WO2022104933A1 - 屏蔽膜、屏蔽膜的制备方法及线缆 - Google Patents

屏蔽膜、屏蔽膜的制备方法及线缆 Download PDF

Info

Publication number
WO2022104933A1
WO2022104933A1 PCT/CN2020/133754 CN2020133754W WO2022104933A1 WO 2022104933 A1 WO2022104933 A1 WO 2022104933A1 CN 2020133754 W CN2020133754 W CN 2020133754W WO 2022104933 A1 WO2022104933 A1 WO 2022104933A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
shielding
layer
carrier
shielding film
Prior art date
Application number
PCT/CN2020/133754
Other languages
English (en)
French (fr)
Inventor
杨天纬
Original Assignee
南昌联能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌联能科技有限公司 filed Critical 南昌联能科技有限公司
Publication of WO2022104933A1 publication Critical patent/WO2022104933A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0098Shielding materials for shielding electrical cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • H01B13/221Sheathing; Armouring; Screening; Applying other protective layers filling-up interstices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • H01B13/222Sheathing; Armouring; Screening; Applying other protective layers by electro-plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/002Auxiliary arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring

Definitions

  • the present application relates to the field of cables, and in particular, to a shielding film, a method for preparing the shielding film, and a cable.
  • cables have also achieved rapid development, and shielding electromagnetic interference is the key to affecting the development of cables.
  • the present application provides a shielding film, a method for preparing the shielding film, and a cable, which can improve the production efficiency of the cable while improving the shielding rate of the cable.
  • a first aspect of the embodiments of the present application provides a shielding film, including:
  • a carrier layer a first shielding layer and a second shielding layer
  • the carrier layer includes a target carrier and metal particles and carbon particles filled into the target carrier for shielding electromagnetic interference;
  • Both the first shielding layer and the second shielding layer are attached to the carrier layer, and the first shielding layer and the second shielding layer are symmetrically arranged relative to the carrier layer;
  • the first shielding layer and the second shielding layer are composed of the metal particles and the carbon particles, and are used for shielding electromagnetic interference and strengthening the target carrier.
  • the metal particles and the carbon ions are filled into the target carrier by electroplating, water plating, evaporation or sputtering.
  • the first shielding layer and the second shielding layer are attached to the carrier layer by coating extrusion or spraying.
  • the metal particles include silver particles, copper particles, nickel particles, aluminum particles, magnesium particles, iron particles, manganese ions, zinc particles and mica particles
  • the carbon particles include graphene particles and carbon nanotube particles.
  • the silver particles, the copper particles, the nickel particles, the aluminum particles, the magnesium particles, the The iron particles, the manganese ions, the zinc particles, the mica particles, the graphene particles and the carbon nanotube particles are proportioned according to a preset ratio.
  • the target carrier includes non-woven cloth, non-woven cloth or polyester fiber cloth.
  • a second aspect of the present application provides a method for preparing a shielding film, comprising:
  • the first shielding layer and the second shielding layer are attached to the carrier layer to obtain the shielding film, wherein the first shielding layer and the second shielding layer are symmetrically arranged with respect to the carrier layer, so
  • the first shielding layer and the second shielding layer are composed of the metal particles and the carbon particles, and are used for shielding electromagnetic interference and strengthening the carrier layer.
  • the metal particles and the carbon ions are filled into the target carrier by electroplating, water plating, evaporation or sputtering, and the first shielding layer and the second shielding layer pass through the target carrier. Coating extrusion or spraying is applied to the carrier layer.
  • the metal particles include silver particles, copper particles, nickel particles, aluminum particles, magnesium particles, iron particles, manganese ions, zinc particles and mica particles
  • the carbon particles include graphene particles and carbon particles. Nanotube particles, the metal particles and the carbon particles are mixed according to a preset ratio.
  • a third aspect of the embodiments of the present application provides a cable, including the shielding film described in the first aspect above, or a shielding film prepared by the method for preparing a shielding film described in the second aspect above.
  • the shielding film provided by the present application forms a carrier layer by filling the target carrier with metal particles and carbon particles, and attaches the shielding layers composed of metal particles and carbon particles on both sides of the carrier layer.
  • the shielding rate of the present application uses a cloth material as a carrier, and fills (electroplates) the metal material in the gaps of the cloth material, and then fabricates the material. In the liquid state, it is coated and extruded on the carrier again. There is no mesh problem in the prior art, and the shielding rate is better than the existing ones.
  • the shielding film of the present application is In the process of making cables, more production processes are saved and production efficiency is improved.
  • FIG. 1 is a schematic structural diagram of a shielding film provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for preparing a shielding film according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for manufacturing a cable according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an embodiment of a method for manufacturing a cable according to an embodiment of the present application
  • FIG. 5A is a schematic diagram of electromagnetic compatibility (EMC) testing of cables made by using the shielding films provided in the embodiments of the present application;
  • EMC electromagnetic compatibility
  • FIG. 6 is a schematic diagram of electromagnetic compatibility (EMC) (1 GHz-18 GHz) testing of a cable made of a shielding film according to an embodiment of the present application.
  • EMC electromagnetic compatibility
  • modules or sub-modules described as separate components may or may not be physically separated, may or may not be physical modules, or may be distributed into multiple circuit modules, and some or all of them may be selected according to actual needs. module to achieve the purpose of the solution of this application.
  • FIG. 1 is a schematic structural diagram of a shielding film provided by an embodiment of the present application.
  • the shielding film includes:
  • the carrier layer 102 includes a target carrier and metal particles and carbon particles filled into the target carrier, that is, the metal particles and carbon particles in the carrier layer 102 are filled inside the target carrier for shielding electromagnetic interference;
  • the first shielding layer 101 and the second shielding layer 103 are both attached to the carrier layer 102, and the first shielding layer 101 and the second shielding layer 103 are symmetrically arranged with respect to the carrier layer 102, that is to say, the carrier layer can be A first shielding layer 101 and a second shielding layer 103 are respectively provided on both sides of the 102;
  • the first shielding layer 101 and the second shielding layer 103 are composed of metal particles and carbon particles, and are used for shielding electromagnetic interference and strengthening the target carrier.
  • the target carrier can select different cloth materials according to the user's requirement for thickness.
  • the target carrier can include non-woven cloth, non-woven fabric or polyester fiber cloth, and of course, the target carrier can also include other types of cloth. Different cloth materials can also be selected according to other needs of the user, which is not limited in detail.
  • filling the target carrier with metal particles and carbon particles refers to filling the target carrier with metal particles and carbon particles through electroplating, water plating, vapor deposition or sputtering process, because the target carrier is a cloth material. , and due to the weaving characteristics of the cloth material, there will be gaps in the cloth material.
  • the filling here is to fill the metal particles and carbon particles to the target carrier by electroplating, water plating, evaporation or sputtering. The gap and the surface of the target carrier form a carrier layer to shield electromagnetic interference.
  • the above-mentioned metal particles include silver particles, copper particles, nickel particles, aluminum particles, magnesium particles, iron particles, manganese ions and mica particles, and carbon particles include graphene particles and carbon nanotube particles, wherein, The metal particles and carbon particles are configured according to a preset ratio, and the configuration of the preset ratio is related to the shielding rate required by the user. , the ratio of aluminum particles, magnesium particles, iron particles, manganese ions, zinc particles, mica particles, graphene particles and carbon nanotube particles is adjusted.
  • the preset ratios of each of silver particles, copper particles, nickel particles, aluminum particles, magnesium particles, iron particles, manganese ions, zinc particles, mica particles, graphene particles and carbon nanotube particles are as follows: silver: 1%-40%; Copper: 0.5%-70%; Aluminum: 5%-70%; Nickel: 5%-70%; Magnesium: 1%-30%; Iron: 1%-30%; Manganese: 1% -30%; Mica: 0.5%-20%; Graphene: 0.1%-15%; Carbon Nanotubes: 0.5%-15%; Zinc: 1%-30%.
  • silver particles, copper particles, nickel particles, aluminum particles, magnesium particles, iron particles, manganese ions, zinc particles, mica particles, graphene particles and carbon nanotube particles arranged in a preset ratio are passed through Electroplating, water plating, evaporation or sputtering processes fill the gaps and surfaces of the target carrier.
  • the first shielding layer 101 and the second shielding layer 103 are attached to the carrier layer 102 by coating extrusion or spraying, wherein the first shielding layer 101 and the second shielding layer 103 are applied and filled to the carrier layer 102 .
  • the metal particles and carbon particles of the target carrier are attached to the carrier layer with the same material and the same preset ratio, that is, the first shielding layer 101 and the second shielding layer 103 are made of silver particles, copper particles, nickel particles, aluminum particles, Magnesium particles, iron particles, manganese ions, zinc particles, mica particles, graphene particles and carbon nanotube particles are mixed into a liquid state according to a preset ratio and then attached to the carrier 102 by coating extrusion or spraying.
  • the gaps of the target carrier and the surface of the target carrier are filled with metal particles and carbon particles in a preset ratio by electroplating, water plating, vapor deposition or sputtering, the gaps of the target carrier may be damaged. There is a phenomenon that 100% filling cannot be achieved.
  • the metal particles and carbon particles arranged in the same ratio are mixed into liquid and attached to both sides of the carrier layer 102 by extrusion or spraying respectively.
  • the carbon particles are mixed into a liquid state, so when extruding or spraying, a part of the metal particles and carbon particles will be filled into the gaps of the target carrier, which further increases the shielding rate of electromagnetic interference, and at the same time, the carrier layer 102
  • the two surfaces of the film form a shielding layer composed of metal particles and carbon particles, which further increases the anti-electromagnetic interference ability of the shielding film.
  • the metal particles and carbon particles mixed into a liquid state according to a preset ratio can also be attached to the carrier layer 102 multiple times by coating extrusion or spraying according to actual needs, that is, The first shielding layer and the second shielding layer are attached to the carrier layer 102 for many times to further increase the anti-electromagnetic interference capability of the shielding film.
  • the shielding film provided by the present application forms a carrier layer by attaching metal particles and carbon particles to the target carrier, and reattaching the shielding layers composed of metal particles and carbon particles on both sides of the carrier layer,
  • the shielding rate of the present application uses a cloth material as a carrier, and fills (electroplating) the metal material in the gaps of the cloth material, and then the material It is made into a liquid state, coated and extruded on the carrier again, all without the mesh problem of the prior art woven, and the shielding rate is better than the existing ones.
  • the film saves more manufacturing processes and improves production efficiency.
  • the shielding film provided by the present application is described above, and the manufacturing method of the shielding film provided by the present application is described below from the perspective of a device for preparing the shielding film.
  • FIG. 2 is a schematic flowchart of a method for preparing a shielding film according to an embodiment of the present application, including:
  • the device for preparing the shielding film may first provide a target carrier, which includes but is not limited to the following cloth materials: non-woven cloth, non-woven fabric and polyester fiber cloth.
  • a target carrier which includes but is not limited to the following cloth materials: non-woven cloth, non-woven fabric and polyester fiber cloth.
  • the choice of the target carrier material can be based on the user Choose the thickness of the shielding film or other requirements.
  • the device for preparing the shielding film can fill the target carrier with metal particles and carbon particles to obtain a carrier layer, wherein the metal particles include silver particles, copper particles, nickel particles, and aluminum particles , magnesium particles, iron particles, manganese ions and mica particles, carbon particles including graphene particles and carbon nanotube particles.
  • the metal particles include silver particles, copper particles, nickel particles, aluminum particles, magnesium particles, iron particles, manganese ions, zinc particles, mica particles, graphene particles and carbon nanotube particles.
  • silver particles, copper particles, nickel particles, aluminum particles, magnesium particles, iron particles, manganese ions, zinc particles, mica particles, graphene particles and carbon nanotube particles can be configured according to preset ratios, and through electroplating, The water plating, evaporation or sputtering process fills the gaps and surfaces of the target carrier to obtain a carrier layer and achieve the purpose of shielding electromagnetic interference.
  • the metal particles and carbon particles are configured according to a preset ratio, and the configuration of the preset ratio is related to the shielding rate required by the user.
  • the ratio of particles, nickel particles, aluminum particles, magnesium particles, iron particles, manganese ions, mica particles, graphene particles and carbon nanotube particles can be adjusted, such as increasing the ratio of aluminum particles or reducing the ratio of silver particles, etc. Do limit.
  • the first shielding layer and the second shielding layer may continue to be attached to the carrier layer to finally obtain a shielding film, wherein the first shielding layer and the second shielding layer can be attached to the carrier layer.
  • the shielding layer and the second shielding layer are arranged symmetrically with respect to the carrier layer (that is, the first shielding layer and the second shielding layer are respectively attached to both sides of the carrier layer), and the first shielding layer and the second shielding layer are composed of metal particles and carbon particles. composition for shielding electromagnetic interference and strengthening the carrier layer.
  • attaching the first shielding layer and the second shielding layer to the carrier layer refers to mixing metal particles and carbon particles into a liquid state according to a preset ratio, and then mixing them into a liquid state according to a preset ratio.
  • Metal particles and carbon particles are attached to both sides of the carrier layer by coating extrusion or spraying to form a first carrier layer and a second carrier layer, which further shields electromagnetic interference.
  • the cloth material is used as the carrier, the metal material is filled (electroplated) in the gaps of the cloth material, and then the material is made into a liquid state, and again The coating is extruded on the carrier, all without the mesh problem of the prior art braiding, and the shielding rate is better than the existing ones.
  • the shielding film of the present application is used in the production of cables. In the process, more production processes are saved and production efficiency is improved.
  • the shielding film and the manufacturing method of the shielding film provided by the embodiment of the present application are described above, and the manufacturing method of the cable provided by the embodiment of the present application is described below.
  • FIG. 3 is a schematic flowchart of a method for manufacturing a cable according to an embodiment of the present application, including:
  • conductors for power transmission and/or signal transmission are first generated.
  • the conductor may be a conductor for power transmission, a conductor for signal transmission, or a conductor for power transmission and signal transmission at the same time.
  • the outer surface of the conductor may be covered with a conductor jacket for insulation and protection.
  • a strip-shaped shielding film may be wound or covered on the outer covering of the conductor.
  • the shielding film is implemented as shown in FIG. 1 or FIG. 2 .
  • Example shielding film After the outer conductor is fabricated, as shown in FIG. 4 , the strip-shaped shielding film 401 can be wound or wrapped on the outer jacket 403 of the conductor 402 .
  • the outer quilt of the conductor can be wound with a Mylar foil winding machine or a shielding film can be covered with a coating machine.
  • the shielding film in the embodiment of the present application is in the form of a belt, and the Mylar aluminum foil also belongs to the belt-like structure
  • the cable manufacturing method in the embodiment of the present application can adopt the manufacturing method of the cable in the prior art.
  • the Mylar aluminum foil winding machine or the equipment for covering the shielding film in the method can generate cables with better quality under the condition of reducing the production equipment of the prior art, and because the Mylar aluminum foil production requires the use of special equipment, and the additional cost of the equipment is relatively high. Therefore, the cable manufacturing method provided by the embodiment of the present application can greatly reduce the production cost of the cable when generating the cable.
  • the metal material of the aluminum foil also does not need to be processed, so that the pollution to the environment can be greatly reduced while saving raw materials.
  • a cable jacket for insulation and protection can be covered on the shielding film, and the cable jacket exists as the outermost protective film of the cable.
  • step 304 may not be performed, that is, the outer periphery of the shielding film may not need to be covered with the outer covering of the cable.
  • the protective film in the shielding film can be directly used as the protective film of the cable without covering the outer quilt of the cable, such as the cable protected by the equipment shell inside the equipment.
  • the outer periphery of the shielding film needs to be covered with the outer quilt of the cable. In practical applications, it can be set according to actual needs, and there is no specific limitation.
  • FIG. 5A is a schematic diagram of electromagnetic compatibility (EMC) testing of cables made by using the shielding film provided in the embodiment of the present application
  • FIG. 5B is a cable made of traditional materials (Mylar aluminum foil + braided mesh) Schematic diagram of conducting electromagnetic compatibility (EMC) testing.
  • the ordinate (dBuV/m) represents the strength of the electric field, which is a physical quantity used to represent the strength and direction of the electric field
  • the abscissa (MHz) identifies the frequency of fluctuation
  • 5A1 and 5B1 are standard lines
  • EMC electromagnetic compatibility
  • FIG. 6 is the electromagnetic compatibility (EMC) ( EMC) (1GHz–18GHz) test schematic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Insulated Conductors (AREA)

Abstract

本申请提供了一种屏蔽膜、屏蔽膜的制备方法及线缆,可以在提高线缆屏蔽率的同时,提高线缆的生产效率。该屏蔽膜包括:载体层、第一屏蔽层以及第二屏蔽层;所述载体层包括目标载体以及填充至所述目标载体中的金属粒子和炭粒子,用于屏蔽电磁干扰;所述第一屏蔽层以及所述第二屏蔽层均附着于所述载体层,且所述第一屏蔽层与所述第二屏蔽层相对于所述载体层呈对称设置;所述第一屏蔽层以及所述第二屏蔽层由所述金属粒子和所述炭粒子组成,用于屏蔽电磁干扰以及强化所述目标载体。

Description

屏蔽膜、屏蔽膜的制备方法及线缆
本申请要求于2020年11月23日提交中国专利局、申请号为202011321078.5、发明名称为“屏蔽膜、屏蔽膜的制备方法及线缆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及线缆领域,尤其涉及一种屏蔽膜、屏蔽膜的制备方法及线缆。
背景技术
随着信息产业的高度发展,线缆也达到了长足发展,而屏蔽电磁干扰是影响线缆发展的关键。
目前来说,对需要高遮蔽率的电线电缆,需要进行多次生产工艺配合,严重影响生产效率,增加大量设备与人力投资;另外,在高频与高速传输时,造成生产工艺复杂甚至无法符合要求,例如目前USB 3.1 C TYPE讯号传输线,它需要解决高速传输时产生的复杂电磁干扰问题,传统工艺(麦拉铝箔包覆+编织网)无法有效解决,由此影响了线缆的发展。
发明内容
本申请提供了一种屏蔽膜、屏蔽膜的制备方法及线缆,可以在提高线缆屏蔽率的同时,提高线缆的生产效率。
本申请实施例第一方面提供了一种屏蔽膜,包括:
载体层、第一屏蔽层以及第二屏蔽层;
所述载体层包括目标载体以及填充至所述目标载体中的金属粒子和炭粒子,用于屏蔽电磁干扰;
所述第一屏蔽层以及所述第二屏蔽层均附着于所述载体层,且所述第一屏蔽层与所述第二屏蔽层相对于所述载体层呈对称设置;
所述第一屏蔽层以及所述第二屏蔽层由所述金属粒子和所述炭粒子组成,用于屏蔽电磁干扰以及强化所述目标载体。
可选地,所述金属粒子和所述碳离子通过电镀、水镀、蒸镀或溅镀工艺填充至所述目标载体。
可选地,所述第一屏蔽层以及所述第二屏蔽层通过涂布挤压或喷涂的方式 附着于所述载体层。
可选地,所述金属粒子包括银粒子、铜粒子、镍粒子、铝粒子、镁粒子、铁粒子、锰离子、锌粒子以及云母粒子,所述碳粒子包括石墨烯粒子以及碳纳米管粒子。
可选地,所述第一屏蔽层、所述第二屏蔽层以及所述目标载体上的所述银粒子、所述铜粒子、所述镍粒子、所述铝粒子、所述镁粒子、所述铁粒子、所述锰离子、所述锌粒子、所述云母粒子、所述石墨烯粒子和所述碳纳米管粒子按照预设比率进行配比。
可选地,所述目标载体包括不织布、无纺布或聚酯类纤维布。
本申请第二方面提供了一种屏蔽膜的制备方法,包括:
提供目标载体;
将金属粒子和炭粒子填充至所述目标载体中,以得到载体层,其中,所述载体层用于屏蔽电磁干扰;
将第一屏蔽层以及第二屏蔽层附着于所述载体层,以得到所述屏蔽膜,其中,所述第一屏蔽层与所述第二屏蔽层相对于所述载体层呈对称设置,所述第一屏蔽层以及所述第二屏蔽层由所述金属粒子和所述炭粒子组成,用于屏蔽电磁干扰以及强化所述载体层。
一种可能的实现方式中,所述金属粒子和所述碳离子通过电镀、水镀、蒸镀或溅镀工艺填充至所述目标载体,所述第一屏蔽层以及所述第二屏蔽层通过涂布挤压或喷涂的方式附着于所述载体层。
一种可能的实现方式中,所述金属粒子包括银粒子、铜粒子、镍粒子、铝粒子、镁粒子、铁粒子、锰离子、锌粒子以及云母粒子,所述碳粒子包括石墨烯粒子以及碳纳米管粒子,所述金属粒子和所述碳粒子按照预设比率进行配比。
本申请实施例第三方面提供了一种线缆,包括如上述第一方面所述的屏蔽膜,或,包括通过上述第二方面中所述屏蔽膜的制备方法制备得到的屏蔽膜。
综上所述,可以看出,本申请提供的屏蔽膜,通过将金属粒子和碳粒子填充至目标载体形成载体层,并在载体层的两面附着由金属粒子和碳粒子组成的 屏蔽层,相对于现有的编织技术形成的屏蔽膜来说,由于编织会存在网眼,本申请的屏蔽率采用布类材料为载体,将金属材料填充(电镀)于布类材料的缝隙间,再将材料制作成液态,再次涂布挤压在载体上面,所有没有现有技术编织的网眼问题,屏蔽率相对于现有的来说更加优秀,另外,由于不会存在编织的问题,使得本申请的屏蔽膜在制作线缆的过程中,节省了更多的制作工艺,提高生产效率。
附图说明
图1为本申请实施例提供的屏蔽膜的结构示意图;
图2为本申请实施例提供的屏蔽膜的制备方法的流程示意图;
图3为本申请实施例提供的线缆的制造方法的流程示意图;
图4为本申请实施例提供的线缆的制造方法的一个实施例示意图;
图5A为采用本申请实施例提供的屏蔽膜所制作的线缆进行电磁兼容(EMC)测试的示意图;
图5B采用传统材料(麦拉铝箔+编织网制作的线缆)进行电磁兼容(EMC)测试的示意图;
图6为本申请实施例提供的采用屏蔽膜制作的缆线进行电磁兼容(EMC)(1GHz–18GHz)测试示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步 骤或模块,本申请中所出现的模块的划分,仅仅是一种逻辑上的划分,实际应用中实现时可以有另外的划分方式,例如多个模块可以结合成或集成在另一个系统中,或一些特征向量可以忽略,或不执行,另外,所显示的或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块之间的间接耦合或通信连接可以是电性或其他类似的形式,本申请中均不作限定。并且,作为分离部件说明的模块或子模块可以是也可以不是物理上的分离,可以是也可以不是物理模块,或者可以分布到多个电路模块中,可以根据实际的需要选择其中的部分或全部模块来实现本申请方案的目的。
请参阅图1,图1为本申请实施例提供的屏蔽膜的结构示意图,该屏蔽膜包括:
载体层102、第一屏蔽层101以及第二屏蔽层103;
该载体层102包括目标载体以及填充至目标载体中的金属粒子和炭粒子,也就是说,该载体层102中的金属粒子和碳粒子是填充至目标载体内部的,用于屏蔽电磁干扰;
该第一屏蔽层101以及第二屏蔽层103均附着于载体层102,且第一屏蔽层101与第二屏蔽层103相对于载体层102呈对称设置,也就是说,此处可以在载体层102的两面分别设置第一屏蔽层101以及第二屏蔽层103;
该第一屏蔽层101以及第二屏蔽层103由金属粒子和碳粒子组成,用于屏蔽电磁干扰以及强化目标载体。
一个实施例中,目标载体可以根据用户对厚度的需求选择不同的布类材料,例如该目标载体可以包括不织布、无纺布或聚酯类纤维布,当然该目标载体还可以包括其他类型的布类材料,也还可以根据用户的其他需求来进行选择不同的布类材料,具体不做限定。
需要说明的是,将金属粒子和碳粒子填充至目标载体,指的是将金属粒子和碳粒子通过电镀、水镀、蒸镀或溅镀工艺填充至目标载体,由于该目标载体为布类材料,而由于布类材料的编织特性,在布类材料中会存在缝隙,此处的填充是将金属粒子和碳粒子通过电镀、水镀、蒸镀或溅镀工艺填充至目标载体填充至目标载体的缝隙以及目标载体的表面,形成载体层,用以屏蔽电磁干扰。
需要说明的是,上述所说的金属粒子包括银粒子、铜粒子、镍粒子、铝粒子、镁粒子、铁粒子、锰离子以及云母粒子,碳粒子包括石墨烯粒子以及碳纳米管粒子,其中,金属粒子和碳粒子按照预设比率进行配置,该预设比例的配置与用户的需求的屏蔽率相关联,此处可以根据用户对屏蔽膜的屏蔽率的要求对银粒子、铜粒子、镍粒子、铝粒子、镁粒子、铁粒子、锰离子、锌粒子、云母粒子、石墨烯粒子以及碳纳米管粒子的比率进行调整。其中,银粒子、铜粒子、镍粒子、铝粒子、镁粒子、铁粒子、锰离子、锌粒子、云母粒子、石墨烯粒子以及碳纳米管粒子银粒子中各个粒子的预设比率如下:银:1%-40%;铜:0.5%-70%;铝:5%-70%;镍:5%-70%;镁:1%-30%;铁:1%-30%;锰:1%-30%;云母:0.5%-20%;石墨烯:0.1%-15%;碳奈米管:0.5%-15%;锌:1%-30%。也就是说,此处是将按照预设比率配置的银粒子、铜粒子、镍粒子、铝粒子、镁粒子、铁粒子、锰离子、锌粒子、云母粒子、石墨烯粒子以及碳纳米管粒子通过电镀、水镀、蒸镀或溅镀工艺填充至目标载体的缝隙以及表面。
一个实施例中,第一屏蔽层101以及第二屏蔽层103通过涂布挤压或喷涂的方式附着于载体层102,其中,该第一屏蔽层101以及第二屏蔽层103是采用与填充至目标载体的金属粒子和碳粒子相同的材料以及相同的预设比率附着于载体层,也即该第一屏蔽层101以及第二屏蔽层103是将银粒子、铜粒子、镍粒子、铝粒子、镁粒子、铁粒子、锰离子、锌粒子、云母粒子、石墨烯粒子和碳纳米管粒子按照预设比率混合成液态后通过涂布挤压或喷涂的工艺方式附着于载体102中。
需要说明的是,由于通过电镀、水镀、蒸镀或溅镀工艺方式将按照预设比率配置的金属粒子和碳粒子填充至目标载体的缝隙以及目标载体的表面时,目标载体的缝隙可能会存在无法100%填充现象,此处分别再通过挤压或喷涂的工艺方式将相同比率配置的金属粒子和碳粒子混合成液态附着于载体层102的两面,且由于预设比率配置的金属粒子和碳粒子是混合成液态的,因此在通过挤压或者喷涂时,会有一部分的金属粒子和碳粒子会填充至目标载体的缝隙,进一步的增加电磁干扰的屏蔽率,同时也会在载体层102的两个表面形成 一层由金属粒子和碳粒子组成的屏蔽层,更近一步的增加屏蔽膜的抗电磁干扰能力。
需要说明的是,在实际应用中,还可以根据实际的需求将按照预设比率混合成液态的金属粒子和碳粒子通过涂布挤压或喷涂的方式多次附着于载体层102上,也即在载体层102上多次附着第一屏蔽层和第二屏蔽层,进一步的增加屏蔽膜的抗电磁干扰能力。
综上所述,可以看出,本申请提供的屏蔽膜,通过将金属粒子和碳粒子附着于目标载体形成载体层,并在载体层的两面重新附着由金属粒子和碳粒子组成的屏蔽层,相对于现有的编织技术形成的屏蔽膜来说,由于编织会存在网眼,本申请的屏蔽率采用布类材料为载体,将金属材料填充(电镀)于布类材料的缝隙间,再将材料制作成液态,再次涂布挤压在载体上面,所有没有现有技术编织的网眼问题,屏蔽率相对于现有的来说更加优秀,另外,由于不会存在编织的问题,使得本申请的屏蔽膜在制作线缆的过程中,节省了更多的制作工艺,提高生产效率。
上面对本申请提供的屏蔽膜进行说明,下面从屏蔽膜的制备装置的角度对本申请提供的屏蔽膜的制备方法进行说明。
请参阅图2,图2为本申请实施例提供的屏蔽膜的制备方法的流程示意图,包括:
201、提供目标载体。
本实施例中,屏蔽膜的制备装置可以首先提供目标载体,该目标载体包括但不限于如下布类材料:不织布、无纺布以及聚酯类纤维布,此处目标载体材质的选择可以根据用户对屏蔽膜的厚度或者其他的需求来进行选择。
202、将金属粒子和炭粒子填充至目标载体中,以得到载体层。
本实施例中,在得到目标载体之后,屏蔽膜的制备装置可以将金属粒子和碳粒子填充至目标载体中,以得到载体层,其中,金属粒子包括银粒子、铜粒子、镍粒子、铝粒子、镁粒子、铁粒子、锰离子以及云母粒子,碳粒子包括石墨烯粒子以及碳纳米管粒子。此处可以将银粒子、铜粒子、镍粒子、铝粒子、镁粒子、铁粒子、锰离子、锌粒子以及云母粒子、石墨烯粒子以及碳纳米管粒 子按照预设比率进行配置,并通过电镀、水镀、蒸镀或溅镀工艺填充至目标载体的缝隙以及表面,以得到载体层,实现屏蔽电磁干扰的目的。
需要说明的是,金属粒子和碳粒子按照预设比率进行配置,该预设比例的配置与用户的需求的屏蔽率相关联,此处可以根据用户对屏蔽膜屏蔽率的要求对银粒子、铜粒子、镍粒子、铝粒子、镁粒子、铁粒子、锰离子、云母粒子、石墨烯粒子以及碳纳米管粒子的比率进行调整,例如增加铝粒子的比率或者减少银粒子的比率等等,具体不做限定。
203、将第一屏蔽层以及第二屏蔽层附着于载体层,以得到屏蔽膜。
本实施例中,在将金属粒子和碳粒子填充至目标载体,得到载体层之后,可以继续将第一屏蔽层以及第二屏蔽层附着于载体层上,最终得到屏蔽膜,其中,该第一屏蔽层与第二屏蔽层相对于载体层呈对称设置(也即将第一屏蔽层以及第二屏蔽层分别附着于载体层的两边),第一屏蔽层以及第二屏蔽层由金属粒子和炭粒子组成,用于屏蔽电磁干扰以及强化所述载体层。
可以理解的是,此处将第一屏蔽层以及第二屏蔽层附着于载体层上指的是,将金属粒子和碳粒子按照预设比率混合成液态,之后将按照预设比率混合成液态的金属粒子和碳粒子通过涂布挤压或喷涂的方式附着于载体层的两边,形成第一载体层以及第二载体层,进一步的屏蔽电磁干扰。
综上所述,可以看出,本申请提供的屏蔽膜的制备方法中,采用布类材料为载体,将金属材料填充(电镀)于布类材料的缝隙间,再将材料制作成液态,再次涂布挤压在载体上面,所有没有现有技术编织的网眼问题,屏蔽率相对于现有的来说更加优秀,另外,由于不会存在编织的问题,使得本申请的屏蔽膜在制作线缆的过程中,节省了更多的制作工艺,提高生产效率。
上面对本申请实施例提供的屏蔽膜以及屏蔽膜的制备方法进行说明,下面对本申请实施例提供的线缆的制造方法进行说明。
请参阅图3,图3为本申请实施例提供的线缆的制造方法的流程示意图,包括:
301、生成用于电源传输和/或信号传输的导体。
本实施例中,在制作线缆时,首先生成用于电源传输和/或信号传输的导 体。可以理解的是,该导体可以是用于电源传输的导体,也可以是用于信号传输的导体,也可以是同时用于电源传输和信号传输的导体。
302、在导体的外表面覆盖用于绝缘和保护的外被。
本实施例中,在制作完成导体后,可以在导体的外表面覆盖用于绝缘和保护的导体外被。
303、在导体的外部上缠绕或包覆带状的屏蔽膜。
本实施例中,在导体的外部面覆盖用于绝缘和保护的外被之后,可以在导体的外被上缠绕或包覆带状的屏蔽膜,该屏蔽膜为图1或图2所示实施例中的屏蔽膜。在导体外被制作完成后,如图4所示,可将带状的屏蔽膜401缠绕或包覆在导体402的外被403上。
需要说明的是,为了利用现有技术中已有的生成设备,可以在导体的外被上采用麦拉铝箔缠绕机缠绕或者采用包覆机包覆屏蔽膜。由于本申请实施例中的屏蔽膜是带状的,而麦拉铝箔也属于带状的结构,因此在本申请实施例的线缆的制作方法中,可以采用现有技术中的线缆的制造方法中的麦拉铝箔缠绕机或包覆屏蔽膜的设备,从而能够在减少现有技术的生产设备的情况下,生成出质量更有的线缆,并且由于麦拉铝箔生产需要用到专用的设备,且该设备的添置成本较高,因此,本申请实施例提供的线缆的制造方法在生成线缆时,能大大降低线缆的生产成本,同时由于无需麦拉铝箔,从而编织麦拉铝箔的金属材料也无需进行,从而在节省原材料的同时,还能大大减少对环境的污染。
304、在屏蔽膜上覆盖用于绝缘和保护的线缆外被。
本实施例中,在屏蔽膜缠绕或包覆完毕后,可以在屏蔽膜上覆盖用于绝缘和保护的线缆外被,该线缆外被是作为线缆最外部的保护膜的存在。
需要说明的是,在实际应用中,也可以不执行步骤304,也即该屏蔽膜的外围也可以不需要覆盖线缆外被,线缆外被是否需要覆盖取决于线缆的保护需求,如部分线缆并没有打过严苛的保护需求时,可以不覆盖线缆外被而直接采用屏蔽膜中的保护膜作为线缆的保护膜,例如用于器材内部的有器材外壳保护的线缆,又例如有些线缆时用于户外或者比较恶劣的环境中时,是需要再屏蔽膜的外围覆盖线缆外被,一方面作为保护膜,一方面增强线缆的绝缘性能。在 实际应用中,可以根据实际需求进行设置,具体不做限定。
下面对本申请实施例提供的屏蔽膜以及线缆的制造方法生产的线缆的性能测试进行说明。
针对采用本申请实施例提供如图1所示的屏蔽膜或者图2屏蔽膜的制备方法制备得到的屏蔽膜(以下简称屏蔽膜)所制作的线缆进行电磁兼容(EMC)测试,请参阅图5A以及图5B,图5A为采用本申请实施例提供的屏蔽膜所制作的线缆进行电磁兼容(EMC)测试的示意图,图5B为采用传统材料(麦拉铝箔+编织网制作的线缆)进行电磁兼容(EMC)测试的示意图。
结合参阅图5A以及图5B,其中,纵坐标(dBuV/m)表示电场强度,是用来表示电场的强弱和方向的物理量,横坐标(MHz)标识波动频率,5A1以及5B1为标准线,由图5A以及图5B可以看出,采用屏蔽膜所制作的线缆进行电磁兼容(EMC)测试数据上明显比传统材料(麦拉铝箔+编织网)制作的线缆进行电磁兼容(EMC)测试数据,更加稳定(也即图5A中波形5A2相对应图5B中波形5B2走势更加平稳),余量更大(也即图5A中波形5A2与标准线5A1的距离相对于图5B中的波形5B2与标准线5B1的距离更远)。
针对采用本申请实施例提供的制作的缆线进行电磁兼容(EMC)(1GHz–18GHz)测试,请参阅图6,图6为本申请实施例提供的采用屏蔽膜制作的缆线进行电磁兼容(EMC)(1GHz–18GHz)测试示意图。
参阅图6可以看出,采用屏蔽膜制作的缆线在1GHz–18GHz的测试数据,波形602的走势与标准线604相对应,波形601的走势与标准线603相对应,由图6可以看出,不管是波形601还是波形602距离各自的标准线有很大一段距离。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (10)

  1. 一种屏蔽膜,其特征在于,包括:
    载体层、第一屏蔽层以及第二屏蔽层;
    所述载体层包括目标载体以及填充至所述目标载体中的金属粒子和炭粒子,用于屏蔽电磁干扰;
    所述第一屏蔽层以及所述第二屏蔽层均附着于所述载体层,且所述第一屏蔽层与所述第二屏蔽层相对于所述载体层呈对称设置;
    所述第一屏蔽层以及所述第二屏蔽层由所述金属粒子和所述炭粒子组成,用于屏蔽电磁干扰以及强化所述目标载体。
  2. 根据权利要求1所述的屏蔽膜,其特征在于,所述金属粒子和所述碳离子通过电镀、水镀、蒸镀或溅镀工艺填充至所述目标载体。
  3. 根据权利要求1所述的屏蔽膜,其特征在于,所述第一屏蔽层以及所述第二屏蔽层通过涂布挤压或喷涂的方式附着于所述载体层。
  4. 根据权利要求1至3中任一项所述的屏蔽膜,其特征在于,所述金属粒子包括银粒子、铜粒子、镍粒子、铝粒子、镁粒子、铁粒子、锰离子、锌粒子以及云母粒子,所述碳粒子包括石墨烯粒子以及碳纳米管粒子。
  5. 根据权利要求4所述的屏蔽膜,其特征在于,所述第一屏蔽层、所述第二屏蔽层以及所述目标载体上的所述银粒子、所述铜粒子、所述镍粒子、所述铝粒子、所述镁粒子、所述铁粒子、所述锰离子、所述锌粒子、所述云母粒子、所述石墨烯粒子和所述碳纳米管粒子按照预设比率进行配比。
  6. 根据权利要求1至3中任一项所述的屏蔽膜,其特征在于,所述目标载体包括不织布、无纺布或聚酯类纤维布。
  7. 一种屏蔽膜的制备方法,其特征在于,包括:
    提供目标载体;
    将金属粒子和炭粒子填充至所述目标载体中,以得到载体层,其中,所述载体层用于屏蔽电磁干扰;
    将第一屏蔽层以及第二屏蔽层附着于所述载体层,以得到所述屏蔽膜,其中,所述第一屏蔽层与所述第二屏蔽层相对于所述载体层呈对称设置,所述第 一屏蔽层以及所述第二屏蔽层由所述金属粒子和所述炭粒子组成,用于屏蔽电磁干扰以及强化所述载体层。
  8. 根据权利要求7所述的屏蔽膜的制备方法,其特征在于,所述金属粒子和所述碳离子通过电镀、水镀、蒸镀或溅镀工艺填充至所述目标载体,所述第一屏蔽层以及所述第二屏蔽层通过涂布挤压或喷涂的方式附着于所述载体层。
  9. 根据权利要求7或8项所述的屏蔽膜的制备方法,其特征在于,所述金属粒子包括银粒子、铜粒子、镍粒子、铝粒子、镁粒子、铁粒子、锰离子、锌粒子以及云母粒子,所述碳粒子包括石墨烯粒子以及碳纳米管粒子,所述金属粒子和所述碳粒子按照预设比率进行配比。
  10. 一种线缆,其特征在于,包括如权利要求1至6中任一项所述的屏蔽膜,或,包括通过权利要求7至9中任一项所述屏蔽膜的制备方法制备得到的屏蔽膜。
PCT/CN2020/133754 2020-11-23 2020-12-04 屏蔽膜、屏蔽膜的制备方法及线缆 WO2022104933A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011321078.5A CN112469260A (zh) 2020-11-23 2020-11-23 屏蔽膜、屏蔽膜的制备方法及线缆
CN202011321078.5 2020-11-23

Publications (1)

Publication Number Publication Date
WO2022104933A1 true WO2022104933A1 (zh) 2022-05-27

Family

ID=74798464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133754 WO2022104933A1 (zh) 2020-11-23 2020-12-04 屏蔽膜、屏蔽膜的制备方法及线缆

Country Status (2)

Country Link
CN (1) CN112469260A (zh)
WO (1) WO2022104933A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115837794A (zh) * 2022-12-30 2023-03-24 江苏科麦特科技发展有限公司 一种展翅复合带的制备工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103374203A (zh) * 2012-04-24 2013-10-30 比亚迪股份有限公司 一种电磁屏蔽材料及其制备方法
CN105139923A (zh) * 2015-09-21 2015-12-09 杨天纬 一种用于线缆的屏蔽膜及制造方法及线材的制造方法
CN105367809A (zh) * 2015-11-24 2016-03-02 溧阳二十八所系统装备有限公司 一种制作具有电磁屏蔽性能镀镍碳纤维板的方法
TW201626865A (zh) * 2014-10-03 2016-07-16 Dainippon Ink & Chemicals 屏蔽膜、屏蔽印刷電路板及其等之製造方法
CN106432777A (zh) * 2016-09-28 2017-02-22 常德鑫睿新材料有限公司 一种电磁屏蔽用复合导电薄膜及其制备方法
CN106710690A (zh) * 2016-12-26 2017-05-24 南昌联能科技有限公司 一种用于线缆的电磁屏蔽膜、电磁屏蔽膜的制造方法及线材的制造方法
US20180222154A1 (en) * 2015-10-07 2018-08-09 Sekisui Chemical Co., Ltd. Metal-coated nonwoven fabric with adhesive layer, process for producing metal-coated nonwoven fabric with adhesive layer, and covered core wire

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204206720U (zh) * 2014-11-10 2015-03-11 江苏元京电子科技有限公司 一种纳米级金属电磁屏蔽膜
CN104853576A (zh) * 2015-05-13 2015-08-19 东莞市万丰纳米材料有限公司 超高屏蔽性能的电磁屏蔽膜及其生产工艺
CN108323140A (zh) * 2018-01-24 2018-07-24 中山国安火炬科技发展有限公司 一种电磁波屏蔽膜及其制备方法和应用
CN110769666A (zh) * 2018-07-27 2020-02-07 广州方邦电子股份有限公司 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN110769677A (zh) * 2018-07-27 2020-02-07 广州方邦电子股份有限公司 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN109177384A (zh) * 2018-08-06 2019-01-11 梧州市兴能农业科技有限公司 一种电磁屏蔽纤维布
CN111050536B (zh) * 2019-12-27 2021-02-26 南昌联能科技有限公司 一种线缆的屏蔽膜及连接线缆和连接器的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103374203A (zh) * 2012-04-24 2013-10-30 比亚迪股份有限公司 一种电磁屏蔽材料及其制备方法
TW201626865A (zh) * 2014-10-03 2016-07-16 Dainippon Ink & Chemicals 屏蔽膜、屏蔽印刷電路板及其等之製造方法
CN105139923A (zh) * 2015-09-21 2015-12-09 杨天纬 一种用于线缆的屏蔽膜及制造方法及线材的制造方法
US20180222154A1 (en) * 2015-10-07 2018-08-09 Sekisui Chemical Co., Ltd. Metal-coated nonwoven fabric with adhesive layer, process for producing metal-coated nonwoven fabric with adhesive layer, and covered core wire
CN105367809A (zh) * 2015-11-24 2016-03-02 溧阳二十八所系统装备有限公司 一种制作具有电磁屏蔽性能镀镍碳纤维板的方法
CN106432777A (zh) * 2016-09-28 2017-02-22 常德鑫睿新材料有限公司 一种电磁屏蔽用复合导电薄膜及其制备方法
CN106710690A (zh) * 2016-12-26 2017-05-24 南昌联能科技有限公司 一种用于线缆的电磁屏蔽膜、电磁屏蔽膜的制造方法及线材的制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115837794A (zh) * 2022-12-30 2023-03-24 江苏科麦特科技发展有限公司 一种展翅复合带的制备工艺

Also Published As

Publication number Publication date
CN112469260A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
CN201673721U (zh) 船舶和海洋工程用柔软耐泥浆中高压电缆
CN101887771B (zh) 一种半导电eva塑料屏蔽软电缆及其制作方法
CN1571076A (zh) 用加入基质树脂的导电材料制造的低成本屏蔽电缆
JP3223935U (ja) ケーブル構造
WO2022104933A1 (zh) 屏蔽膜、屏蔽膜的制备方法及线缆
CN105139923A (zh) 一种用于线缆的屏蔽膜及制造方法及线材的制造方法
CN106531344A (zh) 一种用于线缆的电磁屏蔽膜、电磁屏蔽膜的制造方法及线材的制造方法
CN216597108U (zh) 一种大载流量高屏蔽特种控制电缆
CN106531311A (zh) 一种用于线缆的电磁屏蔽膜、电磁屏蔽膜的制造方法及线材的制造方法
CN202816421U (zh) 一种微型柔软超轻型数传用电缆
CN204720213U (zh) 一种宽频电磁屏蔽护套
CN206058925U (zh) 一种视频监控电缆
CN201749706U (zh) 一种半导电eva塑料屏蔽软电缆
CN211578425U (zh) 一种抗干扰连接线缆
CN211045080U (zh) 一种轻型混合编织屏蔽电缆
CN106710690A (zh) 一种用于线缆的电磁屏蔽膜、电磁屏蔽膜的制造方法及线材的制造方法
CN201673723U (zh) 电信设备用方形电缆
WO2018195922A1 (zh) 一种用于线缆的电磁屏蔽膜
CN206833965U (zh) 一种具有信号屏蔽功能的集成信号线结构
CN216450404U (zh) 一种柔软型高清晰音频线缆
CN206194424U (zh) 阻燃电缆
CN206961560U (zh) 一种用于线缆的电磁屏蔽膜
CN216450398U (zh) 一种抗强电磁电缆
CN211555576U (zh) 一种石墨烯屏蔽数字传输线缆
CN103854769B (zh) 一种抗干扰传输信号线及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962224

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 14/07/2023)