WO2022104960A1 - Film layer structure testing system and film layer electrical parameter testing structure - Google Patents

Film layer structure testing system and film layer electrical parameter testing structure Download PDF

Info

Publication number
WO2022104960A1
WO2022104960A1 PCT/CN2020/135858 CN2020135858W WO2022104960A1 WO 2022104960 A1 WO2022104960 A1 WO 2022104960A1 CN 2020135858 W CN2020135858 W CN 2020135858W WO 2022104960 A1 WO2022104960 A1 WO 2022104960A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
piezoelectric
segment
film
signal
Prior art date
Application number
PCT/CN2020/135858
Other languages
French (fr)
Chinese (zh)
Inventor
沈宇
占瞻
石正雨
童贝
Original Assignee
瑞声声学科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022104960A1 publication Critical patent/WO2022104960A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/22Measuring piezoelectric properties

Definitions

  • the electrical parameters include piezoelectric coefficient, frequency response curve, quality factor and resonance frequency.
  • the signal generating module 20 is used for generating a detection signal.
  • the signal amplifying module 30 is configured to receive the output electrical signal of the module under test 10, and then amplify the output electrical signal to generate an amplified electrical signal.
  • the substrate 4a, the piezoelectric layer b and the electrode layer c together form a resonator circuit, wherein one or more of the electrode layers c serve as signal input terminals, and one or more of the electrode layers c serve as a signal input terminal.
  • the cantilever beam is a 5-layer stack structure.
  • the piezoelectric layer b has two layers and includes a first piezoelectric layer b1 and a second piezoelectric layer b2.

Abstract

Provided is a film layer structure testing system (100), comprising a signal generation module (20), a module to be tested (10), a signal amplification module (30), and a signal processing module (40), the signal generation module (20) being used for generating a detection signal; the module to be tested (30) comprises a piezoelectric thin film (101), the module to be tested (30) is used for receiving a detection signal, the piezoelectric thin film (101) is deformed by means of the inverse piezoelectric effect and the deformation is converted into an electrical signal, then the electrical signal is used in the piezoelectric thin film (101) to generate an output electrical signal by means of the direct piezoelectric effect; the signal amplification module (30) is used for amplifying the received output electrical signal to produce an amplified electrical signal; the signal processing module (40) is used for receiving the detection signal and amplifying the electrical signal, respectively, and then performing comparison to obtain electrical parameters of the piezoelectric thin film (101). Also disclosed are two film layer electrical parameter testing structures applicable to the film layer structure testing system. In comparison with the related art, the film layer structure testing system and film layer electrical parameter testing structure are simple and easy to test.

Description

膜层结构测试系统及膜层电学参数测试结构Film structure test system and film electrical parameter test structure 技术领域technical field
本发明涉及测试技术领域,尤其涉及应用于压电薄膜的膜层结构测试系统及膜层电学参数测试结构。The invention relates to the technical field of testing, in particular to a film layer structure testing system and a film layer electrical parameter testing structure applied to piezoelectric thin films.
背景技术Background technique
压电材料在各种领域均有广泛的应用,如压电换能器,压电传感器,压电驱动器,滤波器,谐振器等。随着半导体加工工艺的发展无线终端的多元化的需求,MEMS压电麦克风,MEMS压电扬声器,SAW,FBAR逐步走向商用产品中。为了满足压电MEMS器件的微型化、低功耗、高性能的需求,上述器件往往采用压电膜层结构(即压电材料薄膜),而压电系数正是衡量上述器件的性能的重要指标。目前,压电系数一般采用通过商业设备进行测试。目前,压电系数通过商业专业测试设备进行测试。Piezoelectric materials have a wide range of applications in various fields, such as piezoelectric transducers, piezoelectric sensors, piezoelectric drivers, filters, resonators, etc. With the development of semiconductor processing technology and the diversified needs of wireless terminals, MEMS piezoelectric microphones, MEMS piezoelectric speakers, SAW, and FBAR are gradually becoming commercial products. In order to meet the requirements of miniaturization, low power consumption and high performance of piezoelectric MEMS devices, the above-mentioned devices often adopt piezoelectric film layer structure (ie, piezoelectric material film), and the piezoelectric coefficient is an important indicator to measure the performance of the above-mentioned devices. . Currently, piezoelectric coefficients are generally tested using commercial equipment. Currently, piezoelectric coefficients are tested with commercial professional test equipment.
相关技术的压电系数测试的系统和结构一般采用两种方法:第一种是利用“逆压电效应”,即通过加电信号使材料产生形变,再通过光学检测设备测量材料的形变量的大小,测量压电系数,如激光干涉法,激光多普勒测振仪和压电力显微镜。第二种是利用“正压电效应”,即通过施加力使材料产生电荷,通过测量电荷的大小测量压电系数。The system and structure of piezoelectric coefficient testing of related technologies generally use two methods: the first is to use the "inverse piezoelectric effect", that is, the material is deformed by the power-on signal, and then the deformation of the material is measured by optical detection equipment. Size, measure piezoelectric coefficients such as laser interferometry, laser Doppler vibrometers and piezoelectric force microscopy. The second is to use the "positive piezoelectric effect", that is, by applying a force to make a material generate an electric charge, and measuring the piezoelectric coefficient by measuring the magnitude of the electric charge.
然而,相关技术的测试的准确度均受限于台面面型与工装夹具的精度。其中,检测多利用光学方案获取振幅,测试系统复杂且昂贵,需要考虑反射、折射、损耗等。当膜层结构为超微小的膜层结构时,受限测试光斑尺寸,无法获取超微小膜层结构相关性能。However, the test accuracy of the related art is limited by the accuracy of the table top shape and the jig. Among them, the detection mostly uses the optical scheme to obtain the amplitude, the test system is complex and expensive, and needs to consider reflection, refraction, loss, etc. When the film structure is an ultra-fine film structure, the test spot size is limited, and the performance related to the ultra-fine film structure cannot be obtained.
因此,有必要对上述系统进行改进以解决上述问题。Therefore, it is necessary to improve the above-mentioned system to solve the above-mentioned problems.
技术问题technical problem
本发明的目的是克服上述技术问题,提供一种结构简单且易于测试的膜层结构测试系统及膜层电学参数测试结构。The purpose of the present invention is to overcome the above technical problems, and to provide a membrane structure testing system and membrane electrical parameter testing structure with simple structure and easy testing.
技术解决方案technical solutions
为了实现上述目的,本发明提供一种膜层结构测试系统,所述膜层结构测试系统包括:In order to achieve the above object, the present invention provides a film structure test system, the film structure test system includes:
信号产生模块,用于产生检测信号;a signal generating module for generating a detection signal;
待测模块,所述待测模块包括待测试的压电薄膜,所述待测模块用于接收所述检测信号,将根据该检测信号在所述压电薄膜通过逆压电效应产生形变,并将所述形变转换成电信号,再将该电信号在所述压电薄膜通过正压电效应产生输出电信号;A module to be tested, the module to be tested includes a piezoelectric film to be tested, the module to be tested is used to receive the detection signal, and the piezoelectric film will be deformed by the inverse piezoelectric effect according to the detection signal, and converting the deformation into an electrical signal, and then generating an output electrical signal through the positive piezoelectric effect on the piezoelectric film;
信号放大模块,用于接收所述输出电信号,再将接收的所述输出电信号进行放大处理产生放大电信号;a signal amplifying module, configured to receive the output electrical signal, and then amplify the received output electrical signal to generate an amplified electrical signal;
信号处理模块,用于分别接收所述检测信号和所述放大电信号,再将所述检测信号和所述放大电信号进行比较处理,获得所述压电薄膜的电学参数。The signal processing module is used to respectively receive the detection signal and the amplified electrical signal, and then compare and process the detection signal and the amplified electrical signal to obtain electrical parameters of the piezoelectric film.
优选的,所述电学参数包括压电系数、频率响应曲线、品质因数以及谐振频率。Preferably, the electrical parameters include piezoelectric coefficient, frequency response curve, quality factor and resonance frequency.
优选的,所述检测信号为高频电信号。Preferably, the detection signal is a high-frequency electrical signal.
优选的,所述信号处理模块为锁相放大器。Preferably, the signal processing module is a lock-in amplifier.
优选的,所述膜层结构测试系统处于真空状态下进行测试。Preferably, the film structure testing system is tested in a vacuum state.
本发明还提供一种膜层电学参数测试结构,其应用于如上中任意一项的所述膜层结构测试系统,所述压电薄膜包括膜层结构测试结构;所述膜层电学参数测试结构包括具有空腔的衬底、压电层以及贴设于所述压电层相对两侧的上电极和下电极;所述压电层、所述上电极以及所述下电极形成一体结构,所述一体结构通过所述下电极与所述衬底连接并悬置于所述空腔上方;所述衬底、所述压电层、所述上电极以及所述下电极共同形成谐振器电路;所述上电极包括位于所述压电层相对两端的第一上电极和第二上电极,所述下电极包括位于所述压电层相对两端的第一下电极和第二下电极,所述第一上电极与所述第一下电极对应设置,所述第二上电极和所述第二下电极对应设置;所述第一上电极作为信号输入端,所述第二上电极作为信号输出端,所述第一下电极和所述第二下电极接地,或所述第一上电极和所述第二下电极接地,所述第一下电极作为信号输入端,所述第二下电极作为信号输出端。The present invention also provides a film layer electrical parameter testing structure, which is applied to the film layer structure testing system according to any one of the above, wherein the piezoelectric film includes a film layer structure testing structure; the film layer electrical parameter testing structure It includes a substrate with a cavity, a piezoelectric layer, and an upper electrode and a lower electrode attached to opposite sides of the piezoelectric layer; the piezoelectric layer, the upper electrode and the lower electrode form an integrated structure, so The integrated structure is connected to the substrate through the lower electrode and suspended above the cavity; the substrate, the piezoelectric layer, the upper electrode and the lower electrode together form a resonator circuit; The upper electrode includes a first upper electrode and a second upper electrode located at opposite ends of the piezoelectric layer, the lower electrode includes a first lower electrode and a second lower electrode located at opposite ends of the piezoelectric layer, and the The first upper electrode is arranged corresponding to the first lower electrode, and the second upper electrode and the second lower electrode are arranged correspondingly; the first upper electrode is used as a signal input terminal, and the second upper electrode is used as a signal output terminal, the first lower electrode and the second lower electrode are grounded, or the first upper electrode and the second lower electrode are grounded, the first lower electrode is used as a signal input terminal, and the second lower electrode as a signal output.
优选的,所述第一上电极包括多个,所述第一下电极包括多个;所述第二上电极包括多个,所述第二下电极包括多个。Preferably, the first upper electrode includes a plurality, the first lower electrode includes a plurality; the second upper electrode includes a plurality, and the second lower electrode includes a plurality.
本发明还提供一种膜层电学参数测试结构,其应用于如上中任意一项的所述膜层结构测试系统,所述压电薄膜包括膜层结构测试结构;所述膜层电学参数测试结构包括具有空腔的衬底、压电层以及间隔贴设于所述压电层相对两侧的多个电极层,所述电极层为三层且包括依次叠设的上电极层、中间电极层和下电极层,所述压电层、所述上电极层与所述下电极层形成一体结构,所述一体结构的一端通过所述下电极层与所述衬底连接,另一端悬置于所述空腔上方形成悬臂梁;所述衬底、所述压电层以及所述电极层共同形成谐振器电路;所述悬臂梁为5层堆叠结构,所述压电层为两层且包括第一压电层和第二压电层;所述上电极层包括相互间隔的第一段上电极、第二段上电极以及第三段上电极;所述中间电极层包括相互间隔的第一段中间电极、第二段中间电极以及第三段中间电极;所述下电极层包括相互间隔的第一段下电极、第二段下电极以及第三段下电极;所述第一段中间电极为信号输入端,所述第一段上电极、所述第一段下电极以及所述第二段中间电极均电连接至接地;所述第二段上电极、所述第二段下电极以及所述第三段中间电极均电连接并处于悬浮状态,所述第三段上电极电连接至所述第三段下电极并作为所述信号输出端。The present invention also provides a film layer electrical parameter testing structure, which is applied to the film layer structure testing system according to any one of the above, wherein the piezoelectric film includes a film layer structure testing structure; the film layer electrical parameter testing structure It includes a substrate with a cavity, a piezoelectric layer, and a plurality of electrode layers that are spaced on opposite sides of the piezoelectric layer. The electrode layers are three-layered and include an upper electrode layer and a middle electrode layer stacked in sequence. and the lower electrode layer, the piezoelectric layer, the upper electrode layer and the lower electrode layer form an integrated structure, one end of the integrated structure is connected to the substrate through the lower electrode layer, and the other end is suspended on the A cantilever beam is formed above the cavity; the substrate, the piezoelectric layer and the electrode layer together form a resonator circuit; the cantilever beam is a 5-layer stack structure, and the piezoelectric layer is two layers and includes a first piezoelectric layer and a second piezoelectric layer; the upper electrode layer includes a first segment upper electrode, a second segment upper electrode and a third segment upper electrode spaced apart from each other; the intermediate electrode layer includes a first segment upper electrode spaced apart from each other The middle electrode of the segment, the middle electrode of the second segment and the middle electrode of the third segment; the lower electrode layer includes the lower electrode of the first segment, the lower electrode of the second segment and the lower electrode of the third segment spaced apart from each other; the middle electrode of the first segment is a signal input terminal, the first segment upper electrode, the first segment lower electrode and the second segment middle electrode are all electrically connected to ground; the second segment upper electrode, the second segment lower electrode and The middle electrodes of the third segment are all electrically connected and in a suspended state, and the upper electrode of the third segment is electrically connected to the lower electrode of the third segment and serves as the signal output terminal.
优选的,所述第一段上电极、所述第一段中间电极、所述第一段下电极在设置于所述压电层的相对两侧的表面时沿着厚度方向的投影有重叠部分;所述第二段上电极、所述第二段中间电极、所述第二段下电极设置于所述压电层的相对两侧的表面时沿着厚度方向的投影有重叠部分,所述第三段上电极、所述第三段中间电极、所述第三段下电极在分布于所述压电层相对两侧的表面时沿着厚度方向的投影有重叠部分,以施加电信号时可在所述压电层内部产生电场。Preferably, when the first-segment upper electrode, the first-segment middle electrode, and the first-segment lower electrode are disposed on the surfaces of opposite sides of the piezoelectric layer, the projections along the thickness direction have overlapping portions ; When the upper electrode of the second segment, the middle electrode of the second segment, and the lower electrode of the second segment are arranged on the surfaces of the opposite sides of the piezoelectric layer, the projections along the thickness direction have overlapping portions, and the When the third-segment upper electrode, the third-segment middle electrode, and the third-segment lower electrode are distributed on the surfaces of opposite sides of the piezoelectric layer, the projections along the thickness direction overlap, so that when electrical signals are applied An electric field can be generated inside the piezoelectric layer.
有益效果beneficial effect
与现有技术相比,本发明的膜层结构测试系统通过设置信号产生模块、待测模块、信号放大模块以及信号处理模块。其中,待测模块分别通过正压电效应和逆压电效应耦合,从而实现对所述压电薄膜的产生输出电信号,再通过信号放大模块对输出电信号进行放大处理产生放大电信号,再将信号处理模块将信号产生模块产生的检测信号和所述放大电信号进行比较处理,获得所述压电薄膜的电学参数。整个测试系统采用电学测试,测试系统结构简单,同时也易于操作测试。本发明的应用于膜层结构测试系统的膜层结构测试结构采用谐振器的器件直接电驱动、电检测,操作方便,且可用于压电系数的晶圆级别的测试尤其可以获得超微小的膜层结构的压电系数;并且尤其在器件谐振的状态下,可以得到更大的输出电压,有利于信号的检测,且减少工频干扰,所述膜层结构测试系统及膜层电学参数测试结构获得电学参数的可靠性更高。Compared with the prior art, the film structure testing system of the present invention is provided with a signal generating module, a module to be tested, a signal amplifying module and a signal processing module. Wherein, the module to be tested is coupled through the positive piezoelectric effect and the inverse piezoelectric effect, so as to realize the generation and output of the electrical signal of the piezoelectric film, and then amplify the output electrical signal through the signal amplification module to generate the amplified electrical signal, and then use the signal amplification module to amplify the output electrical signal. The signal processing module compares the detection signal generated by the signal generating module with the amplified electrical signal to obtain electrical parameters of the piezoelectric film. The whole test system adopts electrical test, the structure of the test system is simple, and it is also easy to operate and test. The film-layer structure test structure applied to the film-layer structure test system of the present invention adopts the device of the resonator for direct electric drive and electric detection, which is convenient to operate, and can be used for the wafer-level test of the piezoelectric coefficient. The piezoelectric coefficient of the film structure; and especially in the state of device resonance, a larger output voltage can be obtained, which is conducive to signal detection and reduces power frequency interference. The film structure testing system and film electrical parameter testing The structure obtains electrical parameters with higher reliability.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, under the premise of no creative work, other drawings can also be obtained from these drawings, wherein:
图1为本发明的膜层结构测试系统的结构框图;Fig. 1 is the structural block diagram of the film structure test system of the present invention;
图2为本发明的膜层电学参数测试结构的的电路连接关系的结构示意图;2 is a schematic structural diagram of the circuit connection relationship of the film electrical parameter testing structure of the present invention;
图3为本发明在不同的压电薄膜的压电系数情况下的输出电信号的电压与时间的关系图;Fig. 3 is the relation diagram of the voltage and time of the output electric signal under the situation of different piezoelectric coefficients of piezoelectric film of the present invention;
图4为本发明另一种的膜层电学参数测试结构的部分立体结构示意图;4 is a partial three-dimensional structural schematic diagram of another film electrical parameter testing structure of the present invention;
[根据细则91更正 21.01.2021] 
图5为图4的电路连接关系的结构示意图。
[Correction 21.01.2021 under Rule 91]
FIG. 5 is a schematic structural diagram of the circuit connection relationship of FIG. 4 .
本发明的最佳实施方式BEST MODE FOR CARRYING OUT THE INVENTION
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
请参阅图1所示,本发明提供一种膜层结构测试系统100。Referring to FIG. 1 , the present invention provides a film structure testing system 100 .
所述膜层结构测试系统100包括信号产生模块20、待测模块10、信号放大模块30以及分别于所述信号产生模块20和所述信号放大模块30电连接的信号处理模块40。The film structure testing system 100 includes a signal generation module 20 , a module to be tested 10 , a signal amplification module 30 , and a signal processing module 40 electrically connected to the signal generation module 20 and the signal amplification module 30 respectively.
所述信号产生模块20用于产生检测信号。The signal generating module 20 is used for generating a detection signal.
所述信号产生模块20将所述检测信号分别输出至所述待测模块10和所述信号处理模块40。具体的,所述信号产生模块20将所述检测信号分别输出至所述待测模块10的信号输入端ACINPUT和所述信号处理模块40的参考输入端REF。The signal generating module 20 outputs the detection signal to the module under test 10 and the signal processing module 40 respectively. Specifically, the signal generating module 20 outputs the detection signal to the signal input terminal ACINPUT of the module under test 10 and the reference input terminal REF of the signal processing module 40 respectively.
所述待测模块10包括待测试的压电薄膜101。The module to be tested 10 includes the piezoelectric film 101 to be tested.
所述待测模块10设有信号输入端ACINPUT和信号输出端OUTPUT。The module to be tested 10 is provided with a signal input end ACINPUT and a signal output end OUTPUT.
所述信号输入端ACINPUT用于将外部的检测信号输入。The signal input terminal ACINPUT is used for inputting an external detection signal.
本实施方式中,所述检测信号为高频电信号。高频电信号有利于使得所述压电材料薄膜1产生形变而不会破坏材料。In this embodiment, the detection signal is a high-frequency electrical signal. The high-frequency electrical signal is beneficial to deform the piezoelectric material film 1 without destroying the material.
所述信号输出端OUTPUT用于将所述待测模块10产生的输出电信号。The signal output terminal OUTPUT is used to output the electrical signal generated by the module under test 10 .
所述待测模块10用于接收所述检测信号,将根据该检测信号在所述压电薄膜101通过逆压电效应产生形变,并将所述形变转换成电信号,再将该电信号在所述压电材料薄膜1通过正压电效应产生输出电信号。The module to be tested 10 is used for receiving the detection signal, and according to the detection signal, the piezoelectric film 101 is deformed by the inverse piezoelectric effect, and the deformation is converted into an electrical signal, and then the electrical signal is stored in the piezoelectric film 101 . The piezoelectric material film 1 generates an output electrical signal through the positive piezoelectric effect.
逆压电效应是指当在所述压电薄膜101的电介质的极化方向施加电场,这些所述压电薄膜101的电介质就在一定方向上产生机械变形或机械压力,当外加电场撤去时,这些变形或应力也随之消失。正压电效应是指由于形变而产生电极化的现象。当对压电材料施以物理压力时,材料体内之电偶极矩会因压缩而变短,此时压电材料为抵抗这变化会在材料相对的表面上产生等量正负电荷,以保持原状。这种通过形变而产生电极化的现象称为“正压电效应”。The inverse piezoelectric effect means that when an electric field is applied in the polarization direction of the dielectric of the piezoelectric film 101, the dielectric of the piezoelectric film 101 will produce mechanical deformation or mechanical pressure in a certain direction. When the applied electric field is removed, These deformations or stresses also disappear. The positive piezoelectric effect refers to the phenomenon of electric polarization due to deformation. When physical pressure is applied to the piezoelectric material, the electric dipole moment in the material body will be shortened due to compression. At this time, the piezoelectric material will generate an equal amount of positive and negative charges on the opposite surfaces of the material to resist this change to maintain undisturbed. This phenomenon of electric polarization through deformation is called "positive piezoelectric effect".
所述信号放大模块30用于接收所述待测模块10的所述输出电信号,再将所述输出电信号进行放大处理产生放大电信号。The signal amplifying module 30 is configured to receive the output electrical signal of the module under test 10, and then amplify the output electrical signal to generate an amplified electrical signal.
所述信号放大模块30将所述放大电信号输出至所述信号处理模块40。The signal amplification module 30 outputs the amplified electrical signal to the signal processing module 40 .
具体的,将所述放大电信号输出至所述信号处理模块40的信号检测输入端TEST。所述信号放大模块30所述输出电信号为所述压电薄膜101形变产生电荷形成。其中,所述信号放大模块30获取所述待测模块10的信号输出端OUTPUT的输出电信号。Specifically, the amplified electrical signal is output to the signal detection input terminal TEST of the signal processing module 40 . The output electrical signal of the signal amplification module 30 is formed by the deformation of the piezoelectric film 101 to generate charges. Wherein, the signal amplification module 30 obtains the output electrical signal of the signal output terminal OUTPUT of the module under test 10 .
所述信号处理模块40用于分别接收所述检测信号和所述放大电信号,再将所述检测信号和所述放大电信号进行比较处理,获得所述压电薄膜101的电学参数。The signal processing module 40 is configured to receive the detection signal and the amplified electrical signal respectively, and then compare and process the detection signal and the amplified electrical signal to obtain electrical parameters of the piezoelectric film 101 .
本实施方式中,所述电学参数包括压电系数d 31、频率响应曲线、品质因数以及谐振频率。 In this embodiment, the electrical parameters include piezoelectric coefficient d 31 , frequency response curve, quality factor, and resonance frequency.
本实施方式中,所述信号处理模块40为锁相放大器。通过锁相放大器将所述放大电信号与所述检测信号进行比较处理,从而将正压电效应和逆压电效应耦合而使得所述压电薄膜101的电学参数更易于获得,尤其易于获得压电系数d 31In this embodiment, the signal processing module 40 is a lock-in amplifier. The amplified electrical signal is compared with the detection signal through a lock-in amplifier, so as to couple the positive piezoelectric effect and the inverse piezoelectric effect, so that the electrical parameters of the piezoelectric film 101 are easier to obtain, especially the voltage. Electrical coefficient d 31 .
为了更好的实现对压电系数d 31测量,减少外界环境对测量的影响,本实施方式中,所述膜层结构测试系统100处于真空状态下进行测试。 In order to better realize the measurement of the piezoelectric coefficient d 31 and reduce the influence of the external environment on the measurement, in this embodiment, the film structure testing system 100 is tested in a vacuum state.
(实施例一)(Example 1)
请参阅图2所示,本实施方式为实施例一,实施例一提供的是一种所述膜层电学参数测试结构200。Referring to FIG. 2 , this embodiment is the first embodiment, and the first embodiment provides a structure 200 for testing the electrical parameters of the film layer.
所述膜层电学参数测试结构200应用于所述膜层结构测试系统100,所述压电薄膜101包括所述膜层电学参数测试结构200。The film electrical parameter testing structure 200 is applied to the film structure testing system 100 , and the piezoelectric thin film 101 includes the film electrical parameter testing structure 200 .
所述膜层电学参数测试结构200用以实现正压电效应和逆压电效应耦合;而且通过合理优化电极,可在不影响机械性能前提下,获得所述压电薄膜101的电学参数。The film electrical parameter testing structure 200 is used to realize the coupling of the positive piezoelectric effect and the inverse piezoelectric effect; and by reasonably optimizing the electrodes, the electrical parameters of the piezoelectric film 101 can be obtained without affecting the mechanical properties.
具体的,所述膜层电学参数测试结构200包括具有空腔40的衬底4、压电层1以及贴设于所述压电层1相对两侧的上电极2和下电极3。其中,所述压电层1为压电薄膜。Specifically, the film electrical parameter testing structure 200 includes a substrate 4 having a cavity 40 , a piezoelectric layer 1 , and an upper electrode 2 and a lower electrode 3 attached to opposite sides of the piezoelectric layer 1 . Wherein, the piezoelectric layer 1 is a piezoelectric thin film.
所述压电层1、所述上电极2以及所述下电极3形成一体结构,所述一体结构通过所述下电极3与所述衬底4连接并悬置于所述空腔40上方。即所述一体结构沿所述膜层电学参数测试结构200的厚度方向位于所述空腔40的一侧。The piezoelectric layer 1 , the upper electrode 2 and the lower electrode 3 form an integrated structure, and the integrated structure is connected to the substrate 4 through the lower electrode 3 and suspended above the cavity 40 . That is, the integrated structure is located on one side of the cavity 40 along the thickness direction of the film electrical parameter testing structure 200 .
本实施方式中,所述上电极2和所述下电极3分别位于所述压电层1长轴的相对两端。In this embodiment, the upper electrode 2 and the lower electrode 3 are respectively located at opposite ends of the long axis of the piezoelectric layer 1 .
所述衬底4、所述压电层1、所述上电极2以及所述下电极3共同形成谐振器电路,其中一个所述上电极2或所述下电极3作为信号输入端,另一个所述上电极2或所述下电极3作为信号输出端。The substrate 4, the piezoelectric layer 1, the upper electrode 2 and the lower electrode 3 together form a resonator circuit, wherein one of the upper electrode 2 or the lower electrode 3 is used as a signal input terminal, and the other is used as a signal input terminal. The upper electrode 2 or the lower electrode 3 is used as a signal output terminal.
具体的,所述上电极2包括贴设与所述压电层1的同一侧的第一上电极21和第二上电极22,所述第一上电极21作为所述信号输入端,所述第二上电极22作为所述信号输出端。Specifically, the upper electrode 2 includes a first upper electrode 21 and a second upper electrode 22 attached to the same side as the piezoelectric layer 1 . The first upper electrode 21 serves as the signal input end, and the The second upper electrode 22 serves as the signal output terminal.
所述下电极3包括贴设与所述压电层1的另一侧的第一下电极31和第二下电极32,所述第一下电极31和所述第二下电极32均电连接至接地。The lower electrode 3 includes a first lower electrode 31 and a second lower electrode 32 attached to the other side of the piezoelectric layer 1 , and the first lower electrode 31 and the second lower electrode 32 are both electrically connected to ground.
本实施方式中,所述压电层1呈矩形。所述第一上电极21和所述第一下电极31正对设置;所述第二上电极22和所述第二下电极32正对设置;所述第一上电极21和所述第二上电极22分别设置于所述压电层1长轴的相对两端。该结构有利于交流信号在所述膜层电学参数测试结构200中进行正压电效应和逆压电效应的转化,从而使得所述膜层电学参数测试结构200的压电系数d 31评估和测试更为容易和准确性高。 In this embodiment, the piezoelectric layer 1 is rectangular. The first upper electrode 21 and the first lower electrode 31 are arranged facing each other; the second upper electrode 22 and the second lower electrode 32 are arranged facing each other; the first upper electrode 21 and the second The upper electrodes 22 are respectively disposed at opposite ends of the long axis of the piezoelectric layer 1 . This structure is conducive to the conversion of the AC signal to the positive piezoelectric effect and the inverse piezoelectric effect in the film electrical parameter testing structure 200, so that the piezoelectric coefficient d 31 of the film electrical parameter testing structure 200 can be evaluated and tested. easier and more accurate.
本实施方式中,所述第一上电极21包括多个;所述第一下电极31包括多个;所述第一上电极21和所述第一下电极31一一对应。所述第二上电极22包括多个。该结构使得交流信号作用于所述第一上电极21和所述第一下电极31更为均衡,从而使得压电层1的逆压电效应更易于产生。In this embodiment, the first upper electrodes 21 include a plurality; the first lower electrodes 31 include a plurality; the first upper electrodes 21 and the first lower electrodes 31 are in one-to-one correspondence. The second upper electrode 22 includes a plurality of them. This structure makes the AC signal acting on the first upper electrode 21 and the first lower electrode 31 more evenly, so that the inverse piezoelectric effect of the piezoelectric layer 1 is easier to generate.
本实施方式中,所述第二下电极32包括多个;所述第二上电极22和所述第二下电极32一一对应。该结构使得所述压电层1形变产生所述输出电信号更易于获得,从而使得所述压电层1的压电系数d 31评估和测试更为容易和准确性高。 In this embodiment, the second lower electrodes 32 include a plurality of; the second upper electrodes 22 and the second lower electrodes 32 are in one-to-one correspondence. This structure makes it easier to obtain the output electrical signal generated by the deformation of the piezoelectric layer 1 , thereby making the evaluation and testing of the piezoelectric coefficient d 31 of the piezoelectric layer 1 easier and more accurate.
请参阅图3所示,图3为本发明在不同的所述压电层1的压电系数d 31情况下的输出电信号的电压与时间的关系图。W1、W2、W3及W4为所述压电层1(即压电薄膜)的压电系数d 31的电压-时间曲线。其中,W1、W2、W3及W4的关系如下:W1为2.0倍的d 31,W2为1.5倍的d 31,W3为1.0倍的d 31,W4为0.5倍的d 31,由W1、W2、W3及W4的曲线图可以得出,本发明的所述压电性能测试方法和所述膜层电学参数测试结构200可用于压电系数d 31的晶圆级别的测试尤其可以获得超微小的膜层结构的压电系数d 31 Please refer to FIG. 3 . FIG. 3 is a graph showing the relationship between the voltage and time of the output electrical signal under different piezoelectric coefficients d 31 of the piezoelectric layer 1 of the present invention. W1 , W2 , W3 and W4 are the voltage-time curves of the piezoelectric coefficient d 31 of the piezoelectric layer 1 (ie, the piezoelectric thin film). Among them, the relationship between W1, W2, W3 and W4 is as follows: W1 is 2.0 times d 31 , W2 is 1.5 times d 31 , W3 is 1.0 times d 31 , W4 is 0.5 times d 31 , from W1, W2, From the graphs of W3 and W4, it can be concluded that the piezoelectric performance testing method and the film electrical parameter testing structure 200 of the present invention can be used for the wafer-level testing of the piezoelectric coefficient d 31 . Piezoelectric coefficient d 31 of the film structure .
综合上述,本发明所述膜层电学参数测试结构200采用通过正压电效应和逆压电效应耦合,从而实现对所述压电层1的电学参数(尤其压电系数d 31)评估和测试。更优的,所述膜层电学参数测试结构200直接电驱动、电检测,操作方便,且可用于压电系数d 31的晶圆级别的测试尤其可以获得超微小的膜层结构的压电系数d 31;并且整个测试系统采用电学测试,测试系统结构简单,同时也易于操作测试。尤其在器件谐振的状态下,可以得到更大的输出电压,有利于信号的检测,且减少工频干扰,所述膜层电学参数测试结构200获得压电系数d 31的可靠性更高。 To sum up the above, the film layer electrical parameter testing structure 200 of the present invention adopts coupling through the positive piezoelectric effect and the inverse piezoelectric effect, so as to realize the evaluation and testing of the electrical parameters (especially the piezoelectric coefficient d 31 ) of the piezoelectric layer 1 . More preferably, the film-layer electrical parameter testing structure 200 is directly electrically driven and electrically detected, which is easy to operate, and can be used for wafer-level testing with a piezoelectric coefficient d of 31 , especially to obtain ultra-fine film-layer structure piezoelectricity. The coefficient d is 31 ; and the whole test system adopts electrical test, the structure of the test system is simple, and it is also easy to operate and test. Especially in the state of device resonance, a larger output voltage can be obtained, which is beneficial to signal detection and reduces power frequency interference.
(实施例二)(Example 2)
请同时参阅图4-5所示,本实施方式为实施例二,实施例二提供的是一种所述膜层电学参数测试结构300。Please refer to FIGS. 4-5 at the same time, this embodiment is the second embodiment, and the second embodiment provides a test structure 300 for the electrical parameters of the film layer.
所述膜层电学参数测试结构300应用于所述膜层结构测试系统100,所述压电薄膜101包括所述膜层电学参数测试结构300。The film electrical parameter testing structure 300 is applied to the film structure testing system 100 , and the piezoelectric film 101 includes the film electrical parameter testing structure 300 .
所述膜层电学参数测试结构300用以实现正压电效应和逆压电效应耦合;而且通过合理优化电极,可在不影响机械性能前提下,获得所述压电薄膜101的电学参数。The film electrical parameter testing structure 300 is used to realize the coupling of the positive piezoelectric effect and the inverse piezoelectric effect; and by reasonably optimizing the electrodes, the electrical parameters of the piezoelectric film 101 can be obtained without affecting the mechanical properties.
所述膜层电学参数测试结构300与所述膜层电学参数测试结构200不同的是:所述膜层电学参数测试结构300中的电极在压电薄膜轴向的同一端。The difference between the film electrical parameter testing structure 300 and the film electrical parameter testing structure 200 is that the electrodes in the film electrical parameter testing structure 300 are at the same end of the piezoelectric film axis.
具体的,所述膜层电学参数测试结构300包括具有空腔40a的衬底4a、压电层b以及间隔贴设于所述压电层b相对两侧的多个电极层c。其中,所述电极层c两层且包括上电极层1c、中间电极层2c和下电极层3c。Specifically, the film-layer electrical parameter testing structure 300 includes a substrate 4a having a cavity 40a, a piezoelectric layer b, and a plurality of electrode layers c attached to opposite sides of the piezoelectric layer b at intervals. The electrode layer c has two layers and includes an upper electrode layer 1c, a middle electrode layer 2c and a lower electrode layer 3c.
所述压电层b、所述上电极层1c与所述下电极层3c形成一体结构,所述一体结构的的一端通过所述下电极层3c与所述衬底4a连接,另一端悬置于所述空腔40a上方形成悬臂梁。The piezoelectric layer b, the upper electrode layer 1c and the lower electrode layer 3c form an integrated structure, one end of the integrated structure is connected to the substrate 4a through the lower electrode layer 3c, and the other end is suspended A cantilever beam is formed above the cavity 40a.
所述衬底4a、所述压电层b以及所述电极层c共同形成谐振器电路,其中一个或多个所述电极层c作为信号输入端,其中一个或者多个所述电极层c作为信号输出端,其中一个或者多个所述电极层c悬浮。The substrate 4a, the piezoelectric layer b and the electrode layer c together form a resonator circuit, wherein one or more of the electrode layers c serve as signal input terminals, and one or more of the electrode layers c serve as a signal input terminal. A signal output terminal, wherein one or more of the electrode layers c are suspended.
本实施方式中,所述悬臂梁为5层堆叠结构。所述压电层b两层且包括第一压电层b1和第二压电层b2。In this embodiment, the cantilever beam is a 5-layer stack structure. The piezoelectric layer b has two layers and includes a first piezoelectric layer b1 and a second piezoelectric layer b2.
具体的,所述上电极层1c包括相互间隔的第一段上电极1c11、第二段上电极1c22以及第三段上电极1c33。所述中间电极层2c包括相互间隔的第一段中间电极2c11、第二段中间电极2c22以及第三段中间电极2c33。所述下电极层3c包括相互间隔的第一段下电极3c11、第二段下电极3c22以及第三段下电极3c33。Specifically, the upper electrode layer 1c includes a first-segment upper electrode 1c11 , a second-segment upper electrode 1c22 and a third-segment upper electrode 1c33 that are spaced apart from each other. The intermediate electrode layer 2c includes a first-segment intermediate electrode 2c11, a second-segment intermediate electrode 2c22 and a third-segment intermediate electrode 2c33 spaced apart from each other. The lower electrode layer 3c includes a first-segment lower electrode 3c11, a second-segment lower electrode 3c22 and a third-segment lower electrode 3c33 spaced apart from each other.
其中,各个部件的电路连接关系为:Among them, the circuit connection relationship of each component is:
所述第一段中间电极2c11为信号输入端,所述第一段上电极1c11、所述第一段下电极3c11以及所述第二段中间电极2c22均电连接至接地。所述第二段上电极1c22、所述第二段下电极3c22以及所述第三段中间电极2c33均电连接并处于悬浮状态。所述第三段上电极1c33电连接至所述第三段下电极3c33并作为所述信号输出端。The first-segment middle electrode 2c11 is a signal input terminal, and the first-segment upper electrode 1c11 , the first-segment lower electrode 3c11 and the second-segment middle electrode 2c22 are all electrically connected to ground. The second-segment upper electrode 1c22, the second-segment lower electrode 3c22, and the third-segment middle electrode 2c33 are all electrically connected and in a suspended state. The third-segment upper electrode 1c33 is electrically connected to the third-segment lower electrode 3c33 and serves as the signal output terminal.
本实施方式中,所述第一段上电极1c11、所述第一段中间电极2c11、所述第一段下电极3c11在设置于所述压电层b的相对两侧的表面时沿着厚度方向的投影有重叠部分。所述第二段上电极1c22、所述第二段中间电极2c22、所述第二段下电极3c22设置于所述压电层b的相对两侧的表面时沿着厚度方向的投影有重叠部分。所述第三段上电极1c33、所述第三段中间电极2c33、所述第三段下电极3c33在分布于所述压电层b相对两侧的表面时沿着厚度方向的投影有重叠部分,以施加电信号时可在所述压电层b内部产生电场。In this embodiment, the first-segment upper electrode 1c11 , the first-segment middle electrode 2c11 , and the first-segment lower electrode 3c11 are arranged along the thickness of the piezoelectric layer b on opposite sides of the piezoelectric layer b. The projections of the directions have overlapping parts. When the second-segment upper electrode 1c22, the second-segment middle electrode 2c22, and the second-segment lower electrode 3c22 are disposed on the surfaces of opposite sides of the piezoelectric layer b, the projections along the thickness direction have overlapping portions. . When the third-segment upper electrode 1c33, the third-segment middle electrode 2c33, and the third-segment lower electrode 3c33 are distributed on the surfaces of opposite sides of the piezoelectric layer b, the projections along the thickness direction have overlapping portions. , so that an electric field can be generated inside the piezoelectric layer b when an electrical signal is applied.
通过所述膜层电学参数测试结构300的结构和电路连接关系,采用多级的谐振器的器件直接电驱动、电检测,操作方便,且可用于压电系数d 31的晶圆级别的测试尤其可以获得超微小的膜层结构的压电系数d 31。并且整个测试系统采用电学测试,测试系统结构简单,同时也易于操作测试。尤其在器件谐振的状态下,可以得到更大的输出电压,有利于信号的检测,且减少工频干扰,所述膜层电学参数测试结构300获得压电系数d 31的可靠性更高。 Through the structure and circuit connection relationship of the film electrical parameter test structure 300, the device using the multi-stage resonator is directly electrically driven and electrically detected, which is convenient to operate, and can be used for the wafer-level test of the piezoelectric coefficient d 31 , especially The piezoelectric coefficient d 31 of the ultra-fine film structure can be obtained. And the whole test system adopts electrical test, the structure of the test system is simple, and it is also easy to operate and test. Especially in the state of device resonance, a larger output voltage can be obtained, which is beneficial to signal detection and reduces power frequency interference.
与现有技术相比,本发明的膜层结构测试系统通过设置信号产生模块、待测模块、信号放大模块以及信号处理模块。其中,待测模块分别通过正压电效应和逆压电效应耦合,从而实现对所述压电薄膜的产生输出电信号,再通过信号放大模块对输出电信号进行放大处理产生放大电信号,再将信号处理模块将信号产生模块产生的检测信号和所述放大电信号进行比较处理,获得所述压电薄膜的电学参数。整个测试系统采用电学测试,测试系统结构简单,同时也易于操作测试。本发明的应用于膜层结构测试系统的膜层结构测试结构采用谐振器的器件直接电驱动、电检测,操作方便,且可用于压电系数的晶圆级别的测试尤其可以获得超微小的膜层结构的压电系数;并且尤其在器件谐振的状态下,可以得到更大的输出电压,有利于信号的检测,且减少工频干扰,所述膜层结构测试系统及膜层电学参数测试结构获得电学参数的可靠性更高。Compared with the prior art, the film structure testing system of the present invention is provided with a signal generating module, a module to be tested, a signal amplifying module and a signal processing module. Wherein, the module to be tested is coupled through the positive piezoelectric effect and the inverse piezoelectric effect, so as to realize the generation and output of the electrical signal of the piezoelectric film, and then amplify the output electrical signal through the signal amplification module to generate the amplified electrical signal, and then use the signal amplification module to amplify the output electrical signal. The signal processing module compares the detection signal generated by the signal generating module with the amplified electrical signal to obtain electrical parameters of the piezoelectric film. The whole test system adopts electrical test, the structure of the test system is simple, and it is also easy to operate and test. The film-layer structure test structure applied to the film-layer structure test system of the present invention adopts the device of the resonator for direct electric drive and electric detection, which is convenient to operate, and can be used for the wafer-level test of the piezoelectric coefficient. The piezoelectric coefficient of the film structure; and especially in the state of device resonance, a larger output voltage can be obtained, which is conducive to signal detection and reduces power frequency interference. The film structure testing system and film electrical parameter testing The structure obtains electrical parameters with higher reliability.
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。The above descriptions are only the embodiments of the present invention, and are not intended to limit the scope of the present invention. Any equivalent structure or equivalent process transformation made by using the contents of the description and drawings of the present invention, or directly or indirectly applied to other related technologies Fields are similarly included in the scope of patent protection of the present invention.

Claims (9)

  1. 一种膜层结构测试系统,其特征在于,所述膜层结构测试系统包括:A film structure testing system, characterized in that the film structure testing system comprises:
    信号产生模块,用于产生检测信号;a signal generating module for generating a detection signal;
    待测模块,所述待测模块包括待测试的压电薄膜,所述待测模块用于接收所述检测信号,将根据该检测信号在所述压电薄膜通过逆压电效应产生形变,并将所述形变转换成电信号,再将该电信号在所述压电薄膜通过正压电效应产生输出电信号;A module to be tested, the module to be tested includes a piezoelectric film to be tested, the module to be tested is used to receive the detection signal, and the piezoelectric film will be deformed by the inverse piezoelectric effect according to the detection signal, and converting the deformation into an electrical signal, and then generating an output electrical signal through the positive piezoelectric effect on the piezoelectric film;
    信号放大模块,用于接收所述输出电信号,再将接收的所述输出电信号进行放大处理产生放大电信号;a signal amplifying module, configured to receive the output electrical signal, and then amplify the received output electrical signal to generate an amplified electrical signal;
    信号处理模块,用于分别接收所述检测信号和所述放大电信号,再将所述检测信号和所述放大电信号进行比较处理,获得所述压电薄膜的电学参数。The signal processing module is used to respectively receive the detection signal and the amplified electrical signal, and then compare and process the detection signal and the amplified electrical signal to obtain electrical parameters of the piezoelectric film.
  2. 根据权利要求1所述的膜层结构测试系统,其特征在于,所述电学参数包括压电系数、频率响应曲线、品质因数以及谐振频率。The film structure testing system according to claim 1, wherein the electrical parameters include piezoelectric coefficient, frequency response curve, quality factor and resonance frequency.
  3. 根据权利要求1所述的膜层结构测试系统,其特征在于,所述检测信号为高频电信号。The film structure testing system according to claim 1, wherein the detection signal is a high-frequency electrical signal.
  4. 根据权利要求1所述的膜层结构测试系统,其特征在于,所述信号处理模块为锁相放大器。The film structure testing system according to claim 1, wherein the signal processing module is a lock-in amplifier.
  5. 根据权利要求1所述的膜层结构测试系统,其特征在于,所述膜层结构测试系统处于真空状态下进行测试。The film structure testing system according to claim 1, wherein the film structure testing system is tested in a vacuum state.
  6. 一种膜层电学参数测试结构,其特征在于,其应用于如权利要求1-5中任意一项的所述膜层结构测试系统,所述压电薄膜包括膜层结构测试结构;所述膜层电学参数测试结构包括具有空腔的衬底、压电层以及贴设于所述压电层相对两侧的上电极和下电极;所述压电层、所述上电极以及所述下电极形成一体结构,所述一体结构通过所述下电极与所述衬底连接并悬置于所述空腔上方;所述衬底、所述压电层、所述上电极以及所述下电极共同形成谐振器电路;所述上电极包括位于所述压电层相对两端的第一上电极和第二上电极,所述下电极包括位于所述压电层相对两端的第一下电极和第二下电极,所述第一上电极与所述第一下电极对应设置,所述第二上电极和所述第二下电极对应设置;所述第一上电极作为信号输入端,所述第二上电极作为信号输出端,所述第一下电极和所述第二下电极接地,或所述第一上电极和所述第二下电极接地,所述第一下电极作为信号输入端,所述第二下电极作为信号输出端。A film electrical parameter test structure, characterized in that, it is applied to the film structure test system according to any one of claims 1-5, and the piezoelectric thin film includes a film structure test structure; the film The layer electrical parameter testing structure includes a substrate with a cavity, a piezoelectric layer, and upper and lower electrodes attached to opposite sides of the piezoelectric layer; the piezoelectric layer, the upper electrode and the lower electrode An integrated structure is formed, and the integrated structure is connected with the substrate through the lower electrode and suspended above the cavity; the substrate, the piezoelectric layer, the upper electrode and the lower electrode are common A resonator circuit is formed; the upper electrode includes a first upper electrode and a second upper electrode at opposite ends of the piezoelectric layer, and the lower electrode includes a first lower electrode and a second upper electrode at opposite ends of the piezoelectric layer a lower electrode, the first upper electrode is arranged corresponding to the first lower electrode, and the second upper electrode and the second lower electrode are arranged correspondingly; the first upper electrode is used as a signal input terminal, the second upper electrode is The upper electrode is used as a signal output terminal, the first lower electrode and the second lower electrode are grounded, or the first upper electrode and the second lower electrode are grounded, and the first lower electrode is used as a signal input terminal, so the The second lower electrode is used as a signal output terminal.
  7. 根据权利要求6所述的膜层电学参数测试结构,其特征在于,所述第一上电极包括多个,所述第一下电极包括多个;所述第二上电极包括多个,所述第二下电极包括多个。The film electrical parameter testing structure according to claim 6, wherein the first upper electrode comprises a plurality of the first lower electrodes; the second upper electrode comprises a plurality of the The second lower electrode includes a plurality of them.
  8. 一种膜层电学参数测试结构,其特征在于,其应用于如权利要求1-5中任意一项的所述膜层结构测试系统,所述压电薄膜包括膜层结构测试结构;所述膜层电学参数测试结构包括具有空腔的衬底、压电层以及间隔贴设于所述压电层相对两侧的多个电极层,所述电极层为三层且包括依次叠设的上电极层、中间电极层和下电极层,所述压电层、所述上电极层与所述下电极层形成一体结构,所述一体结构的一端通过所述下电极层与所述衬底连接,另一端悬置于所述空腔上方形成悬臂梁;所述衬底、所述压电层以及所述电极层共同形成谐振器电路;所述悬臂梁为5层堆叠结构,所述压电层为两层且包括第一压电层和第二压电层;所述上电极层包括相互间隔的第一段上电极、第二段上电极以及第三段上电极;所述中间电极层包括相互间隔的第一段中间电极、第二段中间电极以及第三段中间电极;所述下电极层包括相互间隔的第一段下电极、第二段下电极以及第三段下电极;所述第一段中间电极为信号输入端,所述第一段上电极、所述第一段下电极以及所述第二段中间电极均电连接至接地;所述第二段上电极、所述第二段下电极以及所述第三段中间电极均电连接并处于悬浮状态,所述第三段上电极电连接至所述第三段下电极并作为所述信号输出端。A film electrical parameter test structure, characterized in that, it is applied to the film structure test system according to any one of claims 1-5, and the piezoelectric thin film includes a film structure test structure; the film The layered electrical parameter testing structure includes a substrate with a cavity, a piezoelectric layer, and a plurality of electrode layers attached to opposite sides of the piezoelectric layer at intervals. The electrode layers are three layers and include upper electrodes stacked in sequence. layer, middle electrode layer and lower electrode layer, the piezoelectric layer, the upper electrode layer and the lower electrode layer form an integrated structure, one end of the integrated structure is connected to the substrate through the lower electrode layer, The other end is suspended above the cavity to form a cantilever beam; the substrate, the piezoelectric layer and the electrode layer together form a resonator circuit; the cantilever beam is a 5-layer stack structure, and the piezoelectric layer It is two layers and includes a first piezoelectric layer and a second piezoelectric layer; the upper electrode layer includes a first segment upper electrode, a second segment upper electrode and a third segment upper electrode spaced apart from each other; the middle electrode layer includes a first-segment middle electrode, a second-segment middle electrode, and a third-segment middle electrode that are spaced apart from each other; the lower electrode layer includes a first-segment lower electrode, a second-segment lower electrode, and a third-segment lower electrode that are spaced apart from each other; the The first-segment middle electrode is a signal input end, and the first-segment upper electrode, the first-segment lower electrode, and the second-segment middle electrode are all electrically connected to ground; the second-segment upper electrode, the first The second-segment lower electrode and the third-segment middle electrode are both electrically connected and in a suspended state, and the third-segment upper electrode is electrically connected to the third-segment lower electrode and serves as the signal output end.
  9. 根据权利要求8所述的膜层电学参数测试结构,其特征在于,所述第一段上电极、所述第一段中间电极、所述第一段下电极在设置于所述压电层的相对两侧的表面时沿着厚度方向的投影有重叠部分;所述第二段上电极、所述第二段中间电极、所述第二段下电极设置于所述压电层的相对两侧的表面时沿着厚度方向的投影有重叠部分,所述第三段上电极、所述第三段中间电极、所述第三段下电极在分布于所述压电层相对两侧的表面时沿着厚度方向的投影有重叠部分,以施加电信号时可在所述压电层内部产生电场。The film electrical parameter testing structure according to claim 8, wherein the first segment upper electrode, the first segment middle electrode, and the first segment lower electrode are disposed on the piezoelectric layer. When the surfaces of the opposite sides are projected along the thickness direction, there are overlapping parts; the second upper electrode, the second middle electrode, and the second lower electrode are arranged on the opposite sides of the piezoelectric layer When the surface of the piezoelectric layer is projected along the thickness direction, there are overlapping parts, and the third segment upper electrode, the third segment middle electrode, and the third segment lower electrode are distributed on the surfaces of the opposite sides of the piezoelectric layer. The projections in the thickness direction have overlapping portions so that an electric field can be generated inside the piezoelectric layer when an electrical signal is applied.
PCT/CN2020/135858 2020-11-18 2020-12-11 Film layer structure testing system and film layer electrical parameter testing structure WO2022104960A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011295120.0 2020-11-18
CN202011295120.0A CN112557775B (en) 2020-11-18 2020-11-18 Film layer structure test system and film layer electrical parameter test structure

Publications (1)

Publication Number Publication Date
WO2022104960A1 true WO2022104960A1 (en) 2022-05-27

Family

ID=75043821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135858 WO2022104960A1 (en) 2020-11-18 2020-12-11 Film layer structure testing system and film layer electrical parameter testing structure

Country Status (2)

Country Link
CN (1) CN112557775B (en)
WO (1) WO2022104960A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113687136A (en) * 2021-08-09 2021-11-23 武汉佰力博科技有限公司 Piezoelectric measuring device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1220399A (en) * 1997-12-18 1999-06-23 大宇电子株式会社 Method for measuring piezoelectric constant of thin film shaped piezoelectric material
JP2001264373A (en) * 2000-03-23 2001-09-26 Matsushita Electric Ind Co Ltd Apparatus and method for measurement of piezoelectric constant of piezoelectric thin film
CN1547036A (en) * 2003-12-01 2004-11-17 中国科学技术大学 Ferroelectric thin film material dielectric performance multi-frequency automatic testing method and device
CN1808154A (en) * 2005-06-23 2006-07-26 中国科学技术大学 Method and apparatus for measuring material piezoelectric coefficient by using scanning near-field microwave microscopy
CN101493487A (en) * 2008-11-27 2009-07-29 电子科技大学 Method for measuring nanometer electronic thin film micro-zone piezoelectric coefficient based on atomic microscope
CN102662111A (en) * 2012-05-25 2012-09-12 电子科技大学 Piezoelectric coefficient detection method
CN103134999A (en) * 2013-01-30 2013-06-05 湘潭大学 Standard-static method for measuring piezoelectric coefficient of d15 of piezoelectric materials
CN107228990A (en) * 2016-03-23 2017-10-03 北京纳米能源与系统研究所 The method of testing and test device of piezoelectric piezoelectric modulus
CN109884346A (en) * 2019-03-10 2019-06-14 复旦大学 A kind of ferroelectric film is macro/microstructure and electric property combined test system
CN112557774A (en) * 2020-11-18 2021-03-26 瑞声新能源发展(常州)有限公司科教城分公司 Piezoelectric performance testing method and structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101074975A (en) * 2007-06-25 2007-11-21 武汉科技学院 Method for measuring thin-film piezoelectric coefficient d33
CN104181403B (en) * 2014-08-07 2017-06-27 中国科学院声学研究所 The detection method of piezoelectric membrane thickness electromechanical coupling coefficient
CN104333346A (en) * 2014-11-27 2015-02-04 王少夫 Novel ultra-wideband piezoelectric filter
CN104363001A (en) * 2014-11-30 2015-02-18 王少夫 Novel piezoelectric filter
US10327052B2 (en) * 2015-04-08 2019-06-18 King Abdullah University Of Science And Technology Piezoelectric array elements for sound reconstruction with a digital input

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1220399A (en) * 1997-12-18 1999-06-23 大宇电子株式会社 Method for measuring piezoelectric constant of thin film shaped piezoelectric material
JP2001264373A (en) * 2000-03-23 2001-09-26 Matsushita Electric Ind Co Ltd Apparatus and method for measurement of piezoelectric constant of piezoelectric thin film
CN1547036A (en) * 2003-12-01 2004-11-17 中国科学技术大学 Ferroelectric thin film material dielectric performance multi-frequency automatic testing method and device
CN1808154A (en) * 2005-06-23 2006-07-26 中国科学技术大学 Method and apparatus for measuring material piezoelectric coefficient by using scanning near-field microwave microscopy
CN101493487A (en) * 2008-11-27 2009-07-29 电子科技大学 Method for measuring nanometer electronic thin film micro-zone piezoelectric coefficient based on atomic microscope
CN102662111A (en) * 2012-05-25 2012-09-12 电子科技大学 Piezoelectric coefficient detection method
CN103134999A (en) * 2013-01-30 2013-06-05 湘潭大学 Standard-static method for measuring piezoelectric coefficient of d15 of piezoelectric materials
CN107228990A (en) * 2016-03-23 2017-10-03 北京纳米能源与系统研究所 The method of testing and test device of piezoelectric piezoelectric modulus
CN109884346A (en) * 2019-03-10 2019-06-14 复旦大学 A kind of ferroelectric film is macro/microstructure and electric property combined test system
CN112557774A (en) * 2020-11-18 2021-03-26 瑞声新能源发展(常州)有限公司科教城分公司 Piezoelectric performance testing method and structure

Also Published As

Publication number Publication date
CN112557775A (en) 2021-03-26
CN112557775B (en) 2022-03-29

Similar Documents

Publication Publication Date Title
US11477580B2 (en) Piezoelectric microphone chip and piezoelectric microphone
Zou et al. Design and fabrication of silicon condenser microphone using corrugated diaphragm technique
US4435986A (en) Pressure transducer of the vibrating element type
CN114422923B (en) Resonant MEMS microphone, acoustic imager and photoacoustic spectrum detector
CN113507676A (en) Structure and device of silicon-based cantilever beam type MEMS piezoelectric microphone
US7397593B2 (en) Deformable mirror
US7343802B2 (en) Dynamic-quantity sensor
WO2022104960A1 (en) Film layer structure testing system and film layer electrical parameter testing structure
JP2006170984A (en) System and method for detecting pressure
WO2022104961A1 (en) Piezoelectric property testing method and structure
CN109752120B (en) Piezoresistive vibration pickup micro resonator, vibration exciting/vibration pickup circuit and pressure sensor
US7849745B2 (en) Ultra-low noise MEMS piezoelectric accelerometers
Lang et al. Piezoelectric bimorph MEMS speakers
CN108195505A (en) Micro-resonance type differential pressure pickup and pressure differential detection method with three beam tuning forks
Simeoni et al. A Miniaturized (100 µm x 100 µm) 45 kHz Aluminum Nitride Ultrasonic Transducer for Airborne Communication and Powering
Hu et al. A ScAlN-Based Piezoelectric MEMS Microphone With Sector-Connected Cantilevers
KR20210013535A (en) Mems transducer and method for operating the same
CN215956645U (en) Structure and device of silicon-based cantilever beam type MEMS piezoelectric microphone
JP2020169881A (en) Physical quantity sensor element, pressure sensor, microphone, ultrasonic sensor, and touch panel
CN114755452B (en) Push-pull photonic crystal zipper cavity optical accelerometer with electromagnetic feedback
US11395081B2 (en) Acoustic testing method and acoustic testing system thereof
US11974104B2 (en) Linearity compensation method and related acoustic system
RU2212736C2 (en) Bender transducer
WO2020228738A1 (en) Pressure-sensitive element, preparation method for pressure-sensitive element, and pressure sensor
US20220256283A1 (en) Linearity compensation method and related acoustic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962251

Country of ref document: EP

Kind code of ref document: A1