WO2022104677A1 - 一种基于行列寻址环形超声换能器的成像方法及装置 - Google Patents

一种基于行列寻址环形超声换能器的成像方法及装置 Download PDF

Info

Publication number
WO2022104677A1
WO2022104677A1 PCT/CN2020/130365 CN2020130365W WO2022104677A1 WO 2022104677 A1 WO2022104677 A1 WO 2022104677A1 CN 2020130365 W CN2020130365 W CN 2020130365W WO 2022104677 A1 WO2022104677 A1 WO 2022104677A1
Authority
WO
WIPO (PCT)
Prior art keywords
row
array elements
imaging
echo signal
cylindrical wave
Prior art date
Application number
PCT/CN2020/130365
Other languages
English (en)
French (fr)
Inventor
马腾
谭清源
张琪
李永川
王丛知
郑海荣
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2020/130365 priority Critical patent/WO2022104677A1/zh
Publication of WO2022104677A1 publication Critical patent/WO2022104677A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • the present application relates to the field of image imaging, in particular to an imaging method and device based on a row-column addressing annular ultrasonic transducer.
  • Ultrasound transducer is a device applied to ultrasound image imaging, which can be applied to endoscopic imaging.
  • the ultrasonic transducer transmits and receives signals by exciting the positive and negative electrodes distributed in the ultrasonic transducer, and a corresponding ultrasonic image can be generated by using the received signals.
  • two-dimensional ultrasound transducers are usually used to obtain three-dimensional ultrasound images.
  • the two-dimensional ultrasonic transducer can use the row-column addressing technology to divide the positive and negative electrodes according to vertical rows and columns to obtain array elements distributed in rows and columns.
  • the row-column addressable two-dimensional ultrasonic transducer can realize the excitation of the entire row or the entire array of array elements, which improves the quality and speed of ultrasonic imaging compared with the one-dimensional ultrasonic transducer.
  • row-column addressable two-dimensional ultrasonic transducers adopt a two-dimensional area array structure.
  • the row-column addressable two-dimensional area array ultrasound transducer has certain limitations in the application of endoscopic imaging.
  • the row-column addressing two-dimensional annular ultrasonic transducer has a larger imaging viewing angle and imaging range, which can meet the needs of endoscopic imaging.
  • some of the fast imaging algorithms applied to row-column-addressed two-dimensional area array ultrasonic transducers are limited by the distribution structure of the two-dimensional area array, and are difficult to apply to row-column-addressable annular ultrasonic transducers. How to apply the fast imaging algorithm to the row-column addressable annular ultrasonic transducer is a technical problem to be solved urgently by those skilled in the art.
  • embodiments of the present application provide an imaging method and apparatus based on a row-column addressing annular ultrasonic transducer, which can quickly generate a higher-quality three-dimensional imaging image.
  • An imaging method based on a row-column addressing annular ultrasonic transducer wherein the row-column addressing annular ultrasonic transducer includes a row array element and a column array element, the row array element is annular, and the method includes:
  • each of the row array elements to emit sound waves in sequence to generate a first cylindrical wave with a target inclination
  • each of the array elements to emit sound waves in sequence to generate a second cylindrical wave with a target axis position
  • the first three-dimensional image data and the second three-dimensional image data are coherently superimposed to obtain a three-dimensional imaging image.
  • the triggering of each of the row array elements to emit sound waves in sequence to generate a first cylindrical wave with a target inclination includes:
  • Each of the row array elements is triggered in sequence to emit sound waves at the emission moments corresponding to each of the row array elements, so as to generate a first cylindrical wave having the target inclination.
  • performing beamforming on the first echo signal to obtain first imaging data corresponding to the target inclination includes:
  • the sum of the first time for the first cylindrical wave to reach the first imaging position and the second time for the first imaging position to reach the i-th array element is calculated according to the first echo signal, as the
  • the bidirectional propagation time corresponding to the i-th array element, i takes an integer from 1 to n, and n is the number of the array element;
  • the first echo signal is beamformed according to the bidirectional propagation time corresponding to each of the array elements to obtain first imaging data corresponding to the target inclination.
  • the triggering of each of the array elements to emit sound waves in sequence, so as to generate a second cylindrical wave with a target axis position includes:
  • Each of the array elements is sequentially triggered to emit sound waves at the emission moments corresponding to each of the array elements, so as to generate a second cylindrical wave having the position of the target axis.
  • performing beamforming on the second echo signal to obtain the second imaging data corresponding to the position of the target axis includes:
  • the second echo signal is beamformed according to the bidirectional propagation time corresponding to each of the line array elements, so as to obtain second imaging data corresponding to the position of the target axis.
  • An imaging device based on a row-column addressing annular ultrasonic transducer the row-column addressing annular ultrasonic transducer comprises a row array element and a column array element, the row array element is annular, and the device comprises:
  • a first triggering unit for triggering each of the row array elements to emit sound waves in sequence to generate a first cylindrical wave with a target inclination
  • a first collection unit configured to collect the first echo signal of the first cylindrical wave received by each of the array elements
  • a first synthesis unit configured to perform beam synthesis on the first echo signal to obtain first imaging data corresponding to the target inclination
  • a first stacking unit configured to coherently stack the first imaging data corresponding to each of the target inclinations to obtain first three-dimensional image data
  • a second triggering unit for triggering each of the array elements to emit sound waves in sequence to generate a second cylindrical wave with a target axis position
  • a second collection unit configured to collect the second echo signal of the second cylindrical wave received by each of the row array elements
  • a second synthesis unit configured to perform beam synthesis on the second echo signal to obtain second imaging data corresponding to the position of the target axis
  • a second stacking unit configured to coherently stack the second imaging data corresponding to each of the target axis positions to obtain second three-dimensional image data
  • a third superimposing unit configured to coherently superimpose the first three-dimensional image data and the second three-dimensional image data to obtain a three-dimensional imaging image.
  • the first trigger unit includes:
  • a first calculation subunit configured to calculate the launch time corresponding to each of the row array elements according to the height of each of the row array elements and the target inclination
  • the first triggering subunit is used for sequentially triggering each of the row array elements to emit sound waves at the emission moment corresponding to each of the row array elements, so as to generate a first cylindrical wave with the target inclination.
  • the first synthesis unit includes:
  • the second calculation subunit calculates the first time for the first cylindrical wave to reach the first imaging position and the second time for the first imaging position to reach the i-th array element according to the first echo signal
  • a first synthesis subunit configured to perform beam synthesis on the first echo signal according to the bidirectional propagation time corresponding to each of the array elements to obtain first imaging data corresponding to the target inclination.
  • the second trigger unit includes:
  • the third calculation subunit is used to calculate the launch time corresponding to each of the array elements according to the distance between the position of each of the array elements and the position of the target axis;
  • the second triggering subunit is used for sequentially triggering each of the array elements to emit sound waves at the emission time corresponding to each of the array elements, so as to generate a second cylindrical wave having the position of the target axis.
  • the second synthesis unit includes:
  • the fourth calculation subunit is configured to calculate, according to the second echo signal, the third time for the second cylindrical wave to reach the second imaging position and the third time for the second cylindrical wave to reach the jth row array element from the second imaging position.
  • the sum of four times, as the bidirectional propagation time corresponding to the jth row array element, j takes an integer from 1 to m, where m is the number of the row array elements;
  • the second synthesis subunit is configured to perform beam synthesis on the second echo signal according to the bidirectional propagation time corresponding to each of the row array elements, to obtain second imaging data corresponding to the position of the target axis.
  • the embodiments of the present application provide an imaging method and device based on a row-column addressing annular ultrasonic transducer.
  • the row-column addressing annular ultrasonic transducer includes a row array element and a column array element, and the row array element is annular.
  • the array elements By triggering the array elements to emit sound waves in sequence, a first cylindrical wave with a target inclination can be generated, and the first echo signal of the first cylindrical wave can be received by the array elements.
  • the emission focusing in the elevation direction and the receiving focusing in the lateral direction can be realized.
  • the array elements By triggering the array elements to transmit sound waves in sequence, the second cylindrical wave with the target axis position is generated, and the second echo signal of the second cylindrical wave is received by the line array element, and the second echo signal is beamformed to obtain
  • the second imaging data corresponding to the position of the target axis is coherently superimposed on the second imaging data corresponding to the position of each target axis, so as to obtain the second three-dimensional image data.
  • the emission focusing mode of multiple virtual point source divergent wave recombination the emission focusing in the lateral direction and the receiving focusing in the elevation direction can be realized.
  • the first three-dimensional image data and the second three-dimensional image data are then coherently superimposed to obtain a three-dimensional imaging image.
  • the quality of the three-dimensional imaging images generated by the row-column-addressed annular ultrasound transducer can be improved by transmitting and receiving focusing in the lateral and elevation directions.
  • the fast imaging algorithm is applied to the row-column addressable ring ultrasonic transducer, which can improve the imaging speed of the row-column addressable ring ultrasonic transducer and achieve high-quality three-dimensional imaging images. generate.
  • FIG. 1 is a schematic diagram of an ultrasonic probe provided with a row-column addressing annular ultrasonic transducer provided in an embodiment of the present application;
  • FIG. 2 is a schematic diagram of a three-dimensional imaging image provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of an imaging method based on a row-column addressing annular ultrasonic transducer provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of array element distribution of a row-column addressing annular ultrasonic transducer according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of a row array element transmitting acoustic waves of a row-column addressing annular ultrasonic transducer according to an embodiment of the present application;
  • Fig. 6 is the schematic diagram that the array element of a kind of row-column addressing annular ultrasonic transducer according to the embodiment of the application transmits sound waves;
  • FIG. 7 is a schematic diagram of calculating the first time provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of calculating a second time according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a triggering array element to emit acoustic waves according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of calculating a third time according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an imaging device based on a row-column addressing ring ultrasonic transducer provided by an embodiment of the present application.
  • the existing fast imaging technologies based on non-focused waves include synthetic aperture imaging technology, plane wave composite imaging technology, etc. While improving the imaging quality, the imaging speed is greatly improved.
  • synthetic aperture imaging technology and plane wave composite imaging technology in the row and column directions are generally used.
  • the synthetic aperture imaging technology is only completed by a single row or a single array of array elements each time, and the emission energy is low.
  • an embodiment of the present application provides an imaging method based on a row-column addressing annular ultrasonic transducer, wherein the row-column addressing annular ultrasonic transducer includes a row array element and a column array element, and the row array element is annular.
  • the array elements By triggering the array elements to emit sound waves in sequence, a first cylindrical wave with a target inclination can be generated, and the first echo signal of the first cylindrical wave can be received by the array elements.
  • the emission focusing in the elevation direction and the receiving focusing in the lateral direction are realized.
  • the array elements By triggering the array elements to transmit sound waves in sequence, the second cylindrical wave with the target axis position is generated, and the second echo signal of the second cylindrical wave is received by the line array element, and the second echo signal is beamformed to obtain
  • the second imaging data corresponding to the position of the target axis is coherently superimposed on the second imaging data corresponding to the position of each target axis, so as to obtain the second three-dimensional image data.
  • the emission focusing mode of multiple virtual point source divergent wave composites the emission focusing in the lateral direction and the receiving focusing in the elevation direction are realized.
  • the first three-dimensional image data and the second three-dimensional image data are then coherently superimposed to obtain a three-dimensional imaging image.
  • the quality of the 3D imaging images generated by the row-column addressable ring ultrasonic transducer can be improved by transmitting and receiving focusing in the lateral and elevation directions, and the imaging speed can be increased to achieve higher quality imaging through the unfocused wave compound imaging technology. Rapid generation of 3D imaging images.
  • FIG. 1 this figure is a schematic diagram of an ultrasonic probe provided with a row-column addressing annular ultrasonic transducer according to an embodiment of the present application.
  • the matching layer, the outer electrode, the piezoelectric wafer, the inner electrode and the backing constitute the basic structure of the row-column addressing ring ultrasonic transducer.
  • row-column-addressable annular ultrasound transducers can be installed in the ultrasound probe for endoscopic imaging in the medical field to obtain ultrasound images in imaging environments such as gastrointestinal imaging and intravascular imaging.
  • the row-column addressing annular ultrasonic transducer includes row array elements and column array elements, and the row array elements are annular. By emitting sound waves according to the triggering row array element and array element respectively, a first cylindrical wave with a target inclination and a second cylindrical wave with a target axis position can be generated respectively. Then, the array element and the row array element are used to receive the echo signals, and the beamforming and coherent superposition are performed to obtain a three-dimensional imaging image. Referring to FIG. 2 , this figure is a schematic diagram of a three-dimensional imaging image provided by an embodiment of the present application.
  • FIG. 1 is only an example in which the embodiments of the present application may be implemented.
  • the scope of application of the embodiments of the present application is not limited by any aspect of this schematic diagram.
  • the method may include S301-S309:
  • the row-column-addressable annular ultrasonic transducer includes row array elements and column array elements.
  • FIG. 4 this figure is a schematic diagram of array element distribution of a row-column addressing annular ultrasonic transducer according to an embodiment of the present application.
  • the row array element and the column array element are perpendicular to each other, and the row array element is annular.
  • S301 Trigger each of the row array elements to emit sound waves in sequence to generate a first cylindrical wave with a target inclination.
  • Cylindrical waves can be emitted by triggering the ring-shaped array elements.
  • FIG. 5 is a schematic diagram of emitting acoustic waves by row array elements of a row-column addressing ring ultrasonic transducer provided by an embodiment of the present application.
  • each row array element can be triggered in turn to emit acoustic waves through different delays to form cylindrical waves with different inclinations. For example, taking the cylindrical wave in FIG. 5 as an example, the upper row array element can be triggered first, and then the lower row array element can be triggered in sequence according to the trigger time to obtain the first cylindrical wave with the corresponding target inclination.
  • the target inclination refers to the angle between the cylindrical wave and the vertical direction, that is, the angle ⁇ in FIG. 5 .
  • the inclination of the first cylindrical wave is related to the moment when each row array element is triggered.
  • the embodiment of the present application provides a method for triggering each of the row array elements to emit sound waves in sequence to generate a first cylindrical wave with a target inclination. For specific implementation, see below.
  • S302 Collect the first echo signal of the first cylindrical wave received by each of the array elements.
  • the first echo signal can be transmitted back from the imaging object to the row-column addressing ring ultrasonic transducer, and then pass through the array element. Then the first echo signal of the transverse first cylindrical wave can be received.
  • Corresponding imaging data can be obtained by collecting the first echo signal of the first cylindrical wave received by each array element.
  • S303 Perform beam synthesis on the first echo signal to obtain first imaging data corresponding to the target inclination.
  • first imaging data corresponding to the inclination of the target can be obtained, and the first imaging data can represent a frame of imaging image of the imaging object corresponding to the inclination of the target.
  • the embodiment of the present application provides a specific implementation manner of performing beam synthesis on the first echo signal to obtain the first imaging data corresponding to the target inclination, please refer to the following.
  • first cylindrical waves corresponding to different target inclinations may be generated and transmitted, and first imaging data corresponding to different target inclinations may be obtained.
  • the first imaging data corresponding to each target inclination is then coherently superimposed to obtain first three-dimensional image data with higher quality.
  • first cylindrical wave with a target inclination can be formed.
  • Multiple line array element transmissions can be used to transmit the first cylindrical waves for multiple target inclinations, and to receive and collect corresponding first echo signals to generate first imaging data corresponding to each target inclination.
  • S305 Trigger each of the array elements to emit sound waves in sequence to generate a second cylindrical wave with a target axis position.
  • cylindrical waves can be generated by triggering the array elements to emit sound waves.
  • FIG. 6 is a schematic diagram of emitting acoustic waves by array elements of a row-column addressing ring ultrasonic transducer according to an embodiment of the present application.
  • each array element can be triggered in turn to emit acoustic waves through different delays to form cylindrical waves with different target axis positions.
  • the target axis position is a virtual position, which may be the axis position of the ring surrounded by the array elements, or any axis position except the ring axis surrounded by the array elements.
  • the position of the target axis corresponding to the second cylindrical wave is related to the emission time of the array element.
  • the embodiment of the present application provides a method for triggering each of the array elements to emit sound waves in sequence, so as to generate a second cylindrical wave with the position of the target axis.
  • S306 Collect the second echo signal of the second cylindrical wave received by each of the row array elements.
  • a second echo signal is generated when the second cylindrical wave encounters the imaging object.
  • the second echo signal can be sent back from the imaging object to the row-column addressing ring ultrasonic transducer, and then the second echo signal of the second cylindrical wave in the elevation direction can be received through the row array element.
  • Corresponding imaging data can be obtained by collecting the second echo signal of the second cylindrical wave received by each line array element.
  • S307 Perform beam synthesis on the second echo signal to obtain second imaging data corresponding to the position of the target axis.
  • second imaging data of the imaging object corresponding to the target axis position can be obtained, and the second imaging data can represent a frame of imaging image of the imaging object corresponding to the target axis position.
  • the embodiment of the present application provides a specific implementation manner of performing beam synthesis on the second echo signal to obtain the second imaging data corresponding to the position of the target axis, please refer to the following.
  • second cylindrical waves corresponding to different target axis positions may be generated to obtain second imaging data corresponding to different target axis positions.
  • the second imaging data corresponding to each target axis position is then coherently superimposed to obtain second three-dimensional image data with higher quality.
  • only one second cylindrical wave at the target axis position can be formed.
  • Multiple array element transmissions can be used to transmit the second cylindrical waves at multiple target axis positions, and to receive and collect corresponding second echo signals to generate second imaging data corresponding to each target axis position.
  • the process of image data namely S305-S308, is independent of each other.
  • the embodiment of the present application does not limit the order between obtaining the first three-dimensional image data and obtaining the second three-dimensional image data.
  • the first three-dimensional image data may be obtained first, and then the second three-dimensional image data may be obtained; the second three-dimensional image data may also be obtained first. , and then obtain the first three-dimensional image data.
  • Both the generated first three-dimensional image data and the second three-dimensional image data are three-dimensional image data generated for the same imaging object.
  • the first three-dimensional image data and the second three-dimensional image data are transmitted and received in different focusing directions, and a relatively accurate three-dimensional imaging image can be generated by coherently superimposing the obtained first three-dimensional image data and the second three-dimensional image data.
  • the array elements by triggering the array elements to emit sound waves in sequence, the first cylindrical wave with the target inclination is generated, the multi-angle cylindrical wave composite emission focusing mode is realized, and the emission in the elevation direction is realized. Focusing; the first echo signal is received by the array element to realize the receiving and focusing in the lateral direction.
  • the second cylindrical wave with the target axis position is generated, and the emission focusing mode of the multi-virtual point source divergent wave compounding is realized, and the horizontal emission focusing is realized; then the line array element receives the second echo. wave signal to achieve receiving focusing in the elevation direction.
  • the emission and reception focusing in the elevation direction and the lateral direction are realized, and the three-dimensional imaging quality is improved.
  • the application of the non-focused wave compound imaging technology in the row-column addressing ring ultrasonic transducer is realized, and the imaging speed is improved.
  • the launch moment of each row array element may be determined according to the target inclination.
  • the embodiment of the present application provides a specific implementation manner of triggering each of the row array elements to emit sound waves in sequence to generate a first cylindrical wave with a target inclination, which specifically includes:
  • Each of the row array elements is triggered in sequence to emit sound waves at the emission moments corresponding to each of the row array elements, so as to generate a first cylindrical wave having the target inclination.
  • the launch moment of each row array element can be determined according to the height of the row array element and the inclination of the target. Taking the cylindrical wave in Figure 5 as an example, when the emission time of the line array element at the origin is 0, the emission time of the line array element at the height of h is as shown in formula (1):
  • is the inclination of the target
  • c is the speed of sound
  • the launch time corresponding to each row array element is calculated.
  • the row array elements are sequentially triggered to emit sound waves at the emission moments corresponding to each row array element, thereby generating a first cylindrical wave with a target inclination.
  • the transmission time corresponding to each row array element is determined by the height of each row array element and the target inclination of the cylindrical wave to be generated this time. And trigger the row array elements according to the emission time of each row array element, thereby forming the first cylindrical wave of the target inclination.
  • the time at which the array element receives the first echo signal may be used to represent the first imaging data.
  • the embodiment of the present application provides a specific implementation manner of performing beam synthesis on the first echo signal to obtain the first imaging data corresponding to the target inclination, which specifically includes:
  • the sum of the first time for the first cylindrical wave to reach the first imaging position and the second time for the first imaging position to reach the i-th array element is calculated according to the first echo signal, as the
  • the bidirectional propagation time corresponding to the i-th array element, i takes an integer from 1 to n, and n is the number of the array element;
  • the first echo signal is beamformed according to the bidirectional propagation time corresponding to each of the array elements to obtain first imaging data corresponding to the target inclination.
  • the process from the first cylindrical wave to the first imaging position, and then from the first imaging position to the array element is a bidirectional propagation process, and the bidirectional propagation time can be used to represent the first imaging data.
  • the first time for the first cylindrical wave to reach the first imaging position may be obtained from the ratio of the distance from the first cylindrical wave to the first imaging position to the speed of sound.
  • FIG. 7 which is a schematic diagram of calculating the first time according to an embodiment of the present application.
  • the dotted line represents the cylindrical wave
  • the height is l
  • the point P with the distance r from the y-axis represents the first imaging position.
  • the first time when the first cylindrical wave reaches the first imaging position is shown in formula (2):
  • is the inclination of the target
  • c is the speed of sound
  • N array elements with different positions are distributed on the row-column addressing ring ultrasonic transducer, and the first echo signal scattered at the first imaging position can be received by the plurality of array elements.
  • the second time for the first echo signal to arrive at the i-th array element from the first imaging position can be calculated by the ratio of the distance between the first imaging position and the i-th array element to the speed of sound, where i is taken as Integer from 1 to n.
  • FIG. 8 which is a schematic diagram of calculating the second time according to an embodiment of the present application.
  • R is the radius of the ring surrounded by array elements
  • is the angle difference between adjacent array elements
  • r is the distance from point P to the origin of polar coordinates, that is, the center of the ring surrounded by array elements
  • is the angle from point P to the x-axis of the polar coordinate system
  • c is the speed of sound.
  • the first imaging data may be as shown in formula (4):
  • I a (r, ⁇ ) RF column (i, ⁇ , t ec + t re ) (4)
  • RF column (i, ⁇ ) indicates that the i-th array element receives the first echo signal corresponding to the target tilt angle ⁇ , and t ec + t re is the sum of the first time and the second time, that is, the first echo signal.
  • the first three-dimensional image data obtained by coherently superimposing the first imaging data corresponding to each target inclination can be expressed as formula (5):
  • I 1 (r, ⁇ ) ⁇ ⁇ RF column (i, ⁇ , t ec +t re ) (5)
  • the bidirectional propagation time of the first cylindrical wave from the launch to the reception of the first echo signal by the i-th array element can be obtained.
  • the first imaging data may be represented using the two-way travel time.
  • the moment when the array element is triggered to emit the acoustic waveform can be calculated according to the distance between the position of the array element and the time of the target axis.
  • each of the array elements is triggered to emit sound waves in sequence to generate a second cylindrical wave with a target axis position, which specifically includes:
  • Each of the array elements is sequentially triggered to emit sound waves at the emission moments corresponding to each of the array elements, so as to generate a second cylindrical wave having the position of the target axis.
  • the second cylindrical wave takes the target axis position as the axis, and the transmission time of each array element needs to be determined according to the distance between the target axis position and each array element.
  • FIG. 9 this figure is a schematic diagram of a triggering array element to emit sound waves according to an embodiment of the present application.
  • O is the origin of polar coordinates, which is the axis of the ring surrounded by the array elements.
  • S is the position of the target axis, and the polar coordinates are
  • the thin dotted line represents the array element, and the polar coordinate of the i-th transmitting array element is (R, j ⁇ ).
  • the thick dashed line represents the incompletely formed second cylindrical wave.
  • the launch time of the i-th array element is determined as shown in formula (6):
  • Each array element is triggered to emit sound waves in sequence according to the emission time corresponding to each array element, and a second cylindrical wave having the target axis position can be generated.
  • the second imaging data may be represented by the time when the row array element receives the second echo signal.
  • the embodiment of the present application provides a specific implementation manner of performing beam synthesis on the second echo signal to obtain the second imaging data corresponding to the target axis position, which specifically includes:
  • the sum of the third time for the second cylindrical wave to reach the second imaging position and the fourth time for the second imaging position to reach the i-th row array element is calculated according to the second echo signal, as the The bidirectional propagation time corresponding to the i-th row array element, i is an integer from 1 to m, where m is the number of the row array elements;
  • the second echo signal is beamformed according to the bidirectional propagation time corresponding to each of the line array elements, so as to obtain second imaging data corresponding to the position of the target axis.
  • the second cylindrical wave emitted by the array element When the second cylindrical wave emitted by the array element is transmitted to the second imaging position, it will be scattered to generate a second echo signal, and the second echo signal will reach the ultrasonic transducer and be received by different array elements.
  • the second imaging data represented by the bidirectional propagation time can be further obtained.
  • the third time for the second cylindrical wave to reach the second imaging position may be calculated from the ratio of the distance between the emission position of the second cylindrical wave and the second imaging position to the speed of sound.
  • FIG. 10 this figure is a schematic diagram of calculating a third time according to an embodiment of the present application.
  • the solid line represents the second cylindrical wave formed with point S as the target axis position, the second imaging position is point P, and the polar coordinates are (r, ⁇ ).
  • the third time for the second cylindrical wave to reach the second imaging position is shown in formula (7):
  • m row array elements with different positions are distributed on the row-column addressing ring ultrasonic transducer, and the second wave signal scattered at the second imaging position can be received by a plurality of row array elements.
  • the fourth time that the i-th row element receives from the second imaging position to the i-th row element can be calculated by the ratio of the distance between the second imaging position and the i-th row element to the speed of sound, where i Take an integer from 1 to m.
  • the fourth time for the second echo signal to reach the i-th row array element from the second imaging position P is as shown in formula (8):
  • c is the speed of sound
  • r is the distance between the second imaging position and the target axis position
  • l is the height of the second imaging position.
  • the second echo signal is then beamformed by using the two-way propagation time to obtain second imaging data corresponding to the position of the target axis.
  • the second imaging data may be as shown in formula (9):
  • the corresponding second echo signal, ⁇ ec + ⁇ re is the sum of the third time and the fourth time, that is, the bidirectional propagation time corresponding to the i-th row array element.
  • the second three-dimensional image data obtained by coherently superimposing the second imaging data corresponding to each target axis position can be expressed as formula (10):
  • the two-way propagation time of the second cylindrical wave from the launch to the reception of the second echo signal by the i-th row array element can be obtained.
  • the second imaging data may be represented using the two-way travel time.
  • the embodiments of the present application also provide an imaging device based on the row-column addressing annular ultrasonic transducer, which will be described below with reference to the accompanying drawings.
  • a row-column-addressed annular ultrasound transducer imaging device is described.
  • FIG. 11 this figure is a schematic structural diagram of an imaging device based on a row-column addressing ring ultrasonic transducer according to an embodiment of the present application.
  • the row-column addressing annular ultrasonic transducer includes a row array element and a column array element, and the row array element is annular.
  • the imaging device based on the row-column addressing annular ultrasonic transducer includes:
  • the first trigger unit 1101 is used to trigger each of the row array elements to emit sound waves in sequence to generate a first cylindrical wave with a target inclination;
  • a first collection unit 1102 configured to collect the first echo signal of the first cylindrical wave received by each of the array elements
  • a first synthesis unit 1103, configured to perform beam synthesis on the first echo signal to obtain first imaging data corresponding to the target inclination
  • a first stacking unit 1104 configured to coherently stack the first imaging data corresponding to each of the target inclinations to obtain first three-dimensional image data
  • the second trigger unit 1105 is used for triggering each described array element to transmit sound waves successively, to generate the second cylindrical wave with the target axis position;
  • a second collection unit 1106, configured to collect the second echo signal of the second cylindrical wave received by each of the row array elements
  • a second synthesis unit 1107 configured to perform beam synthesis on the second echo signal to obtain second imaging data corresponding to the position of the target axis;
  • the second stacking unit 1108 is configured to coherently stack the second imaging data corresponding to each of the target axis positions to obtain second three-dimensional image data;
  • the third superimposing unit 1109 is configured to coherently superimpose the first three-dimensional image data and the second three-dimensional image data to obtain a three-dimensional imaging image.
  • the first trigger unit 1101 includes:
  • a first calculation subunit configured to calculate the launch time corresponding to each of the row array elements according to the height of each of the row array elements and the target inclination
  • the first triggering subunit is used for sequentially triggering each of the row array elements to emit sound waves at the emission moment corresponding to each of the row array elements, so as to generate a first cylindrical wave with the target inclination.
  • the first synthesis unit 1103 includes:
  • the second calculation subunit calculates the first time for the first cylindrical wave to reach the first imaging position and the second time for the first imaging position to reach the i-th array element according to the first echo signal
  • a first synthesis subunit configured to perform beam synthesis on the first echo signal according to the bidirectional propagation time corresponding to each of the array elements to obtain first imaging data corresponding to the target inclination.
  • the second trigger unit 1105 includes:
  • the third calculation subunit is used to calculate the launch time corresponding to each of the array elements according to the distance between the position of each of the array elements and the position of the target axis;
  • the second triggering subunit is used for sequentially triggering each of the array elements to emit sound waves at the emission time corresponding to each of the array elements, so as to generate a second cylindrical wave having the position of the target axis.
  • the second synthesis unit 1107 includes:
  • the fourth calculation subunit is configured to calculate, according to the second echo signal, the third time for the second cylindrical wave to reach the second imaging position and the third time for the second cylindrical wave to reach the jth row array element from the second imaging position.
  • the sum of four times, as the bidirectional propagation time corresponding to the jth row array element, j takes an integer from 1 to m, where m is the number of the row array elements;
  • the second synthesis subunit is configured to perform beam synthesis on the second echo signal according to the bidirectional propagation time corresponding to each of the row array elements, to obtain second imaging data corresponding to the position of the target axis.
  • the emission focusing in the lateral direction and the receiving focusing in the elevation direction can be realized.
  • the first three-dimensional image data and the second three-dimensional image data are then coherently superimposed to obtain a three-dimensional imaging image.
  • the quality of the three-dimensional imaging images generated by the row-column-addressed annular ultrasound transducer can be improved by transmitting and receiving focusing in the lateral and elevation directions.
  • the fast imaging algorithm is applied to the row-column-addressed annular ultrasonic transducer, which can improve the imaging speed of the row-column-addressed annular ultrasonic transducer and achieve high-quality three-dimensional imaging images. generate.
  • At least one (item) refers to one or more, and "a plurality” refers to two or more.
  • “And/or” is used to describe the relationship between related objects, indicating that there can be three kinds of relationships, for example, “A and/or B” can mean: only A, only B, and both A and B exist , where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, c can be single or multiple.
  • the steps of a method or algorithm described in conjunction with the embodiments disclosed herein may be directly implemented in hardware, a software module executed by a processor, or a combination of the two.
  • the software module can be placed in random access memory (RAM), internal memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or any other in the technical field. in any other known form of storage medium.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种基于行列寻址环形超声换能器的成像方法及装置,行列寻址环形超声换能器包括行阵元和列阵元,行阵元为环状。通过触发行阵元依次发射声波,产生具有目标倾斜度的第一柱面波,实现了多角度的柱面波复合的发射聚焦模式,实现仰角方向的发射聚焦;再由列阵元接收第一回波信号,实现在横向上的接收聚焦。通过触发列阵元依次发射声波,产生具有目标轴线位置的第二柱面波,实现了多虚拟点源发散波复合的发射聚焦模式,实现横向的发射聚焦;再由行阵元接收第二回波信号,实现在仰角方向上的接收聚焦。如此实现了仰角方向上的和横向的发射与接收聚焦,实现了快速成像技术在行列寻址环形超声换能器中的使用,提高了成像质量和速度。

Description

一种基于行列寻址环形超声换能器的成像方法及装置 技术领域
本申请涉及图像成像领域,具体涉及一种基于行列寻址环形超声换能器的成像方法及装置。
背景技术
超声换能器是一种应用于超声图像成像的设备,可以应用于内窥成像。超声换能器通过激励在超声换能器中分布的正负电极,进行信号的发送与接收,利用接收到的信号可以生成对应的超声图像。
目前,为了提高超声成像的速度以及质量,通常采用二维超声换能器以获得三维超声图像。二维超声换能器可以采用行列寻址技术,将正负电极按照垂直的行和列进行划分,得到行列分布的阵元。行列寻址二维超声换能器能够实现对于整排或者整列的阵元的激励,相较于一维超声换能器提高了超声成像质量和速度。
目前的行列寻址二维超声换能器大多是采用二维面阵的结构。行列寻址二维面阵超声换能器在内窥成像的应用中具有一定的局限性。相比较而言,行列寻址二维环形超声换能器具有较大的成像视角以及成像范围,能够满足内窥成像的需要。但是,部分应用于行列寻址二维面阵超声换能器的快速成像算法受限于二维面阵的分布结构,难以应用至行列寻址环形超声换能器中。如何将快速成像算法应用于行列寻址环形超声换能器是本领域技术人员亟待解决的技术问题。
发明内容
有鉴于此,本申请实施例提供一种基于行列寻址环形超声换能器的成像方法及装置,能够快速地生成较高质量的三维成像图像。
为解决上述问题,本申请实施例提供的技术方案如下:
一种基于行列寻址环形超声换能器的成像方法,所述行列寻址环形超声换能器包括行阵元以及列阵元,所述行阵元为环状,所述方法包括:
触发各个所述行阵元依次发射声波,以产生具有目标倾斜度的第一柱面波;
采集各个所述列阵元接收的所述第一柱面波的第一回波信号;
对所述第一回波信号进行波束合成,得到所述目标倾斜度对应的第一成像数据;
对各个所述目标倾斜度对应的第一成像数据进行相干叠加,得到第一三维图像数据;
触发各个所述列阵元依次发射声波,以产生具有目标轴线位置的第二柱面波;
采集各个所述行阵元接收的所述第二柱面波的第二回波信号;
对所述第二回波信号进行波束合成,得到所述目标轴线位置对应的第二成像数据;
对各个所述目标轴线位置对应的第二成像数据进行相干叠加,得到第二三维图像数据;
将所述第一三维图像数据与所述第二三维图像数据进行相干叠加,得到三维成像图像。
在一种可能的实现方式中,所述触发各个所述行阵元依次发射声波,以产生具有目标倾斜度的第一柱面波,包括:
根据各个所述行阵元的高度以及目标倾斜度,计算各个所述行阵元对应的发射时刻;
在各个所述行阵元对应的发射时刻依次触发各个所述行阵元发射声波,以产生具有所述目标倾斜度的第一柱面波。
在一种可能的实现方式中,所述对所述第一回波信号进行波束合成,得到所述目标倾斜度对应的第一成像数据,包括:
根据所述第一回波信号计算所述第一柱面波到达第一成像位置的第一时间与由所述第一成像位置到达第i个列阵元的第二时间之和,作为所述第i个列阵元对应的双向传播时间,i取1至n的整数,n为所述列阵元的数量;
根据各个所述列阵元对应的双向传播时间对所述第一回波信号进行波束合成,得到所述目标倾斜度对应的第一成像数据。
在一种可能的实现方式中,所述触发各个所述列阵元依次发射声波,以产生具有目标轴线位置的第二柱面波,包括:
根据各个所述列阵元的位置与目标轴线位置的距离,计算各个所述列阵元对应的发射时刻;
在各个所述列阵元对应的发射时刻依次触发各个所述列阵元发射声波,以产生具有所述目标轴线位置的第二柱面波。
在一种可能的实现方式中,所述对所述第二回波信号进行波束合成,得到所述目标轴线位置对应的第二成像数据,包括:
根据所述第二回波信号计算所述第二柱面波到达第二成像位置的第三时间与由所述第二成像位置到达第j个行阵元的第四时间之和,作为所述第j个行阵元对应的双向传播时间,j取1至m的整数,m为所述行阵元的数量;
根据各个所述行阵元对应的双向传播时间对所述第二回波信号进行波束合成,得到所述目标轴线位置对应的第二成像数据。
一种基于行列寻址环形超声换能器的成像装置,所述行列寻址环形超声换能器包括行阵元以及列阵元,所述行阵元为环状,所述装置包括:
第一触发单元,用于触发各个所述行阵元依次发射声波,以产生具有目标倾斜度的第一柱面波;
第一采集单元,用于采集各个所述列阵元接收的所述第一柱面波的第一回波信号;
第一合成单元,用于对所述第一回波信号进行波束合成,得到所述目标倾斜度对应的第一成像数据;
第一叠加单元,用于对各个所述目标倾斜度对应的第一成像数据进行相干叠加,得到第一三维图像数据;
第二触发单元,用于触发各个所述列阵元依次发射声波,以产生具有目标轴线位置的第二柱面波;
第二采集单元,用于采集各个所述行阵元接收的所述第二柱面波的第二回波信号;
第二合成单元,用于对所述第二回波信号进行波束合成,得到所述目标轴线位置对应的第二成像数据;
第二叠加单元,用于对各个所述目标轴线位置对应的第二成像数据进行相干叠加,得到第二三维图像数据;
第三叠加单元,用于将所述第一三维图像数据与所述第二三维图像数据进行相干叠加,得到三维成像图像。
在一种可能的实现方式中,所述第一触发单元,包括:
第一计算子单元,用于根据各个所述行阵元的高度以及目标倾斜度,计算各个所述行阵元对应的发射时刻;
第一触发子单元,用于在各个所述行阵元对应的发射时刻依次触发各个所述行阵元发射声波,以产生具有所述目标倾斜度的第一柱面波。
在一种可能的实现方式中,所述第一合成单元,包括:
第二计算子单元,根据所述第一回波信号计算所述第一柱面波到达第一成像位置的第一时间与由所述第一成像位置到达第i个列阵元的第二时间之和,作为所述第i个列阵元对应的双向传播时间,i取1至n的整数,n为所述列阵元的数量;
第一合成子单元,用于根据各个所述列阵元对应的双向传播时间对所述第一回波信号进行波束合成,得到所述目标倾斜度对应的第一成像数据。
在一种可能的实现方式中,所述第二触发单元,包括:
第三计算子单元,用于根据各个所述列阵元的位置与目标轴线位置的距离,计算各个所述列阵元对应的发射时刻;
第二触发子单元,用于在各个所述列阵元对应的发射时刻依次触发各个所述列阵元发射声波,以产生具有所述目标轴线位置的第二柱面波。
在一种可能的实现方式中,所述第二合成单元,包括:
第四计算子单元,用于根据所述第二回波信号计算所述第二柱面波到达第二成像位置的第三时间与由所述第二成像位置到达第j个行阵元的第四时间之和,作为所述第j个行阵元对应的双向传播时间,j取1至m的整数,m为所述行阵元的数量;
第二合成子单元,用于根据各个所述行阵元对应的双向传播时间对所述第二回波信号进行波束合成,得到所述目标轴线位置对应的第二成像数据。
由此可见,本申请实施例具有如下有益效果:
本申请实施例提供的一种基于行列寻址环形超声换能器的成像方法及装置,行列寻址环形超声换能器包括行阵元和列阵元,行阵元为环状。通过触发行阵元依次发射声波,可以产生具有目标倾斜度的第一柱面波,并利用列阵元对第一柱面波的第一回波信号进行接收。对得到的第一回波信号进行波束合成,得到目标倾斜度对应的第一成像数据,再利用各个目标倾斜度对应的第一成像数据进行相干叠加,得到第一三维图像数据。通过采取多角度柱面波复合的发射聚焦模式,可以实现仰角方向上的发射聚焦以及横向的接收聚焦。通过触发列阵元依次发射声波,产生具有目标轴线位置的第二柱面波,并利用行阵元接收第二柱面波的第二回波信号,对第二回波信号进行波束合成,得到目标轴线位置对应的第二成像数据,对各个目标轴线位置对应的第二成像数据进行相干叠加,可以得到第二三维图像数据。通过采取多虚拟点源发散波复合的发射聚焦模式,可以实现横向上的发射聚焦和仰角方向上的接收聚焦。再将第一三维图像数据与第二三维图像数据进行相干叠加,得到三维成像图像。通过横向和仰角方向上的发射和接收聚焦,可以提高行列寻址环形超声换能器的生成的三维成像图像的质量。并且通过非聚焦波复合成像技术,实现了将快速成像算法应用于行列寻址环形超声换能器,可以提高行列寻址环形超声换能器的成像速度,实现较高质量的三维成像图像的快速生成。
附图说明
图1为本申请实施例提供的安装有行列寻址环形超声换能器的超声探头示意图;
图2为本申请实施例提供的三维成像图像的示意图;
图3为本申请实施例提供的一种基于行列寻址环形超声换能器的成像方法的流程图;
图4为本申请实施例提供的一种行列寻址环形超声换能器的阵元分布的示意图;
图5为本申请实施例提供的一种行列寻址环形超声换能器的行阵元发射声波的示意图;
图6为本申请实施例提供的一种行列寻址环形超声换能器的列阵元发射 声波的示意图;
图7为本申请实施例提供的一种计算第一时间的示意图;
图8为本申请实施例提供的一种计算第二时间的示意图;
图9为本申请实施例提供的一种触发列阵元发射声波的示意图;
图10为本申请实施例提供的一种计算第三时间的示意图;
图11为本申请实施例提供的一种基于行列寻址环形超声换能器的成像装置的结构示意图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请实施例作进一步详细的说明。
为了便于理解和解释本申请实施例提供的技术方案,下面将先对本申请的背景技术进行说明。
发明人在对传统的超声换能器的成像技术进行研究后发现,现有的基于非聚焦波的快速成像技术包括合成孔径成像技术、平面波复合成像技术等,快速成像技术可以实现在保证较高成像质量的同时,大幅度提高成像的速度。而对于针对行列寻址二维面阵的超声换能器的快速成像技术,受限于二维面阵的结构,一般采用合成孔径成像技术以及行列方向上的平面波复合成像技术。合成孔径成像技术由于每次只由单排或者单列阵元完成,发射能量较低。并且,受限于行列寻址二维面阵的结构,在发射和接收的过程中仅能进行一个方向上的聚焦,生成的三维成像图像的质量较差。另外,如果利用全部阵元进行合成孔径成像,则需要多次信号发射,导致成像的速度较慢。
基于此,本申请实施例提供了一种基于行列寻址环形超声换能器的成像方法,其中,行列寻址环形超声换能器包括行阵元和列阵元,行阵元为环状。通过触发行阵元依次发射声波,可以产生具有目标倾斜度的第一柱面波,并利用列阵元对第一柱面波的第一回波信号进行接收。对得到的第一回波信号进行波束合成,得到目标倾斜度对应的第一成像数据,再利用各个目标倾斜度对应的第一成像数据进行相干叠加,得到第一三维图像数据。通过采取多角度柱面波复合的发射聚焦模式,实现仰角方向上的发射聚焦以及横向的接收聚焦。通过 触发列阵元依次发射声波,产生具有目标轴线位置的第二柱面波,并利用行阵元接收第二柱面波的第二回波信号,对第二回波信号进行波束合成,得到目标轴线位置对应的第二成像数据,对各个目标轴线位置对应的第二成像数据进行相干叠加,可以得到第二三维图像数据。通过采取多虚拟点源发散波复合的发射聚焦模式,实现横向上的发射聚焦和仰角方向上的接收聚焦。再将第一三维图像数据与第二三维图像数据进行相干叠加,得到三维成像图像。通过横向和仰角方向上的发射和接收聚焦,可以提高行列寻址环形超声换能器的生成的三维成像图像的质量,并且通过非聚焦波复合成像技术,可以提高成像速度,实现较高质量的三维成像图像的快速生成。
为了便于理解本申请实施例提供的基于行列寻址环形超声换能器的成像方法,下面结合图1所示的场景示例进行说明。参见图1所示,该图为本申请实施例提供的安装有行列寻址环形超声换能器的超声探头示意图。其中,匹配层、外电极、压电晶片、内电极和背衬构成行列寻址环形超声换能器的基本结构。
在实际应用中,超声探头中可以安装行列寻址环形超声换能器,用于医疗领域中的内窥成像,获得例如消化道内成像、血管内成像等成像环境中的超声图像。行列寻址环形超声换能器包括行阵元和列阵元,行阵元为环状。通过分别依触发行阵元和列阵元发射声波,可以分别产生具有目标倾斜度的第一柱面波和具有目标轴线位置的第二柱面波。再分别利用列阵元和行阵元接收回波信号,并进行波束合成和相干叠加,可以得到三维成像图像。参见图2所示,该图为本申请实施例提供的三维成像图像的示意图。
本领域技术人员可以理解,图1所示的示意图仅是本申请的实施方式可以在其中得以实现的一个示例。本申请实施方式的适用范围不受到该示意图任何方面的限制。
为了便于理解本申请,下面结合附图对本申请实施例提供的一种基于行列寻址环形超声换能器的成像方法进行说明。
参见图3,该图为本申请实施例提供的一种基于行列寻址环形超声换能器的成像方法的流程图,如图3所示,该方法可以包括S301-S309:
首先需要说明的是,行列寻址环形超声换能器包括行阵元和列阵元。参见图4,该图为本申请实施例提供的一种行列寻址环形超声换能器的阵元分布的示意图。其中,行阵元与列阵元相互垂直,行阵元为环状。
S301:触发各个所述行阵元依次发射声波,以产生具有目标倾斜度的第一柱面波。
通过触发环形的行阵元,可以发射柱面波。参见图5,该图为本申请实施例提供的一种行列寻址环形超声换能器的行阵元发射声波的示意图。为了对成像空间进行较为准确地成像,实现对于仰角方向上的发射聚焦,可以通过不同的延时依次触发各个行阵元发射声波,形成具有不同倾斜度的柱面波。例如,以图5中的柱面波为例,可以先触发位于上方的行阵元,再依次按照触发时间触发位于下方的行阵元,得到具有对应的目标倾斜度的第一柱面波。
目标倾斜度是指柱面波与竖直方向的之间角度,也就是图5中的角α。
第一柱面波的倾斜度与触发各个行阵元的时刻相关,本申请实施例提供了一种触发各个所述行阵元依次发射声波,以产生具有目标倾斜度的第一柱面波的具体实施方式,请参见下文。
S302:采集各个所述列阵元接收的所述第一柱面波的第一回波信号。
第一柱面波在发射后,如果遇到成像物体后则会产生第一回波信号,第一回波信号可以从成像物体回传至行列寻址环形超声换能器,再通过列阵元就可以接收横向的第一柱面波的第一回波信号。采集各个列阵元接收到的第一柱面波的第一回波信号,可以得到对应的成像数据。
S303:对所述第一回波信号进行波束合成,得到所述目标倾斜度对应的第一成像数据。
对第一回波信号进行波束合成,可以得到目标倾斜度对应的第一成像数据,第一成像数据可以表示对应于目标倾斜度的成像物体的一帧成像图像。
本申请实施例提供了一种对所述第一回波信号进行波束合成,得到所述目标倾斜度对应的第一成像数据的具体实施方式,请参见下文。
S304:对各个所述目标倾斜度对应的第一成像数据进行相干叠加,得到第一三维图像数据。
为了提高成像质量,可以生成并发射不同目标倾斜度对应的第一柱面波, 得到不同目标倾斜度对应的第一成像数据。再将各个目标倾斜度对应的第一成像数据进行相干叠加,得到质量较高的第一三维图像数据。
需要说明的是,在一次行阵元发射的过程中,只能形成一种目标倾斜度的第一柱面波。可以采用多次行阵元发射实现对于多个目标倾斜度的第一柱面波的发射,以及对对应的第一回波信号的接收和采集,生成各个目标倾斜度对应的第一成像数据。
S305:触发各个所述列阵元依次发射声波,以产生具有目标轴线位置的第二柱面波。
类似的,通过触发列阵元发射声波也可以生成柱面波。参见图6,该图为本申请实施例提供的一种行列寻址环形超声换能器的列阵元发射声波的示意图。为了对成像空间进行较为准确地成像,实现对于横向的发射聚焦,可以通过不同的延时依次触发各个列阵元发射声波,形成具有不同目标轴线位置的柱面波。
目标轴线位置为虚拟位置,可以是列阵元围成的环形的轴线位置,也可以是除列阵元围成的环形的轴线以外的任意的轴线位置。通过对列阵元进行不同时刻的依次触发,可以形成以目标轴线为轴线的第二柱面波。
第二柱面波对应的目标轴线位置与列阵元的发射时刻相关,本申请实施例提供了一种触发各个所述列阵元依次发射声波,以产生具有目标轴线位置的第二柱面波的具体实施方式,请参见下文。
S306:采集各个所述行阵元接收的所述第二柱面波的第二回波信号。
在发射第二柱面波后,当第二柱面波遇到成像物体后则会产生第二回波信号。第二回波信号可以从成像物体回传至行列寻址环形超声换能器,再通过行阵元就可以接收在仰角方向上的第二柱面波的第二回波信号。采集各个行阵元接收到的第二柱面波的第二回波信号,可以得到对应的成像数据。
S307:对所述第二回波信号进行波束合成,得到所述目标轴线位置对应的第二成像数据。
对第二回波信号进行波束合成,可以得到目标轴线位置对应的成像物体的第二成像数据,第二成像数据可以表示对应于目标轴线位置的成像物体的一帧成像图像。
本申请实施例提供了一种对所述第二回波信号进行波束合成,得到所述目标轴线位置对应的第二成像数据的具体实施方式,请参见下文。
S308:对各个所述目标轴线位置对应的第二成像数据进行相干叠加,得到第二三维图像数据。
为了提高成像质量,可以生成不同目标轴线位置对应的第二柱面波,得到不同目标轴线位置对应的第二成像数据。再将各个目标轴线位置对应的第二成像数据进行相干叠加,得到质量较高的第二三维图像数据。
需要说明的是,在一次列阵元发射的过程中,只能形成一种目标轴线位置的第二柱面波。可以采用多次列阵元发射实现对于多个目标轴线位置的第二柱面波的发射,以及对对应的第二回波信号的接收和采集,生成各个目标轴线位置对应的第二成像数据。
触发各个行阵元依次发射声波产生第一柱面波,得到第一三维图像数据的过程,也就是S301-S304,与触发各个列阵元依次发射声波产生第二柱面波,得到第二三维图像数据的过程,也就是S305-S308,是相互独立的。本申请实施例不限定得到第一三维图像数据与得到第二三维图像数据之间的顺序,可以先得到第一三维图像数据,之后得到第二三维图像数据;也可以先得到第二三维图像数据,之后得到第一三维图像数据。
S309:将所述第一三维图像数据与所述第二三维图像数据进行相干叠加,得到三维成像图像。
对于生成的第一三维图像数据与第二三维图像数据均是针对同一成像物体生成的三维图像数据。其中,第一三维图像数据与第二三维图像数据的发射和接收聚焦的方向不同,将得到的第一三维图像数据与第二三维图像数据进行相干叠加,可以生成较为准确的三维成像图像。
例如,当第一三维图像数据为I 1,第二三维图像数据为I 2时,三维图像数据I 3可以用I 3=I 1+I 2计算得到。
基于上述S301-S309的相关内容可知,通过触发行阵元依次发射声波,产生具有目标倾斜度的第一柱面波,实现了多角度的柱面波复合的发射聚焦模式,实现仰角方向的发射聚焦;再由列阵元接收第一回波信号,实现在横向上的接收聚焦。通过触发列阵元依次发射声波,产生具有目标轴线位置的第二柱 面波,实现了多虚拟点源发散波复合的发射聚焦模式,实现横向的发射聚焦;再由行阵元接收第二回波信号,实现在仰角方向上的接收聚焦。如此实现了仰角方向上的和横向的发射与接收聚焦,提高了三维成像质量。实现了将非聚焦波复合成像技术在行列寻址环形超声换能器中的使用,提高了成像速度。
在一种可能的实现方式中,可以根据目标倾斜度确定各个行阵元的发射时刻。本申请实施例提供一种触发各个所述行阵元依次发射声波,以产生具有目标倾斜度的第一柱面波的具体实施方式,具体包括:
根据各个所述行阵元的高度以及目标倾斜度,计算各个所述行阵元对应的发射时刻;
在各个所述行阵元对应的发射时刻依次触发各个所述行阵元发射声波,以产生具有所述目标倾斜度的第一柱面波。
各个行阵元的发射时刻可以根据行阵元的高度和目标倾斜度确定。以图5中的柱面波为例,当原点所在位置的行阵元的发射时刻为0时,高度在h处的行阵元的发射时间为如公式(1)所示:
Figure PCTCN2020130365-appb-000001
其中,α为目标倾斜度,c为声速。
根据各个行阵元的高度以及目标倾斜度,计算各个行阵元所对应的发射时刻。在各个行阵元对应的发射时刻依次触发行阵元发射声波,从而生成具有目标倾斜度的第一柱面波。
在本申请实施例中,通过各个行阵元的高度和本次所要生成的柱面波的目标倾斜度,确定各个行阵元对应的发射时刻。并根据各个行阵元的发射时刻触发行阵元,从而形成目标倾斜度的第一柱面波。
在一种可能的实现方式中,可以利用列阵元接收第一回波信号的时间来表示第一成像数据。本申请实施例提供了一种对所述第一回波信号进行波束合成,得到所述目标倾斜度对应的第一成像数据的具体实施方式,具体包括:
根据所述第一回波信号计算所述第一柱面波到达第一成像位置的第一时间与由所述第一成像位置到达第i个列阵元的第二时间之和,作为所述第i个列阵元对应的双向传播时间,i取1至n的整数,n为所述列阵元的数量;
根据各个所述列阵元对应的双向传播时间对所述第一回波信号进行波束合成,得到所述目标倾斜度对应的第一成像数据。
从第一柱面波到达第一成像位置,再由第一成像位置到达列阵元的过程为双向传播过程,利用双向传播时间可以表示第一成像数据。
其中,第一柱面波到达第一成像位置的第一时间可以由第一柱面波到第一成像位置的距离与声速的比值得到。参见图7,该图为本申请实施例提供的一种计算第一时间的示意图。虚线表示柱面波,高度为l,距y轴距离为r的点P表示第一成像位置。第一柱面波到达第一成像位置的第一时间如公式(2)所示:
Figure PCTCN2020130365-appb-000002
其中,α为目标倾斜度,c为声速。
在行列寻址环形超声换能器上分布着位置不同的n个列阵元,第一成像位置散射的第一回波信号可以被多个列阵元接收。第一回波信号从第一成像位置到达第i个列阵元的第二时间,可以用第一成像位置与第i个列阵元之间的距离与声速的比值计算得到,其中,i取1至n的整数。参见图8所示,该图为本申请实施例提供的一种计算第二时间的示意图。若第一成像位置用与y轴垂直的平面内的极坐标(r,β)表示,第i个列阵元用极坐标(R,iΔθ)表示,则第二时间如公式(3)所示:
Figure PCTCN2020130365-appb-000003
其中,R为列阵元围成的环形的半径;Δθ为相邻列阵元之间的角度差;r为P点到极坐标原点,也就是列阵元围成的环形的圆心的距离;β为P点到极坐标系x轴的角度;c为声速。
计算第一时间与第二时间的和,作为第i个列阵元对应的双向传播时间。再利用双向传播时间对第一回波信号进行波束合成,得到所述目标倾斜度对应的第一成像数据。第一成像数据可以如公式(4)所示:
I a(r,β)=RF column(i,α,t ec+t re)      (4)
其中,RF column(i,α)表示第i个列阵元接收到目标倾斜角为α对应的第一回波信号,t ec+t re为第一时间与第二时间的和,也就是第i个列阵元对应 的双向传播时间。
相对应的,对各个目标倾斜度对应的第一成像数据进行相干叠加得到的第一三维图像数据,可以如公式(5)表示:
I 1(r,β)=Σ αRF column(i,α,t ec+t re)      (5)
基于上述内容可知,通过分别计算第一时间和第二时间,可以得到第一柱面波从发射,再到第i个列阵元接收到第一回波信号的双向传播时间。利用双向传播时间可以表示第一成像数据。
在一种可能的实现方式中,触发列阵元发射声波形的时刻可以根据列阵元的位置与目标轴线时间的距离计算得到。在本申请实施例提供中,触发各个所述列阵元依次发射声波,以产生具有目标轴线位置的第二柱面波,具体包括:
根据各个所述列阵元的位置与目标轴线位置的距离,计算各个所述列阵元对应的发射时刻;
在各个所述列阵元对应的发射时刻依次触发各个所述列阵元发射声波,以产生具有所述目标轴线位置的第二柱面波。
第二柱面波是以目标轴线位置作为轴线的,需要根据目标轴线位置与各个列阵元之间的距离确定各个列阵元的发射时间。参见图9,该图为本申请实施例提供的一种触发列阵元发射声波的示意图。其中,O为极坐标原点,为列阵元围成的环形的轴心。S为目标轴线位置,极坐标为
Figure PCTCN2020130365-appb-000004
细虚线表示的是列阵元,第i个发射列阵元的极坐标为(R,jΔθ)。粗虚线表示的是未完全形成的第二柱面波。根据目标轴线位置与第i个列阵元之间的距离,确定第i个列阵元的发射时间如公式(6)所示:
Figure PCTCN2020130365-appb-000005
其中,c是声速。
根据各个列阵元对应的发射时间依次触发各个列阵元发射声波,可以产生具有目标轴线位置的第二柱面波。
基于上述内容可知,通过确定列阵元与目标轴线位置之间的距离,确定列阵元发射声波的时间,按照各个列阵元确定的发射声波的时间,可以生成对应于目标轴线的第二柱面波。
在一种可能的实现方式中,可以利用行阵元接收到第二回波信号的时间表示第二成像数据。本申请实施例提供了一种对所述第二回波信号进行波束合成,得到所述目标轴线位置对应的第二成像数据的具体实施方式,具体包括:
根据所述第二回波信号计算所述第二柱面波到达第二成像位置的第三时间与由所述第二成像位置到达第i个行阵元的第四时间之和,作为所述第i个行阵元对应的双向传播时间,i取1至m的整数,m为所述行阵元的数量;
根据各个所述行阵元对应的双向传播时间对所述第二回波信号进行波束合成,得到所述目标轴线位置对应的第二成像数据。
列阵元发射的第二柱面波在发射至第二成像位置时,会被散射生成第二回波信号,第二回波信号会到达超声换能器,被不同的行阵元接收。通过计算从列阵元发射第二柱面波至行阵元接收第二回波信号的双向传播时间,可以进一步得到利用双向传播时间表示的第二成像数据。
其中,第二柱面波到达第二成像位置的第三时间可以由第二柱面波的发射位置与第二成像位置之间的距离与声速的比值计算得到。参见图10,该图为本申请实施例提供的一种计算第三时间的示意图。其中,实线表示形成的以S点为目标轴线位置的第二柱面波,第二成像位置为点P,极坐标为(r,β)。第二柱面波到达第二成像位置的第三时间如公式(7)所示:
Figure PCTCN2020130365-appb-000006
其中,
Figure PCTCN2020130365-appb-000007
为目标轴线位置的极坐标,c为声速。
在行列寻址环形超声换能器上分布着位置不同的m个行阵元,第二成像位置散射的第二波信号可以被多个行阵元接收。第i个行阵元接收从第二成像位置到达第i个行阵元的第四时间可以用第二成像位置与第i个行阵元之间的距离与声速的比值计算得到,其中,i取1至m的整数。
对于高度为h的行阵元,第二回波信号从第二成像位置P点到达第i行阵元的第四时间如公式(8)所示:
Figure PCTCN2020130365-appb-000008
其中,c为声速,r为第二成像位置与目标轴线位置的距离,l为第二成像位置的高度。
计算第三时间与第四时间的和,作为第i个行阵元对应的双向传播时间。再利用双向传播时间对第二回波信号进行波束合成,得到所述目标轴线位置对应的第二成像数据。第二成像数据可以如公式(9)所示:
Figure PCTCN2020130365-appb-000009
其中,
Figure PCTCN2020130365-appb-000010
表示高度为h的第i个行阵元接收到目标轴线位置
Figure PCTCN2020130365-appb-000011
对应的第二回波信号,τ ecre为第三时间与第四时间的和,也就是第i个行阵元对应的双向传播时间。
相对应的,对各个目标轴线位置对应的第二成像数据进行相干叠加得到的第二三维图像数据,可以如公式(10)表示:
Figure PCTCN2020130365-appb-000012
基于上述内容可知,通过分别计算第三时间和第四时间,可以得到第二柱面波从发射,再到第i个行阵元接收到第二回波信号的双向传播时间。利用双向传播时间可以表示第二成像数据。
基于上述方法实施例提供的基于行列寻址环形超声换能器的成像方法,本申请实施例还提供了一种基于行列寻址环形超声换能器的成像装置,下面将结合附图对该基于行列寻址环形超声换能器的成像装置进行说明。
参见图11,该图为本申请实施例提供的一种基于行列寻址环形超声换能器的成像装置的结构示意图。所述行列寻址环形超声换能器包括行阵元以及列阵元,所述行阵元为环状,如图11所示,该基于行列寻址环形超声换能器的成像装置包括:
第一触发单元1101,用于触发各个所述行阵元依次发射声波,以产生具有目标倾斜度的第一柱面波;
第一采集单元1102,用于采集各个所述列阵元接收的所述第一柱面波的第一回波信号;
第一合成单元1103,用于对所述第一回波信号进行波束合成,得到所述目标倾斜度对应的第一成像数据;
第一叠加单元1104,用于对各个所述目标倾斜度对应的第一成像数据进行相干叠加,得到第一三维图像数据;
第二触发单元1105,用于触发各个所述列阵元依次发射声波,以产生具 有目标轴线位置的第二柱面波;
第二采集单元1106,用于采集各个所述行阵元接收的所述第二柱面波的第二回波信号;
第二合成单元1107,用于对所述第二回波信号进行波束合成,得到所述目标轴线位置对应的第二成像数据;
第二叠加单元1108,用于对各个所述目标轴线位置对应的第二成像数据进行相干叠加,得到第二三维图像数据;
第三叠加单元1109,用于将所述第一三维图像数据与所述第二三维图像数据进行相干叠加,得到三维成像图像。
在一种可能的实现方式中,所述第一触发单元1101,包括:
第一计算子单元,用于根据各个所述行阵元的高度以及目标倾斜度,计算各个所述行阵元对应的发射时刻;
第一触发子单元,用于在各个所述行阵元对应的发射时刻依次触发各个所述行阵元发射声波,以产生具有所述目标倾斜度的第一柱面波。
在一种可能的实现方式中,所述第一合成单元1103,包括:
第二计算子单元,根据所述第一回波信号计算所述第一柱面波到达第一成像位置的第一时间与由所述第一成像位置到达第i个列阵元的第二时间之和,作为所述第i个列阵元对应的双向传播时间,i取1至n的整数,n为所述列阵元的数量;
第一合成子单元,用于根据各个所述列阵元对应的双向传播时间对所述第一回波信号进行波束合成,得到所述目标倾斜度对应的第一成像数据。
在一种可能的实现方式中,所述第二触发单元1105,包括:
第三计算子单元,用于根据各个所述列阵元的位置与目标轴线位置的距离,计算各个所述列阵元对应的发射时刻;
第二触发子单元,用于在各个所述列阵元对应的发射时刻依次触发各个所述列阵元发射声波,以产生具有所述目标轴线位置的第二柱面波。
在一种可能的实现方式中,所述第二合成单元1107,包括:
第四计算子单元,用于根据所述第二回波信号计算所述第二柱面波到达第二成像位置的第三时间与由所述第二成像位置到达第j个行阵元的第四时间之 和,作为所述第j个行阵元对应的双向传播时间,j取1至m的整数,m为所述行阵元的数量;
第二合成子单元,用于根据各个所述行阵元对应的双向传播时间对所述第二回波信号进行波束合成,得到所述目标轴线位置对应的第二成像数据。
通过采取多虚拟点源发散波复合的发射聚焦模式,可以实现横向上的发射聚焦和仰角方向上的接收聚焦。再将第一三维图像数据与第二三维图像数据进行相干叠加,得到三维成像图像。通过横向和仰角方向上的发射和接收聚焦,可以提高行列寻址环形超声换能器的生成的三维成像图像的质量。并且通过非聚焦波复合成像技术,实现了将快速成像算法应用于行列寻址环形超声换能器,可以提高行列寻址环形超声换能器的成像速度,实现较高质量的三维成像图像的快速生成。
需要说明的是,本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统或装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在 没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种基于行列寻址环形超声换能器的成像方法,其特征在于,所述行列寻址环形超声换能器包括行阵元以及列阵元,所述行阵元为环状,所述方法包括:
    触发各个所述行阵元依次发射声波,以产生具有目标倾斜度的第一柱面波;
    采集各个所述列阵元接收的所述第一柱面波的第一回波信号;
    对所述第一回波信号进行波束合成,得到所述目标倾斜度对应的第一成像数据;
    对各个所述目标倾斜度对应的第一成像数据进行相干叠加,得到第一三维图像数据;
    触发各个所述列阵元依次发射声波,以产生具有目标轴线位置的第二柱面波;
    采集各个所述行阵元接收的所述第二柱面波的第二回波信号;
    对所述第二回波信号进行波束合成,得到所述目标轴线位置对应的第二成像数据;
    对各个所述目标轴线位置对应的第二成像数据进行相干叠加,得到第二三维图像数据;
    将所述第一三维图像数据与所述第二三维图像数据进行相干叠加,得到三维成像图像。
  2. 根据权利要求1所述的方法,其特征在于,所述触发各个所述行阵元依次发射声波,以产生具有目标倾斜度的第一柱面波,包括:
    根据各个所述行阵元的高度以及目标倾斜度,计算各个所述行阵元对应的发射时刻;
    在各个所述行阵元对应的发射时刻依次触发各个所述行阵元发射声波,以产生具有所述目标倾斜度的第一柱面波。
  3. 根据权利要求1所述的方法,其特征在于,所述对所述第一回波信号进行波束合成,得到所述目标倾斜度对应的第一成像数据,包括:
    根据所述第一回波信号计算所述第一柱面波到达第一成像位置的第一时 间与由所述第一成像位置到达第i个列阵元的第二时间之和,作为所述第i个列阵元对应的双向传播时间,i取1至n的整数,n为所述列阵元的数量;
    根据各个所述列阵元对应的双向传播时间对所述第一回波信号进行波束合成,得到所述目标倾斜度对应的第一成像数据。
  4. 根据权利要求1所述的方法,其特征在于,所述触发各个所述列阵元依次发射声波,以产生具有目标轴线位置的第二柱面波,包括:
    根据各个所述列阵元的位置与目标轴线位置的距离,计算各个所述列阵元对应的发射时刻;
    在各个所述列阵元对应的发射时刻依次触发各个所述列阵元发射声波,以产生具有所述目标轴线位置的第二柱面波。
  5. 根据权利要求1所述的方法,其特征在于,所述对所述第二回波信号进行波束合成,得到所述目标轴线位置对应的第二成像数据,包括:
    根据所述第二回波信号计算所述第二柱面波到达第二成像位置的第三时间与由所述第二成像位置到达第j个行阵元的第四时间之和,作为所述第j个行阵元对应的双向传播时间,j取1至m的整数,m为所述行阵元的数量;
    根据各个所述行阵元对应的双向传播时间对所述第二回波信号进行波束合成,得到所述目标轴线位置对应的第二成像数据。
  6. 一种基于行列寻址环形超声换能器的成像装置,其特征在于,所述行列寻址环形超声换能器包括行阵元以及列阵元,所述行阵元为环状,所述装置包括:
    第一触发单元,用于触发各个所述行阵元依次发射声波,以产生具有目标倾斜度的第一柱面波;
    第一采集单元,用于采集各个所述列阵元接收的所述第一柱面波的第一回波信号;
    第一合成单元,用于对所述第一回波信号进行波束合成,得到所述目标倾斜度对应的第一成像数据;
    第一叠加单元,用于对各个所述目标倾斜度对应的第一成像数据进行相干叠加,得到第一三维图像数据;
    第二触发单元,用于触发各个所述列阵元依次发射声波,以产生具有目标 轴线位置的第二柱面波;
    第二采集单元,用于采集各个所述行阵元接收的所述第二柱面波的第二回波信号;
    第二合成单元,用于对所述第二回波信号进行波束合成,得到所述目标轴线位置对应的第二成像数据;
    第二叠加单元,用于对各个所述目标轴线位置对应的第二成像数据进行相干叠加,得到第二三维图像数据;
    第三叠加单元,用于将所述第一三维图像数据与所述第二三维图像数据进行相干叠加,得到三维成像图像。
  7. 根据权利要求6所述的装置,其特征在于,所述第一触发单元,包括:
    第一计算子单元,用于根据各个所述行阵元的高度以及目标倾斜度,计算各个所述行阵元对应的发射时刻;
    第一触发子单元,用于在各个所述行阵元对应的发射时刻依次触发各个所述行阵元发射声波,以产生具有所述目标倾斜度的第一柱面波。
  8. 根据权利要求6所述的装置,其特征在于,所述第一合成单元,包括:
    第二计算子单元,根据所述第一回波信号计算所述第一柱面波到达第一成像位置的第一时间与由所述第一成像位置到达第i个列阵元的第二时间之和,作为所述第i个列阵元对应的双向传播时间,i取1至n的整数,n为所述列阵元的数量;
    第一合成子单元,用于根据各个所述列阵元对应的双向传播时间对所述第一回波信号进行波束合成,得到所述目标倾斜度对应的第一成像数据。
  9. 根据权利要求6所述的装置,其特征在于,所述第二触发单元,包括:
    第三计算子单元,用于根据各个所述列阵元的位置与目标轴线位置的距离,计算各个所述列阵元对应的发射时刻;
    第二触发子单元,用于在各个所述列阵元对应的发射时刻依次触发各个所述列阵元发射声波,以产生具有所述目标轴线位置的第二柱面波。
  10. 根据权利要求6所述的装置,其特征在于,所述第二合成单元,包括:
    第四计算子单元,用于根据所述第二回波信号计算所述第二柱面波到达第二成像位置的第三时间与由所述第二成像位置到达第j个行阵元的第四时间之 和,作为所述第j个行阵元对应的双向传播时间,j取1至m的整数,m为所述行阵元的数量;
    第二合成子单元,用于根据各个所述行阵元对应的双向传播时间对所述第二回波信号进行波束合成,得到所述目标轴线位置对应的第二成像数据。
PCT/CN2020/130365 2020-11-20 2020-11-20 一种基于行列寻址环形超声换能器的成像方法及装置 WO2022104677A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/130365 WO2022104677A1 (zh) 2020-11-20 2020-11-20 一种基于行列寻址环形超声换能器的成像方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/130365 WO2022104677A1 (zh) 2020-11-20 2020-11-20 一种基于行列寻址环形超声换能器的成像方法及装置

Publications (1)

Publication Number Publication Date
WO2022104677A1 true WO2022104677A1 (zh) 2022-05-27

Family

ID=81708215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130365 WO2022104677A1 (zh) 2020-11-20 2020-11-20 一种基于行列寻址环形超声换能器的成像方法及装置

Country Status (1)

Country Link
WO (1) WO2022104677A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117379093A (zh) * 2023-12-11 2024-01-12 深圳英美达医疗技术有限公司 一种基于环阵换能器的超声成像方法及超声探头系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160340A (en) * 1998-11-18 2000-12-12 Siemens Medical Systems, Inc. Multifrequency ultrasonic transducer for 1.5D imaging
CN101238390B (zh) * 2005-08-05 2012-08-15 皇家飞利浦电子股份有限公司 一种弯曲2d阵列的超声换能器以及体积成像的方法
CN104414681A (zh) * 2013-09-10 2015-03-18 深圳迈瑞生物医疗电子股份有限公司 超声连续波多普勒成像系统
CN105916599B (zh) * 2013-12-19 2019-03-26 B-K医疗公司 具有集成变迹的超声成像换能器阵列
CN109953771A (zh) * 2016-06-27 2019-07-02 中国科学院苏州生物医学工程技术研究所 超声成像方法、超声弹性成像方法及微型超声装置
US20200196990A1 (en) * 2018-12-21 2020-06-25 Industrial Technology Research Institute Ultrasonic imaging device and imaging method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160340A (en) * 1998-11-18 2000-12-12 Siemens Medical Systems, Inc. Multifrequency ultrasonic transducer for 1.5D imaging
CN101238390B (zh) * 2005-08-05 2012-08-15 皇家飞利浦电子股份有限公司 一种弯曲2d阵列的超声换能器以及体积成像的方法
CN104414681A (zh) * 2013-09-10 2015-03-18 深圳迈瑞生物医疗电子股份有限公司 超声连续波多普勒成像系统
CN105916599B (zh) * 2013-12-19 2019-03-26 B-K医疗公司 具有集成变迹的超声成像换能器阵列
CN109953771A (zh) * 2016-06-27 2019-07-02 中国科学院苏州生物医学工程技术研究所 超声成像方法、超声弹性成像方法及微型超声装置
US20200196990A1 (en) * 2018-12-21 2020-06-25 Industrial Technology Research Institute Ultrasonic imaging device and imaging method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117379093A (zh) * 2023-12-11 2024-01-12 深圳英美达医疗技术有限公司 一种基于环阵换能器的超声成像方法及超声探头系统
CN117379093B (zh) * 2023-12-11 2024-03-15 深圳英美达医疗技术有限公司 一种基于环阵换能器的超声成像方法及超声探头系统

Similar Documents

Publication Publication Date Title
JP5137832B2 (ja) 容積測定画像形成のための湾曲2次元アレイ超音波トランスデューサ及び方法
CN101443678B (zh) 具有集成的波束形成的多维cmut阵列
Demore et al. Real-time volume imaging using a crossed electrode array
EP2325672B1 (en) Spatial compound imaging in an ultrasound system
JP2003260055A5 (zh)
JP2007152127A (ja) 合成開口のための超音波イメージングトランスデューサアレイ
US8038620B2 (en) Fresnel zone imaging system and method
US10705210B2 (en) Three-dimensional (3-D) imaging with a row-column addressed (RCA) transducer array using synthetic aperture sequential beamforming (SASB)
JP2004089311A (ja) 超音波送受信装置
JP7340868B2 (ja) 超音波方法及び装置
US20140050048A1 (en) Harmonic Ultrasound Imaging Using Synthetic Aperture Sequential Beamforming
WO2015015848A1 (ja) 超音波診断装置、超音波診断方法、及び超音波診断プログラム
US9945946B2 (en) Ultrasonic depth imaging
WO2022104677A1 (zh) 一种基于行列寻址环形超声换能器的成像方法及装置
US10859696B2 (en) Row-column addressed 2-D array with a double curved surface
Hansen et al. Compounding in synthetic aperture imaging
US9855022B2 (en) 3-D flow estimation using row-column addressed transducer arrays
CN112450973B (zh) 一种基于行列寻址环形超声换能器的成像方法及装置
CN102641135A (zh) 超声波探测器和超声波诊断装置
JP2004261572A (ja) ハーモニックな信号及びハーモニックでない信号を用いた超音波画像収差補正
CN109758091A (zh) 一种超声成像方法及装置
Yen Beamforming of sound from two-dimensional arrays using spatial matched filters
CN111580112A (zh) 基于平面波的水下声呐传感器阵列成像方法
CN208334642U (zh) 基于球面阵的水下目标声成像装置
WO2020124474A1 (zh) 声波聚焦透镜、超声成像装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961968

Country of ref document: EP

Kind code of ref document: A1