WO2021258621A1 - 带隔离触头的真空有载分接开关过渡电路及调压方法 - Google Patents

带隔离触头的真空有载分接开关过渡电路及调压方法 Download PDF

Info

Publication number
WO2021258621A1
WO2021258621A1 PCT/CN2020/129405 CN2020129405W WO2021258621A1 WO 2021258621 A1 WO2021258621 A1 WO 2021258621A1 CN 2020129405 W CN2020129405 W CN 2020129405W WO 2021258621 A1 WO2021258621 A1 WO 2021258621A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
main
vacuum contact
flows
switch
Prior art date
Application number
PCT/CN2020/129405
Other languages
English (en)
French (fr)
Inventor
李鹏
李金忠
张书琦
汪可
李戈琦
杨帆
李刚
程涣超
孙建涛
吴标
刘雪丽
梁宁川
徐征宇
王健一
赵志刚
王琳
谭瑞娟
Original Assignee
中国电力科学研究院有限公司
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院有限公司, 国家电网有限公司 filed Critical 中国电力科学研究院有限公司
Publication of WO2021258621A1 publication Critical patent/WO2021258621A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings
    • H01F29/04Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings having provision for tap-changing without interrupting the load current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/42Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/0005Tap change devices
    • H01H9/0016Contact arrangements for tap changers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/0005Tap change devices
    • H01H9/0027Operating mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/0005Tap change devices
    • H01H9/0038Tap change devices making use of vacuum switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere

Definitions

  • the present disclosure relates to the technical field of transformers, for example, to a transition circuit of a vacuum on-load tap changer with isolation contacts and a voltage regulation method.
  • On-load tap changer is a switching device that provides a constant voltage when the load of the transformer changes.
  • the basic principle is to realize the switching between taps in the transformer winding without interrupting the load current, thereby changing the number of winding turns, that is, the voltage ratio of the transformer, and finally achieving the purpose of voltage regulation.
  • Most of the on-load tap-changers configured for rectifier, smelting, and railway traction transformers are switched through fast resistance, and work according to the principle that the arc contact system extinguishes the arc when the current crosses the zero point.
  • the vacuum type on-load tap-changer mainly relies on switching the vacuum tube of the core to extinguish the arc. The arc and hot gas are not exposed. The oil in the oil chamber of the tap-changer will not be carbonized and polluted. The oil does not need to be purified. The contact in the vacuum tube Burning corrosion can be minimized.
  • On-load tap changer is mainly composed of switching core, tap selector and electric mechanism.
  • the on-load tap-changer with load switching requires a transition circuit and a selection circuit. Different voltage regulation methods require different voltage-regulating circuits. Therefore, the on-load tap-changer circuit consists of a transition circuit, a selection circuit and a voltage regulating circuit. Partial composition.
  • the transition circuit is a series resistance circuit connected across the tap points, and its corresponding mechanism is a switching core, which is a tap that transforms the winding of the transformer in a charged state.
  • the switching core adopts the principle of the transition circuit to realize the tap change operation. According to the number of resistances of the transition circuit, there are single-resistance, double-resistance, four-resistance or multi-resistance transition circuits.
  • transition circuit According to the contact fracture of the transition circuit, there are single-break, double-break and other transition circuits, which can be formed by different combinations.
  • the transition circuit The transition circuit.
  • the transition circuit and the switching procedure have different effects on the contact task of the switching core. Whether the arc can be reliably extinguished within the first half week depends largely on the required switching task.
  • the arc contact that is not connected to the transition resistance is the main making and breaking contact, which only bears the task of breaking the load current; the arc contact that is connected to the transition resistance is the auxiliary contact, which only bears the internal breaking The mission of circulation.
  • the load current of the converter transformer's single-pillar winding is generally 500-600A, and the internal circulating current flowing through the transition resistance R is about 900-1000A, because the internal circulating current passing through the auxiliary vacuum contact is obviously greater than the load current Therefore, after multiple switching, the ablation degree of the main vacuum contact and the auxiliary vacuum contact will be different, and the switching burden and electrical damage of the auxiliary vacuum contact will be more serious.
  • the present disclosure proposes a transition circuit of a vacuum on-load tap changer with isolation contacts and a voltage regulation method to solve the problem of how to improve the electrical life of the vacuum on-load tap changer.
  • a vacuum on-load tap changer transition circuit with isolation contacts includes: a first main contact MC1, a second main contact MC2, a first auxiliary vacuum contact V1, and a second auxiliary vacuum Contact V2, main vacuum contact V3, first switch Z1, first isolation contact G1, second isolation contact G2, first transition resistor R1, and second transition resistor R2;
  • one end of the first main contact MC1 is connected to the odd tapping gear end of the voltage regulating winding of the transformer; one end of the second main contact MC2 is connected to the even tapping gear end of the voltage regulating winding of the transformer
  • One end of the first auxiliary vacuum contact V1 is respectively connected to the odd-numbered tapping end of the transformer voltage regulating winding and the first switch Z1, and the first auxiliary vacuum contact V1
  • the other end is connected to one end of the first transition resistor R1;
  • one end of the second auxiliary vacuum contact V2 is respectively connected to the even tapping end of the transformer voltage regulating winding and the first switch Z1 ,
  • the other end of the second auxiliary vacuum contact V2 is connected to one end of the second transition resistor R2;
  • the first transition resistor R1 is connected to the neutral point of the transformer through the first isolation contact G1,
  • the second transition resistor R2 is connected to the neutral point of the transformer through the second isolation contact G2;
  • one end of the main vacuum contact V3 is connected to the first
  • the first auxiliary vacuum contact V1, the second auxiliary vacuum contact V2, the first isolation contact G1, and the second isolation contact G2 are set to alternately switch work .
  • a voltage regulation method is also provided, which is applied to the above-mentioned vacuum on-load tap changer transition circuit with isolated contacts, and includes:
  • the first main contact MC1 of the transition circuit is disconnected, so that the load current I N flows from the odd-numbered tapping end of the voltage regulating winding of the transformer through the first switch Z1 and the main vacuum contact V3 of the transition circuit and then output ;
  • the main vacuum contact V3 is disconnected to generate an arc; after the arc in the main vacuum contact V3 is completely extinguished, the first switch Z1 is adjusted so that the main vacuum contact V3 and the transformer regulate voltage The even-numbered tapping gear ends of the windings are turned on, and the load current I N flows through the first auxiliary vacuum contact V1, the first transition resistor R1 and the first isolation contact G1 of the transition circuit in sequence and then is output;
  • the main vacuum contact V3 is closed so that the transition circuit forms a bridge to generate a circulating current.
  • the load current I N flows from the even-numbered tapping end of the voltage regulating winding of the transformer through the first switch Z1 and Output after the main vacuum contact V3;
  • the first auxiliary vacuum contact V1 is disconnected to generate an arc; after the arc in the first auxiliary vacuum contact V1 is completely extinguished, the first isolation contact G1 is adjusted to be disconnected to form a fracture so that the load
  • the current I N flows through the first switch Z1 and the main vacuum contact V3 from the even-numbered tapping end of the voltage regulating winding of the transformer and then is output;
  • the first auxiliary vacuum contact V1 is closed, so that the load current I N flows from the even-numbered tapping end of the transformer voltage regulating winding through the first switch Z1 and the main vacuum contact V3 in sequence After output;
  • the second main contact MC2 of the transition circuit is closed, so that the load current I N flows through the second main contact MC2 and then output, and the second isolation contact G2 of the transition circuit is closed to make the tapping The conversion operation is over, and the first level of voltage regulation is completed.
  • a voltage regulation method is also provided, which is applied to the above-mentioned vacuum on-load tap changer transition circuit with isolated contacts, and includes:
  • the second main contact MC2 of the transition circuit is disconnected, so that the load current I N flows from the even-numbered tapping end of the voltage regulating winding of the transformer through the first switch Z1 and the main vacuum contact V3 of the transition circuit and then output ;
  • the main vacuum contact V3 is disconnected to generate an arc; after the arc in the main vacuum contact V3 is completely extinguished, the first switch Z1 is adjusted so that the main vacuum contact V3 and the transformer regulate voltage The odd tapping gear end of the winding is turned on, and the load current I N flows through the second auxiliary vacuum contact V2, the second transition resistance R2, and the second isolation contact G2 of the transition circuit in turn, and then is output;
  • the main vacuum contact V3 is closed to make the transition circuit form a bridge to generate a circulating current.
  • the load current I N flows from the odd-numbered tapping end of the transformer voltage regulating winding through the first switch Z1 and the Output after the main vacuum contact V3;
  • the second auxiliary vacuum contact V2 is disconnected to generate an arc; after the arc in the second auxiliary vacuum contact V2 is completely extinguished, the second isolation contact G2 is adjusted to be disconnected to form a fracture, so that the The load current I N flows through the first switch Z1 and the main vacuum contact V3 from the odd tapping end of the voltage regulating winding of the transformer and then is outputted;
  • the second auxiliary vacuum contact V2 is closed, so that the load current I N flows through the first switch Z1 and the main vacuum contact V3 from the odd-numbered tapping gear end of the voltage regulating winding of the transformer in sequence After output;
  • a voltage regulation method is also provided, which is applied to the above-mentioned vacuum on-load tap changer transition circuit with isolated contacts, and includes:
  • the first main contact MC1 of the transition circuit is disconnected, so that the load current I N flows from the odd-numbered tapping end of the voltage regulating winding of the transformer through the first switch Z1 and the main vacuum contact V3 of the transition circuit and then output ;
  • the main vacuum contact V3 is disconnected to generate an arc; after the arc in the main vacuum contact V3 is completely extinguished, the first switch Z1 is adjusted so that the main vacuum contact V3 and the transformer regulate voltage The even-numbered tapping gear ends of the windings are turned on, and the load current I N flows through the first auxiliary vacuum contact V1, the first transition resistor R1 and the first isolation contact G1 of the transition circuit in sequence and then is output;
  • the main vacuum contact V3 is closed to make the transition circuit form a bridge to generate a circulating current.
  • the load current I N flows from the even-numbered tapping end of the transformer voltage regulating winding through the first switch in sequence Z1 and the main vacuum contact V3 are output, and the first auxiliary vacuum contact V1 and the second auxiliary vacuum contact V2 of the transition circuit are simultaneously disconnected, so that the first auxiliary vacuum contact V1 generates Arc, the load current I N flows through the first switch Z1 and the main vacuum contact V3 from the even-numbered tapping end of the voltage regulating winding of the transformer, and then is output;
  • a voltage regulation method is also provided, which is applied to the above-mentioned vacuum on-load tap changer transition circuit with isolated contacts, and includes:
  • the second main contact MC2 of the transition circuit is disconnected, so that the load current I N flows from the even-numbered tapping end of the voltage regulating winding of the transformer through the first switch Z1 and the main vacuum contact V3 of the transition circuit and then output ;
  • the main vacuum contact V3 is disconnected to generate an arc; after the arc in the main vacuum contact V3 is completely extinguished, the first switch Z1 is adjusted so that the main vacuum contact V3 and the transformer regulate voltage The odd tapping gear end of the winding is turned on, and the load current I N flows through the second auxiliary vacuum contact V2, the second transition resistance R2, and the second isolation contact G2 of the transition circuit in turn, and then is output;
  • the main vacuum contact V3 is closed, so that the transition circuit forms a bridge to generate a circulating current, and the load current I N flows from the odd tapping end of the transformer voltage regulating winding through the first switch in sequence Z1 and the main vacuum contact V3 are output, and the second auxiliary vacuum contact V2 and the first auxiliary vacuum contact V1 of the transition circuit are simultaneously disconnected, so that the second auxiliary vacuum contact V2 is generated Arc, the load current I N flows through the first switch Z1 and the main vacuum contact V3 from the odd tapping position end of the voltage regulating winding of the transformer, and then is output;
  • a voltage regulation method is also provided, which is applied to the above-mentioned vacuum on-load tap changer transition circuit with isolated contacts, and includes:
  • the first main contact MC1 of the transition circuit is disconnected, so that the load current I N flows from the odd-numbered tapping end of the voltage regulating winding of the transformer through the first switch Z1 and the main vacuum contact V3 of the transition circuit and then output ;
  • the second isolation contact G2 of the transition circuit is closed, so that the load current I N flows from the odd-numbered tapping end of the transformer voltage regulating winding through the first switch Z1 and the main vacuum contact. Output after the first V3;
  • the main vacuum contact V3 is disconnected to generate an arc; after the arc in the main vacuum contact V3 is completely extinguished, the load current I N sequentially flows through the first auxiliary vacuum contact V1 of the transition circuit Output after the first transition resistor R1 and the first isolation contact G1;
  • the second auxiliary vacuum contact V2 of the transition circuit is closed so that the transition circuit forms a bridge, and half of the load current I N flows through the first auxiliary vacuum contact V1, the first transition resistor R1, and After the first isolation contact G1 is output, the other half of the load current I N flows through the second auxiliary vacuum contact V2, the second transition resistance R2 of the transition circuit, and the second isolation contact G2 in sequence After output;
  • the first auxiliary vacuum contact V1 is disconnected to generate an arc, and the first switch Z1 is adjusted at the same time, so that the main vacuum contact V3 is disconnected from the odd-numbered tapping end of the transformer voltage regulating winding, so
  • the load current I N flows through the second auxiliary vacuum contact V2, the second transition resistor R2, and the second isolation contact G2 in sequence before being output;
  • the first switch Z1 is adjusted so that the main vacuum contact V3 is connected to the even-numbered tapping end of the voltage regulating winding of the transformer, and the load current I N flows through the second auxiliary vacuum contact in turn V2, output after the second transition resistor R2 and the second isolation contact G2;
  • the main vacuum contact V3 is closed, so that the load current I N flows from the even-numbered tapping end of the transformer voltage regulating winding through the first switch Z1 and the main vacuum contact V3 and then output ;
  • the second main contact MC2 of the transition circuit is closed, so that the load current I N flows through the second main contact MC2 and then output, and the second isolation contact G2 is closed to end the tap change operation , Complete the first level of pressure regulation.
  • a voltage regulation method is also provided, which is applied to the above-mentioned vacuum on-load tap changer transition circuit with isolated contacts, including:
  • the second main contact MC2 of the transition circuit is disconnected, so that the load current I N flows from the even-numbered tapping end of the voltage regulating winding of the transformer through the first switch Z1 and the main vacuum contact V3 of the transition circuit and then output ;
  • the main vacuum contact V3 is opened to generate an arc, and the first isolation contact G1 of the transition circuit is closed at the same time; after the arc in the main vacuum contact V3 is completely extinguished, the load current I N flows sequentially Output after passing through the second auxiliary vacuum contact V2, the second transition resistor R2 and the second isolation contact G2 of the transition circuit;
  • the first auxiliary vacuum contact V1 of the transition circuit is closed, and the first switch Z1 is adjusted at the same time, so that the main vacuum contact V3 is connected to the odd-numbered tapping end of the voltage regulating winding of the transformer, and the The transition circuit forms a bridge, half of the load current I N flows through the second auxiliary vacuum contact V2, the second transition resistance R2, and the second isolation contact G2 in turn, and then output, and the other half of the load current I N in turn Output after flowing through the first auxiliary vacuum contact V1, the first transition resistance R1 of the transition circuit, and the first isolation contact G1;
  • the second auxiliary vacuum contact V2 is disconnected to generate an arc; after the arc in the second auxiliary vacuum contact V2 is completely extinguished, the load current I N sequentially flows through the first auxiliary vacuum contact V1 , Output after the first transition resistor R1 and the first isolation contact G1;
  • the main vacuum contact V3 is closed, so that the load current I N flows from the odd tapping position end of the voltage regulating winding of the transformer through the first switch Z1 and the main vacuum contact V3 and then output ;
  • the second isolation contact G2 is disconnected, and the load current I N flows from the odd tapping end of the voltage regulating winding of the transformer through the first switch Z1 and the main vacuum contact V3 and then output ;
  • the first main contact MC1 of the transition circuit is closed, so that the load current I N flows through the first main contact MC1 and then output, the tap change operation ends, and the first level of voltage regulation is completed.
  • Fig. 1 is a circuit diagram of a transition circuit of a vacuum on-load tap changer with isolated contacts according to an embodiment of the present invention
  • Figure 2 (a) is a schematic diagram of the switching process of a double-resistance transition circuit of a vacuum on-load tap-changer provided by the first embodiment of the present invention from an odd-numbered tap position to an even-numbered tap position;
  • Fig. 2(b) is a schematic diagram of the switching process of another dual-resistance transition circuit of a vacuum on-load tap-changer provided by the first embodiment of the present invention from an odd-numbered tap position to an even-numbered tap position;
  • 2(c) is a schematic diagram of the switching process of another dual-resistance transition circuit of a vacuum on-load tap-changer provided by the first embodiment of the present invention from an odd-numbered tap position to an even-numbered tap position;
  • Figure 2 (d) is a schematic diagram of another vacuum on-load tap-changer dual-resistance transition circuit from an odd-numbered tapping gear to an even-numbered tapping gear according to the first embodiment of the present invention
  • Fig. 2(e) is a schematic diagram of the switching process of another dual-resistance transition circuit of a vacuum on-load tap-changer provided by the first embodiment of the present invention from an odd-numbered tap position to an even-numbered tap position;
  • FIG. 2(f) is a schematic diagram of the switching process of another dual-resistance transition circuit of a vacuum on-load tap-changer provided by the first embodiment of the present invention from an odd-numbered tapping position to an even-numbered tapping position;
  • 2(g) is a schematic diagram of the switching process of another dual-resistance transition circuit of a vacuum on-load tap-changer provided by the first embodiment of the present invention from an odd-numbered tap position to an even-numbered tap position;
  • FIG. 2(h) is a schematic diagram of the switching process of another dual-resistance transition circuit of a vacuum on-load tap-changer from an odd-numbered tap position to an even-numbered tap position according to the first embodiment of the present invention
  • Fig. 2(i) is a schematic diagram of the switching process of another dual-resistance transition circuit of a vacuum on-load tap changer provided by the first embodiment of the present invention from an odd tap position to an even tap position;
  • Fig. 2(j) is a schematic diagram of the switching process of another dual-resistance transition circuit of a vacuum on-load tap-changer provided by the first embodiment of the present invention from an odd-numbered tap position to an even-numbered tap position;
  • FIG. 3(a) is a schematic diagram of a working sequence diagram of a double-resistance transition circuit of a vacuum on-load tap-changer for shifting gears according to the first embodiment of the present invention
  • FIG. 3(b) is a schematic diagram of a working sequence diagram of another dual-resistance transition circuit of a vacuum on-load tap-changer for shifting gears according to the first embodiment of the present invention
  • FIG. 4(a) is a schematic diagram of the switching process of a double-resistance transition circuit of a vacuum on-load tap-changer provided by the second embodiment of the present invention from an odd-numbered tap position to an even-numbered tap position;
  • 4(b) is a schematic diagram of the switching process of another dual-resistance transition circuit of a vacuum on-load tap-changer provided by the second embodiment of the present invention from an odd-numbered tap position to an even-numbered tap position;
  • 4(c) is a schematic diagram of the switching process of another dual-resistance transition circuit of a vacuum on-load tap-changer provided by the second embodiment of the present invention from an odd-numbered tap position to an even-numbered tap position;
  • 4(d) is a schematic diagram of the switching process of another dual-resistance transition circuit of a vacuum on-load tap-changer provided by the second embodiment of the present invention from an odd-numbered tap position to an even-numbered tap position;
  • Fig. 4(e) is a schematic diagram of another vacuum on-load tap-changer dual-resistance transition circuit from an odd-numbered tapping position to an even-numbered tapping position according to the second embodiment of the present invention
  • FIG. 4(f) is a schematic diagram of the switching process of another dual-resistance transition circuit of a vacuum on-load tap-changer provided by the second embodiment of the present invention from an odd-numbered tap position to an even-numbered tap position;
  • Fig. 4(g) is a schematic diagram of the switching process of another double-resistance transition circuit of a vacuum on-load tap-changer provided by the second embodiment of the present invention from an odd-numbered tap position to an even-numbered tap position;
  • 4(h) is a schematic diagram of the switching process of another double-resistance transition circuit of a vacuum on-load tap-changer provided by the second embodiment of the present invention from an odd-numbered tap position to an even-numbered tap position;
  • 4(i) is a schematic diagram of the switching process of another dual-resistance transition circuit of a vacuum on-load tap-changer provided by the second embodiment of the present invention from an odd-numbered tap position to an even-numbered tap position;
  • FIG. 5(a) is a schematic diagram of a working sequence diagram of a double-resistance transition circuit of a vacuum on-load tap-changer for shifting gears provided by the second embodiment of the present invention
  • FIG. 5(b) is a schematic diagram of a working sequence diagram of another dual-resistance transition circuit of a vacuum on-load tap-changer for shifting gears provided by the second embodiment of the present invention
  • FIG. 6(a) is a schematic diagram of the switching process of a double-resistance transition circuit of a vacuum on-load tap-changer provided by the third embodiment of the present invention from an odd-numbered tap position to an even-numbered tap position;
  • Fig. 6(b) is a schematic diagram of the switching process of another dual-resistance transition circuit of a vacuum on-load tap-changer provided by the third embodiment of the present invention from an odd-numbered tap position to an even-numbered tap position;
  • FIG. 6(c) is a schematic diagram of the switching process of another dual-resistance transition circuit of a vacuum on-load tap-changer provided by the third embodiment of the present invention from an odd-numbered tapping position to an even-numbered tapping position;
  • FIG. 6(d) is a schematic diagram of the switching process of another dual-resistance transition circuit of a vacuum on-load tap changer provided by the third embodiment of the present invention from an odd tap position to an even tap position;
  • FIG. 6(e) is a schematic diagram of the switching process of another dual-resistance transition circuit of a vacuum on-load tap-changer provided by the third embodiment of the present invention from an odd-numbered tapping position to an even-numbered tapping position;
  • FIG. 6(f) is a schematic diagram of the switching process of another dual-resistance transition circuit of a vacuum on-load tap-changer provided by the third embodiment of the present invention from an odd-numbered tapping position to an even-numbered tapping position;
  • 6(g) is a schematic diagram of the switching process of another dual-resistance transition circuit of a vacuum on-load tap-changer provided by the third embodiment of the present invention from an odd-numbered tap position to an even-numbered tap position;
  • FIG. 6(h) is a schematic diagram of the switching process of another dual-resistance transition circuit of a vacuum on-load tap-changer provided by the third embodiment of the present invention from an odd-numbered tapping position to an even-numbered tapping position;
  • Fig. 6(i) is a schematic diagram of the switching process of another dual-resistance transition circuit of a vacuum on-load tap-changer provided by the third embodiment of the present invention from an odd-numbered tap position to an even-numbered tap position;
  • FIG. 7(a) is a schematic diagram of a working sequence diagram of a double-resistance transition circuit of a vacuum on-load tap changer provided by a third embodiment of the present invention for gear switching;
  • FIG. 7(b) is a schematic diagram of a working sequence diagram of another dual-resistance transition circuit of a vacuum on-load tap changer provided by the third embodiment of the present invention for shifting gears;
  • Fig. 8 is a circuit diagram of another transition circuit of a vacuum on-load tap changer with isolated contacts according to an embodiment of the present invention.
  • FIG. 1 is a circuit diagram of a transition circuit of a vacuum on-load tap changer with isolation contacts according to an embodiment of the present invention.
  • the vacuum on-load tap changer transition circuit with isolated contacts provided by the embodiment of the present invention has two auxiliary vacuum contact branches and one main vacuum contact branch.
  • the head branch includes an auxiliary vacuum contact, a transition resistor and an isolation contact.
  • the circulation cut-off task is performed by two auxiliary vacuum contact branches in turn.
  • the switching procedure is symmetrical.
  • the two auxiliary vacuum contact branches pass the same work.
  • the electric current makes the two auxiliary vacuum contacts completely consistent, which reduces the switching task of the auxiliary vacuum contacts; the first isolation contact G1 and the second isolation contact G2 can form a fracture, which can be used as the protection of the auxiliary vacuum contact Switch to prevent the branch circuit from always on after the auxiliary vacuum contact fails.
  • the present disclosure can balance the main vacuum contact and the auxiliary vacuum contact Switching capacity improves the electrical life of the entire vacuum on-load tap-changer.
  • the vacuum on-load tap changer transition circuit with isolation contacts includes: a first main contact MC1, a second main contact MC2, a first auxiliary vacuum contact V1, and a second auxiliary vacuum contact V2, the main vacuum contact V3, the first switch Z1, the first isolation contact G1, the second isolation contact G2, the first transition resistance R1 and the second transition resistance R2; wherein, the first main contact MC1 One end is connected to the odd tapping position of the voltage regulating winding of the transformer; one end of the second main contact MC2 is connected to the even tapping position of the voltage regulating winding of the transformer; one end of the first auxiliary vacuum contact V1 is respectively connected to The odd tapping position of the voltage regulating winding of the transformer is connected to the first switch Z1, and the other end is connected to one end of the first transition resistor R1; one end of the second auxiliary vacuum contact V2 is respectively connected to the voltage regulating winding of the transformer The even-numbered tapping position is connected to the first switch Z1, and the other end is connected to one end of
  • the first switch Z1 and the odd number of the transformer winding The gear position terminal is turned on, the first isolation contact G1 is in the closed state, the second isolation contact G2 is in the open state, and the second main contact MC2 is in the open state.
  • the tap selector of the on-load tap changer is connected to When the odd tapping gears of the voltage regulating winding of the transformer are connected, the load current can be output through the first main contact MC1.
  • the first switch Z1 is connected to the even-numbered tapping end of the transformer winding Conduction
  • the first isolation contact G1 is in the open state
  • the second isolation contact G2 is in the closed state
  • the first main contact MC1 is in the open state
  • the tap selector of the on-load tap changer and the voltage regulating winding of the transformer
  • the first switch Z1 is a mechanical single-contact switch or a change-over switch.
  • the first switch Z1 is a mechanical single-contact switch, which includes a first static contact 12, a second static contact 13 and a movable contact 11;
  • the odd tapping gear is connected;
  • the second static contact 13 is connected with the even tapping gear;
  • one end of the movable contact 11 is connected with the main vacuum contact V3, and the other end is connected with the first static contact 12, and the second static contact 13 is slidably connected.
  • the embodiment of the present invention uses the method for voltage regulation of the vacuum on-load tap changer transition circuit with isolation contacts as described above, which can realize that the tap selector of the on-load tap changer can be switched from odd-numbered tap positions to even-numbered taps.
  • Gear positions including:
  • the load current I N flows through the first switch Z1 and the main vacuum contact V3 from the odd-numbered tapping position in turn, and outputs; disconnect the main vacuum contact V3 to generate an arc; After the arc in the main vacuum contact V3 is completely extinguished, adjust the first switch Z1 so that the main vacuum contact V3 is connected to the even-numbered tapping position terminal, and the load current I N flows through the first auxiliary vacuum in sequence during this process
  • the contact V1, the first transition resistance R1 and the first isolation contact G1 are output; the main vacuum contact V3 is closed, the transition circuit forms a bridge, and a circulating current is generated.
  • the load current I N flows through the even-numbered tapping gears in sequence
  • the load current I N flows from the even-numbered tapping position end through the first switch Z1 and the main vacuum contact V3 in turn; closes the first auxiliary vacuum contact V1, and the load current I N starts from the even-numbered
  • the tapping position terminal flows through the first switch Z1 and the main vacuum contact V3 in turn; closes the second main contact MC2, so that the load current I N flows through the second main contact MC2 to output, and then closes the second isolation Contact G2, the tap change operation ends, and the first level of voltage regulation is completed.
  • the embodiment of the present invention uses the method for voltage regulation of the transition circuit of the vacuum on-load tap changer with isolation contacts as described above, which can realize that the tap selector of the on-load tap changer can be switched from an even-numbered tap position to an odd-numbered tap position.
  • Connecting gears including:
  • the second main contact MC2 is disconnected, and the load current I N flows from the even-numbered tapping position end through the first switch Z1 and the main vacuum contact V3 in order; the main vacuum contact V3 is disconnected to generate an arc; After the arc in the main vacuum contact V3 is completely extinguished, adjust the first switch Z1 so that the main vacuum contact V3 is connected to the odd-numbered tapping position end.
  • the load current I N flows through the second auxiliary vacuum in turn
  • the contact V2, the second transition resistance R2 and the second isolation contact G2 are output; the main vacuum contact V3 is closed, the transition circuit forms a bridge, and a circulating current is generated.
  • the load current I N flows from the odd tapping gear end through the first A switch Z1 and the main vacuum contact V3 output; disconnect the second auxiliary vacuum contact V2 to generate an arc; after the arc in the second auxiliary vacuum contact V2 is completely extinguished, adjust the second isolation contact G2 to break In this process, the load current I N flows through the first switch Z1 and the main vacuum contact V3 from the odd-numbered tapping position end in turn; when the second auxiliary vacuum contact V2 is closed, the load current I N is outputted from the The odd-numbered tapping gear ends sequentially flow through the first switch Z1 and the main vacuum contact V3 to output; close the first main contact MC1, the load current I N flows through the first main contact MC1 to output, and then closes the first isolation Contact G1, the tap change operation ends, and the first level of voltage regulation is completed.
  • the connection state of the multiple components is: when the tap selector of the on-load tap changer is connected to the odd tap position of the voltage regulating winding of the transformer, the first main contact MC1 conducts The second main contact MC2 is turned off, the first auxiliary vacuum contact V1 is turned on, the second auxiliary vacuum contact V2 is turned on, and the main vacuum contact V3 is turned on.
  • the movable contact 11 of the first switch Z1 is A static contact 12 is connected, the first isolation contact G1 is closed, the second isolation contact G2 is disconnected, and the load current is output through the first main contact MC1.
  • the second main contact MC2 When the tap selector of the on-load tap-changer is connected to the even-numbered tap position of the voltage regulating winding of the transformer, the second main contact MC2 is turned on, the first main contact MC1 is disconnected, and the first auxiliary vacuum contact V1 is turned on, the second auxiliary vacuum contact V2 is turned on, and the main vacuum contact V3 is turned on.
  • the movable contact 11 of the first switch Z1 is connected to its second static contact 13, and the first isolation contact G1 is disconnected.
  • the second isolation contact G2 is closed, and the load current is output through the second main contact MC2.
  • the initial position of the tap selector of the on-load tap-changer remains unchanged, and the gear number of the on-load tap-changer is the same as the contact group label of the tap selector.
  • the switch position should be raised from an odd-numbered position N to an even-numbered position N+1.
  • the movable contact 11 of the first switch Z1 is connected to its first static contact 12, the first isolation contact G1 is closed, and the first isolating contact G1 is closed.
  • the second isolation contact G2 is disconnected, and the load current is output through the first main contact MC1.
  • the tap selector switches from odd-numbered tapping gears to even-numbered tapping gears.
  • the operation methods include:
  • the operation methods include:
  • the main vacuum contact V3 is closed, the transition circuit forms a bridge, and a circulating current is generated
  • the first main contact MC1 is closed, so that the load current I N flows through the first main contact MC1 and is output.
  • the first isolation contact G1 is closed, the load current I N flows through the first main contact MC1 to output, the tap change operation is over, and the switching core completes the first level of voltage regulation.
  • the switching core tasks of the transition circuit of the vacuum on-load tap changer are shown in Table 1 below:
  • I N is the load current
  • Us is the on-load tap switch stage voltage
  • R1 and R2 are transition resistances.
  • the embodiment of the present invention uses the method for voltage regulation of the vacuum on-load tap changer transition circuit with isolation contacts as described above, which can realize that the tap selector of the on-load tap changer can be switched from odd-numbered tap positions to even-numbered taps.
  • Gear positions including:
  • the load current I N flows through the first switch Z1 and the main vacuum contact V3 from the odd-numbered tapping position in turn, and outputs; disconnect the main vacuum contact V3 to generate an arc; After the arc in the main vacuum contact V3 is completely extinguished, adjust the first switch Z1 so that the main vacuum contact V3 is connected to the even-numbered tapping position terminal, and the load current I N flows through the first auxiliary vacuum in sequence during this process
  • the contact V1, the first transition resistance R1 and the first isolation contact G1 are output; the main vacuum contact V3 is closed, the transition circuit forms a bridge, and a circulating current is generated.
  • the load current I N flows through the even-numbered tapping gears in sequence
  • the first switch Z1 and the main vacuum contact V3 output, and simultaneously disconnect the first auxiliary vacuum contact V1 and the second auxiliary vacuum contact V2.
  • the first auxiliary vacuum contact V1 generates an arc;
  • the load current is in the process I N flows through the first switch Z1 and the main vacuum contact V3 in turn from the even-numbered tapping position end; after the arc in the first auxiliary vacuum contact V1 is completely extinguished, adjust the first isolation contact G1 to open, forming a fracture ,
  • Adjust the second isolation contact G2 to close at the same time, in this process, the load current I N flows from the even-numbered tapping position end through the first switch Z1 and the main vacuum contact V3 and outputs; at the same time, the first auxiliary vacuum contact is closed V1 and the second auxiliary vacuum contact V2, and then close the second main contact MC2, so that the load current I N flows through the second main contact MC2 to output, the tap change operation ends, and the first
  • the embodiment of the present invention uses the method for voltage regulation of the vacuum on-load tap changer transition circuit with isolated contacts as described above, which can realize the on-load tap selector of the on-load tap changer from even-numbered tap positions to odd-numbered taps.
  • Gear positions including:
  • the second main contact MC2 is disconnected, and the load current I N flows from the even-numbered tapping position end through the first switch Z1 and the main vacuum contact V3 in order; the main vacuum contact V3 is disconnected to generate an arc; After the arc in the main vacuum contact V3 is completely extinguished, adjust the first switch Z1 so that the main vacuum contact V3 is connected to the odd-numbered tapping position end.
  • the load current I N flows through the second auxiliary vacuum in turn
  • the contact V2, the second transition resistance R2 and the second isolation contact G2 are output; the main vacuum contact V3 is closed, the transition circuit forms a bridge, and a circulating current is generated.
  • the load current I N flows from the odd tapping gear end through the first A switch Z1 and the main vacuum contact V3 output, and simultaneously disconnect the second auxiliary vacuum contact V2 and the first auxiliary vacuum contact V1.
  • the second auxiliary vacuum contact V2 generates an arc; during this process, the load current I N flows through the first switch Z1 and the main vacuum contact V3 in turn from the odd-numbered tapping position end; after the arc in the second auxiliary vacuum contact V2 is completely extinguished, adjust the second isolation contact G2 to open, forming At the same time, adjust the first isolation contact G1 to close.
  • the load current I N flows from the odd-numbered tapping position through the first switch Z1 and the main vacuum contact V3 and outputs; at the same time, the first auxiliary vacuum contact is closed. Head V1 and the second auxiliary vacuum contact V2, and then close the first main contact MC1, the load current I N flows through the first main contact MC1 and output, the tap change operation ends, and the first level of voltage regulation is completed.
  • the initial states of the multiple elements are the same as those of the first embodiment, and will not be repeated here.
  • the tap selector when the tap selector is connected to the odd-numbered tapping position of the voltage regulating winding of the transformer, as shown in Figure 4(a), the first main contact MC1 is turned on and the second main contact MC2 is disconnected, the first auxiliary vacuum contact V1 is turned on, the second auxiliary vacuum contact V2 is turned on, the main vacuum contact V3 is turned on, and the movable contact 11 of the first switch Z1 is connected to the first static contact 12, The first isolation contact G1 is closed, the second isolation contact G2 is opened, and the load current is output through the first main contact MC1.
  • the operation methods include:
  • the second main contact MC2 when the tap selector is connected to the even-numbered tapping position of the voltage regulating winding of the transformer, as shown in Figure 2(j), the second main contact MC2 is turned on and the first main contact MC1 is disconnected, the first auxiliary vacuum contact V1 is turned on, the second auxiliary vacuum contact V2 is turned on, and the main vacuum contact V3 is turned on.
  • the movable contact of the first switch Z1 is connected to its first static contact 13, and
  • the second isolation contact G2 is closed, the first isolation contact G1 is opened, and the load current is output through the second main contact MC2.
  • the main vacuum contact V3 is closed, the transition circuit forms a bridge, and a circulating current is generated
  • I N is the load current
  • Us is the on-load tap switch stage voltage
  • R1 and R2 are transition resistances.
  • the first switch Z1 is connected to the odd number of transformer windings
  • the gear end is turned on, the second isolation contact G2, the second auxiliary vacuum contact V2 and the second main contact MC2 are in the disconnected state, and the tap selector of the on-load tap changer and the transformer voltage regulating winding have odd points
  • the load current can be output through the first main contact MC1.
  • the first switch Z1 is connected to the even-numbered tapping position of the transformer winding.
  • the first isolation contact G1, the first auxiliary vacuum contact V1 and the first main contact MC1 are in the disconnected state, and the tap selector of the on-load tap-changer is in phase with the even-numbered tapping position of the voltage regulating winding of the transformer.
  • the load current can be output through the second main contact MC2.
  • the embodiment of the present invention uses the method for voltage regulation of the vacuum on-load tap changer transition circuit with isolated contacts as described above to realize that the tap selector of the on-load tap changer is switched from odd-numbered tap positions to even-numbered taps Gear positions, including:
  • the first main contact MC1 is opened, the load current I N flows from the odd-numbered tapping position end through the first switch Z1 and the main vacuum contact V3 in turn; the second isolation contact G2 is closed, the load current I N flows through the first switch Z1 and the main vacuum contact V3 in turn from the odd tapping position end; disconnects the main vacuum contact V3 to generate an arc; after the arc in the main vacuum contact V3 is completely extinguished, The load current I N flows through the first auxiliary vacuum contact V1, the first transition resistor R1, and the first isolation contact G1 in turn; the second auxiliary vacuum contact V2 is closed, the transition circuit forms a bridge, and half of the load current I N flows through the first auxiliary vacuum contact V1, the first transition resistance R1 and the first isolation contact G1 in turn, and the other half of the load current I N flows through the second auxiliary vacuum contact V2, the second transition resistance R2, and the output in turn.
  • the embodiment of the present invention uses the method for voltage regulation of the transition circuit of the vacuum on-load tap changer with isolation contacts as described above to realize that the tap selector of the on-load tap changer is switched from an even number of tap positions to an odd number of taps Gear positions, including:
  • the second main contact MC2 is disconnected, and the load current I N flows from the even-numbered tapping position end through the first switch Z1 and the main vacuum contact V3 in order; the main vacuum contact V3 is disconnected to generate an arc, At the same time, the first isolation contact G1 is closed; after the arc in the main vacuum contact V3 is completely extinguished, the load current I N flows through the second auxiliary vacuum contact V2, the second transition resistor R2 and the second isolation contact G2 in turn Output; close the first auxiliary vacuum contact V1, while adjusting the first switch Z1, so that the main vacuum contact V3 and the odd-numbered tapping gear end conduction, the transition circuit forms a bridge, half of the load current I N flows through The second auxiliary vacuum contact V2, the second transition resistance R2 and the second isolation contact G2 are output, and the other half of the load current I N flows through the first auxiliary vacuum contact V1, the first transition resistance R1 and the first isolation contact in turn G1 output; if the switching direction is the upshift/downshift direction, the current flowing through the
  • the connection state of a plurality of components is: when the first main contact MC1, the first auxiliary vacuum contact V1, the main vacuum contact V3, and the first isolation contact G1 are all in a conducting state ,
  • the first switch Z1 is connected to the odd tapping position end of the transformer winding, the second isolation contact G2, the second auxiliary vacuum contact V2 and the second main contact MC2 are in the disconnected state, and the on-load tap changer
  • the tap selector is connected to the odd tapping position of the voltage regulating winding of the transformer, the load current can be output through the first main contact MC1.
  • the first switch Z1 is connected to the even-numbered tapping position of the transformer winding.
  • the first isolation contact G1, the first auxiliary vacuum contact V1 and the first main contact MC1 are in the disconnected state, and the tap selector of the on-load tap-changer is in phase with the even-numbered tapping position of the voltage regulating winding of the transformer.
  • the load current can be output through the second main contact MC2.
  • the initial position of the tap selector of the on-load tap-changer remains unchanged, and the gear number of the on-load tap-changer is the same as that of the tap selector contact group.
  • the switch position should be raised from an odd-numbered position N to an even-numbered position N+1.
  • the tap selector is connected to the odd tap position of the voltage regulating winding of the transformer, as shown in Figure 6(a)
  • the first main contact MC1 is turned on
  • the second main contact MC2 is disconnected
  • the head V1 is turned on, the second auxiliary vacuum contact V2 is disconnected, and the main vacuum contact V3 is turned on.
  • the moving contact of the first switch Z1 is connected to its first static contact 12, the first isolation contact G1 is closed, and the second The isolation contact G2 is disconnected.
  • the tap selector switches from odd-numbered tapping gears to even-numbered tapping gears.
  • the operation methods include:
  • the output flows through the first auxiliary vacuum contact V1, the first transition resistance R1, and the first isolation contact G1, and the other half of the load current
  • the output flows through the second auxiliary vacuum contact V2, the second transition resistor R2, and the second isolation contact G2; at this time, if the voltage regulation direction is the upshift direction, the current flowing through the first auxiliary vacuum contact V1 The current flowing through the second auxiliary vacuum contact V2 If the voltage regulation direction is the downshift direction, the current flowing through the first auxiliary vacuum contact V1 The current flowing through the second auxiliary vacuum contact V2
  • the U S is the on-load tap switch stage voltage.
  • the second main contact MC2 is turned on and the A main contact MC1 is disconnected, the first auxiliary vacuum contact V1 is disconnected, the second auxiliary vacuum contact V2 is turned on, and the main vacuum contact V3 is turned on.
  • the movable contact of the first switch Z1 and its second static contact 13 is connected, the second isolation contact G2 is closed, the first isolation contact G1 is disconnected, and the load current is output through the second main contact MC2.
  • the output flows through the second auxiliary vacuum contact V2, the second transition resistance R2, and the second isolation contact G2, and the other half of the load current
  • the output flows through the first auxiliary vacuum contact V1, the first transition resistor R1, and the first isolation contact G1; at this time, if the voltage regulation direction is the upshift direction, the current flowing through the second auxiliary vacuum contact V2 The current flowing through the first auxiliary vacuum contact V1 If the voltage regulation direction is the downshift direction, the current flowing through the second auxiliary vacuum contact V2 The current flowing through the first auxiliary vacuum contact V1
  • the U S is the on-load tap switch stage voltage.
  • the first main contact MC1 is closed, the load current I N flows through the first main contact MC1 to output, the tap changeover operation ends, and the switching core completes a first-level voltage regulation.
  • the switching core tasks of the transition circuit of the vacuum on-load tap changer are shown in Table 3 below:
  • I N is the load current
  • Us is the on-load tap switch stage voltage
  • R1 and R2 are transition resistances.
  • Fig. 8 is a circuit diagram of another transition circuit of a vacuum on-load tap changer with isolated contacts according to an embodiment of the present invention. As shown in Fig. 8, only the first switch Z1 in Fig. 1 is set as a transfer switch, and the other components are the same as those in Fig. 1, and the functions and functions are the same as those of the transition circuit shown in Fig. 1. I won't repeat it here.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may use one or more computer-usable storage media (including but not limited to magnetic disk storage, Compact Disc Read-Only Memory (CD-ROM), and optical storage) containing computer-usable program codes. Etc.) in the form of a computer program product implemented on it.
  • CD-ROM Compact Disc Read-Only Memory
  • optical storage containing computer-usable program codes. Etc.
  • These computer program instructions can also be stored in a computer-readable memory that can direct a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

一种带隔离触头的真空有载分接开关过渡电路及调压方法。过渡电路包括:第一主触头(MC1)、第二主触头(MC2)、第一辅助真空触头(V1)、第二辅助真空触头(V2)、主真空触头(V3)、第一开关(Z1)、第一隔离触头(G1)、第二隔离触头(G2)、第一过渡电阻(R1)和第二过渡电阻(R2);第一主触头(MC1)的一端与奇数分接档位端连接;第二主触头(MC2)的一端与偶数分接档位端连接;第一辅助真空触头(V1)的一端分别与奇数分接档位端和第一开关(Z1)连接,另一端与第一过渡电阻(R1)的一端连接;第二辅助真空触头(V2)的一端分别与偶数分接档位端和第一开关(Z1)连接,另一端与第二过渡电阻(R2)的一端连接;第一过渡电阻(R1)通过第一隔离触头(G1)与变压器中性点连接,第二过渡电阻(R2)通过第二隔离触头(G2)与变压器中性点连接;主真空触头(V3)的一端与第一开关(Z1)连接;主真空触头(V3)、第一主触头(MC1)和第二主触头(MC2)的另一端均与变压器中性点连接,设置为输出负载电流;在环流切断任务的情况下,第一辅助真空触头(V1)、第二辅助真空触头(V2)、第一隔离触头(G1)和第二隔离触头(G2)轮流切换工作。

Description

带隔离触头的真空有载分接开关过渡电路及调压方法
本申请要求在2020年06月24日提交中国专利局、申请号为202010592231.1的中国专利申请的优先权,在2020年08月11日提交中国专利局、申请号为202010802038.6的中国专利申请的优先权,该两个申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及变压器技术领域,例如涉及一种带隔离触头的真空有载分接开关过渡电路及调压方法。
背景技术
有载分接开关,是一种在变压器的负载变化时提供恒定电压的开关装置。其基本原理是在保证不中断负载电流的情况下,实现变压器绕组中分接头之间的切换,从而改变绕组的匝数,即变压器的电压比,最终实现调压的目的。为设置为整流、冶炼、铁路牵引的变压器所配置的有载分接开关大都是通过快速电阻切换,根据弧触头系统在电流过零点时把电弧熄灭的原理进行工作的。这种切换原理导致切换频繁的变压器的有载分接开关的触头烧损比较严重,开关的故障率较高,油的碳化速度快,由此给供电部门增加了日常维护量。真空式有载分接开关,主要靠切换芯子的真空管来实现电弧熄灭,电弧和炽热气体不外露,分接开关油室内的油不会碳化和污染,油不需要净化,真空管中触头的烧损腐蚀可以降到最低限度。有载分接开关主要由切换芯子、分接选择器和电动机构构成。
有载分接开关带负载切换,需要有过渡电路和选择电路,不同的调压方式要求有不同的调压电路,因此,有载分接开关的电路由过渡电路、选择电路和调压电路三部分组成。过渡电路是跨接于分接点间的串接电阻电路,与其对应的机构为切换芯子,切换芯子是带电状态下变换变压器绕组的分接头。切换芯子采用过渡电路的原理实现分接变换操作。按过渡电路的电阻的数目有单电阻、双电阻、四电阻或多电阻过渡电路,按过渡电路的触头断口有单断口、双断口等过渡电路,可通过不同的组合方式构成各式各样的过渡电路。过渡电路和切换程序对切换芯子的触头任务有着不同影响,电弧能否限制在最初半周内可靠熄灭,很大程度上取决于所需要的切换任务。
有载分接开关中不接过渡电阻的电弧触头为主通断触头,其只承受开断负载电流的任务;接有过渡电阻的电弧触头为辅助触头,其只承受开断内部环流 的任务。根据特高压直流工程经验,换流变压器的负载电流单柱绕组一般为500~600A,过渡电阻R上流过的内部环流约为900~1000A,由于经过辅助真空触头上的内部环流明显大于负载电流,因此在多次切换以后,主真空触头和辅助真空触头的烧蚀程度会不同,辅助真空触头的切换负担和电气损伤会更严重。
发明内容
本公开提出了一种带隔离触头的真空有载分接开关过渡电路及调压方法,以解决如何提高真空有载分接开关的电气寿命的问题。
提供了一种带隔离触头的真空有载分接开关过渡电路,所述过渡电路包括:第一主触头MC1、第二主触头MC2、第一辅助真空触头V1、第二辅助真空触头V2、主真空触头V3、第一开关Z1、第一隔离触头G1、第二隔离触头G2、第一过渡电阻R1和第二过渡电阻R2;
其中,所述第一主触头MC1的一端与变压器调压绕组的奇数分接档位端相连接;所述第二主触头MC2的一端与所述变压器调压绕组的偶数分接档位端相连接;所述第一辅助真空触头V1的一端分别与所述变压器调压绕组的奇数分接档位端和所述第一开关Z1相连接,所述第一辅助真空触头V1的另一端与所述第一过渡电阻R1的一端相连接;所述第二辅助真空触头V2的一端分别与所述变压器调压绕组的偶数分接档位端和所述第一开关Z1相连接,所述第二辅助真空触头V2的另一端与所述第二过渡电阻R2的一端相连接;所述第一过渡电阻R1通过所述第一隔离触头G1与变压器中性点相连接,所述第二过渡电阻R2通过所述第二隔离触头G2与所述变压器中性点相连接;所述主真空触头V3的一端与所述第一开关Z1相连接;所述主真空触头V3、所述第一主触头MC1和所述第二主触头MC2的另一端均与所述变压器中性点相连接,所述变压器中性点设置为输出负载电流;
在进行环流切断任务情况下,所述第一辅助真空触头V1、所述第二辅助真空触头V2、所述第一隔离触头G1和所述第二隔离触头G2设置为轮流切换工作。
还提供了一种调压方法,应用于上述的带隔离触头的真空有载分接开关过渡电路,包括:
断开过渡电路的第一主触头MC1,以使负载电流I N从变压器调压绕组的奇数分接档位端依次流经所述过渡电路的第一开关Z1和主真空触头V3后输出;
断开所述主真空触头V3以产生电弧;在所述主真空触头V3内的电弧完全熄灭后,调整所述第一开关Z1,使得所述主真空触头V3与所述变压器调压绕组的偶数分接档位端导通,所述负载电流I N依次流经所述过渡电路的第一辅助 真空触头V1、第一过渡电阻R1和第一隔离触头G1后输出;
闭合所述主真空触头V3,以使所述过渡电路形成桥接,产生循环电流,负载电流I N从所述变压器调压绕组的偶数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
断开所述第一辅助真空触头V1以产生电弧;在所述第一辅助真空触头V1内的电弧完全熄灭后,调整所述第一隔离触头G1断开以形成断口使得所述负载电流I N从所述变压器调压绕组的偶数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
闭合所述第一辅助真空触头V1,以使所述负载电流I N从所述变压器调压绕组的偶数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
闭合所述过渡电路的第二主触头MC2,使得所述负载电流I N流经所述第二主触头MC2后输出,闭合所述过渡电路的第二隔离触头G2,以使分接变换操作结束,完成一级调压。
还提供了一种调压方法,应用于上述的带隔离触头的真空有载分接开关过渡电路,包括:
断开过渡电路的第二主触头MC2,以使负载电流I N从变压器调压绕组的偶数分接档位端依次流经所述过渡电路的第一开关Z1和主真空触头V3后输出;
断开所述主真空触头V3以产生电弧;在所述主真空触头V3内的电弧完全熄灭后,调整所述第一开关Z1,使得所述主真空触头V3与所述变压器调压绕组的奇数分接档位端导通,所述负载电流I N依次流经所述过渡电路的第二辅助真空触头V2、第二过渡电阻R2和第二隔离触头G2后输出;
闭合所述主真空触头V3,以使所述过渡电路形成桥接,产生循环电流,负载电流I N从所述变压器调压绕组的奇数分接档位端流经所述第一开关Z1和所述主真空触头V3后输出;
断开所述第二辅助真空触头V2以产生电弧;在所述第二辅助真空触头V2内的电弧完全熄灭后,调整所述第二隔离触头G2断开以形成断口,使得所述负载电流I N从所述变压器调压绕组的奇数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
闭合所述第二辅助真空触头V2,以使所述负载电流I N从所述变压器调压绕组的奇数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
闭合所述过渡电路的第一主触头MC1,以使所述负载电流I N流经所述第一主触头MC1后输出,闭合所述过渡电路的第一隔离触头G1,以使分接变换操 作结束,完成一级调压。
还提供了一种调压方法,应用于上述的带隔离触头的真空有载分接开关过渡电路,包括:
断开过渡电路的第一主触头MC1,以使负载电流I N从变压器调压绕组的奇数分接档位端依次流经所述过渡电路的第一开关Z1和主真空触头V3后输出;
断开所述主真空触头V3以产生电弧;在所述主真空触头V3内的电弧完全熄灭后,调整所述第一开关Z1,使得所述主真空触头V3与所述变压器调压绕组的偶数分接档位端导通,所述负载电流I N依次流经所述过渡电路的第一辅助真空触头V1、第一过渡电阻R1和第一隔离触头G1后输出;
闭合所述主真空触头V3,以使所述过渡电路形成桥接,产生循环电流,所述负载电流I N从所述变压器调压绕组的偶数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出,同时断开所述第一辅助真空触头V1和所述过渡电路的第二辅助真空触头V2,以使所述第一辅助真空触头V1产生电弧,所述负载电流I N从所述变压器调压绕组的偶数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
在所述第一辅助真空触头V1内的电弧完全熄灭后,调整所述第一隔离触头G1断开以形成断口,同时调整所述过渡电路的第二隔离触头G2闭合,以使所述负载电流I N从所述变压器调压绕组的偶数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
同时闭合所述第一辅助真空触头V1和所述第二辅助真空触头V2,再闭合所述过渡电路的第二主触头MC2,使得所述负载电流I N流经所述第二主触头MC2后输出,分接变换操作结束,完成一级调压。
还提供了一种调压方法,应用于上述的带隔离触头的真空有载分接开关过渡电路,包括:
断开过渡电路的第二主触头MC2,以使负载电流I N从变压器调压绕组的偶数分接档位端依次流经所述过渡电路的第一开关Z1和主真空触头V3后输出;
断开所述主真空触头V3以产生电弧;在所述主真空触头V3内的电弧完全熄灭后,调整所述第一开关Z1,使得所述主真空触头V3与所述变压器调压绕组的奇数分接档位端导通,所述负载电流I N依次流经所述过渡电路的第二辅助真空触头V2、第二过渡电阻R2和第二隔离触头G2后输出;
闭合所述主真空触头V3,以使所述过渡电路形成桥接,产生循环电流,所述负载电流I N从所述变压器调压绕组的奇数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出,同时断开所述第二辅助真空触头V2和所述过 渡电路的第一辅助真空触头V1,以使所述第二辅助真空触头V2产生电弧,所述负载电流I N从所述变压器调压绕组的奇数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
在所述第二辅助真空触头V2内的电弧完全熄灭后,调整所述第二隔离触头G2断开以形成断口,同时调整所述过渡电路的第一隔离触头G1闭合,以使所述负载电流I N从所述变压器调压绕组的奇数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
同时闭合所述第一辅助真空触头V1和所述第二辅助真空触头V2,再闭合所述过渡电路的第一主触头MC1,使得所述负载电流I N流经所述第一主触头MC1后输出,分接变换操作结束,完成一级调压。
还提供了一种调压方法,应用于上述的带隔离触头的真空有载分接开关过渡电路,包括:
断开过渡电路的第一主触头MC1,以使负载电流I N从变压器调压绕组的奇数分接档位端依次流经所述过渡电路的第一开关Z1和主真空触头V3后输出;
闭合所述过渡电路的第二隔离触头G2,以使所述负载电流I N从所述变压器调压绕组的奇数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
断开所述主真空触头V3以产生电弧;在所述主真空触头V3内的电弧完全熄灭后,所述负载电流I N依次流经所述过渡电路的第一辅助真空触头V1、第一过渡电阻R1和第一隔离触头G1后输出;
闭合所述过渡电路的第二辅助真空触头V2,以使所述过渡电路形成桥接,一半的负载电流I N依次流经所述第一辅助真空触头V1、所述第一过渡电阻R1和所述第一隔离触头G1后输出,另一半的负载电流I N依次流经所述第二辅助真空触头V2、所述过渡电路的第二过渡电阻R2和所述第二隔离触头G2后输出;
断开所述第一辅助真空触头V1以产生电弧,同时调整所述第一开关Z1,使得所述主真空触头V3与所述变压器调压绕组的奇数分接档位端断开,所述负载电流I N依次流经所述第二辅助真空触头V2、所述第二过渡电阻R2和所述第二隔离触头G2后输出;
调整所述第一开关Z1,使得所述主真空触头V3与所述变压器调压绕组的偶数分接档位端导通,所述负载电流I N依次流经所述第二辅助真空触头V2、所述第二过渡电阻R2和所述第二隔离触头G2后输出;
闭合所述主真空触头V3,以使所述负载电流I N从所述变压器调压绕组的偶数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
闭合所述过渡电路的第二主触头MC2,使得所述负载电流I N流经所述第二主触头MC2后输出,闭合所述第二隔离触头G2,以使分接变换操作结束,完成一级调压。
还提供了一种调压方法,应用于上述的带隔离触头的真空有载分接开关过渡电路,包括:
断开过渡电路的第二主触头MC2,以使负载电流I N从变压器调压绕组的偶数分接档位端依次流经所述过渡电路的第一开关Z1和主真空触头V3后输出;
断开所述主真空触头V3以产生电弧,同时闭合所述过渡电路的第一隔离触头G1;在所述主真空触头V3内的电弧完全熄灭后,所述负载电流I N依次流经所述过渡电路的第二辅助真空触头V2、第二过渡电阻R2和第二隔离触头G2后输出;
闭合所述过渡电路的第一辅助真空触头V1,同时调整所述第一开关Z1,使得所述主真空触头V3与所述变压器调压绕组的奇数分接档位端导通,所述过渡电路形成桥接,一半的负载电流I N依次流经所述第二辅助真空触头V2、所述第二过渡电阻R2和所述第二隔离触头G2后输出,另一半负载电流I N依次流经所述第一辅助真空触头V1、所述过渡电路的第一过渡电阻R1和所述第一隔离触头G1后输出;
断开所述第二辅助真空触头V2以产生电弧;在所述第二辅助真空触头V2内的电弧完全熄灭后,所述负载电流I N依次流经所述第一辅助真空触头V1、所述第一过渡电阻R1和所述第一隔离触头G1后输出;
闭合所述主真空触头V3,以使所述负载电流I N从所述变压器调压绕组的奇数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
断开所述第二隔离触头G2,所述负载电流I N从所述变压器调压绕组的奇数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
闭合所述过渡电路的第一主触头MC1,以使所述负载电流I N流经所述第一主触头MC1后输出,分接变换操作结束,完成一级调压。
附图说明
图1为本发明实施方式提供的一种带隔离触头的真空有载分接开关过渡电路的电路图;
图2(a)为本发明实施方式一提供的一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图2(b)为本发明实施方式一提供的另一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图2(c)为本发明实施方式一提供的另一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图2(d)为本发明实施方式一提供的另一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图2(e)为本发明实施方式一提供的另一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图2(f)为本发明实施方式一提供的另一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图2(g)为本发明实施方式一提供的另一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图2(h)为本发明实施方式一提供的另一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图2(i)为本发明实施方式一提供的另一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图2(j)为本发明实施方式一提供的另一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图3(a)为本发明实施方式一提供的一种真空有载分接开关双电阻过渡电路进行档位切换的工作时序图的示意图;
图3(b)为本发明实施方式一提供的另一种真空有载分接开关双电阻过渡电路进行档位切换的工作时序图的示意图;
图4(a)为本发明实施方式二提供的一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图4(b)为本发明实施方式二提供的另一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图4(c)为本发明实施方式二提供的另一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图4(d)为本发明实施方式二提供的另一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图4(e)为本发明实施方式二提供的另一种真空有载分接开关双电阻过渡 电路从奇数分接档位到偶数分接档位切换过程的示意图;
图4(f)为本发明实施方式二提供的另一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图4(g)为本发明实施方式二提供的另一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图4(h)为本发明实施方式二提供的另一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图4(i)为本发明实施方式二提供的另一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图5(a)为本发明实施方式二提供的一种真空有载分接开关双电阻过渡电路进行档位切换的工作时序图的示意图;
图5(b)为本发明实施方式二提供的另一种真空有载分接开关双电阻过渡电路进行档位切换的工作时序图的示意图;
图6(a)为本发明实施方式三提供的一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图6(b)为本发明实施方式三提供的另一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图6(c)为本发明实施方式三提供的另一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图6(d)为本发明实施方式三提供的另一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图6(e)为本发明实施方式三提供的另一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图6(f)为本发明实施方式三提供的另一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图6(g)为本发明实施方式三提供的另一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图6(h)为本发明实施方式三提供的另一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图6(i)为本发明实施方式三提供的另一种真空有载分接开关双电阻过渡电路从奇数分接档位到偶数分接档位切换过程的示意图;
图7(a)为本发明实施方式三提供的一种真空有载分接开关双电阻过渡电路进行档位切换的工作时序图的示意图;
图7(b)为本发明实施方式三提供的另一种真空有载分接开关双电阻过渡电路进行档位切换的工作时序图的示意图;
图8为本发明实施方式提供的另一种带隔离触头的真空有载分接开关过渡电路的电路图。
具体实施方式
现在参考附图介绍本公开的示例性实施方式,本公开可以用许多不同的形式来实施,并且不局限于此处描述的实施例,提供这些实施例是为了公开本公开发明,并且充分传达本发明的范围。对于表示在附图中的示例性实施方式中的术语并不是对本公开的限定。在附图中,相同的单元/元件使用相同的附图标记。
除非另有说明,此处使用的术语(包括科技术语)对所属技术领域的技术人员具有通常的理解含义。另外,以通常使用的词典限定的术语,应当被理解为与其相关领域的语境具有一致的含义,而不应该被理解为理想化的或过于正式的意义。
图1为本发明实施方式提供的一种带隔离触头的真空有载分接开关过渡电路的电路图。如图1所示,本发明实施方式提供的带隔离触头的真空有载分接开关过渡电路,设计了两条辅助真空触头支路和一条主真空触头支路,每条辅助真空触头支路包括一个辅助真空触头、一个过渡电阻和一个隔离触头,环流切断任务由两条辅助真空触头支路轮流担任,切换程序对称,两条辅助真空触头支路通过相同的工作电流,使得两路辅助真空触头的烧损完全一致,减轻了辅助真空触头的切换任务;第一隔离触头G1和第二隔离触头G2可以形成断口,能够作为辅助真空触头的保护开关,防止辅助真空触头失效后该条支路常通.本公开相比“单主真空触头、单辅助真空触头”结构的过渡电路,能够平衡主真空触头和辅助真空触头的切换容量,提高整台真空有载分接开关的电气寿命。
本发明实施方式提供的带隔离触头的真空有载分接开关过渡电路,包括:第一主触头MC1、第二主触头MC2、第一辅助真空触头V1、第二辅助真空触头V2、主真空触头V3、第一开关Z1、第一隔离触头G1、第二隔离触头G2、第一过渡电阻R1和第二过渡电阻R2;其中,所述第一主触头MC1的一端与变压器调压绕组的奇数分接档位相连接;第二主触头MC2的一端与变压器调压绕组的偶数分接档位相连接;所述第一辅助真空触头V1的一端分别与变压器调压绕组的奇数分接档位和第一开关Z1相连接,另一端与所述第一过渡电阻R1的 一端相连接;所述第二辅助真空触头V2的一端分别与变压器调压绕组的偶数分接档位和第一开关Z1相连接,另一端与所述第二过渡电阻R2的一端相连接;所述第一过渡电阻R1通过第一隔离触头G1与变压器中性点相连接,所述第二过渡电阻R2通过第二隔离触头G2与变压器中性点相连接;所述主真空触头V3的一端与所述第一开关Z1相连接;所述主真空触头V3、第一主触头MC1和第二主触头MC2的另一端均与变压器中性点相连接,设置为输出负载电流;在进行环流切断任务时,通过第一辅助真空触头V1、第二辅助真空触头V2、第一隔离触头G1和第二隔离触头G2轮流切换工作,以减轻辅助真空触头的切换任务,提高有载分接开关的电气寿命。
一实施例中,当第一主触头MC1、第一辅助真空触头V1、第二辅助真空触头V2和主真空触头V3均处于导通状态,第一开关Z1与变压器绕组的奇数分接档位端导通,第一隔离触头G1处于闭合状态,第二隔离触头G2处于断开状态,第二主触头MC2处于断开状态,有载分接开关的分接选择器与变压器调压绕组的奇数分接档位相连接时,能够使负载电流经所述第一主触头MC1输出。
当第二主触头MC2、第一辅助真空触头V1、第二辅助真空触头V2和主真空触头V3均处于导通状态,第一开关Z1与变压器绕组的偶数数分接档位端导通,第一隔离触头G1处于断开状态,第二隔离触头G2处于闭合状态,第一主触头MC1处于断开状态,有载分接开关的分接选择器与变压器调压绕组的偶数分接档位相连接时,能够使负载电流经所述第二主触头MC2输出。
一实施例中,所述第一开关Z1为机械单触头开关或转换开关。
在本发明的实施方式以中,第一开关Z1为机械单触头开关,包括第一静触头12、第二静触头13和动触头11;所述第一静触头12与所述奇数分接档位连接;所述第二静触头13与所述偶数分接档位连接;所述动触头11的一端与主真空触头V3连接,另一端与第一静触头12,以及第二静触头13滑动连接。
本发明实施方式使用如上所述的带隔离触头的真空有载分接开关过渡电路进行调压的方法能够实现有载分接开关的分接选择器由奇数分接档位转换到偶数分接档位,包括:
断开所述第一主触头MC1,负载电流I N从奇数分接档位端依次流经第一开关Z1和主真空触头V3输出;断开所述主真空触头V3,产生电弧;在所述主真空触头V3内电弧完全熄灭后,调整第一开关Z1,使得主真空触头V3与偶数分接档位端导通,此过程中负载电流I N依次流经第一辅助真空触头V1、第一过渡电阻R1和第一隔离触头G1输出;闭合所述主真空触头V3,过渡电路形成桥接,产生循环电流,负载电流I N从偶数分接档位端依次流经第一开关Z1和主真空触头V3输出;断开所述第一辅助真空触头V1,产生电弧;在第一辅助真空触头 V1内电弧完全熄灭后,调整第一隔离触头G1断开,形成断口,此过程中负载电流I N从偶数分接档位端依次流经第一开关Z1和主真空触头V3输出;闭合所述第一辅助真空触头V1,负载电流I N从偶数分接档位端依次流经第一开关Z1和主真空触头V3输出;闭合所述第二主触头MC2,使得负载电流I N流经第二主触头MC2输出,再闭合第二隔离触头G2,分接变换操作结束,完成一级调压。
本发明实施方式使用如上所述的带隔离触头的真空有载分接开关过渡电路进行调压的方法,能够实现有载分接开关的分接选择器由偶数分接档位转换到奇数分接档位,包括:
断开所述第二主触头MC2,负载电流I N从偶数分接档位端依次流经第一开关Z1和主真空触头V3输出;断开所述主真空触头V3,产生电弧;在所述主真空触头V3内电弧完全熄灭后,调整第一开关Z1,使得主真空触头V3与奇数分接档位端导通,此过程中负载电流I N依次流经第二辅助真空触头V2、第二过渡电阻R2和第二隔离触头G2输出;闭合所述主真空触头V3,过渡电路形成桥接,产生循环电流,负载电流I N从奇数分接档位端流经第一开关Z1和主真空触头V3输出;断开所述第二辅助真空触头V2,产生电弧;在所述第二辅助真空触头V2内电弧完全熄灭后,调整第二隔离触头G2断开,形成断口,此过程中负载电流I N从奇数分接档位端依次流经第一开关Z1和主真空触头V3输出;闭合所述第二辅助真空触头V2,负载电流I N从奇数分接档位端依次流经第一开关Z1和主真空触头V3输出;闭合所述第一主触头MC1,负载电流I N流经第一主触头MC1输出,再闭合第一隔离触头G1,分接变换操作结束,完成一级调压。
在本发明的实施方式一中,多个元件的连接状态为:当有载分接开关的分接选择器与变压器调压绕组的奇数分接档位相连接时,第一主触头MC1导通、第二主触头MC2断开、第一辅助真空触头V1导通、第二辅助真空触头V2导通、主真空触头V3导通,第一开关Z1的动触头11与其第一静触头12连接,第一隔离触头G1闭合,第二隔离触头G2断开,负载电流经第一主触头MC1输出。当有载分接开关的分接选择器与变压器调压绕组的偶数分接档位相连接时,第二主触头MC2导通、第一主触头MC1断开、第一辅助真空触头V1导通、第二辅助真空触头V2导通、主真空触头V3导通,第一开关Z1的动触头11与其第二静触头13连接,第一隔离触头G1断开,第二隔离触头G2闭合,负载电流经第二主触头MC2输出。
在本发明的实施方式一中,假定有载分接开关的分接选择器初点位置不变,且有载分接开关档位编号与分接选择器触头组标号一致,有载分接开关档位要从一个奇数档位N上升到一个偶数档位N+1。分接选择器与变压器调压绕组的 奇数分接档位连接时,如图2(a)所示,第一主触头MC1导通、第二主触头MC2断开、第一辅助真空触头V1导通、第二辅助真空触头V2导通、主真空触头V3导通,第一开关Z1的动触头11与其第一静触头12连接,第一隔离触头G1闭合,第二隔离触头G2断开,负载电流经第一主触头MC1输出。分接选择器由奇数分接档位转换到偶数分接档位,操作方法包括:
(1)如图2(a)所示,第一主触头MC1闭合,负载电流I N经第一主触头MC1输出。
(2)如图2(b)所示,断开所述第一主触头MC1,负载电流I N依次流经第一开关Z1和主真空触头V3输出。
(3)如图2(c)所示,断开所述主真空触头V3,产生电弧;该电弧熄灭后,负载电流I N依次流经第一辅助真空触头V1、第一过渡电阻R1和第一隔离触头G1输出,此时所述主真空触头V3两端的恢复电压U V3=I N×R1。
(4)如图2(d)所示,主真空触头V3内电弧完全熄灭后,第一开关Z1的动触头由连接第一静触头12旋转到连接第二静触头13,负载电流I N依次流经第一辅助真空触头V1、第一过渡电阻R1和第一隔离触头G1输出。
(5)如图2(e)所示,闭合所述主真空触头V3,过渡电路形成桥接,产生循环电流I C1=U S/R1;负载电流I N流经第一开关Z1和主真空触头V3输出;若调压方向为升档方向,则流经所述主真空触头V3的电流I V3=I N+I C1,若调压方向为降档方向,则流经所述主真空触头V3的电流I V3=I N-I C1;其中,所述U S为有载分接开关级电压。
(6)如图2(f)所示,断开所述第一辅助真空触头V1,产生电弧;负载电流I N依次流经第一开关Z1和主真空触头V3输出;所述第一辅助真空触头V1两端的恢复电压为U V1=U S
(7)如图2(g)所示,第一辅助真空触头V1内电弧完全熄灭后,第一隔离触头G1打开,形成断口,负载电流I N依次流经第一开关Z1和主真空触头V3输出。
(8)如图2(h)所示,闭合第一辅助真空触头V1,负载电流I N依次流经第一开关Z1和主真空触头V3输出。
(9)如图2(i)所示,闭合第二主触头MC2,负载电流I N流经第二主触头MC2输出。
(10)如图2(j)所示,闭合第二隔离触头G2,负载电流I N流经第二主触头MC2输出,分接变换操作结束,切换芯子完成一级调压。
分接选择器由偶数分接档位转换到奇数分接档位过程中,过渡电路转换程序如图3(a)所示。
在本发明的实施方式一中,有载分接开关的分接选择器与变压器调压绕组的偶数分接连接时,第二主触头MC2导通、第一主触头MC1断开、第一辅助真空触头V1导通、第二辅助真空触头V2导通、主真空触头V3导通,第一开关Z1的动触头11与其第二静触头13连接,第一隔离触头G1断开,第二隔离触头G2闭合,负载电流经第二主触头MC2输出。当分接选择器由偶数分接档位转换到奇数分接档位,操作方法包括:
(1)断开所述第二主触头MC2,负载电流I N从偶数分接档位端依次流经第一开关Z1和主真空触头V3输出。
(2)断开所述主真空触头V3,产生电弧;该电弧熄灭后,负载电流I N依次流经第二辅助真空触头V2、第二过渡电阻R2和第二隔离触头G2输出,此时所述主真空触头V3两端的恢复电压为U V3=I N×R2。
(3)待主真空触头V3内电弧完全熄灭后,调整第一开关Z1的动触头11由连接第二静触头13旋转连接到第一静触头12,负载电流I N依次流经第二辅助真空触头V2、第二过渡电阻R2和第二隔离触头G2输出。
(4)闭合所述主真空触头V3,过渡电路形成桥接,产生循环电流
Figure PCTCN2020129405-appb-000001
负载电流I N从奇数分接档位端依次流经第一开关Z1和主真空触头V3输出;此时,若调压方向为升档方向,则流经所述主真空触头V3的电流I V3=I N+I C2,若调压方向为降档方向,则流经所述主真空触头V3的电流I V3=I N-I C2;其中,所述U S为有载分接开关级电压。
(5)断开所述第二辅助真空触头V2,产生电弧;负载电流I N从奇数分接档位端依次流经第一开关Z1和主真空触头V3输出;此时所述第二辅助真空触头V2两端的恢复电压为U V2=U S
(6)待第二辅助真空触头V2内电弧完全熄灭后,调整第二隔离触头G2处于断开状态,形成断口,负载电流I N从奇数分接档位端依次流经第一开关Z1和主真空触头V3输出。
(7)闭合所述第二辅助真空触头V2,负载电流I N从奇数分接档位端依次流经第一开关Z1和主真空触头V3输出。
(8)闭合第一主触头MC1,使得负载电流I N流经第一主触头MC1输出。
(8)闭合第一隔离触头G1,负载电流I N流经第一主触头MC1输出,分接变换操作结束,切换芯子完成一级调压。
分接选择器由偶数分接档位转换到奇数分接档位过程中,过渡电路转换程序如图3(b)所示。
在本发明的实施方式一中,真空有载分接开关过渡电路的切换芯子任务如下表1所示:
表1真空有载分接开关过渡电路的切换芯子任务
Figure PCTCN2020129405-appb-000002
其中,I N为负载电流;Us为有载分接开关级电压;R1和R2均为过渡电阻。
本发明实施方式使用如上所述的带隔离触头的真空有载分接开关过渡电路进行调压的方法能够实现有载分接开关的分接选择器由奇数分接档位转换到偶数分接档位,包括:
断开所述第一主触头MC1,负载电流I N从奇数分接档位端依次流经第一开关Z1和主真空触头V3输出;断开所述主真空触头V3,产生电弧;在所述主真空触头V3内电弧完全熄灭后,调整第一开关Z1,使得主真空触头V3与偶数分接档位端导通,此过程中负载电流I N依次流经第一辅助真空触头V1、第一过渡电阻R1和第一隔离触头G1输出;闭合所述主真空触头V3,过渡电路形成桥接,产生循环电流,负载电流I N从偶数分接档位端依次流经第一开关Z1和主真空触头V3输出,同时断开所述第一辅助真空触头V1和第二辅助真空触头V2,此时第一辅助真空触头V1产生电弧;此过程中负载电流I N从偶数分接档位端依次流经第一开关Z1和主真空触头V3输出;在第一辅助真空触头V1内电弧完全熄灭后,调整第一隔离触头G1断开,形成断口,同时调整第二隔离触头G2闭合,此过程中负载电流I N从偶数分接档位端依次流经第一开关Z1和主真空触头V3输出;同时闭合所述第一辅助真空触头V1和第二辅助真空触头V2,再闭合所述第二主触头MC2,使得负载电流I N流经第二主触头MC2输出,分接变换操作结束,完成一级调压。
本发明实施方式使用如上所述的带隔离触头的真空有载分接开关过渡电路进行调压的方法能够实现有载分接开关的分接选择器由偶数分接档位转换到奇数分接档位,包括:
断开所述第二主触头MC2,负载电流I N从偶数分接档位端依次流经第一开关Z1和主真空触头V3输出;断开所述主真空触头V3,产生电弧;在所述主真空触头V3内电弧完全熄灭后,调整第一开关Z1,使得主真空触头V3与奇数分接档位端导通,此过程中负载电流I N依次流经第二辅助真空触头V2、第二过渡电阻R2和第二隔离触头G2输出;闭合所述主真空触头V3,过渡电路形成桥接,产生循环电流,负载电流I N从奇数分接档位端流经第一开关Z1和主真空触头V3输出,同时断开所述第二辅助真空触头V2和第一辅助真空触头V1,此时第二辅助真空触头V2产生电弧;此过程中负载电流I N从奇数分接档位端依次流经第一开关Z1和主真空触头V3输出;在所述第二辅助真空触头V2内电弧完全熄灭后,调整第二隔离触头G2断开,形成断口,同时调整第一隔离触头G1闭合,此过程中负载电流I N从奇数分接档位端依次流经第一开关Z1和主真空触头V3输出;同时闭合所述第一辅助真空触头V1和第二辅助真空触头V2,再闭合所述第一主触头MC1,负载电流I N流经第一主触头MC1输出,分接变换操作结束,完成一级调压。
在本发明的实施方式二中,多个元件的初始状态和实施方式方式一相同,在此不再赘述。
在本发明的实施方式二中,分接选择器与变压器调压绕组的奇数分接档位连接时,如图4(a)所示,第一主触头MC1导通、第二主触头MC2断开、第一辅助真空触头V1导通、第二辅助真空触头V2导通、主真空触头V3导通,第一开关Z1的动触头11与其第一静触头12连接,第一隔离触头G1闭合,第二隔离触头G2断开,负载电流经第一主触头MC1输出。当分接选择器由奇数分接档位转换到偶数分接档位时,操作方法包括:
(1)如图4(a)所示,第一主触头MC1闭合,负载电流I N经第一主触头MC1输出。
(2)如图4(b)所示,断开所述第一主触头MC1,负载电流I N依次流经第一开关Z1和主真空触头V3输出。
(3)如图4(c)所示,断开所述主真空触头V3,产生电弧;该电弧熄灭后,负载电流I N依次流经第一辅助真空触头V1、第一过渡电阻R1和第一隔离触头G1输出,所述主真空触头V3两端的恢复电压U V3=I N×R1。
(4)如图6(d)所示,主真空触头V3内电弧完全熄灭后,第一开关Z1 的动触头离开第一静触头12,负载电流I N依次流经第一辅助真空触头V1、第一过渡电阻R1和第一隔离触头G1输出。
(5)如图4(e)所示,第一开关Z1的动触头转到连接第二静触头13,负载电流I N依次流经第一辅助真空触头V1、第一过渡电阻R1和第一隔离触头G1输出。
(6)如图4(f)所示,闭合所述主真空触头V3,过渡电路形成桥接,产生循环电流I C1=U S/R1;负载电流I N流经第一开关Z1和主真空触头V3输出;此时,若调压方向为升档方向,则流经所述主真空触头V3的电流I V3=I N+I C1,若调压方向为降档方向,则流经所述主真空触头V3的电流I V3=I N-I C1;其中,所述U S为有载分接开关级电压。
(7)如图4(g)所示,同时断开所述第一辅助真空触头V1、第二辅助真空触头V2,第一辅助真空触头V1产生电弧;负载电流I N依次流经第一开关Z1和主真空触头V3输出;所述第一辅助真空触头V1两端的恢复电压为U V1=U S
(8)如图4(h)所示,第一辅助真空触头V1内电弧完全熄灭后,第一隔离触头G1打开,形成断口,同时第二隔离触头G2闭合,负载电流I N依次流经第一开关Z1和主真空触头V3输出。
(9)如图4(i)所示,同时闭合第一辅助真空触头V1、第二辅助真空触头V2,闭合第二主触头MC2,负载电流I N流经第二主触头MC2输出,分接变换操作结束,切换芯子完成一级调压。
分接选择器由偶数分接档位转换到奇数分接档位过程中,过渡电路转换程序如图5(a)所示。
在本发明的实施方式二中,当分接选择器与变压器调压绕组的偶数分接档位连接时,如图2(j)所示,第二主触头MC2导通、第一主触头MC1断开、第一辅助真空触头V1导通、第二辅助真空触头V2导通、主真空触头V3导通,第一开关Z1的动触头与其第一静触头13连接,第二隔离触头G2闭合,第一隔离触头G1断开,负载电流经第二主触头MC2输出。当分接选择器由偶数分接档位转换到奇数分接档位时,操作方法包括:
(1)断开所述第二主触头MC2,负载电流I N依次流经第一开关Z1和主真空触头V3输出。
(2)断开所述主真空触头V3,产生电弧;该电弧熄灭后,负载电流I N依次流经第二辅助真空触头V2、第二过渡电阻R2和第二隔离触头G2输出,所述主真空触头V3两端的恢复电压U V3=I N×R2。
(3)主真空触头V3内电弧完全熄灭后,第一开关Z1的动触头离开第二静 触头13,负载电流I N依次流经第二辅助真空触头V2、第二过渡电阻R2和第二隔离触头G2输出。
(4)第一开关Z1的动触头转到连接第一静触头12,负载电流I N依次流经第二辅助真空触头V2、第二过渡电阻R2和第二隔离触头G2输出。
(5)闭合所述主真空触头V3,过渡电路形成桥接,产生循环电流
Figure PCTCN2020129405-appb-000003
负载电流I N流经第一开关Z1和主真空触头V3输出;此时,若调压方向为升档方向,则流经所述主真空触头V3的电流I V3=I N+I C2,若调压方向为降档方向,则流经所述主真空触头V3的电流I V3=I N-I C2;其中,所述U S为有载分接开关级电压。
(6)同时断开所述第二辅助真空触头V2、第一辅助真空触头V1,第二辅助真空触头V2产生电弧;负载电流I N依次流经第一开关Z1和主真空触头V3输出;所述第二辅助真空触头V2两端的恢复电压为U V2=U S
(7)第二辅助真空触头V2内电弧完全熄灭后,第二隔离触头G2打开,形成断口,同时第一隔离触头G1闭合,负载电流I N依次流经第一开关Z1和主真空触头V3输出。
(8)同时闭合第一辅助真空触头V1、第二辅助真空触头V2,闭合第一主触头MC1,负载电流I N流经第一主触头MC1输出,分接变换操作结束,切换芯子完成一级调压。
分接选择器由偶数分接档位转换到奇数分接档位过程中,过渡电路转换程序如图5(b)所示。
在本发明的实施方式二中,真空有载分接开关过渡电路的切换芯子任务如下表2所示:
表2真空有载分接开关过渡电路的切换芯子任务
Figure PCTCN2020129405-appb-000004
Figure PCTCN2020129405-appb-000005
其中,I N为负载电流;Us为有载分接开关级电压;R1和R2均为过渡电阻。
一实施例中,当第一主触头MC1、第一辅助真空触头V1、主真空触头V3和第一隔离触头G1均处于导通状态,第一开关Z1与变压器绕组的奇数分接档位端导通,第二隔离触头G2、第二辅助真空触头V2和第二主触头MC2处于断开状态,有载分接开关的分接选择器与变压器调压绕组的奇数分接档位相连接时,能够使负载电流经所述第一主触头MC1输出。
当第二主触头MC2、第二辅助真空触头V2、主真空触头V3和第二隔离触头G2均处于导通状态,第一开关Z1与变压器绕组的偶数数分接档位端导通,第一隔离触头G1、第一辅助真空触头V1和第一主触头MC1处于断开状态,有载分接开关的分接选择器与变压器调压绕组的偶数分接档位相连接时,能够使负载电流经所述第二主触头MC2输出。
本发明实施方式使用如上所述的带隔离触头的真空有载分接开关过渡电路进行调压的方法,实现有载分接开关的分接选择器由奇数分接档位转换到偶数分接档位,包括:
断开所述第一主触头MC1,负载电流I N从奇数分接档位端依次流经第一开关Z1和主真空触头V3输出;闭合所述第二隔离触头G2,负载电流I N从奇数分接档位端依次流经第一开关Z1和主真空触头V3输出;断开所述主真空触头V3,产生电弧;在所述主真空触头V3内电弧完全熄灭后,负载电流I N依次流经第一辅助真空触头V1、第一过渡电阻R1和第一隔离触头G1输出;闭合所述第二辅助真空触头V2,过渡电路形成桥接,一半的负载电流I N依次流经第一辅助真空触头V1、第一过渡电阻R1和第一隔离触头G1输出,另一半的负载电流I N依次流经第二辅助真空触头V2、第二过渡电阻R2和第二隔离触头G2输出;若切换方向为升档/降档方向,流经所述第一辅助真空触头V1的电流
Figure PCTCN2020129405-appb-000006
Figure PCTCN2020129405-appb-000007
流经所述第二辅助真空触头V2的电流
Figure PCTCN2020129405-appb-000008
Figure PCTCN2020129405-appb-000009
其中,所述U S为有载分接开关级电压;断开所述第一辅助真空触头V1,产生电弧,同时调整第一开关Z1,使得主真空触头V3与奇数分接档位端断开,此时负载电流I N依次流经第二辅助真空触头V2、第二过渡电阻R2和第二隔离触头G2输出;若切换方向为升档/降档方向,所述第一辅助真空触头V1两端的恢复电压为U V1=U S-I N×R2/U V1=U S+I N×R2;调整第一开关Z1,使得主真空触头V3 与偶数分接档位端导通,此时负载电流I N依次流经第二辅助真空触头V2、第二过渡电阻R2和第二隔离触头G2输出;闭合所述主真空触头V3,负载电流I N从偶数分接档位端依次流经第一开关Z1和主真空触头V3输出;闭合所述第二主触头MC2,使得负载电流I N流经第二主触头MC2输出,再闭合第二隔离触头G2,分接变换操作结束,完成一级调压。
本发明实施方式使用如上所述的带隔离触头的真空有载分接开关过渡电路进行调压的方法,实现有载分接开关的分接选择器由偶数分接档位转换到奇数分接档位,包括:
断开所述第二主触头MC2,负载电流I N从偶数分接档位端依次流经第一开关Z1和主真空触头V3输出;断开所述主真空触头V3,产生电弧,同时闭合第一隔离触头G1;在所述主真空触头V3内电弧完全熄灭后,负载电流I N依次流经第二辅助真空触头V2、第二过渡电阻R2和第二隔离触头G2输出;闭合所述第一辅助真空触头V1,同时调整第一开关Z1,使得主真空触头V3与奇数分接档位端导通,过渡电路形成桥接,一半的负载电流I N依次流经第二辅助真空触头V2、第二过渡电阻R2和第二隔离触头G2输出,另一半负载电流I N依次流经第一辅助真空触头V1、第一过渡电阻R1和第一隔离触头G1输出;若切换方向为升档/降档方向,流经所述第二辅助真空触头V2的电流
Figure PCTCN2020129405-appb-000010
Figure PCTCN2020129405-appb-000011
Figure PCTCN2020129405-appb-000012
流经所述第一辅助真空触头V1的电流
Figure PCTCN2020129405-appb-000013
其中,所述U S为有载分接开关级电压;断开所述第二辅助真空触头V2,产生电弧;在所述第二辅助真空触头V2内电弧完全熄灭后,负载电流I N依次流经第一辅助真空触头V1、第一过渡电阻R1和第一隔离触头G1输出;若切换方向为升档/降档方向,所述第二辅助真空触头V2两端的恢复电压为U V1=U S-I N×R1或U V1=U S+I N×R1;闭合所述主真空触头V3,负载电流I N从奇数分接档位端依次流经第一开关Z1和主真空触头V3输出;断开所述第二隔离触头G2,负载电流I N从奇数分接档位端依次流经第一开关Z1和主真空触头V3输出;闭合所述第一主触头MC1,负载电流I N流经第一主触头MC1输出,分接变换操作结束,完成一级调压。
在本发明的实施方式三中,多个元件的连接状态为:当第一主触头MC1、 第一辅助真空触头V1、主真空触头V3和第一隔离触头G1均处于导通状态,第一开关Z1与变压器绕组的奇数分接档位端导通,第二隔离触头G2、第二辅助真空触头V2和第二主触头MC2处于断开状态,有载分接开关的分接选择器与变压器调压绕组的奇数分接档位相连接时,能够使负载电流经所述第一主触头MC1输出。当第二主触头MC2、第二辅助真空触头V2、主真空触头V3和第二隔离触头G2均处于导通状态,第一开关Z1与变压器绕组的偶数数分接档位端导通,第一隔离触头G1、第一辅助真空触头V1和第一主触头MC1处于断开状态,有载分接开关的分接选择器与变压器调压绕组的偶数分接档位相连接时,能够使负载电流经所述第二主触头MC2输出。
在本发明的实施方式三中,假定有载分接开关的分接选择器初点位置不变,且有载分接开关档位编号与分接选择器触头组标号一致,有载分接开关档位要从一个奇数档位N上升到一个偶数档位N+1。分接选择器与变压器调压绕组的奇数分接档位连接时,如图6(a)所示,第一主触头MC1导通、第二主触头MC2断开、第一辅助真空触头V1导通、第二辅助真空触头V2断开、主真空触头V3导通,第一开关Z1的动触头与其第一静触头12连接,第一隔离触头G1闭合,第二隔离触头G2断开。分接选择器由奇数分接档位转换到偶数分接档位,操作方法包括:
(1)如图6(a)所示,第一主触头MC1闭合,负载电流I N经第一主触头MC1输出。
(2)如图6(b)所示,断开所述第一主触头MC1,负载电流I N依次流经第一开关Z1和主真空触头V3输出。
(3)如图6(c)所示,闭合所述第二隔离触头G2,负载电流I N依次流经第一开关Z1和主真空触头V3输出。
(4)如图6(d)所示,断开所述主真空触头V3,产生电弧;该电弧熄灭后,负载电流I N依次流经第一辅助真空触头V1、第一过渡电阻R1和第一隔离触头G1输出,所述主真空触头V3两端的恢复电压U V3=I N×R1。
(5)如图6(e)所示,闭合所述第二辅助真空触头V2,过渡电路形成桥接,产生循环电流I C=U S/(R1+R2);一半负载电流
Figure PCTCN2020129405-appb-000014
流经第一辅助真空触头V1、第一过渡电阻R1、第一隔离触头G1输出,另一半负载电流
Figure PCTCN2020129405-appb-000015
流经第二辅助真空触头V2、第二过渡电阻R2、第二隔离触头G2输出;此时,若调压方向为升档方向,则流经所述第一辅助真空触头V1的电流
Figure PCTCN2020129405-appb-000016
流经所述第二辅助真空触头V2的电流
Figure PCTCN2020129405-appb-000017
若调压方向为降档方向,则流经所述第一辅 助真空触头V1的电流
Figure PCTCN2020129405-appb-000018
流经所述第二辅助真空触头V2的电流
Figure PCTCN2020129405-appb-000019
Figure PCTCN2020129405-appb-000020
其中,所述U S为有载分接开关级电压。
(6)如图6(f)所示,断开所述第一辅助真空触头V1,产生电弧,同时第一开关Z1的动触头离开第一静触头12;负载电流I N依次流经第二辅助真空触头V2、第二过渡电阻R2和第二隔离触头G2输出;若调压方向为升档方向,则所述第一辅助真空触头V1两端的恢复电压为U V1=U S-I N×R2;若调压方向为降档方向,则所述第一辅助真空触头V1两端的恢复电压为U V1=U S+I N×R2
(7)如图6(g)所示,第一开关Z1的动触头旋转到连接第二静触头13,负载电流I N依次流经第二辅助真空触头V2、第二过渡电阻R2和第二隔离触头G2输出。
(8)如图6(h)所示,闭合主真空触头V3,同时断开第一隔离触头G1,负载电流I N依次流经第一开关Z1和主真空触头V3输出。
(9)如图6(i)所示,闭合第二主触头MC2,负载电流I N流经第二主触头MC2输出,分接变换操作结束,切换芯子完成一级调压。
分接选择器由偶数分接档位转换到奇数分接档位过程中,过渡电路转换程序如图7(a)所示。
在本发明的实施方式三中,有载分接开关的分接选择器与变压器调压绕组的偶数分接连接时,如图6(i)所示,第二主触头MC2导通、第一主触头MC1断开、第一辅助真空触头V1断开、第二辅助真空触头V2导通、主真空触头V3导通,第一开关Z1的动触头与其第二静触头13连接,第二隔离触头G2闭合,第一隔离触头G1断开,负载电流经第二主触头MC2输出。当分接选择器由偶数分接档位转换到奇数分接档位,操作方法包括:
(1)断开所述第二主触头MC2,负载电流I N依次流经第一开关Z1和主真空触头V3输出。
(2)断开主真空触头V3,产生电弧,同时闭合第一隔离触头G1;V3电弧熄灭后,负载电流I N依次流经第二辅助真空触头V2、第二过渡电阻R2和第二隔离触头G2输出,所述主真空触头V3两端的恢复电压U V3=I N×R2。
(3)第一开关Z1的动触头离开连第二静触头13,负载电流I N依次流经第二辅助真空触头V2、第二过渡电阻R2和第二隔离触头G2输出。
(4)闭合所述第一辅助真空触头V1,同时第一开关Z1的动触头转到连接第一静触头12,过渡电路形成桥接,产生循环电流I C1=U S/(R1+R2);一半负载 电流
Figure PCTCN2020129405-appb-000021
流经第二辅助真空触头V2、第二过渡电阻R2、第二隔离触头G2输出,另一半负载电流
Figure PCTCN2020129405-appb-000022
流经第一辅助真空触头V1、第一过渡电阻R1、第一隔离触头G1输出;此时,若调压方向为升档方向,则流经所述第二辅助真空触头V2的电流
Figure PCTCN2020129405-appb-000023
流经所述第一辅助真空触头V1的电流
Figure PCTCN2020129405-appb-000024
若调压方向为降档方向,则流经所述第二辅助真空触头V2的电流
Figure PCTCN2020129405-appb-000025
流经所述第一辅助真空触头V1的电流
Figure PCTCN2020129405-appb-000026
其中,所述U S为有载分接开关级电压。
(5)断开所述第二辅助真空触头V2,产生电弧;该电弧熄灭后,负载电流I N依次流经第一辅助真空触头V1、第一过渡电阻R1和第一隔离触头G1输出;若调压方向为升档方向,则所述第二辅助真空触头V2两端的恢复电压为U V1=U S-I N×R1;若调压方向为降档方向,则所述第二辅助真空触头V2两端的恢复电压为U V1=U S+I N×R1
(6)闭合主真空触头V3,负载电流I N依次流经第一开关Z1和主真空触头V3输出。
(7)断开第二隔离触头G2,负载电流I N依次流经第一开关Z1和主真空触头V3输出。
(8)闭合第一主触头MC1,负载电流I N流经第一主触头MC1输出,分接变换操作结束,切换芯子完成一级调压。
分接选择器由偶数分接档位转换到奇数分接档位过程中,过渡电路转换程序如图7(b)所示。
在本发明的实施方式三中,真空有载分接开关过渡电路的切换芯子任务如下表3所示:
表3真空有载分接开关过渡电路的切换芯子任务
Figure PCTCN2020129405-appb-000027
Figure PCTCN2020129405-appb-000028
其中,I N为负载电流;Us为有载分接开关级电压;R1和R2均为过渡电阻。
图8为本发明实施方式提供的另一种带隔离触头的真空有载分接开关过渡电路的电路图。如图8所示,仅将图1中的第一开关Z1设置为转换开关,其他元件与图1中的元件相同,且功能和作用上与图1所示过渡电路的功能和作用也相同,在此不再赘述。
已经通过参考少量实施方式描述了本公开。
通常地,本文中使用的所有术语都根据他们在技术领域的通常含义被解释,除非在其中被另外明确地定义。所有的参考“一个/所述/该[装置、组件等]”都被开放地解释为所述装置、组件等中的至少一个实例,除非另外明确地说明。这里公开的任何方法的步骤都没必要以公开的准确的顺序运行,除非明确地说明。
本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光学存储器等)上实施的计算机程序产品的形式。
本申请是根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方 框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生设置为实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (10)

  1. 一种带隔离触头的真空有载分接开关过渡电路,包括:第一主触头MC1、第二主触头MC2、第一辅助真空触头V1、第二辅助真空触头V2、主真空触头V3、第一开关Z1、第一隔离触头G1、第二隔离触头G2、第一过渡电阻R1和第二过渡电阻R2;
    其中,所述第一主触头MC1的一端与变压器调压绕组的奇数分接档位端相连接;所述第二主触头MC2的一端与所述变压器调压绕组的偶数分接档位端相连接;所述第一辅助真空触头V1的一端分别与所述变压器调压绕组的奇数分接档位端和所述第一开关Z1相连接,所述第一辅助真空触头V1的另一端与所述第一过渡电阻R1的一端相连接;所述第二辅助真空触头V2的一端分别与所述变压器调压绕组的偶数分接档位端和所述第一开关Z1相连接,所述第二辅助真空触头V2的另一端与所述第二过渡电阻R2的一端相连接;所述第一过渡电阻R1通过所述第一隔离触头G1与变压器中性点相连接,所述第二过渡电阻R2通过所述第二隔离触头G2与所述变压器中性点相连接;所述主真空触头V3的一端与所述第一开关Z1相连接;所述主真空触头V3、所述第一主触头MC1和所述第二主触头MC2的另一端均与所述变压器中性点相连接,所述变压器中性点设置为输出负载电流;
    在进行环流切断任务的情况下,所述第一辅助真空触头V1、所述第二辅助真空触头V2、所述第一隔离触头G1和所述第二隔离触头G2设置为轮流切换工作。
  2. 根据权利要求1所述的过渡电路,其中,在所述第一主触头MC1、所述第一辅助真空触头V1、所述第二辅助真空触头V2和所述主真空触头V3均处于导通状态,所述第一开关Z1与所述变压器调压绕组的奇数分接档位端导通,所述第一隔离触头G1处于闭合状态,所述第二隔离触头G2处于断开状态,所述第二主触头MC2处于断开状态,所述有载分接开关的分接选择器与所述变压器调压绕组的奇数分接档位相连接的情况下,所述负载电流经所述第一主触头MC1输出;
    在所述第二主触头MC2、所述第一辅助真空触头V1、所述第二辅助真空触头V2和所述主真空触头V3均处于导通状态,所述第一开关Z1与所述变压器调压绕组的偶数数分接档位端导通,所述第一隔离触头G1处于断开状态,所述第二隔离触头G2处于闭合状态,所述第一主触头MC1处于断开状态,所述有载分接开关的分接选择器与所述变压器调压绕组的偶数分接档位相连接的情况下,所述负载电流经所述第二主触头MC2输出。
  3. 根据权利要求1所述的过渡电路,其中,在所述第一主触头MC1、所述第一辅助真空触头V1、所述主真空触头V3和所述第一隔离触头G1均处于导通 状态,所述第一开关Z1与所述变压器调压绕组的奇数分接档位端导通,所述第二隔离触头G2、所述第二辅助真空触头V2和所述第二主触头MC2均处于断开状态,所述有载分接开关的分接选择器与所述变压器调压绕组的奇数分接档位相连接的情况下,所述负载电流经所述第一主触头MC1输出;
    在所述第二主触头MC2、所述第二辅助真空触头V2、所述主真空触头V3和所述第二隔离触头G2均处于导通状态,所述第一开关Z1与所述变压器调压绕组的偶数数分接档位端导通,所述第一隔离触头G1、所述第一辅助真空触头V1和所述第一主触头MC1均处于断开状态,所述有载分接开关的分接选择器与所述变压器调压绕组的偶数分接档位相连接的情况下,所述负载电流经所述第二主触头MC2输出。
  4. 根据权利要求1所述的过渡电路,其中,所述第一开关Z1为机械单触头开关或转换开关。
  5. 一种调压方法,应用于权利要求1-4任一项所述的带隔离触头的真空有载分接开关过渡电路,包括:
    断开所述过渡电路的第一主触头MC1,以使负载电流I N从变压器调压绕组的奇数分接档位端依次流经所述过渡电路的第一开关Z1和主真空触头V3后输出;
    断开所述主真空触头V3以产生电弧;在所述主真空触头V3内的电弧完全熄灭后,调整所述第一开关Z1,使得所述主真空触头V3与所述变压器调压绕组的偶数分接档位端导通,所述负载电流I N依次流经所述过渡电路的第一辅助真空触头V1、第一过渡电阻R1和第一隔离触头G1后输出;
    闭合所述主真空触头V3,以使所述过渡电路形成桥接,产生循环电流,负载电流I N从所述变压器调压绕组的偶数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
    断开所述第一辅助真空触头V1以产生电弧;在所述第一辅助真空触头V1内的电弧完全熄灭后,调整所述第一隔离触头G1断开以形成断口,使得所述负载电流I N从所述变压器调压绕组的偶数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
    闭合所述第一辅助真空触头V1,以使所述负载电流I N从所述变压器调压绕组的偶数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
    闭合所述过渡电路的第二主触头MC2,使得所述负载电流I N流经所述第二主触头MC2后输出,闭合所述过渡电路的第二隔离触头G2,以使分接变换操作结束,完成一级调压。
  6. 一种调压方法,应用于权利要求1-4任一项所述的带隔离触头的真空有载分接开关过渡电路,包括:
    断开所述过渡电路的第二主触头MC2,以使负载电流I N从变压器调压绕组的偶数分接档位端依次流经所述过渡电路的第一开关Z1和主真空触头V3后输出;
    断开所述主真空触头V3以产生电弧;在所述主真空触头V3内的电弧完全熄灭后,调整所述第一开关Z1,使得所述主真空触头V3与所述变压器调压绕组的奇数分接档位端导通,所述负载电流I N依次流经所述过渡电路的第二辅助真空触头V2、第二过渡电阻R2和第二隔离触头G2后输出;
    闭合所述主真空触头V3,以使所述过渡电路形成桥接,产生循环电流,负载电流I N从所述变压器调压绕组的奇数分接档位端流经所述第一开关Z1和所述主真空触头V3后输出;
    断开所述第二辅助真空触头V2以产生电弧;在所述第二辅助真空触头V2内的电弧完全熄灭后,调整所述第二隔离触头G2断开以形成断口,使得所述负载电流I N从所述变压器调压绕组的奇数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
    闭合所述第二辅助真空触头V2,以使所述负载电流I N从所述变压器调压绕组的奇数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
    闭合所述过渡电路的第一主触头MC1,以使所述负载电流I N流经所述第一主触头MC1后输出,闭合所述过渡电路的第一隔离触头G1,以使分接变换操作结束,完成一级调压。
  7. 一种调压,应用于权利要求1-4任一项所述的带隔离触头的真空有载分接开关过渡电路,包括:
    断开所述过渡电路的第一主触头MC1,以使负载电流I N从变压器调压绕组的奇数分接档位端依次流经所述过渡电路的第一开关Z1和主真空触头V3后输出;
    断开所述主真空触头V3以产生电弧;在所述主真空触头V3内的电弧完全熄灭后,调整所述第一开关Z1,使得所述主真空触头V3与所述变压器调压绕组的偶数分接档位端导通,所述负载电流I N依次流经所述过渡电路的第一辅助真空触头V1、第一过渡电阻R1和第一隔离触头G1后输出;
    闭合所述主真空触头V3,以使所述过渡电路形成桥接,产生循环电流,所述负载电流I N从所述变压器调压绕组的偶数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出,同时断开所述第一辅助真空触头V1和所述过 渡电路的第二辅助真空触头V2,以使所述第一辅助真空触头V1产生电弧,所述负载电流I N从所述变压器调压绕组的偶数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
    在所述第一辅助真空触头V1内的电弧完全熄灭后,调整所述第一隔离触头G1断开以形成断口,同时调整所述过渡电路的第二隔离触头G2闭合,以使所述负载电流I N从所述变压器调压绕组的偶数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
    同时闭合所述第一辅助真空触头V1和所述第二辅助真空触头V2,再闭合所述过渡电路的第二主触头MC2,使得所述负载电流I N流经所述第二主触头MC2后输出,分接变换操作结束,完成一级调压。
  8. 一种调压方法,应用于权利要求1-4任一项所述的带隔离触头的真空有载分接开关过渡电路,包括:
    断开所述过渡电路的第二主触头MC2,以使负载电流I N从变压器调压绕组的偶数分接档位端依次流经所述过渡电路的第一开关Z1和主真空触头V3后输出;
    断开所述主真空触头V3以产生电弧;在所述主真空触头V3内的电弧完全熄灭后,调整所述第一开关Z1,使得所述主真空触头V3与所述变压器调压绕组的奇数分接档位端导通,所述负载电流I N依次流经所述过渡电路的第二辅助真空触头V2、第二过渡电阻R2和第二隔离触头G2后输出;
    闭合所述主真空触头V3,以使所述过渡电路形成桥接,产生循环电流,所述负载电流I N从所述变压器调压绕组的奇数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出,同时断开所述第二辅助真空触头V2和所述过渡电路的第一辅助真空触头V1,以使所述第二辅助真空触头V2产生电弧,所述负载电流I N从所述变压器调压绕组的奇数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
    在所述第二辅助真空触头V2内的电弧完全熄灭后,调整所述第二隔离触头G2断开以形成断口,同时调整所述过渡电路的第一隔离触头G1闭合,以使所述负载电流I N从所述变压器调压绕组的奇数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
    同时闭合所述第一辅助真空触头V1和所述第二辅助真空触头V2,再闭合所述过渡电路的第一主触头MC1,使得所述负载电流I N流经所述第一主触头MC1后输出,分接变换操作结束,完成一级调压。
  9. 一种调压方法,应用于权利要求1-4任一项所述的带隔离触头的真空有 载分接开关过渡电路,包括:
    断开所述过渡电路的第一主触头MC1,以使负载电流I N从变压器调压绕组的奇数分接档位端依次流经所述过渡电路的第一开关Z1和主真空触头V3后输出;
    闭合所述过渡电路的第二隔离触头G2,以使所述负载电流I N从所述变压器调压绕组的奇数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
    断开所述主真空触头V3以产生电弧;在所述主真空触头V3内的电弧完全熄灭后,所述负载电流I N依次流经所述过渡电路的第一辅助真空触头V1、第一过渡电阻R1和第一隔离触头G1后输出;
    闭合所述过渡电路的第二辅助真空触头V2,以使所述过渡电路形成桥接,一半的负载电流I N依次流经所述第一辅助真空触头V1、所述第一过渡电阻R1和所述第一隔离触头G1后输出,另一半的负载电流I N依次流经所述第二辅助真空触头V2、所述过渡电路的第二过渡电阻R2和所述第二隔离触头G2后输出;
    断开所述第一辅助真空触头V1以产生电弧,同时调整所述第一开关Z1,使得所述主真空触头V3与所述变压器调压绕组的奇数分接档位端断开,所述负载电流I N依次流经所述第二辅助真空触头V2、所述第二过渡电阻R2和所述第二隔离触头G2后输出;
    调整所述第一开关Z1,使得所述主真空触头V3与所述变压器调压绕组的偶数分接档位端导通,所述负载电流I N依次流经所述第二辅助真空触头V2、所述第二过渡电阻R2和所述第二隔离触头G2后输出;
    闭合所述主真空触头V3,以使所述负载电流I N从所述变压器调压绕组的偶数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
    闭合所述过渡电路的第二主触头MC2,使得所述负载电流I N流经所述第二主触头MC2后输出,闭合所述第二隔离触头G2,以使分接变换操作结束,完成一级调压。
  10. 一种调压方法,应用于权利要求1-4任一项所述的带隔离触头的真空有载分接开关过渡电路,包括:
    断开所述过渡电路的第二主触头MC2,以使负载电流I N从变压器调压绕组的偶数分接档位端依次流经所述过渡电路的第一开关Z1和主真空触头V3后输出;
    断开所述主真空触头V3以产生电弧,同时闭合所述过渡电路的第一隔离触 头G1;在所述主真空触头V3内的电弧完全熄灭后,所述负载电流I N依次流经所述过渡电路的第二辅助真空触头V2、第二过渡电阻R2和第二隔离触头G2后输出;
    闭合所述过渡电路的第一辅助真空触头V1,同时调整所述第一开关Z1,使得所述主真空触头V3与所述变压器调压绕组的奇数分接档位端导通,所述过渡电路形成桥接,一半的负载电流I N依次流经所述第二辅助真空触头V2、所述第二过渡电阻R2和所述第二隔离触头G2后输出,另一半负载电流IN依次流经所述第一辅助真空触头V1、所述过渡电路的第一过渡电阻R1和所述第一隔离触头G1后输出;
    断开所述第二辅助真空触头V2以产生电弧;在所述第二辅助真空触头V2内的电弧完全熄灭后,所述负载电流I N依次流经所述第一辅助真空触头V1、所述第一过渡电阻R1和所述第一隔离触头G1后输出;
    闭合所述主真空触头V3,以使所述负载电流I N从所述变压器调压绕组的奇数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
    断开所述第二隔离触头G2,所述负载电流I N从所述变压器调压绕组的奇数分接档位端依次流经所述第一开关Z1和所述主真空触头V3后输出;
    闭合所述过渡电路的第一主触头MC1,以使所述负载电流I N流经所述第一主触头MC1后输出,分接变换操作结束,完成一级调压。
PCT/CN2020/129405 2020-06-24 2020-11-17 带隔离触头的真空有载分接开关过渡电路及调压方法 WO2021258621A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010592231.1 2020-06-24
CN202010592231 2020-06-24
CN202010802038.6A CN111986902A (zh) 2020-06-24 2020-08-11 一种带隔离触头的真空有载分接开关过渡电路及调压方法
CN202010802038.6 2020-08-11

Publications (1)

Publication Number Publication Date
WO2021258621A1 true WO2021258621A1 (zh) 2021-12-30

Family

ID=73433839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129405 WO2021258621A1 (zh) 2020-06-24 2020-11-17 带隔离触头的真空有载分接开关过渡电路及调压方法

Country Status (2)

Country Link
CN (1) CN111986902A (zh)
WO (1) WO2021258621A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202183304U (zh) * 2011-03-11 2012-04-04 上海华齐电力设备制造有限公司 一种真空有载分接开关的切换机构
CN103038841A (zh) * 2010-05-08 2013-04-10 赖茵豪森机械制造公司 有载分接开关
US20140169044A1 (en) * 2011-08-26 2014-06-19 Baojun Wang Self-excitation push-pull type converter
CN204230109U (zh) * 2014-12-12 2015-03-25 国家电网公司 一种真空式有载分接开关过渡电路
CN205248126U (zh) * 2015-12-02 2016-05-18 中国西电电气股份有限公司 一种真空有载分接开关的过渡电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103038841A (zh) * 2010-05-08 2013-04-10 赖茵豪森机械制造公司 有载分接开关
CN202183304U (zh) * 2011-03-11 2012-04-04 上海华齐电力设备制造有限公司 一种真空有载分接开关的切换机构
US20140169044A1 (en) * 2011-08-26 2014-06-19 Baojun Wang Self-excitation push-pull type converter
CN204230109U (zh) * 2014-12-12 2015-03-25 国家电网公司 一种真空式有载分接开关过渡电路
CN205248126U (zh) * 2015-12-02 2016-05-18 中国西电电气股份有限公司 一种真空有载分接开关的过渡电路

Also Published As

Publication number Publication date
CN111986902A (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
KR100814514B1 (ko) 부하시 탭 전환 장치
JP2662434B2 (ja) サイリスタ転換スイッチ
KR101134998B1 (ko) 전압 조정 장치
CN104465168A (zh) 一种真空式有载分接开关过渡电路及操作方法
WO2022016758A1 (zh) 真空有载分接开关的过渡装置和真空有载分接开关的过渡装置的切换方法
CN111799075A (zh) 一种真空有载分接开关双电阻过渡电路及调压方法
CN112670068B (zh) 一种具有真空有载分接开关的过渡电路装置及控制方法
CN112670067B (zh) 一种对称型真空泡负载平衡的过渡电路装置及控制方法
WO2021258621A1 (zh) 带隔离触头的真空有载分接开关过渡电路及调压方法
CN110768212A (zh) 一种变压器内部短路故障保护装置及其控制方法
CN204230109U (zh) 一种真空式有载分接开关过渡电路
CN214203439U (zh) 一种带隔离触头的真空有载分接开关过渡电路
CN115763112A (zh) 一种换流变有载调压开关对称往复过渡电路及调压方法
CN213211935U (zh) 一种真空有载分接开关双电阻过渡电路
WO2015044361A1 (en) Tap changer for a transformer
CN112670066B (zh) 一种对称型真空泡交替承载的过渡电路装置及方法
CN114446622A (zh) 一种有载分接开关单隔离触点过渡电路及调压方法
CN212810032U (zh) 一种真空有载分接开关单电阻交替型过渡电路
CN210536537U (zh) 一种带极性转换的交错并联式多档变压器有载调压电路
CN210469152U (zh) 一种带极性转换的交错并联式九档变压器有载调压电路
CN111799076A (zh) 一种真空有载分接开关单电阻交替型过渡电路及调压方法
CN113851312A (zh) 一种有载分接开关往复式过渡电路及调压方法
CN210469151U (zh) 一种带极性转换的交错并联式七档变压器有载调压电路
CN116266498A (zh) 一种用于真空有载分接开关的切换电路及控制方法
CN109313997B (zh) 适用于线性切换的有载抽头变换器及其切换方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20942142

Country of ref document: EP

Kind code of ref document: A1