WO2022102636A1 - Organic tin compound, method for producing same, liquid composition for forming euv resist film using same, and method for forming euv resist film - Google Patents
Organic tin compound, method for producing same, liquid composition for forming euv resist film using same, and method for forming euv resist film Download PDFInfo
- Publication number
- WO2022102636A1 WO2022102636A1 PCT/JP2021/041260 JP2021041260W WO2022102636A1 WO 2022102636 A1 WO2022102636 A1 WO 2022102636A1 JP 2021041260 W JP2021041260 W JP 2021041260W WO 2022102636 A1 WO2022102636 A1 WO 2022102636A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tin
- resist film
- ray emission
- liquid composition
- carbon atoms
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 98
- 239000007788 liquid Substances 0.000 title claims abstract description 89
- 150000003606 tin compounds Chemical class 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 49
- 230000005260 alpha ray Effects 0.000 claims abstract description 188
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 101
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 39
- 125000001183 hydrocarbyl group Chemical group 0.000 claims abstract 11
- 150000001875 compounds Chemical class 0.000 claims description 58
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 claims description 52
- 238000004821 distillation Methods 0.000 claims description 48
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 claims description 45
- -1 alkyl tin Chemical compound 0.000 claims description 29
- 229910001887 tin oxide Inorganic materials 0.000 claims description 27
- 239000012535 impurity Substances 0.000 claims description 16
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 15
- 230000002194 synthesizing effect Effects 0.000 claims description 10
- 150000001450 anions Chemical class 0.000 claims description 3
- 239000010408 film Substances 0.000 description 132
- 230000000052 comparative effect Effects 0.000 description 116
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 91
- 238000012360 testing method Methods 0.000 description 73
- 229910052718 tin Inorganic materials 0.000 description 45
- 230000007547 defect Effects 0.000 description 44
- 239000007858 starting material Substances 0.000 description 42
- BVFSYZFXJYAPQJ-UHFFFAOYSA-N butyl(oxo)tin Chemical compound CCCC[Sn]=O BVFSYZFXJYAPQJ-UHFFFAOYSA-N 0.000 description 30
- QUXHCILOWRXCEO-UHFFFAOYSA-M magnesium;butane;chloride Chemical compound [Mg+2].[Cl-].CCC[CH2-] QUXHCILOWRXCEO-UHFFFAOYSA-M 0.000 description 29
- SRTUXYLWUBJZJB-UHFFFAOYSA-N CCCCO[Sn](C(C)(C)C)(OCCCC)OCCCC Chemical compound CCCCO[Sn](C(C)(C)C)(OCCCC)OCCCC SRTUXYLWUBJZJB-UHFFFAOYSA-N 0.000 description 21
- 150000002430 hydrocarbons Chemical group 0.000 description 21
- WWSJZGAPAVMETJ-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-3-ethoxypyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C(=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2)OCC WWSJZGAPAVMETJ-UHFFFAOYSA-N 0.000 description 19
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 16
- 239000011248 coating agent Substances 0.000 description 15
- 238000000576 coating method Methods 0.000 description 15
- YMLFYGFCXGNERH-UHFFFAOYSA-K butyltin trichloride Chemical compound CCCC[Sn](Cl)(Cl)Cl YMLFYGFCXGNERH-UHFFFAOYSA-K 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 12
- VWVRASTUFJRTHW-UHFFFAOYSA-N 2-[3-(azetidin-3-yloxy)-4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound O=C(CN1C=C(C(OC2CNC2)=N1)C1=CN=C(NC2CC3=C(C2)C=CC=C3)N=C1)N1CCC2=C(C1)N=NN2 VWVRASTUFJRTHW-UHFFFAOYSA-N 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 10
- AFCAKJKUYFLYFK-UHFFFAOYSA-N tetrabutyltin Chemical compound CCCC[Sn](CCCC)(CCCC)CCCC AFCAKJKUYFLYFK-UHFFFAOYSA-N 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 230000035945 sensitivity Effects 0.000 description 9
- 238000004140 cleaning Methods 0.000 description 8
- IUYHWZFSGMZEOG-UHFFFAOYSA-M magnesium;propane;chloride Chemical compound [Mg+2].[Cl-].C[CH-]C IUYHWZFSGMZEOG-UHFFFAOYSA-M 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- GZJSPMSGXOFHFT-UHFFFAOYSA-N tert-butyltin Chemical compound CC(C)(C)[Sn] GZJSPMSGXOFHFT-UHFFFAOYSA-N 0.000 description 8
- 238000011161 development Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 239000013076 target substance Substances 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- KKYDFOBQZGAKDI-UHFFFAOYSA-N C(C)(C)[Sn]=O Chemical compound C(C)(C)[Sn]=O KKYDFOBQZGAKDI-UHFFFAOYSA-N 0.000 description 6
- ZJQTVTVCHRMENE-UHFFFAOYSA-N C(CCCCC)[Sn]=O Chemical compound C(CCCCC)[Sn]=O ZJQTVTVCHRMENE-UHFFFAOYSA-N 0.000 description 6
- GWRDLHYVBNIFOC-UHFFFAOYSA-N CCCCCCC[Sn]=O Chemical compound CCCCCCC[Sn]=O GWRDLHYVBNIFOC-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 238000001900 extreme ultraviolet lithography Methods 0.000 description 6
- 238000001459 lithography Methods 0.000 description 6
- CQRPUKWAZPZXTO-UHFFFAOYSA-M magnesium;2-methylpropane;chloride Chemical compound [Mg+2].[Cl-].C[C-](C)C CQRPUKWAZPZXTO-UHFFFAOYSA-M 0.000 description 6
- IRWPJBOFORGCQU-UHFFFAOYSA-N oxo(pentyl)tin Chemical compound CCCCC[Sn]=O IRWPJBOFORGCQU-UHFFFAOYSA-N 0.000 description 6
- FVZNNQDYHDICOO-UHFFFAOYSA-N oxo(propyl)tin Chemical compound CCC[Sn]=O FVZNNQDYHDICOO-UHFFFAOYSA-N 0.000 description 6
- UAWDZAKIFJNTHX-UHFFFAOYSA-N tert-butyl(oxo)tin Chemical compound CC(C)(C)[Sn]=O UAWDZAKIFJNTHX-UHFFFAOYSA-N 0.000 description 6
- FYELSNVLZVIGTI-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-5-ethylpyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C=NN(C=1CC)CC(=O)N1CC2=C(CC1)NN=N2 FYELSNVLZVIGTI-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- AZEPHFRSRIKPGQ-UHFFFAOYSA-N butan-2-yl(oxo)tin Chemical compound CCC(C)[Sn]=O AZEPHFRSRIKPGQ-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- LZFCBBSYZJPPIV-UHFFFAOYSA-M magnesium;hexane;bromide Chemical compound [Mg+2].[Br-].CCCCC[CH2-] LZFCBBSYZJPPIV-UHFFFAOYSA-M 0.000 description 5
- IOOQQIVFCFWSIU-UHFFFAOYSA-M magnesium;octane;bromide Chemical compound [Mg+2].[Br-].CCCCCCC[CH2-] IOOQQIVFCFWSIU-UHFFFAOYSA-M 0.000 description 5
- XWCQLLDGXBLGMD-UHFFFAOYSA-M magnesium;pentane;bromide Chemical compound [Mg+2].[Br-].CCCC[CH2-] XWCQLLDGXBLGMD-UHFFFAOYSA-M 0.000 description 5
- UGVPKMAWLOMPRS-UHFFFAOYSA-M magnesium;propane;bromide Chemical compound [Mg+2].[Br-].CC[CH2-] UGVPKMAWLOMPRS-UHFFFAOYSA-M 0.000 description 5
- KGHLYBKDIPRXHA-UHFFFAOYSA-N octyl(oxo)tin Chemical compound CCCCCCCC[Sn]=O KGHLYBKDIPRXHA-UHFFFAOYSA-N 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 4
- LPZOCVVDSHQFST-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-3-ethylpyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C(=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2)CC LPZOCVVDSHQFST-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000007818 Grignard reagent Substances 0.000 description 4
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 4
- 150000004795 grignard reagents Chemical class 0.000 description 4
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- OHVLMTFVQDZYHP-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CN1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O OHVLMTFVQDZYHP-UHFFFAOYSA-N 0.000 description 3
- KZEVSDGEBAJOTK-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[5-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CC=1OC(=NN=1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O KZEVSDGEBAJOTK-UHFFFAOYSA-N 0.000 description 3
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 3
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 3
- SXAMGRAIZSSWIH-UHFFFAOYSA-N 2-[3-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,2,4-oxadiazol-5-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NOC(=N1)CC(=O)N1CC2=C(CC1)NN=N2 SXAMGRAIZSSWIH-UHFFFAOYSA-N 0.000 description 3
- XXZCIYUJYUESMD-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-3-(morpholin-4-ylmethyl)pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C(=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2)CN1CCOCC1 XXZCIYUJYUESMD-UHFFFAOYSA-N 0.000 description 3
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 3
- JQMFQLVAJGZSQS-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-N-(2-oxo-3H-1,3-benzoxazol-6-yl)acetamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)NC1=CC2=C(NC(O2)=O)C=C1 JQMFQLVAJGZSQS-UHFFFAOYSA-N 0.000 description 3
- ZRPAUEVGEGEPFQ-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2 ZRPAUEVGEGEPFQ-UHFFFAOYSA-N 0.000 description 3
- JVKRKMWZYMKVTQ-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]pyrazol-1-yl]-N-(2-oxo-3H-1,3-benzoxazol-6-yl)acetamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C=NN(C=1)CC(=O)NC1=CC2=C(NC(O2)=O)C=C1 JVKRKMWZYMKVTQ-UHFFFAOYSA-N 0.000 description 3
- YJLUBHOZZTYQIP-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)NN=N2 YJLUBHOZZTYQIP-UHFFFAOYSA-N 0.000 description 3
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 3
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 3
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- GCTFWCDSFPMHHS-UHFFFAOYSA-M Tributyltin chloride Chemical compound CCCC[Sn](Cl)(CCCC)CCCC GCTFWCDSFPMHHS-UHFFFAOYSA-M 0.000 description 3
- 239000001099 ammonium carbonate Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- YDGSUPBDGKOGQT-UHFFFAOYSA-N lithium;dimethylazanide Chemical compound [Li+].C[N-]C YDGSUPBDGKOGQT-UHFFFAOYSA-N 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- GRYDGXUVWLGHPL-UHFFFAOYSA-M magnesium;heptane;bromide Chemical compound [Mg+2].[Br-].CCCCCC[CH2-] GRYDGXUVWLGHPL-UHFFFAOYSA-M 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- WHXTVQNIFGXMSB-UHFFFAOYSA-N n-methyl-n-[tris(dimethylamino)stannyl]methanamine Chemical compound CN(C)[Sn](N(C)C)(N(C)C)N(C)C WHXTVQNIFGXMSB-UHFFFAOYSA-N 0.000 description 3
- 125000002524 organometallic group Chemical group 0.000 description 3
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- OKULOIZBIQQWSM-UHFFFAOYSA-M CCCC[Mg]Br Chemical compound CCCC[Mg]Br OKULOIZBIQQWSM-UHFFFAOYSA-M 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 235000012501 ammonium carbonate Nutrition 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- VEGRTTZOXYUSTI-UHFFFAOYSA-N butyl-tri(propan-2-yloxy)stannane Chemical compound CCCC[Sn](OC(C)C)(OC(C)C)OC(C)C VEGRTTZOXYUSTI-UHFFFAOYSA-N 0.000 description 2
- NPAIMXWXWPJRES-UHFFFAOYSA-N butyltin(3+) Chemical compound CCCC[Sn+3] NPAIMXWXWPJRES-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- RJGHQTVXGKYATR-UHFFFAOYSA-L dibutyl(dichloro)stannane Chemical compound CCCC[Sn](Cl)(Cl)CCCC RJGHQTVXGKYATR-UHFFFAOYSA-L 0.000 description 2
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 2
- 229910001623 magnesium bromide Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical class [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 2
- YSCVYRUCAPMZFG-UHFFFAOYSA-K trichlorotin Chemical compound Cl[Sn](Cl)Cl YSCVYRUCAPMZFG-UHFFFAOYSA-K 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- WLJVXDMOQOGPHL-PPJXEINESA-N 2-phenylacetic acid Chemical compound O[14C](=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-PPJXEINESA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- DVESHNZBMYCLJK-UHFFFAOYSA-N C(CCCCCCCC)[Sn]=O Chemical compound C(CCCCCCCC)[Sn]=O DVESHNZBMYCLJK-UHFFFAOYSA-N 0.000 description 1
- FHKQDMABXNFFHB-UHFFFAOYSA-N C(CCCCCCCCC)[Sn]=O Chemical compound C(CCCCCCCCC)[Sn]=O FHKQDMABXNFFHB-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 206010034960 Photophobia Diseases 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 125000000129 anionic group Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- LUZSPGQEISANPO-UHFFFAOYSA-N butyltin Chemical compound CCCC[Sn] LUZSPGQEISANPO-UHFFFAOYSA-N 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- LVLWGUYOLWOCNN-UHFFFAOYSA-N oxo(phenyl)tin Chemical compound O=[Sn]C1=CC=CC=C1 LVLWGUYOLWOCNN-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229910052699 polonium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000005258 radioactive decay Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 125000003548 sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000004454 trace mineral analysis Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- DTRIEULISHKBQO-UHFFFAOYSA-N tributoxy(butyl)stannane Chemical compound CCCCO[Sn](CCCC)(OCCCC)OCCCC DTRIEULISHKBQO-UHFFFAOYSA-N 0.000 description 1
- TWFGNIBHAYQYNA-UHFFFAOYSA-N tributoxytin Chemical compound CCCCO[Sn](OCCCC)OCCCC TWFGNIBHAYQYNA-UHFFFAOYSA-N 0.000 description 1
- 230000004304 visual acuity Effects 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/22—Tin compounds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
Definitions
- the present invention relates to an organotin compound having a low ⁇ -ray emission amount and a method for producing the same. Further, the present invention relates to a liquid composition for forming an EUV resist film having a low ⁇ -ray emission amount using this organotin compound, and a method for forming an EUV resist film having a low ⁇ -ray emission amount.
- the resist film patterning technique in the semiconductor process has undergone a transition, and a lithography technique using KrF or ArF as a light source has been established, and semiconductor devices are still mass-produced using this technique. ..
- ITRS International Technology Roadmap for Semiconductor
- EUV Extreme Ultra Violet
- a resist film-forming liquid composition a method of introducing a structure that increases the light sensitivity by mainly applying CAR, or a metal species having a high EUV light absorption coefficient is introduced.
- a method or a method using a non-chemically amplified resist (Non-CAR) having a different mechanism has been proposed and is being developed.
- Non-CAR non-chemically amplified resist
- the challenges in developing next-generation resist materials are that the output of EUV light that finally reaches the mask is small, and that the photosensitive mechanism changes due to changes in light rays, so EUV It was necessary to form a resist film with high sensitivity to light.
- Patent Document 1 for example, Patent Document 1
- See claim 1, abstract This method is an example of non-CAR.
- Patent Document 1 describes an organic solvent and the formula R z SnO (2- (z / 2)-(x / 2)) (OH) x (where 0 ⁇ z ⁇ 2 and 0 ⁇ (z + x) ⁇ 4).
- a coating solution containing a hydrolyzable metal compound represented by (is a combination of) is disclosed.
- This Patent Document 1 describes an organometallic precursor for creating a high resolution lithography pattern forming coating based on metal oxide hydroxyd chemistry, and the precursor composition thereof is generally under mild conditions. Containing ligands that can be easily hydrolyzed by water vapor or other OH source compositions, the organometallic precursors can generally be effective in forming high resolution patterns at relatively low radiation doses. It is described that it contains a radiation sensitive organoligand to tin, which can result in a coating that is particularly useful in EUV patterning.
- the detection of metal impurities is a trace amount of the composition such as ICP-MS.
- the analysis is performed by the analysis method, and this analysis shows that it is less than the detection of metal impurities.
- metal impurities are contained in the order of ppb that cannot be detected by trace analysis, if metal impurities that can emit radiation due to radioactive decay are contained, radiation such as ⁇ -rays, ⁇ -rays, and ⁇ -rays is emitted. There is a risk of
- the present inventors have found that when tin (Sn) having a high absorption coefficient of EUV light is used as the resist material for the purpose of increasing the sensitivity of the resist material, Sn is used. Contains a small amount of Pb as an impurity, and ⁇ -rays emitted from 210 Po generated from 210 Pb, which is an isotope of this Pb, cause an unintended structural change in the resist film containing Sn, resulting in random defects. It was found that the present invention was reached.
- the first aspect of the present invention is an organotin compound having an ⁇ -ray emission amount of 0.01 cph / cm 2 or less.
- the second aspect of the present invention is an invention based on the first aspect, which is an organotin compound represented by any of the following formulas (1) to (9).
- R 1 is a hydrocarbon group having 1 to 10 carbon atoms.
- R 2 is a hydrocarbon group having 1 to 10 carbon atoms, a is 1 or 2, and b to d are integers having the same or different carbon atoms from 1 to 28, respectively. 0 ⁇ n ⁇ 4.
- R 2 is a hydrocarbon group having 1 to 10 carbon atoms, p to s are integers having the same or different carbon atoms from 1 to 28, and t is 1 or more and 4 or less. .. Y has an anion species as a counterion.
- R 3 is a hydrocarbon group having 1 to 10 carbon atoms.
- R 4 is a hydrocarbon group having 1 to 10 carbon atoms.
- R 5 is a hydrocarbon group having 1 to 10 carbon atoms
- R 6 is a hydrocarbon group having 1 to 5 carbon atoms.
- R 7 is a hydrocarbon group having 1 to 10 carbon atoms.
- R 8 is a hydrocarbon group having 1 to 10 carbon atoms.
- R 9 is a hydrocarbon group having 1 to 10 carbon atoms.
- the third aspect of the present invention is the EUV resist film forming liquid composition using the organic tin compound of the first aspect or the second aspect, and the EUV resist film forming liquid composition is 100% by mass.
- the EUV resist film-forming liquid composition has a tin content of 0.05% by mass or more and 24% by mass or less.
- a fourth aspect of the present invention is a method for forming an EUV resist film having an ⁇ -ray emission amount of 0.01 cph / cm 2 or less by using the EUV resist film forming liquid composition of the third aspect.
- the fifth aspect of the present invention is (a) a step of synthesizing tin tetrachloride from metallic tin having an ⁇ -ray emission amount of 0.01 cf / cm 2 or less, and (b) a monoalkyl tin oxide from the tin tetrachloride.
- it is a method for producing an organic tin compound including a step of synthesizing an alkyl tin trialkoxide, and in all the steps from the step (a) to the step (c), distillation for removing impurities from the composite is performed a plurality of times.
- the ⁇ -rays of the organic tin compound are controlled by ⁇ -ray control to shield the ⁇ -rays from the equipment and environment used in all the steps from the step (a) to the step (c). It is a method for producing an organic tin compound, characterized in that the amount released is 0.01 cph / cm 2 or less.
- the sixth aspect of the present invention is the invention based on the fifth aspect, in which multiple distillations measure the amount of ⁇ -ray emission of the compound or impurity fraction produced in each step, and the ⁇ -ray emission is achieved.
- This is a method for producing an organic tin compound, which is carried out until the amount becomes 0.01 cph / cm 2 or less.
- the organotin compound according to the first aspect of the present invention has an ⁇ -ray emission amount of 0.01 cph / cm 2 or less, this organotin compound is used as a raw material for a liquid composition for forming an EUV resist film to form an EUV resist film.
- a resist film with reduced random defects can be formed due to the small amount of ⁇ -ray emission.
- the organic tin compound according to the second aspect of the present invention has a hydrocarbon group represented by any of the above-mentioned formulas (1) to (9) bonded to it, the amount of ⁇ -ray emission is 0.01 cph / cm.
- the OH) bond absorbs the irradiated EUV light with high efficiency and causes a structural change, and the solubility selectivity in the developing solution is greatly enhanced after the irradiation of the EUV light.
- the EUV resist film-forming liquid composition of the third aspect of the present invention uses the organic tin compound of the first aspect or the second aspect, when the EUV resist film-forming liquid composition is stored. It has the feature that the generation of reactive foreign substances due to the emission of ⁇ -rays is small. Further, since the tin content in the liquid composition is 0.05% by mass or more and 24% by mass or less, when the resist film made of this organotin compound is irradiated with EUV light, EUV light is absorbed with high efficiency. can do. In addition to this excellent effect, it is possible to form a resist film with reduced random defects when a pattern is formed on the EUV resist film due to a small amount of ⁇ -ray emission.
- the formed EUV resist film uses the liquid composition for forming the EUV resist film according to the third aspect, so that the formed EUV resist film is ⁇ . It is possible to effectively utilize the irradiated EUV light without being affected by the line, and it is possible to achieve both high sensitivity and low defects.
- tin tetrachloride is synthesized from metallic tin having an ⁇ -ray emission amount of 0.01 cf / cm 2 or less, and monoalkyl tin oxide or alkyl is synthesized from tin tetrachloride.
- the amount of ⁇ -ray emission of the organic tin compound can be reduced to 0.01 cf / cm 2 or less, and the organic tin compound having this low amount of ⁇ -ray emission can be used to form an EUV resist film.
- a resist film having reduced random defects can be formed due to a small amount of ⁇ -ray emission.
- the amount of ⁇ -ray emission of a compound or impurity distillate produced in each step by multiple distillations is measured, and the amount of ⁇ -ray emission is 0.01 cph. Since it is carried out until it becomes / cm 2 or less, the ⁇ -ray emission amount of the final organic tin compound can be 0.01 cph / cm 2 or less.
- the patterned (drawn) resist film of the present embodiment is made from metallic tin (Sn) as a starting material. Specifically, an organotin compound is first produced using metallic tin (Sn) having a low ⁇ -ray emission amount, and a liquid composition for forming an EUV resist film is produced from this organotin compound. The liquid composition is then coated on the substrate and the coating film is baked. Next, the baked resist film is exposed to EUV and subjected to development and post-treatment to obtain a patterned resist film.
- the low ⁇ -ray emission amount of metallic tin (Sn) of the present embodiment is selected from those having an ⁇ -ray emission amount in the range of 0.01 cf / cm 2 or less, preferably those having an ⁇ -ray emission amount of less than 0.0005 cf / cm 2 .
- Examples of the metallic tin having a low ⁇ -ray emission amount include metallic tin produced by the method shown in Japanese Patent No. 6512354.
- the “ ⁇ -ray emission amount” refers to a value measured for 96 hours with a gas flow type ⁇ -ray measuring device (MODEL-1950, lower limit of measurement: 0.0005 cph / cm 2 ) manufactured by Alpha Science. The measurement was performed so that the temperature was within the range of 20 ° C to 30 ° C.
- Organotin compounds with low alpha ray emission The organotin compound produced from the metallic tin having a low ⁇ -ray emission amount of the present embodiment is represented by any of the following formulas (1) to (9).
- R 1 is a hydrocarbon group having 1 to 10 carbon atoms.
- Examples thereof include -sec-butyl tin oxide, monophenyl tin oxide represented by the formula (1-10), monononyl tin oxide represented by the formula (1-11), and monodecyl tin oxide represented by the formula (1-12). ..
- R 2 is a hydrocarbon group having 1 to 10 carbon atoms, a is 1 or 2, and b to d are the same or different carbon atoms 1 respectively. It is an integer of ⁇ 28, and 0 ⁇ n ⁇ 4.
- Specific examples of this multimeric organic tin compound include [(BuSn) 12 O 14 (OH) 6 ] 2+ , [(PhSn) 12 O 14 (OH) 6 ] 2+ , [(tert-BuSn) 12 ).
- Bu represents a butyl group
- Ph represents a phenyl group
- tert-Bu represents a tertiary butyl group
- iso-Pr represents an isopropyl group
- tert-Am represents a tertiary rearyl group.
- R 2 is a hydrocarbon group having 1 to 10 carbon atoms
- p to s are integers having the same or different carbon atoms from 1 to 28, and t. Is 1 or more and 4 or less.
- Y has an anion species as a counterion. This anionic species is due to an acid used in synthesizing an organic tin compound, and examples of the acid include p-toluenesulfonic acid, phenylacetic acid, oxalic acid, malonic acid, and benzoic acid.
- this multimeric organic tin compound examples include [(BuSn) 12 O 14 (OH) 6 ] (SO 3 C 6 H 4 CH 3 ) 2 , [(sec-BuSn) 12 O 14 (OH) 6 ] (SO 3 C 6 H 4 CH 3 ) 2 , [(iso-PrSn) 12 O 14 (OH) 6 ] (SO 3 C 6 H 4 CH 3 ) 2 , [(tert-BuSn) 12 O 14 (OH) ) 6 ] (C 6 H 5 CH 2 COO) 2 , [(sec-BuSn) 12 O 14 (OH) 6 ] (OCOCOO), [(iso-PrSn) 12 O 14 (OH) 6 ] (OCOCH 2 COO) ), [(BuSn) 12 O 14 (OH) 6 ] (HCOO) 2 , [(BuSn) 12 O 14 (OH) 6 ] (C 6 H 5 COO) 2 , [(PhSn) 12 O 14 (OH) 6 ] Cl 2
- the organotin compound represented by the formula (3) can be selected by the functional group Y, and the sensitivity to EUV light can be adjusted by the selected functional group Y.
- this organic tin compound when used as a raw material for a liquid composition for forming a resist film to form a pattern on an EUV resist film, a resist with a small amount of ⁇ -ray emission reduces random defects. A film can be formed.
- R 3 is a hydrocarbon group having 1 to 10 carbon atoms.
- a resist film with reduced random defects can be formed by reducing the amount of ⁇ -ray emission.
- the organic tin compounds of the formulas (4-2) to (4-8) are exemplified.
- Bu is a butyl group
- Et is an ethyl group
- Me is a methyl group
- Pr is a propyl group
- Hex is a hexyl group
- iso-Pr is an isopropyl group
- tert-Bu is a tertiary butyl group
- sec-Bu is a secondary butyl. Represents each group.
- R 4 is a hydrocarbon group having 1 to 10 carbon atoms.
- the sensitivity of the EUV resist film can be adjusted by utilizing the cleavage of the bond between Sn and C in a state where the amount of ⁇ -ray emission is small. In addition to this effect, a resist film with reduced random defects can be formed by reducing the amount of ⁇ -ray emission.
- the organotin compounds of the formulas (5-2) to (5-8) are exemplified.
- Bu is a butyl group
- Et is an ethyl group
- Me is a methyl group
- Pr is a propyl group
- Hex is a hexyl group
- iso-Pr is an isopropyl group
- tert-Bu is a tertiary butyl group
- sec-Bu is a secondary butyl. Represents each group.
- R 5 is a hydrocarbon group having 1 to 10 carbon atoms
- R 6 is a hydrocarbon group having 1 to 5 carbon atoms.
- This organic tin compound has an alkoxide structure, and when it is used as a raw material for a liquid composition for forming an EUV resist film and the liquid composition is applied and baked, the hydrolysis reaction easily proceeds.
- a tin-containing resist film having high sensitivity to EUV light can be formed, and a resist film having reduced random defects can be formed by reducing the amount of ⁇ -ray emission.
- the organotin compounds of the formulas (6-2) to (6-22) are exemplified.
- iso-Pr is an isopropyl group
- Et is an ethyl group
- Pr is a propyl group
- Me is a methyl group
- Bu is a butyl group
- iso-Bu is an isobutyl group
- sec-Bu is a secondary butyl group
- tert-Bu is a Tasha.
- R 7 is a hydrocarbon group having 1 to 10 carbon atoms.
- Specific examples of this organotin compound include tetrabutyltin (R 7 having 4 carbon atoms) represented by the following formula (7-1).
- This organotin compound is an intermediate compound produced during the synthesis of the monobutyltin oxide represented by the above formula (1-1).
- the organic tin compounds of the formulas (7-2) to (7-8) are exemplified.
- R 8 is a hydrocarbon group having 1 to 10 carbon atoms.
- This organotin compound is an intermediate compound produced during the synthesis of the monobutyltin oxide represented by the above formula (1-1).
- the organotin compounds of the formulas (8-2) to (8-11) are exemplified.
- R 9 is a hydrocarbon group having 1 to 10 carbon atoms.
- the organotin compounds of the formulas (9-2) to (9-10) are exemplified.
- the organotin compound of the present embodiment produces tin chloride from metallic tin and is made from this tin chloride.
- metallic tin it is preferable to use metallic tin having an ⁇ -ray emission amount of 0.01 cph / cm 2 or less. By using such metallic tin, the number of distillations for removing impurities from the synthetic material described later can be reduced.
- the metallic tin at this time is preferably in the form of granules, foils, or powders in order to enhance the reactivity.
- a method for producing tin chloride from metallic tin and a method for producing an organic tin compound from this tin chloride a known method is adopted.
- distillation for removing impurities from the synthetic substance is performed a plurality of times, and ⁇ rays are used to shield ⁇ rays from the equipment and environment used in all the processes. It is essential that management be done.
- distillation for removing impurities from a compound is performed a plurality of times in all manufacturing processes means that the amount of ⁇ -ray emission of the compound or impurity distillate generated in each step is measured, and the amount of ⁇ -ray emission is calculated. It means repeating distillation multiple times until it becomes 0.01 cph / cm 2 or less. Distillation is preferably performed at a temperature slightly lower than 130 ° C., which is the temperature at which Po, which is an ⁇ -ray source, sublimates.
- ⁇ -ray control is performed on the equipment in all manufacturing processes means that the equipment to be used is pickled and then alkaline-cleaned before each process.
- an aqueous solution of sulfuric acid or an aqueous solution of hydrochloric acid having a concentration of 15% by mass to 30% by mass at a temperature of 45 ° C. to 55 ° C. is supplied to an instrument placed in a washing tank for 60 to 80 minutes for acid cleaning, and then ion-exchanged water is applied at room temperature. Then, the washed equipment is supplied with an aqueous solution of ammonium carbonate, an aqueous solution of ammonium bicarbonate, water of ammonia, etc. at a concentration of 35% by mass to 41% by mass at a temperature of 30 ° C. to 40 ° C. for 40 to 50 minutes for alkaline cleaning. do.
- the environment used is a highly clean environment. For example, a clean room or an environment of a cleanliness class of Class 6 or higher based on the international standard ISO 14644-1: 2015 can be mentioned. In consideration of the safety of the substances produced, the substances unstable in the air should be handled by substituting with an inert gas or in a glove box in which the amount of water is controlled.
- the environment in which it is used should be an environment that shields ⁇ rays that may be mixed into the equipment and facilities used in all manufacturing processes.
- granular, foil-like or powder-like metallic tin is prepared by using the above-mentioned acid-cleaning and then alkali-cleaning instruments.
- the metallic tin it is preferable to use a metallic tin having a low ⁇ -ray emission amount of 0.01 cph / cm 2 or less. This metallic tin is reacted with chlorine (Cl 2 ) gas to synthesize tin tetrachloride (SnCl 4 ) as shown in FIG. 2 and the formula (10).
- FIG. 2 shows a production flow chart from metal tin having a low ⁇ -ray emission amount to obtaining tin tetrachloride having a low ⁇ -ray emission amount.
- tin tetrachloride having a low ⁇ -ray emission amount is reacted with chlorine gas to distill tin tetrachloride in one distillation. Then, the distilled tin tetrachloride is distilled and purified to obtain purified tin tetrachloride. The amount of ⁇ rays emitted from this purified tin tetrachloride is measured.
- tin tetrachloride is dissolved in a methanol solution and sprayed in the air onto a clean glass substrate surface heated to 700 ° C. using a glass atomizer.
- a method of forming a tin oxide thin film as an electrode material. That is, a tin oxide (IV) film is formed in an environment where the generated hydrogen chloride gas can be sucked, a spray temperature of 20 ° C. to 25 ° C., and a humidity of 48% to 53%, and the ⁇ of this tin oxide film is formed. Measure the amount of ray emitted.
- FIG. 3 shows a production flow chart from tin tetrachloride having a low ⁇ -ray emission amount to obtaining a monoalkyl tin oxide having a low ⁇ -ray emission amount.
- the process until monobutyltin oxide is obtained as monoalkyltin oxide will be described.
- purified tin tetrachloride SnCl 4
- an organic magnesium halide of a Grignard reagent to obtain tetraalkyl tin as shown in the formula (11).
- Synthesize tetrabutyltin is used as the organic magnesium halide.
- the synthesized tetrabutyl tin is reacted with tin tetrachloride (SnCl 4 ) synthesized by the formula (10) to synthesize a monobutyl tin trichloride, which is a monoalkyl tin trichloride, as shown in FIG. 3 and the formula (12). do.
- tin tetrachloride SnCl 4
- tributyltin chloride is produced as a by-product.
- the reaction mixture represented by the formula (12) is concentrated and precision distillation is repeated a plurality of times to obtain monobutyltin trichloride.
- This monobutyltin trichloride is dissolved in an organic solvent, an alkaline aqueous solution is added dropwise to this solution and stirred to obtain a precipitate, which is then solid-liquid separated and monobutyltin trichloride as shown in FIG. 3 and formula (13).
- precision distillation is repeated a plurality of times until the ⁇ -ray emission amount becomes 0.01 cph / cm 2 or less to obtain a monobutyltin oxide having a low ⁇ -ray emission amount.
- butylmagnesium chloride for synthesizing the monobutyltin oxide represented by the formula (1-1) synthesized by the formula (13) has been described.
- the organic magnesium halides are shown in the formulas (14) to (21). Using these organomagnesium halides, the amount of ⁇ -ray emission represented by the above-mentioned formulas (1-2) to (1-9) is 0.01 cph / cm 2 or less in the same manner as in the above-mentioned method.
- Organic tin compounds are synthesized.
- the formula (14) is isopropylmagnesium chloride, from which the monoisopropyltin oxide represented by the above formula (1-2) is produced.
- the formula (15) is octylmagnesium bromide, and the monooctyltin oxide represented by the above-mentioned formula (1-3) is produced from the octylmagnesium bromide.
- the formula (16) is tertiary butyl magnesium chloride, and the mono-tert-butyl tin oxide represented by the above formula (1-4) is produced from the tertiary butyl magnesium chloride.
- Formula (17) is propylmagnesium bromide, and from this propylmagnesium bromide, the monopropyl tin oxide represented by the above-mentioned formula (1-5) is produced.
- the formula (18) is pentylmagnesium bromide, and the monopentyltin oxide represented by the above-mentioned formula (1-6) is produced from the pentylmagnesium bromide.
- Formula (19) is hexyl magnesium bromide, from which hexyl magnesium bromide produces the monohexyl tin oxide represented by formula (1-7) above.
- Formula (20) is magnesium bromide, and from this magnesium bromide, monoheptyl tin oxide represented by the above formula (1-8) is produced.
- Formula (21) is bromide secondalibutylmagnesium, and the mono-sec-butyltin oxide represented by the above-mentioned formula (1-9) is produced from this bromide secondalibutylmagnesium.
- the above organic tin compound is added and mixed with an organic solvent in a closed space where ⁇ -ray control is performed with respect to the instrument and the environment, and the mixture is centrifuged or a syringe filter. By removing the insoluble solid, the ⁇ -ray emission amount is 0.01 cph / cm 2 or less.
- a liquid composition for forming an EUV resist film having a predetermined viscosity can be obtained depending on the mixing ratio of the organic tin compound and the organic solvent.
- the tin content is 0.05% by mass or more and 24% by mass or less.
- the tin content is preferably 0.5% by mass to 9% by mass. If it is less than 0.05% by mass, it becomes difficult to efficiently absorb EUV light irradiated to the resist film made of this organic tin compound. Further, if it exceeds 24% by mass, the EUV resist film forming liquid composition becomes unstable from the viewpoint of the solubility of the tin compound, and the metal residue after etching becomes a problem.
- the tin content is a content using a value converted as the tin content contained in the organic tin compound.
- the organic solvent used in the liquid composition for forming an EUV resist film is xylene, an aromatic compound such as toluene, ethers such as methylphenyl ether or methanol, 2-methoxy-1-methylethyl acetate, and the like.
- ethers such as methylphenyl ether or methanol
- 2-methoxy-1-methylethyl acetate examples thereof include esters such as ethyl acetate, ethyl lactate and n-butyl acetate, alcohols such as 4-methyl-2-propanol, 1-butanol, methanol, isopropyl alcohol, 1-propanol and butanol, and ketones such as methyl ethyl ketone.
- the EUV resist film obtained by the above method by a method such as spin coating on a cleaned substrate after applying a photosensitive substance in a state where ⁇ -ray control is performed for the equipment and the environment.
- the forming liquid composition is coated.
- a resist film is formed by holding and baking this coating film at a temperature of 120 ° C. to 210 ° C. for 3 to 10 minutes.
- the coating amount of the liquid composition at the time of coating is adjusted so that the film thickness after baking is 5 nm to 90 nm.
- the formed resist film is exposed to EUV and subjected to post-treatment such as development to produce a resist film having a patterned ⁇ -ray emission amount of 0.01 cph / cm 2 or less.
- the resist film is formed by using the liquid composition for forming an EUV resist film using the organic tin compound of the present invention, but in addition to this, the organic tin compound of the present invention (for example, A resist film can also be formed by a chemical vapor deposition (CVD) method or an atomic layer deposition (ALD) method using the monoalkyl tin trichloride represented by the above formula (8).
- CVD chemical vapor deposition
- ALD atomic layer deposition
- organotin compounds represented by the above-mentioned formulas (1-1) to (1-9), which are organotin compounds are the examples and comparative examples of the organotin oxide compounds, and the organotin compounds obtained in the examples and the comparative examples.
- the results of the amount of ⁇ -ray emission will be described, and then the liquid composition for forming an EUV resist film using the organotin trialkoxide compounds represented by the formulas (1-1) to (1-9) and (9) will be described.
- the results after film formation of the test example and the comparative test example and the EUV resist film forming liquid composition obtained in these test examples and the comparative test example will be described.
- FIG. 4 shows a flow chart from metallic tin purified to emit low ⁇ rays in Examples and Comparative Examples to defect evaluation by CD-SEM (Critical Dimensions-SEM).
- Example 1-1 Comparative Examples of Monobutyltin Oxide (Organic Tin Oxide Compound) of Formula (1-1)] ⁇ Example 1-1> Tin tetrachloride was synthesized from metallic tin. First, a three-necked glass flask with a volume of 500 mL and another flask with ⁇ -ray control were prepared. Specifically, the three-necked flask to be used and another flask were pickled and then alkaline-washed.
- Sulfuric acid first prepared to a concentration of 15% by mass was raised to 45 ° C., and this sulfuric acid was circulated for 60 minutes in the part where the product of the three-necked flask to be used and the product of another flask came into contact, and this contact part was circulated. Washed. Subsequently, the ammonium carbonate solution prepared to a concentration of 38% by mass was circulated at room temperature for 40 minutes, and the contact portion was washed. Then, after cleaning with ion-exchanged water, the cleaning treatment was performed with a cleaning liquid containing a surfactant, the mixture was replaced with ion-exchanged water again, and then the drying treatment was performed with a dryer.
- the above three ⁇ -ray controlled ports were used as a chlorine gas supply port, a nitrogen gas supply port, and a connection port for connecting to another flask.
- 15 g of granular metallic tin as a starting material was placed in the three-necked flask. This metallic tin was less than 0.0005 cf / cm 2 .
- 0.3 mol of chlorine gas was flowed in to react metallic tin with chlorine gas.
- White smoke was generated and the reaction was sufficient, and tin chloride was synthesized from metallic tin.
- the three-necked flask was heated to around 120 ° C., which is close to the boiling point of tin tetrachloride.
- tetrabutyltin was synthesized from the tin tetrachloride.
- a 2 L volumetric flask consisting of a stirrer, a reflux condenser and an isobaric dropping funnel, which is ⁇ -ray controlled
- a tetrahydrofuran solution of butylmagnesium chloride which is a Grignard reagent
- 2.8 of butylmagnesium chloride I put it in a mole. 250 mL of toluene was added thereto, and the mixture was heated to 110 ° C. to distill off the solvent in the Grignard reagent.
- monobutyltin oxide was produced from the above monobutyltin trichloride.
- 20 g of monobutyltin trichloride obtained in the above synthesis is dissolved in 900 mL of ethanol, and while cooling and stirring the solution so that the temperature is 40 ° C. or lower, 12 g of ammonia water having a concentration of 28% by mass is added to this solution for 40 minutes. And dropped.
- the temperature was raised to 55 ° C., and the mixture was stirred at this temperature for 4 hours.
- the resulting precipitate was suction filtered, washed with ion-exchanged water and centrifuged.
- the white solid obtained after centrifugation was dried under reduced pressure at 80 ° C. for 18 hours to obtain 8.8 g of monobutyltin oxide.
- the production of this monobutyltin oxide is represented by the above formula (13).
- Example 1-2 As a starting material, granular metallic tin having an ⁇ -ray emission amount of 0.002 cf / cm 2 was used. Except for this, monobutyltin oxide was produced in the same manner as in Example 1-1.
- Example 1-3 As a starting material, granular metallic tin having an ⁇ -ray emission amount of 0.01 cph / cm 2 was used. Except for this, monobutyltin oxide was produced in the same manner as in Example 1-1.
- Example 1-1 As a starting material, a commercially available product of granular metallic tin having an ⁇ -ray emission amount of 0.5 cph / cm 2 was used. Except for this, monobutyltin oxide was produced in the same manner as in Example 1-1.
- Example 1-2 As a starting material, granular metallic tin having the same ⁇ -ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. However, unlike Example 1-1, the total number of distillations was 2 without performing ⁇ -ray control for the equipment and environment used. Except for this, monobutyltin oxide was produced in the same manner as in Example 1-1.
- Example 2 Comparative Examples of Monoisopropyl Tin Oxide (Organic Tin Oxide Compound) of Formula (1-2)]
- granular metallic tin having the same ⁇ -ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used.
- isopropylmagnesium chloride was used instead of the butylmagnesium chloride used in Example 1-1.
- the total number of distillations was four. Except for this, monoisopropyl tin oxide was produced in the same manner as in Example 1-1.
- Example 2-1 As a starting material, granular metallic tin having an ⁇ -ray emission amount of 0.5 cf / cm 2 , which is the same commercially available product as in Comparative Example 1-1, was used. Further, instead of the butyl magnesium chloride used in Example 1-1, the same isopropyl magnesium chloride as in Example 2 was used. Except for this, monoisopropyl tin oxide was produced in the same manner as in Example 1-1.
- Example 2-2 As a starting material, granular metallic tin having the same ⁇ -ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butyl magnesium chloride used in Example 1-1, the same isopropyl magnesium chloride as in Example 2 was used. However, unlike Example 1-1, the total number of distillations was 2 without performing ⁇ -ray control for the equipment and environment used. Except for this, monoisopropyl tin oxide was produced in the same manner as in Example 1-1.
- Example 3 Comparative Examples of Monooctyl Tin Oxide (Organic Tin Oxide Compound) of Formula (1-3)
- granular metallic tin having the same ⁇ -ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used.
- octylmagnesium bromide was used instead of the butylmagnesium chloride used in Example 1-1. The total number of distillations was four. Except for this, monooctyl tin oxide was produced in the same manner as in Example 1-1.
- Example 3-1 As a starting material, granular metallic tin having an ⁇ -ray emission amount of 0.5 cf / cm 2 , which is the same commercially available product as in Comparative Example 1-1, was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same octylmagnesium bromide as in Example 3 was used. Except for this, monooctyl tin oxide was produced in the same manner as in Example 1-1.
- Example 3-2 As a starting material, granular metallic tin having the same ⁇ -ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same octylmagnesium bromide as in Example 3 was used. However, unlike Example 1-1, the total number of distillations was 2 without performing ⁇ -ray control for the equipment and environment used. Other than that, monoioctyl tin oxide was produced in the same manner as in Example 1-1.
- Example 4 Comparative Examples of Mono-tert-Butyl Tin Oxide (Organic Tin Oxide Compound) of Formula (1-4)
- granular metallic tin having the same ⁇ -ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used.
- tertiary butylmagnesium chloride was used instead of the butylmagnesium chloride used in Example 1-1. The total number of distillations was four. Except for this, mono-tert-butyltin oxide was produced in the same manner as in Example 1-1.
- Example 4-1 As a starting material, granular metallic tin having an ⁇ -ray emission amount of 0.5 cf / cm 2 , which is the same commercially available product as in Comparative Example 1-1, was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same tertiary butylmagnesium chloride as in Example 4 was used. Except for this, mono-tert-butyltin oxide was produced in the same manner as in Example 1-1.
- Example 4-2 As a starting material, granular metallic tin having the same ⁇ -ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same tertiary butylmagnesium chloride as in Example 4 was used. However, unlike Example 1-1, the total number of distillations was 2 without performing ⁇ -ray control for the equipment and environment used. Except for this, mono-tert-butyltin oxide was produced in the same manner as in Example 1-1.
- Example 5 Comparative Examples of Monopropyl Tin Oxide (Organic Tin Oxide Compound) of Formula (1-5)]
- granular metallic tin having the same ⁇ -ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used.
- propylmagnesium bromide was used instead of the butylmagnesium chloride used in Example 1-1.
- the total number of distillations was 5. Except for this, monopropyl tin oxide was produced in the same manner as in Example 1-1.
- Example 5-1 As a starting material, granular metallic tin having an ⁇ -ray emission amount of 0.5 cf / cm 2 , which is the same commercially available product as in Comparative Example 1-1, was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same propylmagnesium bromide as in Example 5 was used. Except for this, monopropyl tin oxide was produced in the same manner as in Example 1-1.
- Example 5-2> As a starting material, granular metallic tin having the same ⁇ -ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same propylmagnesium bromide as in Example 5 was used. However, unlike Example 1-1, the total number of distillations was 3 without performing ⁇ -ray control for the equipment and environment used. Except for this, monopropyl tin oxide was produced in the same manner as in Example 1-1.
- Example 6 Comparative Examples of Monopentyl Tin Oxide (Organic Tin Oxide Compound) of Formula (1-6)
- granular metallic tin having the same ⁇ -ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used.
- pentylmagnesium bromide was used instead of the butylmagnesium chloride used in Example 1-1. The total number of distillations was four. Except for this, monopentyl tin oxide was produced in the same manner as in Example 1-1.
- Example 6-1 As a starting material, granular metallic tin having an ⁇ -ray emission amount of 0.5 cf / cm 2 , which is the same commercially available product as in Comparative Example 1-1, was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same pentyl magnesium bromide as in Example 6 was used. Except for this, monopentyl tin oxide was produced in the same manner as in Example 1-1.
- Example 6-2 As a starting material, granular metallic tin having the same ⁇ -ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same pentyl magnesium bromide as in Example 6 was used. However, unlike Example 1-1, the total number of distillations was 3 without performing ⁇ -ray control for the equipment and environment used. Except for this, monopentyl tin oxide was produced in the same manner as in Example 1-1.
- Example 7 Comparative Examples of Monohexyl Tin Oxide (Organic Tin Oxide Compound) of Formula (1-7)] ⁇ Example 7> As a starting material, granular metallic tin having the same ⁇ -ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, hexylmagnesium bromide was used. The total number of distillations was four. Except for this, monohexyl tin oxide was produced in the same manner as in Example 1-1.
- Example 7-1 As a starting material, granular metallic tin having an ⁇ -ray emission amount of 0.5 cf / cm 2 , which is the same commercially available product as in Comparative Example 1-1, was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same hexylmagnesium bromide as in Example 7 was used. Except for this, monohexyl tin oxide was produced in the same manner as in Example 1-1.
- Example 7-2 As a starting material, granular metallic tin having the same ⁇ -ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same hexylmagnesium bromide as in Example 7 was used. However, unlike Example 1-1, the total number of distillations was 3 without performing ⁇ -ray control for the equipment and environment used. Except for this, monohexyl tin oxide was produced in the same manner as in Example 1-1.
- Example 8 Comparative Examples of Monoheptyl Tin Oxide (Organic Tin Oxide Compound) of Formula (1-8)]
- a starting material granular metallic tin having the same ⁇ -ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, heptylmagnesium bromide was used. The total number of distillations was 5. Except for this, monoheptyl tin oxide was produced in the same manner as in Example 1-1.
- Example 8-1 As a starting material, granular metallic tin having an ⁇ -ray emission amount of 0.5 cf / cm 2 , which is the same commercially available product as in Comparative Example 1-1, was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same heptylmagnesium bromide as in Example 8 was used. Except for this, monoheptyl tin oxide was produced in the same manner as in Example 1-1.
- Example 8-2 As a starting material, granular metallic tin having the same ⁇ -ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same heptylmagnesium bromide as in Example 8 was used. However, unlike Example 1-1, the total number of distillations was 3 without performing ⁇ -ray control for the equipment and environment used. Except for this, monoheptyl tin oxide was produced in the same manner as in Example 1-1.
- Example 9 Comparative Examples of Mono-sec-Butyl Tin Oxide (Organic Tin Oxide Compound) of Formula (1-9)
- granular metallic tin having the same ⁇ -ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used.
- the bromide secondalibutylmagnesium was used instead of the butylmagnesium chloride used in Example 1-1. The total number of distillations was four. Except for this, mono-sec-butyltin oxide was produced in the same manner as in Example 1-1.
- Example 9-1 As a starting material, granular metallic tin having an ⁇ -ray emission amount of 0.5 cf / cm 2 , which is the same commercially available product as in Comparative Example 1-1, was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same second bromide butylmagnesium as in Example 9 was used. Except for this, mono-sec-butyltin oxide was produced in the same manner as in Example 1-1.
- Example 9-2 As a starting material, granular metallic tin having the same ⁇ -ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same second bromide butylmagnesium as in Example 9 was used. However, unlike Example 1-1, the total number of distillations was 3 without performing ⁇ -ray control for the equipment and environment used. Except for this, mono-sec-butyltin oxide was produced in the same manner as in Example 1-1.
- the ⁇ -ray emission amount of 29 kinds of organic tin oxide compounds obtained in Examples 1-1 to 1-3, Examples 2 to 9 and Comparative Examples 1-1 to 9-2 was measured.
- the results are shown in Table 1 below.
- Table 1 shows the types of organotin compounds, the amount of ⁇ -ray emission of metallic tin as a starting material, the implementation or non-implementation of ⁇ -ray control during production, the number of distillations during production, and the ⁇ of organotin oxide compounds.
- the amount of ray emitted is described.
- the number of distillations at the time of manufacture is the cumulative number of times.
- Comparative Example 1-2 Comparative Example 2-2, Comparative Example 3-2, Comparative Example 4-2, Comparative Example 5-2, Comparative Example 6-2, Comparative Example 7-2, Comparative Example 8-2 and In Comparative Example 9-2, since ⁇ -ray control was not performed at the time of production, even though monoalkyl tin oxide was produced from metallic tin as a starting material having an ⁇ -ray emission amount of less than 0.0005 cf / cm 2 .
- the amount of ⁇ -ray emission of the final target substance, monoalkyltin oxide was in the range of 0.011 cf / cm 2 to 0.017 cf / cm 2 , which was high.
- monoalkyltin oxide is produced from metallic tin as a starting material having an ⁇ -ray emission amount of less than 0.01 cf / cm 2 , and ⁇ -ray control is performed at the time of production.
- This monobutyltin oxide and 5.8 g of p-toluenesulfonic acid as an acid were placed in a round bottom flask having a volume of 500 mL to which a Dean-Stark apparatus was connected and mixed. After reacting the mixture under reflux with toluene for 48 hours, the unreacted product was removed using a filter with a filtration accuracy of 10 ⁇ m to 16 ⁇ m. Then, 2-propanol was used as a solvent to dissolve the tetrabutylammonium hydroxide, and the solution was crystallized at a temperature of ⁇ 15 ° C. Finally, THF was added to the crystallized product and the solvent was removed under reduced pressure to produce a compound consisting of three types of monobutyltin oxides.
- a liquid composition for forming an EUV resist film was prepared using this synthesized 12-mer cluster-type or cage-type tin compound. Specifically, the above-mentioned cluster type or cage type tin compound is weighed so that the tin content ratio is contained in the range of 0.05% by mass or more and 24% by mass or less in this liquid composition, and the tin compound is subjected to 29. Tests with different tin content in liquid compositions by dissolving in 8 mL of methyl ethyl ketone, stirring in a closed space for 24 hours, and removing insoluble solids with a 0.45 ⁇ m filtration precision syringe filter.
- Example 10-1 to Test Example 10-2 and Comparative Test Example 10-1 to Comparative Test Example 11-1 Six kinds of EUV resist film forming liquid compositions of Example 10-1 to Test Example 10-2 and Comparative Test Example 10-1 to Comparative Test Example 11-1 were produced.
- the types of the organic tin oxide compound used in the above example, the amount of ⁇ rays emitted thereof, and the content ratio of tin in the liquid composition are shown in Table 3 below.
- FIG. 5 shows a production flow chart from tin tetrachloride having a low ⁇ -ray emission amount to obtaining an alkyl tin trialkoxide having a low ⁇ -ray emission amount.
- Example 10-1 The organic tin trialkoxide compound t-butyl tin tributoxide was synthesized from tin tetrachloride and lithium dimethylamide.
- tin tetrachloride (SnCl 4 ) having an ⁇ -ray emission amount of less than 0.0005 cf / cm 2 was used in order to obtain t-butyl tin tributoxide.
- the t-butyl tin trimethyl amide represented by the above formula (9-2) required for the synthesis of t-butyl tin tributoxide was synthesized.
- This reaction is represented by the following formula (23). Due to the high reactivity of the starting material, the reaction was carried out in a glove box filled with an argon atmosphere.
- the synthesized tetrakis tin dimethylamide is purified using t-butylmagnesium chloride (see formula (16)), which is a Grignard reagent in THF, and then distilled to obtain the desired t-butyltin trimethyl. Amides were selectively collected.
- t-butyl tin tributoxide was synthesized by substituting the purified t-butyl tin trimethylamide with an alcohol.
- This reaction is represented by the following formula (24).
- the dehydrated 1-butanol was slowly added to the purified t-butyltin trimethylamide in a glove box in which the atmosphere was made inert with argon, and the substitution reaction was carried out in an ice bath at ⁇ 5 ° C.
- the valve was opened to relieve the pressure of the gas generated from the alcohol.
- the temperature was returned to room temperature to volatilize the solvent, and then the produced t-butyl tin tributoxide was maintained at 90 ° C.
- FIG. 5 is a production flow chart showing the process of obtaining an alkyl tin trialkoxide having a low ⁇ -ray emission amount from tin tetrachloride having a low ⁇ -ray emission amount. Specifically, as shown in FIG. 5, the first production flow diagram is shown.
- Example 10-1 Distillate-purified t-butyltin tributoxide was applied to a clean Si wafer surface in the air, fired, and then hydrolyzed, and the amount of ⁇ -ray emission of this hydrolyzate was measured. When the amount of ⁇ -ray emission exceeded 0.01 cph / cm 2 , distillation was repeated. In Example 10-1, ⁇ -ray control was performed until the final target substance was synthesized, in order to prevent contamination with an ⁇ -ray source and to prevent an increase in the amount of ⁇ -ray emission. In the reaction pathways of the formula (22), the formula (23) and the formula (24), the total number of distillations was 5 times each.
- Example 10-2 As a starting material for synthesizing t-butyltin trimethylamide, tin tetrachloride (SnCl 4 ) having an ⁇ -ray emission amount of 0.002 cf / cm 2 was used. Other than that, t-butyl tin tributoxide was obtained in the same manner as in Example 10-1.
- Example 10-2 As a starting material for synthesizing t-butyltin trimethylamide, tin tetrachloride (SnCl 4 ) having an ⁇ -ray emission amount of 0.0005 cf / cm 2 was used. However, unlike Example 10-1, ⁇ -ray control was not performed to prevent contamination of the ⁇ -ray source and to prevent an increase in the amount of ⁇ -ray emission. The total number of distillations was three. Other than that, t-butyl tin tributoxide was obtained in the same manner as in Example 10-1.
- Example 10-1 The ⁇ -ray emission amounts of the four types of t-butyl tin tributoxide obtained in Example 10-1, Example 10-2, Comparative Example 10-1 and Comparative Example 10-2 were measured. The results are shown in Table 4 below. Table 4 shows the types of organotin compounds, the amount of ⁇ -ray emission of tin (SnCl 4 ) as a starting material, the implementation or non-implementation of ⁇ -ray control during production, the number of distillations during production, and t. -The amount of ⁇ -ray emission of butyltin tributoxide is described.
- Examples 10-1 and 10-2 tin tetrachloride to t-butyl as a starting material having ⁇ -ray emission amounts of less than 0.0005 cf / cm 2 and 0.002 cf / cm 2 , respectively. Since tin tributoxide was produced and ⁇ -ray control was performed at the time of production, the ⁇ -ray emission amount of t-butyl tin tributoxide, which is the final target substance, was in the range of 0.002 cf / cm 2 or less, which was low. ..
- Example of Production of Liquid Composition for Forming EUV Resist Film from Organic Tin Trialkoxide Compound of Formula (9) From the four types of t-butyl tin tributoxide obtained in Example 10-1, Example 10-2, Comparative Example 10-1 and Comparative Example 10-2, Test Example 11-1, Test Example 11-2, Four kinds of EUV resist film forming liquid compositions of Comparative Test Example 12-1 and Comparative Test Example 12-2 were produced. Specifically, four types of t-butyl tin tributoxide are weighed so that the tin content of the liquid composition is 0.05 mol / L, and this tin compound is dissolved in 29.8 mL of methyl ethyl ketone.
- the Si wafer was placed at a temperature of 120 ° C. for 40 minutes with hexamethyldisilazane (HMDS). After exposure to steam, baking and hydrophobization for dehydration were performed.
- HMDS hexamethyldisilazane
- the EUV resist film forming liquid composition obtained in the above-mentioned test example and the comparative test example was spin-coated on the Si wafer thus pretreated using a spin coater (MS-B100 manufactured by Mikasa). A coating film was formed. The coating film was held at a temperature of 150 ° C. for 5 minutes for baking.
- the coating amount of the liquid composition at the time of coating was adjusted so that the film thickness after baking was 20 nm. After allowing the baked Si wafer to stand for 120 minutes, a positive simulated resist film was formed using 2.38% by mass of tetramethylammonium hydroxide (TMAH) as a developing solution, and the simulated resist film was subjected to development treatment. Was done.
- TMAH tetramethylammonium hydroxide
- Comparative Test Example 1-2 Comparative Test Example 2-2, Comparative Test Example 3-2, Comparative Test Example 4-2, Comparative Test Example 5-2, Comparative Test Example 6-2, Comparative Test Example 7-2.
- Comparative Test Example 8-2 and Comparative Test Example 9-2 the ⁇ -ray emission amount of the monoalkyl tin oxide used was in the range of 0.011 cf / cm 2 to 0.017 cf / cm 2 , and 0.01 cf / cm. Since it was higher than cm 2 , the number of defects of 5 nm or more in the simulated resist film was 1 to 2, and the judgment was "impossible" in all the comparative test examples.
- the ⁇ -ray emission amount of the monoalkyl tin oxide used was in the range of 0.0020 cf / cm 2 or less, which was lower than 0.01 cf / cm 2 , and therefore the simulated resist.
- the number of defects of 5 nm or more in the film was 0, and the judgment was "OK" in all the test examples.
- the ⁇ -ray emission amount of the monobutyltin oxide used was 0.013 cf / cm 2
- the tin in the EUV resist film forming liquid composition was The content ratio of was 0.07% by mass. Since the amount of ⁇ -ray emission of monobutyltin oxide exceeds 0.01 cph / cm 2 , the number of defects of 5 nm or more in the simulated resist film is 1, and the judgment is “impossible”.
- the ⁇ -ray emission amount of the monobutyltin oxide used was 0.011 cf / cm 2
- the content ratio of tin in the EUV resist film forming liquid composition was 25.1 mass by mass. %Met. Since the ⁇ -ray emission amount of monobutyltin oxide exceeded 0.01 cph / cm 2 and the tin content in the EUV resist film forming liquid composition exceeded 24% by mass, the number of defects of 5 nm or more in the simulated resist film There were more than 3 in Comparative Test Example 10-1, and the judgment was "impossible".
- the ⁇ -ray emission amount of the monobutyltin oxide used was 0.011 cf / cm 2 , and the content ratio of tin in the EUV resist film forming liquid composition was 7.98 mass. %Met. Since the amount of ⁇ -ray emission of monobutyltin oxide exceeded 0.01 cph / cm 2 , the number of defects of 5 nm or more in the simulated resist film was 2, and the judgment was “impossible”. Further, in Comparative Test Example 11-1, the ⁇ -ray emission amount of the monobutyltin oxide used was 0.012 cf / cm 2 , and the content ratio of tin in the EUV resist film forming liquid composition was 8.12 mass. %Met. Since the amount of ⁇ -ray emission of monobutyltin oxide exceeded 0.01 cph / cm 2 , the number of defects of 5 nm or more in the simulated resist film was 2, and the judgment was “impossible”.
- the ⁇ -ray emission amount of the monoalkyl tin oxide used was both in the range of less than 0.0005 cf / cm 2 , and the EUV resist film forming liquid was used.
- the tin content in the composition was 0.05% by mass and 23.1% by mass, respectively. Since the ⁇ -ray emission amount of monobutyltin oxide was 0.01 cph / cm 2 or less and the tin content in the EUV resist film forming liquid composition was 24% by mass or less, defects of 5 nm or more in the simulated resist film The number was 0, and the judgment was "OK" in all the test examples.
- the ⁇ -ray emission amount of t-butyltin tributoxide used was less than 0.0005 cf / cm 2 and 0.002 cf / cm 2 , respectively.
- the content ratio of tin in the EUV resist film forming liquid composition was 0.5% by mass and 0.8% by mass. Since the ⁇ -ray emission amount of t-butyl tin tributoxide was 0.01 cf / cm 2 or less and the tin content in the EUV resist film forming liquid composition was 24% by mass or less, 5 nm in the simulated resist film. The above number of defects was 0, and the judgment was "OK" in all the test examples.
- the organotin compound and the liquid composition for forming an EUV resist film of the present invention are used in the field of forming an EUV resist film.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Materials For Photolithography (AREA)
Abstract
This organic tin compound has an α-ray emission amount of at most 0.01 cph/cm2. This organic tin compound is represented by formula (1) in which R1 is a hydrocarbon group having 1-10 carbon atoms. This liquid composition for forming an EUV resist film is obtained by using said organic tin compound. When the liquid composition for forming an EUV resist film is 100 mass%, the tin content is preferably 0.05 mass% to 24 mass%. This method for forming an EUV resist film involves using said liquid composition for forming an EUV resist film, wherein an α-ray emission amount is at most 0.01 cph/cm2.
Description
本発明は、α線放出量の低い有機錫化合物及びその製造方法に関する。更にこの有機錫化合物を用いたα線放出量の低いEUVレジスト膜形成用液組成物及びα線放出量の低いEUVレジスト膜の形成方法に関するものである。なお、本願は、2020年11月12日に、日本に出願された特願2020-188967号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an organotin compound having a low α-ray emission amount and a method for producing the same. Further, the present invention relates to a liquid composition for forming an EUV resist film having a low α-ray emission amount using this organotin compound, and a method for forming an EUV resist film having a low α-ray emission amount. This application claims priority based on Japanese Patent Application No. 2020-188967 filed in Japan on November 12, 2020, and the contents thereof are incorporated herein by reference.
半導体工程におけるレジスト膜のパターニング技術は変遷を遂げており、従来より、KrFやArFを光源に用いたリソグラフィー技術が確立されており、現在もこの技術を用いて半導体デバイスの量産が行われている。一方、例えば国際半導体技術ロードマップ2013 (International Technology Roadmap for Semiconductor; ITRS)によると、ハープピッチが40nmを下回った際には従来のリソグラフィー技術では対応できず、新たな技術が求められている。その中の1つがEUV(Extreme Ultra Violet 、極端紫外線)リソグラフィー技術である。
The resist film patterning technique in the semiconductor process has undergone a transition, and a lithography technique using KrF or ArF as a light source has been established, and semiconductor devices are still mass-produced using this technique. .. On the other hand, for example, according to the International Technology Roadmap for Semiconductor (ITRS), when the harp pitch falls below 40 nm, the conventional lithography technology cannot cope with it, and a new technology is required. One of them is EUV (Extreme Ultra Violet) lithography technology.
EUVリソグラフィー技術を用いた半導体デバイスの量産において、微細構造を形成するレジスト膜に関して、膜表面のラフネスや膜欠陥等の課題は数多く挙げられており、露光装置の光源、マスク材料及びレジスト材料であるレジスト膜形成用液組成物等の改良技術の開発が広くなされている。その中でも高品質のレジスト膜を量産し得る次世代のEUVリソグラフィー技術に対応するレジスト膜形成用液組成物の開発が進んでいる。EUVリソグラフィー技術における上記量産の段階では、従来のリソグラフィー技術でも主流となっている化学増幅型レジスト(Chemically Amplified Resist: CAR)が用いられてきたが、EUVリソグラフィーでは、従来のArFリソグラフィー等と比較して、光源の原理の違いや、露光光源の出力が不足するための、高感度、解像力、レジスト膜表面のラフネス低減が可能な材料系への転換が求められている。
In the mass production of semiconductor devices using EUV lithography technology, many problems such as film surface roughness and film defects have been raised regarding resist films that form fine structures, and they are light sources for exposure equipment, mask materials, and resist materials. Development of improved techniques such as a liquid composition for forming a resist film has been widely made. Among them, the development of a resist film forming liquid composition corresponding to the next-generation EUV lithography technology capable of mass-producing high-quality resist films is in progress. At the stage of mass production in the EUV lithography technology, a chemically amplified resist (CAR), which is also the mainstream in the conventional lithography technology, has been used, but in the EUV lithography, it is compared with the conventional ArF lithography and the like. Therefore, there is a need to switch to a material system capable of high sensitivity, resolving power, and reduction of the roughness of the resist film surface due to differences in the principle of the light source and insufficient output of the exposure light source.
そこで、最新のレジスト材料であるレジスト膜形成用液組成物では、主にCARを応用して、光感度を増加させる構造体を導入する方法、又はEUV光の吸収係数の高い金属種を導入する方法、或いはメカニズムが異なる非化学増幅型レジスト(Non-CAR)を用いる方法が提案され、開発が行われている。EUVリソグラフィー技術に対して、次世代レジスト材料を開発する上での課題として、最終的にマスクに到達するEUV光の出力が小さいことや、光線が変わることにより感光メカニズムが変化することから、EUV光に対して感度の高いレジスト膜を形成する必要があった。そのため、感度向上のために開発が続けられており、例えば、レジスト膜中にEUV光の吸収係数の高い金属種としてSn(錫)を導入する方法が提案されている(例えば、特許文献1(請求項1、要約)参照。)。この方法はnon-CARの例である。
Therefore, in the latest resist material, a resist film-forming liquid composition, a method of introducing a structure that increases the light sensitivity by mainly applying CAR, or a metal species having a high EUV light absorption coefficient is introduced. A method or a method using a non-chemically amplified resist (Non-CAR) having a different mechanism has been proposed and is being developed. For EUV lithography technology, the challenges in developing next-generation resist materials are that the output of EUV light that finally reaches the mask is small, and that the photosensitive mechanism changes due to changes in light rays, so EUV It was necessary to form a resist film with high sensitivity to light. Therefore, development is being continued to improve sensitivity, and for example, a method of introducing Sn (tin) as a metal species having a high EUV light absorption coefficient into a resist film has been proposed (for example, Patent Document 1 (for example, Patent Document 1). See claim 1, abstract).). This method is an example of non-CAR.
特許文献1には、有機溶媒と;式RzSnO(2-(z/2)-(x/2))(OH)x(ここで、0<z≦2および0<(z+x)≦4である)、式R’nSnX4-n(ここで、n=1または2である)、またはそれらの混合物によって表される、第一の有機金属組成物と;式MX’v(ここで、Mが、元素周期表の第2~16族から選択される金属であり、v=2~6の数であり、およびX’が、加水分解性のM-X結合を有する配位子またはそれらの組合せである)によって表される、加水分解性の金属化合物とを含むコーティング溶液が開示されている。
Patent Document 1 describes an organic solvent and the formula R z SnO (2- (z / 2)-(x / 2)) (OH) x (where 0 <z ≦ 2 and 0 <(z + x) ≦ 4). With the first organic metal composition, represented by the formula R'nSnX 4-n (where n = 1 or 2), or a mixture thereof; the formula MX'v (here, here). M is a metal selected from Groups 2-16 of the Periodic Table of the Elements, v = 2-6, and X'is a ligand having a hydrolyzable MX bond or them. A coating solution containing a hydrolyzable metal compound represented by (is a combination of) is disclosed.
この特許文献1には、金属オキシドヒドロキシド化学をベースとする高解像度リソグラフィーパターン形成コーティングを作成するための有機金属前駆体が記載され、その前駆体組成物が、一般的に、穏やかな条件下で水蒸気または他のOH源組成物によって容易に加水分解可能な配位子を含み、その有機金属前駆体は、一般的に、比較的低い放射線量での高解像度パターン形成に効果的であり得、かつEUVパターン形成で特に有用であるコーティングをもたらし得る、スズに対する放射線感受性有機配位子を含むことが記載されている。
This Patent Document 1 describes an organometallic precursor for creating a high resolution lithography pattern forming coating based on metal oxide hydroxyd chemistry, and the precursor composition thereof is generally under mild conditions. Containing ligands that can be easily hydrolyzed by water vapor or other OH source compositions, the organometallic precursors can generally be effective in forming high resolution patterns at relatively low radiation doses. It is described that it contains a radiation sensitive organoligand to tin, which can result in a coating that is particularly useful in EUV patterning.
しかしながら、レジスト膜中にEUV光の吸収係数の高い金属種として、特許文献1に示されるSn(錫)を導入した場合でも、上述したハーフピッチが40nmを下回った際には、CAR又はnon-CARを用いてもパターン欠陥が生じるおそれがある。一般に、レジスト材料であるレジスト膜形成用液組成物を用いた際のパターン欠陥の原因としては、レジスト材料における酸発生ばらつき、マスクの欠陥、パーティクルの存在、レジストパターン倒れ、ラインエッジラフネス(LER)、ランダム欠陥(確率論的欠陥、stochastic)と呼ばれる予期せぬ欠陥等によるものが挙げられる。これらの欠陥の中で、高品質のレジスト膜の量産性を向上させるためには、特にランダム欠陥を低減させることが必要とされており、ランダム欠陥のメカニズムの解明を含めて、次世代レジストの開発が進んでいる。
However, even when Sn (tin) shown in Patent Document 1 is introduced as a metal species having a high EUV light absorption coefficient in the resist film, when the above-mentioned half pitch is less than 40 nm, CAR or non- Even if CAR is used, pattern defects may occur. Generally, the causes of pattern defects when a resist film forming liquid composition, which is a resist material, is used include acid generation variation in the resist material, mask defects, presence of particles, resist pattern collapse, and line edge roughness (LER). , Random defects (stochastic defects, stochastic), and unexpected defects. Among these defects, in order to improve the mass productivity of high-quality resist films, it is particularly necessary to reduce random defects, and next-generation resists, including the elucidation of the mechanism of random defects, Development is in progress.
上記レジストパターンのランダム欠陥が金属不純物に起因するとして、レジスト膜形成用液組成物の高純度化を目指す例が存在するが、この例では金属不純物の検出はICP-MS等の組成物の微量分析方法で分析を行っており、この分析では金属不純物の検出以下であることを示している。また、例え金属不純物が微量分析で検出できないppbオーダーで含まれているとしても、放射性崩壊により放射線を放出し得る金属不純物が含まれていた場合、α線、β線、γ線といった放射線を放出するおそれがある。
Assuming that the random defects of the resist pattern are caused by metal impurities, there is an example aiming at high purity of the resist film forming liquid composition, but in this example, the detection of metal impurities is a trace amount of the composition such as ICP-MS. The analysis is performed by the analysis method, and this analysis shows that it is less than the detection of metal impurities. In addition, even if metal impurities are contained in the order of ppb that cannot be detected by trace analysis, if metal impurities that can emit radiation due to radioactive decay are contained, radiation such as α-rays, β-rays, and γ-rays is emitted. There is a risk of
本発明の目的は、α線放出量の低い有機錫化合物及びその製造方法を提供することにある。本発明の別の目的は、この有機錫化合物を用いた、EUVリソグラフィーによるレジスト膜へのバターン形成時にパターン欠陥を低減するα線放出量の低いEUVレジスト膜形成用液組成物を提供することにある。本発明の更に別の発明は、この液組成物を用いたα線放出量の低いEUVレジスト膜の形成方法を提供することにある。
An object of the present invention is to provide an organotin compound having a low α-ray emission amount and a method for producing the same. Another object of the present invention is to provide a liquid composition for forming an EUV resist film using this organotin compound, which reduces pattern defects during pattern defects on a resist film by EUV lithography and has a low amount of α-ray emission. be. Yet another invention of the present invention is to provide a method for forming an EUV resist film having a low α-ray emission amount using this liquid composition.
本発明者らは、上記ランダム欠陥が生じる原因を鋭意検討した結果、レジスト材料の高感度化を目的として、レジスト材料にEUV光の高い吸収係数を有する錫(Sn)を用いた場合に、Snには微量のPbが不純物として含まれ、このPbの同位体である210Pbから生じる210Poから放出されるα線によってSnを含むレジスト膜に意図しない構造変化をもたらして、ランダム欠陥が生じる原因となることを見出し、本発明に到達した。
As a result of diligently investigating the cause of the random defects, the present inventors have found that when tin (Sn) having a high absorption coefficient of EUV light is used as the resist material for the purpose of increasing the sensitivity of the resist material, Sn is used. Contains a small amount of Pb as an impurity, and α-rays emitted from 210 Po generated from 210 Pb, which is an isotope of this Pb, cause an unintended structural change in the resist film containing Sn, resulting in random defects. It was found that the present invention was reached.
本発明の第1の観点は、α線放出量が0.01cph/cm2以下である有機錫化合物である。
The first aspect of the present invention is an organotin compound having an α-ray emission amount of 0.01 cph / cm 2 or less.
本発明の第2の観点は、第1の観点に基づく発明であって、下記の式(1)~式(9)のいずれかに示される有機錫化合物である。
The second aspect of the present invention is an invention based on the first aspect, which is an organotin compound represented by any of the following formulas (1) to (9).
上記式(1)中、R1は炭素数1~10の炭化水素基である。上記式(2)中、R2は炭素数1~10の炭化水素基であり、aは1又は2であり、b~dは、それぞれ同一又は互いに異なる炭素数1~28の整数であり、0≦n≦4である。上記式(3)中、R2は炭素数1~10の炭化水素基であり、p~sは、それぞれ同一又は互いに異なる炭素数1~28の整数であり、tは1以上4以下である。Yには、対イオンとしてアニオン種が存在する。上記式(4)中、R3は炭素数1~10の炭化水素基である。上記式(5)中、R4は炭素数1~10の炭化水素基である。上記式(6)中、R5は炭素数1~10の炭化水素基であり、R6は炭素数1~5の炭化水素基である。上記式(7)中、R7は炭素数1~10の炭化水素基である。上記式(8)中、R8は炭素数1~10の炭化水素基である。上記式(9)中、R9は炭素数1~10の炭化水素基である。
In the above formula (1), R 1 is a hydrocarbon group having 1 to 10 carbon atoms. In the above formula (2), R 2 is a hydrocarbon group having 1 to 10 carbon atoms, a is 1 or 2, and b to d are integers having the same or different carbon atoms from 1 to 28, respectively. 0 ≦ n ≦ 4. In the above formula (3), R 2 is a hydrocarbon group having 1 to 10 carbon atoms, p to s are integers having the same or different carbon atoms from 1 to 28, and t is 1 or more and 4 or less. .. Y has an anion species as a counterion. In the above formula (4), R 3 is a hydrocarbon group having 1 to 10 carbon atoms. In the above formula (5), R 4 is a hydrocarbon group having 1 to 10 carbon atoms. In the above formula (6), R 5 is a hydrocarbon group having 1 to 10 carbon atoms, and R 6 is a hydrocarbon group having 1 to 5 carbon atoms. In the above formula (7), R 7 is a hydrocarbon group having 1 to 10 carbon atoms. In the above formula (8), R 8 is a hydrocarbon group having 1 to 10 carbon atoms. In the above formula (9), R 9 is a hydrocarbon group having 1 to 10 carbon atoms.
本発明の第3の観点は、第1の観点又は第2の観点の有機錫化合物を用いたEUVレジスト膜形成用液組成物であって、EUVレジスト膜形成用液組成物を100質量%とするとき、錫の含有割合が0.05質量%以上24質量%以下であるEUVレジスト膜形成用液組成物である。
The third aspect of the present invention is the EUV resist film forming liquid composition using the organic tin compound of the first aspect or the second aspect, and the EUV resist film forming liquid composition is 100% by mass. The EUV resist film-forming liquid composition has a tin content of 0.05% by mass or more and 24% by mass or less.
本発明の第4の観点は、第3の観点のEUVレジスト膜形成用液組成物を用いてα線放出量が0.01cph/cm2以下であるEUVレジスト膜を形成する方法である。
A fourth aspect of the present invention is a method for forming an EUV resist film having an α-ray emission amount of 0.01 cph / cm 2 or less by using the EUV resist film forming liquid composition of the third aspect.
本発明の第5の観点は、(a) α線放出量が0.01cph/cm2以下である金属錫から四塩化錫を合成する工程と、(b) 前記四塩化錫からモノアルキル錫オキシド又はアルキル錫トリアルコキシドを合成する工程とを含む有機錫化合物の製造方法であって、前記工程(a)から工程(c)までのすべての工程において合成物から不純物を除去する蒸留が複数回行われ、かつ前記工程(a)から工程(c)までのすべての工程で使用する器具及び環境に対してα線を遮蔽するためのα線管理がなされることにより、前記有機錫化合物のα線放出量を0.01cph/cm2以下にすることを特徴とする有機錫化合物の製造方法である。
The fifth aspect of the present invention is (a) a step of synthesizing tin tetrachloride from metallic tin having an α-ray emission amount of 0.01 cf / cm 2 or less, and (b) a monoalkyl tin oxide from the tin tetrachloride. Alternatively, it is a method for producing an organic tin compound including a step of synthesizing an alkyl tin trialkoxide, and in all the steps from the step (a) to the step (c), distillation for removing impurities from the composite is performed a plurality of times. The α-rays of the organic tin compound are controlled by α-ray control to shield the α-rays from the equipment and environment used in all the steps from the step (a) to the step (c). It is a method for producing an organic tin compound, characterized in that the amount released is 0.01 cph / cm 2 or less.
本発明の第6の観点は、第5の観点に基づく発明であって、複数回の蒸留は、各工程で生じた合成物又は不純物留分のα線放出量を測定し、このα線放出量が0.01cph/cm2以下になるまで行われる有機錫化合物の製造方法である。
The sixth aspect of the present invention is the invention based on the fifth aspect, in which multiple distillations measure the amount of α-ray emission of the compound or impurity fraction produced in each step, and the α-ray emission is achieved. This is a method for producing an organic tin compound, which is carried out until the amount becomes 0.01 cph / cm 2 or less.
本発明の第1の観点の有機錫化合物はα線放出量が0.01cph/cm2以下であるため、この有機錫化合物をEUVレジスト膜形成用液組成物の原料に用いて、EUVレジスト膜にパターンを形成したときに、α線放出量の少ないことにより、ランダム欠陥を低減したレジスト膜を形成することができる。
Since the organotin compound according to the first aspect of the present invention has an α-ray emission amount of 0.01 cph / cm 2 or less, this organotin compound is used as a raw material for a liquid composition for forming an EUV resist film to form an EUV resist film. When a pattern is formed on the surface, a resist film with reduced random defects can be formed due to the small amount of α-ray emission.
本発明の第2の観点の有機錫化合物が上述した式(1)~式(9)のいずれかに示される炭化水素基が結合されているため、このα線放出量が0.01cph/cm2以下である有機錫化合物をEUVレジスト膜形成用液組成物の原料に用いて、この液組成物のコーティング膜にEUV光を照射すると、構造式中のSn-X(X=C,O,OH)結合が、照射されたEUV光を高効率に吸収して、構造変化を起こし、EUV光の照射後に現像液への溶解選択性が非常に高まる。この優れた効果に加えて、この変化が起きた際に、EUVレジスト膜にパターンが形成された状態で、EUVレジスト膜形成用液組成物中からのα線放出量が少ないことにより、ランダム欠陥を低減したレジスト膜を形成することができる。
Since the organic tin compound according to the second aspect of the present invention has a hydrocarbon group represented by any of the above-mentioned formulas (1) to (9) bonded to it, the amount of α-ray emission is 0.01 cph / cm. When an organic tin compound of 2 or less is used as a raw material for a liquid composition for forming an EUV resist film and the coating film of this liquid composition is irradiated with EUV light, Sn-X (X = C, O, in the structural formula) is used. The OH) bond absorbs the irradiated EUV light with high efficiency and causes a structural change, and the solubility selectivity in the developing solution is greatly enhanced after the irradiation of the EUV light. In addition to this excellent effect, when this change occurs, a pattern is formed on the EUV resist film, and the amount of α rays emitted from the EUV resist film forming liquid composition is small, resulting in random defects. It is possible to form a resist film with reduced swelling.
本発明の第3の観点のEUVレジスト膜形成用液組成物は、第1の観点又は第2の観点の有機錫化合物を用いたため、EUVレジスト膜形成用液組成物を保管しているときにα線の放出に起因する反応異物の発生が少ない特長がある。また液組成物中、錫含有割合が0.05質量%以上24質量%以下であるため、この有機錫化合物から作られたレジスト膜にEUV光を照射したときに、EUV光を高い効率で吸収することができる。この優れた効果に加えて、α線放出量の少ないことによりEUVレジスト膜にパターンを形成したときに、ランダム欠陥を低減したレジスト膜を形成することができる。
Since the EUV resist film-forming liquid composition of the third aspect of the present invention uses the organic tin compound of the first aspect or the second aspect, when the EUV resist film-forming liquid composition is stored. It has the feature that the generation of reactive foreign substances due to the emission of α-rays is small. Further, since the tin content in the liquid composition is 0.05% by mass or more and 24% by mass or less, when the resist film made of this organotin compound is irradiated with EUV light, EUV light is absorbed with high efficiency. can do. In addition to this excellent effect, it is possible to form a resist film with reduced random defects when a pattern is formed on the EUV resist film due to a small amount of α-ray emission.
本発明の第4の観点のEUVレジスト膜の形成方法では、形成されたEUVレジスト膜が第3の観点のEUVレジスト膜形成用液組成物を用いているため、形成されたEUVレジスト膜はα線の影響を受けずに、かつ照射されたEUV光を有効に活用でき、高感度と低欠陥を両立することができる。
In the method for forming the EUV resist film according to the fourth aspect of the present invention, the formed EUV resist film uses the liquid composition for forming the EUV resist film according to the third aspect, so that the formed EUV resist film is α. It is possible to effectively utilize the irradiated EUV light without being affected by the line, and it is possible to achieve both high sensitivity and low defects.
本発明の第5の観点の有機錫化合物の製造方法では、α線放出量が0.01cph/cm2以下である金属錫から四塩化錫を合成し、四塩化錫からモノアルキル錫オキシド又はアルキル錫トリアルコキシドを合成して有機錫化合物を製造するときに、すべての工程において合成物から不純物を除去する蒸留が複数回行われ、かつすべての工程で使用する器具及び環境に対してα線を遮蔽するためのα線管理がなされることにより、有機錫化合物のα線放出量を0.01cph/cm2以下にすることができ、この低α線放出量の有機錫化合物をEUVレジスト膜形成用液組成物の原料に用いて、EUVレジスト膜にパターンを形成したときに、α線放出量の少ないことにより、ランダム欠陥を低減したレジスト膜を形成することができる。
In the method for producing an organic tin compound according to the fifth aspect of the present invention, tin tetrachloride is synthesized from metallic tin having an α-ray emission amount of 0.01 cf / cm 2 or less, and monoalkyl tin oxide or alkyl is synthesized from tin tetrachloride. When synthesizing tin trialkoxide to produce an organic tin compound, distilling to remove impurities from the compound is performed multiple times in all steps, and α-rays are emitted to the equipment and environment used in all steps. By controlling the α-rays for shielding, the amount of α-ray emission of the organic tin compound can be reduced to 0.01 cf / cm 2 or less, and the organic tin compound having this low amount of α-ray emission can be used to form an EUV resist film. When a pattern is formed on an EUV resist film by using it as a raw material for a liquid composition, a resist film having reduced random defects can be formed due to a small amount of α-ray emission.
本発明の第6の観点の有機錫化合物の製造方法では、複数回の蒸留が各工程で生じた合成物又は不純物留分のα線放出量を測定し、このα線放出量が0.01cph/cm2以下になるまで行われるため、最終の有機錫化合物のα線放出量を0.01cph/cm2以下にすることができる。
In the method for producing an organic tin compound according to the sixth aspect of the present invention, the amount of α-ray emission of a compound or impurity distillate produced in each step by multiple distillations is measured, and the amount of α-ray emission is 0.01 cph. Since it is carried out until it becomes / cm 2 or less, the α-ray emission amount of the final organic tin compound can be 0.01 cph / cm 2 or less.
次に本発明を実施するための形態を説明する。
Next, a mode for carrying out the present invention will be described.
図1に示すように、本実施形態のパターニング(描画)されたレジスト膜は、金属錫(Sn)を出発原料として作られる。具体的には、低α線放出量の金属錫(Sn)を用いて、先ず有機錫化合物が作られ、この有機錫化合物からEUVレジスト膜形成用液組成物が作られる。次いで、基材上にこの液組成物がコーティングされ、コーティング膜がベーキングされる。次にベーキングされたレジスト膜がEUV露光され、現像、後処理を経て、パターニングされたレジスト膜が得られる。
As shown in FIG. 1, the patterned (drawn) resist film of the present embodiment is made from metallic tin (Sn) as a starting material. Specifically, an organotin compound is first produced using metallic tin (Sn) having a low α-ray emission amount, and a liquid composition for forming an EUV resist film is produced from this organotin compound. The liquid composition is then coated on the substrate and the coating film is baked. Next, the baked resist film is exposed to EUV and subjected to development and post-treatment to obtain a patterned resist film.
〔低α線放出量の金属錫(Sn)〕
本実施形態の低α線放出量の金属錫(Sn)は、α線放出量が0.01cph/cm2以下の範囲のものから、好ましくは0.0005cph/cm2未満にあるものから選定される。この低α線放出量の金属錫には、例えば、特許第6512354号に示される方法で製造された金属錫が挙げられる。本明細書で、『α線放出量』は、アルファサイエンス社製ガスフロー式α線測定装置(MODEL-1950、測定下限:0.0005cph/cm2)で96時間測定したときの値をいう。なお、測定は温度が20℃~30℃の範囲内となるようにして行った。 [Low α-ray emission amount of metallic tin (Sn)]
The low α-ray emission amount of metallic tin (Sn) of the present embodiment is selected from those having an α-ray emission amount in the range of 0.01 cf / cm 2 or less, preferably those having an α-ray emission amount of less than 0.0005 cf / cm 2 . To. Examples of the metallic tin having a low α-ray emission amount include metallic tin produced by the method shown in Japanese Patent No. 6512354. In the present specification, the “α-ray emission amount” refers to a value measured for 96 hours with a gas flow type α-ray measuring device (MODEL-1950, lower limit of measurement: 0.0005 cph / cm 2 ) manufactured by Alpha Science. The measurement was performed so that the temperature was within the range of 20 ° C to 30 ° C.
本実施形態の低α線放出量の金属錫(Sn)は、α線放出量が0.01cph/cm2以下の範囲のものから、好ましくは0.0005cph/cm2未満にあるものから選定される。この低α線放出量の金属錫には、例えば、特許第6512354号に示される方法で製造された金属錫が挙げられる。本明細書で、『α線放出量』は、アルファサイエンス社製ガスフロー式α線測定装置(MODEL-1950、測定下限:0.0005cph/cm2)で96時間測定したときの値をいう。なお、測定は温度が20℃~30℃の範囲内となるようにして行った。 [Low α-ray emission amount of metallic tin (Sn)]
The low α-ray emission amount of metallic tin (Sn) of the present embodiment is selected from those having an α-ray emission amount in the range of 0.01 cf / cm 2 or less, preferably those having an α-ray emission amount of less than 0.0005 cf / cm 2 . To. Examples of the metallic tin having a low α-ray emission amount include metallic tin produced by the method shown in Japanese Patent No. 6512354. In the present specification, the “α-ray emission amount” refers to a value measured for 96 hours with a gas flow type α-ray measuring device (MODEL-1950, lower limit of measurement: 0.0005 cph / cm 2 ) manufactured by Alpha Science. The measurement was performed so that the temperature was within the range of 20 ° C to 30 ° C.
〔低α線放出量の有機錫化合物〕
本実施形態の上記低α線放出量の金属錫から造られる有機錫化合物は、以下の式(1)~式(9)のいずれかに示される。 [Organic tin compounds with low alpha ray emission]
The organotin compound produced from the metallic tin having a low α-ray emission amount of the present embodiment is represented by any of the following formulas (1) to (9).
本実施形態の上記低α線放出量の金属錫から造られる有機錫化合物は、以下の式(1)~式(9)のいずれかに示される。 [Organic tin compounds with low alpha ray emission]
The organotin compound produced from the metallic tin having a low α-ray emission amount of the present embodiment is represented by any of the following formulas (1) to (9).
式(1)中、R1は炭素数1~10の炭化水素基である。この式(1)に示される有機錫化合物の具体例としては、上記の式(1-1)に示されるモノブチル錫オキシド(R1の炭素数=4)、式(1-2)に示されるモノイソプロピル錫オキシド、式(1-3)に示されるモノオクチル錫オキシド、式(1-4)に示されるモノ-tert-ブチル錫オキシド、式(1-5)に示されるモノプロピル錫オキシド、式(1-6)に示されるモノペンチル錫オキシド、式(1-7)に示されるモノヘキシル錫オキシド、式(1-8)に示されるモノヘプチル錫オキシド、式(1-9)に示されるモノ-sec-ブチル錫オキシド、式(1-10)に示されるモノフェニル錫オキシド、式(1-11)に示されるモノノニル錫オキシド、式(1-12)に示されるモノデシル錫オキシド等が挙げられる。
In formula (1), R 1 is a hydrocarbon group having 1 to 10 carbon atoms. Specific examples of the organic tin compound represented by the formula (1) are the monobutyltin oxide (carbon number of R 1 = 4) represented by the above formula (1-1) and the formula (1-2). Monoisopropyl tin oxide, monooctyl tin oxide represented by formula (1-3), mono-tert-butyl tin oxide represented by formula (1-4), monopropyl tin oxide represented by formula (1-5), Monopentyl tin oxide represented by formula (1-6), monohexyl tin oxide represented by formula (1-7), monoheptyl tin oxide represented by formula (1-8), mono represented by formula (1-9). Examples thereof include -sec-butyl tin oxide, monophenyl tin oxide represented by the formula (1-10), monononyl tin oxide represented by the formula (1-11), and monodecyl tin oxide represented by the formula (1-12). ..
次の式(2)に示される有機錫化合物において、R2は炭素数1~10の炭化水素基であり、aは1又は2であり、b~dは、それぞれ同一又は互いに異なる炭素数1~28の整数であり、0≦n≦4である。この多量体の有機錫化合物の具体例としては、[(BuSn)12O14(OH)6]2+、[(PhSn)12O14(OH)6]2+、[(tert-BuSn)12O14(OH)6]2+、[(iso-PrSn)12O14(OH)6]2+、 [(tert-AmSn)12O14(OH)6]2+、[(BuSn)6O7(OH)3]+、[(sec-BuSn)12O14(OH)6]2+、[(BuSn)18O21OH)9]3+、[(PhBuSn)24O28(OH)12]4+ 等が挙げられる。ここで、Buはブチル基、Phはフェニル基、tert-Buはターシャリブチル基、iso-Prはイソプロピル基、tert-Amはターシャリアミル基をそれぞれ表す。式(2)に示される有機錫化合物をEUVレジスト膜形成用液組成物の原料に用いて、EUVレジスト膜にパターンを形成したときに、錫の三次元構造をレジスト膜中に容易に形成することに加えて、α線放出量の少ないことにより、ランダム欠陥を低減したレジスト膜を形成することができる。
In the organic tin compound represented by the following formula (2), R 2 is a hydrocarbon group having 1 to 10 carbon atoms, a is 1 or 2, and b to d are the same or different carbon atoms 1 respectively. It is an integer of ~ 28, and 0 ≦ n ≦ 4. Specific examples of this multimeric organic tin compound include [(BuSn) 12 O 14 (OH) 6 ] 2+ , [(PhSn) 12 O 14 (OH) 6 ] 2+ , [(tert-BuSn) 12 ). O 14 (OH) 6 ] 2+ , [(iso-PrSn) 12 O 14 (OH) 6 ] 2+ , [(tert-AmSn) 12 O 14 (OH) 6 ] 2+ , [(BuSn) 6 O 7 (OH) 3 ] + , [(sec-BuSn) 12 O 14 (OH) 6 ] 2+ , [(BuSn) 18 O 21 OH) 9 ] 3+ , [(PhBuSn) 24 O 28 (OH) 12 ] 4+ etc. can be mentioned. Here, Bu represents a butyl group, Ph represents a phenyl group, tert-Bu represents a tertiary butyl group, iso-Pr represents an isopropyl group, and tert-Am represents a tertiary rearyl group. When the organic tin compound represented by the formula (2) is used as a raw material for the liquid composition for forming an EUV resist film and a pattern is formed on the EUV resist film, a three-dimensional structure of tin is easily formed in the resist film. In addition, the small amount of α-ray emission makes it possible to form a resist film with reduced random defects.
次の式(3)に示される有機錫化合物において、R2は炭素数1~10の炭化水素基であり、p~sは、それぞれ同一又は互いに異なる炭素数1~28の整数であり、tは1以上4以下である。Yには、対イオンとしてアニオン種が存在する。このアニオン種は有機錫化合物を合成する際の酸によるものであり、酸としては、p-トルエンスルホン酸、フェニル酢酸、シュウ酸、マロン酸、安息香酸等が挙げられる。この多量体の有機錫化合物の具体例としては、[(BuSn)12O14(OH)6](SO3C6H4CH3)2、[(sec-BuSn)12O14(OH)6](SO3C6H4CH3)2、[(iso-PrSn)12O14(OH)6](SO3C6H4CH3)2、[(tert-BuSn)12O14(OH)6](C6H5CH2COO)2、[(sec-BuSn)12O14(OH)6](OCOCOO)、[(iso-PrSn)12O14(OH)6](OCOCH2COO)、[(BuSn)12O14(OH)6](HCOO)2、[(BuSn)12O14(OH)6](C6H5COO)2、[(PhSn)12O14(OH)6]Cl2、[(BuSn)6O7(OH)3](SO3C6H4CH3)、[(BuSn)18O21(OH)9](HCOO)3、[(PhSn)24O28(OH)12]Cl4 挙げられる。式(3)に示される有機錫化合物は、官能基Yによって選択することができ、選択する官能基YによってEUV光に対する感度を調整することができる。この効果に加えて、この有機錫化合物をレジスト膜形成用液組成物の原料に用いて、EUVレジスト膜にパターンを形成したときに、α線放出量の少ないことにより、ランダム欠陥を低減したレジスト膜を形成することができる。
In the organic tin compound represented by the following formula (3), R 2 is a hydrocarbon group having 1 to 10 carbon atoms, p to s are integers having the same or different carbon atoms from 1 to 28, and t. Is 1 or more and 4 or less. Y has an anion species as a counterion. This anionic species is due to an acid used in synthesizing an organic tin compound, and examples of the acid include p-toluenesulfonic acid, phenylacetic acid, oxalic acid, malonic acid, and benzoic acid. Specific examples of this multimeric organic tin compound include [(BuSn) 12 O 14 (OH) 6 ] (SO 3 C 6 H 4 CH 3 ) 2 , [(sec-BuSn) 12 O 14 (OH) 6 ] (SO 3 C 6 H 4 CH 3 ) 2 , [(iso-PrSn) 12 O 14 (OH) 6 ] (SO 3 C 6 H 4 CH 3 ) 2 , [(tert-BuSn) 12 O 14 (OH) ) 6 ] (C 6 H 5 CH 2 COO) 2 , [(sec-BuSn) 12 O 14 (OH) 6 ] (OCOCOO), [(iso-PrSn) 12 O 14 (OH) 6 ] (OCOCH 2 COO) ), [(BuSn) 12 O 14 (OH) 6 ] (HCOO) 2 , [(BuSn) 12 O 14 (OH) 6 ] (C 6 H 5 COO) 2 , [(PhSn) 12 O 14 (OH) 6 ] Cl 2 , [(BuSn) 6 O 7 (OH) 3 ] (SO 3 C 6 H 4 CH 3 ), [(BuSn) 18 O 21 (OH) 9 ] (HCOO) 3 , [(PhSn) 24 O 28 (OH) 12 ] Cl 4 can be mentioned. The organotin compound represented by the formula (3) can be selected by the functional group Y, and the sensitivity to EUV light can be adjusted by the selected functional group Y. In addition to this effect, when this organic tin compound is used as a raw material for a liquid composition for forming a resist film to form a pattern on an EUV resist film, a resist with a small amount of α-ray emission reduces random defects. A film can be formed.
次の式(4)に示される有機錫化合物において、R3は炭素数1~10の炭化水素基である。この有機錫化合物の具体例としては、以下の式(4-1)に示されるジブチル錫オキシド(R3の炭素数=4)が挙げられる。この有機錫化合物は、錫原子に炭素鎖が2本付加されていることにより、この有機錫化合物をEUVレジスト膜形成用液組成物の原料に用いて、EUVレジスト膜にした際の三次元構造体に変化が生じる。α線放出量の少ない状態で、SnとCの結合の開裂を利用することにより、EUVレジスト膜において、その感度を調整することできる。この効果に加えて、α線放出量の少ないことにより、ランダム欠陥を低減したレジスト膜を形成することができる。式(4-1)に示されるジブチル錫オキシド以外に、式(4-2)~式(4-8)の有機錫化合物が例示される。ここで、Buはブチル基、Etはエチル基、Meはメチル基、Prはプロピル基、Hexはヘキシル基、iso-Prはイソプロピル基、tert-Buはターシャリブチル基、sec-Buはセカンダリブチル基をそれぞれ表す。
In the organotin compound represented by the following formula (4), R 3 is a hydrocarbon group having 1 to 10 carbon atoms. Specific examples of this organotin compound include dibutyl tin oxide (carbon number of R 3 = 4) represented by the following formula (4-1). Since this organotin compound has two carbon chains added to the tin atom, it has a three-dimensional structure when the organotin compound is used as a raw material for a liquid composition for forming an EUV resist film to form an EUV resist film. Changes occur in the body. The sensitivity of the EUV resist film can be adjusted by utilizing the cleavage of the bond between Sn and C in a state where the amount of α-ray emission is small. In addition to this effect, a resist film with reduced random defects can be formed by reducing the amount of α-ray emission. In addition to the dibutyl tin oxide represented by the formula (4-1), the organic tin compounds of the formulas (4-2) to (4-8) are exemplified. Here, Bu is a butyl group, Et is an ethyl group, Me is a methyl group, Pr is a propyl group, Hex is a hexyl group, iso-Pr is an isopropyl group, tert-Bu is a tertiary butyl group, and sec-Bu is a secondary butyl. Represents each group.
次の式(5)に示される有機錫化合物において、R4は炭素数1~10の炭化水素基である。この有機錫化合物の具体例としては、以下の式(5-1)に示されるジブチル錫ジクロリド(R4の炭素数=4)が挙げられる。この有機錫化合物は、上記式(4)に示される有機錫化合物と同様に、錫原子に炭素鎖が2本付加されていることにより、この有機錫化合物をEUVレジスト膜形成用液組成物の原料に用いて、EUVレジスト膜にした際の三次元構造体に変化が生じる。α線放出量の少ない状態で、SnとCの結合の開裂を利用することにより、EUVレジスト膜において、その感度を調整することできる。この効果に加えて、α線放出量の少ないことにより、ランダム欠陥を低減したレジスト膜を形成することができる。式(5-1)に示されるジブチル錫ジクロリド以外に、式(5-2)~式(5-8)の有機錫化合物が例示される。ここで、Buはブチル基、Etはエチル基、Meはメチル基、Prはプロピル基、Hexはヘキシル基、iso-Prはイソプロピル基、tert-Buはターシャリブチル基、sec-Buはセカンダリブチル基をそれぞれ表す。
In the organotin compound represented by the following formula (5), R 4 is a hydrocarbon group having 1 to 10 carbon atoms. Specific examples of this organotin compound include dibutyltin dichloride (carbon number of R 4 = 4) represented by the following formula (5-1). Similar to the organic tin compound represented by the above formula (4), this organic tin compound has two carbon chains added to the tin atom, so that the organic tin compound can be used as a liquid composition for forming an EUV resist film. When used as a raw material to form an EUV resist film, the three-dimensional structure changes. The sensitivity of the EUV resist film can be adjusted by utilizing the cleavage of the bond between Sn and C in a state where the amount of α-ray emission is small. In addition to this effect, a resist film with reduced random defects can be formed by reducing the amount of α-ray emission. In addition to the dibutyl tin dichloride represented by the formula (5-1), the organotin compounds of the formulas (5-2) to (5-8) are exemplified. Here, Bu is a butyl group, Et is an ethyl group, Me is a methyl group, Pr is a propyl group, Hex is a hexyl group, iso-Pr is an isopropyl group, tert-Bu is a tertiary butyl group, and sec-Bu is a secondary butyl. Represents each group.
次の式(6)に示される有機錫化合物において、R5は炭素数1~10の炭化水素基であり、R6は炭素数1~5の炭化水素基である。この有機錫化合物の具体例としては、以下の式(6-1)に示されるモノブチル錫トリイソプロポキシド(R5の炭素数=4、R6の炭素数=3)が挙げられる。この有機錫化合物は、アルコキシドの構造であり、これをEUVレジスト膜形成用液組成物の原料に用いて、この液組成物を塗布しベーキングしたときに、容易に加水分解反応が進行するため、EUV光に対して感度の高い錫含有のレジスト膜を形成できるとともに、α線放出量の少ないことにより、ランダム欠陥を低減したレジスト膜を形成することができる。式(6-1)に示されるモノブチル錫トリイソプロポキシド以外に、式(6-2)~式(6-22)の有機錫化合物が例示される。ここで、iso-Prはイソプロピル基、Etはエチル基、Prはプロピル基、Meはメチル基、Buはブチル基、iso-Buはイソブチル基、sec-Buはセカンダリブチル基、tert-Buはターシャリブチル基、iso-Pentylはイソペンチル基、sec-Pentylはセカンダリペンチル基、tert-Pentylはターシャリペンチル基、2-hexylは2-ヘキシル基、1-heptylは1-ヘプチル基、1-octylは1-オクチル基をそれぞれ表す。
In the organic tin compound represented by the following formula (6), R 5 is a hydrocarbon group having 1 to 10 carbon atoms, and R 6 is a hydrocarbon group having 1 to 5 carbon atoms. Specific examples of this organotin compound include monobutyltin triisopropoxide represented by the following formula (6-1) (carbon number of R 5 = 4, carbon number of R 6 = 3). This organic tin compound has an alkoxide structure, and when it is used as a raw material for a liquid composition for forming an EUV resist film and the liquid composition is applied and baked, the hydrolysis reaction easily proceeds. A tin-containing resist film having high sensitivity to EUV light can be formed, and a resist film having reduced random defects can be formed by reducing the amount of α-ray emission. In addition to the monobutyltin triisopropoxide represented by the formula (6-1), the organotin compounds of the formulas (6-2) to (6-22) are exemplified. Here, iso-Pr is an isopropyl group, Et is an ethyl group, Pr is a propyl group, Me is a methyl group, Bu is a butyl group, iso-Bu is an isobutyl group, sec-Bu is a secondary butyl group, and tert-Bu is a Tasha. Libutyl group, iso-Pentyl is isopentyl group, sec-Pentyl is secondary pentyl group, tert-Pentyl is Tashalipentyl group, 2-hexyl is 2-hexyl group, 1-heptyl is 1-heptyl group, 1-octyl is Represents each 1-octyl group.
次の式(7)に示される有機錫化合物において、R7は炭素数1~10の炭化水素基である。この有機錫化合物の具体例としては、以下の式(7-1)に示されるテトラブチル錫(R7の炭素数=4)が挙げられる。この有機錫化合物は、上述した式(1-1)に示されるモノブチル錫オキシドを合成する際に生成される中間体化合物である。式(7-1)に示されるテトラブチル錫以外に、式(7-2)~式(7-8)の有機錫化合物が例示される。
In the organotin compound represented by the following formula (7), R 7 is a hydrocarbon group having 1 to 10 carbon atoms. Specific examples of this organotin compound include tetrabutyltin (R 7 having 4 carbon atoms) represented by the following formula (7-1). This organotin compound is an intermediate compound produced during the synthesis of the monobutyltin oxide represented by the above formula (1-1). In addition to the tetrabutyltin represented by the formula (7-1), the organic tin compounds of the formulas (7-2) to (7-8) are exemplified.
次の式(8)に示される有機錫化合物において、R8は炭素数1~10の炭化水素基である。この有機錫化合物の具体例としては、以下の式(8-1)に示されるモノブチル錫トリクロリド(R8の炭素数=4)が挙げられる。この有機錫化合物は、上述した式(1-1)に示されるモノブチル錫オキシドを合成する際に生成される中間体化合物である。式(8-1)に示されるモノブチル錫トリクロリド以外に、式(8-2)~式(8-11)の有機錫化合物が例示される。
In the organotin compound represented by the following formula (8), R 8 is a hydrocarbon group having 1 to 10 carbon atoms. Specific examples of this organotin compound include monobutyltin trichloride (carbon number of R 8 = 4) represented by the following formula (8-1). This organotin compound is an intermediate compound produced during the synthesis of the monobutyltin oxide represented by the above formula (1-1). In addition to the monobutyltin trichloride represented by the formula (8-1), the organotin compounds of the formulas (8-2) to (8-11) are exemplified.
次の式(9)に示される有機錫化合物において、R9は炭素数1~10の炭化水素基である。この有機錫化合物の具体例としては、以下の式(9-1)に示されるモノブチル錫トリアミド(R9の炭素数=4)が挙げられる。式(9-1)に示されるモノブチル錫トリアミド以外に、式(9-2)~式(9-10)の有機錫化合物が例示される。
In the organotin compound represented by the following formula (9), R 9 is a hydrocarbon group having 1 to 10 carbon atoms. Specific examples of this organotin compound include monobutyltin triamide (carbon number of R 9 = 4) represented by the following formula (9-1). In addition to the monobutyltin triamide represented by the formula (9-1), the organotin compounds of the formulas (9-2) to (9-10) are exemplified.
〔有機錫化合物の製造方法〕
本実施形態の有機錫化合物は、金属錫から塩化錫を生成し、この塩化錫から作られる。金属錫としては、α線放出量が0.01cph/cm2以下である金属錫を用いることが好ましい。このような金属錫を用いることで、後述する合成物から不純物を除去する蒸留の回数を少なくすることができる。なお、このときの金属錫は反応性を高めるために粒状、箔状、粉末状であることが好ましい。金属錫から塩化錫を製造する方法及びこの塩化錫から有機錫化合物を製造する方法としては、公知の方法が採用される。しかし、本実施形態では、これらのすべての製造工程において合成物から不純物を除去する蒸留が複数回行われ、かつすべての工程で使用する器具及び環境に対してα線を遮蔽するためのα線管理がなされることが必須である。 [Manufacturing method of organotin compounds]
The organotin compound of the present embodiment produces tin chloride from metallic tin and is made from this tin chloride. As the metallic tin, it is preferable to use metallic tin having an α-ray emission amount of 0.01 cph / cm 2 or less. By using such metallic tin, the number of distillations for removing impurities from the synthetic material described later can be reduced. The metallic tin at this time is preferably in the form of granules, foils, or powders in order to enhance the reactivity. As a method for producing tin chloride from metallic tin and a method for producing an organic tin compound from this tin chloride, a known method is adopted. However, in the present embodiment, in all of these manufacturing processes, distillation for removing impurities from the synthetic substance is performed a plurality of times, and α rays are used to shield α rays from the equipment and environment used in all the processes. It is essential that management be done.
本実施形態の有機錫化合物は、金属錫から塩化錫を生成し、この塩化錫から作られる。金属錫としては、α線放出量が0.01cph/cm2以下である金属錫を用いることが好ましい。このような金属錫を用いることで、後述する合成物から不純物を除去する蒸留の回数を少なくすることができる。なお、このときの金属錫は反応性を高めるために粒状、箔状、粉末状であることが好ましい。金属錫から塩化錫を製造する方法及びこの塩化錫から有機錫化合物を製造する方法としては、公知の方法が採用される。しかし、本実施形態では、これらのすべての製造工程において合成物から不純物を除去する蒸留が複数回行われ、かつすべての工程で使用する器具及び環境に対してα線を遮蔽するためのα線管理がなされることが必須である。 [Manufacturing method of organotin compounds]
The organotin compound of the present embodiment produces tin chloride from metallic tin and is made from this tin chloride. As the metallic tin, it is preferable to use metallic tin having an α-ray emission amount of 0.01 cph / cm 2 or less. By using such metallic tin, the number of distillations for removing impurities from the synthetic material described later can be reduced. The metallic tin at this time is preferably in the form of granules, foils, or powders in order to enhance the reactivity. As a method for producing tin chloride from metallic tin and a method for producing an organic tin compound from this tin chloride, a known method is adopted. However, in the present embodiment, in all of these manufacturing processes, distillation for removing impurities from the synthetic substance is performed a plurality of times, and α rays are used to shield α rays from the equipment and environment used in all the processes. It is essential that management be done.
ここで、すべての製造工程において合成物から不純物を除去する蒸留が複数回行われるとは、各工程で生じた合成物又は不純物留分のα線放出量を測定し、このα線放出量が0.01cph/cm2以下になるまで複数回蒸留を繰り返すことをいう。蒸留は、α線源となるPoが昇華する温度の130℃より僅かに低い温度で行うことが好ましい。またすべての製造工程で器具に対してα線管理が行われるとは、各工程の前段階で、使用する器具を酸洗浄した後、アルカリ洗浄することをいう。
例えば洗浄槽に入れた器具に、温度45℃~55℃の濃度15質量%~30質量%の硫酸水溶液や塩酸水溶液を60分~80分間供給して酸洗浄した後、室温でイオン交換水を用いて洗浄し、次いで、洗浄した器具に温度30℃~40℃の濃度35質量%~41質量%の炭酸アンモニウム水溶液、重炭酸アンモニウム水溶液、アンモニア水等を40分~50分間供給してアルカリ洗浄する。その後、室温でイオン交換水を用いて洗浄し、室温で界面活性剤を含む洗浄液で水洗処理を行い、再度室温でイオン交換水を用いて洗浄し、その後HEPAフィルタを通した空気を供給して洗浄した器具を乾燥する。
使用する環境は、清浄度の高い環境である。例えば、クリーンルームや国際統一規格ISO14644-1:2015に基づくClass6以上の清浄度クラスの環境が挙げられる。また生成する物質の安全性を考慮して、空気中で不安定な物質の取り扱いは不活性ガス置換、水分量を制御したグローブボックス内等で行う。なお、使用する環境は、すべての製造工程において、使用する器具及び設備に混入するおそれのあるα線を遮蔽する環境にしておく。 Here, the fact that distillation for removing impurities from a compound is performed a plurality of times in all manufacturing processes means that the amount of α-ray emission of the compound or impurity distillate generated in each step is measured, and the amount of α-ray emission is calculated. It means repeating distillation multiple times until it becomes 0.01 cph / cm 2 or less. Distillation is preferably performed at a temperature slightly lower than 130 ° C., which is the temperature at which Po, which is an α-ray source, sublimates. In addition, the fact that α-ray control is performed on the equipment in all manufacturing processes means that the equipment to be used is pickled and then alkaline-cleaned before each process.
For example, an aqueous solution of sulfuric acid or an aqueous solution of hydrochloric acid having a concentration of 15% by mass to 30% by mass at a temperature of 45 ° C. to 55 ° C. is supplied to an instrument placed in a washing tank for 60 to 80 minutes for acid cleaning, and then ion-exchanged water is applied at room temperature. Then, the washed equipment is supplied with an aqueous solution of ammonium carbonate, an aqueous solution of ammonium bicarbonate, water of ammonia, etc. at a concentration of 35% by mass to 41% by mass at a temperature of 30 ° C. to 40 ° C. for 40 to 50 minutes for alkaline cleaning. do. After that, it was washed with ion-exchanged water at room temperature, washed with a washing liquid containing a surfactant at room temperature, washed again with ion-exchanged water at room temperature, and then air passed through a HEPA filter was supplied. Dry the washed equipment.
The environment used is a highly clean environment. For example, a clean room or an environment of a cleanliness class of Class 6 or higher based on the international standard ISO 14644-1: 2015 can be mentioned. In consideration of the safety of the substances produced, the substances unstable in the air should be handled by substituting with an inert gas or in a glove box in which the amount of water is controlled. The environment in which it is used should be an environment that shields α rays that may be mixed into the equipment and facilities used in all manufacturing processes.
例えば洗浄槽に入れた器具に、温度45℃~55℃の濃度15質量%~30質量%の硫酸水溶液や塩酸水溶液を60分~80分間供給して酸洗浄した後、室温でイオン交換水を用いて洗浄し、次いで、洗浄した器具に温度30℃~40℃の濃度35質量%~41質量%の炭酸アンモニウム水溶液、重炭酸アンモニウム水溶液、アンモニア水等を40分~50分間供給してアルカリ洗浄する。その後、室温でイオン交換水を用いて洗浄し、室温で界面活性剤を含む洗浄液で水洗処理を行い、再度室温でイオン交換水を用いて洗浄し、その後HEPAフィルタを通した空気を供給して洗浄した器具を乾燥する。
使用する環境は、清浄度の高い環境である。例えば、クリーンルームや国際統一規格ISO14644-1:2015に基づくClass6以上の清浄度クラスの環境が挙げられる。また生成する物質の安全性を考慮して、空気中で不安定な物質の取り扱いは不活性ガス置換、水分量を制御したグローブボックス内等で行う。なお、使用する環境は、すべての製造工程において、使用する器具及び設備に混入するおそれのあるα線を遮蔽する環境にしておく。 Here, the fact that distillation for removing impurities from a compound is performed a plurality of times in all manufacturing processes means that the amount of α-ray emission of the compound or impurity distillate generated in each step is measured, and the amount of α-ray emission is calculated. It means repeating distillation multiple times until it becomes 0.01 cph / cm 2 or less. Distillation is preferably performed at a temperature slightly lower than 130 ° C., which is the temperature at which Po, which is an α-ray source, sublimates. In addition, the fact that α-ray control is performed on the equipment in all manufacturing processes means that the equipment to be used is pickled and then alkaline-cleaned before each process.
For example, an aqueous solution of sulfuric acid or an aqueous solution of hydrochloric acid having a concentration of 15% by mass to 30% by mass at a temperature of 45 ° C. to 55 ° C. is supplied to an instrument placed in a washing tank for 60 to 80 minutes for acid cleaning, and then ion-exchanged water is applied at room temperature. Then, the washed equipment is supplied with an aqueous solution of ammonium carbonate, an aqueous solution of ammonium bicarbonate, water of ammonia, etc. at a concentration of 35% by mass to 41% by mass at a temperature of 30 ° C. to 40 ° C. for 40 to 50 minutes for alkaline cleaning. do. After that, it was washed with ion-exchanged water at room temperature, washed with a washing liquid containing a surfactant at room temperature, washed again with ion-exchanged water at room temperature, and then air passed through a HEPA filter was supplied. Dry the washed equipment.
The environment used is a highly clean environment. For example, a clean room or an environment of a cleanliness class of Class 6 or higher based on the international standard ISO 14644-1: 2015 can be mentioned. In consideration of the safety of the substances produced, the substances unstable in the air should be handled by substituting with an inert gas or in a glove box in which the amount of water is controlled. The environment in which it is used should be an environment that shields α rays that may be mixed into the equipment and facilities used in all manufacturing processes.
金属錫から塩化錫を製造する方法及びこの塩化錫から有機錫化合物を製造する方法の一例として、上述した式(1-1)に示されるモノブチル錫オキシド(R1の炭素数=4)の製造方法を、図2、図3及び以下の式(10)~式(12)を参照して説明する。
As an example of a method for producing tin chloride from metallic tin and a method for producing an organic tin compound from this tin chloride, production of monobutyltin oxide (number of carbon atoms of R 1 = 4) represented by the above formula (1-1). The method will be described with reference to FIGS. 2, 3 and the following equations (10) to (12).
先ず、上述した酸洗浄後、アルカリ洗浄した器具を用いて、粒状、箔状又は粉末状の金属錫(Sn)を用意する。金属錫としては、α線放出量が0.01cph/cm2以下の低α線放出量の金属錫を用いることが好ましい。この金属錫を塩素(Cl2)ガスと反応させて、図2及び式(10)に示すように、四塩化錫(SnCl4)を合成する。この合成に際して、α線源又はその親核種となり得るPb、U、Th、Po等の放射性元素を除去する目的で、四塩化錫のα線放出量が0.01cph/cm2以下になるまで、蒸留を複数回繰り返す。α線測定値により、蒸留回数を決定する。
First, granular, foil-like or powder-like metallic tin (Sn) is prepared by using the above-mentioned acid-cleaning and then alkali-cleaning instruments. As the metallic tin, it is preferable to use a metallic tin having a low α-ray emission amount of 0.01 cph / cm 2 or less. This metallic tin is reacted with chlorine (Cl 2 ) gas to synthesize tin tetrachloride (SnCl 4 ) as shown in FIG. 2 and the formula (10). During this synthesis, for the purpose of removing radioactive elements such as Pb, U, Th, and Po that can be α-ray sources or their parent nuclides, until the amount of α-ray emission of tin tetrachloride is 0.01 cph / cm 2 or less. Distillation is repeated multiple times. The number of distillations is determined by the α-ray measurement value.
図2に、低α線放出量の金属錫から低α線放出量の四塩化錫を得るまでの製造フロー図を示す。具体的には、図2及び式(10)に示すように、低α線放出量の四塩化錫を塩素ガスと反応させて蒸留回数1回で四塩化錫を蒸留する。次いで蒸留された四塩化錫を蒸留して精製し、精製した四塩化錫を得る。この精製された四塩化錫に対し、α線放出量を測定する。
α線放出量の測定は、四塩化錫をメタノール溶液に溶解し、ガラス製の噴霧器を用いて、700℃に加熱した清浄なガラス基板表面に大気中で噴霧する。その際、電極材としての酸化錫薄膜を形成する方法を使用することが可能である。即ち、発生する塩化水素ガスを吸引可能な環境下で、吹付温度は20℃~25℃、湿度48%~53%の環境下で酸化錫(IV)膜を形成し、この酸化錫膜のα線放出量を測定する。このα線放出量が0.01cph/cm2を超えている場合には、蒸留及びα線放出量の測定を繰り返す。こうして低α線放出量の四塩化錫が得られる。 FIG. 2 shows a production flow chart from metal tin having a low α-ray emission amount to obtaining tin tetrachloride having a low α-ray emission amount. Specifically, as shown in FIG. 2 and the formula (10), tin tetrachloride having a low α-ray emission amount is reacted with chlorine gas to distill tin tetrachloride in one distillation. Then, the distilled tin tetrachloride is distilled and purified to obtain purified tin tetrachloride. The amount of α rays emitted from this purified tin tetrachloride is measured.
To measure the amount of α-ray emission, tin tetrachloride is dissolved in a methanol solution and sprayed in the air onto a clean glass substrate surface heated to 700 ° C. using a glass atomizer. At that time, it is possible to use a method of forming a tin oxide thin film as an electrode material. That is, a tin oxide (IV) film is formed in an environment where the generated hydrogen chloride gas can be sucked, a spray temperature of 20 ° C. to 25 ° C., and a humidity of 48% to 53%, and the α of this tin oxide film is formed. Measure the amount of ray emitted. If the amount of α-ray emission exceeds 0.01 cph / cm 2 , distillation and measurement of the amount of α-ray emission are repeated. In this way, tin tetrachloride with a low α-ray emission amount can be obtained.
α線放出量の測定は、四塩化錫をメタノール溶液に溶解し、ガラス製の噴霧器を用いて、700℃に加熱した清浄なガラス基板表面に大気中で噴霧する。その際、電極材としての酸化錫薄膜を形成する方法を使用することが可能である。即ち、発生する塩化水素ガスを吸引可能な環境下で、吹付温度は20℃~25℃、湿度48%~53%の環境下で酸化錫(IV)膜を形成し、この酸化錫膜のα線放出量を測定する。このα線放出量が0.01cph/cm2を超えている場合には、蒸留及びα線放出量の測定を繰り返す。こうして低α線放出量の四塩化錫が得られる。 FIG. 2 shows a production flow chart from metal tin having a low α-ray emission amount to obtaining tin tetrachloride having a low α-ray emission amount. Specifically, as shown in FIG. 2 and the formula (10), tin tetrachloride having a low α-ray emission amount is reacted with chlorine gas to distill tin tetrachloride in one distillation. Then, the distilled tin tetrachloride is distilled and purified to obtain purified tin tetrachloride. The amount of α rays emitted from this purified tin tetrachloride is measured.
To measure the amount of α-ray emission, tin tetrachloride is dissolved in a methanol solution and sprayed in the air onto a clean glass substrate surface heated to 700 ° C. using a glass atomizer. At that time, it is possible to use a method of forming a tin oxide thin film as an electrode material. That is, a tin oxide (IV) film is formed in an environment where the generated hydrogen chloride gas can be sucked, a spray temperature of 20 ° C. to 25 ° C., and a humidity of 48% to 53%, and the α of this tin oxide film is formed. Measure the amount of ray emitted. If the amount of α-ray emission exceeds 0.01 cph / cm 2 , distillation and measurement of the amount of α-ray emission are repeated. In this way, tin tetrachloride with a low α-ray emission amount can be obtained.
図3に、低α線放出量の四塩化錫から低α線放出量のモノアルキル錫オキシドを得るまでの製造フロー図を示す。ここでは、モノアルキル錫オキシドとしてモノブチル錫オキシドが得られるまでを説明する。先ず、錫原子に炭素鎖を付加するために、精製された四塩化錫(SnCl4)をグリニャール試薬の有機マグネシウムハロゲン化物と反応させて、式(11)に示すように、テトラアルキル錫であるテトラブチル錫を合成する。ここでは、有機マグネシウムハロゲン化物として、塩化ブチルマグネシウムを用いている。
FIG. 3 shows a production flow chart from tin tetrachloride having a low α-ray emission amount to obtaining a monoalkyl tin oxide having a low α-ray emission amount. Here, the process until monobutyltin oxide is obtained as monoalkyltin oxide will be described. First, in order to add a carbon chain to a tin atom, purified tin tetrachloride (SnCl 4 ) is reacted with an organic magnesium halide of a Grignard reagent to obtain tetraalkyl tin as shown in the formula (11). Synthesize tetrabutyltin. Here, butylmagnesium chloride is used as the organic magnesium halide.
合成されたテトラブチル錫に、式(10)で合成された四塩化錫(SnCl4)を反応させて、図3及び式(12)に示すように、モノアルキル錫トリクロリドであるモノブチル錫トリクロリドを合成する。この合成ではトリブチル錫クロリドが副生成物として生成する。
The synthesized tetrabutyl tin is reacted with tin tetrachloride (SnCl 4 ) synthesized by the formula (10) to synthesize a monobutyl tin trichloride, which is a monoalkyl tin trichloride, as shown in FIG. 3 and the formula (12). do. In this synthesis, tributyltin chloride is produced as a by-product.
式(12)に示す反応混合物を濃縮し、精密蒸留を複数回繰り返し行って、モノブチル錫トリクロリドを得る。このモノブチル錫トリクロリドを有機溶媒に溶解し、この溶液にアルカリ水溶液を滴下し攪拌し、沈殿物を得た後、固液分離して、図3及び式(13)に示すように、モノブチル錫トリクロリドからモノブチル錫オキシドを得る。上述した目的で、精密蒸留をα線放出量が0.01cph/cm2以下になるまで、複数回繰り返し行って、低α線放出量のモノブチル錫オキシドを得る。
The reaction mixture represented by the formula (12) is concentrated and precision distillation is repeated a plurality of times to obtain monobutyltin trichloride. This monobutyltin trichloride is dissolved in an organic solvent, an alkaline aqueous solution is added dropwise to this solution and stirred to obtain a precipitate, which is then solid-liquid separated and monobutyltin trichloride as shown in FIG. 3 and formula (13). Obtain monobutyltin oxide from. For the above-mentioned purposes, precision distillation is repeated a plurality of times until the α-ray emission amount becomes 0.01 cph / cm 2 or less to obtain a monobutyltin oxide having a low α-ray emission amount.
なお、式(13)により合成された式(1-1)に示されるモノブチル錫オキシドを合成するために塩化ブチルマグネシウムを用いる例を説明したが、次に、この塩化ブチルマグネシウム以外の、以下の式(14)~式(21)に有機マグネシウムハロゲン化物を示す。これらの有機マグネシウムハロゲン化物を用いて、上述した方法と同様にして、上述した式(1-2)~式(1-9)に示されるα線放出量が0.01cph/cm2以下である有機錫化合物が合成される。
An example of using butylmagnesium chloride for synthesizing the monobutyltin oxide represented by the formula (1-1) synthesized by the formula (13) has been described. Next, the following other than the butylmagnesium chloride are described below. The organic magnesium halides are shown in the formulas (14) to (21). Using these organomagnesium halides, the amount of α-ray emission represented by the above-mentioned formulas (1-2) to (1-9) is 0.01 cph / cm 2 or less in the same manner as in the above-mentioned method. Organic tin compounds are synthesized.
式(14)は塩化イソプロピルマグネシウムであり、この塩化イソプロピルマグネシウムから、上述した式(1-2)に示されるモノイソプロピル錫オキシドが作られる。
式(15)は臭化オクチルマグネシウムであり、この臭化オクチルマグネシウムから、上述した式(1-3)に示されるモノオクチル錫オキシドが作られる。
式(16)は塩化ターシャリブチルマグネシウムであり、この塩化ターシャリブチルマグネシウムから、上述した式(1-4)に示されるモノ-tert-ブチル錫オキシドが作られる。
式(17)は臭化プロピルマグネシウムであり、この臭化プロピルマグネシウムから、上述した式(1-5)に示されるモノプロピルスズオキシドが作られる。
式(18)は臭化ペンチルマグネシウムであり、この臭化ペンチルマグネシウムから、上述した式(1-6)に示されるモノペンチル錫オキシドが作られる。
式(19)は臭化ヘキシルマグネシウムであり、この臭化ヘキシルマグネシウムから、上述した式(1-7)に示されるモノヘキシル錫オキシドが作られる。
式(20)は臭化ヘプチルマグネシウムであり、この臭化ヘプチルマグネシウムから、上述した式(1-8)に示されるモノヘプチル錫オキシドが作られる。
式(21)は臭化セコンダリブチルマグネシウムであり、この臭化セコンダリブチルマグネシウムから、上述した式(1-9)に示されるモノ-sec-ブチル錫オキシドが作られる。 The formula (14) is isopropylmagnesium chloride, from which the monoisopropyltin oxide represented by the above formula (1-2) is produced.
The formula (15) is octylmagnesium bromide, and the monooctyltin oxide represented by the above-mentioned formula (1-3) is produced from the octylmagnesium bromide.
The formula (16) is tertiary butyl magnesium chloride, and the mono-tert-butyl tin oxide represented by the above formula (1-4) is produced from the tertiary butyl magnesium chloride.
Formula (17) is propylmagnesium bromide, and from this propylmagnesium bromide, the monopropyl tin oxide represented by the above-mentioned formula (1-5) is produced.
The formula (18) is pentylmagnesium bromide, and the monopentyltin oxide represented by the above-mentioned formula (1-6) is produced from the pentylmagnesium bromide.
Formula (19) is hexyl magnesium bromide, from which hexyl magnesium bromide produces the monohexyl tin oxide represented by formula (1-7) above.
Formula (20) is magnesium bromide, and from this magnesium bromide, monoheptyl tin oxide represented by the above formula (1-8) is produced.
Formula (21) is bromide secondalibutylmagnesium, and the mono-sec-butyltin oxide represented by the above-mentioned formula (1-9) is produced from this bromide secondalibutylmagnesium.
式(15)は臭化オクチルマグネシウムであり、この臭化オクチルマグネシウムから、上述した式(1-3)に示されるモノオクチル錫オキシドが作られる。
式(16)は塩化ターシャリブチルマグネシウムであり、この塩化ターシャリブチルマグネシウムから、上述した式(1-4)に示されるモノ-tert-ブチル錫オキシドが作られる。
式(17)は臭化プロピルマグネシウムであり、この臭化プロピルマグネシウムから、上述した式(1-5)に示されるモノプロピルスズオキシドが作られる。
式(18)は臭化ペンチルマグネシウムであり、この臭化ペンチルマグネシウムから、上述した式(1-6)に示されるモノペンチル錫オキシドが作られる。
式(19)は臭化ヘキシルマグネシウムであり、この臭化ヘキシルマグネシウムから、上述した式(1-7)に示されるモノヘキシル錫オキシドが作られる。
式(20)は臭化ヘプチルマグネシウムであり、この臭化ヘプチルマグネシウムから、上述した式(1-8)に示されるモノヘプチル錫オキシドが作られる。
式(21)は臭化セコンダリブチルマグネシウムであり、この臭化セコンダリブチルマグネシウムから、上述した式(1-9)に示されるモノ-sec-ブチル錫オキシドが作られる。 The formula (14) is isopropylmagnesium chloride, from which the monoisopropyltin oxide represented by the above formula (1-2) is produced.
The formula (15) is octylmagnesium bromide, and the monooctyltin oxide represented by the above-mentioned formula (1-3) is produced from the octylmagnesium bromide.
The formula (16) is tertiary butyl magnesium chloride, and the mono-tert-butyl tin oxide represented by the above formula (1-4) is produced from the tertiary butyl magnesium chloride.
Formula (17) is propylmagnesium bromide, and from this propylmagnesium bromide, the monopropyl tin oxide represented by the above-mentioned formula (1-5) is produced.
The formula (18) is pentylmagnesium bromide, and the monopentyltin oxide represented by the above-mentioned formula (1-6) is produced from the pentylmagnesium bromide.
Formula (19) is hexyl magnesium bromide, from which hexyl magnesium bromide produces the monohexyl tin oxide represented by formula (1-7) above.
Formula (20) is magnesium bromide, and from this magnesium bromide, monoheptyl tin oxide represented by the above formula (1-8) is produced.
Formula (21) is bromide secondalibutylmagnesium, and the mono-sec-butyltin oxide represented by the above-mentioned formula (1-9) is produced from this bromide secondalibutylmagnesium.
〔EUVレジスト膜形成用液組成物の製造方法〕
本実施形態のEUVレジスト膜形成用液組成物は、器具と環境に対してα線管理がなされ、かつ密閉した空間で、上記有機錫化合物を有機溶媒に添加混合し、遠心分離又はシリンジフィルタで不溶性の固体を除去することにより、α線放出量が0.01cph/cm2以下で製造される。有機錫化合物と有機溶媒の混合割合により、所定の粘度のEUVレジスト膜形成用液組成物が得られる。このEUVレジスト膜形成用液組成物を100質量%とするとき、錫の含有量が0.05質量%以上24質量%以下の割合で含まれる。錫の含有量が0.5質量%~9質量%であることが好ましい。0.05質量%未満では、この有機錫化合物から作られたレジスト膜に照射されたEUV光を高効率に吸収することが困難になる。また24質量%を超えると錫化合物の溶解性の観点からEUVレジスト膜形成用液組成物が不安定になることや、エッチング後の金属残渣が問題になる。ここで、錫の含有量とは、有機錫化合物に含まれる錫量として換算した値を用いた含有量である。 [Method for producing a liquid composition for forming an EUV resist film]
In the liquid composition for forming an EUV resist film of the present embodiment, the above organic tin compound is added and mixed with an organic solvent in a closed space where α-ray control is performed with respect to the instrument and the environment, and the mixture is centrifuged or a syringe filter. By removing the insoluble solid, the α-ray emission amount is 0.01 cph / cm 2 or less. A liquid composition for forming an EUV resist film having a predetermined viscosity can be obtained depending on the mixing ratio of the organic tin compound and the organic solvent. When the EUV resist film forming liquid composition is 100% by mass, the tin content is 0.05% by mass or more and 24% by mass or less. The tin content is preferably 0.5% by mass to 9% by mass. If it is less than 0.05% by mass, it becomes difficult to efficiently absorb EUV light irradiated to the resist film made of this organic tin compound. Further, if it exceeds 24% by mass, the EUV resist film forming liquid composition becomes unstable from the viewpoint of the solubility of the tin compound, and the metal residue after etching becomes a problem. Here, the tin content is a content using a value converted as the tin content contained in the organic tin compound.
本実施形態のEUVレジスト膜形成用液組成物は、器具と環境に対してα線管理がなされ、かつ密閉した空間で、上記有機錫化合物を有機溶媒に添加混合し、遠心分離又はシリンジフィルタで不溶性の固体を除去することにより、α線放出量が0.01cph/cm2以下で製造される。有機錫化合物と有機溶媒の混合割合により、所定の粘度のEUVレジスト膜形成用液組成物が得られる。このEUVレジスト膜形成用液組成物を100質量%とするとき、錫の含有量が0.05質量%以上24質量%以下の割合で含まれる。錫の含有量が0.5質量%~9質量%であることが好ましい。0.05質量%未満では、この有機錫化合物から作られたレジスト膜に照射されたEUV光を高効率に吸収することが困難になる。また24質量%を超えると錫化合物の溶解性の観点からEUVレジスト膜形成用液組成物が不安定になることや、エッチング後の金属残渣が問題になる。ここで、錫の含有量とは、有機錫化合物に含まれる錫量として換算した値を用いた含有量である。 [Method for producing a liquid composition for forming an EUV resist film]
In the liquid composition for forming an EUV resist film of the present embodiment, the above organic tin compound is added and mixed with an organic solvent in a closed space where α-ray control is performed with respect to the instrument and the environment, and the mixture is centrifuged or a syringe filter. By removing the insoluble solid, the α-ray emission amount is 0.01 cph / cm 2 or less. A liquid composition for forming an EUV resist film having a predetermined viscosity can be obtained depending on the mixing ratio of the organic tin compound and the organic solvent. When the EUV resist film forming liquid composition is 100% by mass, the tin content is 0.05% by mass or more and 24% by mass or less. The tin content is preferably 0.5% by mass to 9% by mass. If it is less than 0.05% by mass, it becomes difficult to efficiently absorb EUV light irradiated to the resist film made of this organic tin compound. Further, if it exceeds 24% by mass, the EUV resist film forming liquid composition becomes unstable from the viewpoint of the solubility of the tin compound, and the metal residue after etching becomes a problem. Here, the tin content is a content using a value converted as the tin content contained in the organic tin compound.
なお、EUVレジスト膜形成用液組成物に用いられる有機溶媒は、キシレン、トルエンを例とする芳香族化合物、メチルフェニルエーテルやテトラヒドロフランを例とするエーテル類、酢酸2-メトキシ-1-メチルエチル、酢酸エチル、乳酸エチル、酢酸n-ブチルのようなエステル類、4-メチル-2-プロパノール、1-ブタノール、メタノール、イソプロピルアルコール、1-プロパノール、ブタノールといったアルコール類、メチルエチルケトンといったケトン類が挙げられる。
The organic solvent used in the liquid composition for forming an EUV resist film is xylene, an aromatic compound such as toluene, ethers such as methylphenyl ether or methanol, 2-methoxy-1-methylethyl acetate, and the like. Examples thereof include esters such as ethyl acetate, ethyl lactate and n-butyl acetate, alcohols such as 4-methyl-2-propanol, 1-butanol, methanol, isopropyl alcohol, 1-propanol and butanol, and ketones such as methyl ethyl ketone.
〔EUVレジスト膜形成用液組成物のコーティングから現像までの方法〕
器具と環境に対してα線管理がなされた状態で、感光性の物質が塗布された後、清浄化された基材上にスピンコーティング等の方法で、上記の方法で得られたEUVレジスト膜形成用液組成物をコーティングする。このコーティング膜を120℃~210℃の温度で3分~10分間保持してベーキングすることにより、レジスト膜が形成される。ベーキング後の膜厚が5nm~90nmになるように、コーティング時の液組成物のコーティング量を調整する。形成されたレジスト膜をEUV露光し、現像等の後処理を行って、パターニングされたα線放出量が0.01cph/cm2以下であるレジスト膜が作製される。 [Method from coating to developing of EUV resist film forming liquid composition]
The EUV resist film obtained by the above method by a method such as spin coating on a cleaned substrate after applying a photosensitive substance in a state where α-ray control is performed for the equipment and the environment. The forming liquid composition is coated. A resist film is formed by holding and baking this coating film at a temperature of 120 ° C. to 210 ° C. for 3 to 10 minutes. The coating amount of the liquid composition at the time of coating is adjusted so that the film thickness after baking is 5 nm to 90 nm. The formed resist film is exposed to EUV and subjected to post-treatment such as development to produce a resist film having a patterned α-ray emission amount of 0.01 cph / cm 2 or less.
器具と環境に対してα線管理がなされた状態で、感光性の物質が塗布された後、清浄化された基材上にスピンコーティング等の方法で、上記の方法で得られたEUVレジスト膜形成用液組成物をコーティングする。このコーティング膜を120℃~210℃の温度で3分~10分間保持してベーキングすることにより、レジスト膜が形成される。ベーキング後の膜厚が5nm~90nmになるように、コーティング時の液組成物のコーティング量を調整する。形成されたレジスト膜をEUV露光し、現像等の後処理を行って、パターニングされたα線放出量が0.01cph/cm2以下であるレジスト膜が作製される。 [Method from coating to developing of EUV resist film forming liquid composition]
The EUV resist film obtained by the above method by a method such as spin coating on a cleaned substrate after applying a photosensitive substance in a state where α-ray control is performed for the equipment and the environment. The forming liquid composition is coated. A resist film is formed by holding and baking this coating film at a temperature of 120 ° C. to 210 ° C. for 3 to 10 minutes. The coating amount of the liquid composition at the time of coating is adjusted so that the film thickness after baking is 5 nm to 90 nm. The formed resist film is exposed to EUV and subjected to post-treatment such as development to produce a resist film having a patterned α-ray emission amount of 0.01 cph / cm 2 or less.
上記実施形態では、本発明の有機錫化合物を用いたEUVレジスト膜形成用液組成物を使用してレジスト膜を形成することとしたが、これ以外にも、本発明の有機錫化合物(例えば、上述した式(8)に示されるモノアルキル錫トリクロリド等)を用い、化学気相堆積(CVD)法又は原子層成膜(ALD)法によってレジスト膜を形成することもできる。
In the above embodiment, the resist film is formed by using the liquid composition for forming an EUV resist film using the organic tin compound of the present invention, but in addition to this, the organic tin compound of the present invention (for example, A resist film can also be formed by a chemical vapor deposition (CVD) method or an atomic layer deposition (ALD) method using the monoalkyl tin trichloride represented by the above formula (8).
次に本発明の実施例を比較例とともに詳しく説明する。最初に、有機錫化合物である上述した式(1-1)~式(1-9)に示される有機錫オキシド化合物の実施例と比較例及び実施例と比較例で得られた有機錫化合物のα線放出量の結果について説明し、次いで、式(1-1)~式(1-9)、式(9)に示される有機錫トリアルコキシド化合物を用いたEUVレジスト膜形成用液組成物の試験例と比較試験例及びこれらの試験例と比較試験例で得られたEUVレジスト膜形成用液組成物の成膜後の結果について説明する。
Next, examples of the present invention will be described in detail together with comparative examples. First, the organotin compounds represented by the above-mentioned formulas (1-1) to (1-9), which are organotin compounds, are the examples and comparative examples of the organotin oxide compounds, and the organotin compounds obtained in the examples and the comparative examples. The results of the amount of α-ray emission will be described, and then the liquid composition for forming an EUV resist film using the organotin trialkoxide compounds represented by the formulas (1-1) to (1-9) and (9) will be described. The results after film formation of the test example and the comparative test example and the EUV resist film forming liquid composition obtained in these test examples and the comparative test example will be described.
図4に、実施例及び比較例における低α線を放出するように精製された金属錫からCD-SEM(Critical Dimension-SEM)による欠陥評価までのフロー図を示す。
FIG. 4 shows a flow chart from metallic tin purified to emit low α rays in Examples and Comparative Examples to defect evaluation by CD-SEM (Critical Dimensions-SEM).
〔式(1-1)のモノブチル錫オキシド(有機錫オキシド化合物)の実施例・比較例〕
<実施例1-1>
金属錫から四塩化錫を合成した。
先ず、α線管理がなされた容積500mLのガラス製の三つ口フラスコと別のフラスコを用意した。具体的には、使用する三つ口フラスコと別のフラスコを酸洗浄した後にアルカリ洗浄した。最初に濃度15質量%に調製された硫酸を45℃まで上昇させ、この硫酸を、使用する三つ口フラスコと別のフラスコの生成物質が接触する部分に60分間循環させて、この接触部分を洗浄した。続いて、濃度38質量%に調製された炭酸アンモニウム溶液を、室温で40分間循環させ、上記接触部分を洗浄した。その後、イオン交換水で洗浄を行った後に、界面活性剤を含んだ洗浄液で洗浄処理を行い、再度イオン交換水で置換した後にドライヤーで乾燥処理を行った。 [Examples / Comparative Examples of Monobutyltin Oxide (Organic Tin Oxide Compound) of Formula (1-1)]
<Example 1-1>
Tin tetrachloride was synthesized from metallic tin.
First, a three-necked glass flask with a volume of 500 mL and another flask with α-ray control were prepared. Specifically, the three-necked flask to be used and another flask were pickled and then alkaline-washed. Sulfuric acid first prepared to a concentration of 15% by mass was raised to 45 ° C., and this sulfuric acid was circulated for 60 minutes in the part where the product of the three-necked flask to be used and the product of another flask came into contact, and this contact part was circulated. Washed. Subsequently, the ammonium carbonate solution prepared to a concentration of 38% by mass was circulated at room temperature for 40 minutes, and the contact portion was washed. Then, after cleaning with ion-exchanged water, the cleaning treatment was performed with a cleaning liquid containing a surfactant, the mixture was replaced with ion-exchanged water again, and then the drying treatment was performed with a dryer.
<実施例1-1>
金属錫から四塩化錫を合成した。
先ず、α線管理がなされた容積500mLのガラス製の三つ口フラスコと別のフラスコを用意した。具体的には、使用する三つ口フラスコと別のフラスコを酸洗浄した後にアルカリ洗浄した。最初に濃度15質量%に調製された硫酸を45℃まで上昇させ、この硫酸を、使用する三つ口フラスコと別のフラスコの生成物質が接触する部分に60分間循環させて、この接触部分を洗浄した。続いて、濃度38質量%に調製された炭酸アンモニウム溶液を、室温で40分間循環させ、上記接触部分を洗浄した。その後、イオン交換水で洗浄を行った後に、界面活性剤を含んだ洗浄液で洗浄処理を行い、再度イオン交換水で置換した後にドライヤーで乾燥処理を行った。 [Examples / Comparative Examples of Monobutyltin Oxide (Organic Tin Oxide Compound) of Formula (1-1)]
<Example 1-1>
Tin tetrachloride was synthesized from metallic tin.
First, a three-necked glass flask with a volume of 500 mL and another flask with α-ray control were prepared. Specifically, the three-necked flask to be used and another flask were pickled and then alkaline-washed. Sulfuric acid first prepared to a concentration of 15% by mass was raised to 45 ° C., and this sulfuric acid was circulated for 60 minutes in the part where the product of the three-necked flask to be used and the product of another flask came into contact, and this contact part was circulated. Washed. Subsequently, the ammonium carbonate solution prepared to a concentration of 38% by mass was circulated at room temperature for 40 minutes, and the contact portion was washed. Then, after cleaning with ion-exchanged water, the cleaning treatment was performed with a cleaning liquid containing a surfactant, the mixture was replaced with ion-exchanged water again, and then the drying treatment was performed with a dryer.
上記α線管理がなされた三つの口を塩素ガス供給口、窒素ガス供給口及び別のフラスコに接続する接続口とした。上記三つ口フラスコ内に出発原料としての粒状の金属錫15gを入れた。この金属錫は0.0005cph/cm2未満であった。窒素ガスでフラスコ内をパージした後、0.3モルの塩素ガスを流入し、金属錫と塩素ガスを反応させた。白煙が発生し十分に反応が行われ、金属錫から塩化錫が合成された。
三つ口フラスコを四塩化錫の沸点に近い120℃前後に加熱した。これによりガス状の四塩化錫のみが得られ、窒素ガス供給口から窒素ガスを流すことにより、フラスコ接続口からガス状の四塩化錫を温度10℃に維持された別のフラスコ内に流入させた。別のフラスコによりガス状の四塩化錫が冷却されて、無色ないし黄褐色の液状の四塩化錫(SnCl4)を23.5g得た。液状の四塩化錫をα線放出量が0.01cph/cm2以下になるまで蒸留した。蒸留回数は2回であり、蒸留は、Poの昇華温度130℃より低い128℃の温度で行った。この反応は、上述した式(10)に示される。 The above three α-ray controlled ports were used as a chlorine gas supply port, a nitrogen gas supply port, and a connection port for connecting to another flask. 15 g of granular metallic tin as a starting material was placed in the three-necked flask. This metallic tin was less than 0.0005 cf / cm 2 . After purging the inside of the flask with nitrogen gas, 0.3 mol of chlorine gas was flowed in to react metallic tin with chlorine gas. White smoke was generated and the reaction was sufficient, and tin chloride was synthesized from metallic tin.
The three-necked flask was heated to around 120 ° C., which is close to the boiling point of tin tetrachloride. As a result, only gaseous tin tetrachloride is obtained, and by flowing nitrogen gas from the nitrogen gas supply port, gaseous tin tetrachloride flows into another flask maintained at a temperature of 10 ° C. from the flask connection port. rice field. The gaseous tin tetrachloride was cooled by another flask to obtain 23.5 g of colorless to yellowish brown liquid tin tetrachloride (SnCl 4 ). Liquid tin tetrachloride was distilled until the amount of α-ray emission was 0.01 cph / cm 2 or less. The number of distillations was two, and the distillation was performed at a temperature of 128 ° C., which is lower than the sublimation temperature of Po at 130 ° C. This reaction is represented by the above formula (10).
三つ口フラスコを四塩化錫の沸点に近い120℃前後に加熱した。これによりガス状の四塩化錫のみが得られ、窒素ガス供給口から窒素ガスを流すことにより、フラスコ接続口からガス状の四塩化錫を温度10℃に維持された別のフラスコ内に流入させた。別のフラスコによりガス状の四塩化錫が冷却されて、無色ないし黄褐色の液状の四塩化錫(SnCl4)を23.5g得た。液状の四塩化錫をα線放出量が0.01cph/cm2以下になるまで蒸留した。蒸留回数は2回であり、蒸留は、Poの昇華温度130℃より低い128℃の温度で行った。この反応は、上述した式(10)に示される。 The above three α-ray controlled ports were used as a chlorine gas supply port, a nitrogen gas supply port, and a connection port for connecting to another flask. 15 g of granular metallic tin as a starting material was placed in the three-necked flask. This metallic tin was less than 0.0005 cf / cm 2 . After purging the inside of the flask with nitrogen gas, 0.3 mol of chlorine gas was flowed in to react metallic tin with chlorine gas. White smoke was generated and the reaction was sufficient, and tin chloride was synthesized from metallic tin.
The three-necked flask was heated to around 120 ° C., which is close to the boiling point of tin tetrachloride. As a result, only gaseous tin tetrachloride is obtained, and by flowing nitrogen gas from the nitrogen gas supply port, gaseous tin tetrachloride flows into another flask maintained at a temperature of 10 ° C. from the flask connection port. rice field. The gaseous tin tetrachloride was cooled by another flask to obtain 23.5 g of colorless to yellowish brown liquid tin tetrachloride (SnCl 4 ). Liquid tin tetrachloride was distilled until the amount of α-ray emission was 0.01 cph / cm 2 or less. The number of distillations was two, and the distillation was performed at a temperature of 128 ° C., which is lower than the sublimation temperature of Po at 130 ° C. This reaction is represented by the above formula (10).
次に、上記四塩化錫からテトラブチル錫を合成した。
α線管理がなされた、撹拌器、還流冷却器及び等圧滴下ロートから構成される容積2Lの三つ口フラスコ内にグリニャール試薬である塩化ブチルマグネシウムのテトラヒドロフラン溶液を、塩化ブチルマグネシウムが2.8モルとなるように入れた。そこにトルエン250mLを添加し、110℃まで加熱し、グリニャール試薬中の溶媒を留去した。そこに、上記合成で得られた低α線放出量の液状の四塩化錫0.65モルを滴下し、2時間、110℃の温度で加熱還流した。蒸気温度が110℃に達した後に、加熱を終了し、混合物を冷却した。得られた混合物をろ過し、ろ液からトルエンを留去した後、更に精密蒸留を114℃の温度で1時間行った。副生成物を除去させた後、残存物を分別し、分別された有機錫化合物をGC-MS(Gas Chromatography Mass Spectrometry)で組成分析した結果、殆どの成分がテトラブチル錫であることを確認した。この合成におけるテトラブチル錫の収率は93.2%で、GC-MSから求めた純度(以下、GC純度という。)は99.6%であった。この合成により液状のテトラブチル錫が210.4g得られた。蒸留回数は2回であった。この反応は、上述した式(11)に示される。 Next, tetrabutyltin was synthesized from the tin tetrachloride.
In a 2 L volumetric flask consisting of a stirrer, a reflux condenser and an isobaric dropping funnel, which is α-ray controlled, a tetrahydrofuran solution of butylmagnesium chloride, which is a Grignard reagent, is placed in a two-necked flask, and 2.8 of butylmagnesium chloride. I put it in a mole. 250 mL of toluene was added thereto, and the mixture was heated to 110 ° C. to distill off the solvent in the Grignard reagent. 0.65 mol of liquid tin tetrachloride having a low α-ray emission amount obtained by the above synthesis was added dropwise thereto, and the mixture was heated under reflux at a temperature of 110 ° C. for 2 hours. After the steam temperature reached 110 ° C., heating was terminated and the mixture was cooled. The obtained mixture was filtered, toluene was distilled off from the filtrate, and then precision distillation was further carried out at a temperature of 114 ° C. for 1 hour. After removing the by-products, the residue was separated, and the composition of the separated organic tin compound was analyzed by GC-MS (Gas Chromatography Mass Spectrometry). As a result, it was confirmed that most of the components were tetrabutyltin. The yield of tetrabutyltin in this synthesis was 93.2%, and the purity determined from GC-MS (hereinafter referred to as GC purity) was 99.6%. By this synthesis, 210.4 g of liquid tetrabutyltin was obtained. The number of distillations was two. This reaction is represented by the above formula (11).
α線管理がなされた、撹拌器、還流冷却器及び等圧滴下ロートから構成される容積2Lの三つ口フラスコ内にグリニャール試薬である塩化ブチルマグネシウムのテトラヒドロフラン溶液を、塩化ブチルマグネシウムが2.8モルとなるように入れた。そこにトルエン250mLを添加し、110℃まで加熱し、グリニャール試薬中の溶媒を留去した。そこに、上記合成で得られた低α線放出量の液状の四塩化錫0.65モルを滴下し、2時間、110℃の温度で加熱還流した。蒸気温度が110℃に達した後に、加熱を終了し、混合物を冷却した。得られた混合物をろ過し、ろ液からトルエンを留去した後、更に精密蒸留を114℃の温度で1時間行った。副生成物を除去させた後、残存物を分別し、分別された有機錫化合物をGC-MS(Gas Chromatography Mass Spectrometry)で組成分析した結果、殆どの成分がテトラブチル錫であることを確認した。この合成におけるテトラブチル錫の収率は93.2%で、GC-MSから求めた純度(以下、GC純度という。)は99.6%であった。この合成により液状のテトラブチル錫が210.4g得られた。蒸留回数は2回であった。この反応は、上述した式(11)に示される。 Next, tetrabutyltin was synthesized from the tin tetrachloride.
In a 2 L volumetric flask consisting of a stirrer, a reflux condenser and an isobaric dropping funnel, which is α-ray controlled, a tetrahydrofuran solution of butylmagnesium chloride, which is a Grignard reagent, is placed in a two-necked flask, and 2.8 of butylmagnesium chloride. I put it in a mole. 250 mL of toluene was added thereto, and the mixture was heated to 110 ° C. to distill off the solvent in the Grignard reagent. 0.65 mol of liquid tin tetrachloride having a low α-ray emission amount obtained by the above synthesis was added dropwise thereto, and the mixture was heated under reflux at a temperature of 110 ° C. for 2 hours. After the steam temperature reached 110 ° C., heating was terminated and the mixture was cooled. The obtained mixture was filtered, toluene was distilled off from the filtrate, and then precision distillation was further carried out at a temperature of 114 ° C. for 1 hour. After removing the by-products, the residue was separated, and the composition of the separated organic tin compound was analyzed by GC-MS (Gas Chromatography Mass Spectrometry). As a result, it was confirmed that most of the components were tetrabutyltin. The yield of tetrabutyltin in this synthesis was 93.2%, and the purity determined from GC-MS (hereinafter referred to as GC purity) was 99.6%. By this synthesis, 210.4 g of liquid tetrabutyltin was obtained. The number of distillations was two. This reaction is represented by the above formula (11).
次に、上記テトラブチル錫からモノブチル錫トリクロリドを合成した。
α線管理がなされた、撹拌器、温度計、冷却器及び滴下ロートから構成される容積1Lの四つ口フラスコ内に、最初に得られた低α線放出量の四塩化錫130gとベンゼン200mLを入れた。これらを撹拌しながら滴下ロートによりテトラヒドロフラン(以下、THFという。)86.1gを室温にて滴下した。四塩化錫とTHFとの反応が開始した直後に、反応熱を除去するために反応生成物を冷却した。THFの滴下が完了した後、反応生成物を加熱し、還流下で30分間反応を行った。続いて82℃の温度で還流しながら、上記合成で得られたテトラブチル錫173.6gを30分間かけて滴下し、その後1時間反応を行った。得られた褐色透明な溶液の反応生成物をGC-MSで組成分析した結果、モノブチル錫トリクロリドとトリブチル錫クロリドが確認された。モノブチル錫トリクロリドとトリブチル錫クロリドの生成比は、物質量換算比で約1:1であった。この反応生成物を濃縮し、ベンゼン及びTHFを留去した後、α線放出量が0.01cph/cm2以下になるまで、減圧下で精密蒸留を行い、沸点92℃~94℃/10mmHgの留分として、モノブチル錫トリクロリド138gを得た。この合成におけるモノブチル錫トリクロリドの収率は97.8%で、GC純度は99.4%であり、蒸留回数は2回であった。この反応は、上述した式(12)に示される。 Next, monobutyltin trichloride was synthesized from the above tetrabutyltin.
130 g of tin tetrachloride and 200 mL of benzene, which were initially obtained in a low α-ray emission amount, were placed in a 1 L volume four-necked flask consisting of an α-ray controlled stirrer, thermometer, cooler and dropping funnel. I put in. While stirring these, 86.1 g of tetrahydrofuran (hereinafter referred to as THF) was added dropwise at room temperature using a dropping funnel. Immediately after the reaction of tin tetrachloride with THF began, the reaction product was cooled to remove the heat of reaction. After the addition of THF was completed, the reaction product was heated and the reaction was carried out under reflux for 30 minutes. Subsequently, 173.6 g of tetrabutyltin obtained in the above synthesis was added dropwise over 30 minutes while refluxing at a temperature of 82 ° C., and then the reaction was carried out for 1 hour. As a result of composition analysis of the reaction product of the obtained brown transparent solution by GC-MS, monobutyltin trichloride and tributyltin chloride were confirmed. The production ratio of monobutyltin trichloride and tributyltin chloride was about 1: 1 in terms of substance amount conversion ratio. After concentrating this reaction product and distilling off benzene and THF, precision distillation was carried out under reduced pressure until the amount of α-ray emission was 0.01 cf / cm 2 or less, and the boiling point was 92 ° C. to 94 ° C./10 mmHg. As a distillate, 138 g of monobutyltin trichloride was obtained. The yield of monobutyltin trichloride in this synthesis was 97.8%, the GC purity was 99.4%, and the number of distillations was two. This reaction is represented by the above formula (12).
α線管理がなされた、撹拌器、温度計、冷却器及び滴下ロートから構成される容積1Lの四つ口フラスコ内に、最初に得られた低α線放出量の四塩化錫130gとベンゼン200mLを入れた。これらを撹拌しながら滴下ロートによりテトラヒドロフラン(以下、THFという。)86.1gを室温にて滴下した。四塩化錫とTHFとの反応が開始した直後に、反応熱を除去するために反応生成物を冷却した。THFの滴下が完了した後、反応生成物を加熱し、還流下で30分間反応を行った。続いて82℃の温度で還流しながら、上記合成で得られたテトラブチル錫173.6gを30分間かけて滴下し、その後1時間反応を行った。得られた褐色透明な溶液の反応生成物をGC-MSで組成分析した結果、モノブチル錫トリクロリドとトリブチル錫クロリドが確認された。モノブチル錫トリクロリドとトリブチル錫クロリドの生成比は、物質量換算比で約1:1であった。この反応生成物を濃縮し、ベンゼン及びTHFを留去した後、α線放出量が0.01cph/cm2以下になるまで、減圧下で精密蒸留を行い、沸点92℃~94℃/10mmHgの留分として、モノブチル錫トリクロリド138gを得た。この合成におけるモノブチル錫トリクロリドの収率は97.8%で、GC純度は99.4%であり、蒸留回数は2回であった。この反応は、上述した式(12)に示される。 Next, monobutyltin trichloride was synthesized from the above tetrabutyltin.
130 g of tin tetrachloride and 200 mL of benzene, which were initially obtained in a low α-ray emission amount, were placed in a 1 L volume four-necked flask consisting of an α-ray controlled stirrer, thermometer, cooler and dropping funnel. I put in. While stirring these, 86.1 g of tetrahydrofuran (hereinafter referred to as THF) was added dropwise at room temperature using a dropping funnel. Immediately after the reaction of tin tetrachloride with THF began, the reaction product was cooled to remove the heat of reaction. After the addition of THF was completed, the reaction product was heated and the reaction was carried out under reflux for 30 minutes. Subsequently, 173.6 g of tetrabutyltin obtained in the above synthesis was added dropwise over 30 minutes while refluxing at a temperature of 82 ° C., and then the reaction was carried out for 1 hour. As a result of composition analysis of the reaction product of the obtained brown transparent solution by GC-MS, monobutyltin trichloride and tributyltin chloride were confirmed. The production ratio of monobutyltin trichloride and tributyltin chloride was about 1: 1 in terms of substance amount conversion ratio. After concentrating this reaction product and distilling off benzene and THF, precision distillation was carried out under reduced pressure until the amount of α-ray emission was 0.01 cf / cm 2 or less, and the boiling point was 92 ° C. to 94 ° C./10 mmHg. As a distillate, 138 g of monobutyltin trichloride was obtained. The yield of monobutyltin trichloride in this synthesis was 97.8%, the GC purity was 99.4%, and the number of distillations was two. This reaction is represented by the above formula (12).
更に、上記モノブチル錫トリクロリドからモノブチル錫オキシドを製造した。
上記合成で得られたモノブチル錫トリクロリド20gをエタノール900mLに溶かし、この溶液を40℃以下の温度にあるように冷却しかつ撹拌しながら、この溶液に濃度28質量%のアンモニア水12gを40分かけて滴下した。更に30分間撹拌した後、55℃に温度を上昇させ、この温度で4時間撹拌した。生じた沈殿を吸引ろ過し、イオン交換水で洗浄して遠心分離した。遠心分離後に得られた白色固体を減圧下、80℃で18時間かけて乾燥し、8.8gのモノブチル錫オキシドを得た。このモノブチル錫オキシドの製造は、上述した式(13)に示される。 Further, monobutyltin oxide was produced from the above monobutyltin trichloride.
20 g of monobutyltin trichloride obtained in the above synthesis is dissolved in 900 mL of ethanol, and while cooling and stirring the solution so that the temperature is 40 ° C. or lower, 12 g of ammonia water having a concentration of 28% by mass is added to this solution for 40 minutes. And dropped. After further stirring for 30 minutes, the temperature was raised to 55 ° C., and the mixture was stirred at this temperature for 4 hours. The resulting precipitate was suction filtered, washed with ion-exchanged water and centrifuged. The white solid obtained after centrifugation was dried under reduced pressure at 80 ° C. for 18 hours to obtain 8.8 g of monobutyltin oxide. The production of this monobutyltin oxide is represented by the above formula (13).
上記合成で得られたモノブチル錫トリクロリド20gをエタノール900mLに溶かし、この溶液を40℃以下の温度にあるように冷却しかつ撹拌しながら、この溶液に濃度28質量%のアンモニア水12gを40分かけて滴下した。更に30分間撹拌した後、55℃に温度を上昇させ、この温度で4時間撹拌した。生じた沈殿を吸引ろ過し、イオン交換水で洗浄して遠心分離した。遠心分離後に得られた白色固体を減圧下、80℃で18時間かけて乾燥し、8.8gのモノブチル錫オキシドを得た。このモノブチル錫オキシドの製造は、上述した式(13)に示される。 Further, monobutyltin oxide was produced from the above monobutyltin trichloride.
20 g of monobutyltin trichloride obtained in the above synthesis is dissolved in 900 mL of ethanol, and while cooling and stirring the solution so that the temperature is 40 ° C. or lower, 12 g of ammonia water having a concentration of 28% by mass is added to this solution for 40 minutes. And dropped. After further stirring for 30 minutes, the temperature was raised to 55 ° C., and the mixture was stirred at this temperature for 4 hours. The resulting precipitate was suction filtered, washed with ion-exchanged water and centrifuged. The white solid obtained after centrifugation was dried under reduced pressure at 80 ° C. for 18 hours to obtain 8.8 g of monobutyltin oxide. The production of this monobutyltin oxide is represented by the above formula (13).
<実施例1-2>
出発原料として、α線放出量が0.002cph/cm2である粒状の金属錫を用いた。それ以外は、実施例1-1と同様にして、モノブチル錫オキシドを製造した。 <Example 1-2>
As a starting material, granular metallic tin having an α-ray emission amount of 0.002 cf / cm 2 was used. Except for this, monobutyltin oxide was produced in the same manner as in Example 1-1.
出発原料として、α線放出量が0.002cph/cm2である粒状の金属錫を用いた。それ以外は、実施例1-1と同様にして、モノブチル錫オキシドを製造した。 <Example 1-2>
As a starting material, granular metallic tin having an α-ray emission amount of 0.002 cf / cm 2 was used. Except for this, monobutyltin oxide was produced in the same manner as in Example 1-1.
<実施例1-3>
出発原料として、α線放出量が0.01cph/cm2である粒状の金属錫を用いた。それ以外は、実施例1-1と同様にして、モノブチル錫オキシドを製造した。 <Example 1-3>
As a starting material, granular metallic tin having an α-ray emission amount of 0.01 cph / cm 2 was used. Except for this, monobutyltin oxide was produced in the same manner as in Example 1-1.
出発原料として、α線放出量が0.01cph/cm2である粒状の金属錫を用いた。それ以外は、実施例1-1と同様にして、モノブチル錫オキシドを製造した。 <Example 1-3>
As a starting material, granular metallic tin having an α-ray emission amount of 0.01 cph / cm 2 was used. Except for this, monobutyltin oxide was produced in the same manner as in Example 1-1.
<比較例1-1>
出発原料として、市販品のα線放出量が0.5cph/cm2である粒状の金属錫を用いた。それ以外は、実施例1-1と同様にして、モノブチル錫オキシドを製造した。 <Comparative Example 1-1>
As a starting material, a commercially available product of granular metallic tin having an α-ray emission amount of 0.5 cph / cm 2 was used. Except for this, monobutyltin oxide was produced in the same manner as in Example 1-1.
出発原料として、市販品のα線放出量が0.5cph/cm2である粒状の金属錫を用いた。それ以外は、実施例1-1と同様にして、モノブチル錫オキシドを製造した。 <Comparative Example 1-1>
As a starting material, a commercially available product of granular metallic tin having an α-ray emission amount of 0.5 cph / cm 2 was used. Except for this, monobutyltin oxide was produced in the same manner as in Example 1-1.
<比較例1-2>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。しかし、実施例1-1と異なり、使用する器具及び環境に対してα線管理を行わずに、蒸留回数は累計で2回であった。それ以外は、実施例1-1と同様にして、モノブチル錫オキシドを製造した。 <Comparative Example 1-2>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. However, unlike Example 1-1, the total number of distillations was 2 without performing α-ray control for the equipment and environment used. Except for this, monobutyltin oxide was produced in the same manner as in Example 1-1.
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。しかし、実施例1-1と異なり、使用する器具及び環境に対してα線管理を行わずに、蒸留回数は累計で2回であった。それ以外は、実施例1-1と同様にして、モノブチル錫オキシドを製造した。 <Comparative Example 1-2>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. However, unlike Example 1-1, the total number of distillations was 2 without performing α-ray control for the equipment and environment used. Except for this, monobutyltin oxide was produced in the same manner as in Example 1-1.
〔式(1-2)のモノイソプロピル錫オキシド(有機錫オキシド化合物)の実施例・比較例〕
<実施例2>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、塩化イソプロピルマグネシウムを用いた。蒸留回数は累計で4回であった。それ以外は、実施例1-1と同様にして、モノイソプロピル錫オキシドを製造した。 [Examples / Comparative Examples of Monoisopropyl Tin Oxide (Organic Tin Oxide Compound) of Formula (1-2)]
<Example 2>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, isopropylmagnesium chloride was used instead of the butylmagnesium chloride used in Example 1-1. The total number of distillations was four. Except for this, monoisopropyl tin oxide was produced in the same manner as in Example 1-1.
<実施例2>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、塩化イソプロピルマグネシウムを用いた。蒸留回数は累計で4回であった。それ以外は、実施例1-1と同様にして、モノイソプロピル錫オキシドを製造した。 [Examples / Comparative Examples of Monoisopropyl Tin Oxide (Organic Tin Oxide Compound) of Formula (1-2)]
<Example 2>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, isopropylmagnesium chloride was used instead of the butylmagnesium chloride used in Example 1-1. The total number of distillations was four. Except for this, monoisopropyl tin oxide was produced in the same manner as in Example 1-1.
<比較例2-1>
出発原料として、比較例1-1と同じ市販品のα線放出量が0.5cph/cm2である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例2と同じ塩化イソプロピルマグネシウムを用いた。それ以外は、実施例1-1と同様にして、モノイソプロピル錫オキシドを製造した。 <Comparative Example 2-1>
As a starting material, granular metallic tin having an α-ray emission amount of 0.5 cf / cm 2 , which is the same commercially available product as in Comparative Example 1-1, was used. Further, instead of the butyl magnesium chloride used in Example 1-1, the same isopropyl magnesium chloride as in Example 2 was used. Except for this, monoisopropyl tin oxide was produced in the same manner as in Example 1-1.
出発原料として、比較例1-1と同じ市販品のα線放出量が0.5cph/cm2である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例2と同じ塩化イソプロピルマグネシウムを用いた。それ以外は、実施例1-1と同様にして、モノイソプロピル錫オキシドを製造した。 <Comparative Example 2-1>
As a starting material, granular metallic tin having an α-ray emission amount of 0.5 cf / cm 2 , which is the same commercially available product as in Comparative Example 1-1, was used. Further, instead of the butyl magnesium chloride used in Example 1-1, the same isopropyl magnesium chloride as in Example 2 was used. Except for this, monoisopropyl tin oxide was produced in the same manner as in Example 1-1.
<比較例2-2>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例2と同じ塩化イソプロピルマグネシウムを用いた。しかし、実施例1-1と異なり、使用する器具及び環境に対してα線管理を行わずに、蒸留回数は累計で2回であった。それ以外は、実施例1-1と同様にして、モノイソプロピル錫オキシドを製造した。 <Comparative Example 2-2>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butyl magnesium chloride used in Example 1-1, the same isopropyl magnesium chloride as in Example 2 was used. However, unlike Example 1-1, the total number of distillations was 2 without performing α-ray control for the equipment and environment used. Except for this, monoisopropyl tin oxide was produced in the same manner as in Example 1-1.
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例2と同じ塩化イソプロピルマグネシウムを用いた。しかし、実施例1-1と異なり、使用する器具及び環境に対してα線管理を行わずに、蒸留回数は累計で2回であった。それ以外は、実施例1-1と同様にして、モノイソプロピル錫オキシドを製造した。 <Comparative Example 2-2>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butyl magnesium chloride used in Example 1-1, the same isopropyl magnesium chloride as in Example 2 was used. However, unlike Example 1-1, the total number of distillations was 2 without performing α-ray control for the equipment and environment used. Except for this, monoisopropyl tin oxide was produced in the same manner as in Example 1-1.
〔式(1-3)のモノオクチル錫オキシド(有機錫オキシド化合物)の実施例・比較例〕
<実施例3>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、臭化オクチルマグネシウムを用いた。蒸留回数は累計で4回であった。それ以外は、実施例1-1と同様にして、モノオクチル錫オキシドを製造した。 [Examples / Comparative Examples of Monooctyl Tin Oxide (Organic Tin Oxide Compound) of Formula (1-3)]
<Example 3>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, octylmagnesium bromide was used. The total number of distillations was four. Except for this, monooctyl tin oxide was produced in the same manner as in Example 1-1.
<実施例3>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、臭化オクチルマグネシウムを用いた。蒸留回数は累計で4回であった。それ以外は、実施例1-1と同様にして、モノオクチル錫オキシドを製造した。 [Examples / Comparative Examples of Monooctyl Tin Oxide (Organic Tin Oxide Compound) of Formula (1-3)]
<Example 3>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, octylmagnesium bromide was used. The total number of distillations was four. Except for this, monooctyl tin oxide was produced in the same manner as in Example 1-1.
<比較例3-1>
出発原料として、比較例1-1と同じ市販品のα線放出量が0.5cph/cm2である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例3と同じ臭化オクチルマグネシウムを用いた。それ以外は、実施例1-1と同様にして、モノオクチル錫オキシドを製造した。 <Comparative Example 3-1>
As a starting material, granular metallic tin having an α-ray emission amount of 0.5 cf / cm 2 , which is the same commercially available product as in Comparative Example 1-1, was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same octylmagnesium bromide as in Example 3 was used. Except for this, monooctyl tin oxide was produced in the same manner as in Example 1-1.
出発原料として、比較例1-1と同じ市販品のα線放出量が0.5cph/cm2である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例3と同じ臭化オクチルマグネシウムを用いた。それ以外は、実施例1-1と同様にして、モノオクチル錫オキシドを製造した。 <Comparative Example 3-1>
As a starting material, granular metallic tin having an α-ray emission amount of 0.5 cf / cm 2 , which is the same commercially available product as in Comparative Example 1-1, was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same octylmagnesium bromide as in Example 3 was used. Except for this, monooctyl tin oxide was produced in the same manner as in Example 1-1.
<比較例3-2>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例3と同じ臭化オクチルマグネシウムを用いた。しかし、実施例1-1と異なり、使用する器具及び環境に対してα線管理を行わずに、蒸留回数は累計で2回であった。それ以外は、実施例1-1と同様にして、モノイオクチル錫オキシドを製造した。 <Comparative Example 3-2>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same octylmagnesium bromide as in Example 3 was used. However, unlike Example 1-1, the total number of distillations was 2 without performing α-ray control for the equipment and environment used. Other than that, monoioctyl tin oxide was produced in the same manner as in Example 1-1.
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例3と同じ臭化オクチルマグネシウムを用いた。しかし、実施例1-1と異なり、使用する器具及び環境に対してα線管理を行わずに、蒸留回数は累計で2回であった。それ以外は、実施例1-1と同様にして、モノイオクチル錫オキシドを製造した。 <Comparative Example 3-2>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same octylmagnesium bromide as in Example 3 was used. However, unlike Example 1-1, the total number of distillations was 2 without performing α-ray control for the equipment and environment used. Other than that, monoioctyl tin oxide was produced in the same manner as in Example 1-1.
〔式(1-4)のモノ-tert-ブチル錫オキシド(有機錫オキシド化合物)の実施例・比較例〕
<実施例4>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、塩化ターシャリブチルマグネシウムを用いた。蒸留回数は累計で4回であった。それ以外は、実施例1-1と同様にして、モノ-tert-ブチル錫オキシドを製造した。 [Examples / Comparative Examples of Mono-tert-Butyl Tin Oxide (Organic Tin Oxide Compound) of Formula (1-4)]
<Example 4>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, tertiary butylmagnesium chloride was used. The total number of distillations was four. Except for this, mono-tert-butyltin oxide was produced in the same manner as in Example 1-1.
<実施例4>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、塩化ターシャリブチルマグネシウムを用いた。蒸留回数は累計で4回であった。それ以外は、実施例1-1と同様にして、モノ-tert-ブチル錫オキシドを製造した。 [Examples / Comparative Examples of Mono-tert-Butyl Tin Oxide (Organic Tin Oxide Compound) of Formula (1-4)]
<Example 4>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, tertiary butylmagnesium chloride was used. The total number of distillations was four. Except for this, mono-tert-butyltin oxide was produced in the same manner as in Example 1-1.
<比較例4-1>
出発原料として、比較例1-1と同じ市販品のα線放出量が0.5cph/cm2である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例4と同じ塩化ターシャリブチルマグネシウムを用いた。それ以外は、実施例1-1と同様にして、モノ-tert-ブチル錫オキシドを製造した。 <Comparative Example 4-1>
As a starting material, granular metallic tin having an α-ray emission amount of 0.5 cf / cm 2 , which is the same commercially available product as in Comparative Example 1-1, was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same tertiary butylmagnesium chloride as in Example 4 was used. Except for this, mono-tert-butyltin oxide was produced in the same manner as in Example 1-1.
出発原料として、比較例1-1と同じ市販品のα線放出量が0.5cph/cm2である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例4と同じ塩化ターシャリブチルマグネシウムを用いた。それ以外は、実施例1-1と同様にして、モノ-tert-ブチル錫オキシドを製造した。 <Comparative Example 4-1>
As a starting material, granular metallic tin having an α-ray emission amount of 0.5 cf / cm 2 , which is the same commercially available product as in Comparative Example 1-1, was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same tertiary butylmagnesium chloride as in Example 4 was used. Except for this, mono-tert-butyltin oxide was produced in the same manner as in Example 1-1.
<比較例4-2>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例4と同じ塩化ターシャリブチルマグネシウムを用いた。しかし、実施例1-1と異なり、使用する器具及び環境に対してα線管理を行わずに、蒸留回数は累計で2回であった。それ以外は、実施例1-1と同様にして、モノ-tert-ブチル錫オキシドを製造した。 <Comparative Example 4-2>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same tertiary butylmagnesium chloride as in Example 4 was used. However, unlike Example 1-1, the total number of distillations was 2 without performing α-ray control for the equipment and environment used. Except for this, mono-tert-butyltin oxide was produced in the same manner as in Example 1-1.
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例4と同じ塩化ターシャリブチルマグネシウムを用いた。しかし、実施例1-1と異なり、使用する器具及び環境に対してα線管理を行わずに、蒸留回数は累計で2回であった。それ以外は、実施例1-1と同様にして、モノ-tert-ブチル錫オキシドを製造した。 <Comparative Example 4-2>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same tertiary butylmagnesium chloride as in Example 4 was used. However, unlike Example 1-1, the total number of distillations was 2 without performing α-ray control for the equipment and environment used. Except for this, mono-tert-butyltin oxide was produced in the same manner as in Example 1-1.
〔式(1-5)のモノプロピル錫オキシド(有機錫オキシド化合物)の実施例・比較例〕
<実施例5>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、臭化プロピルマグネシウムを用いた。蒸留回数は累計で5回であった。それ以外は、実施例1-1と同様にして、モノプロピル錫オキシドを製造した。 [Examples / Comparative Examples of Monopropyl Tin Oxide (Organic Tin Oxide Compound) of Formula (1-5)]
<Example 5>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, propylmagnesium bromide was used. The total number of distillations was 5. Except for this, monopropyl tin oxide was produced in the same manner as in Example 1-1.
<実施例5>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、臭化プロピルマグネシウムを用いた。蒸留回数は累計で5回であった。それ以外は、実施例1-1と同様にして、モノプロピル錫オキシドを製造した。 [Examples / Comparative Examples of Monopropyl Tin Oxide (Organic Tin Oxide Compound) of Formula (1-5)]
<Example 5>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, propylmagnesium bromide was used. The total number of distillations was 5. Except for this, monopropyl tin oxide was produced in the same manner as in Example 1-1.
<比較例5-1>
出発原料として、比較例1-1と同じ市販品のα線放出量が0.5cph/cm2である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例5と同じ臭化プロピルマグネシウムを用いた。それ以外は、実施例1-1と同様にして、モノプロピル錫オキシドを製造した。 <Comparative Example 5-1>
As a starting material, granular metallic tin having an α-ray emission amount of 0.5 cf / cm 2 , which is the same commercially available product as in Comparative Example 1-1, was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same propylmagnesium bromide as in Example 5 was used. Except for this, monopropyl tin oxide was produced in the same manner as in Example 1-1.
出発原料として、比較例1-1と同じ市販品のα線放出量が0.5cph/cm2である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例5と同じ臭化プロピルマグネシウムを用いた。それ以外は、実施例1-1と同様にして、モノプロピル錫オキシドを製造した。 <Comparative Example 5-1>
As a starting material, granular metallic tin having an α-ray emission amount of 0.5 cf / cm 2 , which is the same commercially available product as in Comparative Example 1-1, was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same propylmagnesium bromide as in Example 5 was used. Except for this, monopropyl tin oxide was produced in the same manner as in Example 1-1.
<比較例5-2>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例5と同じ臭化プロピルマグネシウムを用いた。しかし、実施例1-1と異なり、使用する器具及び環境に対してα線管理を行わずに、蒸留回数は累計で3回であった。それ以外は、実施例1-1と同様にして、モノプロピル錫オキシドを製造した。 <Comparative Example 5-2>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same propylmagnesium bromide as in Example 5 was used. However, unlike Example 1-1, the total number of distillations was 3 without performing α-ray control for the equipment and environment used. Except for this, monopropyl tin oxide was produced in the same manner as in Example 1-1.
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例5と同じ臭化プロピルマグネシウムを用いた。しかし、実施例1-1と異なり、使用する器具及び環境に対してα線管理を行わずに、蒸留回数は累計で3回であった。それ以外は、実施例1-1と同様にして、モノプロピル錫オキシドを製造した。 <Comparative Example 5-2>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same propylmagnesium bromide as in Example 5 was used. However, unlike Example 1-1, the total number of distillations was 3 without performing α-ray control for the equipment and environment used. Except for this, monopropyl tin oxide was produced in the same manner as in Example 1-1.
〔式(1-6)のモノペンチル錫オキシド(有機錫オキシド化合物)の実施例・比較例〕
<実施例6>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、臭化ペンチルマグネシウムを用いた。蒸留回数は累計で4回であった。それ以外は、実施例1-1と同様にして、モノペンチル錫オキシドを製造した。 [Examples / Comparative Examples of Monopentyl Tin Oxide (Organic Tin Oxide Compound) of Formula (1-6)]
<Example 6>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, pentylmagnesium bromide was used. The total number of distillations was four. Except for this, monopentyl tin oxide was produced in the same manner as in Example 1-1.
<実施例6>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、臭化ペンチルマグネシウムを用いた。蒸留回数は累計で4回であった。それ以外は、実施例1-1と同様にして、モノペンチル錫オキシドを製造した。 [Examples / Comparative Examples of Monopentyl Tin Oxide (Organic Tin Oxide Compound) of Formula (1-6)]
<Example 6>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, pentylmagnesium bromide was used. The total number of distillations was four. Except for this, monopentyl tin oxide was produced in the same manner as in Example 1-1.
<比較例6-1>
出発原料として、比較例1-1と同じ市販品のα線放出量が0.5cph/cm2である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例6と同じ臭化ペンチルマグネシウムを用いた。それ以外は、実施例1-1と同様にして、モノペンチル錫オキシドを製造した。 <Comparative Example 6-1>
As a starting material, granular metallic tin having an α-ray emission amount of 0.5 cf / cm 2 , which is the same commercially available product as in Comparative Example 1-1, was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same pentyl magnesium bromide as in Example 6 was used. Except for this, monopentyl tin oxide was produced in the same manner as in Example 1-1.
出発原料として、比較例1-1と同じ市販品のα線放出量が0.5cph/cm2である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例6と同じ臭化ペンチルマグネシウムを用いた。それ以外は、実施例1-1と同様にして、モノペンチル錫オキシドを製造した。 <Comparative Example 6-1>
As a starting material, granular metallic tin having an α-ray emission amount of 0.5 cf / cm 2 , which is the same commercially available product as in Comparative Example 1-1, was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same pentyl magnesium bromide as in Example 6 was used. Except for this, monopentyl tin oxide was produced in the same manner as in Example 1-1.
<比較例6-2>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例6と同じ臭化ペンチルマグネシウムを用いた。しかし、実施例1-1と異なり、使用する器具及び環境に対してα線管理を行わずに、蒸留回数は累計で3回であった。それ以外は、実施例1-1と同様にして、モノペンチル錫オキシドを製造した。 <Comparative Example 6-2>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same pentyl magnesium bromide as in Example 6 was used. However, unlike Example 1-1, the total number of distillations was 3 without performing α-ray control for the equipment and environment used. Except for this, monopentyl tin oxide was produced in the same manner as in Example 1-1.
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例6と同じ臭化ペンチルマグネシウムを用いた。しかし、実施例1-1と異なり、使用する器具及び環境に対してα線管理を行わずに、蒸留回数は累計で3回であった。それ以外は、実施例1-1と同様にして、モノペンチル錫オキシドを製造した。 <Comparative Example 6-2>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same pentyl magnesium bromide as in Example 6 was used. However, unlike Example 1-1, the total number of distillations was 3 without performing α-ray control for the equipment and environment used. Except for this, monopentyl tin oxide was produced in the same manner as in Example 1-1.
〔式(1-7)のモノヘキシル錫オキシド(有機錫オキシド化合物)の実施例・比較例〕
<実施例7>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、臭化ヘキシルマグネシウムを用いた。蒸留回数は累計で4回であった。それ以外は、実施例1-1と同様にして、モノヘキシル錫オキシドを製造した。 [Examples / Comparative Examples of Monohexyl Tin Oxide (Organic Tin Oxide Compound) of Formula (1-7)]
<Example 7>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, hexylmagnesium bromide was used. The total number of distillations was four. Except for this, monohexyl tin oxide was produced in the same manner as in Example 1-1.
<実施例7>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、臭化ヘキシルマグネシウムを用いた。蒸留回数は累計で4回であった。それ以外は、実施例1-1と同様にして、モノヘキシル錫オキシドを製造した。 [Examples / Comparative Examples of Monohexyl Tin Oxide (Organic Tin Oxide Compound) of Formula (1-7)]
<Example 7>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, hexylmagnesium bromide was used. The total number of distillations was four. Except for this, monohexyl tin oxide was produced in the same manner as in Example 1-1.
<比較例7-1>
出発原料として、比較例1-1と同じ市販品のα線放出量が0.5cph/cm2である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例7と同じ臭化ヘキシルマグネシウムを用いた。それ以外は、実施例1-1と同様にして、モノヘキシル錫オキシドを製造した。 <Comparative Example 7-1>
As a starting material, granular metallic tin having an α-ray emission amount of 0.5 cf / cm 2 , which is the same commercially available product as in Comparative Example 1-1, was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same hexylmagnesium bromide as in Example 7 was used. Except for this, monohexyl tin oxide was produced in the same manner as in Example 1-1.
出発原料として、比較例1-1と同じ市販品のα線放出量が0.5cph/cm2である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例7と同じ臭化ヘキシルマグネシウムを用いた。それ以外は、実施例1-1と同様にして、モノヘキシル錫オキシドを製造した。 <Comparative Example 7-1>
As a starting material, granular metallic tin having an α-ray emission amount of 0.5 cf / cm 2 , which is the same commercially available product as in Comparative Example 1-1, was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same hexylmagnesium bromide as in Example 7 was used. Except for this, monohexyl tin oxide was produced in the same manner as in Example 1-1.
<比較例7-2>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例7と同じ臭化ヘキシルマグネシウムを用いた。しかし、実施例1-1と異なり、使用する器具及び環境に対してα線管理を行わずに、蒸留回数は累計で3回であった。それ以外は、実施例1-1と同様にして、モノヘキシル錫オキシドを製造した。 <Comparative Example 7-2>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same hexylmagnesium bromide as in Example 7 was used. However, unlike Example 1-1, the total number of distillations was 3 without performing α-ray control for the equipment and environment used. Except for this, monohexyl tin oxide was produced in the same manner as in Example 1-1.
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例7と同じ臭化ヘキシルマグネシウムを用いた。しかし、実施例1-1と異なり、使用する器具及び環境に対してα線管理を行わずに、蒸留回数は累計で3回であった。それ以外は、実施例1-1と同様にして、モノヘキシル錫オキシドを製造した。 <Comparative Example 7-2>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same hexylmagnesium bromide as in Example 7 was used. However, unlike Example 1-1, the total number of distillations was 3 without performing α-ray control for the equipment and environment used. Except for this, monohexyl tin oxide was produced in the same manner as in Example 1-1.
〔式(1-8)のモノヘプチル錫オキシド(有機錫オキシド化合物)の実施例・比較例〕
<実施例8>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、臭化ヘプチルマグネシウムを用いた。蒸留回数は累計で5回であった。それ以外は、実施例1-1と同様にして、モノヘプチル錫オキシドを製造した。 [Examples / Comparative Examples of Monoheptyl Tin Oxide (Organic Tin Oxide Compound) of Formula (1-8)]
<Example 8>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, heptylmagnesium bromide was used. The total number of distillations was 5. Except for this, monoheptyl tin oxide was produced in the same manner as in Example 1-1.
<実施例8>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、臭化ヘプチルマグネシウムを用いた。蒸留回数は累計で5回であった。それ以外は、実施例1-1と同様にして、モノヘプチル錫オキシドを製造した。 [Examples / Comparative Examples of Monoheptyl Tin Oxide (Organic Tin Oxide Compound) of Formula (1-8)]
<Example 8>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, heptylmagnesium bromide was used. The total number of distillations was 5. Except for this, monoheptyl tin oxide was produced in the same manner as in Example 1-1.
<比較例8-1>
出発原料として、比較例1-1と同じ市販品のα線放出量が0.5cph/cm2である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例8と同じ臭化ヘプチルマグネシウムを用いた。それ以外は、実施例1-1と同様にして、モノヘプチル錫オキシドを製造した。 <Comparative Example 8-1>
As a starting material, granular metallic tin having an α-ray emission amount of 0.5 cf / cm 2 , which is the same commercially available product as in Comparative Example 1-1, was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same heptylmagnesium bromide as in Example 8 was used. Except for this, monoheptyl tin oxide was produced in the same manner as in Example 1-1.
出発原料として、比較例1-1と同じ市販品のα線放出量が0.5cph/cm2である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例8と同じ臭化ヘプチルマグネシウムを用いた。それ以外は、実施例1-1と同様にして、モノヘプチル錫オキシドを製造した。 <Comparative Example 8-1>
As a starting material, granular metallic tin having an α-ray emission amount of 0.5 cf / cm 2 , which is the same commercially available product as in Comparative Example 1-1, was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same heptylmagnesium bromide as in Example 8 was used. Except for this, monoheptyl tin oxide was produced in the same manner as in Example 1-1.
<比較例8-2>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例8と同じ臭化ヘプチルマグネシウムを用いた。しかし、実施例1-1と異なり、使用する器具及び環境に対してα線管理を行わずに、蒸留回数は累計で3回であった。それ以外は、実施例1-1と同様にして、モノヘプチル錫オキシドを製造した。 <Comparative Example 8-2>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same heptylmagnesium bromide as in Example 8 was used. However, unlike Example 1-1, the total number of distillations was 3 without performing α-ray control for the equipment and environment used. Except for this, monoheptyl tin oxide was produced in the same manner as in Example 1-1.
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例8と同じ臭化ヘプチルマグネシウムを用いた。しかし、実施例1-1と異なり、使用する器具及び環境に対してα線管理を行わずに、蒸留回数は累計で3回であった。それ以外は、実施例1-1と同様にして、モノヘプチル錫オキシドを製造した。 <Comparative Example 8-2>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same heptylmagnesium bromide as in Example 8 was used. However, unlike Example 1-1, the total number of distillations was 3 without performing α-ray control for the equipment and environment used. Except for this, monoheptyl tin oxide was produced in the same manner as in Example 1-1.
〔式(1-9)のモノ-sec-ブチル錫オキシド(有機錫オキシド化合物)の実施例・比較例〕
<実施例9>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、臭化セコンダリブチルマグネシウムを用いた。蒸留回数は累計で4回であった。それ以外は、実施例1-1と同様にして、モノ-sec-ブチル錫オキシドを製造した。 [Examples / Comparative Examples of Mono-sec-Butyl Tin Oxide (Organic Tin Oxide Compound) of Formula (1-9)]
<Example 9>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the bromide secondalibutylmagnesium was used. The total number of distillations was four. Except for this, mono-sec-butyltin oxide was produced in the same manner as in Example 1-1.
<実施例9>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、臭化セコンダリブチルマグネシウムを用いた。蒸留回数は累計で4回であった。それ以外は、実施例1-1と同様にして、モノ-sec-ブチル錫オキシドを製造した。 [Examples / Comparative Examples of Mono-sec-Butyl Tin Oxide (Organic Tin Oxide Compound) of Formula (1-9)]
<Example 9>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the bromide secondalibutylmagnesium was used. The total number of distillations was four. Except for this, mono-sec-butyltin oxide was produced in the same manner as in Example 1-1.
<比較例9-1>
出発原料として、比較例1-1と同じ市販品のα線放出量が0.5cph/cm2である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例9と同じ臭化セコンダリブチルマグネシウムを用いた。それ以外は、実施例1-1と同様にして、モノ-sec-ブチル錫オキシドを製造した。 <Comparative Example 9-1>
As a starting material, granular metallic tin having an α-ray emission amount of 0.5 cf / cm 2 , which is the same commercially available product as in Comparative Example 1-1, was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same second bromide butylmagnesium as in Example 9 was used. Except for this, mono-sec-butyltin oxide was produced in the same manner as in Example 1-1.
出発原料として、比較例1-1と同じ市販品のα線放出量が0.5cph/cm2である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例9と同じ臭化セコンダリブチルマグネシウムを用いた。それ以外は、実施例1-1と同様にして、モノ-sec-ブチル錫オキシドを製造した。 <Comparative Example 9-1>
As a starting material, granular metallic tin having an α-ray emission amount of 0.5 cf / cm 2 , which is the same commercially available product as in Comparative Example 1-1, was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same second bromide butylmagnesium as in Example 9 was used. Except for this, mono-sec-butyltin oxide was produced in the same manner as in Example 1-1.
<比較例9-2>
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例9と同じ臭化セコンダリブチルマグネシウムを用いた。しかし、実施例1-1と異なり、使用する器具及び環境に対してα線管理を行わずに、蒸留回数は累計で3回であった。それ以外は、実施例1-1と同様にして、モノ-sec-ブチル錫オキシドを製造した。 <Comparative Example 9-2>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same second bromide butylmagnesium as in Example 9 was used. However, unlike Example 1-1, the total number of distillations was 3 without performing α-ray control for the equipment and environment used. Except for this, mono-sec-butyltin oxide was produced in the same manner as in Example 1-1.
出発原料として、実施例1-1と同じα線放出量が0.0005cph/cm2未満である粒状の金属錫を用いた。また実施例1-1で用いた塩化ブチルマグネシウムの代わりに、実施例9と同じ臭化セコンダリブチルマグネシウムを用いた。しかし、実施例1-1と異なり、使用する器具及び環境に対してα線管理を行わずに、蒸留回数は累計で3回であった。それ以外は、実施例1-1と同様にして、モノ-sec-ブチル錫オキシドを製造した。 <Comparative Example 9-2>
As a starting material, granular metallic tin having the same α-ray emission amount of less than 0.0005 cf / cm 2 as in Example 1-1 was used. Further, instead of the butylmagnesium chloride used in Example 1-1, the same second bromide butylmagnesium as in Example 9 was used. However, unlike Example 1-1, the total number of distillations was 3 without performing α-ray control for the equipment and environment used. Except for this, mono-sec-butyltin oxide was produced in the same manner as in Example 1-1.
実施例1-1~1-3、実施例2~9及び比較例1-1~9-2で得られた29種類の有機錫オキシド化合物のα線放出量を測定した。その結果を以下の表1に示す。表1には、有機錫化合物の種類と、出発原料の金属錫のα線放出量と、製造時のα線管理の実施又は不実施と、製造時の蒸留回数と、有機錫オキシド化合物のα線放出量を記載した。なお、製造時の蒸留回数は、累計した回数である。
The α-ray emission amount of 29 kinds of organic tin oxide compounds obtained in Examples 1-1 to 1-3, Examples 2 to 9 and Comparative Examples 1-1 to 9-2 was measured. The results are shown in Table 1 below. Table 1 shows the types of organotin compounds, the amount of α-ray emission of metallic tin as a starting material, the implementation or non-implementation of α-ray control during production, the number of distillations during production, and the α of organotin oxide compounds. The amount of ray emitted is described. The number of distillations at the time of manufacture is the cumulative number of times.
表1から明らかなように、比較例1-1、比較例2-1、比較例3-1、比較例4-1、比較例5-1、比較例6-1、比較例7-1、比較例8-1及び比較例9-1では、α線放出量が0.5cph/cm2である出発原料の金属錫からモノアルキル錫オキシドを製造したため、製造時にα線管理が行われたにもかかわらず、最終目的物質であるモノアルキル錫オキシドのα線放出量は0.013cph/cm2~0.024cph/cm2の範囲にあって、高かった。
また、比較例1-2、比較例2-2、比較例3-2、比較例4-2、比較例5-2、比較例6-2、比較例7-2、比較例8-2及び比較例9-2では、製造時にα線管理が行われなかったため、α線放出量が0.0005cph/cm2未満である出発原料の金属錫からモノアルキル錫オキシドを製造したにもかかわらず、最終目的物質であるモノアルキル錫オキシドのα線放出量は0.011cph/cm2~0.017cph/cm2の範囲にあって、高かった。 As is clear from Table 1, Comparative Example 1-1, Comparative Example 2-1 and Comparative Example 3-1, Comparative Example 4-1 and Comparative Example 5-1, Comparative Example 6-1 and Comparative Example 7-1, In Comparative Example 8-1 and Comparative Example 9-1, since monoalkyltin oxide was produced from metallic tin as a starting material having an α-ray emission amount of 0.5 cf / cm 2 , α-ray control was performed at the time of production. Nevertheless, the amount of α-ray emission of the final target substance, monoalkyltin oxide, was in the range of 0.013 cf / cm 2 to 0.024 cf / cm 2 , which was high.
In addition, Comparative Example 1-2, Comparative Example 2-2, Comparative Example 3-2, Comparative Example 4-2, Comparative Example 5-2, Comparative Example 6-2, Comparative Example 7-2, Comparative Example 8-2 and In Comparative Example 9-2, since α-ray control was not performed at the time of production, even though monoalkyl tin oxide was produced from metallic tin as a starting material having an α-ray emission amount of less than 0.0005 cf / cm 2 . The amount of α-ray emission of the final target substance, monoalkyltin oxide, was in the range of 0.011 cf / cm 2 to 0.017 cf / cm 2 , which was high.
また、比較例1-2、比較例2-2、比較例3-2、比較例4-2、比較例5-2、比較例6-2、比較例7-2、比較例8-2及び比較例9-2では、製造時にα線管理が行われなかったため、α線放出量が0.0005cph/cm2未満である出発原料の金属錫からモノアルキル錫オキシドを製造したにもかかわらず、最終目的物質であるモノアルキル錫オキシドのα線放出量は0.011cph/cm2~0.017cph/cm2の範囲にあって、高かった。 As is clear from Table 1, Comparative Example 1-1, Comparative Example 2-1 and Comparative Example 3-1, Comparative Example 4-1 and Comparative Example 5-1, Comparative Example 6-1 and Comparative Example 7-1, In Comparative Example 8-1 and Comparative Example 9-1, since monoalkyltin oxide was produced from metallic tin as a starting material having an α-ray emission amount of 0.5 cf / cm 2 , α-ray control was performed at the time of production. Nevertheless, the amount of α-ray emission of the final target substance, monoalkyltin oxide, was in the range of 0.013 cf / cm 2 to 0.024 cf / cm 2 , which was high.
In addition, Comparative Example 1-2, Comparative Example 2-2, Comparative Example 3-2, Comparative Example 4-2, Comparative Example 5-2, Comparative Example 6-2, Comparative Example 7-2, Comparative Example 8-2 and In Comparative Example 9-2, since α-ray control was not performed at the time of production, even though monoalkyl tin oxide was produced from metallic tin as a starting material having an α-ray emission amount of less than 0.0005 cf / cm 2 . The amount of α-ray emission of the final target substance, monoalkyltin oxide, was in the range of 0.011 cf / cm 2 to 0.017 cf / cm 2 , which was high.
これに対して、実施例1-1~実施例9では、α線放出量が0.01cph/cm2未満である出発原料の金属錫からモノアルキル錫オキシドを製造し、かつ製造時にα線管理が行われたため、最終目的物質であるモノアルキル錫オキシドのα線放出量は0.0020cph/cm2以下の範囲にあって、低かった。
On the other hand, in Examples 1-1 to 9, monoalkyltin oxide is produced from metallic tin as a starting material having an α-ray emission amount of less than 0.01 cf / cm 2 , and α-ray control is performed at the time of production. The amount of α-ray emission of monoalkyltin oxide, which is the final target substance, was in the range of 0.0020 cf / cm 2 or less, which was low.
〔式(1-1)~式(1-9)の有機錫オキシド化合物からのEUVレジスト膜形成用液組成物の製造例〕
<試験例1~試験例9、比較試験例1-1~比較試験例9-2>
上記実施例1-1、実施例2~9及び比較例1-1~比較例9-2で得られた27種類の有機錫オキシド化合物を用いて、試験例1~試験例9、比較試験例1-1~比較試験例9-2の27種類のEUVレジスト膜形成用液組成物を製造した。
具体的には、器具と環境に対してα線管理がなされ、かつ密閉した空間で、27種類の有機錫化合物を分子量から換算して、それぞれ0.002モル秤量し、各有機錫化合物を29.8mLのメチルエチルケトンに添加し、24時間撹拌して混合し、有機錫化合物を溶解させた。次いで得られた混合物を3000rpmで30分間遠心分離することにより、試験例1~9、比較試験例1-1~比較試験例9-2の27種類のEUVレジスト膜形成用液組成物を製造した。上記例で使用した有機錫オキシド化合物の種類とそのα線放出量と液組成物中の錫の含有割合を以下の表2に示す。 [Example of Production of Liquid Composition for Forming EUV Resist Film from Organic Tin Oxide Compounds of Formulas (1-1) to (1-9)]
<Test Example 1 to Test Example 9, Comparative Test Example 1-1 to Comparative Test Example 9-2>
Using the 27 kinds of organotin oxide compounds obtained in Examples 1-1, Examples 2 to 9 and Comparative Examples 1-1 to 9-2, Test Examples 1 to 9 and Comparative Test Examples. Twenty-seven kinds of EUV resist film forming liquid compositions of 1-1 to Comparative Test Example 9-2 were produced.
Specifically, in an airtight space where α-ray control is applied to the equipment and the environment, 27 kinds of organic tin compounds are converted from the molecular weight and weighed 0.002 mol each, and each organic tin compound is 29. It was added to 0.8 mL of methyl ethyl ketone and stirred for 24 hours to mix to dissolve the organic tin compound. Next, the obtained mixture was centrifuged at 3000 rpm for 30 minutes to produce 27 kinds of EUV resist film forming liquid compositions of Test Examples 1 to 9 and Comparative Test Examples 1-1 to 9-2. .. Table 2 below shows the types of the organic tin oxide compound used in the above example, the amount of α rays emitted thereof, and the content ratio of tin in the liquid composition.
<試験例1~試験例9、比較試験例1-1~比較試験例9-2>
上記実施例1-1、実施例2~9及び比較例1-1~比較例9-2で得られた27種類の有機錫オキシド化合物を用いて、試験例1~試験例9、比較試験例1-1~比較試験例9-2の27種類のEUVレジスト膜形成用液組成物を製造した。
具体的には、器具と環境に対してα線管理がなされ、かつ密閉した空間で、27種類の有機錫化合物を分子量から換算して、それぞれ0.002モル秤量し、各有機錫化合物を29.8mLのメチルエチルケトンに添加し、24時間撹拌して混合し、有機錫化合物を溶解させた。次いで得られた混合物を3000rpmで30分間遠心分離することにより、試験例1~9、比較試験例1-1~比較試験例9-2の27種類のEUVレジスト膜形成用液組成物を製造した。上記例で使用した有機錫オキシド化合物の種類とそのα線放出量と液組成物中の錫の含有割合を以下の表2に示す。 [Example of Production of Liquid Composition for Forming EUV Resist Film from Organic Tin Oxide Compounds of Formulas (1-1) to (1-9)]
<Test Example 1 to Test Example 9, Comparative Test Example 1-1 to Comparative Test Example 9-2>
Using the 27 kinds of organotin oxide compounds obtained in Examples 1-1, Examples 2 to 9 and Comparative Examples 1-1 to 9-2, Test Examples 1 to 9 and Comparative Test Examples. Twenty-seven kinds of EUV resist film forming liquid compositions of 1-1 to Comparative Test Example 9-2 were produced.
Specifically, in an airtight space where α-ray control is applied to the equipment and the environment, 27 kinds of organic tin compounds are converted from the molecular weight and weighed 0.002 mol each, and each organic tin compound is 29. It was added to 0.8 mL of methyl ethyl ketone and stirred for 24 hours to mix to dissolve the organic tin compound. Next, the obtained mixture was centrifuged at 3000 rpm for 30 minutes to produce 27 kinds of EUV resist film forming liquid compositions of Test Examples 1 to 9 and Comparative Test Examples 1-1 to 9-2. .. Table 2 below shows the types of the organic tin oxide compound used in the above example, the amount of α rays emitted thereof, and the content ratio of tin in the liquid composition.
〔式(1-1)のモノブチル錫オキシド(有機錫オキシド化合物)からのクラスター型錫化合物の製造例〕
<試験例10-1~試験例10-2、比較試験例10-1~比較試験例11-2>
上述した実施例1-1、比較例1-1、1-2で得られた3種類のモノブチル錫オキシドから、液組成物中の錫の含有割合がそれぞれ異なる試験例10-1~試験例10-2、比較試験例10-1~比較試験例11-2の6種類のクラスター型又はかご型の錫化合物を含むEUVレジスト膜形成用液組成物を製造した。具体的には、上記3種類のモノブチル錫オキシドをそれぞれ25g秤量した。このモノブチル錫オキシドと、酸として、p-トルエンスルホン酸5.8gとを、Dean-Stark装置を接続した容積500mLの丸底フラスコに入れて、混合した。混合物をトルエン還流下で48時間反応させた後、未反応生成物を10μm~16μmのろ過精度のフィルタを用いて除去した。その後、2-プロパノールを溶媒として用いて、テトラブチルアンモニウムヒドロキシドを溶解させ、-15℃の温度で溶解物を結晶化させた。最後に結晶化物にTHFを加え、減圧下で溶媒を除去し、3種類のモノブチル錫オキシドからなる化合物を生成した。 [Example of Production of Cluster-Type Tin Compound from Monobutyltin Oxide (Organic Tin Oxide Compound) of Formula (1-1)]
<Test Example 10-1 to Test Example 10-2, Comparative Test Example 10-1 to Comparative Test Example 11-2>
From the three types of monobutyltin oxides obtained in Examples 1-1 and Comparative Examples 1-1 and 1-2 described above, Test Examples 10-1 to 10 have different tin content ratios in the liquid composition. -2, An EUV resist film-forming liquid composition containing 6 types of cluster-type or cage-type tin compounds of Comparative Test Examples 10-1 to 11-2 was produced. Specifically, 25 g of each of the above three types of monobutyltin oxides was weighed. This monobutyltin oxide and 5.8 g of p-toluenesulfonic acid as an acid were placed in a round bottom flask having a volume of 500 mL to which a Dean-Stark apparatus was connected and mixed. After reacting the mixture under reflux with toluene for 48 hours, the unreacted product was removed using a filter with a filtration accuracy of 10 μm to 16 μm. Then, 2-propanol was used as a solvent to dissolve the tetrabutylammonium hydroxide, and the solution was crystallized at a temperature of −15 ° C. Finally, THF was added to the crystallized product and the solvent was removed under reduced pressure to produce a compound consisting of three types of monobutyltin oxides.
<試験例10-1~試験例10-2、比較試験例10-1~比較試験例11-2>
上述した実施例1-1、比較例1-1、1-2で得られた3種類のモノブチル錫オキシドから、液組成物中の錫の含有割合がそれぞれ異なる試験例10-1~試験例10-2、比較試験例10-1~比較試験例11-2の6種類のクラスター型又はかご型の錫化合物を含むEUVレジスト膜形成用液組成物を製造した。具体的には、上記3種類のモノブチル錫オキシドをそれぞれ25g秤量した。このモノブチル錫オキシドと、酸として、p-トルエンスルホン酸5.8gとを、Dean-Stark装置を接続した容積500mLの丸底フラスコに入れて、混合した。混合物をトルエン還流下で48時間反応させた後、未反応生成物を10μm~16μmのろ過精度のフィルタを用いて除去した。その後、2-プロパノールを溶媒として用いて、テトラブチルアンモニウムヒドロキシドを溶解させ、-15℃の温度で溶解物を結晶化させた。最後に結晶化物にTHFを加え、減圧下で溶媒を除去し、3種類のモノブチル錫オキシドからなる化合物を生成した。 [Example of Production of Cluster-Type Tin Compound from Monobutyltin Oxide (Organic Tin Oxide Compound) of Formula (1-1)]
<Test Example 10-1 to Test Example 10-2, Comparative Test Example 10-1 to Comparative Test Example 11-2>
From the three types of monobutyltin oxides obtained in Examples 1-1 and Comparative Examples 1-1 and 1-2 described above, Test Examples 10-1 to 10 have different tin content ratios in the liquid composition. -2, An EUV resist film-forming liquid composition containing 6 types of cluster-type or cage-type tin compounds of Comparative Test Examples 10-1 to 11-2 was produced. Specifically, 25 g of each of the above three types of monobutyltin oxides was weighed. This monobutyltin oxide and 5.8 g of p-toluenesulfonic acid as an acid were placed in a round bottom flask having a volume of 500 mL to which a Dean-Stark apparatus was connected and mixed. After reacting the mixture under reflux with toluene for 48 hours, the unreacted product was removed using a filter with a filtration accuracy of 10 μm to 16 μm. Then, 2-propanol was used as a solvent to dissolve the tetrabutylammonium hydroxide, and the solution was crystallized at a temperature of −15 ° C. Finally, THF was added to the crystallized product and the solvent was removed under reduced pressure to produce a compound consisting of three types of monobutyltin oxides.
これらの化合物をナノ粒子解析装置(HORIBA社製、nanoPartica SZ-100V2)により、前駆体溶液の動的光散乱(DLS)分析を行った。その結果、上記化合物は約2nmの平均直径を有する粒子の単峰性分布と一致し、12量体のブチル錫ヒドロオキシドオキシド多原子カチオンについて報告された直径(Eychenne-Baron et al.,Organometallics,19,1940-1949(2000))と殆ど一致した構造([(BuSn)12O14(OH)6](p-CH3C6H4SO3)2)を取ることを確認した。即ち、12量体のクラスター型又はかご型の錫化合物が合成されたことを確認した。
These compounds were subjected to dynamic light scattering (DLS) analysis of the precursor solution using a nanoparticle analyzer (nanoPartica SZ-100V2 manufactured by HORIBA). As a result, the above compounds were consistent with the monomodal distribution of particles with an average diameter of about 2 nm, and the diameter reported for the 12-mer butyltin hydrooxide oxide polyatomic cation (Eychenne-Baron et al., Organometallics, It was confirmed that the structure ([(BuSn) 12 O 14 (OH) 6 ] (p-CH 3 C 6 H 4 SO 3 ) 2 ) was almost the same as that of 19,1940-1949 (2000)). That is, it was confirmed that a 12-mer cluster-type or cage-type tin compound was synthesized.
この合成された12量体のクラスター型又はかご型の錫化合物を用いてEUVレジスト膜形成用液組成物を調製した。具体的には、この液組成物に錫含有割合が0.05質量%以上24質量%以下の範囲に含まれるように上記クラスター型又はかご型の錫化合物を秤量し、この錫化合物を29.8mLのメチルエチルケトンに溶解させ、閉鎖された空間で、24時間撹拌し、不溶性の固体を0.45μmのろ過精度のシリンジフィルタで除去することにより、液組成物中の錫の含有割合がそれぞれ異なる試験例10-1~試験例10-2、比較試験例10-1~比較試験例11-1の6種類のEUVレジスト膜形成用液組成物を製造した。上記例で使用した有機錫オキシド化合物の種類とそのα線放出量と液組成物中の錫の含有割合を以下の表3に示す。
A liquid composition for forming an EUV resist film was prepared using this synthesized 12-mer cluster-type or cage-type tin compound. Specifically, the above-mentioned cluster type or cage type tin compound is weighed so that the tin content ratio is contained in the range of 0.05% by mass or more and 24% by mass or less in this liquid composition, and the tin compound is subjected to 29. Tests with different tin content in liquid compositions by dissolving in 8 mL of methyl ethyl ketone, stirring in a closed space for 24 hours, and removing insoluble solids with a 0.45 μm filtration precision syringe filter. Six kinds of EUV resist film forming liquid compositions of Example 10-1 to Test Example 10-2 and Comparative Test Example 10-1 to Comparative Test Example 11-1 were produced. The types of the organic tin oxide compound used in the above example, the amount of α rays emitted thereof, and the content ratio of tin in the liquid composition are shown in Table 3 below.
〔四塩化錫とリチウムジメチルアミドからのt-ブチル錫トリブトキシドの製造例〕
図5に、低α線放出量の四塩化錫から低α線放出量のアルキル錫トリアルコキシドを得るまでの製造フロー図を示す。
<実施例10-1>
四塩化錫とリチウムジメチルアミドから有機錫トリアルコキシド化合物であるt-ブチル錫トリブトキシドを合成した。この実施例10では、t-ブチル錫トリブトキシドを得るために、α線放出量が0.0005cph/cm2未満である四塩化錫(SnCl4)を用いた。 [Production example of t-butyl tin tributoxide from tin tetrachloride and lithium dimethylamide]
FIG. 5 shows a production flow chart from tin tetrachloride having a low α-ray emission amount to obtaining an alkyl tin trialkoxide having a low α-ray emission amount.
<Example 10-1>
The organic tin trialkoxide compound t-butyl tin tributoxide was synthesized from tin tetrachloride and lithium dimethylamide. In this Example 10, tin tetrachloride (SnCl 4 ) having an α-ray emission amount of less than 0.0005 cf / cm 2 was used in order to obtain t-butyl tin tributoxide.
図5に、低α線放出量の四塩化錫から低α線放出量のアルキル錫トリアルコキシドを得るまでの製造フロー図を示す。
<実施例10-1>
四塩化錫とリチウムジメチルアミドから有機錫トリアルコキシド化合物であるt-ブチル錫トリブトキシドを合成した。この実施例10では、t-ブチル錫トリブトキシドを得るために、α線放出量が0.0005cph/cm2未満である四塩化錫(SnCl4)を用いた。 [Production example of t-butyl tin tributoxide from tin tetrachloride and lithium dimethylamide]
FIG. 5 shows a production flow chart from tin tetrachloride having a low α-ray emission amount to obtaining an alkyl tin trialkoxide having a low α-ray emission amount.
<Example 10-1>
The organic tin trialkoxide compound t-butyl tin tributoxide was synthesized from tin tetrachloride and lithium dimethylamide. In this Example 10, tin tetrachloride (SnCl 4 ) having an α-ray emission amount of less than 0.0005 cf / cm 2 was used in order to obtain t-butyl tin tributoxide.
具体的には、最初に、アルゴン雰囲気で満たされたグローブボックス内で、リチウムジメチルアミド(Sigma-Aldrich社製)と、低α線処理を行いα線放出量が0.0005cph/cm2未満である四塩化錫(SnCl4)を用いて、テトラキス錫ジメチルアミドを合成した。この反応は、以下の式(22)に示される。詳細な合成方法は、例えば、Journal of the Chemical Society,1965,p.1944に記載されている。
Specifically, first, in a glove box filled with an argon atmosphere, lithium dimethylamide (manufactured by Sigma-Aldrich) and low α-ray treatment were performed, and the amount of α-ray emission was less than 0.0005 cph / cm 2 . Tetrakis tin dimethylamide was synthesized using a certain tin tetrachloride (SnCl 4 ). This reaction is represented by the following formula (22). Detailed synthesis methods are described, for example, in Journal of the Chemical Society, 1965, p. 1944.
次いで、合成されたテトラキス錫ジメチルアミドを用いて、t-ブチル錫トリブトキシドの合成に必要な、上述した式(9-2)に示されるt-ブチル錫トリメチルアミドの合成を行った。この反応は、以下の式(23)に示される。
出発物質の反応性が高いため、アルゴン雰囲気で満たされたグローブボックス中で反応を行った。合成されたテトラキス錫ジメチルアミドをTHF中のグリニャール試薬であるt-ブチルマグネシウムクロリド(式(16)参照。)を用いて精製した後に、蒸留を行うことで、目的物であるt-ブチル錫トリメチルアミドを選択的に収集した。本実施例におけるt-ブチル錫トリメチルアミドの場合には、0.5mmHgの圧力下、60℃で保持して蒸留操作を行い、最初の留分は分取せず、中間の留分のみを分取した。収率は58%であった。 Then, using the synthesized tetrakis tin dimethylamide, the t-butyl tin trimethyl amide represented by the above formula (9-2) required for the synthesis of t-butyl tin tributoxide was synthesized. This reaction is represented by the following formula (23).
Due to the high reactivity of the starting material, the reaction was carried out in a glove box filled with an argon atmosphere. The synthesized tetrakis tin dimethylamide is purified using t-butylmagnesium chloride (see formula (16)), which is a Grignard reagent in THF, and then distilled to obtain the desired t-butyltin trimethyl. Amides were selectively collected. In the case of t-butyltin trimethylamide in this example, the distillation operation was carried out by holding at 60 ° C. under a pressure of 0.5 mmHg, and the first fraction was not separated and only the intermediate fraction was separated. I took it. The yield was 58%.
出発物質の反応性が高いため、アルゴン雰囲気で満たされたグローブボックス中で反応を行った。合成されたテトラキス錫ジメチルアミドをTHF中のグリニャール試薬であるt-ブチルマグネシウムクロリド(式(16)参照。)を用いて精製した後に、蒸留を行うことで、目的物であるt-ブチル錫トリメチルアミドを選択的に収集した。本実施例におけるt-ブチル錫トリメチルアミドの場合には、0.5mmHgの圧力下、60℃で保持して蒸留操作を行い、最初の留分は分取せず、中間の留分のみを分取した。収率は58%であった。 Then, using the synthesized tetrakis tin dimethylamide, the t-butyl tin trimethyl amide represented by the above formula (9-2) required for the synthesis of t-butyl tin tributoxide was synthesized. This reaction is represented by the following formula (23).
Due to the high reactivity of the starting material, the reaction was carried out in a glove box filled with an argon atmosphere. The synthesized tetrakis tin dimethylamide is purified using t-butylmagnesium chloride (see formula (16)), which is a Grignard reagent in THF, and then distilled to obtain the desired t-butyltin trimethyl. Amides were selectively collected. In the case of t-butyltin trimethylamide in this example, the distillation operation was carried out by holding at 60 ° C. under a pressure of 0.5 mmHg, and the first fraction was not separated and only the intermediate fraction was separated. I took it. The yield was 58%.
次に、精製したt-ブチル錫トリメチルアミドをアルコールで置換反応させることで、t-ブチル錫トリブトキシドを合成した。この反応は、以下の式(24)に示される。
アルゴンで不活性雰囲気にしたグローブボックス内で、精製したt-ブチル錫トリメチルアミドに脱水処理された1-ブタノールをゆっくり投入し、-5℃の氷浴中で、置換反応させた。反応時に弁を開放してアルコールから発生するガスによる圧力を逃した。反応終了後、室温に戻し、溶媒を揮発させた後に、生成されたt-ブチル錫トリブトキシドを、0.5mmHgの圧力下、90℃で保持して蒸留操作を行って、回収した。t-ブチル錫トリブトキシドのα線放出量が0.01cph/cm2以下になるまで、蒸留を複数回繰り返す。
図5は、低α線放出量の四塩化錫から低α線放出量のアルキル錫トリアルコキシドを得るまでを示す製造フロー図であるが、具体的には、図5に示すように、最初の蒸留で精製されたt-ブチル錫トリブトキシドを清浄なSiウエハ表面に大気中で塗布し焼成した後、加水分解し、この加水分解物のα線放出量を測定した。このα線放出量が0.01cph/cm2を超えている場合には、蒸留を繰り返した。
実施例10-1では、最終の目的物質を合成するまでの間、α線源の混入を防ぐために、かつα線放出量の増加を防ぐために、α線管理を行った。式(22)、式(23)及び式(24)の反応経路において、蒸留回数は累計でそれぞれ5回であった。 Next, t-butyl tin tributoxide was synthesized by substituting the purified t-butyl tin trimethylamide with an alcohol. This reaction is represented by the following formula (24).
The dehydrated 1-butanol was slowly added to the purified t-butyltin trimethylamide in a glove box in which the atmosphere was made inert with argon, and the substitution reaction was carried out in an ice bath at −5 ° C. During the reaction, the valve was opened to relieve the pressure of the gas generated from the alcohol. After completion of the reaction, the temperature was returned to room temperature to volatilize the solvent, and then the produced t-butyl tin tributoxide was maintained at 90 ° C. under a pressure of 0.5 mmHg and recovered by distillation. Distillation is repeated multiple times until the α-ray emission of t-butyltin tributoxide is 0.01 cph / cm 2 or less.
FIG. 5 is a production flow chart showing the process of obtaining an alkyl tin trialkoxide having a low α-ray emission amount from tin tetrachloride having a low α-ray emission amount. Specifically, as shown in FIG. 5, the first production flow diagram is shown. Distillate-purified t-butyltin tributoxide was applied to a clean Si wafer surface in the air, fired, and then hydrolyzed, and the amount of α-ray emission of this hydrolyzate was measured. When the amount of α-ray emission exceeded 0.01 cph / cm 2 , distillation was repeated.
In Example 10-1, α-ray control was performed until the final target substance was synthesized, in order to prevent contamination with an α-ray source and to prevent an increase in the amount of α-ray emission. In the reaction pathways of the formula (22), the formula (23) and the formula (24), the total number of distillations was 5 times each.
アルゴンで不活性雰囲気にしたグローブボックス内で、精製したt-ブチル錫トリメチルアミドに脱水処理された1-ブタノールをゆっくり投入し、-5℃の氷浴中で、置換反応させた。反応時に弁を開放してアルコールから発生するガスによる圧力を逃した。反応終了後、室温に戻し、溶媒を揮発させた後に、生成されたt-ブチル錫トリブトキシドを、0.5mmHgの圧力下、90℃で保持して蒸留操作を行って、回収した。t-ブチル錫トリブトキシドのα線放出量が0.01cph/cm2以下になるまで、蒸留を複数回繰り返す。
図5は、低α線放出量の四塩化錫から低α線放出量のアルキル錫トリアルコキシドを得るまでを示す製造フロー図であるが、具体的には、図5に示すように、最初の蒸留で精製されたt-ブチル錫トリブトキシドを清浄なSiウエハ表面に大気中で塗布し焼成した後、加水分解し、この加水分解物のα線放出量を測定した。このα線放出量が0.01cph/cm2を超えている場合には、蒸留を繰り返した。
実施例10-1では、最終の目的物質を合成するまでの間、α線源の混入を防ぐために、かつα線放出量の増加を防ぐために、α線管理を行った。式(22)、式(23)及び式(24)の反応経路において、蒸留回数は累計でそれぞれ5回であった。 Next, t-butyl tin tributoxide was synthesized by substituting the purified t-butyl tin trimethylamide with an alcohol. This reaction is represented by the following formula (24).
The dehydrated 1-butanol was slowly added to the purified t-butyltin trimethylamide in a glove box in which the atmosphere was made inert with argon, and the substitution reaction was carried out in an ice bath at −5 ° C. During the reaction, the valve was opened to relieve the pressure of the gas generated from the alcohol. After completion of the reaction, the temperature was returned to room temperature to volatilize the solvent, and then the produced t-butyl tin tributoxide was maintained at 90 ° C. under a pressure of 0.5 mmHg and recovered by distillation. Distillation is repeated multiple times until the α-ray emission of t-butyltin tributoxide is 0.01 cph / cm 2 or less.
FIG. 5 is a production flow chart showing the process of obtaining an alkyl tin trialkoxide having a low α-ray emission amount from tin tetrachloride having a low α-ray emission amount. Specifically, as shown in FIG. 5, the first production flow diagram is shown. Distillate-purified t-butyltin tributoxide was applied to a clean Si wafer surface in the air, fired, and then hydrolyzed, and the amount of α-ray emission of this hydrolyzate was measured. When the amount of α-ray emission exceeded 0.01 cph / cm 2 , distillation was repeated.
In Example 10-1, α-ray control was performed until the final target substance was synthesized, in order to prevent contamination with an α-ray source and to prevent an increase in the amount of α-ray emission. In the reaction pathways of the formula (22), the formula (23) and the formula (24), the total number of distillations was 5 times each.
<実施例10-2>
t-ブチル錫トリメチルアミドを合成するための出発原料として、α線放出量が0.002cph/cm2である四塩化錫(SnCl4)を用いた。それ以外は、実施例10-1と同様にして、t-ブチル錫トリブトキシドを得た。 <Example 10-2>
As a starting material for synthesizing t-butyltin trimethylamide, tin tetrachloride (SnCl 4 ) having an α-ray emission amount of 0.002 cf / cm 2 was used. Other than that, t-butyl tin tributoxide was obtained in the same manner as in Example 10-1.
t-ブチル錫トリメチルアミドを合成するための出発原料として、α線放出量が0.002cph/cm2である四塩化錫(SnCl4)を用いた。それ以外は、実施例10-1と同様にして、t-ブチル錫トリブトキシドを得た。 <Example 10-2>
As a starting material for synthesizing t-butyltin trimethylamide, tin tetrachloride (SnCl 4 ) having an α-ray emission amount of 0.002 cf / cm 2 was used. Other than that, t-butyl tin tributoxide was obtained in the same manner as in Example 10-1.
<比較例10-1>
t-ブチル錫トリメチルアミドを合成するための出発原料として、α線放出量が0.5cph/cm2である四塩化錫(SnCl4)を用いた。それ以外は、実施例10-1と同様にして、t-ブチル錫トリブトキシドを得た。 <Comparative Example 10-1>
As a starting material for synthesizing t-butyltin trimethylamide, tin tetrachloride (SnCl 4 ) having an α-ray emission amount of 0.5 cf / cm 2 was used. Other than that, t-butyl tin tributoxide was obtained in the same manner as in Example 10-1.
t-ブチル錫トリメチルアミドを合成するための出発原料として、α線放出量が0.5cph/cm2である四塩化錫(SnCl4)を用いた。それ以外は、実施例10-1と同様にして、t-ブチル錫トリブトキシドを得た。 <Comparative Example 10-1>
As a starting material for synthesizing t-butyltin trimethylamide, tin tetrachloride (SnCl 4 ) having an α-ray emission amount of 0.5 cf / cm 2 was used. Other than that, t-butyl tin tributoxide was obtained in the same manner as in Example 10-1.
<比較例10-2>
t-ブチル錫トリメチルアミドを合成するための出発原料として、α線放出量が0.0005cph/cm2である四塩化錫(SnCl4)を用いた。しかし、実施例10-1と異なり、α線源の混入を防ぐための、またα線放出量の増加を防ぐためのα線管理を行わなかった。蒸留回数は累計で3回であった。それ以外は、実施例10-1と同様にして、t-ブチル錫トリブトキシドを得た。 <Comparative Example 10-2>
As a starting material for synthesizing t-butyltin trimethylamide, tin tetrachloride (SnCl 4 ) having an α-ray emission amount of 0.0005 cf / cm 2 was used. However, unlike Example 10-1, α-ray control was not performed to prevent contamination of the α-ray source and to prevent an increase in the amount of α-ray emission. The total number of distillations was three. Other than that, t-butyl tin tributoxide was obtained in the same manner as in Example 10-1.
t-ブチル錫トリメチルアミドを合成するための出発原料として、α線放出量が0.0005cph/cm2である四塩化錫(SnCl4)を用いた。しかし、実施例10-1と異なり、α線源の混入を防ぐための、またα線放出量の増加を防ぐためのα線管理を行わなかった。蒸留回数は累計で3回であった。それ以外は、実施例10-1と同様にして、t-ブチル錫トリブトキシドを得た。 <Comparative Example 10-2>
As a starting material for synthesizing t-butyltin trimethylamide, tin tetrachloride (SnCl 4 ) having an α-ray emission amount of 0.0005 cf / cm 2 was used. However, unlike Example 10-1, α-ray control was not performed to prevent contamination of the α-ray source and to prevent an increase in the amount of α-ray emission. The total number of distillations was three. Other than that, t-butyl tin tributoxide was obtained in the same manner as in Example 10-1.
実施例10-1、実施例10-2、比較例10-1及び比較例10-2で得られた4種類のt-ブチル錫トリブトキシドのα線放出量を測定した。その結果を以下の表4に示す。表4には、有機錫化合物の種類と、出発原料の四塩化錫(SnCl4)のα線放出量と、製造時のα線管理の実施又は不実施と、製造時の蒸留回数と、t-ブチル錫トリブトキシドのα線放出量を記載した。
The α-ray emission amounts of the four types of t-butyl tin tributoxide obtained in Example 10-1, Example 10-2, Comparative Example 10-1 and Comparative Example 10-2 were measured. The results are shown in Table 4 below. Table 4 shows the types of organotin compounds, the amount of α-ray emission of tin (SnCl 4 ) as a starting material, the implementation or non-implementation of α-ray control during production, the number of distillations during production, and t. -The amount of α-ray emission of butyltin tributoxide is described.
表4から明らかなように、比較例10-1では、α線放出量が0.5cph/cm2である出発原料の四塩化錫からt-ブチル錫トリブトキシドを製造したため、製造時にα線管理が行われたにもかかわらず、最終目的物質であるt-ブチル錫トリブトキシドのα線放出量は0.012cph/cm2であって、高かった。
また、比較例10-2では、製造時にα線管理が行われなかったため、α線放出量が0.0005cph/cm2未満である出発原料の四塩化錫からモノアルキル錫オキシドを製造したにもかかわらず、最終目的物質であるt-ブチル錫トリブトキシドのα線放出量は0.011cph/cm2であって、高かった。 As is clear from Table 4, in Comparative Example 10-1, since t-butyl tin tributoxide was produced from the starting material tin tetrachloride having an α-ray emission amount of 0.5 cf / cm 2 , α-ray control was performed during production. However, the amount of α-ray emission of t-butyltin tributoxide, which is the final target substance, was 0.012 cf / cm 2 , which was high.
Further, in Comparative Example 10-2, since α-ray control was not performed at the time of production, monoalkyltin oxide was produced from tin tetrachloride as a starting material having an α-ray emission amount of less than 0.0005 cf / cm 2 . Regardless, the α-ray emission amount of t-butyltin tributoxide, which is the final target substance, was 0.011 cf / cm 2 , which was high.
また、比較例10-2では、製造時にα線管理が行われなかったため、α線放出量が0.0005cph/cm2未満である出発原料の四塩化錫からモノアルキル錫オキシドを製造したにもかかわらず、最終目的物質であるt-ブチル錫トリブトキシドのα線放出量は0.011cph/cm2であって、高かった。 As is clear from Table 4, in Comparative Example 10-1, since t-butyl tin tributoxide was produced from the starting material tin tetrachloride having an α-ray emission amount of 0.5 cf / cm 2 , α-ray control was performed during production. However, the amount of α-ray emission of t-butyltin tributoxide, which is the final target substance, was 0.012 cf / cm 2 , which was high.
Further, in Comparative Example 10-2, since α-ray control was not performed at the time of production, monoalkyltin oxide was produced from tin tetrachloride as a starting material having an α-ray emission amount of less than 0.0005 cf / cm 2 . Regardless, the α-ray emission amount of t-butyltin tributoxide, which is the final target substance, was 0.011 cf / cm 2 , which was high.
これに対して、実施例10-1及び実施例10-2では、α線放出量がそれぞれ0.0005cph/cm2未満及び0.002cph/cm2である出発原料の四塩化錫からt-ブチル錫トリブトキシドを製造し、かつ製造時にα線管理が行われたため、最終目的物質であるt-ブチル錫トリブトキシドのα線放出量は0.002cph/cm2以下の範囲にあって、低かった。
On the other hand, in Examples 10-1 and 10-2, tin tetrachloride to t-butyl as a starting material having α-ray emission amounts of less than 0.0005 cf / cm 2 and 0.002 cf / cm 2 , respectively. Since tin tributoxide was produced and α-ray control was performed at the time of production, the α-ray emission amount of t-butyl tin tributoxide, which is the final target substance, was in the range of 0.002 cf / cm 2 or less, which was low. ..
〔式(9)の有機錫トリアルコキシド化合物からのEUVレジスト膜形成用液組成物の製造例〕
実施例10-1、実施例10-2、比較例10-1及び比較例10-2で得られた4種類のt-ブチル錫トリブトキシド から、試験例11-1、試験例11-2、比較試験例12-1及び比較試験例12-2の4種類のEUVレジスト膜形成用液組成物を製造した。具体的には、液組成物の錫含有割合が0.05モル/Lになるように、4種類のt-ブチル錫トリブトキシドをそれぞれ秤量し、この錫化合物を29.8mLのメチルエチルケトンに溶解させ、閉鎖された空間で、24時間撹拌し、不溶性の固体を0.45μmのシリンジフィルタで除去することにより、試験例11-1~試験例11-2、比較試験例12-1及び比較試験例12-2の4種類のEUVレジスト膜形成用液組成物を製造した。上記例で使用した有機錫化合物の種類とそのα線放出量と液組成物中の錫の含有割合を以下の表5に示す。 [Example of Production of Liquid Composition for Forming EUV Resist Film from Organic Tin Trialkoxide Compound of Formula (9)]
From the four types of t-butyl tin tributoxide obtained in Example 10-1, Example 10-2, Comparative Example 10-1 and Comparative Example 10-2, Test Example 11-1, Test Example 11-2, Four kinds of EUV resist film forming liquid compositions of Comparative Test Example 12-1 and Comparative Test Example 12-2 were produced. Specifically, four types of t-butyl tin tributoxide are weighed so that the tin content of the liquid composition is 0.05 mol / L, and this tin compound is dissolved in 29.8 mL of methyl ethyl ketone. , Test Example 11-1 to Test Example 11-2, Comparative Test Example 12-1, and Comparative Test Example by stirring for 24 hours in a closed space and removing the insoluble solid with a 0.45 μm syringe filter. Four kinds of EUV resist film forming liquid compositions of 12-2 were produced. The types of the organic tin compound used in the above example, the amount of α rays emitted thereof, and the content ratio of tin in the liquid composition are shown in Table 5 below.
実施例10-1、実施例10-2、比較例10-1及び比較例10-2で得られた4種類のt-ブチル錫トリブトキシド から、試験例11-1、試験例11-2、比較試験例12-1及び比較試験例12-2の4種類のEUVレジスト膜形成用液組成物を製造した。具体的には、液組成物の錫含有割合が0.05モル/Lになるように、4種類のt-ブチル錫トリブトキシドをそれぞれ秤量し、この錫化合物を29.8mLのメチルエチルケトンに溶解させ、閉鎖された空間で、24時間撹拌し、不溶性の固体を0.45μmのシリンジフィルタで除去することにより、試験例11-1~試験例11-2、比較試験例12-1及び比較試験例12-2の4種類のEUVレジスト膜形成用液組成物を製造した。上記例で使用した有機錫化合物の種類とそのα線放出量と液組成物中の錫の含有割合を以下の表5に示す。 [Example of Production of Liquid Composition for Forming EUV Resist Film from Organic Tin Trialkoxide Compound of Formula (9)]
From the four types of t-butyl tin tributoxide obtained in Example 10-1, Example 10-2, Comparative Example 10-1 and Comparative Example 10-2, Test Example 11-1, Test Example 11-2, Four kinds of EUV resist film forming liquid compositions of Comparative Test Example 12-1 and Comparative Test Example 12-2 were produced. Specifically, four types of t-butyl tin tributoxide are weighed so that the tin content of the liquid composition is 0.05 mol / L, and this tin compound is dissolved in 29.8 mL of methyl ethyl ketone. , Test Example 11-1 to Test Example 11-2, Comparative Test Example 12-1, and Comparative Test Example by stirring for 24 hours in a closed space and removing the insoluble solid with a 0.45 μm syringe filter. Four kinds of EUV resist film forming liquid compositions of 12-2 were produced. The types of the organic tin compound used in the above example, the amount of α rays emitted thereof, and the content ratio of tin in the liquid composition are shown in Table 5 below.
〔試験例・比較試験例のEUVレジスト膜形成用液組成物のコーティングと現像〕
上述した試験例と比較試験例のEUVレジスト膜形成用液組成物からコーティング膜を形成した。具体的には、フッ酸で洗浄した直径約100mm(4インチ)のSiウエハを水酸化アンモニウムと過酸化水素水を含む70℃の洗浄液(質量比でNH4OH:H2O2:H2O=1:1:12.5)に10分間浸漬した。次いで、EUVレジスト膜形成用液組成物とこれにより形成されるレジスト膜のSiウエハの表面への密着性を高めるために、Siウエハを120℃の温度で40分間、ヘキサメチルジシラザン(HMDS)の蒸気に晒した後、脱水のためのベーキングと疎水化処理を行った。こうして前処理が終了したSiウエハ上に上述した試験例及び比較試験例で得られたEUVレジスト膜形成用液組成物をスピンコーター(ミカサ社製、MS-B100)を用いてそれぞれスピンコーティングし、コーティング膜を形成した。このコーティング膜を150℃の温度で5分間保持してベーキングした。ベーキング後の膜厚が20nmになるように、コーティング時の液組成物のコーティング量を調整した。ベーキングしたSiウエハを120分間静置した後、2.38質量%のテトラメチルアンモニウムヒドロキシド(TMAH)を現像液として、ポジ型の模擬レジスト膜を形成し、この模擬レジスト膜に対して現像処理を行った。 [Coating and developing of the EUV resist film forming liquid composition of Test Examples / Comparative Test Examples]
A coating film was formed from the EUV resist film forming liquid composition of the above-mentioned test example and the comparative test example. Specifically, a cleaning solution containing ammonium hydroxide and hydrogen peroxide solution (NH 4 OH: H 2 O 2 : H 2 by mass ratio) of a Si wafer having a diameter of about 100 mm (4 inches) washed with hydrofluoric acid is contained. It was immersed in O = 1: 1: 12.5) for 10 minutes. Next, in order to improve the adhesion of the EUV resist film forming liquid composition and the resist film formed thereby to the surface of the Si wafer, the Si wafer was placed at a temperature of 120 ° C. for 40 minutes with hexamethyldisilazane (HMDS). After exposure to steam, baking and hydrophobization for dehydration were performed. The EUV resist film forming liquid composition obtained in the above-mentioned test example and the comparative test example was spin-coated on the Si wafer thus pretreated using a spin coater (MS-B100 manufactured by Mikasa). A coating film was formed. The coating film was held at a temperature of 150 ° C. for 5 minutes for baking. The coating amount of the liquid composition at the time of coating was adjusted so that the film thickness after baking was 20 nm. After allowing the baked Si wafer to stand for 120 minutes, a positive simulated resist film was formed using 2.38% by mass of tetramethylammonium hydroxide (TMAH) as a developing solution, and the simulated resist film was subjected to development treatment. Was done.
上述した試験例と比較試験例のEUVレジスト膜形成用液組成物からコーティング膜を形成した。具体的には、フッ酸で洗浄した直径約100mm(4インチ)のSiウエハを水酸化アンモニウムと過酸化水素水を含む70℃の洗浄液(質量比でNH4OH:H2O2:H2O=1:1:12.5)に10分間浸漬した。次いで、EUVレジスト膜形成用液組成物とこれにより形成されるレジスト膜のSiウエハの表面への密着性を高めるために、Siウエハを120℃の温度で40分間、ヘキサメチルジシラザン(HMDS)の蒸気に晒した後、脱水のためのベーキングと疎水化処理を行った。こうして前処理が終了したSiウエハ上に上述した試験例及び比較試験例で得られたEUVレジスト膜形成用液組成物をスピンコーター(ミカサ社製、MS-B100)を用いてそれぞれスピンコーティングし、コーティング膜を形成した。このコーティング膜を150℃の温度で5分間保持してベーキングした。ベーキング後の膜厚が20nmになるように、コーティング時の液組成物のコーティング量を調整した。ベーキングしたSiウエハを120分間静置した後、2.38質量%のテトラメチルアンモニウムヒドロキシド(TMAH)を現像液として、ポジ型の模擬レジスト膜を形成し、この模擬レジスト膜に対して現像処理を行った。 [Coating and developing of the EUV resist film forming liquid composition of Test Examples / Comparative Test Examples]
A coating film was formed from the EUV resist film forming liquid composition of the above-mentioned test example and the comparative test example. Specifically, a cleaning solution containing ammonium hydroxide and hydrogen peroxide solution (NH 4 OH: H 2 O 2 : H 2 by mass ratio) of a Si wafer having a diameter of about 100 mm (4 inches) washed with hydrofluoric acid is contained. It was immersed in O = 1: 1: 12.5) for 10 minutes. Next, in order to improve the adhesion of the EUV resist film forming liquid composition and the resist film formed thereby to the surface of the Si wafer, the Si wafer was placed at a temperature of 120 ° C. for 40 minutes with hexamethyldisilazane (HMDS). After exposure to steam, baking and hydrophobization for dehydration were performed. The EUV resist film forming liquid composition obtained in the above-mentioned test example and the comparative test example was spin-coated on the Si wafer thus pretreated using a spin coater (MS-B100 manufactured by Mikasa). A coating film was formed. The coating film was held at a temperature of 150 ° C. for 5 minutes for baking. The coating amount of the liquid composition at the time of coating was adjusted so that the film thickness after baking was 20 nm. After allowing the baked Si wafer to stand for 120 minutes, a positive simulated resist film was formed using 2.38% by mass of tetramethylammonium hydroxide (TMAH) as a developing solution, and the simulated resist film was subjected to development treatment. Was done.
〔模擬レジスト膜の評価〕
現像処理した模擬レジスト膜を高分解能CD-SEM(日立ハイテクノロジー社製、CS4800)を用いて、形成したラインパターンの評価を行った。直径約100mmのSiウエハに対して、外周部から3mmの部分はエッジ部として観察区域から除外し、ウエハ表面全体をスキャニングした。撮影した像から、5nm以上の欠けを欠陥として認識し、欠陥個数を計数し、面積当りの欠陥数(個/cm2)を算出した。欠陥が検出されない0個/cm2の場合を『可』と判定し、欠陥数が1個/cm2以上の場合を『不可』とした。これらの欠陥数(個/cm2)と判定結果を上記表2、表3及び表5に示す。 [Evaluation of simulated resist film]
The line pattern formed by using a high-resolution CD-SEM (manufactured by Hitachi High-Technology Co., Ltd., CS4800) on the developed simulated resist film was evaluated. For a Si wafer having a diameter of about 100 mm, the portion 3 mm from the outer peripheral portion was excluded from the observation area as an edge portion, and the entire wafer surface was scanned. From the captured image, defects of 5 nm or more were recognized as defects, the number of defects was counted, and the number of defects per area (pieces / cm 2 ) was calculated. The case where no defect was detected was 0 / cm 2 , and the case was judged as “possible”, and the case where the number of defects was 1 / cm 2 or more was judged as “impossible”. The number of these defects (pieces / cm 2 ) and the determination results are shown in Tables 2, 3 and 5 above.
現像処理した模擬レジスト膜を高分解能CD-SEM(日立ハイテクノロジー社製、CS4800)を用いて、形成したラインパターンの評価を行った。直径約100mmのSiウエハに対して、外周部から3mmの部分はエッジ部として観察区域から除外し、ウエハ表面全体をスキャニングした。撮影した像から、5nm以上の欠けを欠陥として認識し、欠陥個数を計数し、面積当りの欠陥数(個/cm2)を算出した。欠陥が検出されない0個/cm2の場合を『可』と判定し、欠陥数が1個/cm2以上の場合を『不可』とした。これらの欠陥数(個/cm2)と判定結果を上記表2、表3及び表5に示す。 [Evaluation of simulated resist film]
The line pattern formed by using a high-resolution CD-SEM (manufactured by Hitachi High-Technology Co., Ltd., CS4800) on the developed simulated resist film was evaluated. For a Si wafer having a diameter of about 100 mm, the portion 3 mm from the outer peripheral portion was excluded from the observation area as an edge portion, and the entire wafer surface was scanned. From the captured image, defects of 5 nm or more were recognized as defects, the number of defects was counted, and the number of defects per area (pieces / cm 2 ) was calculated. The case where no defect was detected was 0 / cm 2 , and the case was judged as “possible”, and the case where the number of defects was 1 / cm 2 or more was judged as “impossible”. The number of these defects (pieces / cm 2 ) and the determination results are shown in Tables 2, 3 and 5 above.
表2から明らかなように、比較試験例1-1、比較試験例2-1、比較試験例3-1、比較試験例4-1、比較試験例5-1、比較試験例6-1、比較試験例7-1、比較試験例8-1及び比較試験例9-1では、使用したモノアルキル錫オキシドのα線放出量が0.013cph/cm2~0.024cph/cm2の範囲にあり、0.01cph/cm2より高かったため、模擬レジスト膜における5nm以上の欠陥数は1個~3個であり、判定はすべての比較試験例で、『不可』であった。
また、比較試験例1-2、比較試験例2-2、比較試験例3-2、比較試験例4-2、比較試験例5-2、比較試験例6-2、比較試験例7-2、比較試験例8-2及び比較試験例9-2では、使用したモノアルキル錫オキシドのα線放出量が0.011cph/cm2~0.017cph/cm2の範囲にあり、0.01cph/cm2より高かったため、模擬レジスト膜における5nm以上の欠陥数は1個~2個であり、判定はすべての比較試験例で、『不可』であった。
これに対して、試験例1~試験例9では、使用したモノアルキル錫オキシドのα線放出量が0.0020cph/cm2以下の範囲にあり、0.01cph/cm2より低かったため、模擬レジスト膜における5nm以上の欠陥数は0個であり、判定はすべての試験例で、『可』であった。 As is clear from Table 2, Comparative Test Example 1-1, Comparative Test Example 2-1, Comparative Test Example 3-1, Comparative Test Example 4-1 and Comparative Test Example 5-1, Comparative Test Example 6-1 and In Comparative Test Example 7-1, Comparative Test Example 8-1 and Comparative Test Example 9-1, the amount of α-ray emission of the monoalkyl tin oxide used was in the range of 0.013 cf / cm 2 to 0.024 cf / cm 2 . Since it was higher than 0.01 cph / cm 2 , the number of defects of 5 nm or more in the simulated resist film was 1 to 3, and the judgment was "impossible" in all the comparative test examples.
In addition, Comparative Test Example 1-2, Comparative Test Example 2-2, Comparative Test Example 3-2, Comparative Test Example 4-2, Comparative Test Example 5-2, Comparative Test Example 6-2, Comparative Test Example 7-2. In Comparative Test Example 8-2 and Comparative Test Example 9-2, the α-ray emission amount of the monoalkyl tin oxide used was in the range of 0.011 cf / cm 2 to 0.017 cf / cm 2 , and 0.01 cf / cm. Since it was higher than cm 2 , the number of defects of 5 nm or more in the simulated resist film was 1 to 2, and the judgment was "impossible" in all the comparative test examples.
On the other hand, in Test Examples 1 to 9, the α-ray emission amount of the monoalkyl tin oxide used was in the range of 0.0020 cf / cm 2 or less, which was lower than 0.01 cf / cm 2 , and therefore the simulated resist. The number of defects of 5 nm or more in the film was 0, and the judgment was "OK" in all the test examples.
また、比較試験例1-2、比較試験例2-2、比較試験例3-2、比較試験例4-2、比較試験例5-2、比較試験例6-2、比較試験例7-2、比較試験例8-2及び比較試験例9-2では、使用したモノアルキル錫オキシドのα線放出量が0.011cph/cm2~0.017cph/cm2の範囲にあり、0.01cph/cm2より高かったため、模擬レジスト膜における5nm以上の欠陥数は1個~2個であり、判定はすべての比較試験例で、『不可』であった。
これに対して、試験例1~試験例9では、使用したモノアルキル錫オキシドのα線放出量が0.0020cph/cm2以下の範囲にあり、0.01cph/cm2より低かったため、模擬レジスト膜における5nm以上の欠陥数は0個であり、判定はすべての試験例で、『可』であった。 As is clear from Table 2, Comparative Test Example 1-1, Comparative Test Example 2-1, Comparative Test Example 3-1, Comparative Test Example 4-1 and Comparative Test Example 5-1, Comparative Test Example 6-1 and In Comparative Test Example 7-1, Comparative Test Example 8-1 and Comparative Test Example 9-1, the amount of α-ray emission of the monoalkyl tin oxide used was in the range of 0.013 cf / cm 2 to 0.024 cf / cm 2 . Since it was higher than 0.01 cph / cm 2 , the number of defects of 5 nm or more in the simulated resist film was 1 to 3, and the judgment was "impossible" in all the comparative test examples.
In addition, Comparative Test Example 1-2, Comparative Test Example 2-2, Comparative Test Example 3-2, Comparative Test Example 4-2, Comparative Test Example 5-2, Comparative Test Example 6-2, Comparative Test Example 7-2. In Comparative Test Example 8-2 and Comparative Test Example 9-2, the α-ray emission amount of the monoalkyl tin oxide used was in the range of 0.011 cf / cm 2 to 0.017 cf / cm 2 , and 0.01 cf / cm. Since it was higher than cm 2 , the number of defects of 5 nm or more in the simulated resist film was 1 to 2, and the judgment was "impossible" in all the comparative test examples.
On the other hand, in Test Examples 1 to 9, the α-ray emission amount of the monoalkyl tin oxide used was in the range of 0.0020 cf / cm 2 or less, which was lower than 0.01 cf / cm 2 , and therefore the simulated resist. The number of defects of 5 nm or more in the film was 0, and the judgment was "OK" in all the test examples.
また、表3から明らかなように、比較試験例10-1では、使用したモノブチル錫オキシドのα線放出量が0.013cph/cm2であって、EUVレジスト膜形成用液組成物中の錫の含有割合が0.07質量%であった。モノブチル錫オキシドのα線放出量が0.01cph/cm2を超えため、模擬レジスト膜における5nm以上の欠陥数は1個であり、判定は『不可』であった。
また、比較試験例10-3では、使用したモノブチル錫オキシドのα線放出量が0.011cph/cm2であって、EUVレジスト膜形成用液組成物中の錫の含有割合が25.1質量%であった。モノブチル錫オキシドのα線放出量が0.01cph/cm2を超え、かつEUVレジスト膜形成用液組成物中の錫の含有割合が24質量%を超えたため、模擬レジスト膜における5nm以上の欠陥数は比較試験例10-1より多く、3個であり、判定は『不可』であった。 Further, as is clear from Table 3, in Comparative Test Example 10-1, the α-ray emission amount of the monobutyltin oxide used was 0.013 cf / cm 2 , and the tin in the EUV resist film forming liquid composition was The content ratio of was 0.07% by mass. Since the amount of α-ray emission of monobutyltin oxide exceeds 0.01 cph / cm 2 , the number of defects of 5 nm or more in the simulated resist film is 1, and the judgment is “impossible”.
Further, in Comparative Test Example 10-3, the α-ray emission amount of the monobutyltin oxide used was 0.011 cf / cm 2 , and the content ratio of tin in the EUV resist film forming liquid composition was 25.1 mass by mass. %Met. Since the α-ray emission amount of monobutyltin oxide exceeded 0.01 cph / cm 2 and the tin content in the EUV resist film forming liquid composition exceeded 24% by mass, the number of defects of 5 nm or more in the simulated resist film There were more than 3 in Comparative Test Example 10-1, and the judgment was "impossible".
また、比較試験例10-3では、使用したモノブチル錫オキシドのα線放出量が0.011cph/cm2であって、EUVレジスト膜形成用液組成物中の錫の含有割合が25.1質量%であった。モノブチル錫オキシドのα線放出量が0.01cph/cm2を超え、かつEUVレジスト膜形成用液組成物中の錫の含有割合が24質量%を超えたため、模擬レジスト膜における5nm以上の欠陥数は比較試験例10-1より多く、3個であり、判定は『不可』であった。 Further, as is clear from Table 3, in Comparative Test Example 10-1, the α-ray emission amount of the monobutyltin oxide used was 0.013 cf / cm 2 , and the tin in the EUV resist film forming liquid composition was The content ratio of was 0.07% by mass. Since the amount of α-ray emission of monobutyltin oxide exceeds 0.01 cph / cm 2 , the number of defects of 5 nm or more in the simulated resist film is 1, and the judgment is “impossible”.
Further, in Comparative Test Example 10-3, the α-ray emission amount of the monobutyltin oxide used was 0.011 cf / cm 2 , and the content ratio of tin in the EUV resist film forming liquid composition was 25.1 mass by mass. %Met. Since the α-ray emission amount of monobutyltin oxide exceeded 0.01 cph / cm 2 and the tin content in the EUV resist film forming liquid composition exceeded 24% by mass, the number of defects of 5 nm or more in the simulated resist film There were more than 3 in Comparative Test Example 10-1, and the judgment was "impossible".
また、比較試験例10-2では、使用したモノブチル錫オキシドのα線放出量が0.011cph/cm2であって、EUVレジスト膜形成用液組成物中の錫の含有割合が7.98質量%であった。モノブチル錫オキシドのα線放出量が0.01cph/cm2を超えたため、模擬レジスト膜における5nm以上の欠陥数は2個であり、判定は『不可』であった。
更に、比較試験例11-1では、使用したモノブチル錫オキシドのα線放出量が0.012cph/cm2であって、EUVレジスト膜形成用液組成物中の錫の含有割合が8.12質量%であった。モノブチル錫オキシドのα線放出量が0.01cph/cm2を超えため、模擬レジスト膜における5nm以上の欠陥数は2個であり、判定は『不可』であった。 Further, in Comparative Test Example 10-2, the α-ray emission amount of the monobutyltin oxide used was 0.011 cf / cm 2 , and the content ratio of tin in the EUV resist film forming liquid composition was 7.98 mass. %Met. Since the amount of α-ray emission of monobutyltin oxide exceeded 0.01 cph / cm 2 , the number of defects of 5 nm or more in the simulated resist film was 2, and the judgment was “impossible”.
Further, in Comparative Test Example 11-1, the α-ray emission amount of the monobutyltin oxide used was 0.012 cf / cm 2 , and the content ratio of tin in the EUV resist film forming liquid composition was 8.12 mass. %Met. Since the amount of α-ray emission of monobutyltin oxide exceeded 0.01 cph / cm 2 , the number of defects of 5 nm or more in the simulated resist film was 2, and the judgment was “impossible”.
更に、比較試験例11-1では、使用したモノブチル錫オキシドのα線放出量が0.012cph/cm2であって、EUVレジスト膜形成用液組成物中の錫の含有割合が8.12質量%であった。モノブチル錫オキシドのα線放出量が0.01cph/cm2を超えため、模擬レジスト膜における5nm以上の欠陥数は2個であり、判定は『不可』であった。 Further, in Comparative Test Example 10-2, the α-ray emission amount of the monobutyltin oxide used was 0.011 cf / cm 2 , and the content ratio of tin in the EUV resist film forming liquid composition was 7.98 mass. %Met. Since the amount of α-ray emission of monobutyltin oxide exceeded 0.01 cph / cm 2 , the number of defects of 5 nm or more in the simulated resist film was 2, and the judgment was “impossible”.
Further, in Comparative Test Example 11-1, the α-ray emission amount of the monobutyltin oxide used was 0.012 cf / cm 2 , and the content ratio of tin in the EUV resist film forming liquid composition was 8.12 mass. %Met. Since the amount of α-ray emission of monobutyltin oxide exceeded 0.01 cph / cm 2 , the number of defects of 5 nm or more in the simulated resist film was 2, and the judgment was “impossible”.
これに対して、試験例10-1及び試験例10-2では、使用したモノアルキル錫オキシドのα線放出量がともに0.0005cph/cm2未満の範囲にあって、EUVレジスト膜形成用液組成物中の錫の含有割合がそれぞれ0.05質量%及び23.1質量%であった。モノブチル錫オキシドのα線放出量が0.01cph/cm2以下で、かつEUVレジスト膜形成用液組成物中の錫の含有割合が24質量%以下であったため、模擬レジスト膜における5nm以上の欠陥数は0個であり、判定はすべての試験例で、『可』であった。
On the other hand, in Test Example 10-1 and Test Example 10-2, the α-ray emission amount of the monoalkyl tin oxide used was both in the range of less than 0.0005 cf / cm 2 , and the EUV resist film forming liquid was used. The tin content in the composition was 0.05% by mass and 23.1% by mass, respectively. Since the α-ray emission amount of monobutyltin oxide was 0.01 cph / cm 2 or less and the tin content in the EUV resist film forming liquid composition was 24% by mass or less, defects of 5 nm or more in the simulated resist film The number was 0, and the judgment was "OK" in all the test examples.
更に、表5から明らかなように、比較試験例12-1及び比較試験例12-2では、使用したt-ブチル錫トリブトキシドのα線放出量が0.012cph/cm2及び0.011cph/cm2であって、EUVレジスト膜形成用液組成物中の錫の含有割合が0.6質量%及び0.9質量%であった。t-ブチル錫トリブトキシドのα線放出量が0.01cph/cm2を超えたため、模擬レジスト膜における5nm以上の欠陥数はそれぞれ2個及び1個であり、判定はすべての比較試験例で、『不可』であった。
これに対して、試験例11-1及び試験例11-2では、使用したt-ブチル錫トリブトキシドのα線放出量がそれぞれ0.0005cph/cm2未満及び0.002cph/cm2であって、EUVレジスト膜形成用液組成物中の錫の含有割合が0.5質量%及び0.8質量%であった。t-ブチル錫トリブトキシドのα線放出量が0.01cph/cm2以下で、かつEUVレジスト膜形成用液組成物中の錫の含有割合が24質量%以下であったため、模擬レジスト膜における5nm以上の欠陥数は0個であり、判定はすべての試験例で、『可』であった。 Further, as is clear from Table 5, in Comparative Test Example 12-1 and Comparative Test Example 12-2, the α-ray emission amount of t-butyltin tributoxide used was 0.012 cf / cm 2 and 0.011 cf /. At cm 2 , the content of tin in the EUV resist film forming liquid composition was 0.6% by mass and 0.9% by mass. Since the amount of α-ray emission of t-butyltin tributoxide exceeded 0.01 cph / cm 2 , the number of defects of 5 nm or more in the simulated resist film was 2 and 1, respectively, and the judgment was made in all comparative test examples. It was "impossible".
On the other hand, in Test Example 11-1 and Test Example 11-2, the α-ray emission amount of t-butyltin tributoxide used was less than 0.0005 cf / cm 2 and 0.002 cf / cm 2 , respectively. , The content ratio of tin in the EUV resist film forming liquid composition was 0.5% by mass and 0.8% by mass. Since the α-ray emission amount of t-butyl tin tributoxide was 0.01 cf / cm 2 or less and the tin content in the EUV resist film forming liquid composition was 24% by mass or less, 5 nm in the simulated resist film. The above number of defects was 0, and the judgment was "OK" in all the test examples.
これに対して、試験例11-1及び試験例11-2では、使用したt-ブチル錫トリブトキシドのα線放出量がそれぞれ0.0005cph/cm2未満及び0.002cph/cm2であって、EUVレジスト膜形成用液組成物中の錫の含有割合が0.5質量%及び0.8質量%であった。t-ブチル錫トリブトキシドのα線放出量が0.01cph/cm2以下で、かつEUVレジスト膜形成用液組成物中の錫の含有割合が24質量%以下であったため、模擬レジスト膜における5nm以上の欠陥数は0個であり、判定はすべての試験例で、『可』であった。 Further, as is clear from Table 5, in Comparative Test Example 12-1 and Comparative Test Example 12-2, the α-ray emission amount of t-butyltin tributoxide used was 0.012 cf / cm 2 and 0.011 cf /. At cm 2 , the content of tin in the EUV resist film forming liquid composition was 0.6% by mass and 0.9% by mass. Since the amount of α-ray emission of t-butyltin tributoxide exceeded 0.01 cph / cm 2 , the number of defects of 5 nm or more in the simulated resist film was 2 and 1, respectively, and the judgment was made in all comparative test examples. It was "impossible".
On the other hand, in Test Example 11-1 and Test Example 11-2, the α-ray emission amount of t-butyltin tributoxide used was less than 0.0005 cf / cm 2 and 0.002 cf / cm 2 , respectively. , The content ratio of tin in the EUV resist film forming liquid composition was 0.5% by mass and 0.8% by mass. Since the α-ray emission amount of t-butyl tin tributoxide was 0.01 cf / cm 2 or less and the tin content in the EUV resist film forming liquid composition was 24% by mass or less, 5 nm in the simulated resist film. The above number of defects was 0, and the judgment was "OK" in all the test examples.
本発明の有機錫化合物及びEUVレジスト膜形成用液組成物は、EUVレジスト膜を形成する分野で用いられる。
The organotin compound and the liquid composition for forming an EUV resist film of the present invention are used in the field of forming an EUV resist film.
Claims (6)
- α線放出量が0.01cph/cm2以下である有機錫化合物。 An organotin compound having an α-ray emission amount of 0.01 cph / cm 2 or less.
- 下記の式(1)~式(9)のいずれかに示される請求項1記載の有機錫化合物。
上記式(2)中、R2は炭素数1~10の炭化水素基であり、aは1又は2であり、b~dは、それぞれ同一又は互いに異なる炭素数1~28の整数であり、0≦n≦4である。
上記式(3)中、R2は炭素数1~10の炭化水素基であり、p~sは、それぞれ同一又は互いに異なる炭素数1~28の整数であり、tは1以上4以下である。Yには、対イオンとしてアニオン種が存在する。
上記式(4)中、R3は炭素数1~10の炭化水素基である。
上記式(5)中、R4は炭素数1~10の炭化水素基である。
上記式(6)中、R5は炭素数1~10の炭化水素基であり、R6は炭素数1~5の炭化水素基である。
上記式(7)中、R7は炭素数1~10の炭化水素基である。
上記式(8)中、R8は炭素数1~10の炭化水素基である。
上記式(9)中、R9は炭素数1~10の炭化水素基である。 The organic tin compound according to claim 1, which is represented by any of the following formulas (1) to (9).
In the above formula (2), R 2 is a hydrocarbon group having 1 to 10 carbon atoms, a is 1 or 2, and b to d are integers having the same or different carbon atoms from 1 to 28, respectively. 0 ≦ n ≦ 4.
In the above formula (3), R 2 is a hydrocarbon group having 1 to 10 carbon atoms, p to s are integers having the same or different carbon atoms from 1 to 28, and t is 1 or more and 4 or less. .. Y has an anion species as a counterion.
In the above formula (4), R 3 is a hydrocarbon group having 1 to 10 carbon atoms.
In the above formula (5), R 4 is a hydrocarbon group having 1 to 10 carbon atoms.
In the above formula (6), R 5 is a hydrocarbon group having 1 to 10 carbon atoms, and R 6 is a hydrocarbon group having 1 to 5 carbon atoms.
In the above formula (7), R 7 is a hydrocarbon group having 1 to 10 carbon atoms.
In the above formula (8), R 8 is a hydrocarbon group having 1 to 10 carbon atoms.
In the above formula (9), R 9 is a hydrocarbon group having 1 to 10 carbon atoms. - 請求項1又は2記載の有機錫化合物を用いたEUVレジスト膜形成用液組成物であって、EUVレジスト膜形成用液組成物を100質量%とするとき、錫の含有割合が0.05質量%以上24質量%以下であるEUVレジスト膜形成用液組成物。 The EUV resist film forming liquid composition using the organic tin compound according to claim 1 or 2, when the EUV resist film forming liquid composition is 100% by mass, the tin content ratio is 0.05% by mass. A liquid composition for forming an EUV resist film in an amount of% or more and 24% by mass or less.
- 請求項3記載のEUVレジスト膜形成用液組成物を用いてα線放出量が0.01cph/cm2以下であるEUVレジスト膜を形成する方法。 A method for forming an EUV resist film having an α-ray emission amount of 0.01 cph / cm 2 or less by using the liquid composition for forming an EUV resist film according to claim 3.
- (a) α線放出量が0.01cph/cm2以下である金属錫から四塩化錫を合成する工程と、
(b) 前記四塩化錫からモノアルキル錫オキシド又はアルキル錫トリアルコキシドを合成する工程とを含む有機錫化合物の製造方法であって、
前記工程(a)から工程(b)までのすべての工程において合成物から不純物を除去する蒸留が複数回行われ、かつ前記工程(a)から工程(b)までのすべての工程で使用する器具及び環境に対してα線を遮蔽するためのα線管理が行われることにより、前記有機錫化合物のα線放出量を0.01cph/cm2以下にすることを特徴とする有機錫化合物の製造方法。 (a) A step of synthesizing tin tetrachloride from metallic tin having an α-ray emission amount of 0.01 cph / cm 2 or less,
(b) A method for producing an organic tin compound, which comprises a step of synthesizing a monoalkyl tin oxide or an alkyl tin trialkoxide from the tin tetrachloride.
Distillation for removing impurities from the compound is performed a plurality of times in all the steps from the step (a) to the step (b), and the equipment used in all the steps from the step (a) to the step (b). The production of an organic tin compound, which is characterized by reducing the amount of α-ray emission of the organic tin compound to 0.01 cf / cm 2 or less by performing α-ray control for shielding α-rays from the environment. Method. - 複数回の蒸留は、各工程で生じた合成物又は不純物留分のα線放出量を測定し、このα線放出量が0.01cph/cm2以下になるまで行われる請求項5記載の有機錫化合物の製造方法。 The organic according to claim 5, wherein the multiple distillations are carried out by measuring the amount of α-ray emission of the compound or impurity distillate produced in each step and until the amount of α-ray emission becomes 0.01 cf / cm 2 or less. Method for producing a tin compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022561951A JPWO2022102636A1 (en) | 2020-11-12 | 2021-11-10 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020188967 | 2020-11-12 | ||
JP2020-188967 | 2020-11-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022102636A1 true WO2022102636A1 (en) | 2022-05-19 |
Family
ID=81602331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/041260 WO2022102636A1 (en) | 2020-11-12 | 2021-11-10 | Organic tin compound, method for producing same, liquid composition for forming euv resist film using same, and method for forming euv resist film |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2022102636A1 (en) |
TW (1) | TW202233640A (en) |
WO (1) | WO2022102636A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024202889A1 (en) * | 2023-03-31 | 2024-10-03 | 三菱ケミカル株式会社 | Photosensitive composition, pattern-forming method using same, and transition metal cluster compound |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008091215A (en) * | 2006-10-02 | 2008-04-17 | Nitto Kasei Co Ltd | Tin oxide film former, tin oxide film formation method using it, and tin oxide film formed by it |
JP2018124354A (en) * | 2017-01-30 | 2018-08-09 | Jsr株式会社 | Resist film forming method and composition for forming protective film |
WO2018173446A1 (en) * | 2017-03-22 | 2018-09-27 | Jsr株式会社 | Pattern forming method |
WO2018179704A1 (en) * | 2017-03-27 | 2018-10-04 | Jsr株式会社 | Pattern forming method |
WO2019035446A1 (en) * | 2017-08-17 | 2019-02-21 | 三菱マテリアル株式会社 | METAL AND TIN ALLOY HAVING LOW α-RAY EMISSION, AND METHOD FOR PRODUCING SAME |
WO2020026745A1 (en) * | 2018-07-30 | 2020-02-06 | 三菱マテリアル株式会社 | LOW α-RAY EMISSION STANNOUS OXIDE AND METHOD FOR PRODUCING SAME |
-
2021
- 2021-11-10 WO PCT/JP2021/041260 patent/WO2022102636A1/en active Application Filing
- 2021-11-10 JP JP2022561951A patent/JPWO2022102636A1/ja active Pending
- 2021-11-12 TW TW110142166A patent/TW202233640A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008091215A (en) * | 2006-10-02 | 2008-04-17 | Nitto Kasei Co Ltd | Tin oxide film former, tin oxide film formation method using it, and tin oxide film formed by it |
JP2018124354A (en) * | 2017-01-30 | 2018-08-09 | Jsr株式会社 | Resist film forming method and composition for forming protective film |
WO2018173446A1 (en) * | 2017-03-22 | 2018-09-27 | Jsr株式会社 | Pattern forming method |
WO2018179704A1 (en) * | 2017-03-27 | 2018-10-04 | Jsr株式会社 | Pattern forming method |
WO2019035446A1 (en) * | 2017-08-17 | 2019-02-21 | 三菱マテリアル株式会社 | METAL AND TIN ALLOY HAVING LOW α-RAY EMISSION, AND METHOD FOR PRODUCING SAME |
WO2020026745A1 (en) * | 2018-07-30 | 2020-02-06 | 三菱マテリアル株式会社 | LOW α-RAY EMISSION STANNOUS OXIDE AND METHOD FOR PRODUCING SAME |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024202889A1 (en) * | 2023-03-31 | 2024-10-03 | 三菱ケミカル株式会社 | Photosensitive composition, pattern-forming method using same, and transition metal cluster compound |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022102636A1 (en) | 2022-05-19 |
TW202233640A (en) | 2022-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12071449B2 (en) | Tin dodecamers and radiation patternable coatings with strong EUV absorption | |
JP6805244B2 (en) | Patterning Compositions, Precursors and Patterning of Organic Tin Oxide Hydroxides | |
TWI803806B (en) | Organotin clusters, solutions of organotin clusters, and application to high resolution patterning | |
TWI549975B (en) | Hardmask | |
US20230374338A1 (en) | Radiation sensitive organotin compositions having oxygen heteroatoms in hydrocarbyl ligand | |
WO2022102636A1 (en) | Organic tin compound, method for producing same, liquid composition for forming euv resist film using same, and method for forming euv resist film | |
KR102611310B1 (en) | Silicon-containing layer forming composition and method for producing a patterned substrate using the same | |
TW202300498A (en) | Deuterated organotin compounds and application thereof, and methods for synthesizing deuterated organotin compositions and synthesizing deuterated monoorganotin triamide compounds | |
TW202402767A (en) | Tin containing organometallic compounds | |
WO2022265792A1 (en) | Organotin patterning materials with ligands having silicon/germanium; precursor compositions; and synthesis methods | |
JP6989525B2 (en) | Method for producing polysilane compound, composition, membrane, and substrate | |
US20240059717A1 (en) | High purity tin compounds containing unsaturated substituent and method for preparation thereof | |
TWI811203B (en) | Production method of polysilane compound, composition, cured product and substrate, and selective accelerator for anionic polymerization | |
EP3755672B1 (en) | Organomodified metal oxide or metalloid oxide polymer film | |
TW202423940A (en) | Cyclic azastannane and cyclic oxostannane compounds and methods for preparation thereof | |
TW202436312A (en) | High-purity tin compound, storage method and production method thereof, and tin hydrolyzate, tin hydrolyzate solution, and tin hydrolyzate film using the same | |
TW202428590A (en) | Direct synthesis of organotin alkoxides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21891882 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022561951 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21891882 Country of ref document: EP Kind code of ref document: A1 |