WO2022104938A1 - 资源选择方法、装置、设备及介质 - Google Patents

资源选择方法、装置、设备及介质 Download PDF

Info

Publication number
WO2022104938A1
WO2022104938A1 PCT/CN2020/134405 CN2020134405W WO2022104938A1 WO 2022104938 A1 WO2022104938 A1 WO 2022104938A1 CN 2020134405 W CN2020134405 W CN 2020134405W WO 2022104938 A1 WO2022104938 A1 WO 2022104938A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
frequency domain
periodic
current
periodic resource
Prior art date
Application number
PCT/CN2020/134405
Other languages
English (en)
French (fr)
Inventor
李引新
Original Assignee
辰芯科技有限公司
宸芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 辰芯科技有限公司, 宸芯科技有限公司 filed Critical 辰芯科技有限公司
Publication of WO2022104938A1 publication Critical patent/WO2022104938A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technologies, for example, to a resource selection method, apparatus, device, and medium.
  • Vehicle to Everything is the key technology for information exchange in the Internet of Vehicles, including Vehicle to Vehicle (V2V), Vehicle to Pedestrian (V2P), Vehicle to Infrastructure (Vehicle to Infrastructure) Infrastructure, V2I) and vehicle to network (Vehicle to Network, V2N) and other communication technologies.
  • V2V Vehicle to Vehicle
  • V2P Vehicle to Pedestrian
  • Vehicle to Infrastructure Vehicle to Infrastructure
  • V2I Vehicle to Infrastructure
  • V2N vehicle to network
  • LTE Long Term Evolution
  • LTE-V Long Term Evolution-V
  • LTE-Vehicle is a V2X vehicle networking wireless communication technology based on the evolution of LTE mobile communication technology.
  • the sending resources are composed of time domain resources and frequency domain resources.
  • the unit sending resource is fixed at 1ms in the time domain, and the size in the frequency domain is based on The size of the data packet to be sent varies.
  • the terminal can autonomously select the type of the sending resource, where the resource type includes one-time resources and periodic resources.
  • the communication data for the one-time resource is bursty, occasional, and random, and the transmission time interval and data size of the communication data are not constant; the communication data for the periodic resource is periodic and has the same , but the size of the communication data may vary.
  • the upper-layer application data packet is periodic communication data
  • the type of transmission resource selected by the terminal can be one-time or periodic
  • the periodic type is selected. It is beneficial to the resource optimization of the entire network.
  • the size of the upper-layer application data packets differs greatly, there will be a problem that the size of the periodic sending resource is not enough to successfully send each data packet, which will trigger the selection of one-time resources or abnormal reselection of periodic resources. Therefore, the risk of collision with other terminal sending resources is increased, which is not conducive to the optimization of network sending resources. Therefore, how to optimize the scheduling process of periodic resources, reduce the frequency of triggering one-time resource selection or abnormal reselection of periodic resources, and optimize network transmission resources are problems to be solved urgently.
  • the present application provides a resource selection method, apparatus, device and medium, so as to reduce the frequency of triggering the selection of one-time resources or abnormal reselection of periodic resources when periodically sending data packets, so as to optimize the network transmission resources.
  • a resource selection method including:
  • the frequency domain bearing capacity selected by the current periodic resource is adjusted, so as to use the adjusted current periodic resource to send subsequently received data packets.
  • a resource selection device comprising:
  • a data packet receiving and sending module configured to receive a data packet sent by an upper-layer application, and use a preselected current periodic resource to send the data packet;
  • a frequency-domain bearing capacity adjustment module configured to adjust the frequency-domain bearing capacity selected by the current periodic resource when it is determined that the frequency domain bearing capacity adjustment condition of the periodic resource is satisfied, so as to use the adjusted current periodicity
  • the resource sends subsequently received packets.
  • An in-vehicle terminal device including a memory, a processor, and a computer program stored in the memory and running on the processor, the processor implementing the computer program described in any embodiment of the present application when the processor executes the computer program.
  • Resource selection method including a processor, a processor, and a computer program stored in the memory and running on the processor, the processor implementing the computer program described in any embodiment of the present application when the processor executes the computer program.
  • a computer-readable storage medium which stores a computer program, and when the computer program is executed by a processor, implements the resource selection method according to any embodiment of the present application.
  • FIG. 1 is a flowchart of a resource selection method in Embodiment 1 of the present application.
  • FIG. 2 is a flowchart of a resource selection method in Embodiment 2 of the present application.
  • Embodiment 3 is a flowchart of a resource selection method in Embodiment 3 of the present application.
  • Embodiment 4 is a flowchart of a resource selection method in Embodiment 4 of the present application.
  • FIG. 5 is a schematic structural diagram of a resource selection apparatus in Embodiment 5 of the present application.
  • FIG. 6 is a schematic diagram of a hardware structure of a vehicle-mounted terminal device in Embodiment 6 of the present application.
  • Some exemplary embodiments are described as processes or methods depicted as flowcharts. Although a flowchart depicts operations (or steps) as sequential processing, many of the operations may be performed in parallel, concurrently, or concurrently. Additionally, the order of multiple operations can be rearranged. The process may be terminated when its operation is complete, but may also have additional steps not included in the figures.
  • the processes may correspond to methods, functions, procedures, subroutines and subroutines, and the like.
  • the terminal When the terminal sends communication data, it depends on the sending resource, and the selection of a one-time resource or a periodic resource depends on whether the data packet sent from the upper-layer application is periodic or one-time. If the data packet sent by the upper-layer application is one-time, the selected sending resource is also one-time, which is not described in this application; if the data packet sent by the upper-layer application is periodic, then the selected sending resource is both It can be one-time or periodic.
  • the sending resource type used by the terminal will be broadcast by means of control signaling, so that all surrounding terminals can determine whether the terminal is currently using one-time resources or periodic resources by receiving the control signaling.
  • a terminal selects a sending resource, if the existing terminal uses periodic resources, those resources pre-occupied by other terminals can be excluded in a targeted manner, so as to avoid subsequent sending resources caused by two terminals using the same resources for sending. If the existing terminal uses one-time resources, it cannot predict where the terminal will send resources in the future, that is, it is impossible to exclude the reserved resources in advance, thereby increasing the collision of sending resources. possibility. Therefore, in the practical application of the LTE-V technology, if the data packets sent by the upper-layer application are periodic, it is beneficial for the terminal to select periodic resources as much as possible to optimize the entire network resources.
  • the size of the data packets sent by the upper-layer application may not be consistent. If a group of sending resources with the same size in the frequency domain is pre-selected as the cycle, it may be impossible to pass the data packets sent by each upper-layer application due to the fact that the data packets that can be carried by the sending resources pre-occupied later are too small. The preselected current periodic resource is successfully sent.
  • the present application provides a resource selection method, including:
  • FIG. 1 is a flowchart of a resource selection method provided in Embodiment 1 of the present application, which is applicable to the case of selecting periodic resources for data transmission.
  • the method can be executed by the resource selection device provided in the embodiment of the present application, and the device can It is implemented in software and/or hardware, and can be integrated into terminal equipment, such as vehicle-mounted terminal equipment.
  • the resource selection method provided by this embodiment includes the following steps.
  • S110 Receive a data packet sent by an upper-layer application, and use a preselected current periodic resource to send the data packet.
  • Data packets refer to communication data sent from upper-layer applications (such as Internet of Vehicles application platforms and third-party applications, etc.) that need to be forwarded by terminals or other devices.
  • upper-layer applications such as Internet of Vehicles application platforms and third-party applications, etc.
  • Periodic resources refer to a series of sending resources that can be used to send periodic communication data (that is, data packets sent by upper-layer applications). Periodic resources have the same sending time interval, that is, send resources periodically, equivalent to the terminal The device occupies part of the sending resources in advance.
  • Periodic resources may be determined by any scheduling method capable of periodically configuring transmission resources, for example, periodic resources may be allocated by semi-persistent scheduling (Semi-Persistent Scheduling, SPS), which is not limited in this embodiment .
  • SPS semi-persistent scheduling
  • the number of periodic resources may range from several to dozens. After the pre-selected periodic resources are consumed, the periodic resources may be reselected, and communication data may be continuously sent.
  • the communication data packet is sent by using a pre-selected periodic resource corresponding to the current moment.
  • the current periodic resource can carry the received data packets sent by the upper-layer application, that is, when the size of the data packets allowed to be sent by the current periodic resources meets the size of the received data packets sent by the upper-layer application, the current periodic resources can be sent.
  • Data packet if the current periodic resource cannot carry the received data packet sent by the upper-layer application, that is, when the size of the data packet allowed to be sent by the current periodic resource cannot meet the size of the received data packet sent by the upper-layer application, the current cycle At this time, according to the size of the data packet to be sent, a one-time resource can be selected to send the data packet, or the data packet to be sent can be segmented, that is, the data packet to be sent is processed according to the current periodic resource.
  • the size of the data packets that can be carried is divided into segments. For data packets whose size is within the range that the current periodic resources can carry, the current periodic resources can continue to be selected for transmission, and the remaining part of the data packets to be sent can be selected once. resources are sent.
  • the frequency domain carrying capacity refers to the maximum size of the data packets that the periodic resources allow to be sent. Since the terminal equipment needs to rely on the sending resources when sending data, and the sending resources are composed of time domain resources and frequency domain resources, the unit sending resource is fixed at 1ms in the time domain, and the size in the frequency domain depends on the The size of the data packets to be sent is different. Therefore, it is necessary to adjust the frequency domain carrying capacity of the periodic resources according to the size of the data packets to be sent.
  • the periodic resources can be To normally send and receive data packets from upper-layer applications, the terminal device can select periodic resources to send data packets as much as possible, avoiding the situation of selecting one-time resources to send data packets, which is beneficial to the optimization of the entire network resources.
  • the condition for adjusting the frequency-domain carrying capacity of the periodic resource refers to an influencing factor for adjusting the frequency-domain carrying capacity of the periodic resource. If the condition for adjusting the frequency domain bearing capacity of the periodic resource is satisfied, the frequency domain bearing capacity of the periodic resource is triggered to be adjusted.
  • Whether the periodic resource frequency domain carrying capacity adjustment condition is met can be judged according to the preset time interval. If the current time reaches the frequency domain carrying capacity adjustment time interval, it can be determined that the current time meets the periodic resource frequency domain carrying capacity adjustment condition. It can also be judged according to whether the current periodic resource can carry the received data packets sent by the upper-layer application. If a periodic resource is selected, it can be determined that the current moment satisfies the adjustment condition of the frequency domain bearing capacity of the periodic resource.
  • the periodic resource is re-selected, so as to use the newly selected periodic resource to continue to complete the transmission of the data packet.
  • the frequency domain bearing capacity selected by the current periodic resource may be adjusted. Furthermore, when receiving a data packet subsequently sent by the upper-layer application, the data packet may be continuously sent by using the periodic resource after the adjustment of the frequency domain bearing capacity.
  • the technical solutions provided by the embodiments of the present application receive data packets sent by upper-layer applications, and use pre-selected current periodic resources to send data packets.
  • the selected frequency domain carrying capacity is adjusted, so that the subsequently received data packets can be sent using the adjusted current periodic resources.
  • the scheduling process of periodic resources is optimized and the reduction of The frequency at which one-time resources or abnormal reselection periodic resources are triggered is selected, thereby optimizing network transmission resources.
  • FIG. 2 is a flowchart of a resource selection method provided in Embodiment 2 of the present application. This embodiment is described on the basis of the above-mentioned embodiment, wherein determining that the periodic resource frequency domain bearing capacity adjustment condition is satisfied includes:
  • the periodic resource frequency domain carrying capacity adjustment time interval is the resource selection time period of the current periodic resource target multiple.
  • Adjusting the frequency domain bearing capacity selected by the current periodic resources may include:
  • the distribution table is used to calculate the frequency domain carrying capacity target value; according to the frequency domain carrying capacity target value, the frequency domain carrying capacity selected by the current periodic resources is adjusted.
  • the resource selection method provided by this embodiment includes the following steps.
  • Periodic resource frequency domain carrying capacity adjustment time interval refers to the preset time interval used to instruct periodic resource frequency domain carrying capacity adjustment, that is, the time required to adjust the periodic resource frequency domain carrying capacity twice adjacently. time span. At every other periodic resource frequency domain bearing capacity adjustment time interval, the frequency domain bearing capacity selected by the current periodic resource is adjusted.
  • the time interval for adjusting the frequency domain bearer of the periodic resource is a target multiple of the resource selection time period of the current periodic resource.
  • the resource selection time period of the periodic resource refers to the time interval between two pre-selected adjacent periodic resources. Every other resource selection time period, a data packet received from the upper-layer application is sent through the corresponding periodic resource.
  • the resource selection time period of the periodic resource is consistent with the received period of the upper-layer application sending the data packet, and the time period of the upper-layer application sending the data packet may be between 20ms and 1000ms.
  • the resource selection time period of the periodic resource is 20ms and the target multiple is set to 1000
  • the corresponding periodic resource frequency domain carrying capacity adjustment time interval is 20000ms, that is, every 20000ms, the pre-selected unused period
  • the frequency domain carrying capacity of the resource is adjusted uniformly.
  • the frequency domain carrying capacity selected by the current periodic resources is adjusted; if the current moment does not meet the time interval for adjusting the frequency domain carrying capacity of periodic resources, no need to adjust The frequency domain bearing capacity selected by the current periodic resource is adjusted.
  • the timing start time may be a pre-selected time of the selected periodic resource, or may be another preset time, which is not limited in this embodiment.
  • the mean and standard deviation of the sizes of all data packets from the upper-layer application within the periodic resource frequency domain carrying capacity adjustment time interval corresponding to the current time are counted.
  • All data packets sent from upper-layer applications during the period corresponding to the current moment for adjusting the frequency-domain carrying capacity of periodic resources refers to all data packets sent from upper-layer applications within the time interval for adjusting the frequency-domain carrying capacity of periodic resources before the current moment.
  • the periodic resource frequency domain carrying capacity adjustment interval is 20000ms
  • all data packets sent by the upper-layer application within 20000ms before the current time are counted, the size of each data packet is obtained, and the data packets are calculated. The mean and standard deviation of the size.
  • the abnormal resource selection may include at least one-time resource selection or periodic resource abnormal reselection. It refers to a situation such as selecting a one-time resource or abnormally reselection of a periodic resource when sending a received data packet of an upper-layer application by means of a periodic resource.
  • the resource selection time period of a periodic resource is 100ms
  • the frequency domain bearing capacity of the periodic resource is 100 bytes, that is to say, the periodic resource can send multiple files with a size of no more than 100 bytes within a period of 100ms.
  • Data packet if the size of a data packet is 200 bytes, because the size of the data packet exceeds the frequency domain carrying capacity of the periodic resource, the current periodic resource cannot send the data packet, then the terminal device can choose a one-time The resource sends the data packet, or a new periodic resource can be reselected to continue to send the data packet. In this case, selecting a one-time resource to send the data packet or re-selecting a new periodic resource to continue to send the data packet belongs to the situation. Resource exception selection.
  • Resource abnormal selection target ratio value which refers to the expected percentage of resource abnormal selection times to the total data transmission times in the target time period, which is used to indicate that the number of resource abnormal selection times in the process of sending data packets accounts for the largest number of data transmission times. percentage.
  • the target time period may be represented by the number of data packet sending times, for example, may be a time period corresponding to the most recent sending of data packets a preset number of times.
  • the resource exception selection target ratio value Indicates that the number of abnormal resource selections expected to occur during the 100 times of sending data packets is at most 5 times, that is to say, the expected abnormal selection of resources within the target time period accounts for 5% of the total data transmission times. 95% of the resource selections in the 100 packets are not resource exception selections.
  • the frequency-domain carrying capacity target value refers to the target value to which the frequency-domain carrying capacity of the periodic resource needs to be adjusted in order to make the resource anomaly selection meet the target ratio value of the resource anomaly selection.
  • the average value and standard deviation of the sizes of all data packets sent from upper-layer applications within the time interval are adjusted according to the statistics of the periodic resources in the frequency domain corresponding to the current moment, as well as the resource anomaly selection target ratio value, and the query criteria
  • the normal distribution table is used to calculate the target value of the carrying capacity in the frequency domain.
  • the standard normal distribution table can be used. And normal distribution formula for normalized transformation, so as to determine the frequency domain carrying capacity target value.
  • the set target ratio of abnormal resource selection is 0.05 (that is, 5%).
  • the mean and standard deviation of the size of all data packets from the upper-layer application within the time interval of volume adjustment, and obtain the mean value of the size of all data packets from the upper-layer application is 200 bytes and the standard deviation is 50.
  • the standard normal distribution table know formula based and After the standardization conversion, there is a 95% possibility that the size of the data packet sent by the upper-layer application is less than 282.5 bytes, and then the target value of the frequency domain carrying capacity of the periodic resource can be set to 282.5 bytes. That is, when the frequency domain bearing capacity of the selected periodic resource is about 282 bytes, the number of abnormal resource selections in the process of sending data packets will not exceed 5% of the total number of data transmissions.
  • the received periodic data packets from the upper-layer application have a period of 4 and the size of the data packets are 187 words respectively.
  • the mean and standard deviation of the size of all data packets from the upper-layer application are counted, and the mean value of the size of all data packets from the upper-layer application is 225.5 bytes, and the standard deviation is 74.6.
  • Querying the standard normal distribution table shows that and based on the formula and After the normalization conversion, it is equivalent to assuming that the size of the periodic data packets from the upper-layer application is normally distributed, there is a 92% probability that the size of the data packet sent by the upper-layer application is less than 330.7 bytes, and then it can be Set the frequency domain carrying capacity target value of periodic resources to 330.7 bytes. That is, if the target value of the frequency domain carrying capacity of the periodic resource is set to about 331 bytes, it will cause the periodic resource to be unable to send data packets with a size of 359 bytes, resulting in resource exceptions during the data packet transmission process.
  • the selected situation accounts for 25% of the total number of data transmissions, so it is necessary to adjust the target value of the frequency domain carrying capacity of the periodic resource so that the target value of the frequency domain carrying capacity of the periodic resource can fluctuate around 359 bytes. Therefore, the percentage of abnormal selection of resources in the process of sending data packets for the adjusted periodic resources is maintained at about 8% of the total number of data sending times when all data packets are sent.
  • the frequency domain carrying capacity selected by the current periodic resource can be reduced. ; If the percentage of the number of abnormal resource selections in the total number of data transmissions is greater than the target ratio value of abnormal resource selection, the frequency domain carrying capacity selected by the current periodic resource can be increased, so that the adjusted periodic resource can be used in the transmission of data packets.
  • the percentage of the number of times of abnormal resource selection occurring in the process to the total number of times of sending all data packets can always be near the target ratio of abnormal resource selection.
  • the so-called periodic resource exhaustion means that the number of times the current periodic resource is used reaches the number of repetitions of the periodic resource determined when the periodic resource is selected. Determine whether the current periodic resource is exhausted. If the current periodic resource is completely exhausted, that is, the number of times the current periodic resource is used reaches the number of resource repetitions determined when the periodic resource is selected, re-select the appropriate periodic resource to continue sending data. If the current periodic resource is not completely exhausted, that is, the usage times of the current periodic resource does not reach the resource repetition times determined when the periodic resource is selected, there is no need to re-select the periodic resource, and continue to perform S280.
  • S270 Reselect the periodic resource according to the size of the current data packet to be sent, the period, and the number of repetitions of the periodic resource.
  • the periodic resource may be reselected to continue to send the data packet according to the size, period and repetition times of the current data packet to be sent, and then S2120 is performed.
  • S280 Determine whether the current periodic resource can carry the received data packet sent by the upper-layer application, and if so, execute S2120; otherwise, execute S290.
  • the current periodic resource is not completely exhausted, it can be determined whether the current periodic resource can carry the received data packets sent by the upper-layer application. If it can carry the received data packets sent by the upper-layer application, there is no need to Other processing is performed on the data packets sent by the application. If the received data packets sent by the upper-layer application cannot be carried, the received data packets sent by the upper-layer application are processed so that the received data packets sent by the upper-layer application can be sent. resource sending.
  • the current periodic resource when judging whether the current periodic resource can carry the received data packet sent by the upper-layer application, the current periodic resource can be judged by the maximum modulation and coding strategy (Modulation and Coding Scheme, MCS) of the current periodic resource to determine the current period. Whether the resource can send the received data packets sent by the upper-layer application.
  • MCS is a rate table formed by taking the concerned factors affecting the communication rate as the column of the table and the MCS index as the row.
  • the physical transmission rate of the communication data can be configured through the index value of the MCS, and then the current cycle can be determined.
  • S290 Determine whether the data packet to be sent is subjected to segmentation processing, if yes, execute S2100, otherwise, execute S2110.
  • the current periodic resource cannot carry the received data packet sent by the upper-layer application, it means that the size of the received data packet sent by the upper-layer application exceeds the range that the current periodic resource can carry. Therefore, it is necessary to determine the data to be sent. Whether the packet is fragmented. If the data packets to be sent are processed in segments, the data packets can be sent in segments according to the size of the data packets that can be carried by the current periodic resource. If the data packets to be sent are not processed in segments, select an appropriate one-time resource. Send packets.
  • S2100 Segment the data packet to be sent according to the size of the data packet that can be carried by the current periodic resource.
  • the data packet to be sent can be processed according to the size of the data packet that can be carried by the current periodic resource. Segmentation, continue to select the current periodic resource for transmission for the data packets within the range that the current periodic resource can bear, select a one-time resource for the remaining part of the data packets to be transmitted for transmission, and then continue to execute S2120.
  • all one-time resources can be selected to send the data packets according to the size of the data packets to be sent.
  • the reselected period is used at the specified time position for sending the data packet. or determine that the current periodic resource can carry the received data packet sent by the upper-layer application, then use the current periodic resource to send the data packet at the specified time position for sending the data packet; or the current periodic resource If the received data packets sent by the upper-layer application cannot be carried, and the data packets to be sent are processed in segments, the current periodic resources and one-time resources are used to send the data packets at the specified time position for sending the data packets; or The current periodic resource cannot carry the received data packet sent by the upper-layer application, and the data packet to be sent is not segmented, then the one-time resource is used to send the data packet at the specified time position for sending the data packet.
  • a data packet sent by an upper-layer application is received, and a pre-selected current periodic resource is used to send the data packet. If the current moment satisfies the periodic resource frequency domain bearing capacity adjustment time interval, it is determined that the periodic resource frequency domain is satisfied.
  • Carrying capacity adjustment condition By calculating the distribution of the size of the historically sent data packets of periodic resources and adjusting the frequency domain carrying capacity of periodic resources based on the normal distribution, the adjusted current periodic resources can be used to send subsequent receptions.
  • the received data packets optimize the scheduling process of periodic resources, reduce the frequency of triggering one-time resource selection or abnormal reselection of periodic resources, and optimize network transmission resources.
  • FIG. 3 is a flowchart of a resource selection method provided in Embodiment 3 of the present application. This embodiment is described on the basis of the above-mentioned embodiment, wherein determining that the condition for adjusting the periodic resource frequency domain bearing capacity is satisfied may include:
  • Adjusting the frequency domain bearing capacity selected by the current periodic resources may include:
  • the abnormal resource selection is triggered to send the target data packet, and the total number of abnormal resource selections in the target time period is counted; wherein, the abnormal resource selection includes part or all of select one-time resources;
  • the frequency domain bearing capacity selected by the current periodic resource is adjusted.
  • the resource selection method provided by this embodiment includes the following steps.
  • the current periodic resource is completely exhausted, that is, the number of times the current periodic resource is used reaches the number of repetitions of the periodic resource determined when the periodic resource was selected, re-select the appropriate periodic resource to continue sending data packets. If the resource is not completely exhausted, that is, the current usage times of the periodic resource does not reach the number of repetitions of the periodic resource determined when the periodic resource is selected, there is no need to re-select the periodic resource, and then continue to perform S340.
  • S330 Reselect the periodic resource according to the size, period, and repetition times of the periodic resource currently to be sent, and execute S3100.
  • the periodic resource can be reselected to continue sending data packets according to the size of the current data packet to be sent, the period, and the number of repetitions of the periodic resource, and there is no need to select the re-selected periodic resource.
  • the frequency domain carrying capacity is adjusted.
  • S340 Determine whether the current periodic resource can carry the received data packet sent by the upper-layer application, if yes, execute S3100, otherwise, execute S350.
  • the current periodic resource is not completely exhausted, it can be determined whether the current periodic resource can carry the received data packets sent by the upper-layer application. If it can carry the received data packets sent by the upper-layer application, it is not necessary to The selected frequency domain bearing capacity is adjusted, and if the received data packet sent by the upper-layer application cannot be carried, the frequency domain bearing capacity selected by the current periodic resource is adjusted.
  • Exception resource selection includes selecting some or all of the one-time resources.
  • the so-called partial selection of one-time resources is aimed at the situation where data packets are sent in segments. Since the data packets to be sent are processed in segments according to the size of the data packets that can be carried by the current periodic resources, so that the current periodic resources can be carried by the current periodic resources. The data packets within the range continue to select the current periodic resource for transmission, while the remaining part of the data packets to be sent select the one-time resource for transmission, so that some one-time resources are selected when the data packet is sent.
  • the target time period may be represented by the number of data packet sending times, for example, may be a time period corresponding to the most recent data packets sent a preset number of times. For example, the time period corresponding to the most recent 100 sending and receiving data packets of the upper-layer application before the current moment.
  • abnormal resource selection will be triggered to send the target data packet.
  • Count the total number of abnormal resource selections in the target time period For example, count the number of abnormal resource selections in the time period corresponding to the last 100 data packets sent before the current moment, that is, select abnormal resources in the last 100 data packets sent. The number of times to send.
  • S360 Determine whether the data packet to be sent is segmented, if so, execute S370; otherwise, execute S380.
  • the current periodic resource cannot carry the received data packet sent by the upper-layer application, it is determined whether the data packet to be sent is subjected to segmentation processing. If the data packet to be sent is subjected to fragmentation processing, execute S370, and if the data packet to be sent is not subjected to fragmentation processing, execute S380.
  • S370 Segment the data packet to be sent according to the size of the data packet that can be carried by the current periodic resource, and then continue to perform S390.
  • the frequency domain bearing capacity selected for the current periodic resource is Make adjustments, including:
  • the frequency domain bearing capacity selected by the current periodic resource is reduced according to the target range.
  • the target increase refers to the adjustment range of the current periodic resource frequency domain carrying capacity according to the relationship between the ratio of the total number of abnormal resource selections to the total number of data transmissions within the target time period and the target ratio of abnormal resource selection.
  • the ratio of the total number of abnormal resource selections to the total number of data transmissions in the target time period is greater than the target ratio of abnormal resource selection, it means that the current periodic resource has a too small frequency domain bearing capacity, so the current periodic resource can be increased according to the target range. If the ratio of the total number of abnormal resource selections to the total number of data transmissions in the target time period is less than the target ratio of abnormal resource selection, it means that the current periodic resource has too much frequency domain carrying capacity, so it can be determined according to the target The frequency domain carrying capacity of the current periodic resources can be greatly reduced, so as to achieve the effect of dynamically adjusting the frequency domain carrying capacity of periodic resources based on the size of historical data packets and the number of abnormal resource selections, and realize the selection of periodic resources. Optimization.
  • the set target ratio of abnormal resource selection is 0.05 (ie 5%), and when the ratio of the total number of abnormal resource selections to the total number of data transmissions within the target time period is 0.06 (ie 6%), it is greater than the abnormal resource selection.
  • the target ratio value indicates that the frequency domain carrying capacity of the current periodic resources is too small, so the frequency domain carrying capacity of the current periodic resources can be increased; when the ratio of the total number of abnormal resource selections to the total data transmission times within the target time period is 0.04
  • it is smaller than the target ratio value of abnormal resource selection it means that the current frequency domain bearing capacity of periodic resources is too large, so the frequency domain bearing capacity of the current periodic resources can be reduced, so as to realize the dynamic control of the frequency domain bearing capacity of periodic resources. Adjustment so that the ratio of the total number of abnormal resource selections to the total number of data transmissions within the target time period can fluctuate around the target ratio of abnormal resource selection ratio of 0.05, which optimizes the scheduling process of periodic resources, and further optimizes network transmission resources.
  • the target value according to the target value of the frequency domain bearing capacity, to adjust the frequency domain bearing capacity selected by the current periodic resource.
  • the received periodic data packet from the upper-layer application is a repeated sequence with a period of 4 and the packet size is 187 bytes, 187 bytes, 187 bytes and 359 bytes, respectively, when the set The target ratio of resource anomaly selection is 0.08 (ie 8%).
  • the average value and standard deviation of the size of all data packets from the upper-layer application in the periodic resource frequency domain carrying capacity adjustment time interval corresponding to the current moment can be obtained.
  • the average size of all data packets from upper-layer applications is 225.5 bytes, and the standard deviation is 74.6.
  • the target value of the frequency domain carrying capacity of periodic resources can be calculated to be 330.7 bytes.
  • the target value of the frequency domain carrying capacity is set at about 331 bytes, which will cause periodic resources to fail to send data packets with a size of 359 bytes, so that the abnormal selection of resources in the data packet transmission accounts for the total number of data transmission times. 25%. If the set target time period is the time period corresponding to the last 100 data packets sent before the current time, when the frequency domain carrying capacity of the periodic resource is less than 359 bytes, the total number of abnormal resource selections accounts for the total number of data transmission times.
  • the ratio value is 25%, the ratio of the total number of abnormal resource selections to the total data transmission times in the target time period is greater than the target ratio of abnormal resource selection target ratio of 8%, which means that the current frequency domain carrying capacity of periodic resources is too small, so it can be Increase the frequency domain bearing capacity of the current periodic resource according to the target range; when the frequency domain bearing capacity of the periodic resource increases to not less than 359 bytes, the ratio of the total number of abnormal resource selections to the total number of data transmissions will gradually decrease to 0 , the ratio of the total number of abnormal resource selections to the total number of data transmissions in the target time period is less than 8% of the target ratio of abnormal resource selection, indicating that the current frequency domain carrying capacity of periodic resources is too large, so the current period can be reduced according to the target range.
  • Frequency domain carrying capacity of periodic resources In the whole process of adjusting the frequency domain carrying capacity of periodic resources, it can fluctuate around 359 bytes, so that the number of abnormal resource selections in the process of sending data packets for the adjusted periodic resources accounts for all the data packets sent. The percentage of the total number of times data is sent remains at around 8%.
  • the abnormal resource selection is triggered to send the target data packet, if the ratio of the total number of abnormal resource selections to the total number of data transmissions in the target time period is consistent with the target ratio of abnormal resource selection, it is not necessary to select the current periodic resource.
  • the frequency domain carrying capacity is adjusted.
  • the target amplitude is determined according to the standard deviation of the sizes of all data packets from upper-layer applications within the periodic resource frequency domain carrying capacity adjustment time interval corresponding to the current moment;
  • the time interval for adjusting the frequency domain bearing capacity of the periodic resource is the target multiple of the resource selection time period of the current periodic resource.
  • the target amplitude can be adjusted according to the frequency domain bearing capacity of the periodic resource corresponding to the current moment. Poor sure.
  • the target amplitude can be set to 10% of the standard deviation, that is, 10 units (eg 10 bytes).
  • the ratio of the total number of abnormal resource selections to the total number of data transmissions in the target time period is greater than the target ratio of abnormal resource selection, the frequency domain carrying capacity of the current periodic resources is increased by 10 units;
  • the ratio of the total selection times to the total data transmission times is less than the target ratio value of abnormal resource selection, the frequency domain bearing capacity of the current periodic resource is reduced by 10 units.
  • the reselected period is used at the specified time position for sending the data packet. If the current periodic resource can carry the received data packet sent by the upper-layer application, the current periodic resource is used to send the data packet at the specified time position for sending the data packet; or the current periodic resource is used to send the data packet. It cannot carry the received data packet sent by the upper-layer application, and after adjusting the frequency domain carrying capacity selected by the current periodic resource according to the target range, at the specified time position for sending the data packet, use the current periodic resource to send data pack.
  • a data packet sent by an upper-layer application is received, and a pre-selected current periodic resource is used to send the data packet. If the current periodic resource cannot carry the received data packet sent by the upper-layer application, it is determined that the periodic resource is satisfied.
  • the frequency domain carrying capacity adjustment condition based on the size of the historical data packets and the number of abnormal resource selections, dynamically adjust the frequency domain carrying capacity of the periodic resources, so that the subsequently received data packets can be sent using the adjusted current periodic resources.
  • the scheduling process of periodic resources is optimized, and the frequency of triggering one-time resource selection or abnormal reselection of periodic resources is reduced, thereby optimizing network transmission resources.
  • FIG. 4 is a flowchart of a resource selection method provided in Embodiment 4 of the present application. This embodiment is described on the basis of the above-mentioned embodiment, wherein determining that the periodic resource frequency domain bearing capacity adjustment condition is satisfied may include: if the current moment satisfies the periodic resource frequency domain bearing capacity adjustment time interval or the current periodic resource cannot bear the load The received data packet sent by the upper-layer application is determined to satisfy the periodic resource frequency domain bearing capacity adjustment condition.
  • the resource selection method provided by this embodiment includes the following steps.
  • the time interval for adjusting the frequency domain bearing capacity of the periodic resource is the target multiple of the resource selection time period of the current periodic resource.
  • the frequency domain carrying capacity selected by the current periodic resources is adjusted; if the current moment does not meet the time interval for adjusting the frequency domain carrying capacity of periodic resources, no need to adjust The frequency domain bearing capacity selected by the current periodic resource is adjusted, and then S460 is performed.
  • S470 Reselect the periodic resource according to the size, period, and repetition times of the periodic resource currently to be sent, and then execute S4170.
  • S480 Determine whether the current periodic resource can carry the received data packet sent by the upper-layer application, and if so, execute S4170, otherwise, execute S490.
  • the current periodic resource is not completely exhausted, it can be determined whether the current periodic resource can carry the received data packets sent by the upper-layer application. If it can carry the received data packets sent by the upper-layer application, there is no need to Perform other processing on the data packet sent by the application, and execute S4170. If the received data packet sent by the upper-layer application cannot be carried, the received data packet sent by the upper-layer application is processed, so that the received data packet sent by the upper-layer application is processed. Can be sent by sending resources.
  • the current periodic resource cannot carry the received data packet sent by the upper-layer application, it is determined whether the data packet to be sent is subjected to segmentation processing. If the data packets to be sent are processed in segments, the data packets can be sent in segments according to the size of the data packets that can be carried by the current periodic resource. If the data packets to be sent are not processed in segments, select an appropriate one-time resource. Send the data packet, and then execute S4120.
  • S4110 Segment the data packet to be sent according to the size of the data packet that can be carried by the current periodic resource, and continue to perform S4130.
  • S4130 Determine the relationship between the ratio of the total number of times of abnormal resource selection to the total number of data sending times in the target time period and the target ratio value of abnormal resource selection. If the target ratio value of abnormal selection is selected, then execute S4140. If the ratio of the total number of abnormal resource selections to the total number of data transmissions in the target time period is less than the target ratio value of abnormal resource selection, then execute S4150. If the total number of abnormal resource selections in the target time period is If the ratio value of the total number of times of data transmission is equal to the target ratio value of abnormal resource selection, S4160 is executed.
  • the target amplitude can be determined according to the standard deviation of the sizes of all data packets from upper-layer applications within the periodic resource frequency domain carrying capacity adjustment time interval corresponding to the current moment;
  • the time interval for adjusting the frequency domain bearing capacity of the periodic resource is the target multiple of the resource selection time period of the current periodic resource.
  • the periodic resources can be re-selected according to the size, period and repetition times of the current data packets to be sent, and the re-selected
  • the periodic resource sends data packets; or the current periodic resource can carry the received data packets sent by the upper-layer application, then at the specified time position for sending the data packets, the current periodic resources are used to send the data packets; or the current periodic resources are used to send data packets;
  • the resource cannot carry the received data packet sent by the upper-layer application, and after adjusting the frequency domain carrying capacity selected by the current periodic resource according to the target range, the current periodic resource is used at the specified time position for sending the data packet. Send packets.
  • a data packet sent by an upper-layer application is received, and a pre-selected current periodic resource is used to send the data packet.
  • the data packets sent by the upper-layer application of the corresponding periodic resources are determined to meet the adjustment conditions for the periodic resource frequency domain carrying capacity.
  • the frequency domain carrying capacity of the adjusted periodic resource makes the percentage of abnormal resource selection in the process of sending data packets for the adjusted periodic resources to the total number of data transmission times when all data packets are sent. Always maintain around the target ratio of abnormal resource selection.
  • the scheduling process of periodic resources reduces the frequency of triggering one-time resource selection or abnormal reselection of periodic resources, thereby optimizing network transmission resources.
  • FIG. 5 is a schematic structural diagram of a resource selection apparatus provided in Embodiment 5 of the present application, which can be applied to the situation of periodic resource selection.
  • the apparatus can be implemented in software and/or hardware, and can be integrated in on-board terminal equipment. .
  • the resource selection apparatus includes: a data packet receiving and sending module 510 and a frequency domain bearing capacity adjusting module 520 .
  • the data packet receiving and sending module 510 is configured to receive the data packet sent by the upper-layer application, and use the preselected current periodic resource to send the data packet;
  • the frequency domain bearing capacity adjustment module 520 is configured to adjust the frequency domain bearing capacity selected by the current periodic resource to use the adjusted current periodic resource if it is determined that the periodic resource frequency domain bearing capacity adjustment condition is met. Send subsequent received packets.
  • the technical solutions provided by the embodiments of the present application receive data packets sent by upper-layer applications, and use pre-selected current periodic resources to send data packets.
  • the selected frequency domain bearing capacity is adjusted, so that subsequently received data packets can be sent using the adjusted current periodic resources.
  • the above technical solution optimizes the scheduling process of periodic resources by adjusting the frequency domain bearing capacity of periodic resources, reduces the frequency of triggering one-time resource selection or abnormal reselection of periodic resources, and optimizes network transmission resources.
  • the frequency domain bearing capacity adjustment module 520 is set to:
  • the periodic resource frequency domain bearing capacity adjustment time interval is a target multiple of the resource selection time period of the current periodic resource.
  • the frequency domain carrying capacity adjustment module 520 is set to:
  • the target ratio value is selected, the standard normal distribution table is queried, and the frequency domain carrying capacity target value is calculated;
  • the frequency domain bearing capacity selected by the current periodic resource is adjusted.
  • the frequency domain bearing capacity adjustment module 520 is set to:
  • the frequency domain carrying capacity adjustment module 520 is set to:
  • Resource selection includes the selection of some or all of one-time resources
  • the frequency domain bearing capacity selected by the current periodic resource is adjusted according to the relationship between the ratio of the total number of abnormal resource selections to the total number of data transmissions in the target time period and the target ratio of abnormal resource selection.
  • the frequency domain carrying capacity adjustment module 520 is set to:
  • the ratio of the total number of abnormal resource selections to the total number of data transmissions within the target time period is less than the target ratio of abnormal resource selection, reduce the frequency domain bearer selected by the current periodic resource according to the target range quantity.
  • the target amplitude is determined according to the standard deviation of the sizes of all data packets from the upper-layer application within the periodic resource frequency domain bearing capacity adjustment time interval corresponding to the current moment.
  • the above resource selection apparatus can execute the resource selection method provided by any embodiment of the present application, and has the function module package and effect corresponding to the execution of the resource selection method.
  • FIG. 6 is a schematic diagram of the hardware structure of a vehicle-mounted terminal device provided in Embodiment 6 of the present application. As shown in FIG. 6 , the vehicle-mounted terminal device includes:
  • One or more processors 610, one processor 610 is taken as an example in FIG. 6;
  • the in-vehicle terminal device may further include: an input device 630 and an output device 640 .
  • the processor 610 , the memory 620 , the input device 630 and the output device 640 in the in-vehicle terminal device may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 6 .
  • the memory 620 can be used to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the resource selection method in the embodiments of the present application (for example, the accompanying drawings).
  • the processor 610 executes various functional applications and data processing of the in-vehicle terminal device by running the software programs, instructions and modules stored in the memory 620, ie, implements the resource selection method in the above method embodiments.
  • the memory 620 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the computer equipment, and the like. Additionally, memory 620 may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid state storage device. In some embodiments, the memory 620 may optionally include memory located remotely from the processor 610, and these remote memories may be connected to the terminal device through a network. Examples of such networks include the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 630 may be configured to receive input numerical or character information, and to generate key signal input related to user setting and function control of the vehicle-mounted terminal device.
  • the output device 640 may include a display device such as a display screen.
  • Embodiment 7 of the present application provides a computer-readable storage medium, storing a computer program.
  • the computer program is executed by a processor, the resource selection methods provided by all the application embodiments of the present application are implemented, that is, the computer program is processed Implemented when the device executes:
  • the frequency domain bearing capacity selected by the current periodic resource is adjusted, so as to use the adjusted current periodic resource to send subsequently received data packets.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium can be, for example, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above.
  • Computer-readable storage media include: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable Programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EPROM) or flash memory, optical fiber, portable compact disk read-only memory (Compact Disc Read Only Memory, CD-ROM), optical storage device, magnetic storage device, or the above any suitable combination.
  • a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms, including electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • RF radio frequency
  • Computer program code for carrying out the operations of the present application may be written in one or more programming languages, including object-oriented programming languages (such as Java, Smalltalk, C++), and conventional procedural programming language (such as the "C" language or similar programming language).
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or a Wide Area Network (WAN), or it can be connected to an external computer ( For example, using an Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例公开了一种资源选择方法、装置、设备及介质。该资源选择方法包括:接收上层应用发送的数据包,并使用预先选择的当前周期性资源发送所述数据包;在确定满足周期性资源频域承载量调整条件的情况下,对所述当前周期性资源所选择的频域承载量进行调整,以使用调整后的当前周期性资源发送后续接收到的数据包。

Description

资源选择方法、装置、设备及介质
本申请要求在2020年11月17日提交中国专利局、申请号为202011289234.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,例如涉及一种资源选择方法、装置、设备及介质。
背景技术
车载通信技术(Vehicle to Everything,V2X)是车联网中信息交互的关键技术,包括车到车(Vehicle to Vehicle,V2V)、车到人(Vehicle to Pedestrian,V2P)、车到基础设施(Vehicle to Infrastructure,V2I)和车到网络(Vehicle to Network,V2N)等通信技术。长期演进(Long Term Evolution,LTE)技术是一种通信系统与通信标准,它是通用移动通信系统技术标准的长期演进。LTE-V(LTE-Vehicle)是基于LTE移动通信技术演进形成的V2X车联网无线通信技术。
LTE-V的终端在发送通信数据时,依靠于发送资源,发送资源是由时域资源和频域资源组成的,单位发送资源在时域上是固定的1ms,在频域上的大小则根据待发送的数据包的大小不同来决定。在不使用网络辅助工具的情况下,通过终端自主选择发送资源的类型,其中,资源的类型包括一次性资源和周期性资源。一次性资源针对的通信数据是突发的、偶发的、具有随机性的,且通信数据的发送时间间隔和数据的大小都不一定;周期性资源针对的通信数据是呈周期性的,具有相同的发送时间间隔,但通信数据的大小可能不同。
在LTE-V技术的实际工程应用中,当上层应用数据包是周期性的通信数据时,虽然终端选择的发送资源的类型可以是一次性的,也可以是周期性的,但选择周期性类型的发送资源,有利于整个网络的资源优化。然而,在上层应用数据包的大小相差较大时,会存在由于周期性发送资源尺寸较小不足以成功发送每个数据包的问题,进而会触发选择一次性资源或异常重选周期性资源,从而增大与其他终端发送资源碰撞的风险,不利于网络发送资源的优化。因此,如何优化周期性资源的调度流程,降低选择一次性资源或异常重选周期性资源被触发的频率,优化网络发送资源,是亟待解决的问题。
发明内容
本申请提供一种资源选择方法、装置、设备及介质,以在周期性地发送数据包时,降低选择一次性资源或异常重选周期性资源被触发的频率,实现对网络发送资源的优化。
提供了一种资源选择方法,包括:
接收上层应用发送的数据包,并使用预先选择的当前周期性资源发送所述数据包;
在确定满足周期性资源频域承载量调整条件的情况下,对所述当前周期性资源所选择的频域承载量进行调整,以使用调整后的当前周期性资源发送后续接收到的数据包。
还提供了一种资源选择装置,包括:
数据包接收及发送模块,设置为接收上层应用发送的数据包,并使用预先选择的当前周期性资源发送所述数据包;
频域承载量调整模块,设置为在确定满足周期性资源频域承载量调整条件的情况下,对所述当前周期性资源所选择的频域承载量进行调整,以使用调整后的当前周期性资源发送后续接收到的数据包。
还提供了一种车载终端设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如本申请任意实施例所述的资源选择方法。
还提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序被处理器执行时实现如本申请任意实施例所述的资源选择方法。
附图说明
图1是本申请实施例一中的一种资源选择方法的流程图;
图2是本申请实施例二中的一种资源选择方法的流程图;
图3是本申请实施例三中的一种资源选择方法的流程图;
图4是本申请实施例四中的一种资源选择方法的流程图;
图5是本申请实施例五中的一种资源选择装置的结构示意图;
图6是本申请实施例六中的一种车载终端设备的硬件结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。此处所描述的实施例仅仅用于解释本申请,而非对本申请的限定。附图中仅示出了与本申请相关的部分而非全部结构。
一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将多项操作(或步骤)描述成顺序的处理,但是其中的许多操作可以被并行地、并发地或者同时实施。此外,多项操作的顺序可以被重新安排。当其操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、规程、子例程和子程序等等。
终端在发送通信数据时,依靠于发送资源,而选择一次性资源还是周期性资源,取决于来自上层应用发送的数据包是周期性的还是一次性的。如果上层应用发送的数据包是一次性的,那么选择的发送资源也是一次性的,本申请中不对这种情况进行描述;如果上层应用发送的数据包是周期性的,那么选择的发送资源既可以是一次性的,也可以是周期性的。
终端采用的发送资源类型会通过控制信令的方式广播出去,使周围所有的终端都可以通过控制信令的接收确定该终端当前使用的是一次性资源还是周期性资源。在终端选择发送资源时,如果已有的终端使用周期性资源,就可以有针对性的排除那些被其他终端预先占用的资源,从而避免后续由于两个终端使用相同的资源进行发送而引起发送资源的碰撞,导致发送通信数据失败;而如果已有的终端使用一次性资源,就无法预判后续该终端在哪些位置发送资源,也就是无法提前排除预占的资源,从而增大发送资源发生碰撞的可能性。因此,在LTE-V技术的实际应用中,如果上层应用发送的数据包是周期性的,那么终端尽可能的选择周期性资源才会有利于整个网络资源的优化。
但是,由于上层应用发送的数据包虽然在时间上是周期性的,但上层应用发送的数据包的大小可能并不一致,从而在使用周期性资源时,如果仅根据上层应用发送的数据包的大小和周期预先选好一组在频域上大小相同的发送资源,那么可能会由于后期预先占有的发送资源可承载的数据包过小的原因,导致无法将每个上层应用发送的数据包都通过预先选择的当前周期性资源成功发送出去。
在进行周期性资源选择时,如果上层应用发送的数据包的大小波动较大,会经常触发一次性资源的选择或者异常重选周期性资源,而触发一次性资源的选择会增大与其他终端发送资源碰撞的风险,重选周期性资源的第一次资源也会增大发送资源碰撞的风险。由于上层应用发送的周期性数据包的大小分布规律具有不确定性,如果采用最普遍的正态分布进行计算,大概有一半的概率会 触发一次性资源的选择或者异常重选周期性资源,这对于整个网络发送资源的优化非常不利。
本申请针对如何优化周期性资源的调度流程,降低选择一次性资源或异常重选周期性资源被触发的频率,以优化网络发送资源的问题,提供了一种资源选择方法,包括:
接收上层应用发送的数据包,并使用预先选择的当前周期性资源发送所述数据包;如果确定满足周期性资源频域承载量调整条件,则对所述当前周期性资源所选择的频域承载量进行调整,以使用调整后的当前周期性资源发送后续接收到的数据包。
实施例一
图1是本申请实施例一提供的一种资源选择方法的流程图,可适用于选择周期性资源进行数据发送的情况,该方法可以由本申请实施例提供的资源选择装置来执行,该装置可采用软件和/或硬件的方式实现,并可集成在终端设备中,如车载终端设备。
如图1所示,本实施例提供的资源选择方法,包括以下步骤。
S110、接收上层应用发送的数据包,并使用预先选择的当前周期性资源发送数据包。
数据包,指的是来自上层应用(例如车联网应用平台和第三方应用等)发送出来的需要通过终端或其他设备进行转发的通信数据。
周期性资源,指的是可以用于发送周期性通信数据(即上层应用发送的数据包)的一连串发送资源,周期性资源具有相同的发送时间间隔,即是周期性地发送资源,相当于终端设备预先占用了部分发送资源。
周期性资源可以通过任意一种能够进行周期性配置传输资源的调度方式确定,例如,可以通过半静态性调度(Semi-Persistent Scheduling,SPS)方式分配周期性资源,本实施例对此不做限定。其中,周期性资源的数量可以在几个到几十个之间,在预先选择的周期性资源消耗完之后,可以进行周期性资源的重选,并继续发送通信数据。
当接收到上层应用发送的通信数据包时,使用预先选择的与当前时刻对应的一个周期性资源发送该通信数据包。
若当前周期性资源能够承载接收到的上层应用发送的数据包,即当前周期性资源允许发送的数据包的大小满足接收到的上层应用发送的数据包的大小时,则当前周期性资源可以发送数据包;若当前周期性资源不能承载接收到的 上层应用发送的数据包,即当前周期性资源允许发送的数据包的大小不能满足接收到的上层应用发送的数据包的大小时,则当前周期性资源不可以发送数据包,此时可以根据待发送的数据包的大小,选择一次性资源发送数据包,或者将待发送的数据包进行分段处理,即将待发送数据包按照当前周期性资源可承载的数据包的大小进行分段,对于数据包的大小在当前周期性资源可承载范围内的数据包可以继续选择当前周期性资源进行发送,则对于剩余部分的待发送数据包选择一次性资源进行发送。
S120、如果确定满足周期性资源频域承载量调整条件,则对当前周期性资源所选择的频域承载量进行调整,以使用调整后的当前周期性资源发送后续接收到的数据包。
频域承载量,指的是周期性资源允许发送的数据包的大小的最大值。由于终端设备在发送数据时,需要依靠于发送资源,而发送资源是由时域资源和频域资源组成的,单位发送资源在时域上是固定的1ms,在频域上的大小则根据待发送的数据包的大小不同来决定,因此需要根据待发送的数据包的大小来调整周期性资源的频域承载量,通过对周期性资源的频域承载量的动态调整,使周期性资源可以正常发送接收到的来自上层应用的数据包,尽可能的使终端设备选择周期性资源发送数据包,避免出现选择一次性资源发送数据包的情况,有利于整个网络资源的优化。
周期性资源频域承载量调整条件,指的是调整周期性资源的频域承载量的影响因素。若满足周期性资源频域承载量调整条件,则触发对周期性资源的频域承载量进行调整。
是否满足周期性资源频域承载量调整条件,可以根据预先设置的时间间隔来判断,若当前时刻到达频域承载量调整时间间隔时,便可以确定当前时刻满足周期性资源频域承载量调整条件;也可以根据当前周期性资源是否能够承载接收到的上层应用发送的数据包来判断,如果当前周期性资源不能够承载接收到的上层应用发送的数据包,触发一次性资源的选择或者异常重选周期性资源,则可以确定当前时刻满足周期性资源频域承载量调整条件。
在判断当前周期性资源是否能够承载接收到的上层应用发送的数据包之前,还可以判断预先已选择的周期性资源是否消耗完,如果预先已选择的周期性资源已经消耗完,则可以根据当前待发送数据包的大小和周期等其他参数,重新选择周期性资源,以使用新选择的周期性资源继续完成数据包的发送。
在判断出当前满足周期性资源频域承载量调整条件时,则可以对当前周期性资源所选择的频域承载量进行调整。进而,在接收到上层应用后续发送的数据包时,可以使用频域承载量调整后的周期性资源继续发送该数据包。
本申请实施例提供的技术方案,接收上层应用发送的数据包,并使用预先选择的当前周期性资源发送数据包,如果确定满足周期性资源频域承载量调整条件,则对当前周期性资源所选择的频域承载量进行调整,从而可以使用调整后的当前周期性资源发送后续接收到的数据包,通过对周期性资源频域承载量进行调整,优化了周期性资源的调度流程,降低了选择一次性资源或异常重选周期性资源被触发的频率,进而优化了网络发送资源。
实施例二
图2是本申请实施例二提供的一种资源选择方法的流程图。本实施例在上述实施例的基础上进行描述,其中,确定满足周期性资源频域承载量调整条件,包括:
如果当前时刻满足周期性资源频域承载量调整时间间隔,则确定满足周期性资源频域承载量调整条件;其中,周期性资源频域承载量调整时间间隔为当前周期性资源的资源选择时间周期的目标倍数。
对当前周期性资源所选择的频域承载量进行调整,可以包括:
统计与当前时刻对应的周期性资源频域承载量调整时间间隔内,来自上层应用的所有数据包的大小的均值和标准差;根据均值、标准差以及资源异常选择目标比例值,查询标准正态分布表,计算频域承载量目标值;根据频域承载量目标值,调整当前周期性资源所选择的频域承载量。
如图2所示,本实施例提供的资源选择方法,包括以下步骤。
S210、接收上层应用发送的数据包。
S220、判断当前时刻是否满足周期性资源频域承载量调整时间间隔。若是,则执行S230,否则,执行S260。
周期性资源频域承载量调整时间间隔,指的是预设的用于指示进行周期性资源频域承载量调整的时间间隔,也即相邻两次调整周期性资源频域承载量所需的时间跨度。每隔一个周期性资源频域承载量调整时间间隔,对当前周期性资源所选择的频域承载量进行调整。
可选的,周期性资源频域承载量调整时间间隔为当前周期性资源的资源选择时间周期的目标倍数。
周期性资源的资源选择时间周期,指的是预先选择的相邻两个周期性资源之间的时间间隔。每隔一个资源选择时间周期,通过相应的周期性资源发送一个接收到的来自上层应用发送的数据包。
可选的,周期性资源的资源选择时间周期与接收到的上层应用发送数据包的周期一致,上层应用发送数据包的时间周期可以在20ms至1000ms之间。例如,当周期性资源的资源选择时间周期为20ms且目标倍数设置为1000时,则对应的周期性资源频域承载量调整时间间隔为20000ms,即每隔20000ms就对预先选择的未使用的周期性资源的频域承载量统一进行调整。
判断当前时刻是否满足周期性资源频域承载量调整时间间隔。如果当前时刻满足周期性资源频域承载量调整时间间隔,则对当前周期性资源所选择的频域承载量进行调整;如果当前时刻不满足周期性资源频域承载量调整时间间隔,则无需对当前周期性资源所选择的频域承载量进行调整。
例如,当周期性资源频域承载量调整时间间隔为20000ms时,如果当前时刻与计时开始时刻的间隔为20000ms的整数倍,则可以确定当前时刻满足周期性资源频域承载量调整时间间隔。其中,计时开始时刻可以是选择的周期性资源的预先选择时刻,也可以是其他预设的时刻,本实施例对此不作限定。
S230、统计与当前时刻对应的周期性资源频域承载量调整时间间隔内,来自上层应用的所有数据包的大小的均值和标准差。
如果当前时刻满足周期性资源频域承载量调整时间间隔,则统计与当前时刻对应的周期性资源频域承载量调整时间间隔内,来自上层应用的所有数据包的大小的均值和标准差。
与当前时刻对应的周期性资源频域承载量调整时间间隔内来自上层应用发送的所有数据包,指的是在当前时刻之前的周期性资源频域承载量调整时间间隔内来自上层应用发送的所有数据包,若周期性资源频域承载量调整时间间隔为20000ms,则统计的是在当前时刻之前的20000ms内上层应用发送的所有数据包,获取其中每个数据包的大小,并计算这些数据包的大小的均值和标准差。
S240、根据均值、标准差以及资源异常选择目标比例值,查询标准正态分布表,计算频域承载量目标值。
资源异常选择至少可以包括一次性资源选择或周期性资源异常重选。它指的是在依靠周期性资源发送接收到的上层应用的数据包时,出现例如选择一次性资源或异常重选周期性资源的情况。例如,一个周期性资源的资源选择时间周期为100ms,周期性资源的频域承载量为100字节,也就是说该周期性资源在一个周期100ms内可以发送多个大小不超过100字节的数据包,如果一个数据包的大小为200字节时,由于该数据包的大小超过该周期性资源的频域承载量,则当前周期性资源无法发送该数据包,那么终端设备可以选择一次性资源发送该数据包,也可以重新选择一个新的周期性资源继续发送数据包,在这种情况 下,选择一次性资源发送数据包或重新选择新的周期性资源继续发送数据包的情况就属于资源异常选择。
资源异常选择目标比例值,指的是目标时间段内资源异常选择次数占数据发送总次数的期望百分比,以用于表示在发送数据包过程中出现资源异常选择的次数占数据发送总次数的最大百分比。其中,目标时间段可以通过数据包发送次数表示,例如可以是与最近发送预设数量次数的数据包对应的时间段。假设,资源异常选择目标比例值为5%,目标时间段为与最近发送100次数据包对应的时间段,也即目标时间段内数据发送总次数为100次,则该资源异常选择目标比例值表示期望在这100次发送数据包的过程中出现资源异常选择的次数至多为5次,也就是说,在目标时间段内期望出现资源异常选择的情况占数据发送总次数的5%,在发送100次数据包中有95%的资源选择都不是资源异常选择。
频域承载量目标值,指的是为了使资源异常选择符合资源异常选择目标比例值,需要将周期性资源的频域承载量调整至的目标值。
本实施例中,根据统计的与当前时刻对应的周期性资源频域承载量调整时间间隔内所有来自上层应用发送的数据包的大小的均值和标准差,以及资源异常选择目标比例值,查询标准正态分布表,计算得到频域承载量目标值。
如果统计得到的与当前时刻对应的周期性资源频域承载量调整时间间隔内来自上层应用的所有数据包的大小的均值和标准差,不服从标准正态分布,则可以基于标准正态分布表和正态分布公式进行标准化转化,从而确定频域承载量目标值。
例如,在接收到的来自上层应用发送的数据包的大小呈正态分布时,设定的资源异常选择目标比例值为0.05(即5%),对与当前时刻对应的周期性资源频域承载量调整时间间隔内来自上层应用的所有数据包的大小的均值和标准差进行统计,得到来自上层应用的所有数据包的大小的均值为200字节,标准差为50,查询标准正态分布表可知
Figure PCTCN2020134405-appb-000001
基于公式
Figure PCTCN2020134405-appb-000002
Figure PCTCN2020134405-appb-000003
进行标准化转化后,上层应用发送的数据包的大小有95%的可能性是小于282.5字节的,进而可以将周期性资源的频域承载量目标值设置为282.5字节。也即,当选择的周期性资源的频域承载量在282字节左右时,在发送数据包过 程中出现资源异常选择的次数占数据发送总次数的百分比不会超过5%。
再例如,在接收到的来自上层应用发送的数据包的大小不呈正态分布时,假设,接收到的来自上层应用的周期性数据包是以4为周期且数据包的大小分别为187字节、187字节、187字节和359字节的重复序列,设定的资源异常选择目标比例值为0.08(即8%),对与当前时刻对应的周期性资源频域承载量调整时间间隔内来自上层应用的所有数据包的大小的均值和标准差进行统计,可以得到来自上层应用的所有数据包的大小的均值为225.5字节,标准差为74.6,查询标准正态分布表可知
Figure PCTCN2020134405-appb-000004
并基于公式
Figure PCTCN2020134405-appb-000005
Figure PCTCN2020134405-appb-000006
进行标准化转化后,相当于在假设来自上层应用的周期性数据包的大小呈正态分布的情况下,上层应用发送的数据包的大小有92%的可能性是小于330.7字节的,进而可以将周期性资源的频域承载量目标值设置为330.7字节。也即,如果将周期性资源的频域承载量目标值按照331字节左右进行设置,会导致周期性资源无法发送大小为359字节的数据包,使在数据包的发送过程中出现资源异常选择的情况占到了数据发送总次数的25%,故还需要对周期性资源的频域承载量目标值进行调整,使周期性资源的频域承载量目标值可以在359字节附近来回波动,从而使调整后的周期性资源在发送数据包过程中出现资源异常选择的次数占发送所有数据包时的数据发送总次数的百分比维持在8%左右。
在设置周期性资源的频域承载量目标值之后,如果资源异常选择的次数占数据发送总次数的百分比小于资源异常选择目标比例值,则可以减小当前周期性资源所选择的频域承载量;如果资源异常选择的次数占数据发送总次数的百分比大于资源异常选择目标比例值,则可以增加当前周期性资源所选择的频域承载量,从而使调整后的周期性资源在发送数据包的过程中出现资源异常选择的次数占发送所有数据包总次数的百分比可以始终在资源异常选择目标比例值 附近。
S250、根据频域承载量目标值,调整当前周期性资源所选择的频域承载量。
根据通过统计与当前时刻对应的周期性资源频域承载量调整时间间隔内,来自上层应用的所有数据包的大小的均值和标准差以及资源异常选择目标比例值计算得到的频域承载量目标值,调整当前周期性资源所选择的频域承载量,以使用调整后的当前周期性资源继续发送后续接收到的数据包,从而可以降低选择一次性资源或异常重选周期性资源被触发的频率,优化网络发送资源。
S260、判断当前周期性资源是否耗尽,若是,则执行S270,否则,执行S280。
所谓周期性资源耗尽,就是指当前周期性资源的使用次数达到了选择周期性资源时确定的周期性资源的重复次数。判断当前周期性资源是否耗尽,如果当前周期性资源完全耗尽,即当前周期性资源的使用次数达到了选择周期性资源时确定的资源重复次数,则重新选择合适的周期性资源继续发送数据包,如果当前周期性资源没有完全耗尽,即当前周期性资源的使用次数没有达到选择周期性资源时确定的资源重复次数,则无需再重新选择周期性资源,继续执行S280。
S270、根据当前待发送数据包的大小、周期及周期性资源的重复次数,重新选择周期性资源。
如果当前周期性资源完全耗尽,则可以根据当前待发送数据包的大小、周期及周期性资源的重复次数,重新选择周期性资源继续发送数据包,然后执行S2120。
S280、判断当前周期性资源是否能够承载接收到的上层应用发送的数据包,若是,则执行S2120,否则,执行S290。
如果当前周期性资源没有完全耗尽,则可以判断当前周期性资源是否能够承载接收到的上层应用发送的数据包,如果能够承载接收到的上层应用发送的数据包,则无需对接收到的上层应用发送的数据包进行其他处理,如果不能够承载接收到的上层应用发送的数据包,则对接收到的上层应用发送的数据包进行处理,使接收到的上层应用发送的数据包能够被发送资源发送。
可选的,在判断当前周期性资源是否能够承载接收到的上层应用发送的数据包时,可以通过当前周期性资源的最大调制与编码策略(Modulation and Coding Scheme,MCS)进行判断,确定当前周期性资源是否可以发送接收到的上层应用发送的数据包。其中,MCS是一张将所关注的影响通信速率的因素作为表的列,将MCS索引作为行所形成的速率表,通过MCS的索引值可以配置通信数据的物理传输速率,进而可以确定当前周期性资源可以发送的数据包的 大小。
S290、判断待发送的数据包是否进行分段处理,若是,则执行S2100,否则,执行S2110。
如果当前周期性资源不能够承载接收到的上层应用发送的数据包,则表示接收到的上层应用发送的数据包的大小超出了当前周期性资源所能承载的范围,因此需要判断待发送的数据包是否进行分段处理。如果待发送的数据包进行分段处理,则可以按照当前周期性资源能够承载的数据包的大小分段发送数据包,如果待发送的数据包不进行分段处理,则选择合适的一次性资源发送数据包。
S2100、将待发送数据包按照当前周期性资源能够承载的数据包的大小进行分段。
如果当前周期性资源不能够承载接收到的上层应用发送的数据包,并且待发送的数据包进行分段处理,则可以将待发送的数据包按照当前周期性资源可承载的数据包的大小进行分段,对于在当前周期性资源可承载范围内的数据包继续选择当前周期性资源进行发送,对于剩余部分的待发送数据包选择一次性资源进行发送,然后继续执行S2120。
S2110、根据待发送数据包的大小,选择一次性资源发送数据包。
如果当前周期性资源不能够承载接收到的上层应用发送的数据包,并且待发送的数据包不进行分段处理,则可以根据待发送的数据包的大小,全部选择一次性资源发送数据包。
S2120、在规定的时间位置使用当前资源发送数据包。
如果当前周期性资源完全耗尽,则在根据当前待发送数据包的大小、周期及周期性资源的重复次数重新选择周期性资源后,在规定的发送数据包的时间位置,使用重新选择的周期性资源发送数据包;或者判断当前周期性资源能够承载接收到的上层应用发送的数据包,则在规定的发送数据包的时间位置,使用当前的周期性资源发送数据包;或者当前周期性资源不能够承载接收到的上层应用发送的数据包,且待发送的数据包进行分段处理,则在规定的发送数据包的时间位置,使用当前的周期性资源和一次性资源发送数据包;或者当前周期性资源不能够承载接收到的上层应用发送的数据包,且待发送的数据包不进行分段处理,则在规定的发送数据包的时间位置,使用一次性资源发送数据包。
本实施例未描述之处,请参见前述实施例,在此不再赘述。
在上述技术方案中,接收上层应用发送的数据包,并使用预先选择的当前周期性资源发送数据包,如果当前时刻满足周期性资源频域承载量调整时间间 隔,则确定满足周期性资源频域承载量调整条件,通过统计周期性资源的历史发送的数据包的大小的分布情况并基于正态分布对周期性资源频域承载量进行调整,从而可以使用调整后的当前周期性资源发送后续接收到的数据包,优化了周期性资源的调度流程,降低了选择一次性资源或异常重选周期性资源被触发的频率,从而优化了网络发送资源。
实施例三
图3是本申请实施例三提供的一种资源选择方法的流程图。本实施例在上述实施例的基础上进行描述,其中,确定满足周期性资源频域承载量调整条件,可以包括:
如果当前周期性资源无法承载接收到的上层应用发送的数据包,则确定满足周期性资源频域承载量调整条件。
对当前周期性资源所选择的频域承载量进行调整,可以包括:
如果当前周期性资源无法承载接收到的上层应用发送的目标数据包,则触发异常资源选择以发送目标数据包,并统计目标时间段内异常资源选择总次数;其中,异常资源选择包括部分或全部选择一次性资源;
根据目标时间段内异常资源选择总次数占数据发送总次数的比例值与资源异常选择目标比例值的关系,对当前周期性资源所选择的频域承载量进行调整。
如图3所示,本实施例提供的资源选择方法,包括以下步骤。
S310、接收上层应用发送的数据包。
S320、判断当前周期性资源是否耗尽,若是,则执行S330,否则,执行S340。
如果当前周期性资源完全耗尽,即当前周期性资源的使用次数达到了选择周期性资源时确定的周期性资源的重复次数,则重新选择合适的周期性资源继续发送数据包,如果当前周期性资源没有完全耗尽,即当前周期性资源的使用次数没有达到选择周期性资源时确定的周期性资源的重复次数,则无需再重新选择周期性资源,然后继续执行S340。
S330、根据当前待发送数据包的大小、周期及周期性资源的重复次数,重新选择周期性资源,执行S3100。
如果当前周期性资源完全耗尽,则可以根据当前待发送数据包的大小、周期及周期性资源的重复次数,重新选择周期性资源继续发送数据包,无需再对重新选择的周期性资源所选择的频域承载量进行调整。
S340、判断当前周期性资源是否能够承载接收到的上层应用发送的数据包, 若是,则执行S3100,否则,执行S350。
如果当前周期性资源没有完全耗尽,则可以判断当前周期性资源是否能够承载接收到的上层应用发送的数据包,如果能够承载接收到的上层应用发送的数据包,则无需对当前周期性资源所选择的频域承载量进行调整,如果不能够承载接收到的上层应用发送的数据包,则对当前周期性资源所选择的频域承载量进行调整。
S350、统计目标时间段内异常资源选择总次数。
异常资源选择包括部分或全部选择一次性资源。所谓部分选择一次性资源,针对的是数据包分段发送的情况,由于将待发送数据包按照当前周期性资源可承载的数据包的大小进行了分段处理,使在当前周期性资源可承载范围内的数据包继续选择当前周期性资源进行发送,而剩余部分的待发送数据包选择一次性资源进行发送,从而在发送数据包时出现了部分选择一次性资源。
目标时间段可以通过数据包发送次数表示,例如可以是与最近发送预设数量次数的数据包对应的时间段。例如,在当前时刻之前最近100次发送接收到的上层应用的数据包所对应的时间段。
在对待发送数据包按照当前周期性资源能够承载的数据包的大小进行分段处理,或根据待发送数据包的大小选择一次性资源发送数据包后,都会触发异常资源选择以发送目标数据包。统计在目标时间段内异常资源选择总次数,例如,统计在当前时刻之前最近发送100次数据包所对应的时间段内出现异常资源选择的次数,也即最近100次发送数据包中选择异常资源进行发送的次数。
如果当前周期性资源没有完全耗尽,且当前周期性资源不能够承载接收到的上层应用发送的数据包,则对该次资源异常选择进行记录,并统计或更新目标时间段内异常资源选择总次数。
S360、判断待发送的数据包是否进行分段处理,若是,则执行S370,否则,执行S380。
如果当前周期性资源不能够承载接收到的上层应用发送的数据包,则判断待发送的数据包是否进行分段处理。如果待发送的数据包进行分段处理,则执行S370,如果待发送的数据包不进行分段处理,则执行S380。
S370、将待发送数据包按照当前周期性资源能够承载的数据包的大小进行分段,然后继续执行S390。
S380、根据待发送数据包的大小,选择一次性资源发送数据包。
S390、根据目标时间段内异常资源选择总次数占数据发送总次数的比例值 与资源异常选择目标比例值的关系,对当前周期性资源所选择的频域承载量进行调整。
计算目标时间段内异常资源选择总次数占该段时间内数据发送总次数的比例值,与资源异常选择目标比例值的大小进行比较,从而调整当前周期性资源所选择的频域承载量。
可选的,根据所述目标时间段内所述异常资源选择总次数占数据发送总次数的比例值与资源异常选择目标比例值的关系,对所述当前周期性资源所选择的频域承载量进行调整,包括:
如果目标时间段内异常资源选择总次数占数据发送总次数的比例值大于资源异常选择目标比例值,则按照目标幅度增加当前周期性资源所选择的频域承载量;
如果目标时间段内异常资源选择总次数占数据发送总次数的比例值小于资源异常选择目标比例值,则按照目标幅度减小当前周期性资源所选择的频域承载量。
目标增幅,指的是根据目标时间段内异常资源选择总次数占数据发送总次数的比例值与资源异常选择目标比例值之间的大小关系,对当前周期性资源频域承载量的调整幅度。
如果目标时间段内异常资源选择总次数占数据发送总次数的比例值大于资源异常选择目标比例值,则表示当前周期性资源的频域承载量过小,故可以按照目标幅度增加当前周期性资源的频域承载量;如果目标时间段内异常资源选择总次数占数据发送总次数的比例值小于资源异常选择目标比例值,则表示当前周期性资源的频域承载量过大,故可以按照目标幅度减小当前周期性资源的频域承载量,从而可以达到基于历史数据包的大小及出现异常资源选择的次数,动态调整周期性资源的频域承载量的效果,实现了对周期性资源选择的优化。
例如,设定的资源异常选择目标比例值为0.05(即5%),当目标时间段内异常资源选择总次数占数据发送总次数的比例值为0.06(即6%)时,大于资源异常选择目标比例值,说明当前周期性资源的频域承载量过小,故可以增加当前周期性资源的频域承载量;当目标时间段内异常资源选择总次数占数据发送总次数的比例值为0.04时,小于资源异常选择目标比例值,说明当前周期性资源的频域承载量过大,故可以减小当前周期性资源的频域承载量,从而实现对周期性资源的频域承载量进行动态调整,使目标时间段内异常资源选择总次数占数据发送总次数的比例值可以在资源异常选择目标比例值0.05附近来回波动,优化了周期性资源的调度流程,进而优化了网络发送资源。
还可以结合与当前时刻对应的周期性资源频域承载量调整时间间隔内来自上层应用的所有数据包的大小的均值和标准差,查询标准正态分布表,计算周期性资源的频域承载量目标值,根据该频域承载量目标值来调整当前周期性资源所选择的频域承载量。
例如,在接收到的来自上层应用的周期性数据包是以4为周期且数据包的大小分别为187字节、187字节、187字节和359字节的重复序列时,当设定的资源异常选择目标比例值为0.08(即8%),对与当前时刻对应的周期性资源频域承载量调整时间间隔内来自上层应用的所有数据包的大小的均值和标准差进行统计,可以得到来自上层应用的所有数据包的大小的均值为225.5字节,标准差为74.6,查询标准正态分布表进行标准化转化后,可以计算得到周期性资源的频域承载量目标值为330.7字节,相当于在假设来自上层应用的周期性数据包的大小呈正态分布的情况下,上层应用的所有数据包的大小有92%的可能性是小于330.7字节的,此时如果将周期性资源的频域承载量目标值按照331字节左右进行设置,会导致周期性资源无法发送大小为359字节的数据包,使在数据包发送中出现资源异常选择的情况占到了数据发送总次数的25%。若设定的目标时间段为在当前时刻之前最近发送100次数据包所对应的时间段,当周期性资源的频域承载量小于359字节时,异常资源选择总次数占数据发送总次数的比例值为25%,导致目标时间段内异常资源选择总次数占数据发送总次数的比例值大于资源异常选择目标比例值8%,则表示当前周期性资源的频域承载量过小,故可以按照目标幅度增加当前周期性资源的频域承载量;当周期性资源的频域承载量增加到不小于359字节时,异常资源选择总次数占数据发送总次数的比例值会逐渐降为0,导致目标时间段内异常资源选择总次数占数据发送总次数的比例值小于资源异常选择目标比例值8%,则表示当前周期性资源的频域承载量过大,故可以按照目标幅度减少当前周期性资源的频域承载量。在整个周期性资源的频域承载量调整过程中,使其可以在359字节附近来回波动,从而使调整后的周期性资源在发送数据包过程中出现资源异常选择的次数占发送所有数据包时数据发送总次数的百分比维持在8%左右。
触发异常资源选择以发送目标数据包时,如果统计得到目标时间段内异常资源选择总次数占数据发送总次数的比例值与资源异常选择目标比例值一致,则可以不对当前周期性资源所选择的频域承载量进行调整。
可选的,目标幅度根据与当前时刻对应的周期性资源频域承载量调整时间间隔内,来自上层应用的所有数据包的大小的标准差确定;
周期性资源频域承载量调整时间间隔为当前周期性资源的资源选择时间周期的目标倍数。
在按照目标幅度调整当前周期性资源所选择的频域承载量时,目标幅度可以根据与当前时刻对应的周期性资源频域承载量调整时间间隔内,来自上层应用的所有数据包的大小的标准差确定。
例如,若与当前时刻对应的周期性资源频域承载量调整时间间隔内,来自上层应用的所有数据包的大小的标准差为100,则可以将目标幅度设置为标准差的10%,也就是10个单位(如10个字节)。当目标时间段内异常资源选择总次数占数据发送总次数的比例值大于资源异常选择目标比例值时,则对当前周期性资源的频域承载量增加10个单位;当目标时间段内异常资源选择总次数占数据发送总次数的比例值小于资源异常选择目标比例值时,则对当前周期性资源的频域承载量减少10个单位。
S3100、在规定的时间位置使用当前周期性资源发送数据包。
如果当前周期性资源完全耗尽,则在根据当前待发送数据包的大小、周期及周期性资源的重复次数重新选择周期性资源后,在规定的发送数据包的时间位置,使用重新选择的周期性资源发送数据包;或者当前周期性资源能够承载接收到的上层应用发送的数据包,则在规定的发送数据包的时间位置,使用当前的周期性资源发送数据包;或者在当前周期性资源不能够承载接收到的上层应用发送的数据包,且按照目标幅度对当前周期性资源所选择的频域承载量进行调整后,在规定的发送数据包的时间位置,使用当前的周期性资源发送数据包。
本实施例未尽描述之处请参见前述实施例,在此不再赘述。
在上述技术方案中,接收上层应用发送的数据包,并使用预先选择的当前周期性资源发送数据包,如果当前周期性资源无法承载接收到的上层应用发送的数据包,则确定满足周期性资源频域承载量调整条件,基于历史数据包的大小及出现异常资源选择的次数,动态调整周期性资源的频域承载量,从而可以使用调整后的当前周期性资源发送后续接收到的数据包,优化了周期性资源的调度流程,降低了选择一次性资源或异常重选周期性资源被触发的频率,从而优化了网络发送资源。
实施例四
图4是本申请实施例四提供的一种资源选择方法的流程图。本实施例在上述实施例的基础上进行描述,其中,确定满足周期性资源频域承载量调整条件可以包括:如果当前时刻满足周期性资源频域承载量调整时间间隔或者当前周期性资源无法承载接收到的上层应用发送的数据包,则确定满足周期性资源频 域承载量调整条件。
如图4所示,本实施例提供的资源选择方法,包括以下步骤。
S410、接收上层应用发送的数据包。
S420、判断当前时刻是否满足周期性资源频域承载量调整时间间隔,若是,则执行S430,否则,执行S460。
周期性资源频域承载量调整时间间隔为当前周期性资源的资源选择时间周期的目标倍数。
如果当前时刻满足周期性资源频域承载量调整时间间隔,则对当前周期性资源所选择的频域承载量进行调整;如果当前时刻不满足周期性资源频域承载量调整时间间隔,则无需对当前周期性资源所选择的频域承载量进行调整,然后执行S460。
S430、统计与当前时刻对应的周期性资源频域承载量调整时间间隔内,来自上层应用的所有数据包的大小的均值和标准差。
S440、根据均值、标准差以及资源异常选择目标比例值,查询标准正态分布表,计算频域承载量目标值。
S450、根据频域承载量目标值,调整当前周期性资源所选择的频域承载量。
S460、判断当前周期性资源是否耗尽,若是,则执行S470,否则,执行S480。
如果当前周期性资源完全耗尽,则重新选择合适的周期性资源继续发送数据包,如果当前周期性资源没有完全耗尽,则无需再重新选择周期性资源,然后执行S480。
S470、根据当前待发送数据包的大小、周期及周期性资源的重复次数,重新选择周期性资源,然后执行S4170。
S480、判断当前周期性资源是否能够承载接收到的上层应用发送的数据包,若是,则执行S4170,否则,执行S490。
如果当前周期性资源没有完全耗尽,则可以判断当前周期性资源是否能够承载接收到的上层应用发送的数据包,如果能够承载接收到的上层应用发送的数据包,则无需对接收到的上层应用发送的数据包进行其他处理,执行S4170,如果不能够承载接收到的上层应用发送的数据包,则对接收到的上层应用发送的数据包进行处理,使接收到的上层应用发送的数据包能够被发送资源发送。
S490、统计目标时间段内异常资源选择总次数。
S4100、判断待发送的数据包是否进行分段处理,若是,则执行S4110,否 则,执行S4120。
如果当前周期性资源不能够承载接收到的上层应用发送的数据包,则判断待发送的数据包是否进行分段处理。如果待发送的数据包进行分段处理,则可以按照当前周期性资源能够承载的数据包的大小分段发送数据包,如果待发送的数据包不进行分段处理,则选择合适的一次性资源发送数据包,然后执行S4120。
S4110、将待发送数据包按照当前周期性资源能够承载的数据包的大小进行分段,继续执行S4130。
S4120、根据待发送数据包的大小,选择一次性资源发送数据包。
S4130、判断目标时间段内异常资源选择总次数占数据发送总次数的比例值与资源异常选择目标比例值的关系,如果目标时间段内异常资源选择总次数占数据发送总次数的比例值大于资源异常选择目标比例值,则执行S4140,如果目标时间段内异常资源选择总次数占数据发送总次数的比例值小于资源异常选择目标比例值,则执行S4150,如果目标时间段内异常资源选择总次数占数据发送总次数的比例值等于资源异常选择目标比例值,则执行S4160。
S4140、如果目标时间段内异常资源选择总次数占数据发送总次数的比例值大于资源异常选择目标比例值,则按照目标幅度增加当前周期性资源所选择的频域承载量,继续执行S4170。
S4150、如果目标时间段内异常资源选择总次数占数据发送总次数的比例值小于资源异常选择目标比例值,则按照目标幅度减小当前周期性资源所选择的频域承载量,继续执行S4170。
S4160、如果目标时间段内异常资源选择总次数占数据发送总次数的比例值等于资源异常选择目标比例值,则不改变当前周期性资源所选择的频域承载量。
可选的,在S4140、S4150和S4160中,目标幅度可以根据与当前时刻对应的周期性资源频域承载量调整时间间隔内,来自上层应用的所有数据包的大小的标准差确定;
周期性资源频域承载量调整时间间隔为当前周期性资源的资源选择时间周期的目标倍数。
S4170、在规定的时间位置使用当前周期性资源发送数据包。
如果当前周期性资源完全耗尽,则可以再根据当前待发送数据包的大小、周期及周期性资源的重复次数重新选择周期性资源后,在规定的发送数据包的时间位置,使用重新选择的周期性资源发送数据包;或者当前周期性资源能够 承载接收到的上层应用发送的数据包,则在规定的发送数据包的时间位置,使用当前的周期性资源发送数据包;或者在当前周期性资源不能够承载接收到的上层应用发送的数据包,且按照目标幅度对当前周期性资源所选择的频域承载量进行调整后,在规定的发送数据包的时间位置,使用当前的周期性资源发送数据包。
本实施例未描述之处请参见前述实施例,在此不再赘述。
在上述技术方案中,接收上层应用发送的数据包,并使用预先选择的当前周期性资源发送数据包,如果当前时刻满足周期性资源频域承载量调整时间间隔以及当前周期性资源无法承载接收到的上层应用发送的数据包,则确定满足周期性资源频域承载量调整条件,可以通过统计周期性资源的历史发送数据包的大小的分布情况并基于正态分布对周期性资源频域承载量进行调整,以使用调整后的当前周期性资源发送后续接收到的数据包;在后续发送数据包的过程中,还可以基于历史数据包的大小及出现异常资源选择的次数,动态调整周期性资源的频域承载量,使调整后的周期性资源在发送数据包过程中出现资源异常选择的次数占发送所有数据包时数据发送总次数的百分比始终维持在资源异常选择目标比例值左右,优化了周期性资源的调度流程,降低了选择一次性资源或异常重选周期性资源被触发的频率,从而优化了网络发送资源。
实施例五
图5是本申请实施例五提供的一种资源选择装置的结构示意图,可适用于周期性资源选择的情况,该装置可采用软件和/或硬件的方式实现,并可集成在车载终端设备中。
如图5所示,该资源选择装置包括:数据包接收及发送模块510和频域承载量调整模块520。
数据包接收及发送模块510,设置为接收上层应用发送的数据包,并使用预先选择的当前周期性资源发送所述数据包;
频域承载量调整模块520,设置为如果确定满足周期性资源频域承载量调整条件,则对所述当前周期性资源所选择的频域承载量进行调整,以使用调整后的当前周期性资源发送后续接收到的数据包。
本申请实施例提供的技术方案,接收上层应用发送的数据包,并使用预先选择的当前周期性资源发送数据包,如果确定满足周期性资源频域承载量调整条件,则对当前周期性资源所选择的频域承载量进行调整,从而可以使用调整后的当前周期性资源发送后续接收到的数据包。上述技术方案通过对周期性资 源频域承载量进行调整,优化了周期性资源的调度流程,降低了选择一次性资源或异常重选周期性资源被触发的频率,进而优化了网络发送资源。
作为一种可选的实施方式,频域承载量调整模块520,是设置为:
如果当前时刻满足周期性资源频域承载量调整时间间隔,则确定满足周期性资源频域承载量调整条件;
所述周期性资源频域承载量调整时间间隔为所述当前周期性资源的资源选择时间周期的目标倍数。
频域承载量调整模块520,是设置为:
统计与所述当前时刻对应的周期性资源频域承载量调整时间间隔内,来自上层应用的所有数据包的大小的均值和标准差;
根据所述均值、所述标准差以及资源异常选择目标比例值,查询标准正态分布表,计算频域承载量目标值;
根据所述频域承载量目标值,调整所述当前周期性资源所选择的频域承载量。
作为一种可选的实施方式,频域承载量调整模块520,是设置为:
如果所述当前周期性资源无法承载接收到的上层应用发送的数据包,则确定满足周期性资源频域承载量调整条件。
频域承载量调整模块520,是设置为:
如果所述当前周期性资源无法承载接收到的上层应用发送的目标数据包,则触发异常资源选择以发送所述目标数据包,并统计目标时间段内异常资源选择总次数;其中,所述异常资源选择包括部分或全部选择一次性资源;
根据所述目标时间段内所述异常资源选择总次数占数据发送总次数的比例值与资源异常选择目标比例值的关系,对所述当前周期性资源所选择的频域承载量进行调整。
频域承载量调整模块520,是设置为:
如果所述目标时间段内所述异常资源选择总次数占数据发送总次数的比例值大于资源异常选择目标比例值,则按照目标幅度增加所述当前周期性资源所选择的频域承载量;
如果所述目标时间段内所述异常资源选择总次数占数据发送总次数的比例值小于资源异常选择目标比例值,则按照所述目标幅度减小所述当前周期性资源所选择的频域承载量。
可选的,所述目标幅度根据与当前时刻对应的周期性资源频域承载量调整时间间隔内,来自上层应用的所有数据包的大小的标准差确定。
上述资源选择装置可执行本申请任意实施例所提供的资源选择方法,具备执行资源选择方法相应的功能模包和效果。
实施例六
图6为本申请实施例六提供的一种车载终端设备的硬件结构示意图,如图6所示,该车载终端设备包括:
一个或多个处理器610,图6中以一个处理器610为例;
存储器620;
所述车载终端设备还可以包括:输入装置630和输出装置640。
所述车载终端设备中的处理器610、存储器620、输入装置630和输出装置640可以通过总线或者其他方式连接,图6中以通过总线连接为例。
存储器620作为一种非暂态计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模包,如本申请实施例中的资源选择方法对应的程序指令/模包(例如,附图5所示的数据包接收及发送模块510和频域承载量调整模块520)。处理器610通过运行存储在存储器620中的软件程序、指令以及模包,从而执行车载终端设备的多种功能应用以及数据处理,即实现上述方法实施例中的资源选择方法。
存储器620可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据计算机设备的使用所创建的数据等。此外,存储器620可以包括高速随机存取存储器,还可以包括非暂态性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态性固态存储器件。在一些实施例中,存储器620可选包括相对于处理器610远程设置的存储器,这些远程存储器可以通过网络连接至终端设备。上述网络的实例包括互联网、企业内部网、局域网、移动通信网及其组合。
输入装置630可设置为接收输入的数字或字符信息,以及产生与车载终端设备的用户设置以及功能控制有关的键信号输入。输出装置640可包括显示屏等显示设备。
实施例七
本申请实施例七提供了一种计算机可读存储介质,存储有计算机程序,该 计算机程序被处理器执行时实现如本申请所有申请实施例提供的资源选择方法,也即,该计算机程序被处理器执行时实现:
接收上层应用发送的数据包,并使用预先选择的当前周期性资源发送所述数据包;
如果确定满足周期性资源频域承载量调整条件,则对所述当前周期性资源所选择的频域承载量进行调整,以使用调整后的当前周期性资源发送后续接收到的数据包。
可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦式可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EPROM)或闪存、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言(诸如Java、Smalltalk、C++),还包括常规的过程式程序设计语言(诸如“C”语言或类似的程序设计语言)。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络(包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN)),连接到用户计算机,或者, 可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。

Claims (10)

  1. 一种资源选择方法,包括:
    接收上层应用发送的数据包,并使用预先选择的当前周期性资源发送所述数据包;
    在确定满足周期性资源频域承载量调整条件的情况下,对所述当前周期性资源所选择的频域承载量进行调整,以使用调整后的当前周期性资源发送后续接收到的数据包。
  2. 根据权利要求1所述的方法,其中,所述确定满足周期性资源频域承载量调整条件,包括:
    在当前时刻满足周期性资源频域承载量调整时间间隔的情况下,确定满足所述周期性资源频域承载量调整条件;
    其中,所述周期性资源频域承载量调整时间间隔为所述当前周期性资源的资源选择时间周期的目标倍数。
  3. 根据权利要求2所述的方法,其中,所述对所述当前周期性资源所选择的频域承载量进行调整,包括:
    统计与所述当前时刻对应的周期性资源频域承载量调整时间间隔内,来自所述上层应用的所有数据包的大小的均值和标准差;
    根据所述均值、所述标准差以及资源异常选择目标比例值,查询标准正态分布表,计算频域承载量目标值;
    根据所述频域承载量目标值,调整所述当前周期性资源所选择的频域承载量。
  4. 根据权利要求1或2所述的方法,其中,所述确定满足周期性资源频域承载量调整条件,还包括:
    在所述当前周期性资源无法承载接收到的上层应用发送的数据包的情况下,确定满足所述周期性资源频域承载量调整条件。
  5. 根据权利要求4所述的方法,其中,所述对所述当前周期性资源所选择的频域承载量进行调整,包括:
    在所述当前周期性资源无法承载接收到的上层应用发送的目标数据包的情况下,触发异常资源选择以发送所述目标数据包,并统计目标时间段内异常资源选择总次数,其中,所述异常资源选择包括部分或全部选择一次性资源;
    根据所述目标时间段内所述异常资源选择总次数占数据发送总次数的比例值与资源异常选择目标比例值的关系,对所述当前周期性资源所选择的频域承 载量进行调整。
  6. 根据权利要求5所述的方法,其中,所述根据所述目标时间段内所述异常资源选择总次数占数据发送总次数的比例值与资源异常选择目标比例值的关系,对所述当前周期性资源所选择的频域承载量进行调整,包括:
    在所述目标时间段内所述异常资源选择总次数占所述数据发送总次数的比例值大于所述资源异常选择目标比例值的情况下,按照目标幅度增加所述当前周期性资源所选择的频域承载量;
    在所述目标时间段内所述异常资源选择总次数占所述数据发送总次数的比例值小于所述资源异常选择目标比例值的情况下,按照所述目标幅度减小所述当前周期性资源所选择的频域承载量。
  7. 根据权利要求6所述的方法,其中,所述目标幅度根据与当前时刻对应的周期性资源频域承载量调整时间间隔内,来自所述上层应用的所有数据包的大小的标准差确定。
  8. 一种资源选择装置,包括:
    数据包接收及发送模块,设置为接收上层应用发送的数据包,并使用预先选择的当前周期性资源发送所述数据包;
    频域承载量调整模块,设置为在确定满足周期性资源频域承载量调整条件的情况下,对所述当前周期性资源所选择的频域承载量进行调整,以使用调整后的当前周期性资源发送后续接收到的数据包。
  9. 一种车载终端设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1-7中任一项所述的资源选择方法。
  10. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-7中任一项所述的资源选择方法。
PCT/CN2020/134405 2020-11-17 2020-12-08 资源选择方法、装置、设备及介质 WO2022104938A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011289234.4 2020-11-17
CN202011289234.4A CN114513800B (zh) 2020-11-17 2020-11-17 资源选择方法、装置、设备及介质

Publications (1)

Publication Number Publication Date
WO2022104938A1 true WO2022104938A1 (zh) 2022-05-27

Family

ID=81547152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134405 WO2022104938A1 (zh) 2020-11-17 2020-12-08 资源选择方法、装置、设备及介质

Country Status (2)

Country Link
CN (1) CN114513800B (zh)
WO (1) WO2022104938A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190364590A1 (en) * 2018-05-25 2019-11-28 Futurewei Technologies, Inc. Protection for Mode-3 V2X UEs in the ITS Band
US20200029318A1 (en) * 2018-07-23 2020-01-23 Samsung Electronics Co., Ltd. Method and apparatus for high reliability transmission in vehicle to everything (v2x) communication
CN110972273A (zh) * 2018-09-28 2020-04-07 北京展讯高科通信技术有限公司 传输资源配置选择方法、装置及终端
CN110972176A (zh) * 2018-09-28 2020-04-07 展讯半导体(南京)有限公司 资源选择方法及装置、存储介质、终端

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10716093B2 (en) * 2015-10-02 2020-07-14 Lg Electronics Inc. Method for allocating resources for direct communication between terminals in wireless communication system and device therefor
CN111404713B (zh) * 2019-01-02 2022-12-13 中国移动通信有限公司研究院 一种网络资源调整方法、装置和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190364590A1 (en) * 2018-05-25 2019-11-28 Futurewei Technologies, Inc. Protection for Mode-3 V2X UEs in the ITS Band
US20200029318A1 (en) * 2018-07-23 2020-01-23 Samsung Electronics Co., Ltd. Method and apparatus for high reliability transmission in vehicle to everything (v2x) communication
CN110972273A (zh) * 2018-09-28 2020-04-07 北京展讯高科通信技术有限公司 传输资源配置选择方法、装置及终端
CN110972176A (zh) * 2018-09-28 2020-04-07 展讯半导体(南京)有限公司 资源选择方法及装置、存储介质、终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SPREADTRUM COMMUNICATIONS: "Discussion on resource allocation for mode 2", 3GPP TSG RAN WG1 MEETING #94BIS R1-1811007, 12 October 2018 (2018-10-12), XP051518411 *
VIVO: "Discussion on Resource Allocation Mechanism for NR V2X", 3GPP TSG RAN WG1 MEETING #95 R1-1812309, 16 November 2018 (2018-11-16), XP051478498 *

Also Published As

Publication number Publication date
CN114513800A (zh) 2022-05-17
CN114513800B (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
CN108141443B (zh) 用户设备、媒体流传输网络辅助节点和媒体流传输方法
US11647554B2 (en) Intelligent carrier aggregation in millimeter wave resources
EP3190828B1 (en) Method of indication of available radio resources
WO2018227867A1 (zh) 一种5g大连接物联网中基于用户分类的差异化退避方法
US11212857B2 (en) Predictive bearer assignment for wireless networks
WO2021063254A1 (zh) 一种信息处理方法、相关设备及计算机存储介质
US11917471B2 (en) Dynamically changing the primary cell (PCell) for fifth generation (5G) carrier aggregation
WO2016026280A1 (zh) 载波聚合小区处理方法、装置、终端及基站
US9479945B2 (en) Determination of network parameters in mobile communication networks
WO2022104938A1 (zh) 资源选择方法、装置、设备及介质
JP6238954B2 (ja) 複数の無線ネットワークのオフロード判断システム、サーバー、およびその方法
RU2739282C1 (ru) Способ управления хэндовером, сетевое устройство и система
EP2936883B1 (en) Power saving in wlan stations using data accumulation at an access point
US10863368B2 (en) Machine learning based adaptive short beacon transmission
US20210144102A1 (en) Multiple network controller system, method, and computer program for providing enhanced network service
TWI657678B (zh) 異質網路整合系統及其分流排程方法
JP6530284B2 (ja) 無線通信装置、無線通信方法およびプログラム
US8792379B1 (en) Determining link capacity
US20230047537A1 (en) System and method for delivering quality of service
KR102404220B1 (ko) 단말 관리 방법을 수행하는 amf 장치
US11558303B2 (en) Prioritized protocol messaging
EP4344101A1 (en) Method for adjusting block error rate, and communication node and storage medium
US10334565B2 (en) Terminal, base station, network controller, system, and transmission method
JP2017168987A (ja) 無線通信装置、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962229

Country of ref document: EP

Kind code of ref document: A1