WO2022105166A1 - 双极化阵列天线 - Google Patents

双极化阵列天线 Download PDF

Info

Publication number
WO2022105166A1
WO2022105166A1 PCT/CN2021/095622 CN2021095622W WO2022105166A1 WO 2022105166 A1 WO2022105166 A1 WO 2022105166A1 CN 2021095622 W CN2021095622 W CN 2021095622W WO 2022105166 A1 WO2022105166 A1 WO 2022105166A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
connector
dual
polarized
antenna unit
Prior art date
Application number
PCT/CN2021/095622
Other languages
English (en)
French (fr)
Inventor
包晓军
刘远曦
李琳
刘会涛
黄辉
刘航
辛永豪
Original Assignee
广东纳睿雷达科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东纳睿雷达科技股份有限公司 filed Critical 广东纳睿雷达科技股份有限公司
Publication of WO2022105166A1 publication Critical patent/WO2022105166A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the present invention relates to the technical field of antennas, in particular to a dual-polarized array antenna.
  • Dual-polarization phased array antennas are widely used in radar, mobile communication, remote sensing and telemetry.
  • the dual-polarization mode of operation enables the system to provide additional polarization information parameters, making the radar system more efficient.
  • the sensitivity and target detection accuracy are effectively improved.
  • the traditional dual-polarized array implementations include dual-polarized microstrip arrays and dual-polarized waveguide slot antennas.
  • dual-polarized microstrip arrays have the advantages of low profile, light weight, and easy to achieve dual-polarized radiation. , but when its operating frequency is high and the feeder length is long, its loss is large, and the antenna gain and efficiency are reduced.
  • the polarized waveguide slot antenna has high radiation efficiency and low loss, but due to the limitation of its structure, the distance between adjacent antenna subarrays is large, which limits its maximum scanning angle.
  • Each polarization adopts different structures and the radiation slits are not on the same plane, resulting in a large difference in the radiation performance, and the complex structure requires extremely high processing accuracy.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention proposes a dual-polarized array antenna, which has the advantages of high radiation efficiency, low loss and high radiation performance consistency.
  • the dual-polarized array antenna includes: a dual-polarized antenna unit having a horizontal polarization end and a vertical polarization end, the horizontal polarization end is connected with a first connector, and the The vertical polarized end is connected with a second connector;
  • the waveguide feeding network includes a first waveguide and a second waveguide arranged under the dual-polarized antenna unit, and a third waveguide is arranged on the upper side of the first waveguide A connector, a fourth connector is provided on the upper side of the second waveguide; wherein the first connector is detachably connected to the third connector, and the second connector and the fourth connector Detachable connection.
  • the dual-polarized array antenna has at least the following beneficial effects: the dual-polarized antenna unit is provided with a horizontal polarization end and a vertical polarization end, wherein the horizontal polarization end is used for receiving feed and transmitting horizontal polarization Signal, the vertical polarized end is used to receive the feed and transmit the vertical polarized signal, the corresponding waveguide signal is transmitted in the first waveguide and the second waveguide, the first waveguide is provided with a third connector, the third connector The waveguide signal in the first waveguide can be coupled and converted into a coaxial signal output, the second waveguide is provided with a fourth connector, and the fourth connector can couple and convert the waveguide signal in the second waveguide into the same signal.
  • Axial signal output, the horizontal polarized end of the dual-polarized antenna unit is connected with a first connector, and the vertical polarized end is connected with a second connector, the first connector can be connected with the third connector to receive the third connector The second connector can be connected with the fourth connector to receive the coaxial signal of the fourth connector.
  • the array antenna it has the advantages of high radiation efficiency, low loss and wide operating frequency band; and the signals of the first waveguide and the second waveguide are both coupled and output with the upper side, compared with the dual-polarized waveguide slot antenna.
  • the waveguide feed is connected through the first connector, the second connector, the third connector and the fourth connector Network and dual polarized antenna units for easy installation, removal and independent commissioning.
  • the third connector includes: a third coaxial joint, a lower end of the third coaxial joint passing through the upper side of the first waveguide and toward the inner cavity of the first waveguide extending; a third probe, the third probe is located in the inner cavity of the first waveguide and is connected with the lower end of the third coaxial joint.
  • the fourth connector includes: a fourth coaxial joint, and a lower end of the fourth coaxial joint passes through the upper side of the second waveguide and is directed toward the inner cavity of the second waveguide extending; a fourth probe, the fourth probe is located in the inner cavity of the second waveguide and is connected with the lower end of the fourth coaxial joint.
  • both the first waveguide and the second waveguide extend in a longitudinal direction, and a plurality of the dual-polarized antenna units are sequentially arranged in the first waveguide and the second waveguide along the longitudinal direction.
  • a line array is formed on the two waveguides.
  • a plurality of the line arrays are sequentially arranged in the lateral direction to form an area array.
  • the dual polarized antenna unit may be one of a microstrip antenna unit, a dual polarized dipole unit or a dual polarized vivodi antenna.
  • the dual-polarized antenna unit is the microstrip antenna unit, and the first connector and the second connector are respectively connected to the microstrip line of the microstrip antenna unit. connect.
  • the first waveguide and the second waveguide have the same structure.
  • the distance between the left and right sides of the first waveguide is less than 0.25 times the wavelength.
  • the waveguide feeding network is a waveguide traveling wave feeding network or a waveguide standing wave feeding network.
  • FIG. 1 is a schematic structural diagram of one of the linear arrays of a dual-polarized array antenna according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a dual-polarized array antenna according to an embodiment of the present invention.
  • FIG. 3 is a bottom view of a microstrip antenna unit according to an embodiment of the present invention.
  • FIG. 4 is a radiation pattern of a dual-polarized array antenna according to an embodiment of the present invention.
  • FIG. 5 is an exploded view of the structure of the first waveguide and the third connector according to the embodiment of the present invention.
  • the azimuth description such as the azimuth or position relationship indicated by up, down, front, rear, left, right, etc.
  • the azimuth description is based on the azimuth or position relationship shown in the drawings, only In order to facilitate the description of the present invention and simplify the description, it is not indicated or implied that the indicated device or element must have a particular orientation, be constructed and operated in a particular orientation, and therefore should not be construed as limiting the present invention.
  • a dual-polarized array antenna includes a dual-polarized antenna unit 100 and a waveguide feeding network 200 .
  • the dual-polarized antenna unit 100 has a horizontal polarized end and a vertical polarized end, the horizontal polarized end is connected with the first connector 120, and the vertical polarized end is connected with the second connector 130;
  • the waveguide feeding network 200 includes a set of The first waveguide 210 and the second waveguide 220 under the dual-polarized antenna unit 100 are provided with a third connector 230 on the upper side of the first waveguide 210 and a fourth connector 240 on the upper side of the second waveguide 220 ;
  • the first connector 120 and the third connector 230 are detachably connected, and the second connector 130 and the fourth connector 240 are detachably connected.
  • the dual polarized antenna unit 100 is provided with a horizontal polarized end and a vertical polarized end, wherein the horizontal polarized end is used to receive the feed and send the horizontally polarized signal, and the vertical polarized end is used to receive the feed and send the vertical polarized signal , corresponding waveguide signals are transmitted in the first waveguide 210 and the second waveguide 220 , the first waveguide 210 is provided with a third connector 230 , and the third connector 230 can connect the waveguide signals in the first waveguide 210
  • the second waveguide 220 is provided with a fourth connector 240, and the fourth connector 240 can couple the waveguide signal in the second waveguide 220 and convert it into a coaxial signal output,
  • the horizontal polarized end of the dual-polarized antenna unit 100 is connected to the first connector 120, and the vertical polarized end is connected to the second connector 130.
  • the first connector 120 can be connected to the third connector 230 to receive the third connection
  • the second connector 130 can be connected to the fourth connector 240 to receive the coaxial signal of the fourth connector 240, and through this arrangement, the waveguide feeding network 200 and the dual-polarized antenna unit are realized 100 connection and signal transmission, both the horizontal polarized end and the vertical polarized end of the dual-polarized antenna unit 100 are fed to realize signal radiation; It has the advantages of high radiation efficiency, low loss and wide operating frequency band; the signals of the first waveguide 210 and the second waveguide 220 are coupled and output on the upper side, and there is no need to open radiation slots on different surfaces of the waveguide, The requirements for processing accuracy are low and the radiation performance is highly consistent; the waveguide feeding network 200 and the dual-polarized antenna unit 100 are connected through the first connector 120, the second connector 130, the third connector 230 and the fourth connector 240, which is convenient for Installation, removal and independent commissioning.
  • first connector 120 , the second connector 130 , the third connector 230 and the fourth connector 240 can all be radio frequency connectors, and the connection method between the radio frequency connectors is the skill of those skilled in the art. It is common knowledge and will not be repeated here.
  • the third connector 230 includes a third coaxial joint 231 and a third probe 232 , and the lower end of the third coaxial joint 231 passes through the upper side of the first waveguide 210 and goes into the cavity of the first waveguide 210 Extending, the third probe 232 is located in the inner cavity of the first waveguide 210 and is connected with the lower end of the third coaxial joint 231 .
  • the third connector 230 is the coupling output end of the first waveguide 210
  • the third probe 232 is disposed in the first waveguide 210 and is coupled with the electric field in the first waveguide 210
  • the third probe 232 is arranged in an L-shape.
  • the L-shaped probe includes a horizontal bar and a vertical bar that are connected to each other.
  • the vertical bar is connected to the third coaxial joint 231.
  • the horizontal bar is oriented in the left-right direction. In the actual use process , the transverse bars are arranged parallel to the direction of the electric field in the first waveguide 210 .
  • the total length of the L-shaped probe can be used for the output phase of the coupling output, and the length of the crossbar can be used to adjust the output amplitude of the coupling output.
  • the fourth connector 240 has the same structure as the third connector 230 .
  • the first connector 120 is a first coaxial connector
  • the first coaxial connector can be electrically connected to the horizontally polarized end of the dual-polarized antenna unit 100 through a signal line or a probe (not shown in the figure).
  • the first coaxial connector can be directly connected with the third coaxial connector 231 or through a coaxial cable
  • the second connector 130 is a second coaxial connector
  • the second coaxial connector can be connected by a signal line or a probe (not shown in the figure) is electrically connected to the vertical polarized end of the dual-polarized antenna unit 100
  • the second coaxial connector can be directly connected to the fourth coaxial connector 241 or connected through a coaxial cable.
  • the manner of disposing the coaxial joint on the unit 100 is the common knowledge of those skilled in the art, and will not be repeated here.
  • first waveguide 210 and the second waveguide 220 both extend in the longitudinal direction, and a plurality of dual-polarized antenna units 100 are sequentially arranged on the first waveguide 210 and the second waveguide 220 in the longitudinal direction to form a line array.
  • the first waveguide 210 and the second waveguide 220 are rectangular tubes, the longitudinal direction is the front-rear direction, the first waveguide 210 and the second waveguide are arranged to extend in the longitudinal direction, and the first waveguide 210 and the second waveguide are The tubes 220 fit together during installation, which can reduce the structure size and installation space.
  • Multiple dual-polarized antenna units 100 are sequentially arranged on the first waveguide 210 and the second waveguide 220 in the longitudinal direction to form a line array.
  • the line array can realize One-dimensional scan.
  • the third connector 230 and the fourth connector 240 are both radio frequency connectors.
  • the third connector 230 includes a third coaxial joint 231 and the third probe 232
  • the third probe 232 is an L-shaped probe
  • the third coaxial joint 231 is arranged on the upper side of the first waveguide 210
  • the third probe 232 is arranged in the inner cavity of the first waveguide 220 and Connected with the lower end of the third coaxial joint 231
  • the third probe 232 includes a horizontal bar and a vertical bar connected to each other, the vertical bar is connected with the third coaxial connector 231, and the horizontal bar is oriented in the left-right direction.
  • the transverse bars are arranged parallel to the direction of the electric field in the first waveguide 210
  • the transverse bars of the adjacent two third probes 232 on the first waveguide 230 are oriented oppositely, passing through the adjacent two third probes 232
  • the horizontal bars of the s are in the opposite direction, a 180° phase difference is introduced between two adjacent coupling output ports, plus the spatial phase difference between the two adjacent output ports, the spatial phase difference is about 180°, which corresponds to ⁇ g/2, and the output is achieved.
  • the phases are close to in-phase or have a small phase difference.
  • the arrangement of the fourth connector 240 is the same as that of the third connector 230 .
  • each coupling output port can be calculated according to the required Taylor window function distribution, so that each third connector 230 is respectively arranged on the first waveguide 210 according to the coupling power amplitude, and The fourth connectors 240 are respectively disposed on the second waveguide 220 .
  • the first waveguide 210 and the second waveguide 220 are both rectangular tubes, the lateral direction is the left-right direction, and a plurality of line arrays are arranged in sequence along the left-right direction to form a surface array, and the surface array can realize a two-dimensional plane electrical scanning, thereby increasing the scanning range and angle, and since the first waveguide 210 and the second waveguide 220 of each line array are both coupled and output on the upper side, the first waveguide 210 of each line array is The two sides that are close to the second waveguide 220 can be set to fit together, so that the space occupied by each line array can be reduced, so that the distance between two adjacent line arrays can be set to be small enough, so as to obtain a relatively small space. Large scanning angle.
  • the upper sides of the first waveguide 210 and the second waveguide 220 are both narrow surfaces, and by performing coupling output on the narrow surfaces of the first waveguide 210 and the second waveguide 220, the adjacent two The distance between the line arrays.
  • the dual polarized antenna unit may be one of a microstrip antenna unit, a dual polarized dipole unit, or a dual polarized vivodi antenna.
  • the dual-polarized antenna unit 100 is a microstrip antenna unit, and the first connector 120 and the second connector 130 are respectively electrically connected to the microstrip line of the microstrip antenna unit.
  • the top layer of the microstrip antenna unit is the radiation patch 110
  • the bottom layer is the microstrip line.
  • the microstrip line includes a microstrip line for transmitting horizontally polarized signals and a microstrip line for transmitting vertically polarized signals, and the microstrip line for transmitting horizontally polarized signals is connected to the horizontally polarized end, that is, the first connector 120
  • the first end of the vertical polarization signal is connected to the vertical polarization end, that is, the first end of the second connector 130, and the second end of the first connector 120 is connected to the third connector 230.
  • the second ends of the second connectors 130 are connected to the fourth connector 240 .
  • the first connector 120 and the second connector 130 are respectively connected to the corresponding microstrip lines, and the horizontal polarized end and the vertical polarized end of the microstrip antenna unit share a radiation patch 110 to realize common aperture radiation, with high space utilization and high efficiency.
  • the volume and weight of the antenna can be reduced, and the horizontal polarized end and the vertical polarized end share one radiation patch 110, which can effectively reduce the spacing between adjacent line arrays, thereby achieving a larger scanning angle.
  • the microstrip antenna unit It has the advantages of low profile, easy realization of dual polarization, low cost and high machining accuracy.
  • first waveguide 210 and the second waveguide 220 have the same structure.
  • the first waveguide 210 and the second waveguide 220 use the same structure, which further ensures the consistency of the radiation performance of the first waveguide 210 and the second waveguide 220, and does not need to process different waveguides separately, effectively Reduce processing difficulty.
  • the distance between the left and right sides of the first waveguide 210 is less than 0.25 times the wavelength.
  • the structures of the first waveguide 210 and the second waveguide 220 are the same, and the left and right sides of the first waveguide 210 are set to be less than 0.25 times the wavelength, so that the widths of the first waveguide 210 and the second waveguide 220 after being fitted together are different. More than 0.5 times the wavelength, a plurality of dual-polarized antenna units 100 are sequentially arranged on the first waveguide 210 and the second waveguide 220 to form a line array, and then the plurality of line arrays form an area array, because the width of each line array is different. More than 0.5 times the wavelength, so the spacing between each line array can be set small enough to achieve a larger angle of scanning.
  • this wavelength is defined as the ratio of the speed of light in vacuum to the operating frequency of the dual-polarized array antenna.
  • the waveguide feeding network 200 is a waveguide traveling wave feeding network or a waveguide standing wave feeding network.
  • the efficiency of the waveguide traveling wave feed network is worse than that of the waveguide standing wave feed network, but the bandwidth of the waveguide standing wave feed network is narrower when the size is large, so it is suitable for small array antennas.
  • the electrical network can maintain a wide bandwidth when it is large in size.
  • the waveguide traveling wave feed network is used to form a large antenna array, the multiple coupling output terminals set on it will output the signal to the antenna unit, reducing the signal in the waveguide. Therefore, the waveguide traveling wave feeding network is suitable for forming a large-scale array antenna.
  • a C-band dual-polarized array antenna is designed according to the above-mentioned embodiment of the present invention, and the array antenna is described below with a specific embodiment.
  • the dual-polarized antenna unit 100 of the array antenna is a microstrip antenna unit.
  • the microstrip antenna unit is provided with a dielectric plate, the thickness of the dielectric plate is 1.5 mm, the relative permittivity of the dielectric plate is 3.66, and the length of the dielectric plate is The width is 29mm, the distance between the first connector 120 and the second connector 130 is 12mm, the waveguide feeding network 200 is a waveguide traveling wave feeding network, the distance between the left and right sides of the first waveguide 210 is 12mm, and the first waveguide
  • the tube 210 is provided with 32 coupling output ends along the front and rear directions, the spacing between each coupling output end is 35mm, and the power of the 32 coupling output ends is distributed according to Taylor weighting respectively.
  • the structure of the second waveguide 220 and the first waveguide 210 are exactly the same.
  • the first waveguide 210 and the second waveguide 220 feed 32 microstrip antenna elements through corresponding connectors to form a line array
  • the 8 line arrays are arranged at intervals in the left and right directions to form an area array.
  • the horizontal polarization direction and the vertical polarization direction of the dual-polarized antenna array have a high degree of consistency.
  • the output ends are on the same plane, and the dual-polarized antenna units 100 radiate with a common aperture.
  • first connector 120 , the second connector 130 , the third connector 230 and the fourth connector 240 in the above embodiments of the present invention may be specifically SMP connectors or SMA connectors.
  • first waveguide One end of the two ends of the pipe 210 in the front and rear directions is connected with an antenna feed (not shown in the figure), and the other end is connected with a waveguide load (not shown in the figure).
  • the second waveguide 220 is the same as the first waveguide 210 .

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明公开了一种双极化阵列天线,包括双极化天线单元和波导馈电网络,其中双极化天线单元具有水平极化端和垂直极化端,水平极化端连接有第一连接器,垂直极化端连接有第二连接器,波导馈电网络包括设置于双极化天线单元下方的第一波导管和第二波导管,第一波导管上侧设置有第三连接器,第二波导管上侧设置有第四连接器,第一连接器与第三连接器可拆卸连接,第二连接器与第四连接器可拆卸连接。该天线具有辐射效率高、损耗低及工作频带宽的优点,第一波导管和第二波导管均于上侧面进行耦合输出,辐射性能一致性高,通过第一连接器、第二连接器、第三连接器和第四连接器连接波导馈电网络和双极化天线单元,便于安装、拆卸以及独立调试。

Description

双极化阵列天线 技术领域
本发明涉及天线技术领域,特别涉及一种双极化阵列天线。
背景技术
双极化相控阵天线在雷达、移动通信以及遥感遥测等领域有着较为广泛的应用,对于雷达系统来说,双极化的工作方式使得系统可以提供额外的极化信息参数,使得雷达系统的灵敏度及目标探测精度得到有效提高。
传统的双极化阵列的实现方式有双极化微带阵列以及双极化波导缝隙天线,其中:双极化微带阵列具有低剖面,轻量化的优点,且易于实现双极化辐射的特点,但当其工作频率较高,馈线长度较长时,其损耗较大、天线增益及效率降低,同时由于其受印制电路板加工工艺限制,加工尺寸受限,不适合组成大型阵列;双极化波导缝隙天线具有较高的辐射效率,较低的损耗,但由于其结构的限制,相邻天线子阵间距较大,限制了其最大扫描角,另外,双极化波导缝隙天线的两个极化采用了不同的结构且辐射缝隙不在同一面上,造成了其辐射性能差异较大,且结构复杂,对加工精度要求极高。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种双极化阵列天线,具有辐射效率高、损耗低、辐射性能一致性高的优点。
根据本发明的第一方面实施例的双极化阵列天线,包括:双极化天线单元,具有水平极化端和垂直极化端,所述水平极化端连接有第一连接器,所述垂直极化端连接有第二连接器;波导馈电网络,包括设置于所述双极化天线单元下方的第一波导管和第二波导管,所述第一波导管上侧设置有第三连接器,所述第二波导管上侧设置有第四连接器;其中,所述第一连接器与所述第三连接器可拆卸连接,所述第二连接器与所述第四连接器可拆卸连接。
根据本发明实施例的双极化阵列天线,至少具有如下有益效果:双极化天线单元设置有水平极化端和垂直极化端,其中水平极化端用于接收馈电并发射水平极化信号,垂直极化端用于接收馈电并发射垂直极化信号,第一波导管和第二波导管内传输有相应的波导信号,第一波导管上设置有第三连接器,第三连接器可对第一波导管内的波导信号进行耦合并转换为同轴信号输出,第二波导管上设置有第四连接器,第四连接器可对第二波导管内的波导信号进行耦合并转换为同轴信号输出,双极化天线单元的水平极化端连接有第一连接器,垂直极化端连接有第二连接器,第一连接器可与第三连接器连接,从而接收第三连接器的同轴信号,第二连接器可与第四连接器连接,从而接收第四连接器的同轴信号,通过这样设置,实现了波导馈电网络和双极化天线单元的连接及信号传输,双极化天线单元的水平极化端和垂直极化端均得到馈电,实现信号辐射;本发明实施例的双极化阵列天线利用波导馈电网络进行馈电,相比于双极化微带阵列天线来说,具有辐射效率高、损耗低及工作频带宽的优点;并且第一波导管和第二波导管的信号均与上侧面进行耦合输出,相比于双极化波导缝隙天线来说,不需要在波导管的不同面上开设辐射缝隙,加工精度要求低且辐射性能一致性高;通过第一连接器、第二连接器、第三连接器和第四连接器连接波导馈电网络和双极化天线单元,便于安装、拆卸以及独立调试。
根据本发明的一些实施例,所述第三连接器包括:第三同轴接头,所述第三同轴接头的下端穿过所述第一波导管上侧面并向所述第一波导管内腔延伸;第三探针,所述第三探针位于所述第一波导管内腔并与所述第三同轴接头的下端连接。
根据本发明的一些实施例,所述第四连接器包括:第四同轴接头,所述第四同轴接头的下端穿过所述第二波导管上侧面并向所述第二波导管内腔延伸;第四探针,所述第四探针位于所述第二波导管内腔并与所述第四同轴接头的下端连接。
根据本发明的一些实施例,所述第一波导管和所述第二波导管均向纵向延 伸,多个所述双极化天线单元沿纵向依次设置在所述第一波导管和所述第二波导管上形成线阵列。
根据本发明的一些实施例,多个所述线阵列沿横向依次设置形成面阵列。
根据本发明的一些实施例,所述双极化天线单位可为微带天线单元、双极化偶极子单元或双极化vivaldi天线中的一种。
根据本发明的一些实施例,所述双极化天线单元为所述微带天线单元,所述第一连接器和所述第二连接器分别与所述微带天线单元的微带线电性连接。
根据本发明的一些实施例,所述第一波导管和所述第二波导管结构相同。
根据本发明的一些实施例,所述第一波导管的左右两边间距小于0.25倍波长。
在本发明的一些实施例中,所述波导馈电网络为波导行波馈电网络或波导驻波馈电网络。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明实施例的双极化阵列天线的其中一个线阵列的结构示意图;
图2为本发明实施例的双极化阵列天线的结构示意图;
图3为本发明实施例的微带天线单元的仰视图;
图4为本发明实施例的双极化阵列天线的辐射方向图;
图5为本发明实施例的第一波导管和第三连接器的结构爆炸图。
附图标记:
双极化天线单元100、辐射贴片110、第一连接器120、第二连接器130;
波导馈电网络200、第一波导管210、第二波导管220、第三连接器230、第三同轴接头231、第三探针232、第四连接器240、第四同轴接头241、第四探针 242。
具体实施方式
下面详细描述本发明的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,多个的含义是两个及两个以上,大于、小于等理解为不包括本数,如果有描述到第一、第二、第三、第四只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
参照图1,根据本发明实施例的双极化阵列天线,包括双极化天线单元100和波导馈电网络200。
其中,双极化天线单元100具有水平极化端和垂直极化端,水平极化端连接有第一连接器120,垂直极化端连接有第二连接器130;波导馈电网络200包括设置于双极化天线单元100下方的第一波导管210和第二波导管220,第一波导管210上侧设置有第三连接器230,第二波导管220上侧设置有第四连接器240;第一连接器120与第三连接器230可拆卸连接,第二连接器130与第四连接器240可拆卸连接。
双极化天线单元100设置有水平极化端和垂直极化端,其中水平极化端用于 接收馈电并发送水平极化信号,垂直极化端用于接收馈电并发送垂直极化信号,第一波导管210和第二波导管220内传输有相应的波导信号,第一波导管210上设置有第三连接器230,第三连接器230可对第一波导管210内的波导信号进行耦合并转换为同轴信号输出,第二波导管220上设置有第四连接器240,第四连接器240可对第二波导管220内的波导信号进行耦合并转换为同轴信号输出,双极化天线单元100的水平极化端连接有第一连接器120,垂直极化端连接有第二连接器130,第一连接器120可与第三连接器230连接,从而接收第三连接器230的同轴信号,第二连接器130可与第四连接器240连接,从而接收第四连接器240的同轴信号,通过这样设置,实现了波导馈电网络200和双极化天线单元100的连接及信号传输,双极化天线单元100的水平极化端和垂直极化端均得到馈电,实现信号辐射;本发明实施例的双极化阵列天线利用波导馈电网络200进行馈电,具有辐射效率高、损耗低及工作频带宽的优点;第一波导管210和第二波导管220的信号均于上侧面进行耦合输出,不需要在波导管的不同面上开设辐射缝隙,加工精度要求低且辐射性能一致性高;通过第一连接器120、第二连接器130、第三连接器230和第四连接器240连接波导馈电网络200和双极化天线单元100,便于安装、拆卸以及独立调试。
值得一提的是,第一连接器120、第二连接器130、第三连接器230和第四连接器240均可为射频连接器,射频连接器之间的连接方式为本领域技术人员的公知常识,此处不再进行赘述。
可以想到的是,第三连接器230包括第三同轴接头231和第三探针232,第三同轴接头231的下端穿过第一波导管210上侧面并向第一波导管210内腔延伸,第三探针232位于第一波导管210内腔并与第三同轴接头231的下端连接。
参照图1所示,第三连接器230为第一波导管210的耦合输出端,第三探针232设置于第一波导管210内,与第一波导管210内的电场进行耦合,第三探针232与电场耦合后产生感应电流并向第三同轴接头231输出,使得双极化天线单元100的水平极化端得到馈电。具体的,第三探针232呈L型设置,L型探针 包括相互连接的横杆和竖杆,竖杆与第三同轴接头231连接,横杆的朝向为左右方向,在实际使用过程中,横杆平行于第一波导管210内电场的方向设置。
值得一提的是,L型探针的总长度可以用来该耦合输出端的输出相位,横杆的长度可以用来调整该耦合输出端的输出幅度。
可以想到的是,第四连接器240与第三连接器230结构相同。
值得一提的是,第一连接器120为第一同轴接头,并且第一同轴接头可通过信号线或者探针(图未示出)与双极化天线单元100的水平极化端电性连接,第一同轴接头可与第三同轴接头231直接连接或是通过同轴线连接,第二连接器130为第二同轴接头,第二同轴接头可通过信号线或者探针(图未示出)与双极化天线单元100的垂直极化端电性连接,第二同轴接头可与第四同轴接头241直接连接或是通过同轴线连接,在双极化天线单元100上设置同轴接头的方式为本领域技术人员的公知常识,此处不再进行赘述。
可以想到的是,第一波导管210和第二波导管220均向纵向延伸,多个双极化天线单元100沿纵向依次设置在第一波导管210和第二波导管220上形成线阵列。
参照图2所示,第一波导管210和第二波导管220为矩形管,纵向为前后方向,第一波导管210和第二波导沿纵向延伸设置,并且第一波导管210和第二波导管220在设置时贴合,可减少结构尺寸和安装空间,多个双极化天线单元100沿纵向依次设置于第一波导管210和第二波导管220上,形成线阵列,线阵列可实现一维电扫。
具体的,参照图2和图5所示,第三连接器230和第四连接器240均为射频连接器,以第一波导管210为例,第三连接器230包括第三同轴接头231和第三探针232,第三探针232为L型探针,第三同轴接头231设置于第一波导管210的上侧面,第三探针232设置于第一波导管220内腔并与第三同轴接头231的下端连接,第三探针232包括相互连接的横杆和竖杆,竖杆与第三同轴接头231连接,横杆的朝向为左右方向,在实际使用过程中,横杆平行于第一波导管210 内电场的方向设置,在第一波导管230上的相邻两个第三探针232的横杆的朝向相反,通过相邻两个第三探针232的横杆朝向相反,在相邻两个耦合输出端口之间引入180°相位差,加上两相邻输出端口间的空间相位差,空间相位差约180°其与λg/2对应,达到输出相位接近于同相或具有小相位差。第四连接器240的设置方式与第三连接器230的设置方式相同。
值得一提的是,可根据所需泰勒窗函数分布,计算得到每个耦合输出端口的耦合功率幅度,从而根据耦合功率幅度分别将各个第三连接器230设置于第一波导管210上,以及分别将各个第四连接器240设置于第二波导管220上。
可以想到的是,多个线阵列沿横向依次设置形成面阵列。
参照图2所示,第一波导管210和第二波导管220均为矩形管,横向为左右方向,多个线阵列沿左右方向依次设置,组成面阵列,面阵列可实现二维平面的电扫,从而增大扫描范围和角度,并且,因为每个组成线阵列的第一波导管210和第二波导管220均是在上侧面进行耦合输出,所以每个线阵列的第一波导管210和第二波导管220的相靠近的两面可以设置为贴合在一起,使每个线阵列占用的空间减少,进而使得相邻两个线阵列之间的间距可设置得足够小,从而获得较大的扫描角度。
进一步的,第一波导管210和第二波导管220的上侧面均为窄面,通过在第一波导管210和第二波导管220的窄面上进行耦合输出,可以进一步减小相邻两线阵之间的距离。
可以想到的是,双极化天线单位可为微带天线单元、双极化偶极子单元或双极化vivaldi天线中的一种。
微带天线单元,双极化偶极子单元和双极化vivaldi均具有水平极化端和垂直极化端,便于实现天线阵列的双极化。
可以想到的是,双极化天线单元100为微带天线单元,第一连接器120和第二连接器130分别与微带天线单元的微带线电性连接。
如图1至图3所示,微带天线单元的顶层为辐射贴片110,底层为微带线。 微带线包括用于传输水平极化信号的微带线和用于传输垂直极化信号的微带线,用于传输水平极化信号的微带线连接水平极化端即第一连接器120的第一端,用于传输垂直极化信号的微带线连接垂直极化端即第二连接器130的第一端,第一连接器120的第二端与第三连接器230连接,第二连接器130的第二端与第四连接器240连接。第一连接器120和第二连接器130分别连接对应的微带线,微带天线单元的水平极化端和垂直极化端共用一个辐射贴片110,实现共口径辐射,空间利用率高且可减少天线的体积和重量,并且,水平极化端和垂直极化端共用一个辐射贴片110可有效减小相邻线阵列的间距,从而实现较大的扫描角度,另外,微带天线单元具有低剖面、易于实现双极化、成本低及加工精度高的优点。
可以想到的是,第一波导管210和第二波导管220结构相同。
第一波导管210和第二波导管220采用相同的结构,进一步保障了第一波导管210和第二波导管220辐射性能的一致性,且不需要分别对不同的波导管进行加工,有效的降低加工难度。
可以想到的是,第一波导管210的左右两边间距小于0.25倍波长。
第一波导管210和第二波导管220的结构相同,并且第一波导管210的左右两边设置为小于0.25倍波长,使得第一波导管210和第二波导管220贴合设置后的宽度不超过0.5倍波长,多个双极化天线单元100依次设置在第一波导管210和第二波导管220上形成线阵列,然后多个线阵列形成面阵列后,因为每个线阵列的宽度不超过0.5倍波长,所以各个线阵列之间的间距可以设置得足够小,从而实现较大角度的扫描。
值得一提的是,该波长定义为真空中的光速与双极化阵列天线工作频率的比值。
可以想到的是,波导馈电网络200为波导行波馈电网络或波导驻波馈电网络。
在相同尺寸时,波导行波馈电网络的效率比波导驻波馈电网络的差,但是波导驻波馈电网络在大尺寸时带宽较窄,因此适用于小型的阵列天线,波导行波馈 电网络在大尺寸时可以保持较宽的带宽,当波导行波馈电网络用于组成大型天线阵列时,在其上设置的多个耦合输出端将信号向天线单元输出,减少信号在波导管内的损耗,提高效率,因此波导行波馈电网络适用于组成大型的阵列天线。
根据本发明的上述实施例设计了一种C波段双极化阵列天线,下面以一个具体的实施例来描述该阵列天线。
其中该阵列天线的双极化天线单元100为微带天线单元,微带天线单元内设置有介质板,介质板的厚度为1.5mm,介质板的相对介电常数为3.66,介质板的长度和宽度均为29mm,第一连接器120和第二连接器130的间距为12mm,波导馈电网络200为波导行波馈电网络,第一波导管210的左右两边间距为12mm,且第一波导管210上沿前后方向设置有32个耦合输出端,每个耦合输出端的间距为35mm,32个耦合输出端的功率分别按照泰勒加权分布,第二波导管220与第一波导管210的结构完全相同,第一波导管210和第二波导管220通过相应的连接器对32个微带天线单元进行馈电并形成线阵列,8个线阵列在左右方向间隔依次设置形成面阵。
参照图4所示,该双极化天线阵列的水平极化方向和垂直极化方向具有高度的一致性,这得益于第一波导管210和第二波导管220为完全相同的结构,耦合输出端在同一面上,并且双极化天线单元100共口径辐射。
值得一提的是,上述中本发明实施例的第一连接器120、第二连接器130、第三连接器230和第四连接器240可具体为SMP接头或SMA接头,另外,第一波导管210前后方向两端中的一端连接有天线馈源(图未示出),另一端连接波导负载(图未示出),第二波导管220与第一波导管210相同。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (10)

  1. 一种双极化阵列天线,其特征在于,包括:
    双极化天线单元,具有水平极化端和垂直极化端,所述水平极化端连接有第一连接器,所述垂直极化端连接有第二连接器;
    波导馈电网络,包括设置于所述双极化天线单元下方的第一波导管和第二波导管,所述第一波导管上侧设置有第三连接器,所述第二波导管上侧设置有第四连接器;
    其中,所述第一连接器与所述第三连接器可拆卸连接,所述第二连接器与所述第四连接器可拆卸连接。
  2. 根据权利要求1所述的双极化阵列天线,其特征在于,所述第三连接器包括:
    第三同轴接头,所述第三同轴接头的下端穿过所述第一波导管上侧面并向所述第一波导管内腔延伸;
    第三探针,所述第三探针位于所述第一波导管内腔并与所述第三同轴接头的下端连接。
  3. 根据权利要求1所述的双极化阵列天线,其特征在于,所述第四连接器包括:
    第四同轴接头,所述第四同轴接头的下端穿过所述第二波导管上侧面并向所述第二波导管内腔延伸;
    第四探针,所述第四探针位于所述第二波导管内腔并与所述第四同轴接头的下端连接。
  4. 根据权利要求1所述的双极化阵列天线,其特征在于:所述第一波导管和所述第二波导管均向纵向延伸,多个所述双极化天线单元沿纵向依次设置在所述第一波导管和所述第二波导管上形成线阵列。
  5. 根据权利要求4所述的双极化阵列天线,其特征在于:多个所述线阵列 沿横向依次设置形成面阵列。
  6. 根据权利要求1‐5中任一项所述的双极化阵列天线,其特征在于:所述双极化天线单元可为微带天线单元、双极化偶极子单元或双极化vivaldi天线中的一种。
  7. 根据权利要求6所述的双极化阵列天线,其特征在于,所述双极化天线单元为所述微带天线单元,所述第一连接器和所述第二连接器分别与所述微带天线单元的微带线电性连接。
  8. 根据权利要求1‐5中任一项所述的双极化阵列天线,其特征在于:所述第一波导管和所述第二波导管结构相同。
  9. 根据权利要求8所述的双极化阵列天线,其特征在于:所述第一波导管的左右两边间距小于0.25倍波长。
  10. 根据权利要求1‐5中任一项所述的双极化阵列天线,其特征在于:所述波导馈电网络为波导行波馈电网络或波导驻波馈电网络。
PCT/CN2021/095622 2020-11-17 2021-05-25 双极化阵列天线 WO2022105166A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011283480.9 2020-11-17
CN202011283480.9A CN112490660A (zh) 2020-11-17 2020-11-17 双极化阵列天线

Publications (1)

Publication Number Publication Date
WO2022105166A1 true WO2022105166A1 (zh) 2022-05-27

Family

ID=74931343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095622 WO2022105166A1 (zh) 2020-11-17 2021-05-25 双极化阵列天线

Country Status (2)

Country Link
CN (1) CN112490660A (zh)
WO (1) WO2022105166A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116598798A (zh) * 2023-06-16 2023-08-15 西安交通大学 一种k波段宽角扫描相控阵天线单元及天线阵列

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112490660A (zh) * 2020-11-17 2021-03-12 广东纳睿雷达科技股份有限公司 双极化阵列天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474787A (zh) * 2013-07-30 2013-12-25 安徽四创电子股份有限公司 双极化平面阵列卫星电视接收天线
KR20170114410A (ko) * 2016-04-04 2017-10-16 주식회사 케이엠더블유 이중편파 혼 안테나
CN111600106A (zh) * 2020-06-17 2020-08-28 北京无线电测量研究所 一种波导同轴转换器
CN111740233A (zh) * 2020-08-17 2020-10-02 星展测控科技股份有限公司 双极化开口波导阵列天线及通信装置
CN112490660A (zh) * 2020-11-17 2021-03-12 广东纳睿雷达科技股份有限公司 双极化阵列天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474787A (zh) * 2013-07-30 2013-12-25 安徽四创电子股份有限公司 双极化平面阵列卫星电视接收天线
KR20170114410A (ko) * 2016-04-04 2017-10-16 주식회사 케이엠더블유 이중편파 혼 안테나
CN111600106A (zh) * 2020-06-17 2020-08-28 北京无线电测量研究所 一种波导同轴转换器
CN111740233A (zh) * 2020-08-17 2020-10-02 星展测控科技股份有限公司 双极化开口波导阵列天线及通信装置
CN112490660A (zh) * 2020-11-17 2021-03-12 广东纳睿雷达科技股份有限公司 双极化阵列天线

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116598798A (zh) * 2023-06-16 2023-08-15 西安交通大学 一种k波段宽角扫描相控阵天线单元及天线阵列
CN116598798B (zh) * 2023-06-16 2024-02-20 西安交通大学 一种k波段宽角扫描相控阵天线单元及天线阵列

Also Published As

Publication number Publication date
CN112490660A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
CN107342458B (zh) 一种角馈式宽带高隔离度双极化天线
US7180457B2 (en) Wideband phased array radiator
TWI547015B (zh) 二維天線陣列、一維天線陣列及其單差動饋入天線
WO2022105166A1 (zh) 双极化阵列天线
JP3029231B2 (ja) 二重円形偏波temモードのスロットアレーアンテナ
JPH0416961B2 (zh)
CN107069188B (zh) 低剖面高效率双极化平板天线
CN101944657B (zh) 一种组合形式双线极化阵列天线
US20120081255A1 (en) Waveguide or slot radiator for wide e-plane radiation pattern beamwidth with additional structures for dual polarized operation and beamwidth control
EP1018778B1 (en) Multi-layered patch antenna
CN106450781A (zh) 宽频带缝隙天线
CN207947379U (zh) 一种结构紧凑的轻质高效缝隙天线及天线阵
KR20200132618A (ko) 시프트 직렬 급전을 이용한 이중편파 안테나
CN116742362B (zh) 宽带高功率容量双极化天线阵列
CN109103595B (zh) 双向双极化天线
CN111541021B (zh) 一种双极化波导馈电的阵列天线
CN218569233U (zh) 一种差分馈电的非对称天线阵列
CN105356049B (zh) 一种直联双极化微带阵列天线
CN214068900U (zh) 双极化阵列天线
CN114243280B (zh) 超宽带宽波束双极化天线和无线通信设备
CN105186129A (zh) 一种宽波束圆极化相控阵天线单元
CN104901007A (zh) 一种槽耦合圆极化微带天线
JPH08222946A (ja) 水平および垂直偏波共用アレーアンテナ
CN211789443U (zh) 立体式高增益射频前端装置
CN216850338U (zh) 一种串馈微带天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893321

Country of ref document: EP

Kind code of ref document: A1