WO2022104902A1 - 对称型真空泡负载平衡的过渡电路装置及控制方法 - Google Patents

对称型真空泡负载平衡的过渡电路装置及控制方法 Download PDF

Info

Publication number
WO2022104902A1
WO2022104902A1 PCT/CN2020/132693 CN2020132693W WO2022104902A1 WO 2022104902 A1 WO2022104902 A1 WO 2022104902A1 CN 2020132693 W CN2020132693 W CN 2020132693W WO 2022104902 A1 WO2022104902 A1 WO 2022104902A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
circuit breaker
vacuum circuit
numbered
switch
Prior art date
Application number
PCT/CN2020/132693
Other languages
English (en)
French (fr)
Inventor
张书琦
李鹏
李金忠
汪可
杨帆
李戈琦
张�浩
李刚
刘雪丽
孙建涛
程涣超
徐征宇
王健一
遇心如
梁宁川
吴标
李熙宁
王琳
Original Assignee
中国电力科学研究院有限公司
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院有限公司, 国家电网有限公司 filed Critical 中国电力科学研究院有限公司
Priority to EP20962193.7A priority Critical patent/EP4250320A1/en
Publication of WO2022104902A1 publication Critical patent/WO2022104902A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings
    • H01F29/04Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings having provision for tap-changing without interrupting the load current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/0005Tap change devices
    • H01H9/0038Tap change devices making use of vacuum switches

Definitions

  • the present application relates to the technical field of tap changers, for example, to a transition circuit device and a control method for symmetrical vacuum bubble load balance.
  • the on-load tap-changer is a switching device that provides a constant voltage for the transformer when the load changes.
  • the basic principle of the on-load tap-changer is to ensure that the load current is not interrupted. Switch, thereby changing the number of turns of the winding, that is, the voltage ratio of the transformer, and finally achieve the purpose of voltage regulation.
  • the vacuum type on-load tap-changer relies on the vacuum tube of the switch to realize the arc extinguishing, and the arc and hot gas are not exposed; the oil in the oil chamber of the tap-changer will not be carbonized and polluted, the oil does not need to be purified, and the contacts in the vacuum tube will not be exposed. Burnout corrosion can be minimized.
  • the on-load tap-changer consists of a diverter switch, a tap selector and an electric mechanism.
  • the on-load tap-changer includes a transition circuit and a selection circuit. Different voltage regulation methods require different voltage regulation circuits. Therefore, the circuit of the on-load tap-changer is determined by the transition circuit. It consists of three parts: a selection circuit and a voltage regulating circuit.
  • the transition circuit is a series resistance circuit connected across the tap points, and the mechanism corresponding to the transition circuit is a switch or a selector switch, which is a tap that transforms the transformer windings in a charged state. .
  • the tap changer adopts the principle of transition circuit to realize the tap change operation.
  • transition circuit resistances of the transition circuit there are single resistance, double resistance, four resistance or multi-resistance transition, according to the contact fracture of the transition circuit, there are single fracture or double fracture, etc., which can be combined to form a variety of transition circuits.
  • the transition circuit and switching procedure have different effects on the contact task of the diverter switch. Whether the arc can be reliably extinguished within the first half cycle of the current depends to a large extent on the desired switching task.
  • the vacuum circuit breaker without transition resistance in the on-load tap-changer is the load vacuum circuit breaker, and the load vacuum circuit breaker only bears the task of breaking the load current; the vacuum circuit breaker connected with the transition resistance is the circulating current vacuum circuit breaker, and the circulating current vacuum circuit breaker The device only undertakes the task of breaking the internal circulation.
  • the single-column winding of the commutation variable load current is 500 ⁇ 600A, and the internal circulating current flowing through the transition resistance is about 900 ⁇ 1000A. After multiple switching, the degree of ablation of the load vacuum circuit breaker and the circulating vacuum circuit breaker is different, and the switching burden and electrical damage of the circulating vacuum circuit breaker will be more serious.
  • the present application provides a symmetric vacuum bubble load balancing transition circuit device, including:
  • the transfer switch Z1 includes a electrode, b electrode, c electrode, d electrode and an action arm, the a electrode or b electrode is connected to the odd-numbered gear of the tap selector of the on-load tap changer, the The c electrode or the d electrode is connected to the even-numbered gear of the tap selector of the on-load tap changer, and the action arm of the transfer switch Z1 is rotated to connect any one of the a electrode, the b electrode, the c electrode and the d electrode;
  • the transfer switch Z2 includes e electrode, f electrode and an action arm, the e electrode and f electrode are respectively connected to the odd or even gear of the tap selector of the on-load tap changer, the transfer switch The action arm of Z2 rotates to connect any one of the e electrode and the f electrode;
  • the load current vacuum circuit breaker MV is set to cut off the load current when the odd-numbered gear is switched to the even-numbered gear and the even-numbered gear is switched to the odd-numbered gear;
  • Main switch MC1 and main switch MC2 the main switch MC1 is set to switch the normal flow of the odd-numbered gear, and the main switch MC2 is set to switch the normal flow of the even-numbered gear;
  • the transition resistance R is set to limit the circulating current between the odd-numbered gears and the even-numbered gears when the transition circuit connects the odd-numbered gears and the even-numbered gears at the same time.
  • the present application also provides a control method for a transition circuit device applied to symmetric vacuum bubble load balancing, wherein the transition circuit device includes: a transfer switch Z1, a transfer switch Z2, a circulating vacuum circuit breaker RV1, and a circulating current vacuum circuit breaker RV2 , load current vacuum circuit breaker MV, main switch MC1, main switch MC2 and transition resistance R, including:
  • the circulating vacuum circuit breaker RV1 is used to cut off the circulating current between the two gears when the odd-numbered gear is switched to the even gear, and the circulating vacuum circuit breaker RV2 is used to cut off the two gears when the even-numbered gear is switched to the odd gear. circulation between gears;
  • the load current vacuum circuit breaker MV is used to cut off the load current when the odd-numbered gear is switched to the even-numbered gear and the even-numbered gear is switched to the odd-numbered gear;
  • the main switch MC1 is used to switch the normal flow of the odd-numbered gear, and the main switch MC2 is used to switch the normal flow of the even-numbered gear;
  • the transition resistance R is used to limit the circulating current between the odd-numbered gears and the even-numbered gears when the transition circuit connects the odd-numbered gears and the even-numbered gears at the same time.
  • FIG. 1 is a structural diagram of a symmetric vacuum bubble load-balanced transition circuit device provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of transition circuit conversion of an on-load tap-changer provided in an embodiment of the present application
  • FIG. 3 is a schematic diagram of transition circuit conversion of an on-load tap-changer provided in an embodiment of the present application
  • 5 is a schematic diagram of transition circuit conversion of an on-load tap changer provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of transition circuit conversion of the on-load tap changer provided in the embodiment of the present application.
  • FIG. 7 is a schematic diagram of transition circuit conversion of an on-load tap-changer provided in an embodiment of the application.
  • FIG. 8 is a schematic diagram of transition circuit conversion of an on-load split switch provided in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of transition circuit conversion of an on-load tap-changer provided in an embodiment of the present application.
  • 10 is a schematic diagram of transition circuit conversion of an on-load tap-changer provided in an embodiment of the application.
  • 11 is a schematic diagram of transition circuit conversion of an on-load tap-changer provided in an embodiment of the application.
  • 12 is a schematic diagram of transition circuit conversion of an on-load tap-changer provided in an embodiment of the application.
  • 13 is a schematic diagram of transition circuit conversion of the on-load tap-changer provided in the embodiment of the application.
  • 15 is a schematic diagram of transition circuit conversion of an on-load tap-changer provided in an embodiment of the application.
  • 16 is a schematic diagram of transition circuit conversion of the on-load tap changer provided in the embodiment of the application.
  • 17 is a schematic diagram of transition circuit conversion of the on-load tap-changer provided in the embodiment of the application.
  • 19 is a schematic diagram of transition circuit conversion of an on-load tap-changer provided in an embodiment of the application.
  • 20 is a schematic diagram of transition circuit conversion of an on-load tap-changer provided in an embodiment of the application.
  • FIG. 21 is a schematic diagram of the transition circuit of the on-load tap-changer provided in the embodiment of the application from N ⁇ N+1;
  • FIG. 22 is a schematic diagram of the transition circuit of the on-load tap-changer provided in the embodiment of the application from N+1 ⁇ N;
  • 23 is a structural diagram when the transition circuit of the on-load tap changer provided in the embodiment of the application includes two transition resistors;
  • FIG. 25 is a switching sequence state diagram of the transfer switch Z1 provided in the embodiment of the application.
  • FIG. 26 is a flowchart of a control method of a transition circuit device applied to a symmetrical vacuum bubble load balancing provided in an embodiment of the present application.
  • the present application provides a symmetrical vacuum bubble load balancing transition circuit device, as shown in FIG. 1 , including:
  • the transfer switch Z1 includes a electrode, b electrode, c electrode, d electrode and an action arm, the a electrode or b electrode is connected to the odd-numbered gear of the tap selector of the on-load tap changer, the The c electrode or the d electrode is connected to the even-numbered gear of the tap selector of the on-load tap changer, and the action arm of the transfer switch Z1 is rotated to connect any one of the a electrode, the b electrode, the c electrode and the d electrode;
  • the transfer switch Z2 includes e electrode, f electrode and an action arm, the e electrode and f electrode are respectively connected to the odd or even gear of the tap selector of the on-load tap changer, the transfer switch The action arm of Z2 rotates to connect any one of the e electrode and the f electrode;
  • a circulating vacuum circuit breaker RV1 and a circulating vacuum circuit breaker RV2 the circulating vacuum circuit breaker RV1 is set to cut off the circulating current between the two gears when the odd-numbered gear is switched to the even-numbered gear, and the circulating vacuum circuit breaker RV2 is set to Cut off the circulation between the two gears when switching from even-numbered gears to odd-numbered gears;
  • the load current vacuum circuit breaker MV is set to cut off the load current when the odd-numbered gear is switched to the even-numbered gear and the even-numbered gear is switched to the odd-numbered gear;
  • Main switch MC1 and main switch MC2 the main switch MC1 is used to switch the normal flow of the odd-numbered gear, and the main switch MC2 is set to switch the normal flow of the even-numbered gear; wherein, in the tap changer switch core
  • Z1, Z2, MV, RV1, RV2 and other components are in a static state.
  • the current flows through the main switch MC1 or main switch MC2 through the tap changer switching core, and the current flowing at this time is normal flow.
  • the transition resistance R is set to limit the circulating current between the odd-numbered gears and the even-numbered gears when the transition circuit connects the odd-numbered gears and the even-numbered gears at the same time.
  • a circulating current vacuum circuit breaker RV1 and a circulating current vacuum circuit breaker RV2 the circulating current vacuum circuit breaker RV1 is connected to one end of the a electrode and the b electrode of the transfer switch Z1, and the circulating current vacuum circuit breaker RV2 is connected to the c electrode and the d electrode of the transfer switch Z1. one end of the .
  • the fixed end of the action arm of the transfer switch Z1 is connected to one end of the transition resistance R, and is connected to the neutral point of the transformer through the transition resistance R.
  • the fixed end of the action arm of the transfer switch Z2 is connected to one end of the load current vacuum circuit breaker MV, and is connected to the neutral point of the transformer through the load current vacuum circuit breaker MV.
  • the main switch MC1 is connected between the odd-numbered gears of the tap selector of the on-load tap-changer and the neutral point of the transformer, and the main switch MC2 is connected between the even-numbered gears of the tap selector of the on-load tap-changer and the transformer. between the neutral points.
  • the action arm of the transfer switch Z1 is conductive with the a electrode, and the action arm of the transfer switch Z2 is conductive with the e electrode;
  • the load current vacuum circuit breaker MV is turned on, the circulating current vacuum circuit breaker RV1 and the circulating current vacuum circuit breaker RV2 are disconnected, the load current is connected to the neutral point output of the transformer through the main switch MC1, and the e electrode of the transfer switch Z2 is connected in parallel, and the load current is vacuum Circuit breaker MV output.
  • the main switch MC1 When the gear position of the tap selector of the on-load tap changer is in the odd-numbered gear, the main switch MC1 is closed and the main switch MC2 is opened; the action arm of the transfer switch Z1 is connected to the The a-electrode is turned on, and the action arm of the transfer switch Z2 is turned on with the e-electrode; the load current vacuum circuit breaker MV is turned on, the circulating current vacuum circuit breaker RV1 and the circulating current vacuum circuit breaker RV2 When disconnected, the load current is connected to the neutral point output of the transformer through the main switch MC1, the parallel circuit with the e-electrode of the transfer switch Z2 and the load current vacuum circuit breaker MV.
  • the action arm of the transfer switch Z1 is conductive with the c electrode, and the action arm of the transfer switch Z2 is conductive with the f electrode;
  • the load current vacuum circuit breaker MV is turned on, the circulating current vacuum circuit breaker RV1 and the circulating current vacuum circuit breaker RV2 are disconnected, the load current is connected to the neutral point output of the transformer through the main switch MC2, and the f electrode of the action arm of the transfer switch Z2 is connected in parallel.
  • the action arm of the transfer switch Z1 is conductive with the c electrode, and the action arm of the transfer switch Z2 is conductive with the f electrode;
  • the load current vacuum circuit breaker MV is turned on, the circulating current vacuum circuit breaker RV1 and the circulating current vacuum circuit breaker RV2 are disconnected, and the load current is passed through the main switch MC2 and the f of the action arm of the transfer switch Z2.
  • the parallel circuit of the poles and the load current vacuum interrupter MV is then connected to the neutral output of the transformer.
  • the transition circuit device of the vacuum on-load tap changer in this embodiment includes a transfer switch Z1, a transfer switch Z2, a circulating vacuum circuit breaker RV1, a circulating current vacuum circuit breaker RV2, a load current vacuum circuit breaker MV and a transition resistance R, wherein,
  • the transition resistance R may include multiple ones, and the main loops of the odd-numbered gear and the even-numbered gear of the switch are respectively provided with a main switch MC1 and a main switch MC2;
  • the transfer switch Z1 includes a electrode, b electrode, c electrode and d electrode, the a electrode or b electrode is connected to the odd-numbered gear of the on-load tap-changer's tap selector, and the c electrode or d electrode is connected to the on-load tap-changer tap changer For the even-numbered gear of the selector, the fixed end of the action arm of Z1 is connected to the transition resistor R;
  • the transfer switch Z2 includes the e electrode and the f electrode; the e electrode and the f electrode are respectively connected to the odd and even gears of the tap selector of the on-load tap-changer, and the fixed end of the action arm of Z2 is connected to the load current vacuum circuit breaker MV The neutral point of the transformer;
  • the circulating vacuum circuit breaker RV1 is set to cut off the circulating current between the two gears when the odd-numbered gear is switched to the even-numbered gear
  • the circulating vacuum circuit breaker RV2 is set to cut off the circulating current between the two gears when the even-numbered gear is switched to the odd gear.
  • the load current vacuum circuit breaker MV is set to cut off the load current when the odd-numbered gear is switched to the even gear and the even-numbered gear is switched to the odd gear.
  • the main switch MC1 and the main switch MC2 are set to normal current flow before and after the switching is completed.
  • the operation process of the transition circuit is as follows:
  • the gear of the on-load tap-changer should be changed from An odd-numbered gear moves up to an even-numbered gear.
  • the operation steps of the transition circuit include:
  • the main switch MC1 is disconnected, and the odd-numbered load current I N flows through the transfer switch Z2 and the load current vacuum circuit breaker MV output;
  • the circulating current vacuum circuit breaker RV1 and the circulating current vacuum circuit breaker RV2 are closed at the same time, the odd-numbered load current I N flows through the transfer switch Z2, the load current vacuum circuit breaker MV is output, and the transition resistance R and the circulating current vacuum circuit breaker are connected in parallel.
  • the load current vacuum circuit breaker MV is closed, and the transition circuit connects the odd-numbered gears and the even-numbered gears at the same time to form a bridge and generate a circulating current
  • the load current is transferred from the odd-numbered gear to the even-numbered gear
  • the even-numbered load current I N flows through the f contact of the transfer switch Z2 and the load current vacuum circuit breaker MV output;
  • the current I MV flowing through the load current vacuum circuit breaker MV IN + IC , wherein the U St is the on-load tap-changer stage voltage;
  • the main switch MC2 is closed, the even-numbered load current I N flows through the main switch MC2 output, and the f contact of the parallel transfer switch Z2 and the load current vacuum circuit breaker MV are output.
  • the switch completes the pressure regulation from odd-numbered gears to even-numbered gears.
  • the operation steps of the transition circuit include:
  • the main switch MC2 is disconnected, and the even - numbered load current IN flows through the transfer switch Z2 and the load current vacuum circuit breaker MV output.
  • the circulating current vacuum circuit breaker RV1 and the circulating current vacuum circuit breaker RV2 are closed at the same time, the even-numbered load current I N flows through the transfer switch Z2 and the load current vacuum circuit breaker MV output, and the transition resistance R and the circulating current vacuum circuit breaker are connected in parallel. RV2, output through the d contact of the transfer switch Z1.
  • the load current vacuum circuit breaker MV is closed, and the transition circuit connects the even-numbered gear and the odd-numbered gear at the same time to form a bridge and generate a circulating current
  • the load current is transferred from the even-numbered gear to the odd-numbered gear
  • U St is the on-load tap-changer stage voltage
  • N is the gear switching times of the on-load tap-changer
  • I N is the load current
  • U St is the on-load tap-changer stage voltage
  • R is the transition resistance
  • the transition resistance R of the present application is not set to one, but becomes two R1 and R2, and the position of the transition resistance R is not set between the fixed end of the action arm of the transfer switch Z1 and the neutral point of the transformer, Instead, they are set between the circulating current vacuum circuit breaker RV1, the circulating current vacuum circuit breaker RV2 and the odd-numbered taps and even-numbered taps.
  • the advantage of this setting is that the two transition resistors R1 and R2 are used to alternately switch from odd-numbered gears to even-numbered gears and even-numbered ones.
  • the load current and circulating current are switched to odd-numbered gears, and the two resistors work and dissipate heat alternately, which can reduce the temperature of the transition resistance, avoid the decomposition of transformer oil and reduce the insulation performance due to the high temperature of the transition resistance, and greatly improve the electrical performance of the entire switch. life.
  • Figure 24 shows the unidirectional rotary design scheme and switching timing state of the transfer switch Z1.
  • the moving contact of Z1 When the on-load tap-changer switches from the even-numbered taps to the odd-numbered taps, the moving contact of Z1 At the static contact c, it is connected to the even-numbered taps, and the initial state of the switch Z1 is state 0; when the transfer switch operates for the first time, the action arm of Z1 rotates 90°, and the moving contact turns to connect to the static contact d. The even-numbered taps are connected, and the state changes from state 0 to state 1; when the transfer switch operates for the second time, the action arm of Z1 rotates 90°, and the moving contact turns to connect to the static contact a, which is connected to the odd-numbered taps, and the state changes from state 1 goes to state 2.
  • FIG. 25 it is the design scheme of the reciprocating swing type of the transfer switch Z1 and the switching timing state.
  • the on-load tap-changer is switched from an odd-numbered tap to an even-numbered tap
  • the moving contact of Z1 is at the static contact a, connected to the odd-numbered tap, and the initial state of the switch Z1 is state 0
  • the first action of the transfer switch When the action arm of Z1 rotates at a small angle, the moving contact turns to connect to the static contact b, which is connected to the odd-numbered tap, and the state changes from state 0 to state 1;
  • the action arm of Z1 has a large angle Rotate, the moving contact slides over the static contact d, connects with the static contact c, and connects with the even tap, and the state changes from state 1 to state 2.
  • the moving contact of Z1 When the on-load tap-changer switches from an even-numbered tap to an odd-numbered tap, the moving contact of Z1 is connected to the even-numbered tap at the static contact c, and the initial state of the switch Z1 is state 0; the first action of the transfer switch When the action arm of Z1 rotates at a small angle, the moving contact turns to connect to the static contact d, which is connected to the even tap, and the state changes from state 0 to state 1; when the transfer switch acts for the second time, the action arm of Z1 has a large angle Rotate, the moving contact slides over the static contact b, connects with the static contact a, and connects with the odd tap, and the state changes from state 1 to state 2.
  • the present application also provides a control method for a transition circuit device applied to symmetric vacuum bubble load balancing, wherein the transition circuit device includes: a transfer switch Z1, a transfer switch Z2, a circulating vacuum circuit breaker RV1, and a circulating current vacuum circuit breaker RV2 , load current vacuum circuit breaker MV, main switch MC1, main switch MC2 and transition resistance R, as shown in Figure 26, including the following steps.
  • the circulating vacuum circuit breaker RV1 is used to cut off the circulating current between the two gears when the odd gear is switched to the even gear, and the circulating vacuum circuit breaker RV2 is used to cut off the two gears when the even gear is switched to the odd gear circulation between gears.
  • the load current vacuum circuit breaker MV is used to cut off the load current when the odd-numbered gear is switched to the even-numbered gear and the even-numbered gear is switched to the odd-numbered gear.
  • the transition resistance R is used to limit the circulating current between the odd-numbered gears and the even-numbered gears when the transition circuit connects the odd-numbered gears and the even-numbered gears at the same time.
  • the on-load tap-changer switches from odd-numbered to even-numbered positions, including:
  • the load current vacuum circuit breaker MV is closed, and the transition circuit is connected to the odd-numbered gear and the even-numbered gear at the same time to form a bridge and generate a circulating current;
  • the on-load tap-changer is switched from even-numbered to odd-numbered positions, including:
  • the load current vacuum circuit breaker MV is closed, and the transition circuit is connected to the even-numbered gear and the odd-numbered gear at the same time to form a bridge and generate a circulating current;
  • the sequence of switching from odd-numbered gears to even-numbered gears and from even-numbered gears to odd-numbered gears in the transition process of the present application is mirror-symmetrical.
  • the “track change” operation of the mechanical transmission mechanism during the reciprocating switching process is avoided. , reduce the mechanical complexity and improve the reliability of the switch.
  • the task of cutting off the circulating current is undertaken by two circulating vacuum circuit breakers RV1 and RV2 in turn, sharing the switching task of only one auxiliary vacuum bubble in the topology of the related art, balancing the switching of the vacuum circuit breaker and the auxiliary vacuum circuit breaker capacity, greatly improving the electrical life of the entire switch.
  • Embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may employ one or more computer-usable storage media (including disk storage, portable Compact Disc Read Only Memory (CD-ROM), optical storage, etc.) having computer-usable program code embodied therein in the form of a computer program product implemented thereon.
  • the solutions in the embodiments of the present application may be implemented in various computer languages, for example, the object-oriented programming language Java and the literal translation scripting language JavaScript, and the like.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

一种对称型真空泡负载平衡的过渡电路装置及控制方法,属于分接开关技术领域。装置包括:转换开关(Z1,Z2)、环流真空断路器(RV1,RV2)、负载电流真空断路器(MV)、主开关(MC1,MC2)和过渡电阻(R)。

Description

对称型真空泡负载平衡的过渡电路装置及控制方法
本申请要求在2020年11月18日提交中国专利局、申请号为202011295536.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及分接开关技术领域,例如涉及一种对称型真空泡负载平衡的过渡电路装置及控制方法。
背景技术
有载分接开关,是一种为变压器在负载变化时提供恒定电压的开关装置,有载分接开关的基本原理是在保证不中断负载电流的情况下,实现变压器绕组中分接头之间的切换,从而改变绕组的匝数,即变压器的电压比,最终实现调压的目的。真空式有载分接开关,靠切换开关的真空管来实现电弧熄灭,以及使电弧和炽热气体不外露;分接开关油室内的油不会碳化和污染,油不需要净化,真空管中触头的烧损腐蚀可以降到最低限度。有载分接开关由切换开关、分接选择器和电动机构构成。
在有载分接开关带负载切换的情况下,有载分接开关包括过渡电路和选择电路,不同的调压方式要求有不同的调压电路,因此,有载分接开关的电路由过渡电路、选择电路和调压电路三部分组成,过渡电路是跨接于分接点间的串接电阻电路,与过渡电路对应的机构为切换开关或选择开关,它是带电状态下变换变压器绕组的分接头。分接开关采用过渡电路的原理实现分接变换操作。按过渡电路的过渡电路电阻的数目有单电阻、双电阻、四电阻或多电阻过渡,按过渡电路的触头断口有单断口或双断口等,可组合构成多种过渡电路。过渡电路和切换程序对切换开关的触头任务有着不同影响,电弧能否限制在电流的最初半周内可靠熄灭,很大程度上取决于所需要的切换任务。
有载分接开关切换芯子内机械转换开关数量较多,对于切换开关的一极来说,包含2个主回路开关和2个辅助转换开关,机械结构较为复杂。有载分接开关中不接过渡电阻的真空断路器为负载真空断路器,负载真空断路器只承受开断负载电流的任务;接有过渡电阻的真空断路器为环流真空断路器,环流真空断路器只承受开断内部环流的任务。根据特高压直流工程经验,换流变负载电流单柱绕组为500~600A,过渡电阻上流过的内部环流约为900~1000A,由于经过环流真空断路器上的内部环流明显大于负载电流,因此在多次切换以后,负载真空断路器和环流真空断路器的烧蚀程度不同,环流真空断路器的切换负 担和电气损伤会更严重。
发明内容
本申请提供了一种对称型真空泡负载平衡的过渡电路装置,包括:
转换开关Z1,所述转换开关Z1包括a电极、b电极、c电极、d电极和一个动作臂,所述a电极或b电极连接有载分接开关的分接选择器的奇数档,所述c电极或d电极连接有载分接开关的分接选择器的偶数档,所述转换开关Z1的动作臂旋转连接a电极、b电极、c电极和d电极中的任意一个;
转换开关Z2,所述转换开关Z2包括e电极、f电极和一个动作臂,所述e电极和f电极分别连接有载分接开关的分接选择器的奇数档或偶数档,所述转换开关Z2的动作臂旋转连接e电极和f电极中的任意一个;
环流真空断路器RV1和环流真空断路器RV2,所述环流真空断路器RV1设置为在所述奇数档切换至所述偶数档的情况下切断两档之间的环流,所述环流真空断路器RV2设置为在偶数档切换至奇数档的情况下切断两档之间的环流;
负载电流真空断路器MV,所述负载电流真空断路器MV设置为在奇数档切换至偶数档和偶数档切换至奇数档的情况下切断负载电流;
主开关MC1和主开关MC2,所述主开关MC1设置为切换所述奇数档的正常通流,和所述主开关MC2设置为切换偶数档的正常通流;
过渡电阻R,所述过渡电阻R设置为在过渡电路同时连通奇数档和偶数档时,限制奇数档和偶数档之间的环流。
本申请还提供了一种应用于对称型真空泡负载平衡的过渡电路装置的控制方法,其中,过渡电路装置,包括:转换开关Z1、转换开关Z2、环流真空断路器RV1、环流真空断路器RV2、负载电流真空断路器MV、主开关MC1、主开关MC2和过渡电阻R,包括:
将转换开关Z1的动作臂,与a电极或b电极连接至有载分接开关的分接选择器的奇数档,将转换开关Z1的动作臂,与c电极或d电极连接有载分接开关的分接选择器的偶数档;
将转换开关Z2的动作臂,与电极e和f电极分别连接有载分接开关的分接选择器的奇数档或偶数档;
将环流真空断路器RV1用于在所述奇数档切换至所述偶数档的情况下切断两档之间的环流,将环流真空断路器RV2用于在偶数档切换至奇数档的情况下切断两档之间的环流;
将负载电流真空断路器MV用于在奇数档切换至偶数档和偶数档切换至奇数档时切断负载电流;
将主开关MC1用于切换所述奇数档的正常通流,和将主开关MC2用于切换偶数档的正常通流;
将过渡电阻R用于在过渡电路同时连通奇数档和偶数档的情况下,限制奇数档和偶数档之间的环流。
附图说明
图1为本申请实施例提供的一种对称型真空泡负载平衡的过渡电路装置的结构图;
图2为本申请实施例中提供的有载分接开关的过渡电路转换示意图;
图3为本申请实施例中提供的有载分接开关的过渡电路转换示意图;
图4为本申请实施例中提供的有载分接开关的过渡电路转换示意图;
图5为本申请实施例中提供的有载分接开关的过渡电路转换示意图;
图6为本申请实施例中提供的有载分接开关的过渡电路转换示意图;
图7为本申请实施例中提供的有载分接开关的过渡电路转换示意图;
图8为本申请实施例中提供的有载分按开关的过渡电路转换示意图;
图9为本申请实施例中提供的有载分接开关的过渡电路转换示意图;
图10为本申请实施例中提供的有载分接开关的过渡电路转换示意图;
图11为本申请实施例中提供的有载分接开关的过渡电路转换示意图;
图12为本申请实施例中提供的有载分接开关的过渡电路转换示意图;
图13为本申请实施例中提供的有载分接开关的过渡电路转换示意图;
图14为本申请实施例中提供的有载分接开关的过渡电路转换示意图;
图15为本申请实施例中提供的有载分接开关的过渡电路转换示意图;
图16为本申请实施例中提供的有载分接开关的过渡电路转换示意图;
图17为本申请实施例中提供的有载分接开关的过渡电路转换示意图;
图18为本申请实施例中提供的有载分接开关的过渡电路转换示意图;
图19为本申请实施例中提供的有载分接开关的过渡电路转换示意图;
图20为本申请实施例中提供的有载分接开关的过渡电路转换示意图;
图21为本申请实施例中提供的有载分接开关的过渡电路由N→N+1转换程序的示意图;
图22为本申请实施例中提供的有载分接开关的过渡电路由N+1→N转换程序的示意图;
图23为本申请实施例中提供的有载分接开关的过渡电路包括2个过渡电阻时的结构图;
图24为本申请实施例中提供的转换开关Z1的切换时序状态图;
图25为本申请实施例中提供的转换开关Z1的切换时序状态图;
图26为本申请实施例中提供的一种应用于对称型真空泡负载平衡的过渡电路装置的控制方法的流程图。
具体实施方式
现在参考附图介绍本申请的示例性实施方式,然而,本申请可以用许多不同的形式来实施,并且不局限于此处描述的实施例,提供这些实施例是为了描述本申请。对于表示在附图中的示例性实施方式中的术语并不是对本申请的限定。在附图中,相同的单元/元件使用相同的附图标记。
此处使用的术语(包括科技术语)具有通常的理解含义。以通常使用的词典限定的术语,应当被理解为与其相关领域的语境具有一致的含义。
本申请提供了一种对称型真空泡负载平衡的过渡电路装置,如图1所示,包括:
转换开关Z1,所述转换开关Z1包括a电极、b电极、c电极、d电极和一个动作臂,所述a电极或b电极连接有载分接开关的分接选择器的奇数档,所述c电极或d电极连接有载分接开关的分接选择器的偶数档,所述转换开关Z1的动作臂旋转连接a电极、b电极、c电极和d电极中的任意一个;
转换开关Z2,所述转换开关Z2包括e电极、f电极和一个动作臂,所述e电极和f电极分别连接有载分接开关的分接选择器的奇数档或偶数档,所述转换开关Z2的动作臂旋转连接e电极和f电极中的任意一个;
环流真空断路器RV1和环流真空断路器RV2,所述环流真空断路器RV1设置为在所述奇数档切换至所述偶数档时切断两档之间的环流,所述环流真空断 路器RV2设置为在偶数档切换至奇数档时切断两档之间的环流;
负载电流真空断路器MV,所述负载电流真空断路器MV设置为在奇数档切换至偶数档和偶数档切换至奇数档时切断负载电流;
主开关MC1和主开关MC2,所述主开关MC1用于切换所述奇数档的正常通流,和将所述主开关MC2设置为切换偶数档的正常通流;其中,在分接开关切换芯子不动作时,Z1、Z2、MV、RV1、RV2等部件处于静止状态,此时电流通过主开关MC1或者主开关MC2流过分接开关切换芯子,此时流过的电流为正常通流。
过渡电阻R,所述过渡电阻R设置为在过渡电路同时连通奇数档和偶数档时,限制奇数档和偶数档之间的环流。
环流真空断路器RV1和环流真空断路器RV2,所述环流真空断路器RV1连接转换开关Z1的a电极和b电极中的一端,所述环流真空断路器RV2连接转换开关Z1的c电极和d电极中的一端。
转换开关Z1的动作臂的固定端连接过渡电阻R的一端,并通过过渡电阻R连接至变压器的中性点。
转换开关Z2的动作臂的固定端连接负载电流真空断路器MV的一端,通过负载电流真空断路器MV连接至变压器的中性点。
主开关MC1连接在所述有载分接开关的分接选择器的奇数档与变压器的中性点之间,和主开关MC2连接在有载分接开关的分接选择器的偶数档与变压器的中性点之间。
有载分接开关的分接选择器的档位处于奇数档时,主开关MC1闭合、以及主开关MC2断开;
转换开关Z1的动作臂与a电极导通、以及转换开关Z2的动作臂与e电极导通;
负载电流真空断路器MV导通,环流真空断路器RV1和环流真空断路器RV2断开,负载电流经主开关MC1连接至变压器的中性点输出,同时并联转换开关Z2的e电极,负载电流真空断路器MV输出。
在所述有载分接开关的分接选择器的档位处于所述奇数档的情况下,所述主开关MC1闭合、以及所述主开关MC2断开;所述转换开关Z1的动作臂与所述a电极导通、以及所述转换开关Z2的动作臂与所述e电极导通;所述负载电流真空断路器MV导通,所述环流真空断路器RV1和所述环流真空断路器RV2断开,将负载电流经所述主开关MC1、与所述转换开关Z2的e电极和所述负载 电流真空断路器MV的并联电路后连接至变压器的中性点输出。
有载分接开关的档位处于偶数档时,主开关MC2闭合且主开关MC1断开;
转换开关Z1的动作臂与c电极导通、以及转换开关Z2的动作臂与f电极导通;
负载电流真空断路器MV导通,环流真空断路器RV1和环流真空断路器RV2断开,负载电流经主开关MC2连接至变压器的中性点输出,同时并联转换开关Z2动作臂的f电极,负载电流真空断路器MV输出。
在所述有载分接开关的分接选择器的档位处于所述偶数档的情况下,所述主开关MC2闭合、以及所述主开关MC1断开;
所述转换开关Z1的动作臂与所述c电极导通、以及所述转换开关Z2的动作臂与所述f电极导通;
所述负载电流真空断路器MV导通,所述环流真空断路器RV1和所述环流真空断路器RV2断开,将负载电流经所述主开关MC2、与所述转换开关Z2的动作臂的f电极和所述负载电流真空断路器MV的并联电路后连接至变压器的中性点输出。
下面结合实施例对本申请进行说明。
本实施例中真空式有载分接开关的过渡电路装置,包括转换开关Z1,转换开关Z2,环流真空断路器RV1、环流真空断路器RV2,负载电流真空断路器MV和过渡电阻R,其中,过渡电阻R可以包括多个,开关的奇数档和偶数档主回路分别设有主开关MC1和主开关MC2;
转换开关Z1包括a电极、b电极、c电极和d电极,a电极或b电极连接有载分接开关的分接选择器的奇数档,c电极或d电极连接有载分接开关的分接选择器的偶数档,Z1的动作臂的固定端连接过渡电阻R;
转换开关Z2,包括e电极和f电极;e电极和f电极分别连接有载分接开关的分接选择器的奇数档和偶数档,Z2的动作臂的固定端通过负载电流真空断路器MV连接变压器的中性点;
环流真空断路器RV1设置为在奇数档切换至偶数档时切断两档之间的环流,环流真空断路器RV2设置为在偶数档切换至奇数档时切断两档之间的环流。
负载电流真空断路器MV设置为在奇数档切换至偶数档和偶数档切换至奇数档时切断负载电流。
主开关MC1和主开关MC2设置为切换完成前后的正常通流。
过渡电路的操作过程,如下:
假定有载分接开关的分接选择器的初始点位置不变,且有载分接开关的档位编号与分接选择器的触头组标号一致,有载分接开关的档位要从一个奇数档位上升到一个偶数档位。
有载分接开关的档位处于奇数分接时,如图1所示,主开关MC1闭合、主开关MC2断开,转换开关Z1的动作臂的动触头与a电极导通、转换开关Z2的动作臂的动触头与e电极导通,负载电流真空断路器MV导通,环流真空断路器RV1和环流真空断路器RV2断开,负载电流I N经主开关MC1连接至变压器的中性点输出,同时并联转换开关Z2的e触头和负载电流真空断路器MV输出。
当有载分接开关由奇数档转换到偶数档,过渡电路的操作步骤包括:
如图2所示,断开主开关MC1,奇数档负载电流I N流经转换开关Z2和负载电流真空断路器MV输出;
如图3所示,将所述转换开关Z1的动作臂的动触头由a静触头转到b静触头,此时Z1不带电,Z1仍连接在有载分接开关的奇数档;
如图4所示,同时闭合环流真空断路器RV1和环流真空断路器RV2,奇数档负载电流I N流经转换开关Z2、负载电流真空断路器MV输出,同时并联过渡电阻R与环流真空断路器RV1,经过转换开关Z1的b触头输出;
如图5所示,断开所述负载电流真空断路器MV,切断负载电流I N,产生电弧,电弧熄灭后,奇数档负载电流I N依次流经过渡电阻R、环流真空断路器RV1和转换开关Z1的b触头输出,所述负载电流真空断路器MV的两端的恢复电压U MV=I N×R;
如图6所示,负载电流真空断路器MV内电弧完全熄灭后,转换开关Z2的动作臂由连接e静触头转换到连接f静触头,奇数档负载电流I N依次流经过渡电阻R、环流真空断路器RV1和转换开关Z1的b触头输出;
如图7所示,闭合所述负载电流真空断路器MV,过渡电路同时连接奇数档和偶数档,形成桥接,产生循环电流
Figure PCTCN2020132693-appb-000001
此时负载电流由奇数档转移至偶数档,偶数档负载电流I N流经转换开关Z2的f触头和负载电流真空断路器MV输出;流经所述负载电流真空断路器MV的电流I MV=I N+I C,其中,所述U St为有载分接开关级电压;
如图8所示,同时打开环流真空断路器RV1和环流真空断路器RV2,其中,环流真空断路器RV1拉开环流I C,产生电弧,环流真空断路器RV2不带电流动作; 偶数档负载电流I N流经转换开关Z2的f触头和负载电流真空断路器MV输出;所述环流真空断路器RV1两端的恢复电压为U RV1=U St
如图9所示,环流真空断路器RV1内电弧完全熄灭后,转换开关Z1的动作臂的动触头由b转到c静触头,偶数档负载电流I N流经转换开关Z2的f触头和负载电流真空断路器MV输出。
如图10所示,闭合主开关MC2,偶数档负载电流I N流经主开关MC2输出,同时并联转换开关Z2的f触头和负载电流真空断路器MV输出,此时分接变换操作结束,切换开关完成由奇数档转换到偶数档的调压。
有载分接开关的档位处于偶数分接时,如图11所示,主开关MC2闭合、MC1断开,转换开关Z1的动作臂的动触头与静触头c导通、转换开关Z2的动作臂的动触头与静触头f导通,负载电流真空断路器MV导通,环流真空断路器RV1和环流真空断路器RV2断开,负载电流I N经主开关MC2连接至变压器的中性点输出,同时并联转换开关Z2的f触头和负载电流真空断路器MV输出。
当所述有载分接开关由偶数档转换到奇数档,过渡电路的操作步骤包括:
如图12所示,断开主开关MC2,偶数档负载电流I N流经转换开关Z2和负载电流真空断路器MV输出。
如图13所示,将所述转换开关Z1的动作臂的动触头由c转到d静触头,此时转换开关Z1不带电,转换开关Z1仍连接在有载分接开关的偶数档。
如图14所示,同时闭合环流真空断路器RV1和环流真空断路器RV2,偶数档负载电流I N流经转换开关Z2和负载电流真空断路器MV输出,同时并联过渡电阻R与环流真空断路器RV2,经过转换开关Z1的d触头输出。
如图15所示,断开所述负载电流真空断路器MV,切断负载电流I N,产生电弧,该电弧熄灭后,偶数档负载电流I N依次流经过渡电阻R、环流真空断路器RV2和转换开关Z1的d触头输出,所述负载电流真空断路器MV两端的恢复电压U MV=I N×R;
如图16所示,负载电流真空断路器MV内电弧完全熄灭后,转换开关Z2的动作臂由连接f静触头转换到连接e静触头,偶数档负载电流I N依次流经过渡电阻R、环流真空断路器RV2和转换开关Z1的d触头输出;
如图17所示,闭合所述负载电流真空断路器MV,过渡电路同时连接偶数档和奇数档,形成桥接,产生循环电流
Figure PCTCN2020132693-appb-000002
此时负载电流由偶数档转移至奇数档,奇数档负载电流I N流经转换开关Z2的e触头和负载电流真空断路器 MV输出,流经所述负载电流真空断路器MV的电流I MV=I N+I C;其中,U St为有载分接开关级电压;
如图18所示,同时打开环流真空断路器RV1和环流真空断路器RV2,其中,环流真空断路器RV2拉开环流I C,产生电弧,环流真空断路器RV1不带电流动作;奇数档负载电流I N流经转换开关Z2的e触头和负载电流真空断路器MV输出,环流真空断路器RV2两端的恢复电压为U RV2=U St
如图19所示,环流真空断路器RV2内电弧完全熄灭后,转换开关Z1的动作臂的动触头由d转到a静触头,奇数档负载电流I N流经转换开关Z2的e触头和负载电流真空断路器MV输出;
如图20所示,闭合主开关MC1,奇数档负载电流I N流经主开关MC1输出,同时并联转换开关Z2的e触头和负载电流真空断路器MV输出。此时分接变换操作结束,切换开关完成由偶数档转换到奇数档的调压。
当分接选择器由奇数分接转换到偶数分接,过渡电路转换程序的示意图如图21所示。
当分接选择器由偶数分接转换到奇数分接,过渡电路转换程序的示意图如图22所示。
本实施例中真空式有载分接开关过渡电路的真空断路器的任务如表1所示:
表1
Figure PCTCN2020132693-appb-000003
N为有载分接开关的档位切换次数,I N为负载电流;U St为有载分接开关级电压,R为过渡电阻。
如图23所示,为本申请提供的有载分接开关的负载转换开关的变型的实施方式。在此,本申请的过渡电阻R不设置为一个,而是变为两个R1和R2,过渡电阻R的位置不设置在转换开关Z1的动作臂的固定端和变压器的中性点之间,而是分别设置在环流真空断路器RV1、环流真空断路器RV2与奇数分接、偶数 分接之间,如此设置的优势在于利用R1和R2两个过渡电阻交替承担奇数档切换至偶数档、偶数档切换至奇数档的负载电流和环流,两个电阻交替工作和散热,可以降低过渡电阻的温度,避免过渡电阻温度过高导致变压器油分解产气和绝缘性能降低,极大提高整个开关的电气寿命。
如图24所示为转换开关Z1单向旋转式设计方案及切换时序状态。在有载分接开关由奇数分接切换至偶数分接时,Z1的动触头在静触头a处,与奇数分接相连,开关Z1的初始状态为状态0,转换开关第1次动作时,Z1的动作臂旋转90°,动触头转为连接静触头b,与奇数分接相连,状态由状态0转为状态1;转换开关第2次动作时,Z1的动作臂旋转90°,动触头转为连接静触头c,与偶数分接相连,状态由状态1转为状态2,在有载分接开关由偶数分接切换至奇数分接时,Z1的动触头在静触头c处,与偶数分接相连,开关Z1的初始状态为状态0;转换开关第1次动作时,Z1的动作臂旋转90°,动触头转为连接静触头d,与偶数分接相连,状态由状态0转为状态1;转换开关第2次动作时,Z1的动作臂旋转90°,动触头转为连接静触头a,与奇数分接相连,状态由状态1转为状态2。
如图25所示,为转换开关Z1往复摆动式的设计方案及切换时序状态。在有载分接开关由奇数分接切换至偶数分接时,Z1的动触头在静触头a处,与奇数分接相连,开关Z1的初始状态为状态0;转换开关第1次动作时,Z1的动作臂小角度转动,动触头转为连接静触头b,与奇数分接相连,状态由状态0转为状态1;转换开关第2次动作时,Z1的动作臂大角度转动,动触头滑过静触头d,连接静触头c,与偶数分接相连,状态由状态1转为状态2。在有载分接开关由偶数分接切换至奇数分接时,Z1的动触头在静触头c处,与偶数分接相连,开关Z1的初始状态为状态0;转换开关第1次动作时,Z1的动作臂小角度转动,动触头转为连接静触头d,与偶数分接相连,状态由状态0转为状态1;转换开关第2次动作时,Z1的动作臂大角度转动,动触头滑过静触头b,连接静触头a,与奇数分接相连,状态由状态1转为状态2。
本申请还提供了一种应用于对称型真空泡负载平衡的过渡电路装置的控制方法,其中,过渡电路装置,包括:转换开关Z1、转换开关Z2、环流真空断路器RV1、环流真空断路器RV2、负载电流真空断路器MV、主开关MC1、主开关MC2和过渡电阻R,如图26所示,包括以下步骤。
S10、将转换开关Z1的动作臂,与a电极或b电极连接至有载分接开关的分接选择器的奇数档,将转换开关Z1的动作臂,与c电极或d电极连接有载分接开关的分接选择器的偶数档。
S20、将转换开关Z2的动作臂,与电极e和f电极分别连接有载分接开关 的分接选择器的奇数档或偶数档。
S30、将环流真空断路器RV1用于在所述奇数档切换至所述偶数档的情况下切断两档之间的环流,将环流真空断路器RV2用于在偶数档切换至奇数档时切断两档之间的环流。
S40、将负载电流真空断路器MV用于在奇数档切换至偶数档和偶数档切换至奇数档时切断负载电流。
S50、将主开关MC1用于切换所述奇数档的正常通流,和将主开关MC2用于切换偶数档的正常通流。
S60、将过渡电阻R用于在过渡电路同时连通奇数档和偶数档时,限制奇数档和偶数档之间的环流。
可选的,有载分接开关由奇数档转换到偶数档,包括:
将主开关MC1断开;
将转换开关Z1的动作臂由a电极切换至b电极;
将环流真空断路器RV1和环流真空断路器RV2闭合;
将负载电流真空断路器MV断开;
待负载电流真空断路器MV内电弧完全熄灭后,将转换开关Z2的动作臂由连接e电极切换至连接f电极;
将负载电流真空断路器MV闭合,并使过渡电路同时连接奇数档和偶数档,形成桥接,产生循环电流;
将环流真空断路器RV1和环流真空断路器RV2断开;
待环流真空断路器RV1内电弧完全熄灭后,将转换开关Z1的动作臂由b电极切换至c电极;
将主开关MC2闭合。
可选的,有载分接开关由偶数档转换到奇数档,包括:
将主开关MC2断开;
将转换开关Z1的动作臂由c电极切换至d电极;
将环流真空断路器RV1和环流真空断路器RV2闭合;
将负载电流真空断路器MV断开;
待负载电流真空断路器MV内电弧完全熄灭后,将转换开关Z2的动作臂由f电极切换至e电极;
将负载电流真空断路器MV闭合,并使过渡电路同时连接偶数档和奇数档,形成桥接,产生循环电流;
将环流真空断路器RV1和环流真空断路器RV2断开;
待环流真空断路器RV2内电弧完全熄灭后,将转换开关Z1的动作臂由d电极切换至a电极;
将主开关MC1闭合。
本申请的过渡过程中由奇数档切换至偶数档和偶数档切换至奇数档的时序为镜像对称,对于进行往复式动作的切换开关,避免了往复切换过程中机械传动机构的“变轨”操作,降低机械复杂度,提高了开关的可靠性。
通过切断环流的任务由两个环流真空断路器RV1和环流真空断路器RV2轮流承担,分担了相关技术的拓扑中仅一只辅助真空泡的切换任务,平衡真空断路器和辅助真空断路器的切换容量,极大提高整个开关的电气寿命。
本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括磁盘存储器、便携式紧凑磁盘只读存储器(Compact Disc Read Only Memory,CD-ROM)、光学存储器等)上实施的计算机程序产品的形式。本申请实施例中的方案可以采用多种计算机语言实现,例如,面向对象的程序设计语言Java和直译式脚本语言JavaScript等。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程 或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (10)

  1. 一种对称型真空泡负载平衡的过渡电路装置,包括:
    转换开关Z1,所述转换开关Z1包括a电极、b电极、c电极、d电极和一个动作臂,所述a电极或所述b电极连接有载分接开关的分接选择器的奇数档,所述c电极或所述d电极连接所述有载分接开关的分接选择器的偶数档,所述转换开关Z1的动作臂旋转连接所述a电极、所述b电极、所述c电极和所述d电极中的任意一个;
    转换开关Z2,所述转换开关Z2包括e电极、f电极和一个动作臂,所述e电极和所述f电极分别连接所述有载分接开关的分接选择器的奇数档或偶数档,所述转换开关Z2的动作臂旋转连接所述e电极和所述f电极中的任意一个;
    环流真空断路器RV1和环流真空断路器RV2,所述环流真空断路器RV1设置为在所述奇数档切换至所述偶数档的情况下切断两档之间的环流,所述环流真空断路器RV2设置为在所述偶数档切换至所述奇数档的情况下切断两档之间的环流;
    负载电流真空断路器MV,所述负载电流真空断路器MV设置为在所述奇数档切换至所述偶数档和所述偶数档切换至所述奇数档的情况下切断负载电流;
    主开关MC1和主开关MC2,所述主开关MC1设置为切换所述奇数档的正常通流,和所述主开关MC2设置为切换所述偶数档的正常通流;
    过渡电阻R,所述过渡电阻R设置为在过渡电路同时连通所述奇数档和所述偶数档的情况下,限制所述奇数档和所述偶数档之间的环流。
  2. 根据权利要求1所述的装置,所述环流真空断路器RV1连接所述转换开关Z1的a电极和b电极中的一端,所述环流真空断路器RV2连接所述转换开关Z1的c电极和d电极中的一端。
  3. 根据权利要求1所述的装置,所述转换开关Z1的动作臂的固定端连接所述过渡电阻R的一端,并通过所述过渡电阻R连接至变压器的中性点。
  4. 根据权利要求1所述的装置,所述转换开关Z2的动作臂的固定端连接所述负载电流真空断路器MV的一端,并通过所述负载电流真空断路器MV连接至变压器的中性点。
  5. 根据权利要求1所述的装置,所述主开关MC1连接在所述有载分接开关的分接选择器的奇数档与变压器的中性点之间,和所述主开关MC2连接在所述有载分接开关的分接选择器的偶数档与变压器的中性点之间。
  6. 根据权利要求1所述的装置,在所述有载分接开关的档位处于所述奇数档的情况下,所述主开关MC1闭合、以及所述主开关MC2断开;
    所述转换开关Z1的动作臂与所述a电极导通、以及所述转换开关Z2的动作臂与所述e电极导通;
    所述负载电流真空断路器MV导通,所述环流真空断路器RV1和所述环流真空断路器RV2断开,将负载电流经所述主开关MC1、与所述转换开关Z2的e电极和所述负载电流真空断路器MV的并联电路后连接至变压器的中性点输出。
  7. 根据权利要求1所述的装置,在所述有载分接开关的分接选择器的档位处于所述偶数档的情况下,所述主开关MC2闭合、以及所述主开关MC1断开;
    所述转换开关Z1的动作臂与所述c电极导通、以及所述转换开关Z2的动作臂与所述f电极导通;
    所述负载电流真空断路器MV导通,所述环流真空断路器RV1和所述环流真空断路器RV2断开,将负载电流经所述主开关MC2、与所述转换开关Z2的动作臂的f电极和所述负载电流真空断路器MV的并联电路后连接至变压器的中性点输出。
  8. 一种应用于对称型真空泡负载平衡的过渡电路装置的控制方法,所述过渡电路装置,包括:转换开关Z1、转换开关Z2、环流真空断路器RV1、环流真空断路器RV2、负载电流真空断路器MV、主开关MC1、主开关MC2和过渡电阻R,所述方法包括:
    将转换开关Z1的动作臂,与a电极或b电极连接至有载分接开关的分接选择器的奇数档,将转换开关Z1的动作臂,与c电极或d电极分别连接有载分接开关的分接选择器的偶数档;
    将转换开关Z2的动作臂,与e电极和f电极分别连接所述有载分接开关的分接选择器的奇数档或偶数档;
    将环流真空断路器RV1用于在所述奇数档切换至所述偶数档的情况下切断两档之间的环流,将环流真空断路器RV2用于在所述偶数档切换至所述奇数档的情况下切断两档之间的环流;
    将负载电流真空断路器MV用于在所述奇数档切换至所述偶数档和所述偶数档切换至所述奇数档的情况下切断负载电流;
    将主开关MC1用于切换所述奇数档的正常通流,和将主开关MC2用于切换所述偶数档的正常通流;
    将过渡电阻R用于在过渡电路同时连通所述奇数档和所述偶数档的情况下,限制所述奇数档和所述偶数档之间的环流。
  9. 根据权利要求8所述的方法,在所述有载分接开关由所述奇数档转换到所述偶数档的情况下,包括:
    将所述主开关MC1断开;
    将所述转换开关Z1的动作臂由所述a电极切换至所述b电极;
    将所述环流真空断路器RV1和所述环流真空断路器RV2闭合;
    将所述负载电流真空断路器MV断开;
    待所述负载电流真空断路器MV内电弧完全熄灭后,将所述转换开关Z2的动作臂由连接所述e电极切换至连接所述f电极;
    将所述负载电流真空断路器MV闭合,并使过渡电路同时连接所述奇数档和所述偶数档,形成桥接,产生循环电流;
    将所述环流真空断路器RV1和所述环流真空断路器RV2断开;
    待所述环流真空断路器RV1内电弧完全熄灭后,将所述转换开关Z1的动作臂由所述b电极切换至所述c电极;
    将所述主开关MC2闭合。
  10. 根据权利要求8所述的方法,在所述有载分接开关由所述偶数档转换到所述奇数档,包括:
    将所述主开关MC2断开;
    将所述转换开关Z1的动作臂由所述c电极切换至所述d电极;
    将所述环流真空断路器RV1和所述环流真空断路器RV2闭合;
    将所述负载电流真空断路器MV断开;
    待所述负载电流真空断路器MV内电弧完全熄灭后,将所述转换开关Z2的动作臂由所述f电极切换至所述e电极;
    将所述负载电流真空断路器MV闭合,并使过渡电路同时连接所述偶数档和所述奇数档,形成桥接,产生循环电流;
    将所述环流真空断路器RV1和所述环流真空断路器RV2断开;
    待所述环流真空断路器RV2内电弧完全熄灭后,将所述转换开关Z1的动作臂由所述d电极切换至所述a电极;
    将所述主开关MC1闭合。
PCT/CN2020/132693 2020-11-18 2020-11-30 对称型真空泡负载平衡的过渡电路装置及控制方法 WO2022104902A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20962193.7A EP4250320A1 (en) 2020-11-18 2020-11-30 Symmetrical vacuum bubble load-balancing transition circuit apparatus, and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011295536.2A CN112670067B (zh) 2020-11-18 2020-11-18 一种对称型真空泡负载平衡的过渡电路装置及控制方法
CN202011295536.2 2020-11-18

Publications (1)

Publication Number Publication Date
WO2022104902A1 true WO2022104902A1 (zh) 2022-05-27

Family

ID=75402976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132693 WO2022104902A1 (zh) 2020-11-18 2020-11-30 对称型真空泡负载平衡的过渡电路装置及控制方法

Country Status (3)

Country Link
EP (1) EP4250320A1 (zh)
CN (1) CN112670067B (zh)
WO (1) WO2022104902A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113889329B (zh) * 2021-09-26 2023-12-15 上海华明电力设备制造有限公司 一种有载分接开关切换方法、电路以及装置
CN114093594A (zh) * 2021-12-01 2022-02-25 中国电力科学研究院有限公司 有载分接开关的过渡电路及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202178175U (zh) * 2011-06-15 2012-03-28 上海华明电力设备集团有限公司 真空有载分接开关双真空管过渡电路
CN202183304U (zh) * 2011-03-11 2012-04-04 上海华齐电力设备制造有限公司 一种真空有载分接开关的切换机构
CN102947909A (zh) * 2010-06-22 2013-02-27 赖茵豪森机械制造公司 分接开关
US20130170079A1 (en) * 2010-05-08 2013-07-04 Dieter Dohnal On-load tap changer
CN104465168A (zh) * 2014-12-12 2015-03-25 国家电网公司 一种真空式有载分接开关过渡电路及操作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339926A (ja) * 1995-06-12 1996-12-24 Toshiba Corp 負荷時タップ切換装置
CN201359913Y (zh) * 2009-03-04 2009-12-09 上海华明电力设备制造有限公司 具有相控永磁机构的有载分接开关
JP6438028B2 (ja) * 2013-08-27 2018-12-12 マシイネンフアブリーク・ラインハウゼン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 負荷時タップ切換器、電圧制御用タップ付変成器及びタップ付変成器での切換実施方法
ES2734601B2 (es) * 2018-06-06 2020-07-08 Univ Sevilla Dispositivo cambiador estatico de tomas en carga para transformadores con devanados de regulacion discontinuos
CN110768212B (zh) * 2019-10-25 2021-09-03 南方电网科学研究院有限责任公司 一种变压器内部短路故障保护装置及其控制方法
CN111799075A (zh) * 2020-06-24 2020-10-20 中国电力科学研究院有限公司 一种真空有载分接开关双电阻过渡电路及调压方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130170079A1 (en) * 2010-05-08 2013-07-04 Dieter Dohnal On-load tap changer
CN102947909A (zh) * 2010-06-22 2013-02-27 赖茵豪森机械制造公司 分接开关
CN202183304U (zh) * 2011-03-11 2012-04-04 上海华齐电力设备制造有限公司 一种真空有载分接开关的切换机构
CN202178175U (zh) * 2011-06-15 2012-03-28 上海华明电力设备集团有限公司 真空有载分接开关双真空管过渡电路
CN104465168A (zh) * 2014-12-12 2015-03-25 国家电网公司 一种真空式有载分接开关过渡电路及操作方法

Also Published As

Publication number Publication date
EP4250320A1 (en) 2023-09-27
CN112670067A (zh) 2021-04-16
CN112670067B (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2022104902A1 (zh) 对称型真空泡负载平衡的过渡电路装置及控制方法
WO2022016758A1 (zh) 真空有载分接开关的过渡装置和真空有载分接开关的过渡装置的切换方法
BRPI0708441B1 (pt) Modificador de derivação em carga híbrido, e, método de operação do mesmo
EP1864305A2 (en) An on-load tap changer
CN111799075A (zh) 一种真空有载分接开关双电阻过渡电路及调压方法
CN112670068B (zh) 一种具有真空有载分接开关的过渡电路装置及控制方法
WO2022193522A1 (zh) 一种真空有载分接开关双真空管往复式过渡电路及其切换控制方法
CN108768359B (zh) 一种有载分接开关及其方法
Gao et al. A new scheme for on-load tap-changer of transformers
JPS59125418A (ja) 負荷時タツプ切換装置
US20160211089A1 (en) Switching system with preselector
CN112216494A (zh) 一种有载分接开关及其运行控制方法
CN215220484U (zh) 一种机械触头时序不对称的分接开关电路
WO2015044361A1 (en) Tap changer for a transformer
CN112670066B (zh) 一种对称型真空泡交替承载的过渡电路装置及方法
CN115763112A (zh) 一种换流变有载调压开关对称往复过渡电路及调压方法
CN114446622A (zh) 一种有载分接开关单隔离触点过渡电路及调压方法
CN108333983B (zh) 调压分接开关,开关的使用方法
WO2021258621A1 (zh) 带隔离触头的真空有载分接开关过渡电路及调压方法
JPH07335455A (ja) 静止形負荷時タップ切換器とそのタップ切り換え方法
CN213211935U (zh) 一种真空有载分接开关双电阻过渡电路
CN219418739U (zh) 真空型有载分接开关的切换开关的分接变换过渡拓扑模块
CN109313997B (zh) 适用于线性切换的有载抽头变换器及其切换方法和用途
CN111799076A (zh) 一种真空有载分接开关单电阻交替型过渡电路及调压方法
Li et al. Research on A Transition Circuit of Vacuum On-Load Tap-Changer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020962193

Country of ref document: EP

Effective date: 20230619