WO2022104514A1 - 电池模组和电动车辆 - Google Patents

电池模组和电动车辆 Download PDF

Info

Publication number
WO2022104514A1
WO2022104514A1 PCT/CN2020/129376 CN2020129376W WO2022104514A1 WO 2022104514 A1 WO2022104514 A1 WO 2022104514A1 CN 2020129376 W CN2020129376 W CN 2020129376W WO 2022104514 A1 WO2022104514 A1 WO 2022104514A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery module
cells
cell
battery
cooling
Prior art date
Application number
PCT/CN2020/129376
Other languages
English (en)
French (fr)
Inventor
陆珂伟
周定贤
李钊
徐栋
赵鹏飞
Original Assignee
上海汽车集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海汽车集团股份有限公司 filed Critical 上海汽车集团股份有限公司
Priority to JP2023529097A priority Critical patent/JP7554360B2/ja
Priority to EP20961806.5A priority patent/EP4249314A1/en
Priority to PCT/CN2020/129376 priority patent/WO2022104514A1/zh
Priority to US18/037,256 priority patent/US20240123838A1/en
Publication of WO2022104514A1 publication Critical patent/WO2022104514A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of power batteries, and more particularly, to battery modules and electric vehicles.
  • Power batteries represented by lithium-ion batteries, especially secondary power batteries, as their important energy storage devices.
  • Power batteries can provide all or the main source of power for vehicles through continuous discharge.
  • the energy density of power batteries is constantly improving.
  • the manufacturing technology of these power batteries is also constantly improving. Improvements to provide safer, more cost-effective, and more flexible power batteries for use in various vehicles.
  • the first technical solution relies on three levels of cell-module-battery pack to design the power battery, but the first technical solution involves many parts, low integration efficiency and high manufacturing cost.
  • the second technical solution is to design the power battery by relying on the two levels of the battery cell and the battery pack. For example, the battery cell is directly fixed in the tray of the battery pack by adhesive to remove the module level.
  • the second technical solution has complicated manufacturing process, low safety and high maintenance cost.
  • An object of the present invention is to provide an improved battery module and an electric vehicle powered by the battery module, the battery module of the present invention is used as a modular power battery, designed with highly integrated and simplified parts A complete functional energy storage device, so the integration efficiency is high, the safety is high, the maintenance cost is low, and the manufacturing platform can be realized. According to the power requirements of various types of electric vehicles, one or more battery modules can be directly installed in suitable parts of the electric vehicle to provide power for the electric vehicle.
  • a battery module including: a plurality of cells; and a cell confinement structure including an inner frame and an outer casing assembled with the inner frame to form a plurality of cavities,
  • the plurality of chambers receive the plurality of cells in a one-to-one correspondence to encapsulate and manage the plurality of cells
  • the inner frame includes an elastic element forming at least one first surface of each chamber, the elastic The element is elastically deformed due to being squeezed by the corresponding cell received in each chamber by a preset amount, so that the elastically deformed elastic element applies a first force to the corresponding cell, and wherein in response to the corresponding cell being in In operation, it expands or contracts reversibly, and the elastically deformed elastic element is further squeezed or tends to recover, so that the first acting force determines the binding force on the corresponding cell.
  • the elastically deformed elastic element is further squeezed to the limit of elastic deformation.
  • the elastic element is a laminate comprising two elastic layers and an insulating layer interposed between the two elastic layers.
  • the inner frame includes insulating elements forming at least one second surface of each chamber, the insulating elements providing support to the plurality of cells and having a low thermal conductivity.
  • a plurality of elastic elements and a plurality of insulating elements are provided, the plurality of elastic elements and the plurality of insulating elements alternating perpendicular to each other to form the at least one first surface of each chamber and the at least one second surface, the area of the first surface is greater than the area of the second surface.
  • the outer housing includes a cooling element for supporting and cooling the plurality of cells, the cooling element including a cooling plate forming a third surface of each cavity, the cooling plate being adhered to the plurality of cells via thermally conductive glue. a cell.
  • the outer casing wraps the inner frame and is connected to the cooling plate to seal the plurality of chambers.
  • the cooling element includes reinforcing ribs disposed on both sides of the cooling plate and extending perpendicular to the cooling plate, the reinforcing ribs being connected to the outer casing and applying a second force to the plurality of cells via the outer casing, The second force is greater than the first force.
  • the plurality of cavities are divided into a first set of cavities and a second set of cavities
  • the cooling plate includes oppositely positioned first and second cooling surfaces, the first cooling surface forming the first set of cavities a third surface of each of the chambers, and the second cooling surface forms a third surface of each of the second set of chambers.
  • the cell restraint structure includes an insulating element interposed between the outer casing and the plurality of electric cells, the insulating element is adhered to the outer casing and the plurality of electric cells by thermally conductive glue, and the insulating element is insulated.
  • the element has a high thermal conductivity.
  • the cell restraint structure includes a smoke guide element interposed between the outer housing and the plurality of cells, the smoke guide element being configured to define a smoke channel for the plurality of cells.
  • the smoke guide element comprises a main panel made of insulating material with high thermal conductivity, the surface of the main panel facing the outer casing is adhered to the outer casing by thermally conductive glue.
  • the heat-conducting element further includes a flange disposed on a surface of the main panel facing the plurality of battery cells, and the flange forms a flue gas channel by abutting against the plurality of battery cells.
  • the flanges include a first flange portion extending perpendicularly to the main panel on both sides of the main panel, a second flange portion disposed inwardly parallel and spaced from the first flange portion, and vertically disposed on the main panel. a third flange part between the first flange part and the second flange part, and the second flange part is provided with at least one opening.
  • the first flange portion is made of a material having a thermal conductivity
  • the second flange portion and the third flange portion are made of a material having a low thermal conductivity.
  • heat insulating patches are provided on the surfaces of the plurality of electric cores facing the smoke guide element.
  • the outer housing includes a pressure relief valve on one end side of the battery module, the pressure relief valve is positioned horizontally, so that the flue gas flowing to the pressure relief valve through the flue gas passage is laterally discharged to the outside environment .
  • the pressure relief valve is covered by a filter element, so that the flue gas flowing to the pressure relief valve through the flue gas passage is first filtered by the filter element.
  • an electric vehicle comprising: a battery module compartment; and one or more battery modules as described above, the one or more battery modules passing through one or more physical or Electrical connection accessories are installed in the battery module compartment.
  • each component of the cell restraint structure in the battery module according to the present invention is used to package and manage the plurality of cells individually or in groups, so that each component is optimally utilized, improving the battery model.
  • Group integration efficiency In particular, the force on the cell during operation can be better controlled by the elastic element.
  • the heat conduction between the cells can be supported and isolated by means of the insulating elements.
  • the utilization efficiency of the cooling element can be improved.
  • the cell can be electrically insulated from the outer casing by the insulating element, and damage to the cell can be prevented during the assembly process.
  • the thermal runaway protection of the cells can be optimized by means of smoke guide elements.
  • FIG. 1 is an assembled view of a battery module according to an embodiment of the present invention.
  • FIG. 2 is an exploded view of the battery module of FIG. 1 .
  • FIG. 3 is a further exploded view of a portion of the battery module of FIG. 1 .
  • FIG. 4 is a perspective view of an outer case of a battery module according to an embodiment of the present invention.
  • FIG 5 is a perspective view of a cooling plate of a battery module according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of the battery module of FIG. 1 .
  • FIG. 7 is a perspective view of a smoke guide element of a battery module according to an embodiment of the present invention.
  • FIG. 8 is a top view of the battery module of FIG. 1 .
  • FIG. 9 is a partial cross-sectional view of the battery module in the dotted box in FIG. 8 .
  • the battery module proposed in the present invention can be directly installed in a vehicle (eg, an electric vehicle) as an electrical device through one or more physical or electrical connection accessories, therefore, such a battery module has been It can be operated independently and can be applied without further encapsulation.
  • a vehicle eg, an electric vehicle
  • the assembled battery module 10 in FIG. 1 may be suitable for electric vehicles, and the electric vehicles mentioned in the present invention include pure electric vehicles or hybrid electric vehicles.
  • an electric vehicle is provided with a battery module compartment (not shown) on the chassis, and the battery module 10 may be installed in the battery module compartment through one or more physical or electrical connection accessories to be fixed relative to the battery module compartment and is electrically connected to the electric motor of the electric vehicle.
  • the volume of a specific battery module compartment corresponds to a multiple of the volume of the battery module 10 , so that the battery module 10 can be mass-produced to be suitable for different electric vehicles.
  • the disassembled battery module 10 shows a plurality of battery cells 100 located inside the battery module.
  • the battery cells 100 are ternary lithium battery cells.
  • the battery cell 100 may include, but not limited to, different types such as a hard case, a soft package, and a cylinder.
  • the shape of the cell 100 described below is a six-sided cube including upper and lower surfaces 112 and 114 oppositely positioned along the Z axis, front and rear surfaces 118 and 116 oppositely positioned along the Y axis, and The two side surfaces with opposite axes, wherein the upper surface 112 and the lower surface 114 of the cell 100 have significantly larger areas, are hereinafter referred to as large surfaces.
  • the battery module 10 includes a cell confinement structure configured to encapsulate and manage the plurality of cells 100 .
  • the cell confinement structure encapsulates the plurality of cells 100 refers to supporting, isolating and sealing the plurality of cells 100 in physical space, while the cell confinement structure manages the plurality of cells 100 mainly refers to the electrical connection, thermal conduction , and thermal runaway protection to manage the plurality of cells 100 .
  • the shape and size of each component in the cell restraint structure corresponds to the shape and size of the plurality of cells 100 and/or the cell group 110 formed by the plurality of cells 100, In order to achieve a stable structure of the battery module 10 .
  • the cell restraining structure includes an inner frame and an outer casing assembled with the inner frame to form a plurality of cavities in rows and columns, the plurality of cavities receiving and fixing the plurality of cells 100 in a one-to-one correspondence .
  • the inner frame includes an elastic element 120 and a heat insulating element 140 , wherein the elastic element 120 forms at least one first surface of each chamber, the first surface abuts against the upper surface 112 and/or the lower surface of the corresponding cell 100 The surface 114 ; the insulating element 140 forms at least one second surface of each cavity, the second surface abuts one or both of the two side surfaces of the corresponding cell 100 . Therefore, the area of the first surface of each chamber is larger than the area of the second surface.
  • a plurality of insulating elements 140 and a plurality of elastic elements 120 are provided, which may be sheet materials and alternately arranged perpendicular to each other to form a A plurality of open spaces corresponding to the plurality of battery cells 100 are placed, so that the plurality of battery cells 100 are placed in a one-to-one correspondence.
  • the number of insulating elements 140 is N+1
  • the number of elastic elements 120 is N to form 2N open spaces, where N ⁇ 1 and is an integer.
  • the plurality of cells 100 are firstly divided into a plurality of rows of cells, for example, referring to FIG. 2 or FIG. 3 , each row of cells includes upper cells and The lower cell, and the elastic element 120 is sandwiched between the upper cell and the lower cell, the elastic element 120 can provide a first force A (refer to FIG. 6 ) for the cell 100 in operation, which will be described in detail below describe.
  • the elastic element 120 is made of elastic material such as rubber, foam, or structural glue.
  • the heat insulation element 140 can reduce or even prevent the plurality of cells Thermal conduction between column cells.
  • the insulating element 140 is made of a low thermal conductivity material, including but not limited to epoxies and aerogels.
  • each column of cells may include one or more than two cells 100 .
  • each column of cells includes three cells 100, in this case, the number of heat insulating elements 140 is N+1, and the number of elastic elements 120 is 2N to form 3N open spaces.
  • Each row of cells includes an upper cell, a middle cell and a lower cell that are stacked up and down in the Z-axis direction, and the two elastic elements 120 are sandwiched between the upper cell and the middle cell, and the middle cell respectively. between the core and the lower cell.
  • the elastic element 120 may be implemented as a laminate comprising two elastic layers and interposed between the two elastic layers The insulating layer, therefore, the laminate is both elastic and insulating.
  • the plurality of cells 100 in the plurality of open spaces together constitute a cell pack 110
  • the cell pack 110 includes an upper surface 112 and a lower surface 114 oppositely positioned along the Z-axis direction, along the Y-axis direction.
  • the rear surface 116 and the front surface 118 are oppositely positioned, and the two side surfaces 119 are oppositely positioned along the Z-axis.
  • the upper surface 112 of the cell group 110 is formed by the upper surface of the upper cell of the multi-row cell
  • the lower surface 114 of the cell group 110 is formed by the lower surface of the lower cell of the multi-row cell.
  • the rear surface 116 of the cell group 110 is composed of the rear surfaces of the plurality of cells 100
  • the front surface 118 of the cell group 110 is composed of the front surfaces of the plurality of cells 100
  • the side of the cell group 110 The surface 119 is constituted by the side surfaces of the two columns of cells located on both end sides of the cell group 110 .
  • the inner frame further includes an insulating element 160 covering the upper surface 112 and the lower surface 114 of the cell group 110 , so that the insulating element 160 is located between the outer casing and the plurality of cells 100 .
  • the insulating elements 160 are respectively adhered to the upper surface 112 and the lower surface 114 of the cell group 110 via an adhesive.
  • the insulating element 160 may be a wear-resistant sheet material with a thickness of between 0.2-0.5 mm, hardly affecting the volume of the plurality of chambers.
  • the insulating element 160 is configured to electrically insulate the upper surface 112, ie, the large surface, of the cell pack 110 from the outer casing, while also preventing damage to the cell pack 110 because the insulating element 160 may be damaged during assembly of the outer casing. The friction between the outer casing and the large surface of the battery pack 110 can be prevented.
  • the insulating element 160 is made of insulating material with high thermal conductivity, including but not limited to a composite of silicone rubber and glass fiber, etc., so that the insulating element 160 has both electrical insulation and good thermal conductivity, so as not to The large surface of the battery pack 110 is hindered from dissipating heat.
  • the cell restraint structure also includes an electrical system for electrical connection and electrical detection of the battery module 10 .
  • the electrical system includes a high voltage connection device, a low voltage sampling device, and an electrical termination device 550 .
  • each cell 100 has two tabs (or posts), ie, a positive tab (or post) and a negative tab (or post).
  • the positive tab and the negative tab are partially covered by the tab top cover, and the tab top cover may be provided with a heat insulating sheet, such as a mica sheet, etc., to prevent the temperature of the external environment from affecting the working performance of the cell.
  • the high voltage connection device includes a plurality of high voltage connection pieces 520, for example, the high voltage connection pieces 520 are aluminum bars, copper bars, or other forms of current carriers.
  • the high-voltage connecting piece 520 is electrically connected to the positive terminal of one cell 100 and the negative terminal of the other cell 100 among the two cells 100 adjacently arranged in the X-axis direction, and the electrical connection is located at one end side of the cell group 110 .
  • the positive terminal of one cell 100 and the negative terminal of the other cell 100 of the pair of cells 100 are aluminum bars, copper bars, or other forms of current carriers.
  • the low-voltage sampling device includes an FFC (flexible flat cable), an FPC (flexible circuit board), a wire harness, or other forms of electrical signal carriers, and the low-voltage sampling device includes a metal sampling piece 530 electrically connected to each high-voltage connection piece 520, In order to detect the voltage and temperature of each battery cell 100, and transmit electrical signals related to the voltage and temperature of each battery cell 100 to a BMS battery management system (not shown).
  • the BMS battery management system may be separated from the battery module 10 or integrated in the battery module 10 .
  • the electrical termination device 550 is provided (eg, by adhesive) on one of the insulating elements 140 on one end side of the cell pack 110 .
  • the electrical termination device 550 is integrally injection-molded, blistered, clamped, and heat-riveted to two high-voltage connection pieces 520 a, which are respectively electrically connected to the pair of cells located at the other end side of the cell group 110 .
  • the positive tab of one cell 100 and the negative tab of the other cell 100 are used to finally collect the voltage and current provided by the plurality of cells 100 that are electrically connected through the plurality of high-voltage connection pieces 520 .
  • the electrical termination device 550 is also snap-fitted, screwed, and heat-riveted to the low-voltage sampling device to transmit electrical signals related to the voltage and temperature of each cell 100 .
  • the electrical system is tightly fitted to the front surface 118 and side surfaces of the cell pack 110 in a suitable manner, and further description of the electrical system is reasonably omitted in order to more clearly illustrate other components of the cell restraint structure.
  • the outer case is then assembled, optionally made of a metallic material and wrapping the inner frame (ie, the large face of the cell pack 110, the front face 118, and the two side faces 119) to give the battery mold Group 10 provides packaging stiffness.
  • the outer casing includes: a molding body 200 (refer to FIG. 4 ) with a cross-section similar to a U-shape, the molding body 200 is matched with the large surface and the front surface 118 of the battery pack 110 ;
  • the second end plate 240 is provided with a A filter element 600 for filtering combustibles in the flue gas and a pressure relief element 620 (refer to FIG. 2 ) surrounded or covered by the filter element.
  • the outer casing further includes a cooling element 300 for supporting and cooling the plurality of battery cells 100 .
  • the cooling element 300 made of a metallic material includes a cooling plate 320 forming a third surface of each cavity, the third surface abutting the rear surface 116 of the corresponding cell 100 and, thus, the rear surface 116 of the cell pack 110 Adhered to the cooling plate 320 by an insulating thermally conductive glue.
  • the inside of the cooling plate 320 may be provided with flow channels of various shapes, and the length of the cooling plate 320 along the X-axis direction is slightly longer than the length of the battery pack 110 , so that when the cooling plate protrudes beyond the length of the battery pack 110 , An inlet 301 and an outlet 302 are provided at one end, and the cooling liquid from the cooling liquid source can enter the cooling plate 320 through the inlet 301 , flow through various shaped flow channels, and then leave the outlet 302 .
  • the inlet 301 and the outlet 302 of the cooling liquid are located on the same side as the first end plate 220 .
  • the cooling element 300 further includes reinforcing ribs 310 disposed on both sides of the cooling plate 320 and extending perpendicular to the cooling plate 320, the reinforcing ribs 310 being connected to the outer casing by welding, gluing or other suitable means, such as , connected to the two free ends 220 of the U-shaped molding body 200 (refer to FIG. 4 ) to completely encapsulate the plurality of battery cells 100 .
  • the cooling plate 320 is provided with the first cooling surface 312 and the second cooling surface 314 positioned oppositely, and the reinforcing ribs 310 are symmetrically arranged relative to the cooling plate 320, so that the cooling element 300 has a
  • the cross-sectional shape is "I" shape.
  • the cell pack 110 includes the first cell pack 110a and the second cell pack 110b divided into the same configuration, and accordingly, the plurality of chambers are divided into chambers for receiving the first cell pack 110a
  • the first set of cavities and the second set of cavities for receiving the second cell set 110b, the first cooling surface 312 forming the third surface of each of the first set of cavities, and the second cooling surface 314 A third surface of each chamber in the second set of chambers is formed.
  • the cooling element 300 collectively supports and cools the first cell group 110a and the second cell group 110b.
  • the battery cell 100 can be reversibly charged to expand or discharge to shrink during operation, that is, the volume of the battery cell 100 increases during charging, and the volume of the battery cell 100 decreases during discharge.
  • the battery cell 100 may begin to expand irreversibly, that is, the volume of the battery cell 100 increases irreversibly, and the irreversibly expanded battery cell 100 expands during charging or shrinks during discharge.
  • the force change of the corresponding battery cell 100 may be caused.
  • the corresponding force on the battery cell 100 is too large or the force on the entire battery cell group 110 is uneven, the service performance and life of the battery cell 100 will be affected, and in severe cases, a safety accident may be caused.
  • the corresponding cells 100 located in each chamber are constrained by the elastic element 120 , the heat insulating element 140 , the cooling element 300 , and the molded body 200 of the outer casing.
  • the elastic elements 120 are elastically deformed due to being squeezed by the corresponding battery cells 100 by a predetermined amount, so that the elastically deformed elastic elements 120 are elastically deformed.
  • a first force A is applied to the corresponding cell 100 .
  • the elastically deformed elastic element 120 In response to the reversible expansion or contraction of the corresponding cell 100 in operation, the elastically deformed elastic element 120 is further squeezed or tends to recover, so that the first force A determines the binding force on the corresponding cell 100 . Due to the elastic properties of the elastic element 120 , the influence of the volume change of the corresponding battery cell 100 on the value of the first acting force A is small. Compared with the prior art, the first acting force A provided by the elastic element 120 is substantially constant and is more favorable for the operation of the battery cell 100 compared with the restraining force provided directly to the battery cell 100 through the packaging shell.
  • the elastically deformed elastic element 120 is further squeezed to the limit of elastic deformation in response to the corresponding cell 100 beginning to expand irreversibly during operation.
  • the corresponding battery cell 100 together with the elastic element 120 reaching the limit of elastic deformation squeezes the molding body 200 of the outer casing, causing a slight deformation of the outer casing, so that the outer casing begins to determine the restraint force on the battery cell 100.
  • the restraining force on the aged battery cells 100 is within a reasonable range, and the rapid deterioration of the performance and life of the battery cells 100 is avoided.
  • connection surfaces formed by connecting the free ends 220 of 200 apply a second force B to the plurality of battery cells 100 , so as to avoid failure of the packaging structure of the battery module 10 .
  • the second force B is greater than the first force A.
  • the preset amount of elastic deformation (ie, preload) of the elastic element 120 may be designed based on the elastic modulus of the elastic element 120 and the desired first force A. Additionally, the thickness of the elastic member 120 may be designed based on the thickness of the corresponding cell 100 and the first expansion rate and/or contraction rate at which the corresponding cell 100 reversibly expands or contracts during operation. For example, the first expansion ratio and/or shrinkage ratio is any value in the range of 0-2%. Alternatively, the thickness of the elastic element 120 may be designed based on the thickness of the corresponding cell 100 and the second expansion rate at which the corresponding cell 100 begins to expand irreversibly during operation. For example, the second expansion ratio is any value from 0 to 8%.
  • the one or more cells 100 in the battery module 10 thermally runaway during operation, the one or more cells 100 will rapidly heat up and emit fumes.
  • the heat of the flue gas will be conducted to other cells 100 through the spread of the flue gas, affecting the performance and safety of the entire battery module 10; on the other hand, the flue gas contains a lot of combustibles, if the If the combustibles are discharged from the pressure relief device of the battery module 10 to the external environment without being treated, these combustibles may be combusted by means of the air in the external environment, which brings a safety risk again.
  • the cell confinement structure further includes a smoke guide element 580 positioned between the outer casing and the plurality of cells 100 and adhered to the outside by an adhesive case.
  • the smoke guide element 580 is configured to define a common smoke channel 590 for the entire battery pack 110 .
  • the smoke guide element 580 includes a main panel 582, the area of the main panel 582 is equal to the area of the front surface 118 of the battery pack 110, and the main panel 582 is made of an insulating material with high thermal conductivity so as not to interfere with the cells
  • the front surface 118 of the group 110 dissipates heat.
  • the smoke guide element 580 in FIG. 7 is the smoke guide element 580 in FIG. 3 rotated by 90° to show the engaging surface of the main panel 582 facing the chamber or the cell 100 , and the engaging surface is provided with a surface perpendicular to the main panel 582 Extended flanges, eg, the flanges are substantially straight.
  • the flanges include a first flange portion 592 provided on both sides of the engagement surface, a second flange portion 594 spaced inwardly from the first flange portion 592 in parallel, and two second flange portions 594 provided on both sides of the engagement surface.
  • a third flange portion 596 between the flange portions 594 and vertically connected to the two second flange portions 594, the number of the third flange portions 596 is plural, and the plurality of third flange portions 596 They are arranged parallel to each other at an interval corresponding to the width of each column of cells along the X axis.
  • the first flange portion 592 , the second flange portion 594 and the front surface 118 of the cell pack 110 together form a fume channel 590
  • the second flange portion 594 The two adjacent third flange portions 596 and the front surface 118 of each column of cells together form a cavity gap 560 .
  • the number of the cavity gaps 560 corresponds to the number of the plurality of columns of cells. Due to the presence of the flue gas channel 590, the area of the cavity void 560 is slightly smaller than the area of the front surface 118 of each column of cells.
  • the second flange portion 594 is provided with at least one opening 598 leading from each cavity void 560 to the flue gas passage 590 so that the flue gas flows mainly through the flue gas passage 590 to the filter element.
  • the first flange portion 592 is made of an insulating material with a high thermal conductivity to help the front surface 118 of the cell pack 110 to dissipate heat, while the second flange portion 594 and the third flange portion 596 are made of It is made of insulating material with low thermal conductivity, so as to reduce the thermal influence of one cell 100 on other cells 100 in case of thermal runaway of one cell 100 .
  • the pressure relief element 620 includes a pressure relief valve that is positioned horizontally oriented so that the flue gas is vented laterally to the outside environment.
  • a thermal insulation patch may be provided on the surface of the plurality of cells 100 facing the smoke guide element 580 (ie, the front surface 118 of the cell group 110 ), exposing only the positive electrode of each cell 100 ear and negative ear to further prevent the backflow of flue gas generated after the thermal runaway of the corresponding battery cell 100 from affecting the adjacent battery cell 100 .
  • flue gas passages 590 are also contemplated, as long as such flue gas passages 590 allow the corresponding cells 100 to guide flue gas in a relatively simple and rapid manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本发明涉及一种电池模组,包括:多个电芯;和电芯约束结构,电芯约束结构包括内部框架和与内部框架装配以形成多个腔室的外部壳体,所述多个腔室一一对应地接收所述多个电芯,以封装且管理所述多个电芯,其中,内部框架包括形成每个腔室的至少一个第一表面的弹性元件,弹性元件由于被接收到每个腔室中的对应电芯以预设量挤压而发生弹性变形,使得弹性变形的弹性元件向对应电芯施加第一作用力,且其中,响应于对应电芯在操作中可逆地膨胀或收缩,弹性变形的弹性元件被进一步挤压或趋于恢复,使得第一作用力决定对应电芯受到的约束力。

Description

电池模组和电动车辆 技术领域
本发明涉及动力电池技术领域,更特别地,涉及电池模组和电动车辆。
背景技术
越来越多的交通工具(例如,车辆、船只、以及飞机等)已经将以锂离子电池为代表的动力电池、尤其是二次动力电池作为它们重要的储能装置,在需要的情况下,动力电池能够通过持续放电来给交通工具提供全部或主要的动力来源,而为了满足各种交通工具的电量需求,动力电池的能量密度正在不断提升,为此,这些动力电池的制造技术也在不断改进,以提供更安全、更符合经济效益、且更灵活地应用于各种交通工具中的动力电池。
当前,大致可以基于两种技术方案制造动力电池、尤其是应用于电动车辆中的动力电池。第一种技术方案是依赖于电芯-模组-电池包三个层级来设计动力电池,但第一种技术方案涉及的零件较多、集成效率低且制造成本高。第二种技术方案是依赖于电芯-电池包两个层级来设计动力电池,例如,电芯通过胶粘剂直接固定于电池包的托盘中,以去除模组层级。然而,第二种技术方案的制造工艺复杂、安全性低、且维修成本高。
发明内容
本发明的一个目的是提供改进的电池模组和由所述电池模组提供动力的电动车辆,本发明中的电池模组被用作模块化的动力电池,以高度集成和简化的零件设计出完整功能的储能装置,因此集成效率高、安全性高、维修成本低、且可以实现制造平台化。根据各种类型的电动车辆的电量需求,一个或多个电池模组可以直接安装到电动车辆的合适部位,以给电动车辆提供动力。
根据本发明的一个方面,提供一种电池模组,包括:多个电芯;和电 芯约束结构,电芯约束结构包括内部框架和与内部框架装配以形成多个腔室的外部壳体,所述多个腔室一一对应地接收所述多个电芯,以封装且管理所述多个电芯,其中,内部框架包括形成每个腔室的至少一个第一表面的弹性元件,弹性元件由于被接收到每个腔室中的对应电芯以预设量挤压而发生弹性变形,使得弹性变形的弹性元件向对应电芯施加第一作用力,且其中,响应于对应电芯在操作中可逆地膨胀或收缩,弹性变形的弹性元件被进一步挤压或趋于恢复,使得第一作用力决定对应电芯受到的约束力。
可选地,响应于对应电芯在操作中开始不可逆地膨胀,弹性变形的弹性元件被进一步挤压到弹性变形的极限。
可选地,弹性元件是层合制品,所述层合制品包括两个弹性层和介于所述两个弹性层之间的隔热层。
可选地,内部框架包括形成每个腔室的至少一个第二表面的隔热元件,隔热元件给所述多个电芯提供支撑且具有低导热系数。
可选地,提供多个弹性元件和多个隔热元件,所述多个弹性元件和所述多个隔热元件垂直于彼此交替排列,以形成每个腔室的所述至少一个第一表面和所述至少一个第二表面,第一表面的面积大于第二表面的面积。
可选地,外部壳体包括用于支撑且冷却所述多个电芯的冷却元件,冷却元件包括形成每个腔室的第三表面的冷却板,冷却板经由导热胶粘附至所述多个电芯。
可选地,外部壳体包覆内部框架且连接至冷却板,以密封所述多个腔室。
可选地,冷却元件包括设置在冷却板的两侧上且垂直于冷却板延伸的加固肋,加固肋连接至外部壳体且经由外部壳体向所述多个电芯施加第二作用力,第二作用力大于第一作用力。
可选地,所述多个腔室被划分为第一组腔室和第二组腔室,冷却板包括相反定位的第一冷却面和第二冷却面,第一冷却面形成第一组腔室中的每个腔室的第三表面,且第二冷却面形成第二组腔室中的每个腔室的第三表面。
可选地,电芯约束结构包括介于外部壳体和所述多个电芯之间的绝缘 元件,绝缘元件通过导热胶粘附至所述外部壳体和所述多个电芯,且绝缘元件具有高导热系数。
可选地,电芯约束结构包括介于外部壳体和所述多个电芯之间的导烟元件,导烟元件被配置为限定用于所述多个电芯的烟气通道。
可选地,导烟元件包括由具有高导热系数的绝缘材料制成的主面板,主面板的面向外部壳体的表面通过导热胶粘附至外部壳体。
可选地,导热元件还包括设置在主面板的面向所述多个电芯的表面上的凸缘,所述凸缘通过抵靠所述多个电芯以形成烟气通道。
可选地,所述凸缘包括在主面板的两侧上垂直于主面板延伸的第一凸缘部、从第一凸缘部向内平行间隔设置的第二凸缘部、垂直地设置在第一凸缘部与第二凸缘部之间的第三凸缘部,且第二凸缘部设有至少一个开口。
可选地,第一凸缘部由具有导热系数的材料制成,而第二凸缘部和第三凸缘部由具有低导热系数的材料制成。
可选地,在所述多个电芯的面向导烟元件的表面上设有隔热贴片。
可选地,外部壳体包括位于电池模组的一个端侧的泄压阀,泄压阀被水平朝向地定位,以使得通过烟气通道流向泄压阀的烟气侧向地排出到外部环境。
可选地,泄压阀被过滤元件覆盖,以使得通过烟气通道流向泄压阀的烟气先被过滤元件过滤。
根据本发明的另一个方面,提供一种电动车辆,包括:电池模组舱;和一个或多个如上所述的电池模组,所述一个或多个电池模组通过一个或多个物理或电气连接配件安装在电池模组舱中。
由此,根据本发明的电池模组中的电芯约束结构的各个部件被用于单独地或成组地封装且管理所述多个电芯,以使得各个部件被优化地利用,提高电池模组的集成效率。特别地,通过弹性元件可以更好地控制电芯在操作中的受力。特别地,通过隔热元件可以支撑且隔离电芯之间的热传导。特别地,通过相对于冷却元件对称布置被划分为两组的所述多个电芯,可以提高冷却元件的利用效率。特别地,通过绝缘元件可以使电芯电绝缘于外部壳体,且防止组装过程对电芯造成损害。特别地,通过导烟元件可以 优化电芯的热失控防护。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
构成说明书的一部分的附图描述了本发明的实施例,并且连同说明书一起用于解释本发明的原理。
图1是根据本发明的一个实施方式的电池模组的组装视图。
图2是图1的电池模组的分解视图。
图3是图1的电池模组的一部分的进一步分解视图。
图4是根据本发明的一个实施方式的电池模组的外部壳体的透视图。
图5是根据本发明的一个实施方式的电池模组的冷却板的透视图。
图6是图1的电池模组的剖视图。
图7是根据本发明的一个实施方式的电池模组的导烟元件的透视图。
图8是图1的电池模组的俯视图。
图9是图8的虚线方框中的电池模组的局部剖视图。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的零件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
对于相关领域普通技术人员已知的技术和设备可能不作详细讨论,但在适当情况下,所述技术和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论,且下文中将基于附图中的观察方向,以X轴线、Y轴线、以及Z轴 线构成的正交坐标系描述本发明中提出的电池模组的相对方位,但这并不旨在限制电池模组的配置。
还应注意到:本发明中提出的电池模组能够通过一个或多个物理或电气连接配件直接安装在作为用电设备的交通工具(例如,电动车辆)中,因此,这种电池模组已经可以独立操作,无需再被进一步封装即可应用。
参考图1,图1中的完成组装的电池模组10可以适用于电动车辆,本发明中提到的电动车辆包括纯电动车或混合动力汽车。例如,电动车辆在底盘上设有电池模组舱(未示出),电池模组10可以通过一个或多个物理或电气连接配件安装在电池模组舱中,以相对于电池模组舱固定且电气连接至电动车辆的电动机。基于具体电动车辆的电量需求,具体电池模组舱的体积对应于电池模组10的体积的倍数,以使得电池模组10可以批量生产,以适用于不同的电动车辆。
参考图2,分解后的电池模组10示出位于电池模组内部的多个电芯100,例如,电芯100是三元锂电芯。根据电芯包装的材质和形状,电芯100可以包括但不限于硬壳、软包以及圆柱等不同类型。仅作为举例,下文中描述的电芯100的形状是六面立方体,包括沿Z轴线相反定位的上表面112和下表面114、沿Y轴线相反定位的前表面118和后表面116、以及沿X轴线相反定位的两个侧表面,其中,电芯100的上表面112和下表面114具有明显较大面积,在下文中被称为大面。
电池模组10包括配置为封装且管理所述多个电芯100的电芯约束结构。电芯约束结构封装所述多个电芯100指在物理空间上支撑、隔离且密封所述多个电芯100,而电芯约束结构管理所述多个电芯100主要指在电气连接、热传导、以及热失控防护三个方面管理所述多个电芯100。除非另有说明,否则电芯约束结构中的各个部件的形状和大小均对应于所述多个电芯100和/或由所述多个电芯100构成的电芯组110的形状和大小,以实现电池模组10的稳固结构。
可选地,电芯约束结构包括内部框架和与内部框架装配以形成行列形式的多个腔室的外部壳体,所述多个腔室一一对应地接收且固定所述多个电芯100。
参照图3,内部框架包括弹性元件120和隔热元件140,其中,弹性元件120形成每个腔室的至少一个第一表面,第一表面抵接对应电芯100的上表面112和/或下表面114;隔热元件140形成每个腔室的至少一个第二表面,第二表面抵接对应电芯100的两个侧表面中的一个或两者。因此,每个腔室的第一表面的面积大于第二表面的面积。
如图所示,提供多个隔热元件140和多个弹性元件120,所述多个隔热元件140和所述多个弹性元件120可以是薄板材料且垂直于彼此交替排列,以形成与所述多个电芯100对应的多个开放空间,从而一一对应地放置所述多个电芯100。例如,隔热元件140的数量为N+1个,且弹性元件120的数量为N个,以形成2N个开放空间,其中,N≥1且是整数。
在组装电芯100的过程中,首先将所述多个电芯100划分为多列电芯,例如参照图2或图3,每列电芯包括沿Z轴线方向上下叠放的上部电芯和下部电芯,且弹性元件120被夹设在上部电芯和下部电芯之间,弹性元件120可以为操作中的电芯100提供第一作用力A(参照图6),这将在下文中详细描述。可选地,弹性元件120由橡胶、泡棉、或结构胶等弹性材料制成。
接下来,沿X轴线方向将所述多列电芯排成一行,且隔热元件140被夹设在相邻布置的两列电芯之间,隔热元件140可以减轻、甚至阻止所述多列电芯之间的热传导。可选地,隔热元件140由低导热系数的材料制成,包括但不限于环氧树脂和气凝胶。
根据具体应用场景,可以提供不同数量、大小、和/或形状的隔热元件和弹性元件,以形成不同行列形式的多个腔室。可选地,每列电芯可以包括一个或多于两个电芯100。例如,每列电芯包括三个电芯100,在这种情况下,隔热元件140的数量为N+1个,且弹性元件120的数量为2N个,以形成3N个开放空间。每列电芯包括沿Z轴线方向依次上下叠放的上部电芯、中部电芯和下部电芯,且两个弹性元件120分别被夹设在上部电芯和中部电芯之间、以及中部电芯和下部电芯之间。
可选地,为了减轻每列电芯中的各个电芯之间的热传导,弹性元件120可以被实施为层合制品,所述层合制品包括两个弹性层和介于两个弹性层 之间的隔热层,因此,层合制品既有弹性又有隔热性。
再次参照图2,所述多个开放空间中的所述多个电芯100共同构成电芯组110,电芯组110包括沿Z轴线方向相反定位的上表面112和下表面114、沿Y轴线方向相反定位的后表面116和前表面118、以及沿Z轴线方向相反定位的两个侧表面119。相应地,电芯组110的上表面112由所述多列电芯的上部电芯的上表面构成,电芯组110的下表面114由所述多列电芯的下部电芯的下表面构成,电芯组110的后表面116由所述多个电芯100的后表面构成,电芯组110的前表面118由所述多个电芯100的前表面构成,且电芯组110的侧表面119由位于电芯组110的两个端侧的那两列电芯的侧表面构成。
可选地,内部框架还包括覆盖电芯组110的上表面112和下表面114的绝缘元件160,以使得绝缘元件160位于外部壳体和所述多个电芯100之间。绝缘元件160经由胶粘剂分别粘附至电芯组110的上表面112和下表面114。绝缘元件160可以是耐磨的薄板材料,厚度介于0.2-0.5mm之间,几乎不影响所述多个腔室的体积。绝缘元件160被配置为使电芯组110的上表面112、即大面电绝缘于外部壳体,同时还可以避免电芯组110受到损害,因为在装配外部壳体的过程中,绝缘元件160可以防止外部壳体与电芯组110的大面发生摩擦。可选地,绝缘元件160由具有高导热系数的绝缘材料制成,包括但不限于硅橡胶和玻璃纤维的复合物等,使得绝缘元件160既具有电绝缘性又具有良好的导热性,以不妨碍电芯组110的大面散热。
可以理解的是,电芯约束结构还包括用于电池模组10的电气连接和电气检测的电气系统。例如,电气系统包括高压连接装置、低压采样装置、以及电气端接装置550。
仍然参照图3,每个电芯100的前表面118均具有两个极耳(或极柱),即,正极耳(或正极柱)和负极耳(或负极柱)。正极耳和负极耳由极耳顶盖部分地覆盖,极耳顶盖可以设有隔热片,例如,云母片等,以防止外部环境的温度影响电芯的工作性能。
高压连接装置包括多个高压连接片520,例如,高压连接片520是铝 排、铜排、或其他形式的电流载体。高压连接片520电气连接沿X轴线方向相邻排列的两个电芯100中的一个电芯100的正极耳和另一个电芯100的负极耳、以及电气连接位于电芯组110的一个端侧的那对电芯100中的一个电芯100的正极耳和另一个电芯100的负极耳。
可选地,低压采样装置包括FFC(柔性扁平电缆)、FPC(柔性电路板)、线束、或其他形式的电信号载体,低压采样装置包括电气连接至各个高压连接片520的金属采样片530,以用于检测各个电芯100的电压和温度,并将与各个电芯100的电压和温度相关的电信号传输至BMS电池管理系统(未示出)。BMS电池管理系统可以与电池模组10分离或集成于电池模组10中。
可选地,电气端接装置550被(例如,通过胶粘剂)设置在位于电芯组110的一个端侧的一个隔热元件140上。电气端接装置550一体注塑、吸塑、卡接、热铆至两个高压连接片520a,所述两个高压连接片520a分别电气连接至位于电芯组110的另一端侧的那对电芯100中的一个电芯100的正极耳和另一个电芯100的负极耳,以用于最终汇集通过所述多个高压连接片520电气连接的所述多个电芯100所提供的电压和电流。电气端接装置550也卡接、螺接、热铆至低压采样装置,以传递与各个电芯100的电压和温度相关的电信号。
电气系统以合适的方式紧密装配于电芯组110的前表面118和侧表面,为了更加清楚地说明电芯约束结构的其他部件,合理地省去了对电气系统的进一步描述。
随后装配外部壳体,可选地,外部壳体由金属材料制成且包覆内部框架(即,电芯组110的大面、前表面118、以及两个侧表面119),以给电池模组10提供封装刚度。可选地,外部壳体包括:截面类似于U形的成型主体200(参照图4),成型主体200匹配于电芯组110的大面和前表面118;位于成型主体200两侧的第一端板220和第二端板240,其中,第一端板220设有给电气端接装置550提供电气输出的高压接口222和低压接口224(参照图1),第二端板240设有用于过滤烟气中的可燃物的过滤元件600和被过滤元件围绕或覆盖的泄压元件620(参照图2)。
参照图3和图5,可选地,外部壳体还包括用于支撑且冷却所述多个电芯100的冷却元件300。例如,由金属材料制成的冷却元件300包括形成每个腔室的第三表面的冷却板320,第三表面抵接对应电芯100的后表面116,因此,电芯组110的后表面116通过绝缘的导热胶粘附至冷却板320。冷却板320的内部可以设有各种形状的流道,且冷却板320的沿X轴线方向的长度稍微长于电芯组110的长度,以在冷却板的伸出超过电芯组110的长度的一端开设入口301和出口302,来自冷却液源的冷却液可以经由入口301进入冷却板320、流经各种形状的流道、再从出口302离开。为了优化电池模组10的布线,冷却液的入口301和出口302与第一端板220位于同一侧。
可选地,冷却元件300还包括设置在冷却板320的两侧上且垂直于冷却板320延伸的加固肋310,加固肋310通过焊接、胶接或其他合适的方式连接至外部壳体,例如,连接至U形的成型主体200的两个自由端220(参照图4),以完全封装所述多个电芯100。
可选地,为了提高冷却元件300的利用效率,冷却板320设有相反定位的第一冷却面312和第二冷却面314,加固肋310相对于冷却板320对称设置,以使得冷却元件300的截面形状呈“工”字形。因此,电芯组110包括被划分为相同配置的第一电芯组110a和第二电芯组110b,且相应地,所述多个腔室被划分为用于接收第一电芯组110a的第一组腔室和用于接收第二电芯组110b的第二组腔室,第一冷却面312形成第一组腔室中的每个腔室的第三表面,且第二冷却面314形成第二组腔室中的每个腔室的第三表面。由此,冷却元件300共同地支撑且冷却第一电芯组110a和第二电芯组110b。
一般而言,电芯100在操作中可以可逆地充电膨胀或放电收缩,即,充电时电芯100体积增加,放电时电芯100体积减小。然而,随着电芯100的老化,电芯100可能开始发生不可逆地膨胀,即,电芯100体积会不可逆地增加,不可逆地膨胀后的电芯100再在操作中充电膨胀或放电收缩。无论是可逆地膨胀或收缩引起的电芯100体积变化、还是不可逆地膨胀引起的电芯100体积增加,均可能导致对应电芯100的受力变化。在对应电 芯100受力过大或整个电芯组110受力不均的情况下,电芯100的使用性能和寿命都会受到影响,严重时还会导致安全事故。
参照图6,在本发明中,位于每个腔室中的对应电芯100受到弹性元件120、隔热元件140、冷却元件300、以及外部壳体的成型主体200约束。当在组装电芯100的过程中,每个腔室接收且固定对应电芯100时,弹性元件120由于被对应电芯100以预设量挤压而发生弹性变形,使得弹性变形的弹性元件120向对应电芯100施加第一作用力A。响应于对应电芯100在操作中可逆地膨胀或收缩,弹性变形的弹性元件120被进一步挤压或趋于恢复,使得第一作用力A决定对应电芯100受到的约束力。由于弹性元件120的弹性性能,对应电芯100的体积变化对第一作用力A的值的影响较小。与现有技术中直接通过封装外壳向电芯100提供约束力相比,通过弹性元件120提供的第一作用力A基本恒定且对电芯100的操作更加有利。
随着电芯100的老化,响应于对应电芯100在操作中开始不可逆地膨胀,弹性变形的弹性元件120被进一步挤压到弹性变形的极限。此时,对应电芯100连同到达弹性变形的极限的弹性元件120一起挤压外部壳体的成型主体200,使外部壳体产生微量变形,从而外部壳体开始决定电芯100受到的约束力,由此,老化的电芯100受到的约束力在合理范围内,避免电芯100的使用性能和寿命的急速衰减。
最后,在电芯100的寿命末期,电芯100膨胀过大,趋于使外部壳体产生较大形变,在这种情况下,加固肋310经由与外部壳体(即,U形的成型主体200的自由端220)连接而形成的连接表面向所述多个电芯100施加第二作用力B,以避免电池模组10的封装结构失效。第二作用力B大于第一作用力A。
在组装电芯100的过程中,弹性元件120的弹性变形(即,预加载)的预设量可以基于弹性元件120的弹性模量和期望的第一作用力A设计。补充地,弹性元件120的厚度可以基于对应电芯100的厚度和对应电芯100在操作中可逆地膨胀或收缩的第一膨胀率和/或收缩率设计。例如,第一膨胀率和/或收缩率为0-2%中的任意数值。替代地,弹性元件120的厚度可以基于对应电芯100的厚度和对应电芯100在操作中开始不可逆地膨胀的第 二膨胀率设计。例如,第二膨胀率为0-8%中的任意数值。
此外,如果电池模组10中的一个或多个电芯100在操作中热失控,则所述一个或多个电芯100将迅速升温并喷发烟气。一方面,烟气的热量将通过烟气的蔓延而传导至其他电芯100,影响整个电池模组10的性能和安全;另一方面,烟气中含有大量的可燃物,如果烟气中的可燃物不经处理就从电池模组10的泄压装置排出至外部环境,则这些可燃物可能借助于外部环境中的空气燃烧,再次带来安全风险。
因此,参照图3和图7,电芯约束结构还包括导烟元件580,导烟元件580被定位在外部壳体和所述多个电芯100之间,且通过胶粘剂粘附至所述外部壳体。导烟元件580被配置为限定用于整个电芯组110的公共烟气通道590。
可选地,导烟元件580包括主面板582,主面板582的面积与电芯组110的前表面118的面积相等,主面板582由具有高导热系数的绝缘材料制成,以不妨碍电芯组110的前表面118散热。图7中的导烟元件580是将图3中的导烟元件580旋转90°,以示出主面板582的面向腔室或电芯100的接合表面,接合表面上设有垂直于主面板582延伸的凸缘,例如,凸缘基本是直条形的。
可选地,凸缘包括在接合表面的两侧上设置的第一凸缘部592、从第一凸缘部592向内平行间隔设置的第二凸缘部594、以及设置在两个第二凸缘部594之间且与所述两个第二凸缘部594垂直连接的第三凸缘部596,第三凸缘部596的数量为多个,所述多个第三凸缘部596以与每列电芯的沿X轴线的宽度对应的间隔相互平行地设置。通过使凸缘抵靠电芯组110的前表面118,第一凸缘部592、第二凸缘部594与电芯组110的前表面118共同形成烟气通道590,第二凸缘部594、相邻的两个第三凸缘部596与每列电芯的前表面118共同形成腔室空隙560。由此可见,腔室空隙560的数量对应于多列电芯的数量。由于烟气通道590的存在,腔室空隙560的面积稍微小于每列电芯的前表面118的面积。同时,第二凸缘部594上设有从每个腔室空隙560通往烟气通道590的至少一个开口598,以使得烟气主要通过烟气通道590流往过滤元件。
可选地,第一凸缘部592由具有高导热系数的绝缘材料制成,以有助于电芯组110的前表面118散热,而第二凸缘部594和第三凸缘部596由具有低导热系数的绝缘材料制成,以在一个电芯100热失控的情况下在热量方面减轻所述一个电芯100对其他电芯100的影响。
参照图8和图9,在电芯组110中的其中一个电芯100由于热失控而向腔室空隙560喷发烟气的情况下,腔室空隙560中烟气经由对应开口598流向烟气通道590,流向烟气通道590的烟气被引导至位于第二端板240上的过滤元件600,使得含有可燃物的烟气被过滤掉可燃物之后再从泄压元件620排出至外部环境。可选地,泄压元件620包括泄压阀,泄压阀被水平朝向地定位,以使得烟气侧向地排出到外部环境。
可选地,可以在所述多个电芯100的面向导烟元件580的表面上(即,电芯组110的前表面118)上设置隔热贴片,仅暴露每个电芯100的正极耳和负极耳,以进一步防止对应电芯100热失控后产生的烟气倒流影响相邻电芯100。
可以理解的是,还可以设想其他配置的烟气通道590,只要这样的烟气通道590能够允许对应电芯100以相对简单且迅速的方式引导烟气。
虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (19)

  1. 一种电池模组,包括:
    多个电芯;和电芯约束结构,电芯约束结构包括内部框架和与内部框架装配以形成多个腔室的外部壳体,所述多个腔室一一对应地接收所述多个电芯,以封装且管理所述多个电芯,其中,
    内部框架包括形成每个腔室的至少一个第一表面的弹性元件,弹性元件由于被接收到每个腔室中的对应电芯以预设量挤压而发生弹性变形,使得弹性变形的弹性元件向对应电芯施加第一作用力,且其中,
    响应于对应电芯在操作中可逆地膨胀或收缩,弹性变形的弹性元件被进一步挤压或趋于恢复,使得第一作用力决定对应电芯受到的约束力。
  2. 根据权利要求1所述的电池模组,其中,响应于对应电芯在操作中开始不可逆地膨胀,弹性变形的弹性元件被进一步挤压到弹性变形的极限。
  3. 根据权利要求1或2所述的电池模组,其中,弹性元件是层合制品,所述层合制品包括两个弹性层和介于所述两个弹性层之间的隔热层。
  4. 根据权利要求1至3中任一项所述的电池模组,其中,内部框架包括形成每个腔室的至少一个第二表面的隔热元件,隔热元件给所述多个电芯提供支撑且具有低导热系数。
  5. 根据权利要求4所述的电池模组,其中,提供多个弹性元件和多个隔热元件,所述多个弹性元件和所述多个隔热元件垂直于彼此交替排列,以形成每个腔室的所述至少一个第一表面和所述至少一个第二表面,第一表面的面积大于第二表面的面积。
  6. 根据权利要求1-5中任一项所述的电池模组,其中,外部壳体包 括用于支撑且冷却所述多个电芯的冷却元件,冷却元件包括形成每个腔室的第三表面的冷却板,冷却板经由导热胶粘附至所述多个电芯。
  7. 根据权利要求6所述的电池模组,其中,外部壳体包覆内部框架且连接至冷却板,以密封所述多个腔室。
  8. 根据权利要求7所述的电池模组,其中,冷却元件包括设置在冷却板的两侧上且垂直于冷却板延伸的加固肋,加固肋连接至外部壳体且经由外部壳体向所述多个电芯施加第二作用力,第二作用力大于第一作用力。
  9. 根据权利要求6至8中任一项所述的电池模组,其中,所述多个腔室被划分为第一组腔室和第二组腔室,冷却板包括相反定位的第一冷却面和第二冷却面,第一冷却面形成第一组腔室中的每个腔室的第三表面,且第二冷却面形成第二组腔室中的每个腔室的第三表面。
  10. 根据权利要求1至9中任一项所述的电池模组,其中,电芯约束结构包括介于外部壳体和所述多个电芯之间的绝缘元件,绝缘元件通过导热胶粘附至所述外部壳体和所述多个电芯,且绝缘元件具有高导热系数。
  11. 根据权利要求1-10中任一项所述的电池模组,其中,电芯约束结构包括介于外部壳体和所述多个电芯之间的导烟元件,导烟元件被配置为限定用于所述多个电芯的烟气通道。
  12. 根据权利要求11所述的电池模组,其中,导烟元件包括由具有高导热系数的绝缘材料制成的主面板,主面板的面向外部壳体的表面通过导热胶粘附至外部壳体。
  13. 根据权利要求12所述的电池模组,其中,导热元件还包括设置在主面板的面向所述多个电芯的表面上的凸缘,所述凸缘通过抵靠所述多 个电芯以形成烟气通道。
  14. 根据权利要求13所述的电池模组,其中,所述凸缘包括在主面板的两侧上垂直于主面板延伸的第一凸缘部、从第一凸缘部向内平行间隔设置的第二凸缘部、垂直地设置在第一凸缘部与第二凸缘部之间的第三凸缘部,且第二凸缘部设有至少一个开口。
  15. 根据权利要求14所述的电池模组,其中,第一凸缘部由具有导热系数的材料制成,而第二凸缘部和第三凸缘部由具有低导热系数的材料制成。
  16. 根据权利要求11至15中任一项所述的电池模组,其中,在所述多个电芯的面向导烟元件的表面上设有隔热贴片。
  17. 根据权利要求11至16中任一项所述的电池模组,其中,外部壳体包括位于电池模组的一个端侧的泄压阀,泄压阀被水平朝向地定位,以使得通过烟气通道流向泄压阀的烟气侧向地排出到外部环境。
  18. 根据权利要求17所述的电池模组,其中,泄压阀被过滤元件覆盖,以使得通过烟气通道流向泄压阀的烟气先被过滤元件过滤。
  19. 一种电动车辆,包括:
    电池模组舱;和
    一个或多个根据权利要求1至18中任一项所述的电池模组,所述一个或多个电池模组通过一个或多个物理或电气连接配件安装在电池模组舱中。
PCT/CN2020/129376 2020-11-17 2020-11-17 电池模组和电动车辆 WO2022104514A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023529097A JP7554360B2 (ja) 2020-11-17 2020-11-17 電池モジュール及び電気自動車
EP20961806.5A EP4249314A1 (en) 2020-11-17 2020-11-17 Battery module and electric vehicle
PCT/CN2020/129376 WO2022104514A1 (zh) 2020-11-17 2020-11-17 电池模组和电动车辆
US18/037,256 US20240123838A1 (en) 2020-11-17 2020-11-17 Battery module and electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/129376 WO2022104514A1 (zh) 2020-11-17 2020-11-17 电池模组和电动车辆

Publications (1)

Publication Number Publication Date
WO2022104514A1 true WO2022104514A1 (zh) 2022-05-27

Family

ID=81707913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129376 WO2022104514A1 (zh) 2020-11-17 2020-11-17 电池模组和电动车辆

Country Status (4)

Country Link
US (1) US20240123838A1 (zh)
EP (1) EP4249314A1 (zh)
JP (1) JP7554360B2 (zh)
WO (1) WO2022104514A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160164061A1 (en) * 2014-12-09 2016-06-09 Samsung Sdi Co., Ltd. Battery module
CN210535738U (zh) * 2019-10-31 2020-05-15 上海蔚来汽车有限公司 电池模组的隔热组件
CN210897379U (zh) * 2019-09-29 2020-06-30 东莞新能源科技有限公司 电池模组
CN111769221A (zh) * 2020-06-02 2020-10-13 北京新能源汽车股份有限公司蓝谷动力系统分公司 用于车辆的电池模组和车辆

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7147253B2 (ja) 2018-05-09 2022-10-05 株式会社Gsユアサ 蓄電装置
JP7180407B2 (ja) 2019-01-24 2022-11-30 Tdk株式会社 電池パック
JP7186802B2 (ja) 2019-01-25 2022-12-09 株式会社東芝 電池パック及び電池システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160164061A1 (en) * 2014-12-09 2016-06-09 Samsung Sdi Co., Ltd. Battery module
CN210897379U (zh) * 2019-09-29 2020-06-30 东莞新能源科技有限公司 电池模组
CN210535738U (zh) * 2019-10-31 2020-05-15 上海蔚来汽车有限公司 电池模组的隔热组件
CN111769221A (zh) * 2020-06-02 2020-10-13 北京新能源汽车股份有限公司蓝谷动力系统分公司 用于车辆的电池模组和车辆

Also Published As

Publication number Publication date
JP2023549275A (ja) 2023-11-22
US20240123838A1 (en) 2024-04-18
JP7554360B2 (ja) 2024-09-19
EP4249314A1 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
KR102416527B1 (ko) 일체형 냉매 회로 부재를 갖는 프레임 프로파일을 포함한 전지 팩
JP6744435B2 (ja) 電池サブモジュールキャリア、電池サブモジュール、電池システムおよび自動車
KR101488411B1 (ko) 연결부재, 측면 지지부재 및 하단 지지부재를 포함하는 전지팩
JP7039774B2 (ja) 水冷式冷却構造を含む電池モジュール
JP2023522470A (ja) 電池パック及び電気自動車
KR100896131B1 (ko) 중대형 전지모듈
KR101106103B1 (ko) 안전성이 향상된 전지모듈
US8597825B2 (en) Battery assembly including battery module with wrap blanket between module and encapsulating solution
CN113451695B (zh) 电池模组和电动车辆
WO2013183945A1 (ko) 안정성이 향상된 구조 및 높은 냉각 효율성을 갖는 전지모듈
JP2023522472A (ja) 電池パック及び電気自動車
JP2013533579A (ja) 新規構造を有するバッテリーモジュール
JP5240963B2 (ja) 組電池
JP2018073551A (ja) 電池パック
WO2021149299A1 (ja) 電源装置とこの電源装置を備える電動車両及び蓄電装置
KR101217608B1 (ko) 전지 카세트 및 이를 포함하는 전지 모듈
JP5632402B2 (ja) フィルム外装電気デバイス集合体
WO2022104514A1 (zh) 电池模组和电动车辆
CN115312937B (zh) 一种电池包及包括其的电动装置
CN116565439A (zh) 电池包以及用电设备
EP4280359A1 (en) Battery, battery module and electric energy apparatus
CN212257515U (zh) 便携式换电电动车动力电池包电芯隔离装置及动力电池包
CN219959218U (zh) 一种电池包及汽车
CN115084762B (zh) 一种电池包及电动汽车
EP4391198A1 (en) Battery module and battery pack including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961806

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529097

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020961806

Country of ref document: EP

Effective date: 20230619