase signal and a water-cement ratio decrease signal. If the grouting pressure value of the reinforcement lifting point is less than the standard grouting pressure value, the water-cement ratio increase signal is output to the grouting pump 2 to increase the solidification speed of the grouting liquid; If the value of the grouting pressure is greater than the value of the standard grouting pressure, the water-cement ratio reduction signal is output to the grouting pump 2 to reduce the solidification speed of the grouting liquid.
  • the difference between the value of the water-cement ratio increase signal and the water-cement ratio decrease signal and the value of the grouting pressure and the value of the standard grouting pressure conforms to a binary curve variation law, and the variation relationship is a pre-stored value.
  • Water-cement ratio change curve so as to calculate the final water-cement ratio increase signal or water-cement ratio decrease signal according to the change curve and the difference between the grouting pressure data value and the standard grouting pressure value.
  • the control module outputs a ratio adjustment signal according to the height, the change speed of the lifting height and the grouting pressure data to adjust the solidification speed of the grouting liquid.
  • the central controller automatically collects the height and grouting pressure data of each reinforcement and lifting point, and automatically calculates and controls the grouting liquid of each reinforcement and lifting point. It not only improves the automation performance of the grouting reinforcement and lifting project, but also greatly simplifies the control complexity and hysteresis of the reinforcement and lifting site. High safety and high quality construction of slurry reinforcement and lifting.
  • Embodiment 1 and Embodiment 2 The difference between this embodiment and Embodiment 1 and Embodiment 2 is described from the perspective of the intelligent monitoring method for grouting reinforcement and lifting of existing buildings: in the grouting stage, if the height is in an upward trend and the height is lower than the preset height, The speed adjustment signal and the ratio adjustment signal are output to the grouting pump 2 according to the height, the change speed of the elevation height and the grouting pressure data, so as to change the output power of each grouting pump 2 .
  • a speed reduction signal is output to the grouting pump 2 synchronously to synchronously reduce the speed of the grouting pump 2 injecting grouting liquid, and the water cement is output to the grouting pump 2 than the lowering signal to synchronously reduce the solidification speed of the grouting liquid;
  • a speed increase signal is output to the grouting pump 2 synchronously to synchronously increase the injection rate of the grouting pump 2 The speed of the grouting liquid, and output the water-cement ratio increasing signal to the grouting pump 2, so as to simultaneously increase the solidification speed of the grouting liquid.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • Electromagnetism (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

本申请提供一种既有建筑物注浆加固抬升智能监控方法、装置、系统及计算机可读存介质。方法包括:获取注浆加固抬升过程中各加固抬升点的高度以及注浆压力数据;依据高度计算建筑物的抬升高度变化速度;若高度处在减小趋势下,则向注浆泵输出停止信号,使得注浆泵停止工作;若高度处在上升趋势下,且高度低于预设高度,则依据高度、抬升高度变化速度和注浆压力数据向注浆泵输出速度调节信号以改变注入注浆液的速度,和/或依据高度、高度变化速度及注浆压力数据向注浆泵输出配比调节信号以改变注浆液配比,从而改变注浆液的凝固速度;若高度的数值等于或大于预设高度,则向注浆泵输出停止信号,使得注浆泵停止工作。

Description

一种既有建筑物注浆加固抬升智能监控方法、装置、系统及计算机可读存介质 技术领域
本申请涉及建筑物注浆加固抬升技术领域,尤其是涉及一种既有建筑物注浆加固抬升智能监控方法及系统。
背景技术
目前在发展中国家,由于地质勘察原因或建筑施工及管理的不规范、或在未保证工程质量和安全的情况下赶工期,建成的楼体容易出现下沉现象。
为了解决上述技术问题,应用于高层既有建筑结构的注浆加固纠偏方法应运而生,即通过注浆泵将注浆液通过注浆管注入到建筑物下方,以实现建筑物的加固抬升。当需要对建筑物进行加固抬升时,首先要选定多个注浆加固抬升点,通过多点注浆完成建筑物的加固纠偏。一般的,施工人员需要依据加固抬升现场的具体状况对加固抬升过程中多项细节进行调节,如数据的测量、注浆泵的调节、注浆液的调节、注浆管的钻孔深度、不同注浆加固抬升点的不同操作等等,以保证注浆加固抬升的施工质量。由于影响注浆加固抬升施工质量的因素有很多,同时每种因素的影响又存在各种各样的差别,导致难以实现施工现场的统一监测和管理。
发明内容
为了提高既有建筑物注浆加固抬升施工现场的自动化监控水平,本申请目的是提供一种既有建筑物注浆加固抬升智能监控方法、装置、系统及计算机可读存介质。
第一方面,本申请目的是提供一种既有建筑物注浆加固抬升智能监控方法,包括:
获取注浆加固抬升过程中各加固抬升点的高度以及注浆压力数据;获取注浆加固抬升过程中各加固抬升点的高度以及注浆压力数据;每一个加固抬升点均配置有多个注浆泵;
依据所述高度计算所述建筑物的抬升高度变化速度;
若所述高度处在减小趋势下,则向注浆泵输出停止信号,使得注浆泵停止工作;
若所述高度处在上升趋势下,且所述高度低于预设高度,则依据所述高度、抬升高度变化速度和注浆压力数据向注浆泵输出速度调节信号以改变注入注浆液的速度,和/或依据所述高度、高度变化速度及注浆压力数据向注浆泵输出配比调节信号以改变注浆液配比,从而改变注浆液的凝固速度;
若所述高度的数值等于或大于所述预设高度,则向注浆泵输出停止信号,使得注浆泵停止工作。
通过采用上述技术方案,建筑物注浆加固抬升一般都是多个点同时注浆,对建筑物多点同时抬升,同时每一加固抬升点都需要配置注浆管和多个注浆泵,这就需要考虑到多点抬升过程中每一点之间的注浆压力的平衡性问题、建筑物的整体抬升速率问题以及每一点的注浆加固抬升控制问题等等,从而造成加固抬升现场需要不同人员对不同的数据进行采集并分析的现象,不同人员之间的沟通与计算造成了加固抬升现场各方面控制的延迟或误差,严重影响了建筑物加固抬升的质量和安全性。本方案中,通过实时的采集高度和注浆压力数据,实现了对加固抬升现场各种注浆泵的自动化智能控制,极大的简化了加固抬升现场的控制复杂性以及迟滞性,助力建筑物注浆加固抬升的高安全及高质量施工。
本申请在一较佳示例中可以进一步配置为:注浆加固抬升过程包括多个注浆阶段,每一注浆阶段均采用注浆泵调节方式和/或注浆液调节方式;在采用注浆泵调节方式的注浆阶段,通过向注浆泵输出速度调节信号以改变注入注浆液的速度,从而改变建筑物的加固抬升速度;在采用注浆液调节方式的注浆阶段,通过向注浆泵输出配比调节信号以改变注浆液的凝固速度,从而改变建筑物的加固抬升速度。
通过采用上述技术方案,注浆泵调节方式和注浆液调节方式提供了两种调节注浆加固抬升速度的方式,从而适应加固抬升现场的多种抬升状况。
本申请在一较佳示例中可以进一步配置为:依据所述高度、抬升高度变化速度和注浆压力数据向注浆泵输出速度调节信号以改变注入注浆液的速度的方式为:
依据每一加固抬升点的高度、抬升高度变化速度数值及注浆压力数据数值计算每一所述加固抬升点的标准注浆压力数值;
若所述加固抬升点的注浆压力数值小于所述标准注浆压力数值,则向注浆泵输出速度增加信号以提高注浆泵注入注浆液的速度;
若所述加固抬升点的注浆压力数值大于所述标准注浆压力数值,则向注浆泵输出速度减小信号以降低注浆泵注入注浆液的速度。
通过采用上述技术方案,标准注浆压力数值的计算提供了控制注浆泵输出功率的数据依据。
本申请在一较佳示例中可以进一步配置为:所述速度增加信号和速度减少信号的数值与所述注浆压力数值和标准注浆压力数值的差值符合预存的速度调节变化曲线。
通过采用上述技术方案,速度调节变化曲线的预设存储,简化了在注浆泵控制过程中对速度增加信号和速度减少信号的数值随所述注浆压力数值和标准注浆压力数值的差 值变化关系的计算步骤,降低了对设备的计算要求。
本申请在一较佳示例中可以进一步配置为:所述依据所述高度和高度变化速度向注浆泵输出配比调节信号以改变注浆液配比,从而改变注浆液的凝固速度的方式为:
依据每一加固抬升点的高度、抬升高度变化速度数值及注浆压力数据数值计算每一所述加固抬升点的标准注浆压力数值;
若所述加固抬升点的注浆压力数值小于所述标准注浆压力数值,则向注浆泵输出水灰比提高信号,以提高注浆液的凝固速度;
若所述加固抬升点的注浆压力数值大于所述标准注浆压力数值,则向注浆泵输出水灰比降低信号,以降低注浆液的凝固速度。
通过采用上述技术方案,标准注浆压力数值的计算提供了控制注浆泵输出功率的数据依据。
本申请在一较佳示例中可以进一步配置为:所述水灰比提高信号和水灰比降低信号的数值与所述注浆压力数值和标准注浆压力数值的差值符合预存的水灰比变化曲线。
通过采用上述技术方案,水灰比变化曲线的预设存储,简化了在注浆泵控制过程中对水灰比提高信号和水灰比降低信号的数值随所述注浆压力数值和标准注浆压力数值的差值变化关系的计算步骤,降低了对设备的计算要求。
本申请在一较佳示例中可以进一步配置为:若抬升高度变化速度大于预设加固抬升速度的最大值,则向注浆泵同步输出速度减小信号以同步降低注浆泵注入注浆液的速度,和/或向注浆泵输出水灰比降低信号,以同步降低注浆液的凝固速度;
若所述抬升高度变化速度小于预设加固抬升速度的最小值,则向注浆泵同步输出速度增加信号以同步提高注浆泵注入注浆液的速度,和/或向注浆泵输出水灰比提高信号,以同步提高注浆液的凝固速度;
所述预设加固抬升速度的最大值不小于所述预设加固抬升速度的最小值。
通过采用上述技术方案,若建筑物的高度变化速度大于预设加固抬升速度,说明建筑物抬升速度过快,此时应先整体降低建筑物的抬升速度,再细调每一注浆加固抬升点的注浆泵以实现全部注浆加固抬升点对建筑物的同步作用。
本申请在一较佳示例中可以进一步配置为:所述注浆液为单浆液或双浆液。
本申请在一较佳示例中可以进一步配置为:所述预设高度包括预设阶段高度和预设最终高度,所述高度的数值等于或大于预设最终高度时,向注浆泵输出停止信号,且在输出停止信号后的预设监测时间内所述高度下降幅度超出预设稳定范围,则向注浆泵输出启动信号,直至输出停止信号后所述预设监测时间内的所述高度下降幅度位于所述预设稳定范 围内。
第二方面,本申请还提供一种既有建筑物注浆加固抬升智能监控装置,包括:
数据获取模块,用于获取注浆加固抬升过程中各加固抬升点的高度以及注浆压力数据;
变化速度计算模块,用于依据所述高度计算所述建筑物的抬升高度变化速度;
控制模块,用于
在所述高度处在减小趋势下时,控制模块向注浆泵输出停止信号,使得注浆泵停止工作;
在所述高度处在上升趋势下,且所述高度低于预设高度时,依据所述高度、抬升高度变化速度和注浆压力数据向注浆泵输出速度调节信号以改变注入注浆液的速度,和/或依据所述高度、高度变化速度及注浆压力数据向注浆泵输出配比调节信号以改变注浆液配比,从而改变注浆液的凝固速度;
在所述高度的数值等于或大于所述预设高度时,向注浆泵输出停止信号,使得注浆泵停止工作。
本申请在一较佳示例中可以进一步配置为:注浆加固抬升过程包括多个注浆阶段,每一注浆阶段均采用注浆泵调节方式和/或注浆液调节方式;在采用注浆泵调节方式的注浆阶段,所述控制模块向注浆泵输出速度调节信号以改变注入注浆液的速度,从而改变建筑物的加固抬升速度;在采用注浆液调节方式的注浆阶段,所述控制模块向注浆泵输出配比调节信号以改变注浆液的凝固速度,从而改变建筑物的加固抬升速度。
第三方面,本申请还提供一种既有建筑物注浆加固抬升智能监控系统,包括:
一个或多个存储器,用于存储指令;以及
一个或多个处理器,用于从所述存储器中调用并运行所述指令,执行上述的方法。
第四方面,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质包括:
程序,当所述程序被处理器运行时,上述的既有建筑物注浆加固抬升智能监控方法被执行。
附图说明
图1是建筑物注浆加固抬升中多个加固抬升点示意图。
图2是本申请中单个加固抬升点的施工拓扑图。
图3是本申请实施例一中注浆加固抬升智能监控方法的流程图。
图4是本申请实施例一中依据高度变化速度调节注浆泵输出功率的流程图。
图5是本申请中注浆加固抬升智能监控装置的系统图。
图6是本申请实施例二中注浆加固抬升智能监控方法的流程图。
图中,1、注浆管;2、注浆泵;3、料源。
具体实施方式
以下结合附图对本申请作进一步详细说明。
本具体实施例仅仅是对本申请的解释,其并不是对本申请的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本申请的权利要求范围内都受到专利法的保护。
参照图1,建筑工程注浆是指用适当的方法将某些能固化的浆液注入岩土地基中,通过置换、填充、挤压等方式以改善其物理力学性质的方法。建筑物注浆加固抬升是指在建筑物四周预先设定的多个注浆加固抬升点对建筑物进行注浆加固抬升。对于不同的建筑物来说,其预先设定的注浆加固抬升点均有不同,但是在同一加固抬升工程中,每一加固抬升点的加固抬升需保持同步,应避免某一或某一区域的加固抬升点对建筑物的支持力过大。本申请提供的注浆加固抬升智能监控方法及系统是为了在既有建筑物注浆加固抬升过程中实现对加固抬升过程数据的检测以及进一步的对注浆速度的自动化智能调节。
实施例一:
参照图2,实施例所述的建筑物注浆加固抬升是采用注浆泵2将注浆池中的注浆液通过注浆管1注入到指定的加固抬升点下方,注入到加固抬升点下方的注浆液凝固后起到对建筑物的支撑作用。本实施例中的注浆液为单浆液或双浆液,优选为双浆液,双浆液的组成至少包括水泥和水玻璃,施工现场可依据地质状况添加一些其余原料以改变双浆液本身的特性,在此不做唯一限定;注浆池作为料源3,是用于暂存注浆液原料的存储结构,且一般配置有搅拌装置,以实现对注浆池中浆液的搅拌,防止浆液凝固,由于具有该功能的存储结构已为现有技术中常规的设计,故在本申请中对注浆池的具体结构不做唯一限定,只要能够暂存液态的注浆液即在本实施例的说明范围内。注浆池,即料源3的数量与注浆液的原料数量对应。本实施例中,抬升点与注浆孔和注浆管1一一对应。
参照图2和图3,基于既有建筑物的注浆过程,本实施例提供一种注浆加固抬升智能监控方法,发方法为针对建筑物整体加固抬升的实时监控方法。具体包括:
获取注浆加固抬升过程中各加固抬升点的高度以及注浆压力数据;
依据所述高度计算所述建筑物的抬升高度变化速度;
若所述高度处在减小趋势下,则向注浆泵2输出停止信号,使得注浆泵2停止工作;
若所述高度处在上升趋势下,且所述高度低于预设高度,则依据所述高度、抬升高度变化速度和注浆压力数据向注浆泵2输出速度调节信号以改变注入注浆液的速度,和/或依 据所述高度、高度变化速度及注浆压力数据向注浆泵2输出配比调节信号以改变注浆液配比,从而改变注浆液的凝固速度;
若所述高度的数值等于或大于所述预设高度,则向注浆泵2输出停止信号,使得注浆泵2停止工作。
通过实时的采集高度和各加固抬升点的注浆压力数据,实现了对加固抬升现场各加固抬升点位置的注浆泵2的自动化智能控制,极大的简化了加固抬升现场的检测和控制的复杂性以及迟滞性。
获得加固抬升点高度的方法包括但不限定于人工测定和自动获取。人工测定的过程一般为工人依据水平高度测量工具,如水平仪等,测量加固抬升点的实时高度,然后将测量出的高度进行人工录入;自动获取的过程一般为通过自动化的定位实现对加固抬升点的实时高度测量。本实施例中采用自动获取的方式测量加固抬升点的水平高度,具体的,在每一加固抬升点固定安装北斗监测站,采用北斗定位技术实现对北斗监测站的高度测量,进而实现对每一加固抬升点的高度测量,从而获得加固抬升点的高度。需要理解的是,由于建筑物为一整体结构,一般的,建筑物注浆加固抬升过程中,其本身结构不会发生变化,故在另外一个示例中,也可以通过直接测定建筑物的高度,进而通过建筑物的高度计算每一加固抬升点的高度。如对于筏板基础为矩形的建筑物来说,其高度可以是建筑物四个角的高度,进而通过建筑物四个角的高度计算出每一个加固抬升点的高度。
注浆压力数据可以是直接采集注浆泵2上的压力表数据获得。
注浆加固抬升过程包括多个注浆阶段,每一注浆阶段均包括注浆时段和稳定时段,注浆时段内向注浆孔内注浆,稳定时段内停止注浆。在开始注浆阶段,由于注入注浆孔的注浆液与注浆位置的土层相互作用,会有注浆时段加固抬升点高度下降的状况发生,即高度处在减小趋势,一般这种状况发生后会引发安全隐患,并不适合再进行自动化的注浆调节,此时向注浆泵2输出停止信号,使得注浆泵2停止工作,之后再转由现场工作人员对注浆泵2、注浆液或注浆孔位置做人工的调节,以确保注浆加固抬升过程的安全。
参照图3和图4,在经过开始的注浆阶段后,再次注浆,则在注浆时段内,加固抬升点的高度将处在上升趋势,通过改变注浆泵2的输出功率以改变注浆时段的注浆速度,改变注浆泵2输出功率所依据的速度调节信号包括有速度增加信号和速度减小信号。
在一个示例中,如果建筑物的抬升高度变化速度大于预设加固抬升速度的最大值,说明建筑物抬升的速度超过了预设的速度,向注浆泵2同步输出速度减小信号,以同步降低注浆泵2的输出功率,即同步降低注浆泵2输送注浆液的速度;如果高度变化速度小于预设加固抬升速度的最小值,说明建筑物抬升速度低于预设的速度,向注浆泵2同步输出速 度增加信号,以同步提高注浆泵2的输出功率,即同步增加注浆泵2输送浆液的速度。本示例表达的“同步”是指对注浆泵2的如下调节方式:在建筑物抬升过程中,位于不同加固抬升点的注浆泵2注入的浆液,能够填补因建筑物抬升而留出的地基空缺。如加固抬升过程中包含的三个加固抬升点为等间距且共线的A、B和C,加固抬升过程中A点高度不变,B点抬高h,C点抬高2h,则同步增加的B点和C点的注浆泵2输送浆液的速度分别为v和2v,以使得B点和C点因增加注浆泵2功率而多注入的注浆液量的比值为1/2。故此,当加固抬升点设定好之后,则同步改变注浆泵2注浆速度时,如选定其中一个加固抬升点为基点,则另外的加固抬升点的速度变化因子都将是一个可以计算的值,即每一个加固抬升点都会有同步加固抬升建筑物过程中的一个已知的变化因子。
预设加固抬升速度的最大值与预设加固抬升速度的最小值组成预设加固抬升速度的范围,且预设加固抬升速度的最大值不小于预设加固抬升速度的最小值;预设加固抬升速度的范围为依据建筑物所处实地状况预先测算得出。
将加固抬升点的注浆压力数值与相应加固抬升点的标准注浆压力数值进行比较,依据比较结果以及相应加固抬升点的变化因子改变注浆泵2的输出功率,通过改变注浆泵2的输出功率以改变注浆时段的注浆速度,改变注浆泵2输出功率所依据的速度调节信号同样包括在速度增加信号和速度减小信号内。
其中,标准注浆压力数值为依据每一注浆加固抬升点的高度、抬升点高度变化速度数值以及注浆压力数据数值实时计算得到。其中,在注浆加固抬升过程中,建筑物抬升到一定高度后,加固抬升点所需要施加给建筑物的支撑力一般是通过高度和抬升点高度变化速度查表获得,这个查表所获得的数据为标准数据,但是注浆液对建筑物的抬升都会受到地底土壤应力、组成和结构的影响,当注浆压力数据的数值与查表所获得的标准数据相差过大时,如果直接将注浆泵2注浆的压力变更到标准数据,会使因为注浆压力短时间的过大突变导致后期的加固抬升反复变化,故在本申请实施例中,标准注浆压力数值为单独计算得出,不会直接将标准数据直接赋值给标准注浆压力数值。
具体的,标准注浆压力数据采用以下方式计算:
Fv=Fn-k*(Fn-Fc),其中:Fv为标准注浆压力,Fn为标准数据,Fc为采集到的注浆压力,k为常数且小于1。
在一个优选的示例中,注浆泵2输出功率的数值改变的大小与注浆压力数据的数值和标准注浆压力数值的差值符合二值曲线变化规律,其变化关系为一个预存的速度调节变化曲线,从而依据变化曲线以及注浆压力数据的数值和标准注浆压力数值的差值计算得到最终的速度增加信号或速度减小信号。当加固抬升点的注浆压力数值小于所述标准注浆压力 数值时,说明相应加固抬升点对建筑物的支撑力度小,向注浆泵2输出速度增加信号以提高注浆泵2注入注浆液的速度,从而提高加固抬升点对建筑物的支撑力度;当加固抬升点的注浆压力数值大于所述标准注浆压力数值时,说明相应加固抬升点对建筑物的支撑力度过大,则向注浆泵2输出速度减小信号以降低注浆泵2注入注浆液的速度,从而降低加固抬升点对建筑物的支撑力度。
在另一个示例中,注浆泵2的输出功率预设有多个不同的呈线性变化的值,在依据速度增加信号或速度减小信号调节注浆泵2的输出功率的方式为给定注浆泵2的功率在不同值之间跳变,且以高度变化速度的变化速率以及注浆压力数据的数值和标准注浆压力数值的差值为设定跳变大小的依据。如注浆泵2的输出功率由小到大依次为η1、η2、η3…ηn,注浆泵22的起始功率为ηk,则在高度变化速度大于预设加固抬升速度的最小值和/或加固抬升点的注浆压力数值大于所述标准注浆压力数值时,可依据高度变化速度与预设加固抬升速度的差值以及加固抬升点的注浆压力数值与所述标准注浆压力数值的差值给定注浆泵2输出功率为ηk-1、ηk-2或ηk-5等,此处的n和k均为自然数。
高度的数值等于或大于预设高度,则向注浆泵2输出停止信号。此处所述的预设高度包括预设阶段高度和预设最终高度,预设阶段高度和预设最终高度分别对应单个注浆阶段内建筑物抬升的目标高度,和整体加固抬升工程的建筑物抬升目标高度。在单个注浆阶段的注浆时段内,若高度的数值等于或大于预设阶段高度,则说明单个注浆阶段内注浆过程中,建筑物的高度超标,此时,向注浆泵2输出停止信号,以使得注浆泵2停止工作;若高度的数值大于预设最终高度,则向注浆泵2输入停止信号,且在输出停止信号后的预设监测时间内高度下降幅度超出预设稳定范围,则控制模块向注浆泵2输出启动信号,再次启动注浆,直至预设监测时间内高度下降幅度位于预设稳定范围内。
参照图5,本申请还提供一种既有建筑物注浆加固抬升智能监控装置,该系统包括:
数据获取模块,用于获取注浆加固抬升过程中各加固抬升点的高度以及注浆压力数据;
变化速度计算模块,用于依据所述高度计算所述建筑物的抬升高度变化速度;
以及控制模块,用于
在所述高度处在减小趋势下时,向注浆泵2输出停止信号,使得注浆泵2停止工作;
在所述高度处在上升趋势下,且所述高度低于预设高度时,依据所述高度、抬升高度变化速度和注浆压力数据向注浆泵2输出速度调节信号以改变注入注浆液的速度,和/或依据所述高度、高度变化速度及注浆压力数据向注浆泵2输出配比调节信号以改变注浆液配比,从而改变注浆液的凝固速度;
在所述高度的数值等于或大于所述预设高度时,向注浆泵2输出停止信号,使得注浆泵2停止工作。
控制模块依据高度、抬升高度变化速度和注浆压力数据向注浆泵2输出速度调节信号以改变注浆泵2注入浆液的速度的方式,可参照上述的既有建筑物注浆加固抬升智能监控方法,在此不再赘述。
在注浆加固抬升过程中通过在加固抬升点固定安装北斗监测站,以实现通过北斗定位技术实时测量加固抬升点的高度,通过读取注浆泵2的压力表数据,实时获取所述的注浆压力数据。
优选的,数据获取模块、变化速度计算模块和控制模块集成于一个具有集成控制功能的中央控制器中,如电脑、工控机等。中央控制器通过有线或无线的方式连接附加设备和云数据库,附加设备至少包括移动手机和报警装置,当然,具备移动通信功能、电子显示和数据处理功能的电子设备均可作为附加设备,本实施例描述的移动手机并非对附加设备的唯一限定。在一个优选的示例中,中央控制器通过4G网络连接移动手机,并通过现场总线的有线连接方式连接报警装置。
一方面,中央控制器通过北斗定位网络获取北斗监测站检测到的高度;另一方面,工作人员可通过附加设备获取到中央控制器接收到的高度、注浆压力数据以及高度变化速度等数据,并通过附加设备变更中央控制器实施既有建筑物注浆加固抬升智能监控方法过程中应用到的预设加固抬升速度的范围、预设高度、变化曲线等预设数据的数值。
在高度处在减小趋势下的状况,以及所述高度的数值等于或大于所述预设高度的状况中的任意一种状况存在时,中央控制器同时向移动手机和报警装置输出报警驱动信号,以通过移动手机和报警装置报警。报警装置中产生报警信号的报警器件优选为蜂鸣器。
通过以上描述可以获知:在建筑物注浆加固抬升过程中,由于通过中央控制器自动采集了高度以及每个加固抬升点的注浆压力数据,并自动计算和控制每一加固抬升点的注浆泵2的注浆速度,实现了整个注浆加固抬升过程中的自动化监控,不但提高了注浆加固抬升工程的自动化性能,同时极大的简化了加固抬升现场的控制复杂性以及迟滞性,助力建筑物注浆加固抬升的高安全及高质量施工。
本申请实施例还公开了一种既有建筑物注浆加固抬升智能监控系统,该系统主要由一个或多个存储器和一个或多个处理器组成:
存储器用于存储指令;
处理器,用于从存储器中调用并运行指令,执行如上述内容中所述的既有建筑物注浆加固抬升智能监控方法。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。
非易失性存储器可以是ROM、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。
易失性存储器可以是RAM,其用作外部高速缓存。RAM有多种不同的类型,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器。
上述任一处提到的处理器,可以是一个CPU,微处理器,ASIC,或一个或多个用于控制上述的反馈信息传输的方法的程序执行的集成电路。该处理单元和该存储单元可以解耦,分别设置在不同的物理设备上,通过有线或者无线的方式连接来实现该处理单元和该存储单元的各自的功能,以支持该系统芯片实现上述实施例中的各种功能。或者,该处理单元和该存储器也可以耦合在同一个设备上。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取计算机可读存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个计算机可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的计算机可读存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
实施例二:
本实施例与实施例一的区别之处在于,本实施例所述的建筑物注浆加固抬升过程中,是通过调节注浆液的凝固速度调节每一加固抬升点对建筑物的支撑力度或整体调节建筑物的加固抬升速度。
以下仅以既有建筑物注浆加固抬升智能监控方法的角度描述本实施例与实施例一之间的不同。
参照图6,若高度处在上升趋势下,且高度低于预设高度,依据所述高度、高 度变化速度及注浆压力数据向注浆泵2输出配比调节信号以改变注浆液配比,从而改变注浆液的凝固速度。若所述高度的数值等于或大于所述预设高度,则向注浆泵2输出停止信号,使得注浆泵2停止工作。
优选的,每一加固抬升点均设置有一个注浆管1,每一注浆管1连接有多种料源,每一料源与注浆管1之间均通过注浆泵2连接,料源内的浆液在进入注浆管1后,在注浆管1内部混合形成注浆液。通过调节注浆泵2的输出功率即可调节注浆液的配比,从而改变注浆液的凝固速度。
在经过开始的注浆阶段后,再次注浆,则在注浆时段内,高度将处在上升趋势,在不改变注浆泵2注浆速度的前提下,通过改变注浆液的水灰比改变注浆液的凝固速度。
若抬升高度变化速度大于预设加固抬升速度的最大值,则向注浆泵2输出水灰比降低信号,以同步降低注浆液的凝固速度;若所述抬升高度变化速度小于预设加固抬升速度的最小值,则向注浆泵2同步输出水灰比提高信号,以同步提高注浆液的凝固速度。
将加固抬升点的注浆压力数值与相应加固抬升点的标准注浆压力数值进行比较,依据比较结果以及相应加固抬升点的变化因子改变注浆液的配比,通过改变注浆液的配比以改变注浆时段加固抬升点对建筑物的支撑力度,改变注浆液配比所依据的配比调节信号同样包括在速度增加信号和速度减小信号内。
其中,配比调节信号包括水灰比提高信号和水灰比降低信号。若所述加固抬升点的注浆压力数值小于所述标准注浆压力数值,则向注浆泵2输出水灰比提高信号,以提高注浆液的凝固速度;若所述加固抬升点的注浆压力数值大于所述标准注浆压力数值,则向注浆泵2输出水灰比降低信号,以降低注浆液的凝固速度。
在一个优选的示例中,水灰比提高信号和水灰比降低信号的数值与所述注浆压力数值和标准注浆压力数值的差值符合二值曲线变化规律,其变化关系为一个预存的水灰比变化曲线,从而依据变化曲线以及注浆压力数据的数值和标准注浆压力数值的差值计算得到最终的水灰比提高信号或水灰比降低信号。
本实施例所提供的既有建筑物注浆加固抬升智能监控装置中,控制模块依据高度、抬升高度变化速度和注浆压力数据输出配比调节信号以调节注浆液的凝固速度的方式,可参照本实施例中的既有建筑物注浆加固抬升智能监控方法,在此不再赘述。
通过以上描述可以获知:在建筑物注浆加固抬升过程中,由于通过中央控制器自动采集了高度以及每个加固抬升点的注浆压力数据,并自动计算和控制每一加固抬升点注浆液的凝固速度,实现了整个注浆加固抬升过程中的自动化监控,不但提高了注浆加固抬升工程的自动化性能,同时极大的简化了加固抬升现场的控制复杂性以及迟滞性,助力建筑物 注浆加固抬升的高安全及高质量施工。
实施例三:
以既有建筑物注浆加固抬升智能监控方法的角度描述本实施例与实施例一和实施例二的不同:在注浆阶段,若高度处在上升趋势下,且高度低于预设高度,依据高度、抬升高度变化速度和注浆压力数据向注浆泵2输出速度调节信号以及配比调节信号,以改变每一注浆泵2的输出功率。
若抬升高度变化速度大于预设加固抬升速度的最大值,则向注浆泵2同步输出速度减小信号以同步降低注浆泵2注入注浆液的速度,并向注浆泵2输出水灰比降低信号,以同步降低注浆液的凝固速度;若所述抬升高度变化速度小于预设加固抬升速度的最小值,则向注浆泵2同步输出速度增加信号以同步提高注浆泵2注入注浆液的速度,并向注浆泵2输出水灰比提高信号,以同步提高注浆液的凝固速度。
以上具体实施方式的实施例均为本申请的较佳实施例,并非依此限制本申请的保护范围,故:凡依本申请的结构、形状、原理所做的等效变化,均应涵盖于本申请的保护范围之内。

Claims (10)

  1. 一种既有建筑物注浆加固抬升智能监控方法,其特征在于,包括:
    获取注浆加固抬升过程中各加固抬升点的高度以及注浆压力数据;每一个加固抬升点均配置有多个注浆泵;
    依据所述高度计算所述建筑物的抬升高度变化速度;
    若所述加固抬升点的高度处在减小趋势下,则向注浆泵(2)输出停止信号,使得注浆泵(2)停止工作;
    若所述高度处在上升趋势下,且所述高度低于预设高度,则依据所述高度、抬升高度变化速度和注浆压力数据向注浆泵(2)输出速度调节信号以改变注入注浆液的速度,和/或依据所述高度、高度变化速度及注浆压力数据向注浆泵(2)输出配比调节信号以改变注浆液配比,从而改变注浆液的凝固速度;
    若所述高度的数值等于或大于所述预设高度,则向注浆泵(2)输出停止信号,使得对应的多个注浆泵(2)停止工作。
  2. 根据权利要求1所述的一种既有建筑物注浆加固抬升智能监控方法,其特征在于:注浆加固抬升过程包括多个注浆阶段,每一注浆阶段均采用注浆泵(2)调节方式和/或注浆液调节方式;在采用注浆泵(2)调节方式的注浆阶段,通过向注浆泵(2)输出速度调节信号以改变注入注浆液的速度,从而改变建筑物的加固抬升速度;在采用注浆液调节方式的注浆阶段,通过向注浆泵(2)输出配比调节信号以改变注浆液的凝固速度,从而改变建筑物的加固抬升速度。
  3. 根据权利要求1所述的一种既有建筑物注浆加固抬升智能监控方法,其特征在于:依据所述高度、抬升高度变化速度和注浆压力数据向注浆泵(2)输出速度调节信号以改变注入注浆液的速度的方式为:
    依据每一加固抬升点的高度、抬升高度变化速度数值及注浆压力数据数值计算每一所述加固抬升点的标准注浆压力数值;
    若一个加固抬升点的注浆压力数值小于所述标准注浆压力数值,则向注浆泵(2)输出速度增加信号以提高注浆泵(2)注入注浆液的速度;
    若所述加固抬升点的注浆压力数值大于所述标准注浆压力数值,则向注浆泵(2)输出速度减小信号以降低注浆泵(2)注入注浆液的速度;
    所述速度增加信号和速度减少信号的数值与所述注浆压力数值和标准注浆压力数值的差值符合预存的速度调节变化曲线。
  4. 根据权利要求1所述的一种既有建筑物注浆加固抬升智能监控方法,其特征在于:所述依据所述高度和高度变化速度向注浆泵(2)输出配比调节信号以改变注浆液配比,从而 改变注浆液的凝固速度的方式为:依据每一加固抬升点的高度、抬升高度变化速度数值及注浆压力数据数值计算每一所述加固抬升点的标准注浆压力数值;
    若一个加固抬升点的注浆压力数值小于所述标准注浆压力数值,则向注浆泵(2)输出水灰比提高信号,以提高注浆液的凝固速度;
    若所述加固抬升点的注浆压力数值大于所述标准注浆压力数值,则向注浆泵(2)输出水灰比降低信号,以降低注浆液的凝固速度;所述水灰比提高信号和水灰比降低信号的数值与所述注浆压力数值和标准注浆压力数值的差值符合预存的水灰比变化曲线。
  5. 根据权利要求1所述的一种既有建筑物注浆加固抬升智能监控方法,其特征在于:
    若抬升高度变化速度大于预设加固抬升速度的最大值,则向注浆泵(2)同步输出速度减小信号以同步降低注浆泵(2)注入注浆液的速度,和/或向注浆泵(2)输出水灰比降低信号,以同步降低注浆液的凝固速度;
    若所述抬升高度变化速度小于预设加固抬升速度的最小值,则向注浆泵(2)同步输出速度增加信号以同步提高注浆泵(2)注入注浆液的速度,和/或向注浆泵(2)输出水灰比提高信号,以同步提高注浆液的凝固速度;
    所述预设加固抬升速度的最大值不小于所述预设加固抬升速度的最小值。
  6. 根据权利要求1所述的一种既有建筑物注浆加固抬升智能监控方法,其特征在于:所述注浆液为单浆液或双浆液。
  7. 根据权利要求1所述的一种既有建筑物注浆加固抬升智能监控方法,其特征在于:所述预设高度包括预设阶段高度和预设最终高度,所述高度的数值等于或大于预设最终高度时,向注浆泵(2)输出停止信号,且在输出停止信号后的预设监测时间内所述高度下降幅度超出预设稳定范围,则向注浆泵(2)输出启动信号,直至输出停止信号后所述预设监测时间内的所述高度下降幅度位于所述预设稳定范围内。
  8. 一种既有建筑物注浆加固抬升智能监控装置,其特征在于,包括:
    数据获取模块,用于获取注浆加固抬升过程中各加固抬升点的高度以及注浆压力数据;
    变化速度计算模块,用于依据所述高度计算所述建筑物的抬升高度变化速度;
    控制模块,用于
    在所述高度处在减小趋势下时,向注浆泵(2)输出停止信号,使得注浆泵(2)停止工作;
    在所述高度处在上升趋势下,且所述高度低于预设高度时,依据所述高度、抬升高度变化速度和注浆压力数据向注浆泵(2)输出速度调节信号以改变注入注浆液的速度,和/或依据所述高度、高度变化速度及注浆压力数据向注浆泵(2)输出配比调节信号以改变注浆液配比,从而改变注浆液的凝固速度;
    在所述高度的数值等于或大于所述预设高度时,向注浆泵(2)输出停止信号,使得注浆泵(2)停止工作。
  9. 一种既有建筑物注浆加固抬升智能监控系统,其特征在于,包括:
    一个或多个存储器,用于存储指令;以及
    一个或多个处理器,用于从所述存储器中调用并运行所述指令,执行如权利要求1至7中任意一项所述的方法。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括:
    程序,当所述程序被处理器运行时,如权利要求1至7中任一项所述的既有建筑物注浆加固抬升智能监控方法被执行。
PCT/CN2021/120851 2020-11-20 2021-09-27 一种既有建筑物注浆加固抬升智能监控方法、装置、系统及计算机可读存介质 WO2022105429A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011313982.1A CN114517481A (zh) 2020-11-20 2020-11-20 一种既有建筑物注浆加固抬升智能监控方法、装置、系统及计算机可读存介质
CN202011313982.1 2020-11-20

Publications (1)

Publication Number Publication Date
WO2022105429A1 true WO2022105429A1 (zh) 2022-05-27

Family

ID=81594555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120851 WO2022105429A1 (zh) 2020-11-20 2021-09-27 一种既有建筑物注浆加固抬升智能监控方法、装置、系统及计算机可读存介质

Country Status (2)

Country Link
CN (1) CN114517481A (zh)
WO (1) WO2022105429A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115182363A (zh) * 2022-08-01 2022-10-14 浙江大学 一种基于微生物矿化的边坡加固装置与方法
CN116044312A (zh) * 2023-04-03 2023-05-02 湖南大学 一种可以实时监测注浆压力的曲线高压旋喷注浆钻头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101487274A (zh) * 2009-02-23 2009-07-22 北京交通大学 一种城市隧道穿越既有建(构)筑物注浆抬升方法
JP2010144503A (ja) * 2008-12-22 2010-07-01 Sakamoto Yoshio 建物傾斜修復配管装置
CN103485268A (zh) * 2013-10-01 2014-01-01 曾胜 一种公路信息化智能注浆系统
US20160312429A1 (en) * 2013-12-16 2016-10-27 Heisei Techno's Co., Ltd. Ground improvement method
CN109722956A (zh) * 2019-01-23 2019-05-07 中国铁道科学研究院集团有限公司铁道建筑研究所 高速铁路注浆抬升方法和注浆材料
CN109750658A (zh) * 2018-12-28 2019-05-14 中国铁道科学研究院集团有限公司铁道建筑研究所 注浆控制方法和注浆系统
CN209338921U (zh) * 2018-10-19 2019-09-03 北京恒祥宏业基础加固技术有限公司 一种高速铁路路基不均匀沉降加固抬升调平结构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2751106Y (zh) * 2004-11-12 2006-01-11 郑州知信机电科技开发有限公司 比例调节高压双液注浆泵
CA2669963C (en) * 2009-06-30 2016-02-02 Casey Moroschan Methods of lifting settled foundations
GB2512084A (en) * 2013-03-19 2014-09-24 Control Tech Ltd Pump control
CN103510968A (zh) * 2013-10-22 2014-01-15 北京交通大学 富水软弱地层盾构穿越建筑物的微扰动注浆方法
CN103821039B (zh) * 2014-02-28 2015-05-06 中铁第四勘察设计院集团有限公司 用于软土地区高速铁路无砟轨道路基的纠偏方法
CN111119260B (zh) * 2019-12-26 2021-07-02 杭州敦固建筑特种工程有限公司 一种运用动态监测及动态加固的纠偏方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144503A (ja) * 2008-12-22 2010-07-01 Sakamoto Yoshio 建物傾斜修復配管装置
CN101487274A (zh) * 2009-02-23 2009-07-22 北京交通大学 一种城市隧道穿越既有建(构)筑物注浆抬升方法
CN103485268A (zh) * 2013-10-01 2014-01-01 曾胜 一种公路信息化智能注浆系统
US20160312429A1 (en) * 2013-12-16 2016-10-27 Heisei Techno's Co., Ltd. Ground improvement method
CN209338921U (zh) * 2018-10-19 2019-09-03 北京恒祥宏业基础加固技术有限公司 一种高速铁路路基不均匀沉降加固抬升调平结构
CN109750658A (zh) * 2018-12-28 2019-05-14 中国铁道科学研究院集团有限公司铁道建筑研究所 注浆控制方法和注浆系统
CN109722956A (zh) * 2019-01-23 2019-05-07 中国铁道科学研究院集团有限公司铁道建筑研究所 高速铁路注浆抬升方法和注浆材料

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115182363A (zh) * 2022-08-01 2022-10-14 浙江大学 一种基于微生物矿化的边坡加固装置与方法
CN116044312A (zh) * 2023-04-03 2023-05-02 湖南大学 一种可以实时监测注浆压力的曲线高压旋喷注浆钻头

Also Published As

Publication number Publication date
CN114517481A (zh) 2022-05-20

Similar Documents

Publication Publication Date Title
WO2022105429A1 (zh) 一种既有建筑物注浆加固抬升智能监控方法、装置、系统及计算机可读存介质
WO2019206241A1 (zh) 一种桩基础承台结构沉降加固顶升调平结构及其施工方法
CN109029349A (zh) 基于gps定位的沉降监测装置及监测方法
CN204530508U (zh) 一种针对桥梁悬臂施工不对称梁段的连续平衡配重系统
CN103308125B (zh) 一种管道流动稳定控制方法
CN109086519B (zh) 自适应施工环境的灌浆参数计算方法及系统
CN108951725A (zh) 基于物联网技术的搅拌桩施工质量自适应监控方法及系统
CN109958231A (zh) 一种大管径厚壁斜钢管混凝土柱施工方法
CN107724559A (zh) 既有建筑隔震加固施工流程
CN113465677B (zh) 一种直联插入式振动器的混凝土振捣质量监测装置及方法
CN104213708A (zh) 一种无锚固螺栓防火墙整体施工方法
CN206428698U (zh) 一种导管架基础精定位及临时锁定装置
CN106638720B (zh) 逆作法一柱一桩双联置换式全过程测量系统及方法
CN107587770A (zh) 连体仓同步滑模施工方法
KR101807942B1 (ko) 온도제어가 되는 슬립폼을 갖는 인양 시스템, 및 인양방법
CN207567834U (zh) 混凝土桩基超灌自动提醒装置
CN208476241U (zh) 基于gps定位的沉降监测装置
CN112900425A (zh) 一种水泥土搅拌桩智能化操作方法
CN103741726A (zh) 一种沉井沉降量测量方法
CN110130335A (zh) 一种地下室填砾灌浆抗浮锚杆的施工方法
CN104264720A (zh) 一种堆载试验方法
CN212582653U (zh) 一种边坡内部溶洞的处理结构
CN107357332A (zh) 一种混凝土最高温度控制方法及装置
CN208763077U (zh) 一种灌注混凝土液面位置监测仪
CN114108720A (zh) 一种既有建筑物注浆加固抬升实时监控方法、系统及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893580

Country of ref document: EP

Kind code of ref document: A1