WO2022103183A1 - 배터리 활성화를 위한 직류 배전 기반의 충방전 시스템 - Google Patents

배터리 활성화를 위한 직류 배전 기반의 충방전 시스템 Download PDF

Info

Publication number
WO2022103183A1
WO2022103183A1 PCT/KR2021/016473 KR2021016473W WO2022103183A1 WO 2022103183 A1 WO2022103183 A1 WO 2022103183A1 KR 2021016473 W KR2021016473 W KR 2021016473W WO 2022103183 A1 WO2022103183 A1 WO 2022103183A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
grid
charging
battery
sub
Prior art date
Application number
PCT/KR2021/016473
Other languages
English (en)
French (fr)
Inventor
김홍균
이익재
신종광
안태욱
여창신
왕희승
이찬희
홍지수
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP21892350.6A priority Critical patent/EP4075627A4/en
Priority to CN202180009127.8A priority patent/CN114946098A/zh
Priority to US17/795,375 priority patent/US12088103B2/en
Publication of WO2022103183A1 publication Critical patent/WO2022103183A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/108Parallel operation of dc sources using diodes blocking reverse current flow
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/109Scheduling or re-scheduling the operation of the DC sources in a particular order, e.g. connecting or disconnecting the sources in sequential, alternating or in subsets, to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/50Charging of capacitors, supercapacitors, ultra-capacitors or double layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a technique for efficient power management in a battery activation process.
  • a battery is shipped out as a finished product through an assembly process and an activation process sequentially.
  • the assembly process the stacked body of the positive electrode, the negative electrode, and the separator is housed and sealed together with the electrolyte in the packaging material.
  • an initial charge/discharge event is executed for the battery that has gone through the assembly process.
  • the electrode material of the battery is activated.
  • the present invention has been devised to solve the above problems, and for a battery activation process, a large amount of batteries are commonly combined to a DC grid through a charging/discharging facility, and AC power from the AC power grid is applied to the battery activation process.
  • An object of the present invention is to provide a DC power distribution-based charging/discharging system that converts required DC power and outputs it to a DC grid.
  • a DC power distribution-based charging/discharging system for battery activation includes: a main power converter configured to convert AC power from an AC power grid into DC power having a reference voltage and output it to a DC grid; a power meter configured to detect the output power of the main power converter; a charging/discharging unit provided on a one-to-one basis to a plurality of batteries and including a plurality of chargers/dischargers electrically coupled to the DC grid; and when the output power of the main power converter is greater than the first threshold power, a first control signal indicating a charging event or a second control signal indicating a discharging event is selected based on a predetermined activation schedule to each charger/discharger and an integrated control unit configured to transmit to Each charger/discharger is configured to convert the DC power of the DC grid into charging power to charge the battery in response to the first control signal.
  • Each charger/discharger is configured to convert discharging power from the battery into DC power and output it to the DC grid in response to the second control signal.
  • Each charger/discharger is configured to stop charging/discharging of the battery while the first control signal and the second control signal are not received.
  • the integrated control unit may be configured to transmit the first control signal to the at least one charger/discharger in the idle state by changing the activation schedule when the output power of the main power converter is equal to or less than the first threshold power.
  • the charging/discharging system may further include a first protection unit electrically coupled between the DC grid and an external power grid and configured to suppress a voltage increase of the DC grid.
  • the integrated control unit may be configured to transmit a standby command to the first protection unit when the output power of the main power conversion unit is less than or equal to a second threshold power smaller than the first threshold power.
  • the first protection unit may be configured to selectively form a current path from the DC grid to the external power grid in response to the standby command.
  • the first protection unit may include a first diode and a first sub power conversion unit.
  • the first diode is connected in series to the first sub power converter through a first node between the DC grid and the external power grid, and provides a current path from the DC grid to the first sub power converter.
  • the first sub-power converter is configured to switch from an off state to a standby state in response to the standby command, and when the voltage of the first node is greater than or equal to a first threshold voltage greater than the reference voltage, direct current power of the DC grid may be configured to output to the external power grid.
  • the charging/discharging system may further include a second protection unit electrically coupled between the DC grid and an external power grid and configured to suppress a voltage drop of the DC grid.
  • the second protection unit may include a super capacitor; a second sub-power converter electrically coupled between the supercapacitor and the external power grid and configured to selectively charge the supercapacitor by using power from the external power grid; and a second diode that provides a current path from the supercapacitor to the DC grid.
  • the integrated control unit is configured to transmit a charging command to the second sub power conversion unit when the voltage of the second node that is the connection point between the super capacitor and the second diode is less than or equal to a second threshold voltage smaller than the reference voltage can be
  • the second sub power converter may be configured to charge the super capacitor in response to the charging command.
  • the charging/discharging system may further include a third protection unit electrically coupled to the DC grid and the integrated control unit and configured to output emergency power having the reference voltage to the integrated control unit when the AC power grid is out of power.
  • the third protection unit may include a backup battery; a third sub-power converter electrically coupled between the DC grid and the backup battery; and a third diode providing a current path from the DC grid to the second sub power converter.
  • the third sub-power converter may be configured to selectively charge the backup battery using power of the DC grid supplied through the third diode when the AC power grid is normal.
  • the third sub power converter may be configured to selectively convert the discharge power of the backup battery into the emergency power.
  • the charging/discharging system may further include a fourth protection unit installed on a power line connecting the DC grid and each charging/discharging unit.
  • the integrated control unit may be configured to transmit a trip signal to the fourth protection unit when an insulation abnormality of the power line is detected.
  • a large amount of batteries are commonly coupled to a DC grid through a charging/discharging facility, and a power converter installed between the DC grid and the AC power grid applies AC power from the AC power grid to the battery activation process. It can be converted into required DC power and output to the DC grid at once. Accordingly, it is possible to reduce the amount of power input to the activation process compared to a method in which each charger/discharger individually converts AC power from the AC power grid to DC power to charge the battery.
  • each battery in the discharge group instead of forcibly consuming the discharge power from each battery in the discharge group, it may be supplied to the DC grid as regenerative power. Accordingly, each battery in the charging group can be charged by the DC power and regenerative power from the power converter, so that the amount of power input to the activation process can be further reduced.
  • the DC power of the DC grid is transferred to an external power grid and/or part of the idle group By changing the battery to the charging group, excessive voltage rise of the DC grid can be suppressed.
  • the DC power used in the charging group exceeds the regenerative power from the discharging group by transferring supplemental power from the supercapacitor coupled to the external power grid to the DC grid, thereby providing a DC grid excessive voltage drop can be suppressed.
  • the DC power of the backup battery when the AC power grid is out of power, the DC power of the backup battery may be discharged and supplied to the load device of the charging/discharging system.
  • FIG. 1 is a diagram schematically showing the overall configuration of a DC power distribution-based charging/discharging system for battery activation according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating a communication connection relationship between components of the charging/discharging system shown in FIG. 1 .
  • FIG. 3 is a flowchart exemplarily illustrating a control method for the battery charging/discharging unit illustrated in FIG. 1 .
  • FIG. 4 is a flowchart exemplarily illustrating a control method for the first protection unit illustrated in FIG. 1 .
  • FIG. 5 is a flowchart exemplarily illustrating a control method for the second protection unit illustrated in FIG. 1 .
  • FIG. 6 is a flowchart exemplarily illustrating a control method for the third protection unit illustrated in FIG. 1 .
  • control unit> means a unit that processes at least one function or operation, and may be implemented as hardware, software, or a combination of hardware and software.
  • FIG. 1 is a diagram schematically showing the overall configuration of a DC power distribution-based charging/discharging system 10 for battery activation according to an embodiment of the present invention
  • FIG. 2 is the charging/discharging system 10 shown in FIG. It is a diagram schematically showing a communication connection relationship between components.
  • the charging/discharging system 10 includes a DC grid 20 , an integrated control unit 110 , a power meter 113 , a main power conversion unit 110 , and a battery charging/discharging unit 120 . do.
  • the charging/discharging system 10 may further include a first protection unit 210 , a second protection unit 220 , a third protection unit 230 , and a fourth protection unit 240 .
  • 210 , the second protection unit 220 , the third protection unit 230 , and the fourth protection unit 240 are configured to monitor each operating state, and execute a control function corresponding to the monitored operating state .
  • Integrated control unit 110 in hardware, ASICs (application specific integrated circuits), DSPs (digital signal processors), DSPDs (digital signal processing devices), PLDs (programmable logic devices), FPGAs (field programmable gate arrays), micro It may be configured to include at least one of a processor (microprocessors) and an electrical unit for performing other functions.
  • the integrated control unit 110 may include at least one voltage sensor. Each voltage sensor may measure voltages of the nodes N1 , N2 , and N3 located in the charging/discharging system 10 .
  • the integrated control unit 110 may have a memory. Memory, flash memory type, hard disk type, SSD type (Solid State Disk type), SDD type (Silicon Disk Drive type), multimedia card micro type, at least one of random access memory (RAM), static random access memory (SRAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), and programmable read-only memory (PROM) It may include a tangible storage medium.
  • the memory may store data and a program required for an arithmetic operation by the integrated control unit 110 .
  • the memory unit may store data representing a result of an operation operation performed by the integrated control unit 110 .
  • the main power converter 110 is installed in a power line connecting the AC power grid 1 and the DC grid 20 .
  • the main power converter 110 converts AC power from the AC power grid 1 into DC power based on DC distribution and outputs it to the DC grid 20 .
  • the voltage of the output power from the main power converter 110 may be maintained as a reference voltage (eg, 370 V) by feedback control.
  • the main power converter 110 includes an AC-DC converter 111 .
  • the integrated control unit 110 may turn on/off the AC-DC converter 111 and control output power according to the operating state of the AC power grid 1 .
  • the main power converter 110 and the first protection diode 112 may be further included.
  • the first protection diode 112 provides a current path through which the forward current from the AC-DC converter 111 to the DC grid 20 can flow.
  • the integrated control unit 110 may monitor the output power of the main power converter 110 based on the detected value of the power meter 113 .
  • the power meter 113 is installed in a power line between the main power converter 110 and the DC grid 20 .
  • the power meter 113 detects DC power output from the main power converter 110 , and transmits a detection value indicating the detected DC power to the integrated control unit 110 .
  • the integrated control unit 110 controls the charging/discharging system 10 as a whole when a voltage unstable state of the AC power grid 1 and/or the DC grid 20 is detected based on the detected value of the power meter 113 and the like. Control functions to protect can be executed.
  • the detection value of the power meter 113 decreases. For example, in a power excess situation in which the regenerative power supplied from the discharging group to the DC grid 20 is greater than the DC power supplied from the DC grid 20 to the charging group, the main power converter 110 reduces the output power to DC An excessive increase in the DC voltage of the grid 20 can be primarily suppressed.
  • the detection value of the power meter 113 increases. For example, in a power shortage situation in which the DC power supplied from the DC grid 20 to the charging group is greater than the regenerative power supplied from the discharging group to the DC grid 20 , the main power converter 110 increases the output power to DC An excessive drop of the DC voltage of the grid 20 can be primarily suppressed.
  • the battery charging/discharging unit 120 is configured to link the plurality of batteries B to be activated to the DC grid 20 .
  • the battery charging/discharging unit 120 includes a plurality of charging/discharging devices 121 .
  • the plurality of chargers and dischargers 121 are provided to the plurality of batteries B on a one-to-one basis.
  • the charger/discharger 121 is installed on the power line between the DC grid 20 and the battery B, and links the bidirectional power transfer between the DC grid 20 and the battery B.
  • the charger/discharger 121 may be configured as a single bidirectional DC-DC converter or a series connection of two bidirectional DC-DC converters.
  • the integrated control unit 110 controls the main power conversion unit 110 and the battery charging/discharging unit 120 while following the control sequence according to the activation schedule information.
  • the integrated control unit 110 when the output power of the main power converter 110 is greater than the first threshold power (eg, 20 kW), the integrated control unit 110, based on predetermined activation schedule information, every set time, a plurality of batteries (B) can be classified into a charging group, a discharging group and a resting group.
  • the first threshold power eg, 20 kW
  • the integrated control unit 110 sends a first control signal instructing a charging event to the charger/discharger 121 coupled to the battery B of the charging group, to the charger 121 coupled to the battery B of the discharging group.
  • a second control signal indicating a discharge event may be transmitted.
  • the charger/discharger 121 converts the DC power of the DC grid 20 into charging power to charge the battery B in response to the first control signal. That is, the charger/discharger 121 steps down the DC voltage of the DC grid 20 to a DC voltage required for charging the battery B in response to the first control signal.
  • the charger/discharger 121 outputs regenerative power generated by discharging the battery B to the DC grid 20 in response to the second control signal. That is, the charger/discharger 121 boosts the DC voltage of the discharge power of the battery B to the DC voltage required for the DC grid 20 in response to the second control signal.
  • the charger/discharger 121 puts the battery B into the idle mode while neither the first control signal nor the second control signal is received.
  • the idle mode is a mode in which charging and discharging of the battery B is stopped.
  • the integrated control unit 110 when the output power of the main power converter 110 is less than or equal to the first threshold power (eg, 20 kW), to increase the amount of power supplied from the DC grid 20 to the battery charging/discharging unit 120
  • the first control signal may be transmitted to the at least one charger/discharger 121 controlled in the idle state.
  • the charging/discharging system 10 may provide at least one of the first protection unit 210 , the second protection unit 220 , the third protection unit 230 , and the fourth protection unit 240 to the DC grid 20 . It is used as an auxiliary means to suppress voltage fluctuations.
  • the integrated control unit 110 may transmit a standby command to the first protection unit 210 when the output power of the main power conversion unit 110 is equal to or less than the second threshold power.
  • the second threshold power is a value smaller than the first threshold power, and may be a reference value for determining an excess condition of the regenerative power supplied to the DC grid 20 .
  • the first protection unit 210 is installed on a power line connecting the DC grid 20 and the external power grid 2 .
  • the first protection unit 210 includes a first sub-power conversion unit 212 and a first protection diode 211 connected in series with each other.
  • the first protection diode 211 is connected between the DC grid 20 and the input terminal of the first sub-power converter 212 .
  • the first protection diode 211 provides a current path through which a forward current from the DC grid 20 to the first sub power converter 212 can flow.
  • the first protection unit 210 is maintained in an off state that does not consume any power while a standby command is not received. That is, the integrated control unit 110 operates the first protection unit 210 only when the output power of the main power conversion unit 110 is equal to or less than the second threshold power, thereby consuming unnecessary power in the first protection unit 210 . can save
  • the first protection unit 210 switches from the off state to the standby state.
  • the first sub-power converter 212 is in a standby state when the voltage of the first node N1 is greater than or equal to a first threshold voltage (eg, 380 V) greater than the reference voltage while operating in the standby state in response to the standby command switch to the on state from
  • the first node N1 may be a connection point between the DC grid 20 and the first protection diode 211 or a connection point between the first protection diode 211 and the input terminal of the first sub-power converter 212 .
  • the first sub power converter 212 may include at least one of a unidirectional DC-DC converter and a unidirectional DC-AC converter.
  • the first sub-power converter 212 converts the DC power of the DC grid 20 into DC power and/or AC power having a voltage within an acceptable range by the external power grid 2 while operating in the on state. . Accordingly, an excessive increase in the DC voltage of the DC grid 20 can be suppressed secondarily.
  • the second protection unit 220 is installed on a power line connecting the external power grid 2 and the DC grid 20 .
  • the second protection unit 220 includes a second protection diode 221 , a supercapacitor 223 , and a second sub-power conversion unit 222 connected in series with each other.
  • the second protection diode 221 is connected between the super capacitor 223 and the DC grid 20 .
  • the second protection diode 221 provides a current path through which the forward current from the supercapacitor 223 to the DC grid 20 can flow.
  • An input terminal and an output terminal of the second sub power converter 222 are coupled to the external power grid 2 and the super capacitor 223 , respectively.
  • the integrated control unit 110 when the voltage of the second node N2, which is the connection point of the supercapacitor 223 and the second protection diode 221, is less than or equal to a second threshold voltage (eg, 360 V) smaller than the reference voltage , a charging command may be transmitted to the second sub power converter 222 .
  • a second threshold voltage eg, 360 V
  • the second sub-power converter 222 may be maintained in an off state that does not consume any power while a charging command is not received.
  • the second sub-power converter 222 when a charging command is received, switches from an off state to an on state, and converts DC power and/or AC power from the external power grid 2 to DC power having a second threshold voltage. to charge the supercapacitor 223 .
  • the DC power charged in the supercapacitor 223 is used as backup power by the voltage difference between the supercapacitor 223 and the DC grid 20 . 2 is supplied to the DC grid 20 through a protection diode 221 .
  • the supercapacitor 223 may have a capacity capable of delaying the forward end of the DC grid 20 for a predetermined backup time (eg, 1 to 5 seconds) or more when charging to the second threshold voltage. Accordingly, excessive drop of the DC voltage of the DC grid 20 can be suppressed secondarily.
  • the integrated control unit 110 may prevent a voltage overshoot phenomenon while the super capacitor 223 is being charged by the second sub power conversion unit 222 by feedback-controlling the second sub power conversion unit 222 . .
  • the integrated control unit 110 may transmit a third discharge command to the third protection unit 230 when the AC power grid 1 is out of power.
  • the third protection unit 230 is configured to charge the DC power while the AC power grid 1 is in a normal state, and supply emergency power to the load device when the AC power grid 1 is out of power.
  • the third protection unit 230 includes a third protection diode 231 , a third sub power conversion unit 232 , and a backup battery 233 connected in series with each other.
  • the third protection diode 231 is connected between the DC grid 20 and the third sub power converter 232 .
  • the third protection diode 231 provides a current path through which a forward current from the DC grid 20 to the third sub power converter 232 can flow.
  • a bidirectional DC-DC converter may be used as the third sub power converter 232 .
  • the third sub power conversion unit 232 when the discharge command is not received, using the DC power from the DC grid 20 supplied through the third protection diode 231 for the backup battery 233 and generate charging power.
  • the third protection unit 230 boosts the voltage of the power discharging the backup battery 233 to output emergency power.
  • the voltage of the emergency power is greater than or equal to the reference voltage, so the DC grid 20 is cut off from the emergency power by the third protection diode 231 , while the load device is connected to the third protection diode 231 and the third sub-power converter
  • the emergency power is supplied through the third node N3 which is a connection point between the 232 .
  • the load device to be supplied with emergency power is not particularly limited as long as it is a component included in the charging/discharging system 10 such as the integrated control unit 110 .
  • the third protection unit 230 may effectively protect the charging/discharging system 10 through interaction with the second protection unit 220 .
  • the second protection unit 220 prevents the DC grid 20 from breaking.
  • the fourth protection unit 240 includes a circuit breaker 241 installed in each power line connected to the DC grid 20 . That is, each of the main power conversion unit 110 , the charger/discharger 121 , the first protection unit 210 , the second protection unit 220 , the third protection unit 230 and the fourth protection unit 240 and DC
  • the circuit breakers 241 may be installed one by one between the grids 20 .
  • the integrated control unit 110 monitors insulation abnormalities (eg, short circuit, ground fault) of each power line in which the circuit breaker 241 is installed.
  • the integrated control unit 110 transmits a trip signal to the circuit breaker 241 of each power line in which the insulation abnormality is detected, and is removed from the DC grid 20 .
  • FIG. 3 is a flowchart exemplarily illustrating a control method for the battery charging/discharging unit 120 illustrated in FIG. 1 .
  • the method of FIG. 3 may be repeated every set time until the activation process for the plurality of batteries B is completed.
  • step S310 the integrated control unit 110 classifies each of the plurality of chargers/dischargers 121 into any one of a charging group, a discharging group, and an idle group, based on a predetermined activation schedule. .
  • step S320 the integrated control unit 110 determines whether the output power of the main power conversion unit 110 is greater than the first threshold power, based on the detected value of the power meter 113 . If the value of step S320 is "No”, the process proceeds to step S330. If the value of step S320 is "Yes”, the flow proceeds to step S340.
  • step S330 the integrated control unit 110 classifies the at least one charger/discharger 121 belonging to the idle group into a charging group by changing the activation schedule.
  • step S340 the integrated control unit 110 outputs a first control signal to each charger/discharger 121 belonging to the charging group, and outputs a second control signal to each charger/discharger 121 belonging to the discharging group.
  • FIG. 4 is a flowchart exemplarily illustrating a control method for the first protection unit 210 illustrated in FIG. 1 .
  • the method of FIG. 4 may be repeated every set time until the activation process for the plurality of batteries B is completed.
  • step S410 the integrated control unit 110 determines whether the output power of the main power conversion unit 110 is greater than a second threshold power, based on the detected value of the power meter 113 . If the value of step S410 is NO, the flow proceeds to step S420. If the value of step S410 is YES, the flow proceeds to step S430.
  • step S420 the integrated control unit 110 transmits a standby command to the first sub power conversion unit 212 .
  • the first sub power conversion unit 212 enters a standby state in response to the standby command.
  • step S430 the integrated control unit 110 transmits a first stop command to the first sub-power conversion unit 212 .
  • the first sub-power converter 212 is turned off in response to the first stop command.
  • step S440 the integrated control unit 110 determines whether the voltage of the first node N1 of the first sub-power conversion unit 212 is equal to or greater than a first threshold voltage. Step S440 may be executed by the first sub-power converter 212 instead of the integrated controller 110 . If the value of step S440 is "YES", the flow proceeds to step S450.
  • step S450 the integrated control unit 110 transmits a first operation command to the first sub power conversion unit 212 .
  • the first sub-power converter 212 outputs the DC power of the DC grid 20 to the external power grid 2 in response to the first operation command.
  • FIG. 5 is a flowchart exemplarily illustrating a control method for the second protection unit 220 illustrated in FIG. 1 .
  • the method of FIG. 5 may be repeated every set time until the activation process for the plurality of batteries B is completed.
  • step S510 the integrated control unit 110 determines whether the voltage of the supercapacitor 223 is equal to or less than a second threshold voltage. If the value of step S510 is YES, the process proceeds to step S520.
  • step S520 the integrated control unit 110 transmits a charging command to the second sub power conversion unit 222 .
  • the second sub power converter 222 converts power from the external power grid 2 into charging power for the super capacitor 223 in response to the charging command.
  • FIG. 6 is a flowchart exemplarily illustrating a control method for the third protection unit 230 illustrated in FIG. 1 .
  • the method of FIG. 6 may be repeated every set time until the activation process for the plurality of batteries B is completed.
  • step S610 the integrated control unit 110 determines whether the power outage of the AC power grid (1). If the value of step S610 is NO, the flow proceeds to step S620. If the value of step S610 is "Yes", the flow proceeds to step S640.
  • step S620 the integrated control unit 110 determines whether the voltage of the backup battery 233 is equal to or greater than a reference voltage. If the value of step S620 is NO, the process proceeds to step S630.
  • step S630 the integrated control unit 110 transmits a charging command to the third sub power conversion unit 232 .
  • the third sub power converter 232 converts the DC power from the DC grid 20 into charging power for the backup battery 233 in response to the charging command.
  • step S640 the integrated control unit 110 transmits a discharge command to the third sub power conversion unit 232 .
  • the third sub power conversion unit 232 converts the discharge power from the backup battery 233 into emergency power in response to the discharge command.
  • the embodiment of the present invention described above is not implemented only through the apparatus and method, and may be implemented through a program for realizing a function corresponding to the configuration of the embodiment of the present invention or a recording medium in which the program is recorded.
  • the implementation can be easily implemented by those skilled in the art to which the present invention pertains from the description of the above-described embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

본 발명의 일 실시예에 따른 충방전 시스템은, AC 전력망으로부터의 교류 전력을 기준 전압을 가지는 직류 전력으로 변환하여 DC 그리드에 출력하도록 구성되는 메인 전력 변환부; 메인 전력 변환부의 출력 전력을 검출하도록 구성되는 전력계; 복수의 배터리에 일대일로 제공되고, DC 그리드에 전기적으로 결합되는 복수의 충방전기를 포함하는 충방전부; 및 메인 전력 변환부의 출력 전력이 제1 임계 전력보다 큰 경우, 소정의 활성화 스케쥴을 기초로, 충전 이벤트를 지시하는 제1 제어 신호 또는 방전 이벤트를 지시하는 제2 제어 신호를 각 충방전기에게 선택적으로 전송하도록 구성되는 통합 제어부를 포함한다. 각 충방전기는, 제1 제어 신호에 응답하여 DC 그리드의 직류 전력을 충전 전력으로 변환하여 배터리를 충전하며, 제2 제어 신호에 응답하여 배터리로부터의 방전 전력을 직류 전력으로 변환하여 DC 그리드로 출력하도록 구성된다. 각 충방전기는, 제1 및 제2 제어 신호가 수신되지 않는 동안 배터리의 충방전을 정지하도록 구성된다.

Description

배터리 활성화를 위한 직류 배전 기반의 충방전 시스템
본 출원은 2020년 11월 13일자로 출원된 한국 특허출원 번호 제10-2020-0152311호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은 배터리 활성화 공정에서의 효율적인 전력 관리를 위한 기술에 관한 것이다.
최근, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 배터리에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 배터리로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 배터리 등이 있는데, 이 중에서 리튬 배터리는 니켈 계열의 배터리에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
배터리는, 조립 공정과 활성화 공정을 순차적으로 거쳐 완성품으로서 출고된다. 조립 공정에서는, 양극, 음극 및 세퍼레이터의 적층체가 전해질과 함께 외장재에 수납 및 밀봉된다. 활성화 공정에서는, 조립 공정을 거친 배터리에 대한 초기 충전/방전 이벤트가 실행된다. 활성화 공정에 의해, 배터리의 전극 물질이 활성화된다.
배터리 활성화 공정은, 공통된 충방전 라인에 결합된 대량의 배터리를 미리 정해진 활성화 스케쥴에 따라 충전 그룹, 방전 그룹 및 휴지 그룹으로 설정하여, 각 그룹별로 충전 이벤트, 방전 이벤트 및 휴지 이벤트를 부여하는 절차를 반복하면서 수 시간에서 수일에 걸쳐 진행된다. 이러한 활성화 공정은, 상당량의 전력이 투입되고 관련된 제어 절차 역시 복잡한바, 전력 관리의 효율화 및 안정성이 무엇보다 중요하게 고려되어야 한다.
본 발명은, 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 배터리 활성화 공정을 위해, 대량의 배터리를 충방전 설비를 통해 DC 그리드에 공통적으로 결합하고, AC 전력망으로부터의 교류 전력을 배터리 활성화 공정에 요구되는 직류 전력으로 변환하여 DC 그리드에 출력하는, 직류 배전 기반의 충방전 시스템을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명의 일 실시예에 따른 배터리 활성화를 위한 직류 배전 기반의 충방전 시스템은, AC 전력망으로부터의 교류 전력을 기준 전압을 가지는 직류 전력으로 변환하여 DC 그리드에 출력하도록 구성되는 메인 전력 변환부; 상기 메인 전력 변환부의 출력 전력을 검출하도록 구성되는 전력계; 복수의 배터리에 일대일로 제공되고, 상기 DC 그리드에 전기적으로 결합되는 복수의 충방전기를 포함하는 충방전부; 및 상기 메인 전력 변환부의 출력 전력이 제1 임계 전력보다 큰 경우, 소정의 활성화 스케쥴을 기초로, 충전 이벤트를 지시하는 제1 제어 신호 또는 방전 이벤트를 지시하는 제2 제어 신호를 각 충방전기에게 선택적으로 전송하도록 구성되는 통합 제어부를 포함한다. 각 충방전기는, 상기 제1 제어 신호에 응답하여, 상기 DC 그리드의 직류 전력을 충전 전력으로 변환하여 상기 배터리를 충전하도록 구성된다. 각 충방전기는, 상기 제2 제어 신호에 응답하여, 상기 배터리로부터의 방전 전력을 직류 전력으로 변환하여 상기 DC 그리드로 출력하도록 구성된다. 각 충방전기는, 상기 제1 제어 신호 및 상기 제2 제어 신호가 수신되지 않는 동안 상기 배터리의 충방전을 정지하도록 구성된다.
상기 통합 제어부는, 상기 메인 전력 변환부의 출력 전력이 상기 제1 임계 전력 이하인 경우, 상기 활성화 스케쥴을 변경하여, 상기 휴지 상태인 적어도 하나의 충방전기에게 상기 제1 제어 신호를 전송하도록 구성될 수 있다.
상기 충방전 시스템은, 상기 DC 그리드와 외부 전력망 사이에 전기적으로 결합되고, 상기 DC 그리드의 전압 상승을 억제하도록 구성되는 제1 보호부를 더 포함할 수 있다.
상기 통합 제어부는, 상기 메인 전력 변환부의 출력 전력이 상기 제1 임계 전력보다 작은 제2 임계 전력 이하인 경우, 상기 제1 보호부에게 대기 명령을 전송하도록 구성될 수 있다. 상기 제1 보호부는, 상기 대기 명령에 응답하여, 상기 DC 그리드로부터 상기 외부 전력망으로의 전류 경로를 선택적으로 형성하도록 구성될 수 있다.
상기 제1 보호부는, 제1 다이오드 및 제1 서브 전력 변환부를 포함할 수 있다. 상기 제1 다이오드는, 상기 DC 그리드와 상기 외부 전력망 사이에서, 제1 노드를 통해 상기 제1 서브 전력 변환부에 직렬 연결되고, 상기 DC 그리드로부터 상기 제1 서브 전력 변환부로의 전류 경로를 제공할 수 있다. 상기 제1 서브 전력 변환부는, 상기 대기 명령에 응답하여 오프 상태로부터 대기 상태로 전환하여 동작 중에, 상기 제1 노드의 전압이 상기 기준 전압보다 큰 제1 임계 전압 이상인 경우, 상기 DC 그리드의 직류 전력을 상기 외부 전력망으로 출력하도록 구성될 수 있다.
상기 충방전 시스템은, 상기 DC 그리드와 외부 전력망 사이에 전기적으로 결합되고, 상기 DC 그리드의 전압 강하를 억제하도록 구성되는 제2 보호부를 더 포함할 수 있다.
상기 제2 보호부는, 슈퍼 커패시터; 상기 슈퍼 커패시터와 상기 외부 전력망 사이에 전기적으로 결합되고, 상기 외부 전력망으로부터의 전력을 이용하여 상기 슈퍼 커패시터를 선택적으로 충전하도록 구성되는 제2 서브 전력 변환부; 및 상기 슈퍼 커패시터로부터 상기 DC 그리드로의 전류 경로를 제공하는 제2 다이오드를 포함할 수 있다.
상기 통합 제어부는, 상기 슈퍼 커패시터와 상기 제2 다이오드의 접속점인 제2 노드의 전압이 상기 기준 전압보다 작은 제2 임계 전압 이하인 경우, 경우, 상기 제2 서브 전력 변환부에게 충전 명령을 전송하도록 구성될 수 있다. 상기 제2 서브 전력 변환부는, 상기 충전 명령에 응답하여, 상기 슈퍼 커패시터를 충전하도록 구성될 수 있다.
상기 충방전 시스템은, 상기 DC 그리드와 상기 통합 제어부에 전기적으로 결합되고, 상기 AC 전력망이 정전된 경우, 상기 기준 전압을 가지는 비상 전력을 상기 통합 제어부에 출력하도록 구성되는 제3 보호부를 더 포함할 수 있다.
상기 제3 보호부는, 백업 배터리; 상기 DC 그리드와 상기 백업 배터리 사이에 전기적으로 결합되는 제3 서브 전력 변환부; 및 상기 DC 그리드로부터 상기 제2 서브 전력 변환부로의 전류 경로를 제공하는 제3 다이오드를 포함할 수 있다. 상기 제3 서브 전력 변환부는, 상기 AC 전력망이 정상인 경우, 상기 제3 다이오드를 통해 공급되는 상기 DC 그리드의 전력을 이용하여 상기 백업 배터리를 선택적으로 충전하도록 구성될 수 있다. 상기 제3 서브 전력 변환부는, 상기 백업 배터리의 방전 전력을 상기 비상 전력으로 선택적으로 변환하도록 구성될 수 있다.
상기 충방전 시스템은, 상기 DC 그리드와 각 충방전기를 연결하는 전력 라인에 설치되는 제4 보호부를 더 포함할 수 있다. 상기 통합 제어부는, 상기 전력 라인의 절연 이상이 감지된 경우, 상기 제4 보호부에 트립 신호를 전송하도록 구성될 수 있다.
본 발명의 실시예들 중 적어도 하나에 의하면, 대량의 배터리를 충방전 설비를 통해 DC 그리드에 공통적으로 결합하고, DC 그리드와 AC 전력망 간에 설치된 전력 변환기가 AC 전력망으로부터의 교류 전력을 배터리 활성화 공정에 요구되는 직류 전력으로 변환하여 DC 그리드에 일괄적으로 출력할 수 있다. 이에 따라, 각 충방전기가 AC 전력망으로부터의 교류 전력을 개별적으로 직류 전력으로 변환하여 배터리를 충전하는 방식에 비하여, 활성화 공정에 투입되는 전력량을 절감할 수 있다.
또한, 본 발명의 실시예들 중 적어도 하나에 의하면, 방전 그룹의 각 배터리로부터의 방전 전력을 강제로 소모하는 대신 회생 전력으로서 DC 그리드로 공급할 수 있다. 이에 따라, 충전 그룹의 각 배터리가 전력 변환기로부터의 직류 전력 및 회생 전력에 의해 충전 가능하여, 활성화 공정에 투입되는 전력량을 추가적으로 절감할 수 있다.
또한, 본 발명의 실시예들 중 적어도 하나에 의하면, 방전 그룹으로부터의 회생 전력이 충전 그룹에서 사용되는 직류 전력을 초과하는 경우, DC 그리드의 직류 전력을 외부 전력망으로 전달 및/또는 휴지 그룹의 일부 배터리를 충전 그룹으로 변경함으로써, DC 그리드의 과도한 전압 상승을 억제할 수 있다.
또한, 본 발명의 실시예들 중 적어도 하나에 의하면, 충전 그룹에서 사용되는 직류 전력이 방전 그룹으로부터의 회생 전력을 초과 외부 전력망에 결합된 슈퍼 커패시터로부터의 보충 전력을 DC 그리드로 전달함으로써, DC 그리드의 과도한 전압 강하를 억제할 수 있다.
또한, 본 발명의 실시예들 중 적어도 하나에 의하면, AC 전력망의 정전 시, 백업용 배터리의 직류 전력을 방전시켜 충방전 시스템의 부하 기기에 공급할 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 배터리 활성화를 위한 직류 배전 기반의 충방전 시스템의 전체적인 구성을 개략적으로 나타낸 도면이다.
도 2는 도 1에 도시된 충방전 시스템의 구성들 간의 통신 연결 관계를 개략적으로 나타낸 도면이다.
도 3은 도 1에 도시된 배터리 충방전부에 대한 제어 방법을 예시적으로 보여주는 순서도이다.
도 4는 도 1에 도시된 제1 보호부에 대한 제어 방법을 예시적으로 보여주는 순서도이다.
도 5는 도 1에 도시된 제2 보호부에 대한 제어 방법을 예시적으로 보여주는 순서도이다.
도 6은 도 1에 도시된 제3 보호부에 대한 제어 방법을 예시적으로 보여주는 순서도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어들은, 다양한 구성요소들 중 어느 하나를 나머지와 구별하는 목적으로 사용되는 것이고, 그러한 용어들에 의해 구성요소들을 한정하기 위해 사용되는 것은 아니다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다. 또한, 명세서에 기재된 <제어부>와 같은 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 하드웨어, 소프트웨어, 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.
도 1은 본 발명의 일 실시예에 따른 배터리 활성화를 위한 직류 배전 기반의 충방전 시스템(10)의 전체적인 구성을 개략적으로 나타낸 도면이고, 도 2는 도 1에 도시된 충방전 시스템(10)의 구성들 간의 통신 연결 관계를 개략적으로 나타낸 도면이다.
도 1 및 도 2를 참조하면, 충방전 시스템(10)은, DC 그리드(20), 통합 제어부(110), 전력계(113), 메인 전력 변환부(110) 및 배터리 충방전부(120)를 포함한다. 충방전 시스템(10)은, 제1 보호부(210), 제2 보호부(220), 제3 보호부(230) 및 제4 보호부(240)를 더 포함할 수 있다.
통합 제어부(110)는, 자신과 동작 가능하게 결합된 AC 전력망(1), DC 그리드(20), 메인 전력 변환부(110), 배터리 충방전부(120), 전력계(113), 제1 보호부(210), 제2 보호부(220), 제3 보호부(230) 및 제4 보호부(240)에 각각의 운용 상태를 모니터링하고, 모니터링된 운용 상태에 대응하는 제어 기능을 실행하도록 구성된다. 통합 제어부(110)는, 하드웨어적으로, ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 포함하도록 구성될 수 있다. 또한, 통합 제어부(110)는, 적어도 하나의 전압 센서를 포함할 수 있다. 각 전압 센서는 충방전 시스템(10) 내에 위치하는 노드들(N1, N2, N3)의 전압을 측정할 수 있다. 통합 제어부(110)는, 메모리를 가질 수 있다. 메모리는, 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), SSD 타입(Solid State Disk type), SDD 타입(Silicon Disk Drive type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 램(random access memory; RAM), SRAM(static random access memory), 롬(read-only memory; ROM), EEPROM(electrically erasable programmable read-only memory), PROM(programmable read-only memory) 중 적어도 하나의 타입의 저장매체를 포함할 수 있다. 메모리는, 통합 제어부(110)에 의한 연산 동작에 요구되는 데이터 및 프로그램을 저장할 수 있다. 메모리부는, 통합 제어부(110)에 의한 연산 동작의 결과를 나타내는 데이터를 저장할 수 있다.
메인 전력 변환부(110)는, AC 전력망(1)과 DC 그리드(20)를 연결하는 전력 라인에 설치된다. 메인 전력 변환부(110)는, 직류 배전 기반으로, AC 전력망(1)으로부터의 교류 전력을 직류 전력으로 변환하여 DC 그리드(20)에 출력한다. 메인 전력 변환부(110)로부터의 출력 전력의 전압은 피드백 제어에 의해 기준 전압(예, 370 V)으로 유지될 수 있다. 메인 전력 변환부(110)는, AC-DC 컨버터(111)를 포함한다. 통합 제어부(110)는, AC 전력망(1)의 운용 상태에 따라, AC-DC 컨버터(111)를 온오프 및 출력 전력을 제어할 수 있다. 메인 전력 변환부(110), 제1 보호 다이오드(112)를 더 포함할 수 있다. 제1 보호 다이오드(112)는, AC-DC 컨버터(111)로부터 DC 그리드(20)로의 순방향 전류가 흐를 수 있는 전류 경로를 제공한다.
통합 제어부(110)는, 전력계(113)의 검출값을 기초로, 메인 전력 변환부(110)의 출력 전력을 모니터링할 수 있다. 전력계(113)는, 메인 전력 변환부(110)와 DC 그리드(20) 사이의 전력 라인에 설치된다. 전력계(113)는, 메인 전력 변환부(110)로부터 출력되는 직류 전력을 검출하고, 검출된 직류 전력을 나타내는 검출값을 통합 제어부(110)에게 전송한다.
통합 제어부(110)는, 전력계(113)의 검출값 등을 기초로, AC 전력망(1) 및/또는 DC 그리드(20)의 전압 불안정 상태가 검출되는 경우, 충방전 시스템(10)을 전반적으로 보호하기 위한 제어 기능을 실행할 수 있다.
구체적으로, DC 그리드(20)에 걸리는 부하량이 감소할수록 전력계(113)의 검출값은 감소한다. 예컨대, 방전 그룹으로부터 DC 그리드(20)로 공급되는 회생 전력이 DC 그리드(20)로부터 충전 그룹으로 공급되는 직류 전력보다 큰 전력 과잉 상황에서, 메인 전력 변환부(110)는 출력 전력을 감소시킴으로써 DC 그리드(20)의 직류 전압의 과도한 상승을 1차적으로 억제할 수 있다.
DC 그리드(20)에 걸리는 부하량이 증가할수록 전력계(113)의 검출값은 증가한다. 예컨대, DC 그리드(20)로부터 충전 그룹으로 공급되는 직류 전력이 방전 그룹으로부터 DC 그리드(20)로 공급되는 회생 전력보다 큰 전력 부족 상황에서, 메인 전력 변환부(110)는 출력 전력을 증가시킴으로써 DC 그리드(20)의 직류 전압의 과도한 강하를 1차적으로 억제할 수 있다.
배터리 충방전부(120)는, 활성화 대상인 복수의 배터리(B)를 DC 그리드(20)에 연계하도록 구성된다. 배터리 충방전부(120)는, 복수의 충방전기(121)를 포함한다. 복수의 충방전기(121)는, 복수의 배터리(B)에 일대일로 제공된다. 충방전기(121)는, DC 그리드(20)와 배터리(B) 사이의 전력 라인에 설치되어, DC 그리드(20)와 배터리(B) 간의 양방향 전력 전달을 연계한다. 충방전기(121)는, 단일의 양방향 DC-DC 컨버터 또는 두 양방향 DC-DC 컨버터의 직렬 연결로 구성될 수 있다.
통합 제어부(110)는, DC 그리드(20)의 운용 상태가 정상인 경우, 활성화 스케쥴 정보에 따른 제어 시퀀스를 추종하면서, 메인 전력 변환부(110) 및 배터리 충방전부(120)를 제어한다
구체적으로, 통합 제어부(110)는, 메인 전력 변환부(110)의 출력 전력이 제1 임계 전력(예, 20kW)보다 큰 경우, 소정의 활성화 스케쥴 정보를 기초로, 설정 시간마다, 복수의 배터리(B)를 충전 그룹, 방전 그룹 및 휴지 그룹으로 분류할 수 있다.
통합 제어부(110)는, 충전 그룹의 배터리(B)에 결합된 충방전기(121)에게 충전 이벤트를 지시하는 제1 제어 신호를, 방전 그룹의 배터리(B)에 결합된 충방전기(121)에게 방전 이벤트를 지시하는 제2 제어 신호를 전송할 수 있다.
충방전기(121)는, 제1 제어 신호에 응답하여, DC 그리드(20)의 직류 전력을 충전 전력으로 변환하여 배터리(B)를 충전한다. 즉, 충방전기(121)는, 제1 제어 신호에 응답하여, DC 그리드(20)의 직류 전압을 배터리(B)의 충전에 요구되는 직류 전압으로 강압한다.
충방전기(121)는, 제2 제어 신호에 응답하여, 배터리(B)의 방전으로 생성되는 회생 전력을 DC 그리드(20)로 출력한다. 즉, 충방전기(121)는, 제2 제어 신호에 응답하여, 배터리(B)의 방전 전력의 직류 전압을 DC 그리드(20)에 요구되는 직류 전압으로 승압한다.
충방전기(121)는, 제1 제어 신호 및 제2 제어 신호 둘다 수신되지 않는 동안에는, 배터리(B)를 휴지 모드가 된다. 휴지 모드란, 배터리(B)의 충방전을 정지하고 있는 모드이다.
통합 제어부(110)는, 메인 전력 변환부(110)의 출력 전력이 제1 임계 전력(예, 20kW) 이하인 경우, DC 그리드(20)로부터 배터리 충방전부(120)로 공급되는 전력량을 증가시키기 위해 활성화 스케쥴 정보를 변경하여, 휴지 상태로 제어 중인 적어도 하나의 충방전기(121)에게 제1 제어 신호를 전송할 수 있다.
한편, 메인 전력 변환부(110) 단독의 제어 기능만으로는, DC 그리드(20)의 전압 불안정 상황에 완벽히 대응하기 어려울 수 있다. 충방전 시스템(10)은, 제1 보호부(210), 제2 보호부(220), 제3 보호부(230) 및 제4 보호부(240) 중 적어도 하나를 DC 그리드(20)의 급격한 전압 변동을 억제하기 위한 보조적 수단으로서 활용한다.
통합 제어부(110)는, 메인 전력 변환부(110)의 출력 전력이 제2 임계 전력 이하인 경우, 제1 보호부(210)에게 대기 명령을 전송할 수 있다. 제2 임계 전력은, 제1 임계 전력보다 작은 값으로서, DC 그리드(20)로 공급되는 회생 전력의 과잉 상황을 판정하기 위한 기준값일 수 있다.
제1 보호부(210)는, DC 그리드(20)와 외부 전력망(2)을 연결하는 전력 라인에 설치된다. 제1 보호부(210)는, 서로 직렬 연결되는, 제1 서브 전력 변환부(212) 및 제1 보호 다이오드(211)를 포함한다. 제1 보호 다이오드(211)는, DC 그리드(20)와 제1 서브 전력 변환부(212)의 입력단 간에 연결된다. 제1 보호 다이오드(211)는, DC 그리드(20)로부터 제1 서브 전력 변환부(212)로의 순방향 전류가 흐를 수 있는 전류 경로를 제공한다.
제1 보호부(210)는, 대기 명령이 수신되지 않는 동안에는 전력을 전혀 소모하지 않는 오프 상태로 유지된다. 즉, 통합 제어부(110)는, 메인 전력 변환부(110)의 출력 전력이 제2 임계 전력 이하인 경우에 한하여 제1 보호부(210)를 동작시킴으로써, 제1 보호부(210)에서 불필요한 전력 소모를 절감할 수 있다.
제1 보호부(210)는, 대기 명령이 수신되는 경우, 오프 상태로부터 대기 상태로 전환한다. 제1 서브 전력 변환부(212)는, 대기 명령에 응답하여 대기 상태로 동작 중에, 제1 노드(N1)의 전압이 기준 전압보다 큰 제1 임계 전압(예, 380 V) 이상인 경우, 대기 상태로부터 온 상태로 전환한다. 제1 노드(N1)는, DC 그리드(20)와 제1 보호 다이오드(211)의 접속점 또는 제1 보호 다이오드(211)와 제1 서브 전력 변환부(212)의 입력단의 접속점일 수 있다. 제1 서브 전력 변환부(212)는, 단방향 DC-DC 컨버터 및 단방향 DC-AC 컨버터 중 적어도 하나를 포함할 수 있다. 제1 서브 전력 변환부(212)는, 온 상태로 동작 중에, DC 그리드(20)의 직류 전력을 외부 전력망(2)에 의해 수용 가능한 범위의 전압을 가지는 직류 전력 및/또는 교류 전력으로 변환한다. 이에 따라, DC 그리드(20)의 직류 전압의 과도한 상승을 2차적으로 억제할 수 있다.
제2 보호부(220)는, 외부 전력망(2)과 DC 그리드(20)를 연결하는 전력 라인에 설치된다. 제2 보호부(220)는, 서로 직렬 연결되는, 제2 보호 다이오드(221), 슈퍼 커패시터(223) 및 제2 서브 전력 변환부(222)를 포함한다. 제2 보호 다이오드(221)는, 슈퍼 커패시터(223)와 DC 그리드(20) 간에 연결된다. 제2 보호 다이오드(221)는, 슈퍼 커패시터(223)로부터 DC 그리드(20)로의 순방향 전류가 흐를 수 있는 전류 경로를 제공한다. 제2 서브 전력 변환부(222)의 입력단 및 출력단은 각각 외부 전력망(2)과 슈퍼 커패시터(223)에 결합된다.
통합 제어부(110)는, 슈퍼 커패시터(223)와 제2 보호 다이오드(221)의 접속점인 제2 노드(N2)의 전압이 기준 전압보다 작은 제2 임계 전압(예, 360 V) 이하인 경우인 경우, 제2 서브 전력 변환부(222)에게 충전 명령을 전송할 수 있다.
제2 서브 전력 변환부(222)는, 충전 명령이 수신되지 않는 동안에는 전력을 전혀 소모하지 않는 오프 상태로 유지될 수 있다. 제2 서브 전력 변환부(222)는, 충전 명령이 수신되는 경우, 오프 상태로부터 온 상태로 전환하여, 외부 전력망(2)으로부터의 직류 전력 및/또는 교류 전력을 제2 임계 전압을 가지는 직류 전력으로 변환하여 슈퍼 커패시터(223)를 충전한다. DC 그리드(20)의 전압이 제2 임계 전압 미만으로 강하하는 경우, 슈퍼 커패시터(223)와 DC 그리드(20) 간의 전압차에 의해, 슈퍼 커패시터(223)에 충전된 직류 전력이 백업 전력으로서 제2 보호 다이오드(221)를 통해 DC 그리드(20)로 공급된다. 슈퍼 커패시터(223)는, 제2 임계 전압으로 충전 시, DC 그리드(20)의 순단을 소정의 백업 시간(예, 1~5초) 이상 지연시킬 수 있는 용량을 가질 수 있다. 이에 따라, DC 그리드(20)의 직류 전압의 과도한 강하를 2차적으로 억제할 수 있다.
통합 제어부(110)는, 제2 서브 전력 변환부(222)를 피드백 제어함으로써, 제2 서브 전력 변환부(222)에 의해 슈퍼 커패시터(223)가 충전되는 중의 전압 오버슛 현상을 방지할 수 있다.
통합 제어부(110)는, AC 전력망(1)의 정전 시, 제3 보호부(230)에게 제3 방전 명령을 전송할 수 있다. 제3 보호부(230)는, AC 전력망(1)이 정상 상태인 동안에 직류 전력을 충전해두었다가, AC 전력망(1)의 정전 시에 부하 기기에게 비상 전력을 공급하도록 구성된다.
제3 보호부(230)는, 서로 직렬 연결된, 제3 보호 다이오드(231), 제3 서브 전력 변환부(232) 및 백업 배터리(233)를 포함한다. 제3 보호 다이오드(231)는, DC 그리드(20)와 제3 서브 전력 변환부(232) 간에 연결된다. 제3 보호 다이오드(231)는, DC 그리드(20)로부터 제3 서브 전력 변환부(232)로의 순방향 전류가 흐를 수 있는 전류 경로를 제공한다. 제3 서브 전력 변환부(232)로는, 양방향 DC-DC 컨버터가 이용될 수 있다. 제3 서브 전력 변환부(232)는, 방전 명령이 수신되지 않는 경우에는, 제3 보호 다이오드(231)를 통해 공급되는 DC 그리드(20)로부터의 직류 전력을 이용하여 백업 배터리(233)를 위한 충전 전력을 생성하도록 구성된다.
제3 보호부(230)는, 제3 기동 신호에 응답하여, 백업 배터리(233)를 방전 전력의 전압을 승압하여 비상 전력을 출력한다. 비상 전력의 전압은 기준 전압 이상이며, 따라서 제3 보호 다이오드(231)에 의해 DC 그리드(20)는 비상 전력으로부터 차단되는 한편, 부하 기기는 제3 보호 다이오드(231)와 제3 서브 전력 변환부(232) 간의 접속점인 제3 노드(N3)를 통해 비상 전력을 공급받는다. 여기서, 비상 전력을 공급받게 되는 부하 기기는, 통합 제어부(110) 등과 같이 충방전 시스템(10)에 포함되는 구성이라면 특별히 제한되지 않는다.
제3 보호부(230)는 제2 보호부(220)와의 상호 작용을 통해, 충방전 시스템(10)을 효과적으로 보호할 수 있다. 상세히는, AC 전력망(1)의 정전 시, 제3 보호부(230)로부터의 비상 전력에 의한 통합 제어기가 재부팅되는 동안, 제2 보호부(220)에 의해 DC 그리드(20)의 순단이 방지될 수 있다.
제4 보호부(240)는, DC 그리드(20)에 연결된 각 전력 라인에 설치되는 차단기(241)를 포함한다. 즉, 메인 전력 변환부(110), 충방전기(121), 제1 보호부(210), 제2 보호부(220), 제3 보호부(230) 및 제4 보호부(240) 각각과 DC 그리드(20) 사이에 차단기(241)가 하나씩 설치될 수 있다. 통합 제어부(110)는, 차단기(241)가 설치된 각 전력 라인의 절연 이상(예, 단락, 지락)을 감시한다. 통합 제어부(110)는, 절연 이상이 검출된 각 전력 라인의 차단기(241)에게 트립 신호를 전송하여, DC 그리드(20)로부터 탈락시킨다.
도 3은 도 1에 도시된 배터리 충방전부(120)에 대한 제어 방법을 예시적으로 보여주는 순서도이다. 도 3의 방법은, 복수의 배터리(B)에 대한 활성화 공정이 완료될 때까지, 설정 시간마다 반복될 수 있다.
도 1 내지 도 3을 참조하면, 단계 S310에서, 통합 제어부(110)는, 소정의 활성화 스케쥴을 기초로, 복수의 충방전기(121) 각각을 충전 그룹, 방전 그룹 및 휴지 그룹 중 어느 하나로 분류한다.
단계 S320에서, 통합 제어부(110)는, 전력계(113)의 검출값을 기초로, 메인 전력 변환부(110)의 출력 전력이 제1 임계 전력보다 큰지 여부를 판정한다. 단계 S320의 값이 "아니오"인 경우, 단계 S330으로 진행된다. 단계 S320의 값이 "예"인 경우, 단계 S340으로 진행된다.
단계 S330에서, 통합 제어부(110)는, 활성화 스케쥴을 변경하여, 휴지 그룹에 속하는 적어도 하나의 충방전기(121)를 충전 그룹으로 분류한다.
단계 S340에서, 통합 제어부(110)는, 충전 그룹에 속하는 각 충방전기(121)에게 제1 제어 신호를 출력하고, 방전 그룹에 속하는 각 충방전기(121)에게 제2 제어 신호를 출력한다.
도 4는 도 1에 도시된 제1 보호부(210)에 대한 제어 방법을 예시적으로 보여주는 순서도이다. 도 4의 방법은, 복수의 배터리(B)에 대한 활성화 공정이 완료될 때까지, 설정 시간마다 반복될 수 있다.
단계 S410에서, 통합 제어부(110)는, 전력계(113)의 검출값을 기초로, 메인 전력 변환부(110)의 출력 전력이 제2 임계 전력보다 큰지 여부를 판정한다. 단계 S410의 값이 "아니오"인 경우, 단계 S420으로 진행된다. 단계 S410의 값이 "예"인 경우, 단계 S430으로 진행된다.
단계 S420에서, 통합 제어부(110)는, 제1 서브 전력 변환부(212)에게 대기 명령을 전송한다. 제1 서브 전력 변환부(212)는, 대기 명령에 응답하여, 대기 상태가 된다.
단계 S430에서, 통합 제어부(110)는, 제1 서브 전력 변환부(212)에게 제1 정지 명령을 전송한다. 제1 서브 전력 변환부(212)는, 제1 정지 명령에 응답하여, 오프 상태가 된다.
단계 S440에서, 통합 제어부(110)는, 제1 서브 전력 변환부(212)의 제1 노드(N1)의 전압이 제1 임계 전압 이상인지 여부를 판정한다. 단계 S440는 통합 제어부(110) 대신, 제1 서브 전력 변환부(212)에 의해 실행될 수도 있다. 단계 S440의 값이 "예"인 경우, 단계 S450으로 진행된다.
단계 S450에서, 통합 제어부(110)는, 제1 서브 전력 변환부(212)에게 제1 동작 명령을 전송한다. 제1 서브 전력 변환부(212)는, 제1 동작 명령에 응답하여, DC 그리드(20)의 직류 전력을 외부 전력망(2)으로 출력한다.
도 5는 도 1에 도시된 제2 보호부(220)에 대한 제어 방법을 예시적으로 보여주는 순서도이다. 도 5의 방법은, 복수의 배터리(B)에 대한 활성화 공정이 완료될 때까지, 설정 시간마다 반복될 수 있다.
단계 S510에서, 통합 제어부(110)는, 슈퍼 커패시터(223)의 전압이 제2 임계 전압 이하인지 여부를 판정한다. 단계 S510의 값이 "예"인 경우, 단계 S520으로 진행된다.
단계 S520에서, 통합 제어부(110)는, 제2 서브 전력 변환부(222)에게 충전 명령을 전송한다. 제2 서브 전력 변환부(222)는, 충전 명령에 응답하여, 외부 전력망(2)으로부터의 전력을 슈퍼 커패시터(223)를 위한 충전 전력으로 변환한다.
도 6은 도 1에 도시된 제3 보호부(230)에 대한 제어 방법을 예시적으로 보여주는 순서도이다. 도 6의 방법은, 복수의 배터리(B)에 대한 활성화 공정이 완료될 때까지, 설정 시간마다 반복될 수 있다.
단계 S610에서, 통합 제어부(110)는, AC 전력망(1)의 정전 여부를 판정한다. 단계 S610의 값이 "아니오"인 경우, 단계 S620으로 진행된다. 단계 S610의 값이 "예"인 경우, 단계 S640으로 진행된다.
단계 S620에서, 통합 제어부(110)는, 백업 배터리(233)의 전압이 기준 전압 이상인지 여부를 판정한다. 단계 S620의 값이 "아니오"인 경우, 단계 S630으로 진행된다.
단계 S630에서, 통합 제어부(110)는, 제3 서브 전력 변환부(232)에게 충전 명령을 전송한다. 제3 서브 전력 변환부(232)는, 충전 명령에 응답하여, DC 그리드(20)로부터의 직류 전력을 백업 배터리(233)를 위한 충전 전력으로 변환한다.
단계 S640에서, 통합 제어부(110)는, 제3 서브 전력 변환부(232)에게 방전 명령을 전송한다. 제3 서브 전력 변환부(232)는, 방전 명령에 응답하여, 백업 배터리(233)로부터의 방전 전력을 비상 전력으로 변환한다.
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
또한, 이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니라, 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.
[부호의 설명]
1: AC 전력망
2: 외부 전력망
10: 충방전 시스템
20: DC 그리드
100: 통합 제어부
110: 메인 전력 변환부
113: 전력계
120: 배터리 충방전부
121: 충방전기
210: 제1 보호부
211: 제1 보호 다이오드
212: 제1 서브 전력 변화부
220: 제2 보호부
221: 제2 보호 다이오드
222: 제2 서브 전력 변화부
223: 슈퍼 커패시터
230: 제3 보호부
231: 제3 보호 다이오드
232: 제3 서브 전력 변화부
233: 백업 배터리
240: 제4 보호부
241: 차단기

Claims (11)

  1. AC 전력망으로부터의 교류 전력을 기준 전압을 가지는 직류 전력으로 변환하여 DC 그리드에 출력하도록 구성되는 메인 전력 변환부;
    상기 메인 전력 변환부의 출력 전력을 검출하도록 구성되는 전력계;
    복수의 배터리에 일대일로 제공되고, 상기 DC 그리드에 전기적으로 결합되는 복수의 충방전기를 포함하는 충방전부; 및
    상기 메인 전력 변환부의 출력 전력이 제1 임계 전력보다 큰 경우, 소정의 활성화 스케쥴을 기초로, 충전 이벤트를 지시하는 제1 제어 신호 또는 방전 이벤트를 지시하는 제2 제어 신호를 각 충방전기에게 선택적으로 전송하도록 구성되는 통합 제어부를 포함하고,
    각 충방전기는,
    상기 제1 제어 신호에 응답하여, 상기 DC 그리드의 직류 전력을 충전 전력으로 변환하여 상기 배터리를 충전하고,
    상기 제2 제어 신호에 응답하여, 상기 배터리로부터의 방전 전력을 직류 전력으로 변환하여 상기 DC 그리드로 출력하고,
    상기 제1 제어 신호 및 상기 제2 제어 신호가 수신되지 않는 동안 상기 배터리의 충방전을 정지하도록 구성되는 배터리 활성화를 위한 직류 배전 기반의 충방전 시스템.
  2. 제1항에 있어서,
    상기 통합 제어부는,
    상기 메인 전력 변환부의 출력 전력이 상기 제1 임계 전력 이하인 경우, 상기 활성화 스케쥴을 변경하여, 상기 휴지 상태인 적어도 하나의 충방전기에게 상기 제1 제어 신호를 전송하도록 구성되는 배터리 활성화를 위한 직류 배전 기반의 충방전 시스템.
  3. 제2항에 있어서,
    상기 DC 그리드와 외부 전력망 사이에 전기적으로 결합되고, 상기 DC 그리드의 전압 상승을 억제하도록 구성되는 제1 보호부를 더 포함하는 배터리 활성화를 위한 직류 배전 기반의 충방전 시스템.
  4. 제3항에 있어서,
    상기 통합 제어부는,
    상기 메인 전력 변환부의 출력 전력이 상기 제1 임계 전력보다 작은 제2 임계 전력 이하인 경우, 상기 제1 보호부에게 대기 명령을 전송하도록 구성되고,
    상기 제1 보호부는,
    상기 대기 명령에 응답하여, 상기 DC 그리드로부터 상기 외부 전력망으로의 전류 경로를 선택적으로 형성하도록 구성되는 배터리 활성화를 위한 직류 배전 기반의 충방전 시스템.
  5. 제4항에 있어서,
    상기 제1 보호부는,
    제1 보호 다이오드 및 제1 서브 전력 변환부를 포함하되,
    상기 제1 보호 다이오드는,
    상기 DC 그리드와 상기 외부 전력망 사이에서, 제1 노드를 통해 상기 제1 서브 전력 변환부에 직렬 연결되고, 상기 DC 그리드로부터 상기 제1 서브 전력 변환부로의 전류 경로를 제공하고,
    상기 제1 서브 전력 변환부는,
    상기 대기 명령에 응답하여 오프 상태로부터 대기 상태로 전환하여 동작 중에, 상기 제1 노드의 전압이 상기 기준 전압보다 큰 제1 임계 전압 이상인 경우, 상기 DC 그리드의 직류 전력을 상기 외부 전력망으로 출력하도록 구성되는 배터리 활성화를 위한 직류 배전 기반의 충방전 시스템.
  6. 제1항에 있어서,
    상기 DC 그리드와 외부 전력망 사이에 전기적으로 결합되고, 상기 DC 그리드의 전압 강하를 억제하도록 구성되는 제2 보호부를 더 포함하는 배터리 활성화를 위한 직류 배전 기반의 충방전 시스템.
  7. 제6항에 있어서,
    상기 제2 보호부는,
    슈퍼 커패시터;
    상기 슈퍼 커패시터와 상기 외부 전력망 사이에 전기적으로 결합되고, 상기 외부 전력망으로부터의 전력을 이용하여 상기 슈퍼 커패시터를 선택적으로 충전하도록 구성되는 제2 서브 전력 변환부; 및
    상기 슈퍼 커패시터로부터 상기 DC 그리드로의 전류 경로를 제공하는 제2 보호 다이오드를 포함하는 배터리 활성화를 위한 직류 배전 기반의 충방전 시스템.
  8. 제7항에 있어서,
    상기 통합 제어부는,
    상기 슈퍼 커패시터와 상기 제2 보호 다이오드의 접속점인 제2 노드의 전압이 상기 기준 전압보다 작은 제2 임계 전압 이하인 경우, 경우, 상기 제2 서브 전력 변환부에게 충전 명령을 전송하도록 구성되고,
    상기 제2 서브 전력 변환부는,
    상기 충전 명령에 응답하여, 상기 슈퍼 커패시터를 충전하도록 구성되는 배터리 활성화를 위한 직류 배전 기반의 충방전 시스템.
  9. 제1항에 있어서,
    상기 DC 그리드와 상기 통합 제어부에 전기적으로 결합되고, 상기 AC 전력망이 정전된 경우, 상기 기준 전압을 가지는 비상 전력을 상기 통합 제어부에 출력하도록 구성되는 제3 보호부를 더 포함하는 배터리 활성화를 위한 직류 배전 기반의 충방전 시스템.
  10. 제9항에 있어서,
    상기 제3 보호부는,
    백업 배터리;
    상기 DC 그리드와 상기 백업 배터리 사이에 전기적으로 결합되는 제3 서브 전력 변환부; 및
    상기 DC 그리드로부터 상기 제2 서브 전력 변환부로의 전류 경로를 제공하는 제3 보호 다이오드를 포함하고,
    상기 제3 서브 전력 변환부는,
    상기 AC 전력망이 정상인 경우, 상기 제3 보호 다이오드를 통해 공급되는 상기 DC 그리드의 전력을 이용하여 상기 백업 배터리를 선택적으로 충전하고,
    상기 백업 배터리의 방전 전력을 상기 비상 전력으로 선택적으로 변환하도록 구성되는 배터리 활성화를 위한 직류 배전 기반의 충방전 시스템.
  11. 제1항에 있어서,
    상기 DC 그리드와 각 충방전기를 연결하는 전력 라인에 설치되는 제4 보호부를 더 포함하되,
    상기 통합 제어부는,
    상기 전력 라인의 절연 이상이 감지된 경우, 상기 제4 보호부에 트립 신호를 전송하도록 구성되는 배터리 활성화를 위한 직류 배전 기반의 충방전 시스템.
PCT/KR2021/016473 2020-11-13 2021-11-11 배터리 활성화를 위한 직류 배전 기반의 충방전 시스템 WO2022103183A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21892350.6A EP4075627A4 (en) 2020-11-13 2021-11-11 CHARGE/DISCHARGE SYSTEM BASED ON DIRECT CURRENT DISTRIBUTION FOR BATTERY ACTIVATION
CN202180009127.8A CN114946098A (zh) 2020-11-13 2021-11-11 用于电池化成的基于直流配电的充电/放电系统
US17/795,375 US12088103B2 (en) 2020-11-13 2021-11-11 Direct current distribution based charging/discharging system for battery formation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200152311A KR102654899B1 (ko) 2020-11-13 2020-11-13 배터리 활성화를 위한 직류 배전 기반의 충방전 시스템
KR10-2020-0152311 2020-11-13

Publications (1)

Publication Number Publication Date
WO2022103183A1 true WO2022103183A1 (ko) 2022-05-19

Family

ID=81601618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016473 WO2022103183A1 (ko) 2020-11-13 2021-11-11 배터리 활성화를 위한 직류 배전 기반의 충방전 시스템

Country Status (5)

Country Link
US (1) US12088103B2 (ko)
EP (1) EP4075627A4 (ko)
KR (1) KR102654899B1 (ko)
CN (1) CN114946098A (ko)
WO (1) WO2022103183A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116387652A (zh) * 2023-06-05 2023-07-04 深圳和润达科技有限公司 化成/分容电源设备的在线维护系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101431047B1 (ko) * 2013-01-31 2014-08-21 명지대학교 산학협력단 독립형 dc 마이크로그리드를 위한 협조적 드룹 제어 장치 및 방법
JP2014193111A (ja) * 2013-03-27 2014-10-06 Egcns Co Ltd 直列接続された複数の電池直流マイクログリッド充放電システム
KR101741883B1 (ko) * 2013-12-31 2017-05-30 인피니언 테크놀로지스 오스트리아 아게 전력 저장 및 공급 시스템
KR20180090673A (ko) * 2017-02-03 2018-08-13 롯데케미칼 주식회사 하이브리드 에너지 저장 시스템
KR101925496B1 (ko) * 2018-08-17 2018-12-05 박훈양 배터리 랙들 사이의 불평형을 보상할 수 있는 전력 관리 장치 및 이를 포함하는 에너지 저장 시스템

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8970176B2 (en) * 2010-11-15 2015-03-03 Bloom Energy Corporation DC micro-grid
JP6074188B2 (ja) 2012-07-31 2017-02-01 田淵電機株式会社 蓄電充電装置
JP5680039B2 (ja) * 2012-09-18 2015-03-04 株式会社東芝 電力変換装置、協調制御方法、協調制御システム、およびプログラム
JP6048572B2 (ja) 2013-03-15 2016-12-21 富士電機株式会社 無停電電源装置
KR101499325B1 (ko) 2013-05-21 2015-03-05 주식회사 엘지씨엔에스 에너지 효율 향상을 위한 배터리 충/방전 장치 및 그 방법
KR101591931B1 (ko) 2013-12-18 2016-02-04 주식회사 혜령씨엔티 2차전지의 활성화 제어 장치
KR101622511B1 (ko) 2015-02-11 2016-05-18 엘에스산전 주식회사 배터리 에너지 저장 시스템을 포함하는 전력 공급 시스템
KR101776997B1 (ko) 2015-05-19 2017-09-08 주식회사 엘지씨엔에스 Dc 마이크로그리드 시스템 및 그 제어 방법
JP2017121171A (ja) 2015-12-28 2017-07-06 サンケン電気株式会社 蓄電池充放電システム及び系統連系システム
KR20190009511A (ko) * 2017-07-19 2019-01-29 삼성중공업 주식회사 전력 공급 시스템 및 전력 공급 방법
WO2019145997A1 (ja) * 2018-01-23 2019-08-01 Tdk株式会社 直流給電システム
US11601007B2 (en) 2019-02-04 2023-03-07 Tdk Corporation DC power supply system
CN219535102U (zh) 2019-09-02 2023-08-15 东莞市源创电子科技有限公司 一种数据线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101431047B1 (ko) * 2013-01-31 2014-08-21 명지대학교 산학협력단 독립형 dc 마이크로그리드를 위한 협조적 드룹 제어 장치 및 방법
JP2014193111A (ja) * 2013-03-27 2014-10-06 Egcns Co Ltd 直列接続された複数の電池直流マイクログリッド充放電システム
KR101741883B1 (ko) * 2013-12-31 2017-05-30 인피니언 테크놀로지스 오스트리아 아게 전력 저장 및 공급 시스템
KR20180090673A (ko) * 2017-02-03 2018-08-13 롯데케미칼 주식회사 하이브리드 에너지 저장 시스템
KR101925496B1 (ko) * 2018-08-17 2018-12-05 박훈양 배터리 랙들 사이의 불평형을 보상할 수 있는 전력 관리 장치 및 이를 포함하는 에너지 저장 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4075627A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116387652A (zh) * 2023-06-05 2023-07-04 深圳和润达科技有限公司 化成/分容电源设备的在线维护系统及方法
CN116387652B (zh) * 2023-06-05 2023-08-25 深圳和润达科技有限公司 化成/分容电源设备的在线维护系统及方法

Also Published As

Publication number Publication date
EP4075627A1 (en) 2022-10-19
EP4075627A4 (en) 2023-08-16
US20230055592A1 (en) 2023-02-23
CN114946098A (zh) 2022-08-26
KR102654899B1 (ko) 2024-04-03
US12088103B2 (en) 2024-09-10
KR20220065600A (ko) 2022-05-20

Similar Documents

Publication Publication Date Title
WO2019216532A1 (ko) 배터리 제어 장치 및 이를 포함하는 에너지 저장 시스템
WO2019103364A1 (ko) 무선 배터리 관리 시스템 및 그것을 이용하여 배터리팩을 보호하는 방법
WO2019212128A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 상기 배터리 관리 장치를 포함하는 에너지 저장 시스템
WO2011083993A2 (ko) 배터리 제어 장치 및 방법
WO2019221368A1 (ko) 메인 배터리와 서브 배터리를 제어하기 위한 장치, 배터리 시스템 및 방법
WO2012043919A1 (en) Power conversion system for energy storage system and controlling method of the same
WO2012033254A1 (en) Energy storage system and controlling method of the same
WO2018021664A1 (ko) 배터리 밸런싱 장치 및 방법
EP2658027A1 (en) Power supply system
WO2018016735A1 (ko) 배터리 시스템
WO2015126035A1 (ko) 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
WO2022149958A1 (ko) 배터리 제어 장치, 배터리 시스템, 전원 공급 시스템 및 배터리 제어 방법
WO2015046877A1 (ko) 배터리 관리 시스템
WO2015053536A1 (ko) 오작동 방지 알고리즘을 포함하는 배터리 관리 장치 및 방법
WO2023153651A1 (ko) 배터리 충방전 장치
JP2019106869A (ja) 高電圧電池管理及び平衡化回路並びにその応用
WO2014061933A1 (ko) 부하에 직류전원을 끊김 없이 공급하는 무정전 직류전원장치
CN111277009A (zh) 一种电池管理控制系统和控制方法
WO2019117512A1 (ko) 워치독 타이머를 진단하기 위한 장치 및 방법
WO2021080247A1 (ko) 병렬 멀티 배터리 팩에 포함된 스위치부의 턴온 동작 제어 장치 및 방법
CN102870311A (zh) 电池供电系统及其上电的控制方法
WO2019107802A1 (ko) 에너지 저장 시스템
WO2018216899A1 (ko) 군용 마이크로그리드 시스템
WO2021033956A1 (ko) 배터리 시스템 및 배터리 시스템의 운용 방법
WO2015069010A1 (ko) 무정전 직류전원장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21892350

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021892350

Country of ref document: EP

Effective date: 20220713

NENP Non-entry into the national phase

Ref country code: DE