WO2018173446A1 - Pattern forming method - Google Patents

Pattern forming method Download PDF

Info

Publication number
WO2018173446A1
WO2018173446A1 PCT/JP2018/001668 JP2018001668W WO2018173446A1 WO 2018173446 A1 WO2018173446 A1 WO 2018173446A1 JP 2018001668 W JP2018001668 W JP 2018001668W WO 2018173446 A1 WO2018173446 A1 WO 2018173446A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming
group
radiation
composition
metal
Prior art date
Application number
PCT/JP2018/001668
Other languages
French (fr)
Japanese (ja)
Inventor
信也 峯岸
恭志 中川
智昭 瀬古
大貴 中津
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2018173446A1 publication Critical patent/WO2018173446A1/en

Links

Definitions

  • the present invention relates to a pattern forming method.
  • a resist film formed from a radiation-sensitive composition for forming a resist film is treated with deep ultraviolet light (for example, ArF excimer laser light, KrF excimer laser light, etc.), extreme ultraviolet light (The exposed portion is exposed to an electromagnetic wave such as EUV) or a charged particle beam such as an electron beam to generate an acid at the exposed portion. Then, a chemical reaction using this acid as a catalyst causes a difference in the dissolution rate with respect to the developer in the exposed area and the unexposed area, thereby forming a pattern on the substrate.
  • the formed pattern can be used as a mask or the like in substrate processing.
  • Such a pattern forming method is required to improve resist performance such as sensitivity as the processing technique becomes finer.
  • the types of organic polymers, acid generators and other components used in the radiation-sensitive composition for resist film formation, the molecular structure, and the like have been studied, and further their combinations have been studied in detail ( (See JP-A-11-125907, JP-A-8-146610, and JP-A-2000-298347).
  • a radiation sensitive composition for forming a resist film containing a metal-containing compound is used instead of an organic polymer in order to improve sensitivity, or a finer pattern is formed on the resist film. Therefore, the use of a lower layer film has been studied.
  • pattern miniaturization has progressed to the level of 40 nm or less at present, but higher resist performance is required in the pattern forming method, and further improvement in sensitivity is particularly required.
  • the pattern collapse in the resist film formed on the lower layer film so-called pattern collapse tends to occur, so suppression of this pattern collapse is also required. Yes.
  • the present invention has been made based on the above circumstances, and an object thereof is to provide a pattern forming method capable of suppressing pattern collapse while exhibiting excellent sensitivity.
  • the invention made in order to solve the above-mentioned problems includes a step of applying a composition for forming an underlayer film on a substrate, and a resist directly or indirectly on an underlayer film formed by the above-described composition application process for forming an underlayer film.
  • the underlayer film forming composition contains a radiation sensitive base generator that generates a base by the action of radiation or a radiation sensitive acid generator that generates an acid by the action of radiation, and the resist film
  • the forming radiation-sensitive composition is a pattern forming method containing a metal-containing compound in an amount of 50% by mass or more in terms of solid content.
  • radiation is a concept that includes not only electromagnetic waves such as far ultraviolet rays and extreme ultraviolet rays but also charged particle beams such as electron beams.
  • pattern collapse can be suppressed while exhibiting excellent sensitivity. Therefore, this pattern forming method can be suitably used for a semiconductor device processing process and the like that are expected to be further miniaturized in the future.
  • the pattern forming method includes a step of applying a composition for forming an underlayer film on a substrate (a composition applying step for forming an underlayer film) and an underlayer film formed by the above-described composition applying step for forming an underlayer film
  • the resist film-forming radiation-sensitive composition is applied directly or indirectly (resist-film-forming radiation-sensitive composition coating process) and the resist film-forming radiation-sensitive composition coating process.
  • the composition for forming an underlayer film is a radiation-sensitive base generator that generates a base by the action of radiation (hereinafter also referred to as “[A1] photobase generator”), or a radiation-sensitive that generates an acid by the action of radiation. Acid acid generator (hereinafter also referred to as “[A2] photoacid generator”).
  • the radiation-sensitive composition for forming a resist film contains a metal-containing compound (hereinafter also referred to as “[P] metal-containing compound”) in an amount of 50% by mass or more in terms of solid content.
  • the pattern forming method includes the above-described steps, and the underlayer film forming composition used in the underlayer film forming composition coating step contains [A1] a photobase generator or [A2] a photoacid generator,
  • the radiation sensitive composition for resist film formation used in the resist film forming radiation sensitive composition coating step contains [P] metal-containing compound in an amount of 50% by mass or more in terms of solid content, thereby exhibiting excellent sensitivity. While pattern collapse can be suppressed.
  • the reason why the pattern forming method has the above-described configuration provides the above-mentioned effect is not necessarily clear, but can be estimated as follows, for example.
  • the [P] metal-containing compound or the like absorbs exposure light and emits secondary electrons, and the secondary electrons crosslink the [P] metal-containing compound or the like. It is considered that the pattern can be formed because the solubility in the developing solution is reduced due to the occurrence of.
  • the lower layer film contains [A1] photobase generator or [A2] photoacid generator, the region below the exposed portion of the resist film in the lower layer film is caused by the action of exposure light. It is considered that a base or acid is generated, and this base or acid promotes cross-linking of the [P] metal-containing compound at the bottom of the exposed portion of the resist film.
  • the [P1] metal-containing compound at the bottom of the exposed portion of the resist film is cross-linked by the [A1] photobase generator or the [A2] photoacid generator contained in the lower layer film. Therefore, it is considered that pattern collapse can be suppressed while exhibiting excellent sensitivity.
  • the underlayer film forming composition contains [A1] a photobase generator or [A2] a photoacid generator.
  • the composition for forming the lower layer film has an organic polymer (hereinafter also referred to as “[B1] organic polymer”), an inorganic polymer (hereinafter also referred to as “[B2] inorganic polymer”), and / or a molecular weight of 600. It is preferable to further contain 3,000 or less aromatic ring-containing compounds (hereinafter also referred to as “[B3] aromatic ring-containing compound”), and more preferably [B1] an organic polymer.
  • the composition for lower layer film formation contains a solvent (henceforth "[C] solvent”) further.
  • a solvent hereinafter, each component will be described.
  • the photobase generator is a component that generates a base by the action of radiation.
  • Examples of the base generated from the photobase generator include amines such as primary amine, secondary amine, and tertiary amine.
  • the photobase generator can be used alone or in combination of two or more.
  • Examples of the photobase generator include transition metal complexes such as cobalt, orthonitrobenzyl carbamates, ⁇ , ⁇ -dimethyl-3,5-dimethoxybenzyl carbamates, acyloxyiminos, acetophenone compounds, and the like. Can do.
  • Examples of the cobalt transition metal complex include compounds described in paragraph [0198] of JP-A-2017-009673.
  • orthonitrobenzyl carbamates examples include [[(2-nitrobenzyl) oxy] carbonyl] methylamine, [[(2-nitrobenzyl) oxy] carbonyl] propylamine, and [[(2-nitrobenzyl) oxy] carbonyl.
  • Examples of ⁇ , ⁇ -dimethyl-3,5-dimethoxybenzyl carbamates include [[( ⁇ , ⁇ -dimethyl-3,5-dimethoxybenzyl) oxy] carbonyl] methylamine, [[( ⁇ , ⁇ -dimethyl- 3,5-dimethoxybenzyl) oxy] carbonyl] propylamine, [[( ⁇ , ⁇ -dimethyl-3,5-dimethoxybenzyl) oxy] carbonyl] hexylamine, [[( ⁇ , ⁇ -dimethyl-3,5- Dimethoxybenzyl) oxy] carbonyl] cyclohexylamine, [[( ⁇ , ⁇ -dimethyl-3,5-dimethoxybenzyl) oxy] carbonyl] aniline, [[( ⁇ , ⁇ -dimethyl-3,5-dimethoxybenzyl) oxy] Carbonyl] piperidine, bis [[( ⁇ , ⁇ -dimethyl-3,5-d
  • acyloxyiminos examples include propionyl acetophenone oxime, propionyl benzophenone oxime, propionyl acetone oxime, butyryl acetophenone oxime, butyryl benzophenone oxime, butyryl acetone oxime, adipoyl acetophenone oxime, adipoyl benzophenone oxime, adipoyl acetone
  • Examples thereof include oxime, acryloyl acetophenone oxime, acryloyl benzophenone oxime, and acryloyl acetone oxime.
  • acetophenone compounds include 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one, 2-dimethylamino-2- (4-methylbenzyl) -1- (4-morpho Acetophenone compounds having an ⁇ -aminoketone structure, such as phosphorus-4-yl-phenyl) -butan-1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, etc. Is mentioned.
  • Photobase generators include, for example, 2-nitrobenzylcyclohexyl carbamate, O-carbamoylhydroxyamide, O-carbamoylhydroxyamide and the like in addition to the compound examples described above.
  • an acetophenone compound and 2-nitrobenzylcyclohexyl carbamate are preferable, an acetophenone compound having an ⁇ -aminoketone structure and 2-nitrobenzylcyclohexyl carbamate are more preferable, and 2-methyl-1- [ 4- (Methylthio) phenyl] -2-morpholinopropan-1-one and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one are more preferred.
  • the photoacid generator is a component that generates an acid by the action of radiation.
  • the photoacid generator can be used alone or in combination of two or more.
  • the acid generated from the photoacid generator is preferably a sulfonic acid, more preferably a fluorinated alkylsulfonic acid having 1 to 10 carbon atoms and a sulfonic acid having an alicyclic structure, and perfluoroalkylsulfonic acid and 10- Camphorsulfonic acid is more preferable, and trifluoromethanesulfonic acid, nonafluorobutanesulfonic acid and 10-camphorsulfonic acid are particularly preferable.
  • Examples of the photoacid generator include onium salt compounds, N-sulfonyloxyimide compounds, halogen-containing compounds, diazoketone compounds, and the like.
  • onium salt compounds examples include sulfonium salts, tetrahydrothiophenium salts, iodonium salts, phosphonium salts, diazonium salts, pyridinium salts, and the like.
  • anion of the onium compound examples include an anion represented by the following formula.
  • Examples of the cation of the onium compound include a cation represented by the following formula.
  • onium salt compound an appropriate combination of the above anions and the above cations can be used.
  • N-sulfonyloxyimide compound examples include compounds represented by the following formulas.
  • an onium salt compound is preferable, a sulfonium salt is more preferable, and triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium nonafluorobutanesulfonate, and triphenylsulfonium camphorsulfonate are more preferable.
  • the lower limit of the content in terms of solid content of [A1] photobase generator or [A2] photoacid generator in the composition for forming an underlayer film is preferably 0.1% by mass, more preferably 1% by mass, 5 mass% is more preferable.
  • the upper limit of the content is preferably 50% by mass, more preferably 30% by mass, and still more preferably 20% by mass.
  • the upper limit of the weight average molecular weight (Mw) of the organic polymer is preferably 100,000, more preferably 30,000.
  • Mw in this specification and the number average molecular weight (Mn) described later are values measured by gel permeation chromatography (GPC) under the following conditions.
  • GPC column For example, two “G2000HXL”, one “G3000HXL” and one “G4000HXL” manufactured by Tosoh Corporation Column temperature: 40 ° C.
  • Elution solvent Tetrahydrofuran Flow rate: 1.0 mL / min Sample concentration: 1.0% by mass
  • Detector Differential refractometer Standard material: Monodisperse polystyrene
  • organic polymer from the viewpoint of improving heat resistance and etching resistance, an organic polymer having an aromatic ring is preferable, an organic polymer having an aromatic ring in the main chain is more preferable, and obtained by polycondensation, More preferred are organic polymers having an aromatic ring in the main chain.
  • an aromatic carbon ring such as a benzene ring, naphthalene ring, anthracene ring, indene ring, pyrene ring, fluorenylidene biphenyl ring, fluorenylidene binaphthalene ring, furan ring, pyrrole ring, thiophene ring, Examples include phosphole ring, pyrazole ring, oxazole ring, isoxazole ring, thiazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring and triazine ring.
  • organic polymer for example, those described in paragraphs [0040] to [0116] of JP-A-2016-206676 can be used, but from the viewpoint of further improving the etching resistance of the lower layer film, Novolac resins, resol resins, aromatic ring-containing vinyl resins, acenaphthylene resins, indene resins, polyarylene resins, triazine resins, calixarene resins, fullerene resins and pyrene resins are preferred, novolak resins And acenaphthylene resins are more preferred.
  • the upper limit of Mw is preferably 10,000.
  • the lower limit of the ratio of Mw to Mn (Mw / Mn) of these resins is preferably 1.1.
  • the upper limit of the Mw / Mn is preferably 5, more preferably 3, and even more preferably 2.
  • the lower limit of the molecular weight of the calixarene resin is preferably 500, more preferably 700, and even more preferably 1,000 from the viewpoint of improving the flatness of the resist underlayer film.
  • the upper limit of the molecular weight is preferably 5,000, more preferably 3,000, and further preferably 1,500.
  • the molecular weight of the calixarene resin means Mw in terms of polystyrene by GPC.
  • [B2] inorganic polymer [B2] examples include [B2-1] polysiloxane, a plurality of metal atoms, an oxygen atom that bridges between the metal atoms (hereinafter also referred to as “bridged oxygen atom”), and the metal atom. And a [B2-2] complex (binuclear complex) containing a multidentate ligand coordinated to the. [B2]
  • the inorganic polymer can be used alone or in combination of two or more.
  • [B2-1] polysiloxane examples include those having the structural unit (I) represented by the following formula (I) and / or the structural unit (II) represented by the following formula (II). .
  • Each structural unit in the polysiloxane can be used alone or in combination of two or more.
  • R X1 is a monovalent organic group having 1 to 20 carbon atoms.
  • organic group refers to a group having at least one carbon atom.
  • Examples of the monovalent organic group represented by R X1 include a monovalent hydrocarbon group, a monovalent fluorinated hydrocarbon group, and a divalent heteroatom-containing group between carbon and carbon of the monovalent hydrocarbon group. And a monovalent chain hydrocarbon group, a monovalent aromatic hydrocarbon group, a monovalent fluorinated aromatic hydrocarbon group, and a group containing a heterocyclic ring are more preferred. , An alkyl group, an aryl group, a fluoroaryl group and a group containing a nitrogen-containing heterocyclic ring are more preferred. Examples of the nitrogen-containing heterocycle include an azocycloalkane ring and an isocyanuric ring.
  • Examples of the structural unit (I) include a structural unit represented by the following formula.
  • the lower limit of the content ratio of the structural unit (I) in the polysiloxane is preferably 1 mol%, and more preferably 5 mol%.
  • an upper limit of the content rate of structural unit (I) 60 mol% is preferable and 40 mol% is more preferable.
  • the lower limit of the content ratio of the structural unit (II) in the polysiloxane is preferably 40 mol%, more preferably 60 mol%.
  • an upper limit of the content rate of structural unit (II) 99 mol% is preferable and 95 mol% is more preferable.
  • the lower limit of Mw of the polysiloxane is preferably 500, more preferably 800, and further preferably 1,200.
  • the upper limit of the Mw is preferably 100,000, more preferably 30,000, still more preferably 10,000, and particularly preferably 5,000.
  • the metal atom in the [B2-2] complex is preferably titanium, tantalum, zirconium and tungsten (hereinafter also referred to as “specific metal atom”), more preferably titanium and zirconium.
  • specific metal atom titanium, tantalum, zirconium and tungsten
  • These metal atoms can be used singly or in combination of two or more. However, in order to ensure in-plane uniformity of the etching rate of the lower layer film in the nanometer order during etching, one kind alone. It is preferable to use it.
  • the [B2-2] complex can be a stable binuclear complex by containing a bridging oxygen atom, and as a result, the pattern forming property and etching selectivity in the pattern forming method are improved.
  • a plurality of bridging oxygen atoms are preferably bonded to one metal atom, but some of the metal atoms may be bonded to one metal atom.
  • the complex preferably mainly contains a structure in which two bridging oxygen atoms are bonded to one metal atom.
  • the [B2-2] complex mainly includes such a structure, a straight chain represented by -M 1 -OM 1 -O- (M 1 is a metal atom such as a specific metal atom) It becomes possible to take a structure close to the shape, and the solubility is improved. As a result, the removability when removing the lower layer film using the cleaning solvent (hereinafter, also referred to as “removability of the lower layer film”) is improved.
  • “mainly comprising” the above structure means that 50 mol% or more, preferably 70 mol% or more, more preferably 90 mol% or more, particularly preferably 90% by mol or more of all metal atoms constituting the [B2-2] complex. It means that two bridging oxygen atoms are bonded to each other with respect to 95 mol% or more of metal atoms.
  • the complex may have other bridging ligand such as peroxide ligand (—O—O—) in addition to the bridging oxygen atom.
  • bridging ligand such as peroxide ligand (—O—O—) in addition to the bridging oxygen atom.
  • the multidentate ligand in the [B2-2] complex improves the solubility of the [B2-2] complex, thereby improving the removability of the lower layer film.
  • the polydentate ligand is derived from hydroxy acid ester, ⁇ -diketone, ⁇ -keto ester, malonic acid diester optionally substituted at the ⁇ -position carbon atom and hydrocarbon having ⁇ bond, or these compounds.
  • a ligand is preferred.
  • These compounds usually form a polydentate ligand as an anion obtained by obtaining one electron, form a polydentate ligand as an anion from which a proton is eliminated, or have a structure as it is. Forms a bidentate ligand.
  • the lower limit of the molar ratio of the polydentate ligand to the metal atom (polydentate ligand / metal atom) in the [B2-2] complex is preferably 1, more preferably 1.5, and even more preferably 1.8.
  • the upper limit of the ratio is preferably 3, more preferably 2.5, and even more preferably 2.2.
  • the [B2-2] complex may contain other ligands in addition to the above-mentioned bridging ligand and multidentate ligand.
  • the lower limit of the absolute molecular weight of the [B2-2] complex measured by the static light scattering method is preferably 400, more preferably 1,200, and even more preferably 2,000.
  • the upper limit of the absolute molecular weight is preferably 50,000, more preferably 20,000, still more preferably 10,000, and particularly preferably 5,000.
  • the absolute molecular weight of the [B2-2] complex by the static light scattering method is a value measured under the following conditions.
  • Apparatus Light scattering measurement apparatus (for example, “ALV-5000” of ALV Germany) Measurement concentration: 2.5 mass%, 5.0 mass%, 7.5 mass%, 10.0 mass%, 4 points Standard liquid: Toluene Measurement temperature: 23 ° C
  • the refractive index of the solution and the density of the solution necessary for calculating the absolute molecular weight are values measured by the following apparatus.
  • Measuring device for refractive index of solution refractometer (for example, “RA-500” of Kyoto Electronics Co., Ltd.)
  • Solution density measuring device Density / specific gravity meter (for example, “DA-100” manufactured by Kyoto Electronics Industry Co., Ltd.)
  • a method of setting a sample solution in a quartz cell is used, but in addition, a multi-angle laser light scattering detector for injecting a sample solution into a flow cell A method using (MALLS) may be used.
  • the aromatic ring-containing compound is a compound having an aromatic ring and having a molecular weight of 600 or more and 3,000 or less.
  • the molecular weight of [B3] aromatic ring-containing compound means, for example, a weight average molecular weight (Mw) in terms of polystyrene by GPC.
  • Mw weight average molecular weight
  • the composition for forming the lower layer film contains the [B3] aromatic ring-containing compound, the heat resistance and the etching resistance of the lower layer film can be improved as in the case of containing the [B1] organic polymer having an aromatic ring.
  • Specific examples of the aromatic ring-containing compound include compounds described in paragraphs [0117] to [0179] of JP-A-2016-206676.
  • the lower limit of the total content of the [B1] organic polymer, [B2] inorganic polymer and [B3] aromatic ring-containing compound in the composition for forming the lower layer film is preferably 50% by mass, and 70% by mass. % Is more preferable, and 80% by mass is even more preferable. On the other hand, the upper limit of the total content is preferably 99% by mass, and more preferably 95% by mass.
  • Solvents include [A1] photobase generator or [A2] photoacid generator, and [B1] organic polymer, [B2] inorganic polymer, and [B3] aromatic ring contained as necessary. Although it will not specifically limit if arbitrary components, such as a containing compound, can be melt
  • Examples of the alcohol solvent include methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, sec-butanol, t-butanol, n-pentanol, iso-pentanol, sec-pentanol.
  • monoalcohol solvents such as t-pentanol, 2-methylpentanol and 4-methyl-2-pentanol.
  • ether solvent examples include polyhydric alcohol partial ether solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, propylene glycol monoethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate.
  • polyhydric alcohol partial ether acetate solvents such as propylene glycol monomethyl ether acetate (PGMEA) and propylene glycol monoethyl ether acetate.
  • ether solvents As the solvent, ether solvents, ketone solvents and ester solvents are preferable, and ether solvents are more preferable.
  • the ether solvent is preferably a polyhydric alcohol partial ether solvent and a polyhydric alcohol partial ether acetate solvent, more preferably a polyhydric alcohol partial ether solvent and propylene glycol monoalkyl ether acetate, propylene glycol monoethyl ether and PGMEA. Is more preferable.
  • the solvent contains a polyhydric alcohol partial ether acetate solvent, particularly propylene glycol monoalkyl ether acetate, particularly PGMEA, from the viewpoint of improving the coating property of the composition for forming a lower layer film to a substrate such as a silicon wafer. It is preferable to do. Since each component such as the [B1] organic polymer contained in the composition for forming the lower layer film tends to dissolve in the polyhydric alcohol partial ether acetate solvent, the [C] solvent is a polyhydric alcohol partial ether acetate type. By containing a solvent, the applicability
  • PGMEA propylene glycol monoalkyl ether acetate
  • the lower limit of the content ratio of the polyhydric alcohol partial ether acetate solvent in the solvent is preferably 20% by mass, more preferably 60% by mass, and still more preferably 90% by mass. Moreover, as said content rate, 100 mass% is the most preferable.
  • composition for forming an underlayer film may further contain other components such as a crosslinking agent, a surfactant, and an adhesion assistant.
  • the other components can be used alone or in combination of two or more.
  • the cross-linking agent is a component that forms a cross-linking bond such as [B1] organic polymers by the action of heat or acid.
  • the composition for forming a lower layer film contains a crosslinking agent, the hardness of the lower layer film can be improved.
  • crosslinking agent examples include polyfunctional (meth) acrylate compounds, epoxy compounds, hydroxymethyl group-substituted phenol compounds, alkoxyalkyl group-containing phenol compounds, and compounds having an alkoxyalkylated amino group. Specific examples of these compounds include compounds described in paragraphs [0203] to [0207] of JP-A-2016-206676. In addition to the compounds described above, for example, compounds described in paragraphs [0209] to [0210] of JP-A No. 2016-206676 can be used as the crosslinking agent.
  • the surfactant improves the uniformity of the coating surface of the lower layer film to be formed and suppresses the occurrence of coating spots.
  • specific examples of the surfactant for example, those described in paragraph [0216] of JP-A-2016-206676 can be used.
  • the adhesion assistant improves the adhesion between the lower layer film and the underlying substrate.
  • the adhesion assistant for example, a known adhesion assistant can be used.
  • the composition for forming an underlayer film comprises [A1] a photobase generator or [A2] photoacid generator, and [B1] organic polymer, [B2] inorganic polymer, and [B3] aromatic ring that are used as necessary.
  • the contained compound, the [C] solvent, other components, and the like are mixed at a predetermined ratio, and the mixture obtained is preferably prepared by filtering with a membrane filter of about 0.45 ⁇ m.
  • 0.1 mass% is preferred, 1 mass% is more preferred, and 2 mass% is still more preferred.
  • the upper limit of the solid content concentration is preferably 50% by mass, more preferably 30% by mass, and even more preferably 15% by mass.
  • the radiation-sensitive composition for forming a resist film contains 50% by mass or more of [P] metal-containing compound in terms of solid content.
  • the radiation-sensitive composition for forming a resist film preferably further contains a [Q] solvent, and may further contain other components. Since the radiation sensitive composition for forming a resist film contains 50% by mass or more of [P] metal-containing compound in terms of solid content, a resist film having excellent etching resistance can be formed.
  • the metal-containing compound is a compound containing a metal atom.
  • a metal containing compound can be used individually by 1 type or in combination of 2 or more types.
  • the metal atom which comprises a [P] metal containing compound can be used individually by 1 type or in combination of 2 or more types.
  • the “metal atom” is a concept including a semimetal, that is, boron, silicon, germanium, arsenic, antimony and tellurium.
  • the metal atom constituting the metal-containing compound is not particularly limited, and examples thereof include group 3 to group 16 metal atoms.
  • Specific examples of the metal atom include a group 4 metal atom such as titanium, zirconium and hafnium, a group 5 metal atom such as tantalum, a group 6 metal atom such as chromium and tungsten, iron, ruthenium and the like.
  • Group 8 metal atoms such as cobalt, Group 9 metal atoms such as cobalt, Group 10 metal atoms such as nickel, Group 11 metal atoms such as copper, Group 12 metals such as zinc, cadmium and mercury Group 13 metal atoms such as atoms, boron, aluminum, gallium, indium and thallium, Group 14 metal atoms such as germanium, tin and lead, Group 15 metal atoms such as antimony and bismuth, Group such as tellurium Examples include group 16 metal atoms.
  • the metal atom constituting the metal-containing compound includes the first metal atom belonging to Group 4, Group 12, or Group 14 in the periodic table and belonging to the fourth period, the fifth period, or the sixth period. Good. That is, the metal atom may include at least one of titanium, zirconium, hafnium, zinc, cadmium, mercury, germanium, tin, and lead.
  • the [P] metal-containing compound contains the first metal atom, the secondary electrons are emitted from the exposed portion of the resist film, and the [P] metal-containing compound is dissolved in the developer by the secondary electrons. Sex change is promoted more. As a result, the sensitivity of the pattern forming method can be further improved, and pattern collapse can be more reliably suppressed.
  • the first metal atom tin is preferable.
  • the metal-containing compound further has an atom other than the metal atom.
  • a carbon atom, a hydrogen atom, an oxygen atom, a nitrogen atom, a phosphorus atom, a sulfur atom, a halogen atom etc. are mentioned, for example, Among these, a carbon atom, a hydrogen atom, and an oxygen atom are preferable.
  • Other atoms in the metal-containing compound can be used alone or in combination of two or more.
  • the lower limit of the content of the [P] metal-containing compound in terms of solid content in the radiation-sensitive composition for resist film formation is preferably 70% by mass, more preferably 90% by mass, and still more preferably 95% by mass. Further, the content may be 100% by mass.
  • solid content in the radiation sensitive composition for resist film formation means components other than the [Q] solvent mentioned later.
  • the metal-containing compound includes, for example, a hydrolytic condensate reaction, a metal compound having a metal atom and a hydrolyzable group, a hydrolyzate of the metal compound, a hydrolyzed condensate of the metal compound, or a combination thereof. It can be obtained by a method of performing a ligand exchange reaction or the like.
  • the said metal compound can be used individually by 1 type or in combination of 2 or more types.
  • the metal-containing compound is preferably derived from a metal compound having a metal atom and a hydrolyzable group represented by the following formula (1) (hereinafter also referred to as “metal compound (1)”). By using such a metal compound (1), a stable [P] metal-containing compound can be obtained.
  • M is a metal atom.
  • L is a ligand or a monovalent organic group having 1 to 20 carbon atoms.
  • a is an integer of 0-6.
  • the plurality of L may be the same or different.
  • Y is a monovalent hydrolyzable group.
  • b is an integer of 2 to 6.
  • a plurality of Y may be the same or different.
  • L is a ligand or organic group not corresponding to Y.
  • the metal atom represented by M the first metal atom is preferable, and tin is more preferable.
  • the hydrolyzable group represented by Y can be appropriately changed according to the metal atom represented by M.
  • Examples include substituted amino groups.
  • a monovalent hydrocarbon group having 1 to 20 carbon atoms is preferable, and a chain hydrocarbon group is more preferable.
  • An alkyl group is more preferable.
  • halogen atom represented by Y examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Of these, a chlorine atom is preferred.
  • Examples of the alkoxy group represented by Y include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, and an n-butoxy group. Of these, an ethoxy group, i-propoxy group, and n-butoxy group are preferable.
  • acyloxy group represented by Y for example, formyl group, acetoxy group, ethylyloxy group, propionyloxy group, n-butyryloxy group, t-butyryloxy group, t-amylyloxy group, n-hexanecarbonyloxy group, n-octane
  • a carbonyloxy group Of these, an acetoxy group is preferred.
  • Examples of the substituted or unsubstituted amino group represented by Y include an amino group, a methylamino group, a dimethylamino group, a diethylamino group, and a dipropylamino group. Among these, a dimethylamino group and a diethylamino group are preferable.
  • the hydrolyzable group represented by Y includes a substituted or unsubstituted ethynyl group, a halogen atom, an alkoxy group, an acyloxy group, and a substituted or unsubstituted amino group.
  • a halogen atom is more preferable.
  • the hydrolyzable group represented by Y is preferably a halogen atom, an alkoxy group, an acyloxy group, or a substituted or unsubstituted amino group.
  • the hydrolyzable group represented by Y is preferably a halogen atom, an alkoxy group or an acyloxy group.
  • Examples of the ligand represented by L include a monodentate ligand and a polydentate ligand.
  • Examples of the monodentate ligand include a hydroxo ligand, a nitro ligand, and ammonia.
  • polydentate ligand examples include the polydentate ligand exemplified in the [B2-2] complex, diphosphine and the like.
  • diphosphine examples include 1,1-bis (diphenylphosphino) methane, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, and 2,2′-bis (diphenyl). Phosphino) -1,1′-binaphthyl, 1,1′-bis (diphenylphosphino) ferrocene and the like.
  • Examples of the monovalent organic group represented by L include the same groups as those exemplified as the monovalent organic group represented by R X1 in the above formula (I).
  • the lower limit of the carbon number of the monovalent organic group represented by L is preferably 2, and more preferably 3.
  • the upper limit of the carbon number is preferably 10, and more preferably 5.
  • the monovalent organic group represented by L is preferably a substituted or unsubstituted hydrocarbon group, more preferably a substituted or unsubstituted chain hydrocarbon group, still more preferably a substituted or unsubstituted alkyl group, t A butyl group is particularly preferred.
  • A is preferably 1 or 2, and more preferably 1.
  • B is preferably an integer of 2 to 4.
  • a metal halide compound is preferable, and a compound represented by the following formula is more preferable.
  • the metal compound (1) As a method for performing a hydrolysis-condensation reaction on the metal compound (1), for example, in the presence of a base such as tetramethylammonium hydroxide used as necessary, the metal compound (1) in water or a solvent containing water. And the like. In this case, you may add the other compound which has a hydrolysable group as needed.
  • the lower limit of the amount of water used for this hydrolysis-condensation reaction is preferably 0.2 times mole, more preferably 1 time mole, and even more preferably 3 times mole relative to the hydrolyzable group of the metal compound (1) and the like. preferable.
  • [P] In the synthesis reaction of the metal-containing compound, in addition to the metal compound (1), it becomes a compound or a bridging ligand that can be a multidentate ligand represented by L in the compound of the above formula (1). You may add the compound etc. which are obtained.
  • the compound that can be a bridging ligand include compounds having two or more coordinateable groups such as a hydroxy group, an isocyanate group, an amino group, an ester group, and an amide group.
  • the lower limit of the temperature of the synthesis reaction of the metal-containing compound is preferably 0 ° C, and more preferably 10 ° C.
  • 150 degreeC is preferable, 100 degreeC is more preferable, and 50 degreeC is further more preferable.
  • the lower limit of the synthesis reaction of the metal-containing compound is preferably 1 minute, more preferably 10 minutes, and even more preferably 1 hour.
  • the upper limit of the time is preferably 100 hours, more preferably 50 hours, further preferably 24 hours, and particularly preferably 4 hours.
  • the solvent is preferably an organic solvent.
  • Specific examples of the organic solvent include those similar to those exemplified as the [C] solvent in the composition for forming a lower layer film.
  • the solvent is preferably an alcohol solvent, more preferably a monoalcohol solvent, and even more preferably 4-methyl-2-pentanol.
  • the radiation-sensitive composition for forming a resist film may contain other optional components such as a compound that can be a ligand and a surfactant.
  • Examples of the compound that can be a ligand include compounds that can be a multidentate ligand or a bridging ligand. Specifically, the polydentate ligand exemplified in the method for synthesizing a [P] metal-containing compound. Or the thing similar to the compound which can become a bridge
  • a surfactant is a component that exhibits an effect of improving coatability, striation and the like.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol diacrylate.
  • nonionic surfactants such as stearate, the following trade names are KP341 (Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no.
  • the radiation-sensitive composition for forming a resist film is obtained by, for example, mixing [P] a metal-containing compound and other optional components such as a [Q] solvent as necessary, and preferably the obtained mixture. Can be prepared by filtering through a membrane filter having a pore size of about 0.2 ⁇ m.
  • the lower limit of the solid content concentration of the radiation-sensitive composition for forming a resist film is preferably 0.1% by mass, and 0.5% by mass. Is more preferable, 1% by mass is more preferable, and 2% by mass is particularly preferable.
  • the upper limit of the solid content concentration is preferably 50% by mass, more preferably 30% by mass, further preferably 15% by mass, and particularly preferably 4% by mass.
  • the above-described composition for forming a lower layer film is applied to a substrate.
  • the composition for forming the lower layer film is applied to one surface side of the substrate so that the obtained lower layer film has a desired thickness, and then the composition for forming the lower layer film by pre-baking (PB) as necessary.
  • the lower layer film is formed by volatilizing the [C] solvent of the product.
  • the method for applying the composition for forming the lower layer film to the substrate is not particularly limited, and appropriate application means such as spin coating, cast coating, roll coating, etc. can be employed.
  • the substrate include a silicon wafer and a wafer coated with aluminum.
  • the lower limit of the average thickness of the lower layer film formed in this step is preferably 1 nm, more preferably 10 nm, and further preferably 20 nm.
  • the upper limit of the average thickness is preferably 20,000 nm, more preferably 1,000 nm, and even more preferably 100 nm.
  • the lower limit of the PB temperature in this step is preferably 150 ° C, more preferably 200 ° C, and even more preferably 250 ° C.
  • the upper limit of the PB temperature is preferably 400 ° C., more preferably 350 ° C., and further preferably 300 ° C. or less.
  • the lower limit of the PB time is preferably 15 seconds, more preferably 30 seconds, and even more preferably 45 seconds.
  • the upper limit of the PB time is preferably 1,200 seconds, more preferably 600 seconds, and even more preferably 300 seconds.
  • the etching selectivity of the lower layer film and the resist film can be improved.
  • the carbon content rate in an organic underlayer film 50 mass% is preferred, 60 mass% is more preferred, and 80 mass% is still more preferred.
  • the upper limit of the carbon atom content is preferably 99% by mass, and more preferably 95% by mass.
  • the etching selectivity of a lower layer film and a resist film can be improved more by making the said carbon atom content rate into the said range.
  • the carbon atom content is a value measured by elemental analysis by a combustion method.
  • the above-mentioned radiation sensitive composition for forming a resist film is applied directly or indirectly on the lower layer film formed by the lower layer film forming composition coating step. Specifically, the resist film-forming radiation-sensitive composition is applied on the surface of the lower layer film opposite to the substrate so that the resulting resist film has a desired thickness, and then pre-baked (PB) as necessary.
  • the resist film is formed by volatilizing the [Q] solvent or the like of the radiation-sensitive composition for forming a resist film.
  • it does not specifically limit as a method to apply the radiation sensitive composition for resist film formation For example, the method similar to the coating method illustrated in the composition application
  • the lower limit of the average thickness of the resist film formed in this step is preferably 1 nm, more preferably 5 nm, still more preferably 10 nm, and particularly preferably 20 nm.
  • the upper limit of the average thickness is preferably 1,000 nm, more preferably 200 nm, still more preferably 100 nm, and particularly preferably 70 nm.
  • the upper limit of the PB temperature is preferably 140 ° C, and more preferably 100 ° C.
  • the lower limit of the PB time is preferably 5 seconds, and more preferably 10 seconds.
  • the upper limit of the PB time is preferably 600 seconds, and more preferably 300 seconds.
  • a protective film can be provided on the formed resist film in order to prevent the influence of basic impurities and the like contained in the environmental atmosphere.
  • an immersion protective film may be provided on the formed resist film in order to avoid direct contact between the immersion medium and the resist film.
  • the resist film formed in the radiation sensitive composition coating step for forming a resist film is exposed.
  • the resist film is irradiated with radiation through a mask having a predetermined pattern.
  • radiation irradiation through an immersion medium such as water, that is, immersion exposure may be employed as necessary.
  • radiation to be exposed include visible rays, ultraviolet rays, far ultraviolet rays, EUV (wavelength 13.5 nm), electromagnetic waves such as X-rays and ⁇ rays, and charged particle beams such as electron rays and ⁇ rays.
  • EUV and an electron beam are preferable from the viewpoint of improving sensitivity.
  • the resist film exposed in the exposure step is developed.
  • a predetermined negative pattern is formed.
  • the developer include an alkaline aqueous solution and an organic solvent-containing solution. From the viewpoint of developability and the like, an organic solvent-containing solution is preferable.
  • alkaline aqueous solution examples include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, ethyl Dimethylamine, triethanolamine, tetramethylammonium hydroxide (TMAH), pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, 1,5-diazabicyclo- [4.3 0.0] -5-nonene, and an alkaline aqueous solution in which at least one kind is dissolved.
  • TMAH tetramethylammonium hydroxide
  • the lower limit of the content of the alkaline compound in the alkaline aqueous solution is preferably 0.1% by mass, more preferably 0.5% by mass, and even more preferably 1% by mass.
  • 20 mass% is preferable, 10 mass% is more preferable, and 5 mass% is further more preferable.
  • TMAH aqueous solution As the alkaline aqueous solution, a TMAH aqueous solution is preferable, and a 2.38% by mass TMAH aqueous solution is more preferable.
  • organic solvent in the organic solvent-containing liquid examples include the same organic solvents exemplified as the [Q] solvent in the radiation-sensitive composition for forming a resist film.
  • ether solvents are preferred, polyhydric alcohol partial ether acetate solvents are more preferred, and propylene glycol monomethyl ether acetate is even more preferred.
  • the lower limit of the content of the organic solvent in the organic solvent-containing liquid is preferably 80% by mass, more preferably 90% by mass, further preferably 95% by mass, and particularly preferably 99% by mass.
  • a surfactant may be added to the developer as necessary.
  • a surfactant for example, an ionic or nonionic fluorine-based surfactant, a silicone-based surfactant, or the like can be used.
  • a developing method for example, a method in which a substrate is immersed in a tank filled with a developer for a certain period of time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and is left stationary for a certain time (paddle method) ), A method of spraying the developer on the substrate surface (spray method), a method of continuously discharging the developer while scanning the developer discharge nozzle at a constant speed on the substrate rotating at a constant speed (dynamic dispensing method), etc. Is mentioned.
  • the substrate after the development is preferably rinsed with a rinse liquid such as water or alcohol and then dried.
  • a rinse liquid such as water or alcohol
  • the rinsing method for example, a method of continuously discharging a rinsing liquid onto a substrate rotating at a constant speed (rotary coating method), a method of immersing the substrate in a tank filled with the rinsing liquid for a predetermined time (dip method) ), A method (spray method) of spraying a rinse liquid on the substrate surface, and the like.
  • composition for forming lower layer film [A1] Photobase generator, [A2] Photoacid generator, [B1] organic polymer, [B2] inorganic polymer, and [C] solvent used for the preparation of the underlayer film forming composition are shown below. .
  • A-1 2-nitrobenzylcyclohexyl carbamate (compound represented by the following formula (a-1))
  • A-2 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one (compound represented by the following formula (a-2))
  • A-3 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one (compound represented by the following formula (a-3))
  • A-4 Triphenylsulfonium nonafluoro-n-butanesulfonate (compound represented by the following formula (a-4))
  • A-5 Triphenylsulfonium trifluoromethanesulfonate (compound represented by the following formula (a-5))
  • A-6 Triphenylsulfonium-10-camphorsulfonate (compound represented by the following formula (a-6))
  • B-1 Resin represented by the following formula (b-1) (Mw: 2,000)
  • B-2 Resin represented by the following formula (b-2) (Mw: 1,100)
  • B-3 Resin represented by the following formula (b-3) (Mw: 2,000)
  • B-4 Resin represented by the following formula (b-4) (Mw: 1,800)
  • B-5 Resin represented by the following formula (b-5) (Mw: 2,800)
  • B-6 Resin represented by the following formula (b-6) (Mw: 2,000)
  • B-7 Resin represented by the following formula (b-7) (Mw: 1,500)
  • B-8 Resin represented by the following formula (b-8) (Mw: 2,000)
  • B-9 Resin represented by the following formula (b-9) (Mw: 2,000)
  • B-10 Resin represented by the following formula (b-10) (Mw: 3,000)
  • B-11 Resin represented by the following formula (b-11) (Mw: 2,500)
  • B-12 Resin represented by the following formula (b-12) (Mw: 3,000)
  • the organic polymers (B-1) to (B-6) and the inorganic polymers (B-7) to (B-12) were synthesized by a conventionally known method.
  • composition for forming lower layer film [Preparation of composition for forming lower layer film] (Synthesis Example 3) 0.3 parts by mass of the photobase generator (A-1) and 2.7 parts by mass of the organic polymer (B-1) were dissolved in 97.0 parts by mass of the solvent (C-1). This solution was filtered through a membrane filter having a pore diameter of 0.45 ⁇ m to prepare a composition for forming an underlayer film (U-1).
  • a pattern was formed by the following method using the radiation-sensitive composition for forming a resist film and the compositions for forming a lower layer film of Examples and Comparative Examples, and the sensitivity and pattern collapse resistance in each pattern forming method were evaluated.
  • the evaluation results are shown in Table 2.
  • the resist film was irradiated with an electron beam using a simple electron beam drawing apparatus (“HL800D” manufactured by Hitachi, Ltd., output: 50 KeV, current density: 5.0 amperes / cm 2 ). After the electron beam irradiation, the resist film is developed with propylene glycol monomethyl ether acetate at 23 ° C. for 1 minute in the “Clean Track ACT-8” by the paddle method and then dried to form a pattern. Formed.
  • HL800D simple electron beam drawing apparatus
  • sensitivity The pattern is formed while varying the exposure amount, and a line-and-space pattern (1L1S) consisting of a line portion having a line width of 150 nm and a space portion having a width of 150 nm formed between adjacent line portions is 1: 1.
  • the exposure amount (optimal exposure amount) that can be formed with a line width of was determined. This optimum exposure amount was defined as sensitivity ( ⁇ C / cm 2 ). It can be evaluated that the lower the numerical value, the better the sensitivity.
  • the line width of the pattern obtained by varying the exposure dose is gradually narrowed to obtain the minimum line pattern line width in which the resist pattern is not confirmed to be collapsed.
  • the previous dimension (nm) was used. It can be evaluated that the pattern collapse resistance is better as the numerical value of the minimum collapse dimension (nm) is lower.
  • pattern collapse can be suppressed while exhibiting excellent sensitivity. Therefore, this pattern forming method can be suitably used for a semiconductor device processing process and the like that are expected to be further miniaturized in the future.

Landscapes

  • Materials For Photolithography (AREA)

Abstract

This pattern forming method comprises: a step for coating a substrate with an underlayer film-forming composition; a step for directly or indirectly coating a underlayer film formed in the underlayer film-forming composition coating step with a resist film-forming radiation sensitive composition; a step for exposing the resist film formed in the resist film-forming radiation sensitive composition coating step; and a step for developing the exposed resist film, wherein the underlayer film-forming composition contains a radiation sensitive base generator for generating a base through the effect of radiation or a radiation sensitive acid generator for generating an acid through the effect of radiation, and the resist film-forming radiation sensitive composition contains 50% or more by mass, in terms of the solid content, of a metal-containing compound. Preferably, the underlayer film forming composition further contains an organic polymer, and an organic underlayer film is formed in the underlayer film-forming composition coating step. The carbon content in the organic underlayer film is preferably 50% by mass or more.

Description

パターン形成方法Pattern formation method
 本発明は、パターン形成方法に関する。 The present invention relates to a pattern forming method.
 リソグラフィーによる微細加工に用いられる一般的なパターン形成方法では、レジスト膜形成用感放射線性組成物により形成したレジスト膜を、遠紫外線(例えばArFエキシマレーザー光、KrFエキシマレーザー光等)、極端紫外線(EUV)等の電磁波や、電子線等の荷電粒子線などで露光して露光部で酸を発生させる。そして、この酸を触媒とする化学反応により露光部及び未露光部で現像液に対する溶解速度に差を生じさせ、基板上にパターンを形成する。形成されたパターンは、基板加工におけるマスク等として用いることができる。 In a general pattern forming method used for microfabrication by lithography, a resist film formed from a radiation-sensitive composition for forming a resist film is treated with deep ultraviolet light (for example, ArF excimer laser light, KrF excimer laser light, etc.), extreme ultraviolet light ( The exposed portion is exposed to an electromagnetic wave such as EUV) or a charged particle beam such as an electron beam to generate an acid at the exposed portion. Then, a chemical reaction using this acid as a catalyst causes a difference in the dissolution rate with respect to the developer in the exposed area and the unexposed area, thereby forming a pattern on the substrate. The formed pattern can be used as a mask or the like in substrate processing.
 かかるパターン形成方法には、加工技術の微細化に伴って感度等のレジスト性能を向上させることが要求されている。この要求に対し、レジスト膜形成用感放射線性組成物に用いられる有機重合体、酸発生剤、その他の成分の種類、分子構造等が検討され、さらにその組み合わせについても詳細に検討されている(特開平11-125907号公報、特開平8-146610号公報及び特開2000-298347号公報参照)。また、パターン形成方法においては、感度等を向上するために有機重合体の代わりに金属含有化合物を含有するレジスト膜形成用感放射線性組成物を用いることや、より微細なパターンをレジスト膜に形成するために下層膜を用いることも検討されている。 Such a pattern forming method is required to improve resist performance such as sensitivity as the processing technique becomes finer. In response to this requirement, the types of organic polymers, acid generators and other components used in the radiation-sensitive composition for resist film formation, the molecular structure, and the like have been studied, and further their combinations have been studied in detail ( (See JP-A-11-125907, JP-A-8-146610, and JP-A-2000-298347). In addition, in the pattern formation method, a radiation sensitive composition for forming a resist film containing a metal-containing compound is used instead of an organic polymer in order to improve sensitivity, or a finer pattern is formed on the resist film. Therefore, the use of a lower layer film has been studied.
特開平11-125907号公報JP-A-11-125907 特開平8-146610号公報JP-A-8-146610 特開2000-298347号公報JP 2000-298347 A
 これにより、現状、パターンの微細化は線幅40nm以下のレベルまで進展しているが、パターン形成方法においてはさらに高いレジスト性能が求められ、特に感度のさらなる向上が求められている。また、上記従来の下層膜形成用組成物を用いる場合、下層膜上に形成されるレジスト膜におけるパターンの倒壊、いわゆるパターン倒れが生じ易くなる傾向にあるため、このパターン倒れの抑制も求められている。 As a result, pattern miniaturization has progressed to the level of 40 nm or less at present, but higher resist performance is required in the pattern forming method, and further improvement in sensitivity is particularly required. In addition, when using the conventional composition for forming a lower layer film, the pattern collapse in the resist film formed on the lower layer film, so-called pattern collapse tends to occur, so suppression of this pattern collapse is also required. Yes.
 本発明は以上のような事情に基づいてなされたものであり、その目的は、優れた感度を発揮しつつパターン倒れを抑制できるパターン形成方法を提供することにある。 The present invention has been made based on the above circumstances, and an object thereof is to provide a pattern forming method capable of suppressing pattern collapse while exhibiting excellent sensitivity.
 上記課題を解決するためになされた発明は、基板に下層膜形成用組成物を塗工する工程と、上記下層膜形成用組成物塗工工程により形成された下層膜上に直接又は間接にレジスト膜形成用感放射線性組成物を塗工する工程と、上記レジスト膜形成用感放射線性組成物塗工工程により形成されたレジスト膜を露光する工程と、上記露光されたレジスト膜を現像する工程とを備え、上記下層膜形成用組成物が、放射線の作用により塩基を発生する感放射線性塩基発生剤、又は放射線の作用により酸を発生する感放射線性酸発生剤を含有し、上記レジスト膜形成用感放射線性組成物が、金属含有化合物を固形分換算で50質量%以上含有するパターン形成方法である。 The invention made in order to solve the above-mentioned problems includes a step of applying a composition for forming an underlayer film on a substrate, and a resist directly or indirectly on an underlayer film formed by the above-described composition application process for forming an underlayer film. A step of applying the radiation-sensitive composition for film formation, a step of exposing the resist film formed by the radiation-sensitive composition application step for forming the resist film, and a step of developing the exposed resist film The underlayer film forming composition contains a radiation sensitive base generator that generates a base by the action of radiation or a radiation sensitive acid generator that generates an acid by the action of radiation, and the resist film The forming radiation-sensitive composition is a pattern forming method containing a metal-containing compound in an amount of 50% by mass or more in terms of solid content.
 ここで「放射線」とは、遠紫外線、極端紫外線等の電磁波だけでなく、電子線等の荷電粒子線を含む概念である。 Here, "radiation" is a concept that includes not only electromagnetic waves such as far ultraviolet rays and extreme ultraviolet rays but also charged particle beams such as electron beams.
 本発明のパターン形成方法によれば、優れた感度を発揮しつつパターン倒れを抑制できる。従って、このパターン形成方法は、今後ますます微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。 According to the pattern forming method of the present invention, pattern collapse can be suppressed while exhibiting excellent sensitivity. Therefore, this pattern forming method can be suitably used for a semiconductor device processing process and the like that are expected to be further miniaturized in the future.
<パターン形成方法>
 当該パターン形成方法は、基板に下層膜形成用組成物を塗工する工程(下層膜形成用組成物塗工工程)と、上記下層膜形成用組成物塗工工程により形成された下層膜上に直接又は間接にレジスト膜形成用感放射線性組成物を塗工する工程(レジスト膜形成用感放射線性組成物塗工工程)と、上記レジスト膜形成用感放射線性組成物塗工工程により形成されたレジスト膜を露光する工程(露光工程)と、上記露光されたレジスト膜を現像する工程(現像工程)とを備える。上記下層膜形成用組成物は、放射線の作用により塩基を発生する感放射線性塩基発生剤(以下、「[A1]光塩基発生剤」ともいう)、又は放射線の作用により酸を発生する感放射線性酸発生剤(以下、「[A2]光酸発生剤」ともいう)を含有する。レジスト膜形成用感放射線性組成物は、金属含有化合物(以下、「[P]金属含有化合物」ともいう)を固形分換算で50質量%以上含有する。
<Pattern formation method>
The pattern forming method includes a step of applying a composition for forming an underlayer film on a substrate (a composition applying step for forming an underlayer film) and an underlayer film formed by the above-described composition applying step for forming an underlayer film The resist film-forming radiation-sensitive composition is applied directly or indirectly (resist-film-forming radiation-sensitive composition coating process) and the resist film-forming radiation-sensitive composition coating process. A step of exposing the resist film (exposure step) and a step of developing the exposed resist film (development step). The composition for forming an underlayer film is a radiation-sensitive base generator that generates a base by the action of radiation (hereinafter also referred to as “[A1] photobase generator”), or a radiation-sensitive that generates an acid by the action of radiation. Acid acid generator (hereinafter also referred to as “[A2] photoacid generator”). The radiation-sensitive composition for forming a resist film contains a metal-containing compound (hereinafter also referred to as “[P] metal-containing compound”) in an amount of 50% by mass or more in terms of solid content.
 当該パターン形成方法は、上述の各工程を備え、下層膜形成用組成物塗工工程に用いる下層膜形成用組成物が[A1]光塩基発生剤又は[A2]光酸発生剤を含有し、レジスト膜形成用感放射線性組成物塗工工程に用いるレジスト膜形成用感放射線性組成物が[P]金属含有化合物を固形分換算で50質量%以上含有することで、優れた感度を発揮しつつパターン倒れを抑制できる。当該パターン形成方法が上記構成を有することで上記効果を奏する理由については必ずしも明確ではないが、例えば以下のように推察できる。すなわち、当該パターン形成方法では、レジスト膜の露光部において、[P]金属含有化合物等が露光光を吸収して二次電子を放出し、この二次電子によって[P]金属含有化合物の架橋等が生じることで現像液に対する溶解性が低下するため、パターンを形成できると考えられる。ここで、当該パターン形成方法では、下層膜に[A1]光塩基発生剤又は[A2]光酸発生剤が含まれるため、下層膜におけるレジスト膜の露光部の下方の領域では露光光の作用により塩基又は酸が生じ、この塩基又は酸がレジスト膜の露光部の底部における[P]金属含有化合物の架橋等を促進すると考えられる。このように、当該パターン形成方法では、下層膜に含まれる[A1]光塩基発生剤又は[A2]光酸発生剤により、レジスト膜の露光部の底部における[P]金属含有化合物の架橋等が促進されるため、優れた感度を発揮しつつパターン倒れを抑制できると考えられる。 The pattern forming method includes the above-described steps, and the underlayer film forming composition used in the underlayer film forming composition coating step contains [A1] a photobase generator or [A2] a photoacid generator, The radiation sensitive composition for resist film formation used in the resist film forming radiation sensitive composition coating step contains [P] metal-containing compound in an amount of 50% by mass or more in terms of solid content, thereby exhibiting excellent sensitivity. While pattern collapse can be suppressed. The reason why the pattern forming method has the above-described configuration provides the above-mentioned effect is not necessarily clear, but can be estimated as follows, for example. That is, in the pattern forming method, in the exposed portion of the resist film, the [P] metal-containing compound or the like absorbs exposure light and emits secondary electrons, and the secondary electrons crosslink the [P] metal-containing compound or the like. It is considered that the pattern can be formed because the solubility in the developing solution is reduced due to the occurrence of. Here, in the pattern formation method, since the lower layer film contains [A1] photobase generator or [A2] photoacid generator, the region below the exposed portion of the resist film in the lower layer film is caused by the action of exposure light. It is considered that a base or acid is generated, and this base or acid promotes cross-linking of the [P] metal-containing compound at the bottom of the exposed portion of the resist film. As described above, in the pattern formation method, the [P1] metal-containing compound at the bottom of the exposed portion of the resist film is cross-linked by the [A1] photobase generator or the [A2] photoacid generator contained in the lower layer film. Therefore, it is considered that pattern collapse can be suppressed while exhibiting excellent sensitivity.
 以下、当該パターン形成方法について、下層膜形成用組成物塗工工程に用いる下層膜形成用組成物と、レジスト膜形成用感放射線性組成物塗工工程に用いるレジスト膜形成用感放射線性組成物とを説明した後、各工程の詳細について説明する。 Hereinafter, for the pattern formation method, the underlayer film forming composition used in the underlayer film forming composition coating process and the resist film forming radiation sensitive composition used in the resist film forming radiation sensitive composition coating process Then, the details of each step will be described.
[下層膜形成用組成物]
 下層膜形成用組成物は、[A1]光塩基発生剤又は[A2]光酸発生剤を含有する。下層膜形成用組成物は、有機重合体(以下、「[B1]有機重合体」ともいう)、無機重合体(以下、「[B2]無機重合体」ともいう)、及び/又は分子量が600以上3,000以下の芳香環含有化合物(以下、「[B3]芳香環含有化合物」ともいう)をさらに含有することが好ましく、[B1]有機重合体をさらに含有することがより好ましい。また、下層膜形成用組成物は、溶媒(以下、「[C]溶媒」ともいう)をさらに含有することが好ましい。ここで「有機重合体」とは、主鎖中に炭素原子が含まれる重合体をいい、「無機重合体」とは、主鎖中に炭素原子が含まれない重合体をいう。以下、各成分について説明する。
[Composition for forming lower layer film]
The underlayer film forming composition contains [A1] a photobase generator or [A2] a photoacid generator. The composition for forming the lower layer film has an organic polymer (hereinafter also referred to as “[B1] organic polymer”), an inorganic polymer (hereinafter also referred to as “[B2] inorganic polymer”), and / or a molecular weight of 600. It is preferable to further contain 3,000 or less aromatic ring-containing compounds (hereinafter also referred to as “[B3] aromatic ring-containing compound”), and more preferably [B1] an organic polymer. Moreover, it is preferable that the composition for lower layer film formation contains a solvent (henceforth "[C] solvent") further. Here, the “organic polymer” refers to a polymer containing a carbon atom in the main chain, and the “inorganic polymer” refers to a polymer not containing a carbon atom in the main chain. Hereinafter, each component will be described.
([A1]光塩基発生剤)
 [A1]光塩基発生剤は、放射線の作用により塩基を発生する成分である。[A1]光塩基発生剤から発生する塩基としては、例えば第一級アミン、第二級アミン、第三級アミン等のアミン類などが挙げられる。[A1]光塩基発生剤は、1種単独で又は2種以上を組み合わせて用いることができる。
([A1] Photobase generator)
[A1] The photobase generator is a component that generates a base by the action of radiation. [A1] Examples of the base generated from the photobase generator include amines such as primary amine, secondary amine, and tertiary amine. [A1] The photobase generator can be used alone or in combination of two or more.
 [A1]光塩基発生剤としては、例えばコバルト等の遷移金属錯体、オルトニトロベンジルカルバメート類、α,α-ジメチル-3,5-ジメトキシベンジルカルバメート類、アシルオキシイミノ類、アセトフェノン系化合物等を挙げることができる。 [A1] Examples of the photobase generator include transition metal complexes such as cobalt, orthonitrobenzyl carbamates, α, α-dimethyl-3,5-dimethoxybenzyl carbamates, acyloxyiminos, acetophenone compounds, and the like. Can do.
 コバルトの遷移金属錯体としては、例えば特開2017-009673号の段落[0198]に記載の化合物等が挙げられる。 Examples of the cobalt transition metal complex include compounds described in paragraph [0198] of JP-A-2017-009673.
 オルトニトロベンジルカルバメート類としては、例えば[[(2-ニトロベンジル)オキシ]カルボニル]メチルアミン、[[(2-ニトロベンジル)オキシ]カルボニル]プロピルアミン、[[(2-ニトロベンジル)オキシ]カルボニル]ヘキシルアミン、[[(2-ニトロベンジル)オキシ]カルボニル]シクロヘキシルアミン、[[(2-ニトロベンジル)オキシ]カルボニル]アニリン、[[(2-ニトロベンジル)オキシ]カルボニル]ピペリジン、ビス[[(2-ニトロベンジル)オキシ]カルボニル]ヘキサメチレンジアミン、ビス[[(2-ニトロベンジル)オキシ]カルボニル]フェニレンジアミン、ビス[[(2-ニトロベンジル)オキシ]カルボニル]トルエンジアミン、ビス[[(2-ニトロベンジル)オキシ]カルボニル]ジアミノジフェニルメタン、ビス[[(2-ニトロベンジル)オキシ]カルボニル]ピペラジン、[[(2,6-ジニトロベンジル)オキシ]カルボニル]メチルアミン、[[(2,6-ジニトロベンジル)オキシ]カルボニル]プロピルアミン、[[(2,6-ジニトロベンジル)オキシ]カルボニル]ヘキシルアミン、[[(2,6-ジニトロベンジル)オキシ]カルボニル]シクロヘキシルアミン、[[(2,6-ジニトロベンジル)オキシ]カルボニル]アニリン、[[(2,6-ジニトロベンジル)オキシ]カルボニル]ピペリジン、ビス[[(2,6-ジニトロベンジル)オキシ]カルボニル]ヘキサメチレンジアミン、ビス[[(2,6-ジニトロベンジル)オキシ]カルボニル]フェニレンジアミン、ビス[[(2,6-ジニトロベンジル)オキシ]カルボニル]トルエンジアミン、ビス[[(2,6-ジニトロベンジル)オキシ]カルボニル]ジアミノジフェニルメタン、ビス[[(2,6-ジニトロベンジル)オキシ]カルボニル]ピペラジン等が挙げられる。 Examples of orthonitrobenzyl carbamates include [[(2-nitrobenzyl) oxy] carbonyl] methylamine, [[(2-nitrobenzyl) oxy] carbonyl] propylamine, and [[(2-nitrobenzyl) oxy] carbonyl. ] Hexylamine, [[(2-nitrobenzyl) oxy] carbonyl] cyclohexylamine, [[(2-nitrobenzyl) oxy] carbonyl] aniline, [[(2-nitrobenzyl) oxy] carbonyl] piperidine, bis [[ (2-Nitrobenzyl) oxy] carbonyl] hexamethylenediamine, bis [[(2-nitrobenzyl) oxy] carbonyl] phenylenediamine, bis [[(2-nitrobenzyl) oxy] carbonyl] toluenediamine, bis [[( 2-Nitrobenzyl) oxy Carbonyl] diaminodiphenylmethane, bis [[(2-nitrobenzyl) oxy] carbonyl] piperazine, [[(2,6-dinitrobenzyl) oxy] carbonyl] methylamine, [[(2,6-dinitrobenzyl) oxy] carbonyl ] Propylamine, [[(2,6-dinitrobenzyl) oxy] carbonyl] hexylamine, [[(2,6-dinitrobenzyl) oxy] carbonyl] cyclohexylamine, [[(2,6-dinitrobenzyl) oxy] Carbonyl] aniline, [[(2,6-dinitrobenzyl) oxy] carbonyl] piperidine, bis [[(2,6-dinitrobenzyl) oxy] carbonyl] hexamethylenediamine, bis [[(2,6-dinitrobenzyl) Oxy] carbonyl] phenylenediamine, bis [ (2,6-dinitrobenzyl) oxy] carbonyl] toluenediamine, bis [[(2,6-dinitrobenzyl) oxy] carbonyl] diaminodiphenylmethane, bis [[(2,6-dinitrobenzyl) oxy] carbonyl] piperazine, etc. Is mentioned.
 α,α-ジメチル-3,5-ジメトキシベンジルカルバメート類としては、例えば[[(α,α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]メチルアミン、[[(α,α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]プロピルアミン、[[(α,α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]ヘキシルアミン、[[(α,α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]シクロヘキシルアミン、[[(α,α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]アニリン、[[(α,α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]ピペリジン、ビス[[(α,α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]ヘキサメチレンジアミン、ビス[[(α,α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]フェニレンジアミン、ビス[[(α,α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]トルエンジアミン、ビス[[(α,α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]ジアミノジフェニルメタン、ビス[[(α,α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]ピペラジン等が挙げられる。 Examples of α, α-dimethyl-3,5-dimethoxybenzyl carbamates include [[(α, α-dimethyl-3,5-dimethoxybenzyl) oxy] carbonyl] methylamine, [[(α, α-dimethyl- 3,5-dimethoxybenzyl) oxy] carbonyl] propylamine, [[(α, α-dimethyl-3,5-dimethoxybenzyl) oxy] carbonyl] hexylamine, [[(α, α-dimethyl-3,5- Dimethoxybenzyl) oxy] carbonyl] cyclohexylamine, [[(α, α-dimethyl-3,5-dimethoxybenzyl) oxy] carbonyl] aniline, [[(α, α-dimethyl-3,5-dimethoxybenzyl) oxy] Carbonyl] piperidine, bis [[(α, α-dimethyl-3,5-dimethoxybenzyl) oxy] carbonyl] he Samethylenediamine, bis [[(α, α-dimethyl-3,5-dimethoxybenzyl) oxy] carbonyl] phenylenediamine, bis [[(α, α-dimethyl-3,5-dimethoxybenzyl) oxy] carbonyl] toluene Diamine, bis [[(α, α-dimethyl-3,5-dimethoxybenzyl) oxy] carbonyl] diaminodiphenylmethane, bis [[(α, α-dimethyl-3,5-dimethoxybenzyl) oxy] carbonyl] piperazine, etc. Can be mentioned.
 アシルオキシイミノ類としては、例えばプロピオニルアセトフェノンオキシム、プロピオニルベンゾフェノンオキシム、プロピオニルアセトンオキシム、ブチリルアセトフェノンオキシム、ブチリルベンゾフェノンオキシム、ブチリルアセトンオキシム、アジポイルアセトフェノンオキシム、アジポイルベンゾフェノンオキシム、アジポイルアセトンオキシム、アクロイルアセトフェノンオキシム、アクロイルベンゾフェノンオキシム、アクロイルアセトンオキシム等が挙げられる。 Examples of acyloxyiminos include propionyl acetophenone oxime, propionyl benzophenone oxime, propionyl acetone oxime, butyryl acetophenone oxime, butyryl benzophenone oxime, butyryl acetone oxime, adipoyl acetophenone oxime, adipoyl benzophenone oxime, adipoyl acetone Examples thereof include oxime, acryloyl acetophenone oxime, acryloyl benzophenone oxime, and acryloyl acetone oxime.
 アセトフェノン系化合物としては、例えば2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルホリノプロパン-1-オン等のα-アミノケトン構造を有するアセトフェノン系化合物などが挙げられる。 Examples of acetophenone compounds include 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one, 2-dimethylamino-2- (4-methylbenzyl) -1- (4-morpho Acetophenone compounds having an α-aminoketone structure, such as phosphorus-4-yl-phenyl) -butan-1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, etc. Is mentioned.
 [A1]光塩基発生剤としては、上述した化合物例以外にも、例えば2-ニトロベンジルシクロヘキシルカルバメート、O-カルバモイルヒドロキシアミド及びO-カルバモイルヒドロキシアミド等が挙げられる。 [A1] Photobase generators include, for example, 2-nitrobenzylcyclohexyl carbamate, O-carbamoylhydroxyamide, O-carbamoylhydroxyamide and the like in addition to the compound examples described above.
 [A1]光塩基発生剤としては、アセトフェノン系化合物及び2-ニトロベンジルシクロヘキシルカルバメートが好ましく、α-アミノケトン構造を有するアセトフェノン系化合物及び2-ニトロベンジルシクロヘキシルカルバメートがより好ましく、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタン-1-オンがさらに好ましい。 [A1] As the photobase generator, an acetophenone compound and 2-nitrobenzylcyclohexyl carbamate are preferable, an acetophenone compound having an α-aminoketone structure and 2-nitrobenzylcyclohexyl carbamate are more preferable, and 2-methyl-1- [ 4- (Methylthio) phenyl] -2-morpholinopropan-1-one and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one are more preferred.
([A2]光酸発生剤)
 [A2]光酸発生剤は、放射線の作用により酸を発生する成分である。[A2]光酸発生剤は、1種単独で又は2種以上を組み合わせて用いることができる。
([A2] Photoacid generator)
[A2] The photoacid generator is a component that generates an acid by the action of radiation. [A2] The photoacid generator can be used alone or in combination of two or more.
 [A2]光酸発生剤から発生する酸としては、スルホン酸が好ましく、炭素数1~10のフッ素化アルキルスルホン酸及び脂環構造を有するスルホン酸がより好ましく、パーフルオロアルキルスルホン酸及び10-カンファースルホン酸がさらに好ましく、トリフルオロメタンスルホン酸、ノナフルオロブタンスルホン酸及び10-カンファースルホン酸が特に好ましい。 [A2] The acid generated from the photoacid generator is preferably a sulfonic acid, more preferably a fluorinated alkylsulfonic acid having 1 to 10 carbon atoms and a sulfonic acid having an alicyclic structure, and perfluoroalkylsulfonic acid and 10- Camphorsulfonic acid is more preferable, and trifluoromethanesulfonic acid, nonafluorobutanesulfonic acid and 10-camphorsulfonic acid are particularly preferable.
 [A2]光酸発生剤としては、例えばオニウム塩化合物、N-スルホニルオキシイミド化合物、ハロゲン含有化合物、ジアゾケトン化合物等が挙げられる。 [A2] Examples of the photoacid generator include onium salt compounds, N-sulfonyloxyimide compounds, halogen-containing compounds, diazoketone compounds, and the like.
 オニウム塩化合物としては、例えばスルホニウム塩、テトラヒドロチオフェニウム塩、ヨードニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等が挙げられる。 Examples of the onium salt compounds include sulfonium salts, tetrahydrothiophenium salts, iodonium salts, phosphonium salts, diazonium salts, pyridinium salts, and the like.
 上記オニウム化合物のアニオンとしては、例えば下記式で表されるアニオン等が挙げられる。 Examples of the anion of the onium compound include an anion represented by the following formula.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記オニウム化合物のカチオンとしては、例えば下記式で表されるカチオン等が挙げられる。 Examples of the cation of the onium compound include a cation represented by the following formula.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 オニウム塩化合物としては、上記アニオンと上記カチオンとを適宜組み合わせたもの等を用いることができる。 As the onium salt compound, an appropriate combination of the above anions and the above cations can be used.
 N-スルホニルオキシイミド化合物としては、例えば下記式で表される化合物等が挙げられる。 Examples of the N-sulfonyloxyimide compound include compounds represented by the following formulas.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 [A2]光酸発生剤としては、オニウム塩化合物が好ましく、スルホニウム塩がより好ましく、トリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオロブタンスルホネート及びトリフェニルスルホニウムカンファースルホネートがさらに好ましい。 [A2] As the photoacid generator, an onium salt compound is preferable, a sulfonium salt is more preferable, and triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium nonafluorobutanesulfonate, and triphenylsulfonium camphorsulfonate are more preferable.
 下層膜形成用組成物における[A1]光塩基発生剤又は[A2]光酸発生剤の固形分換算での含有量の下限としては、0.1質量%が好ましく、1質量%がより好ましく、5質量%がさらに好ましい。一方、上記含有量の上限としては、50質量%が好ましく、30質量%がより好ましく、20質量%がさらに好ましい。上記含有量を上記範囲とすることで、当該パターン形成方法の感度をより向上することができると共にパターン倒れをより確実に抑制することができる。ここで下層膜形成用組成物における固形分とは、後述する[C]溶媒以外の成分をいう。 The lower limit of the content in terms of solid content of [A1] photobase generator or [A2] photoacid generator in the composition for forming an underlayer film is preferably 0.1% by mass, more preferably 1% by mass, 5 mass% is more preferable. On the other hand, the upper limit of the content is preferably 50% by mass, more preferably 30% by mass, and still more preferably 20% by mass. By making the said content into the said range, the sensitivity of the said pattern formation method can be improved more, and pattern collapse can be suppressed more reliably. Here, solid content in the composition for lower layer film formation means components other than the [C] solvent mentioned later.
([B1]有機重合体)
 [B1]有機重合体と、後述する[B2]無機重合体及び[B3]芳香環含有化合物とは、当該パターン形成方法において形成する下層膜のベース樹脂となる。下層膜形成用組成物が[B1]有機重合体を含有することで、下層膜及びレジスト膜のエッチング選択性を向上することができる。[B1]有機重合体は、1種単独で又は2種以上を組み合わせて用いることができる。
([B1] organic polymer)
[B1] The organic polymer, [B2] inorganic polymer, and [B3] aromatic ring-containing compound described later serve as a base resin for the lower layer film formed in the pattern forming method. When the composition for forming a lower layer film contains the [B1] organic polymer, the etching selectivity of the lower layer film and the resist film can be improved. [B1] The organic polymer can be used alone or in combination of two or more.
 [B1]有機重合体の重量平均分子量(Mw)の上限としては、100,000が好ましく、30,000がより好ましい。ここで、本明細書におけるMwと、後述する数平均分子量(Mn)とは、以下の条件によるゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。
 GPCカラム:例えば東ソー社の「G2000HXL」2本、「G3000HXL」1本、及び「G4000HXL」1本
 カラム温度:40℃
 溶出溶媒:テトラヒドロフラン
 流速:1.0mL/分
 試料濃度:1.0質量%
 試料注入量:100μL
 検出器:示差屈折計
 標準物質:単分散ポリスチレン
[B1] The upper limit of the weight average molecular weight (Mw) of the organic polymer is preferably 100,000, more preferably 30,000. Here, Mw in this specification and the number average molecular weight (Mn) described later are values measured by gel permeation chromatography (GPC) under the following conditions.
GPC column: For example, two “G2000HXL”, one “G3000HXL” and one “G4000HXL” manufactured by Tosoh Corporation Column temperature: 40 ° C.
Elution solvent: Tetrahydrofuran Flow rate: 1.0 mL / min Sample concentration: 1.0% by mass
Sample injection volume: 100 μL
Detector: Differential refractometer Standard material: Monodisperse polystyrene
 [B1]有機重合体としては、耐熱性及びエッチング耐性を向上する観点から、芳香環を有する有機重合体が好ましく、主鎖に芳香環を有する有機重合体がより好ましく、重縮合により得られ、主鎖に芳香環を有する有機重合体がさらに好ましい。 [B1] As the organic polymer, from the viewpoint of improving heat resistance and etching resistance, an organic polymer having an aromatic ring is preferable, an organic polymer having an aromatic ring in the main chain is more preferable, and obtained by polycondensation, More preferred are organic polymers having an aromatic ring in the main chain.
 芳香環としては、例えばベンゼン環、ナフタレン環、アントラセン環、インデン環、ピレン環、フルオレニリデンビフェニル環、フルオレニリデンビナフタレン環等の芳香族炭素環や、フラン環、ピロール環、チオフェン環、ホスホール環、ピラゾール環、オキサゾール環、イソオキサゾール環、チアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環等の芳香族複素環などが挙げられる。 As the aromatic ring, for example, an aromatic carbon ring such as a benzene ring, naphthalene ring, anthracene ring, indene ring, pyrene ring, fluorenylidene biphenyl ring, fluorenylidene binaphthalene ring, furan ring, pyrrole ring, thiophene ring, Examples include phosphole ring, pyrazole ring, oxazole ring, isoxazole ring, thiazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring and triazine ring.
 [B1]有機重合体としては、例えば特開2016-206676号公報の段落[0040]~[0116]に記載のもの等を用いることができるが、下層膜のエッチング耐性をより向上する観点から、ノボラック系樹脂、レゾール系樹脂、芳香環含有ビニル系樹脂、アセナフチレン系樹脂、インデン系樹脂、ポリアリーレン系樹脂、トリアジン系樹脂、カリックスアレーン系樹脂、フラーレン系樹脂及びピレン系樹脂が好ましく、ノボラック系樹脂及びアセナフチレン系樹脂がより好ましい。 [B1] As the organic polymer, for example, those described in paragraphs [0040] to [0116] of JP-A-2016-206676 can be used, but from the viewpoint of further improving the etching resistance of the lower layer film, Novolac resins, resol resins, aromatic ring-containing vinyl resins, acenaphthylene resins, indene resins, polyarylene resins, triazine resins, calixarene resins, fullerene resins and pyrene resins are preferred, novolak resins And acenaphthylene resins are more preferred.
 ノボラック系樹脂、レゾール系樹脂、芳香環含有ビニル系樹脂、アセナフチレン系樹脂、インデン系樹脂、ポリアリーレン系樹脂、トリアジン系樹脂、フラーレン系樹脂又はピレン系樹脂のMwの下限としては、500が好ましく、1,000がより好ましく、2,000がさらに好ましい。一方、上記Mwの上限としては、10,000が好ましい。また、これらの樹脂のMnに対するMwの比(Mw/Mn)の下限としては、1.1が好ましい。一方、上記Mw/Mnの上限としては、5が好ましく、3がより好ましく、2がさらに好ましい。上記Mwと、Mw/Mnとを上記範囲とすることで、下層膜の平坦性及び表面塗布性を向上することができる。 As the lower limit of Mw of novolak resin, resol resin, aromatic ring-containing vinyl resin, acenaphthylene resin, indene resin, polyarylene resin, triazine resin, fullerene resin or pyrene resin, 500 is preferable, 1,000 is more preferred, and 2,000 is even more preferred. On the other hand, the upper limit of Mw is preferably 10,000. The lower limit of the ratio of Mw to Mn (Mw / Mn) of these resins is preferably 1.1. On the other hand, the upper limit of the Mw / Mn is preferably 5, more preferably 3, and even more preferably 2. By setting the Mw and Mw / Mn within the above ranges, the flatness and surface coatability of the lower layer film can be improved.
 カリックスアレーン系樹脂の分子量の下限としては、レジスト下層膜の平坦性を向上する観点から、500が好ましく、700がより好ましく、1,000がさらに好ましい。上記分子量の上限としては、5,000が好ましく、3,000がより好ましく、1,500がさらに好ましい。カリックスアレーン系樹脂が分子量分布を有する場合、カリックスアレーン系樹脂の分子量とは、GPCによるポリスチレン換算のMwを意味する。 The lower limit of the molecular weight of the calixarene resin is preferably 500, more preferably 700, and even more preferably 1,000 from the viewpoint of improving the flatness of the resist underlayer film. The upper limit of the molecular weight is preferably 5,000, more preferably 3,000, and further preferably 1,500. When the calixarene resin has a molecular weight distribution, the molecular weight of the calixarene resin means Mw in terms of polystyrene by GPC.
([B2]無機重合体)
 [B2]無機重合体としては、例えば[B2-1]ポリシロキサンや、複数の金属原子と、この金属原子間を架橋する酸素原子(以下、「架橋酸素原子」ともいう)と、上記金属原子に配位する多座配位子とを含む[B2-2]錯体(複核錯体)等が挙げられる。[B2]無機重合体は、1種単独で又は2種以上を組み合わせて用いることができる。
([B2] inorganic polymer)
[B2] Examples of the inorganic polymer include [B2-1] polysiloxane, a plurality of metal atoms, an oxygen atom that bridges between the metal atoms (hereinafter also referred to as “bridged oxygen atom”), and the metal atom. And a [B2-2] complex (binuclear complex) containing a multidentate ligand coordinated to the. [B2] The inorganic polymer can be used alone or in combination of two or more.
〔[B2-1]ポリシロキサン〕
 [B2-1]ポリシロキサンとしては、例えば下記式(I)で表される構造単位(I)、及び/又は下記式(II)で表される構造単位(II)を有するもの等が挙げられる。[B2-1]ポリシロキサンにおける各構造単位は、それぞれ1種単独で又は2種以上を組み合わせて用いることができる。
[[B2-1] polysiloxane]
Examples of the [B2-1] polysiloxane include those having the structural unit (I) represented by the following formula (I) and / or the structural unit (II) represented by the following formula (II). . [B2-1] Each structural unit in the polysiloxane can be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記式(I)中、RX1は、炭素数1~20の1価の有機基である。 In the above formula (I), R X1 is a monovalent organic group having 1 to 20 carbon atoms.
 ここで「有機基」とは、少なくとも1つの炭素原子を有する基をいう。 Here, “organic group” refers to a group having at least one carbon atom.
 RX1で表される1価の有機基としては、1価の炭化水素基、1価のフッ素化炭化水素基、及び1価の炭化水素基の炭素-炭素間に2価のヘテロ原子含有基を有する1価の基(α)が好ましく、1価の鎖状炭化水素基、1価の芳香族炭化水素基、1価のフッ素化芳香族炭化水素基、及び複素環を含む基がより好ましく、アルキル基、アリール基、フルオロアリール基及び含窒素複素環を含む基がより好ましい。上記含窒素複素環としては、例えばアゾシクロアルカン環、イソシアヌル環等が挙げられる。 Examples of the monovalent organic group represented by R X1 include a monovalent hydrocarbon group, a monovalent fluorinated hydrocarbon group, and a divalent heteroatom-containing group between carbon and carbon of the monovalent hydrocarbon group. And a monovalent chain hydrocarbon group, a monovalent aromatic hydrocarbon group, a monovalent fluorinated aromatic hydrocarbon group, and a group containing a heterocyclic ring are more preferred. , An alkyl group, an aryl group, a fluoroaryl group and a group containing a nitrogen-containing heterocyclic ring are more preferred. Examples of the nitrogen-containing heterocycle include an azocycloalkane ring and an isocyanuric ring.
 構造単位(I)としては、例えば下記式で表される構造単位等が挙げられる。 Examples of the structural unit (I) include a structural unit represented by the following formula.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 [B2-1]ポリシロキサンにおける構造単位(I)の含有割合の下限としては、1モル%が好ましく、5モル%がより好ましい。一方、構造単位(I)の含有割合の上限としては、60モル%が好ましく、40モル%がより好ましい。 [B2-1] The lower limit of the content ratio of the structural unit (I) in the polysiloxane is preferably 1 mol%, and more preferably 5 mol%. On the other hand, as an upper limit of the content rate of structural unit (I), 60 mol% is preferable and 40 mol% is more preferable.
 [B2-1]ポリシロキサンにおける構造単位(II)の含有割合の下限としては、40モル%が好ましく、60モル%がより好ましい。一方、構造単位(II)の含有割合の上限としては、99モル%が好ましく、95モル%がより好ましい。 [B2-1] The lower limit of the content ratio of the structural unit (II) in the polysiloxane is preferably 40 mol%, more preferably 60 mol%. On the other hand, as an upper limit of the content rate of structural unit (II), 99 mol% is preferable and 95 mol% is more preferable.
 [B2-1]ポリシロキサンのMwの下限としては、500が好ましく、800がより好ましく、1,200がさらに好ましい。一方、上記Mwの上限としては、100,000が好ましく、30,000がより好ましく、10,000がさらに好ましく、5,000が特に好ましい。 [B2-1] The lower limit of Mw of the polysiloxane is preferably 500, more preferably 800, and further preferably 1,200. On the other hand, the upper limit of the Mw is preferably 100,000, more preferably 30,000, still more preferably 10,000, and particularly preferably 5,000.
〔[B2-2]錯体〕
 [B2-2]錯体における金属原子としては、チタン、タンタル、ジルコニウム及びタングステン(以下、これらを「特定金属原子」ともいう)が好ましく、チタン及びジルコニウムがより好ましい。これらの金属原子を用いることで、当該パターン形成方法におけるパターン形成性と、レジスト膜及び下層膜のエッチング選択性とを向上することができる。これらの金属原子は、1種単独で又は2種以上を組み合わせて用いることができるが、エッチングの際に下層膜のエッチング速度の面内均一性をナノメートルオーダーで確保するため、1種単独で用いることが好ましい。
[[B2-2] complex]
The metal atom in the [B2-2] complex is preferably titanium, tantalum, zirconium and tungsten (hereinafter also referred to as “specific metal atom”), more preferably titanium and zirconium. By using these metal atoms, the pattern formability in the pattern forming method and the etching selectivity of the resist film and the lower layer film can be improved. These metal atoms can be used singly or in combination of two or more. However, in order to ensure in-plane uniformity of the etching rate of the lower layer film in the nanometer order during etching, one kind alone. It is preferable to use it.
 [B2-2]錯体は、架橋酸素原子を含むことで、安定な複核錯体となることができ、その結果、当該パターン形成方法におけるパターン形成性と、エッチング選択性とを向上する。架橋酸素原子は、1個の金属原子に対して複数個結合しているとよいが、一部の金属原子については1個の金属原子に対して1個のみ結合していてもよい。[B2-2]錯体は、1個の金属原子に2個の架橋酸素原子が結合している構造を主に含んでいることが好ましい。[B2-2]錯体がこのような構造を主に含むことで、-M-O-M-O-(Mは、特定金属原子等の金属原子である)で表される直鎖状に近い構造を取ることが可能となり、溶解性が向上する。その結果、洗浄溶剤を用いて下層膜を除去する際の除去性(以下、「下層膜の除去性」ともいう)が向上する。ここで、上記構造を「主に含む」とは、[B2-2]錯体を構成する全金属原子の50モル%以上、好ましくは70モル%以上、さらに好ましくは90モル%以上、特に好ましくは95モル%以上の金属原子について、それぞれ2個の架橋酸素原子が結合していることをいう。 The [B2-2] complex can be a stable binuclear complex by containing a bridging oxygen atom, and as a result, the pattern forming property and etching selectivity in the pattern forming method are improved. A plurality of bridging oxygen atoms are preferably bonded to one metal atom, but some of the metal atoms may be bonded to one metal atom. [B2-2] The complex preferably mainly contains a structure in which two bridging oxygen atoms are bonded to one metal atom. Since the [B2-2] complex mainly includes such a structure, a straight chain represented by -M 1 -OM 1 -O- (M 1 is a metal atom such as a specific metal atom) It becomes possible to take a structure close to the shape, and the solubility is improved. As a result, the removability when removing the lower layer film using the cleaning solvent (hereinafter, also referred to as “removability of the lower layer film”) is improved. Here, “mainly comprising” the above structure means that 50 mol% or more, preferably 70 mol% or more, more preferably 90 mol% or more, particularly preferably 90% by mol or more of all metal atoms constituting the [B2-2] complex. It means that two bridging oxygen atoms are bonded to each other with respect to 95 mol% or more of metal atoms.
 [B2-2]錯体は、架橋酸素原子以外に、例えばパーオキサイド配位子(-O-O-)等の他の架橋配位子を有していてもよい。 [B2-2] The complex may have other bridging ligand such as peroxide ligand (—O—O—) in addition to the bridging oxygen atom.
 [B2-2]錯体における多座配位子は、[B2-2]錯体の溶解性を向上し、これにより下層膜の除去性を向上する。多座配位子としては、ヒドロキシ酸エステル、β-ジケトン、β-ケトエステル、α位の炭素原子が置換されていてもよいマロン酸ジエステル及びπ結合を有する炭化水素、又はこれらの化合物に由来する配位子が好ましい。多座配位子を上記配位子とすることで、下層膜の除去性をより向上させることができる。これらの化合物は、通常、1個の電子を得てなるアニオンとして多座配位子を形成するか、プロトンが脱離したアニオンとして多座配位子を形成するか、又はそのままの構造で多座配位子を形成する。 The multidentate ligand in the [B2-2] complex improves the solubility of the [B2-2] complex, thereby improving the removability of the lower layer film. The polydentate ligand is derived from hydroxy acid ester, β-diketone, β-keto ester, malonic acid diester optionally substituted at the α-position carbon atom and hydrocarbon having π bond, or these compounds. A ligand is preferred. By using a multidentate ligand as the above ligand, the removability of the lower layer film can be further improved. These compounds usually form a polydentate ligand as an anion obtained by obtaining one electron, form a polydentate ligand as an anion from which a proton is eliminated, or have a structure as it is. Forms a bidentate ligand.
 [B2-2]錯体における金属原子に対する多座配位子のモル比(多座配位子/金属原子)の下限としては、1が好ましく、1.5がより好ましく、1.8がさらに好ましい。一方、上記比の上限としては、3が好ましく、2.5がより好ましく、2.2がさらに好ましい。 The lower limit of the molar ratio of the polydentate ligand to the metal atom (polydentate ligand / metal atom) in the [B2-2] complex is preferably 1, more preferably 1.5, and even more preferably 1.8. . On the other hand, the upper limit of the ratio is preferably 3, more preferably 2.5, and even more preferably 2.2.
 [B2-2]錯体は、上述の架橋配位子及び多座配位子以外にも、その他の配位子を含んでいてもよい。 The [B2-2] complex may contain other ligands in addition to the above-mentioned bridging ligand and multidentate ligand.
 静的光散乱法によって測定される[B2-2]錯体の絶対分子量の下限としては、400が好ましく、1,200がより好ましく、2,000がさらに好ましい。上記絶対分子量の上限としては、50,000が好ましく、20,000がより好ましく、10,000がさらに好ましく、5,000が特に好ましい。上記絶対分子量を上記範囲とすることにより、下層膜の除去性をより向上すると共に、下層膜形成時の[B2-2]錯体の揮発を抑制することができる。 The lower limit of the absolute molecular weight of the [B2-2] complex measured by the static light scattering method is preferably 400, more preferably 1,200, and even more preferably 2,000. The upper limit of the absolute molecular weight is preferably 50,000, more preferably 20,000, still more preferably 10,000, and particularly preferably 5,000. By setting the absolute molecular weight within the above range, the removability of the lower layer film can be further improved, and volatilization of the [B2-2] complex during the formation of the lower layer film can be suppressed.
 静的光散乱法による[B2-2]錯体の絶対分子量は、下記条件により測定される値である。
 装置:光散乱測定装置(例えばドイツALV社の「ALV-5000」)
 測定濃度:2.5質量%、5.0質量%、7.5質量%、10.0質量%の4点
 標準液体:トルエン
 測定温度:23℃
 絶対分子量の算出に必要な溶液の屈折率及び溶液の密度は、下記装置により測定される値である。
 溶液の屈折率の測定装置:屈折計(例えば京都電子工業社の「RA-500」)
 溶液の密度の測定装置:密度比重計(例えば京都電子工業社の「DA-100」)
 なお、上述のメーカー及び型番の装置を用いた絶対分子量の測定では、石英セルに試料溶液をセットする方式が用いられるが、この他に、フローセルに試料溶液を注入する多角度レーザー光散乱検出器(MALLS)を用いた方式等を用いてもよい。
The absolute molecular weight of the [B2-2] complex by the static light scattering method is a value measured under the following conditions.
Apparatus: Light scattering measurement apparatus (for example, “ALV-5000” of ALV Germany)
Measurement concentration: 2.5 mass%, 5.0 mass%, 7.5 mass%, 10.0 mass%, 4 points Standard liquid: Toluene Measurement temperature: 23 ° C
The refractive index of the solution and the density of the solution necessary for calculating the absolute molecular weight are values measured by the following apparatus.
Measuring device for refractive index of solution: refractometer (for example, “RA-500” of Kyoto Electronics Co., Ltd.)
Solution density measuring device: Density / specific gravity meter (for example, “DA-100” manufactured by Kyoto Electronics Industry Co., Ltd.)
In addition, in the measurement of absolute molecular weight using the above-mentioned manufacturer and model number apparatus, a method of setting a sample solution in a quartz cell is used, but in addition, a multi-angle laser light scattering detector for injecting a sample solution into a flow cell A method using (MALLS) may be used.
([B3]芳香環含有化合物)
 [B3]芳香環含有化合物は、芳香環を有し、かつ分子量が600以上3,000以下の化合物である。[B3]芳香環含有化合物が分子量分布を有する場合、[B3]芳香環含有化合物の分子量とは、例えばGPCによるポリスチレン換算の重量平均分子量(Mw)を意味する。下層膜形成用組成物が[B3]芳香環含有化合物を含有することで、芳香環を有する[B1]有機重合体を含有する場合と同様に、下層膜の耐熱性及びエッチング耐性を向上できる。[B3]芳香環含有化合物の具体例としては、例えば特開2016-206676号公報の段落[0117]~[0179]に記載の化合物等が挙げられる。
([B3] aromatic ring-containing compound)
[B3] The aromatic ring-containing compound is a compound having an aromatic ring and having a molecular weight of 600 or more and 3,000 or less. [B3] When the aromatic ring-containing compound has a molecular weight distribution, the molecular weight of [B3] aromatic ring-containing compound means, for example, a weight average molecular weight (Mw) in terms of polystyrene by GPC. When the composition for forming the lower layer film contains the [B3] aromatic ring-containing compound, the heat resistance and the etching resistance of the lower layer film can be improved as in the case of containing the [B1] organic polymer having an aromatic ring. [B3] Specific examples of the aromatic ring-containing compound include compounds described in paragraphs [0117] to [0179] of JP-A-2016-206676.
 下層膜形成用組成物における[B1]有機重合体、[B2]無機重合体及び[B3]芳香環含有化合物の固形分換算での合計含有量の下限としては、50質量%が好ましく、70質量%がより好ましく、80質量%がさらに好ましい。一方、上記合計含有量の上限としては、99質量%が好ましく、95質量%がより好ましい。 The lower limit of the total content of the [B1] organic polymer, [B2] inorganic polymer and [B3] aromatic ring-containing compound in the composition for forming the lower layer film is preferably 50% by mass, and 70% by mass. % Is more preferable, and 80% by mass is even more preferable. On the other hand, the upper limit of the total content is preferably 99% by mass, and more preferably 95% by mass.
([C]溶媒)
 [C]溶媒としては、[A1]光塩基発生剤又は[A2]光酸発生剤と、必要に応じて含有される[B1]有機重合体、[B2]無機重合体、[B3]芳香環含有化合物等の任意成分を溶解又は分散することができれば特に限定されないが、例えばアルコール系溶媒、ケトン系溶媒、アミド系溶媒、エーテル系溶媒、エステル系溶媒等が挙げられる。[C]溶媒は、1種単独で又は2種以上を組み合わせて用いることができる。
([C] solvent)
[C] Solvents include [A1] photobase generator or [A2] photoacid generator, and [B1] organic polymer, [B2] inorganic polymer, and [B3] aromatic ring contained as necessary. Although it will not specifically limit if arbitrary components, such as a containing compound, can be melt | dissolved or disperse | distributed, For example, an alcohol solvent, a ketone solvent, an amide solvent, an ether solvent, an ester solvent, etc. are mentioned. [C] A solvent can be used individually by 1 type or in combination of 2 or more types.
 上記アルコール系溶媒としては、例えば
 メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、iso-ブタノール、sec-ブタノール、t-ブタノール、n-ペンタノール、iso-ペンタノール、sec-ペンタノール、t-ペンタノール、2-メチルペンタノール、4-メチル-2-ペンタノール等のモノアルコール系溶媒などが挙げられる。
Examples of the alcohol solvent include methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, sec-butanol, t-butanol, n-pentanol, iso-pentanol, sec-pentanol. And monoalcohol solvents such as t-pentanol, 2-methylpentanol and 4-methyl-2-pentanol.
 上記エーテル系溶媒としては、例えば
 エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールモノエチルエーテル等の多価アルコール部分エーテル系溶媒、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート等の多価アルコール部分エーテルアセテート系溶媒などが挙げられる。
Examples of the ether solvent include polyhydric alcohol partial ether solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, propylene glycol monoethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate. And polyhydric alcohol partial ether acetate solvents such as propylene glycol monomethyl ether acetate (PGMEA) and propylene glycol monoethyl ether acetate.
 [C]溶媒としては、上述した溶媒以外に、特開2016-206676号の段落[0185]~[0189]に記載の溶媒等を用いることもできる。 [C] Solvents described in paragraphs [0185] to [0189] of JP-A-2016-206676 can be used as the solvent other than the solvents described above.
 [C]溶媒としては、エーテル系溶媒、ケトン系溶媒及びエステル系溶媒が好ましく、エーテル系溶媒がより好ましい。エーテル系溶媒としては、多価アルコール部分エーテル系溶媒及び多価アルコール部分エーテルアセテート系溶媒が好ましく、多価アルコール部分エーテル系溶媒及びプロピレングリコールモノアルキルエーテルアセテートがより好ましく、プロピレングリコールモノエチルエーテル及びPGMEAがさらに好ましい。 [C] As the solvent, ether solvents, ketone solvents and ester solvents are preferable, and ether solvents are more preferable. The ether solvent is preferably a polyhydric alcohol partial ether solvent and a polyhydric alcohol partial ether acetate solvent, more preferably a polyhydric alcohol partial ether solvent and propylene glycol monoalkyl ether acetate, propylene glycol monoethyl ether and PGMEA. Is more preferable.
 [C]溶媒は、下層膜形成用組成物のシリコンウエハ等の基板への塗布性を向上する観点から、多価アルコール部分エーテルアセテート系溶媒、その中でもプロピレングリコールモノアルキルエーテルアセテート、特にPGMEAを含有することが好ましい。下層膜形成用組成物に含有される[B1]有機重合体等の各成分は多価アルコール部分エーテルアセテート系溶媒に溶解し易い傾向にあるため、[C]溶媒が多価アルコール部分エーテルアセテート系溶媒を含有することで、下層膜形成用組成物の塗布性を向上し、その結果、下層膜の埋め込み性を向上することができる。[C]溶媒における多価アルコール部分エーテルアセテート系溶媒の含有割合の下限としては、20質量%が好ましく、60質量%がより好ましく、90質量%がさらに好ましい。また、上記含有割合としては、100質量%が最も好ましい。 [C] The solvent contains a polyhydric alcohol partial ether acetate solvent, particularly propylene glycol monoalkyl ether acetate, particularly PGMEA, from the viewpoint of improving the coating property of the composition for forming a lower layer film to a substrate such as a silicon wafer. It is preferable to do. Since each component such as the [B1] organic polymer contained in the composition for forming the lower layer film tends to dissolve in the polyhydric alcohol partial ether acetate solvent, the [C] solvent is a polyhydric alcohol partial ether acetate type. By containing a solvent, the applicability | paintability of the composition for lower layer film formation can be improved, As a result, the embedding property of a lower layer film can be improved. [C] The lower limit of the content ratio of the polyhydric alcohol partial ether acetate solvent in the solvent is preferably 20% by mass, more preferably 60% by mass, and still more preferably 90% by mass. Moreover, as said content rate, 100 mass% is the most preferable.
(その他の成分)
 下層膜形成用組成物は、架橋剤、界面活性剤、密着助剤等のその他の成分をさらに含有してもよい。その他の成分は、それぞれ1種単独で又は2種以上を組み合わせて用いることができる。
(Other ingredients)
The composition for forming an underlayer film may further contain other components such as a crosslinking agent, a surfactant, and an adhesion assistant. The other components can be used alone or in combination of two or more.
 架橋剤は、熱や酸の作用により、[B1]有機重合体同士等の架橋結合を形成する成分である。下層膜形成用組成物が架橋剤を含有することで、下層膜の硬度を向上することができる。 The cross-linking agent is a component that forms a cross-linking bond such as [B1] organic polymers by the action of heat or acid. When the composition for forming a lower layer film contains a crosslinking agent, the hardness of the lower layer film can be improved.
 架橋剤としては、例えば多官能(メタ)アクリレート化合物、エポキシ化合物、ヒドロキシメチル基置換フェノール化合物、アルコキシアルキル基含有フェノール化合物、アルコキシアルキル化されたアミノ基を有する化合物等が挙げられる。これらの化合物の具体例としては、例えば特開2016-206676号公報の段落[0203]~[0207]に記載の化合物等が挙げられる。また、架橋剤としては、上述した化合物以外にも、例えば特開2016-206676号公報の段落[0209]~[0210]に記載の化合物等を用いることもできる。 Examples of the crosslinking agent include polyfunctional (meth) acrylate compounds, epoxy compounds, hydroxymethyl group-substituted phenol compounds, alkoxyalkyl group-containing phenol compounds, and compounds having an alkoxyalkylated amino group. Specific examples of these compounds include compounds described in paragraphs [0203] to [0207] of JP-A-2016-206676. In addition to the compounds described above, for example, compounds described in paragraphs [0209] to [0210] of JP-A No. 2016-206676 can be used as the crosslinking agent.
 界面活性剤は、形成される下層膜の塗布面均一性を向上すると共に塗布斑の発生を抑制する。界面活性剤の具体例としては、例えば特開2016-206676号公報の段落[0216]に記載のもの等を用いることができる。 The surfactant improves the uniformity of the coating surface of the lower layer film to be formed and suppresses the occurrence of coating spots. As specific examples of the surfactant, for example, those described in paragraph [0216] of JP-A-2016-206676 can be used.
 密着助剤は、下層膜と、下地である基板との密着性を向上する。密着助剤としては、例えば公知の密着助剤を用いることができる。 The adhesion assistant improves the adhesion between the lower layer film and the underlying substrate. As the adhesion assistant, for example, a known adhesion assistant can be used.
(下層膜形成用組成物の調製方法)
 下層膜形成用組成物は、[A1]光塩基発生剤又は[A2]光酸発生剤と、必要に応じて用いられる[B1]有機重合体、[B2]無機重合体、[B3]芳香環含有化合物、[C]溶媒、その他の成分等とを所定の割合で混合し、好ましくは得られた混合物を0.45μm程度のメンブランフィルター等で濾過することにより調製できる。下層膜形成用組成物における固形分濃度の下限としては、0.1質量%が好ましく、1質量%がより好ましく、2質量%がさらに好ましい。一方、上記固形分濃度の上限としては、50質量%が好ましく、30質量%がより好ましく、15質量%がさらに好ましい。
(Method for preparing composition for forming underlayer film)
The composition for forming an underlayer film comprises [A1] a photobase generator or [A2] photoacid generator, and [B1] organic polymer, [B2] inorganic polymer, and [B3] aromatic ring that are used as necessary. The contained compound, the [C] solvent, other components, and the like are mixed at a predetermined ratio, and the mixture obtained is preferably prepared by filtering with a membrane filter of about 0.45 μm. As a minimum of solid content concentration in a constituent for lower layer film formation, 0.1 mass% is preferred, 1 mass% is more preferred, and 2 mass% is still more preferred. On the other hand, the upper limit of the solid content concentration is preferably 50% by mass, more preferably 30% by mass, and even more preferably 15% by mass.
[レジスト膜形成用感放射線性組成物]
 レジスト膜形成用感放射線性組成物は、[P]金属含有化合物を固形分換算で50質量%以上含有する。レジスト膜形成用感放射線性組成物は、[Q]溶媒をさらに含有することが好ましく、その他の成分をさらに含有してもよい。レジスト膜形成用感放射線性組成物は、[P]金属含有化合物を固形分換算で50質量%以上含有するため、エッチング耐性に優れるレジスト膜を形成できる。
[Radiosensitive composition for resist film formation]
The radiation-sensitive composition for forming a resist film contains 50% by mass or more of [P] metal-containing compound in terms of solid content. The radiation-sensitive composition for forming a resist film preferably further contains a [Q] solvent, and may further contain other components. Since the radiation sensitive composition for forming a resist film contains 50% by mass or more of [P] metal-containing compound in terms of solid content, a resist film having excellent etching resistance can be formed.
([P]金属含有化合物)
 [P]金属含有化合物は、金属原子を含有する化合物である。[P]金属含有化合物は、1種単独で又は2種以上を組み合わせて用いることができる。また、[P]金属含有化合物を構成する金属原子は、1種単独で又は2種以上を組み合わせて用いることができる。ここで「金属原子」とは、半金属、すなわちホウ素、ケイ素、ゲルマニウム、ヒ素、アンチモン及びテルルを含む概念である。
([P] metal-containing compound)
[P] The metal-containing compound is a compound containing a metal atom. [P] A metal containing compound can be used individually by 1 type or in combination of 2 or more types. Moreover, the metal atom which comprises a [P] metal containing compound can be used individually by 1 type or in combination of 2 or more types. Here, the “metal atom” is a concept including a semimetal, that is, boron, silicon, germanium, arsenic, antimony and tellurium.
 [P]金属含有化合物を構成する金属原子としては、特に限定されず、例えば第3族~第16族の金属原子等が挙げられる。上記金属原子の具体例としては、例えばチタン、ジルコニウム、ハフニウム等の第4族の金属原子、タンタル等の第5族の金属原子、クロム、タングステン等の第6族の金属原子、鉄、ルテニウム等の第8族の金属原子、コバルト等の第9族の金属原子、ニッケル等の第10族の金属原子、銅等の第11族の金属原子、亜鉛、カドミウム、水銀等の第12族の金属原子、ホウ素、アルミニウム、ガリウム、インジウム、タリウム等の第13族の金属原子、ゲルマニウム、スズ、鉛等の第14族の金属原子、アンチモン、ビスマス等の第15族の金属原子、テルル等の第16族の金属原子などが挙げられる。 [P] The metal atom constituting the metal-containing compound is not particularly limited, and examples thereof include group 3 to group 16 metal atoms. Specific examples of the metal atom include a group 4 metal atom such as titanium, zirconium and hafnium, a group 5 metal atom such as tantalum, a group 6 metal atom such as chromium and tungsten, iron, ruthenium and the like. Group 8 metal atoms such as cobalt, Group 9 metal atoms such as cobalt, Group 10 metal atoms such as nickel, Group 11 metal atoms such as copper, Group 12 metals such as zinc, cadmium and mercury Group 13 metal atoms such as atoms, boron, aluminum, gallium, indium and thallium, Group 14 metal atoms such as germanium, tin and lead, Group 15 metal atoms such as antimony and bismuth, Group such as tellurium Examples include group 16 metal atoms.
 [P]金属含有化合物を構成する金属原子は、周期表において第4族、第12族又は第14族に属し、かつ第4周期、第5周期又は第6周期に属する第1金属原子を含むとよい。すなわち、上記金属原子は、チタン、ジルコニウム、ハフニウム、亜鉛、カドミウム、水銀、ゲルマニウム、スズ及び鉛のうち少なくとも1種を含むとよい。このように、[P]金属含有化合物が第1金属原子を含むことで、レジスト膜の露光部における二次電子の放出や、この二次電子等による[P]金属含有化合物の現像液に対する溶解性の変化がより促進される。その結果、当該パターン形成方法の感度をより向上することができると共にパターン倒れをより確実に抑制することができる。第1金属原子としては、スズが好ましい。 [P] The metal atom constituting the metal-containing compound includes the first metal atom belonging to Group 4, Group 12, or Group 14 in the periodic table and belonging to the fourth period, the fifth period, or the sixth period. Good. That is, the metal atom may include at least one of titanium, zirconium, hafnium, zinc, cadmium, mercury, germanium, tin, and lead. As described above, since the [P] metal-containing compound contains the first metal atom, the secondary electrons are emitted from the exposed portion of the resist film, and the [P] metal-containing compound is dissolved in the developer by the secondary electrons. Sex change is promoted more. As a result, the sensitivity of the pattern forming method can be further improved, and pattern collapse can be more reliably suppressed. As the first metal atom, tin is preferable.
 [P]金属含有化合物は、金属原子以外の他の原子をさらに有することが好ましい。上記他の原子としては、例えば炭素原子、水素原子、酸素原子、窒素原子、リン原子、硫黄原子、ハロゲン原子等が挙げられ、これらの中で炭素原子、水素原子及び酸素原子が好ましい。[P]金属含有化合物における他の原子は、1種単独で又は2種以上を組み合わせて用いることができる。 [P] It is preferable that the metal-containing compound further has an atom other than the metal atom. As said other atom, a carbon atom, a hydrogen atom, an oxygen atom, a nitrogen atom, a phosphorus atom, a sulfur atom, a halogen atom etc. are mentioned, for example, Among these, a carbon atom, a hydrogen atom, and an oxygen atom are preferable. [P] Other atoms in the metal-containing compound can be used alone or in combination of two or more.
 レジスト膜形成用感放射線性組成物における[P]金属含有化合物の固形分換算での含有量の下限としては、70質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましい。また、上記含有量は、100質量%であってもよい。ここで、レジスト膜形成用感放射線性組成物における固形分とは、後述する[Q]溶媒以外の成分をいう。 The lower limit of the content of the [P] metal-containing compound in terms of solid content in the radiation-sensitive composition for resist film formation is preferably 70% by mass, more preferably 90% by mass, and still more preferably 95% by mass. Further, the content may be 100% by mass. Here, solid content in the radiation sensitive composition for resist film formation means components other than the [Q] solvent mentioned later.
([P]金属含有化合物の合成方法)
 [P]金属含有化合物は、例えば金属原子及び加水分解性基を有する金属化合物、この金属化合物の加水分解物、上記金属化合物の加水分解縮合物又はこれらの組み合わせに対し、加水分解縮合反応、配位子交換反応等を行う方法により得ることができる。上記金属化合物は、1種単独で又は2種以上組み合わせて使用できる。
(Method for synthesizing [P] metal-containing compound)
[P] The metal-containing compound includes, for example, a hydrolytic condensate reaction, a metal compound having a metal atom and a hydrolyzable group, a hydrolyzate of the metal compound, a hydrolyzed condensate of the metal compound, or a combination thereof. It can be obtained by a method of performing a ligand exchange reaction or the like. The said metal compound can be used individually by 1 type or in combination of 2 or more types.
 [P]金属含有化合物としては、下記式(1)で表される金属原子及び加水分解性基を有する金属化合物(以下、「金属化合物(1)」ともいう)に由来するものが好ましい。このような金属化合物(1)を用いることで、安定な[P]金属含有化合物を得ることができる。 [P] The metal-containing compound is preferably derived from a metal compound having a metal atom and a hydrolyzable group represented by the following formula (1) (hereinafter also referred to as “metal compound (1)”). By using such a metal compound (1), a stable [P] metal-containing compound can be obtained.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式(1)中、Mは、金属原子である。Lは、配位子又は炭素数1~20の1価の有機基である。aは、0~6の整数である。aが2以上の場合、複数のLは同一でも異なっていてもよい。Yは、1価の加水分解性基である。bは、2~6の整数である。複数のYは同一でも異なっていてもよい。なお、LはYに該当しない配位子又は有機基である。 In the above formula (1), M is a metal atom. L is a ligand or a monovalent organic group having 1 to 20 carbon atoms. a is an integer of 0-6. When a is 2 or more, the plurality of L may be the same or different. Y is a monovalent hydrolyzable group. b is an integer of 2 to 6. A plurality of Y may be the same or different. L is a ligand or organic group not corresponding to Y.
 Mで表される金属原子としては、第1金属原子が好ましく、スズがより好ましい。 As the metal atom represented by M, the first metal atom is preferable, and tin is more preferable.
 Yで表される加水分解性基としては、Mで表される金属原子にあわせて適宜変更可能であるが、例えば置換又は非置換のエチニル基、ハロゲン原子、アルコキシ基、アシロキシ基、置換又は非置換のアミノ基等が挙げられる。 The hydrolyzable group represented by Y can be appropriately changed according to the metal atom represented by M. For example, a substituted or unsubstituted ethynyl group, a halogen atom, an alkoxy group, an acyloxy group, a substituted or non-substituted group. Examples include substituted amino groups.
 Yで表される置換又は非置換のエチニル基、及び置換又は非置換のアミノ基における置換基としては、炭素数1~20の1価の炭化水素基が好ましく、鎖状炭化水素基がより好ましく、アルキル基がさらに好ましい。 As the substituent in the substituted or unsubstituted ethynyl group represented by Y and the substituted or unsubstituted amino group, a monovalent hydrocarbon group having 1 to 20 carbon atoms is preferable, and a chain hydrocarbon group is more preferable. An alkyl group is more preferable.
 Yで表されるハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。これらの中で、塩素原子が好ましい。 Examples of the halogen atom represented by Y include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Of these, a chlorine atom is preferred.
 Yで表されるアルコキシ基としては、例えばメトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基等が挙げられる。これらの中で、エトキシ基、i-プロポキシ基、n-ブトキシ基が好ましい。 Examples of the alkoxy group represented by Y include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, and an n-butoxy group. Of these, an ethoxy group, i-propoxy group, and n-butoxy group are preferable.
 Yで表されるアシロキシ基としては、例えばホルミル基、アセトキシ基、エチリルオキシ基、プロピオニルオキシ基、n-ブチリルオキシ基、t-ブチリルオキシ基、t-アミリルオキシ基、n-ヘキサンカルボニロキシ基、n-オクタンカルボニロキシ基等が挙げられる。これらの中で、アセトキシ基が好ましい。 As the acyloxy group represented by Y, for example, formyl group, acetoxy group, ethylyloxy group, propionyloxy group, n-butyryloxy group, t-butyryloxy group, t-amylyloxy group, n-hexanecarbonyloxy group, n-octane Examples thereof include a carbonyloxy group. Of these, an acetoxy group is preferred.
 Yで表される置換又は非置換のアミノ基としては、例えばアミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基等が挙げられる。これらの中で、ジメチルアミノ基及びジエチルアミノ基が好ましい。 Examples of the substituted or unsubstituted amino group represented by Y include an amino group, a methylamino group, a dimethylamino group, a diethylamino group, and a dipropylamino group. Among these, a dimethylamino group and a diethylamino group are preferable.
 以下、Mで表される金属原子と、Yで表される加水分解性基との好適な組み合わせを説明する。Mで表される金属原子がスズである場合、Yで表される加水分解性基としては、置換又は非置換のエチニル基、ハロゲン原子、アルコキシ基、アシロキシ基及び置換又は非置換のアミノ基が好ましく、ハロゲン原子がより好ましい。Mで表される金属原子がゲルマニウムである場合、Yで表される加水分解性基としては、ハロゲン原子、アルコキシ基、アシロキシ基、及び置換又は非置換のアミノ基が好ましい。Mで表される金属原子がハフニウム、ジルコニウム及びチタンである場合、Yで表される加水分解性基としては、ハロゲン原子、アルコキシ基及びアシロキシ基が好ましい。 Hereinafter, preferred combinations of the metal atom represented by M and the hydrolyzable group represented by Y will be described. When the metal atom represented by M is tin, the hydrolyzable group represented by Y includes a substituted or unsubstituted ethynyl group, a halogen atom, an alkoxy group, an acyloxy group, and a substituted or unsubstituted amino group. Preferably, a halogen atom is more preferable. When the metal atom represented by M is germanium, the hydrolyzable group represented by Y is preferably a halogen atom, an alkoxy group, an acyloxy group, or a substituted or unsubstituted amino group. When the metal atom represented by M is hafnium, zirconium and titanium, the hydrolyzable group represented by Y is preferably a halogen atom, an alkoxy group or an acyloxy group.
 Lで表される配位子としては、単座配位子及び多座配位子が挙げられる。 Examples of the ligand represented by L include a monodentate ligand and a polydentate ligand.
 上記単座配位子としては、例えばヒドロキソ配位子、ニトロ配位子、アンモニア等が挙げられる。 Examples of the monodentate ligand include a hydroxo ligand, a nitro ligand, and ammonia.
 上記多座配位子としては、例えば[B2-2]錯体において例示した多座配位子や、ジホスフィン等が挙げられる。 Examples of the polydentate ligand include the polydentate ligand exemplified in the [B2-2] complex, diphosphine and the like.
 上記ジホスフィンとしては、例えば1,1-ビス(ジフェニルホスフィノ)メタン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル、1,1’-ビス(ジフェニルホスフィノ)フェロセン等が挙げられる。 Examples of the diphosphine include 1,1-bis (diphenylphosphino) methane, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, and 2,2′-bis (diphenyl). Phosphino) -1,1′-binaphthyl, 1,1′-bis (diphenylphosphino) ferrocene and the like.
 Lで表される1価の有機基としては、例えば上記式(I)においてRX1で表される1価の有機基として例示した基と同様のもの等が挙げられる。Lで表される1価の有機基の炭素数の下限としては、2が好ましく、3がより好ましい。一方、上記炭素数の上限としては、10が好ましく、5がより好ましい。Lで表される1価の有機基としては、置換又は非置換の炭化水素基が好ましく、置換又は非置換の鎖状炭化水素基がより好ましく、置換又は非置換のアルキル基がさらに好ましく、t-ブチル基が特に好ましい。 Examples of the monovalent organic group represented by L include the same groups as those exemplified as the monovalent organic group represented by R X1 in the above formula (I). The lower limit of the carbon number of the monovalent organic group represented by L is preferably 2, and more preferably 3. On the other hand, the upper limit of the carbon number is preferably 10, and more preferably 5. The monovalent organic group represented by L is preferably a substituted or unsubstituted hydrocarbon group, more preferably a substituted or unsubstituted chain hydrocarbon group, still more preferably a substituted or unsubstituted alkyl group, t A butyl group is particularly preferred.
 aとしては、1及び2が好ましく、1がより好ましい。 A is preferably 1 or 2, and more preferably 1.
 bとしては、2~4の整数が好ましい。bを上記数値とすることで、[P]金属含有化合物における金属原子の含有割合を高め、[P]金属含有化合物による二次電子の発生をより効果的に促進できる。その結果、当該パターン形成方法の感度をより向上することができると共にパターン倒れをより確実に抑制することができる。 B is preferably an integer of 2 to 4. By making b into the said numerical value, the content rate of the metal atom in a [P] metal containing compound can be raised, and generation | occurrence | production of the secondary electron by a [P] metal containing compound can be accelerated | stimulated more effectively. As a result, the sensitivity of the pattern forming method can be further improved, and pattern collapse can be more reliably suppressed.
 金属化合物(1)としては、ハロゲン化金属化合物が好ましく、下記式で表される化合物がより好ましい。 As the metal compound (1), a metal halide compound is preferable, and a compound represented by the following formula is more preferable.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 金属化合物(1)に対して加水分解縮合反応を行う方法としては、例えば必要に応じて用いられるテトラメチルアンモニウムヒドロキシド等の塩基存在下、水、又は水を含む溶媒中で金属化合物(1)を撹拌する方法等が挙げられる。この場合、必要に応じて加水分解性基を有する他の化合物を添加してもよい。この加水分解縮合反応に用いる水の量の下限としては、金属化合物(1)等が有する加水分解性基に対し、0.2倍モルが好ましく、1倍モルがより好ましく、3倍モルがさらに好ましい。加水分解縮合反応における水の量を上記範囲とすることで、容易かつ確実に[P]金属含有化合物を得ることができる。 As a method for performing a hydrolysis-condensation reaction on the metal compound (1), for example, in the presence of a base such as tetramethylammonium hydroxide used as necessary, the metal compound (1) in water or a solvent containing water. And the like. In this case, you may add the other compound which has a hydrolysable group as needed. The lower limit of the amount of water used for this hydrolysis-condensation reaction is preferably 0.2 times mole, more preferably 1 time mole, and even more preferably 3 times mole relative to the hydrolyzable group of the metal compound (1) and the like. preferable. By making the amount of water in the hydrolysis condensation reaction within the above range, the [P] metal-containing compound can be obtained easily and reliably.
 [P]金属含有化合物の合成反応の際、金属化合物(1)以外にも、上記式(1)の化合物におけるLで表される多座配位子になり得る化合物や架橋配位子になり得る化合物等を添加してもよい。上記架橋配位子になり得る化合物としては、例えばヒドロキシ基、イソシアネート基、アミノ基、エステル基、アミド基等の配位可能な基を2以上有する化合物等が挙げられる。 [P] In the synthesis reaction of the metal-containing compound, in addition to the metal compound (1), it becomes a compound or a bridging ligand that can be a multidentate ligand represented by L in the compound of the above formula (1). You may add the compound etc. which are obtained. Examples of the compound that can be a bridging ligand include compounds having two or more coordinateable groups such as a hydroxy group, an isocyanate group, an amino group, an ester group, and an amide group.
 [P]金属含有化合物の合成反応の温度の下限としては、0℃が好ましく、10℃がより好ましい。上記温度の上限としては、150℃が好ましく、100℃がより好ましく、50℃がさらに好ましい。 [P] The lower limit of the temperature of the synthesis reaction of the metal-containing compound is preferably 0 ° C, and more preferably 10 ° C. As an upper limit of the said temperature, 150 degreeC is preferable, 100 degreeC is more preferable, and 50 degreeC is further more preferable.
 [P]金属含有化合物の合成反応の時間の下限としては、1分が好ましく、10分がより好ましく、1時間がさらに好ましい。上記時間の上限としては、100時間が好ましく、50時間がより好ましく、24時間がさらに好ましく、4時間が特に好ましい。 [P] The lower limit of the synthesis reaction of the metal-containing compound is preferably 1 minute, more preferably 10 minutes, and even more preferably 1 hour. The upper limit of the time is preferably 100 hours, more preferably 50 hours, further preferably 24 hours, and particularly preferably 4 hours.
([Q]溶媒)
 [Q]溶媒としては、有機溶媒が好ましい。この有機溶媒の具体例としては、例えば上記下層膜形成用組成物において[C]溶媒として例示したものと同様のもの等が挙げられる。
([Q] solvent)
[Q] The solvent is preferably an organic solvent. Specific examples of the organic solvent include those similar to those exemplified as the [C] solvent in the composition for forming a lower layer film.
 [Q]溶媒としては、アルコール系溶媒が好ましく、モノアルコール系溶媒がより好ましく、4-メチル-2-ペンタノールがさらに好ましい。 [Q] The solvent is preferably an alcohol solvent, more preferably a monoalcohol solvent, and even more preferably 4-methyl-2-pentanol.
[その他の任意成分]
 レジスト膜形成用感放射線性組成物は、[P]金属含有化合物及び[Q]溶媒以外にも、配位子となり得る化合物、界面活性剤等のその他の任意成分を含有してもよい。
[Other optional ingredients]
In addition to the [P] metal-containing compound and the [Q] solvent, the radiation-sensitive composition for forming a resist film may contain other optional components such as a compound that can be a ligand and a surfactant.
[配位子となり得る化合物]
 上記配位子となり得る化合物としては、例えば多座配位子又は架橋配位子となり得る化合物等が挙げられ、具体的には[P]金属含有化合物の合成方法において例示した多座配位子又は架橋配位子となり得る化合物と同様のもの等が挙げられる。
[Compound that can be a ligand]
Examples of the compound that can be a ligand include compounds that can be a multidentate ligand or a bridging ligand. Specifically, the polydentate ligand exemplified in the method for synthesizing a [P] metal-containing compound. Or the thing similar to the compound which can become a bridge | crosslinking ligand etc. are mentioned.
[界面活性剤]
 界面活性剤は塗布性、ストリエーション等を改良する作用を示す成分である。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤の他、以下商品名として、KP341(信越化学工業社)、ポリフローNo.75、同No.95(以上、共栄社化学社)、エフトップEF301、同EF303、同EF352(以上、トーケムプロダクツ社)、メガファックF171、同F173(以上、大日本インキ化学工業社)、フロラードFC430、同FC431(以上、住友スリーエム社)、アサヒガードAG710、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(以上、旭硝子社)等が挙げられる。
[Surfactant]
A surfactant is a component that exhibits an effect of improving coatability, striation and the like. Examples of the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol diacrylate. In addition to nonionic surfactants such as stearate, the following trade names are KP341 (Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no. 95 (above, Kyoeisha Chemical Co., Ltd.), F-Top EF301, EF303, EF352 (above, Tochem Products), MegaFuck F171, F173 (above, Dainippon Ink and Chemicals), Florard FC430, FC431 ( Sumitomo 3M), Asahi Guard AG710, Surflon S-382, SC-101, SC-102, SC-103, SC-104, SC-105, SC-105, SC-106 (above, Asahi Glass Co., Ltd.) ) And the like.
(レジスト膜形成用感放射線性組成物の調製方法)
 レジスト膜形成用感放射線性組成物は、例えば[P]金属含有化合物と、必要に応じて[Q]溶媒等のその他の任意成分とを所定の割合で混合し、好ましくは、得られた混合物を孔径0.2μm程度のメンブランフィルターで濾過することにより調製できる。レジスト膜形成用感放射線性組成物が[Q]溶媒を含有する場合、レジスト膜形成用感放射線性組成物の固形分濃度の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましく、2質量%が特に好ましい。一方、上記固形分濃度の上限としては、50質量%が好ましく、30質量%がより好ましく、15質量%がさらに好ましく、4質量%が特に好ましい。
(Method for preparing radiation-sensitive composition for resist film formation)
The radiation-sensitive composition for forming a resist film is obtained by, for example, mixing [P] a metal-containing compound and other optional components such as a [Q] solvent as necessary, and preferably the obtained mixture. Can be prepared by filtering through a membrane filter having a pore size of about 0.2 μm. When the radiation-sensitive composition for forming a resist film contains a [Q] solvent, the lower limit of the solid content concentration of the radiation-sensitive composition for forming a resist film is preferably 0.1% by mass, and 0.5% by mass. Is more preferable, 1% by mass is more preferable, and 2% by mass is particularly preferable. On the other hand, the upper limit of the solid content concentration is preferably 50% by mass, more preferably 30% by mass, further preferably 15% by mass, and particularly preferably 4% by mass.
 以下、上述の下層膜形成用組成物及びレジスト膜形成用感放射線性組成物を用いた当該パターン形成方法の各工程について説明する。 Hereinafter, each step of the pattern forming method using the above-described composition for forming a lower layer film and the radiation-sensitive composition for forming a resist film will be described.
[下層膜形成用組成物塗工工程]
 本工程では、基板に、上述の下層膜形成用組成物を塗工する。具体的には、得られる下層膜が所望の厚さとなるように下層膜形成用組成物を基板の一方の面側に塗工した後、必要に応じてプレベーク(PB)によって下層膜形成用組成物の[C]溶媒等を揮発させることで下層膜を形成する。下層膜形成用組成物を基板に塗工する方法としては、特に限定されないが、例えば回転塗布、流延塗布、ロール塗布等の適宜の塗布手段を採用できる。上記基板としては、例えばシリコンウエハ、アルミニウムで被覆されたウエハ等が挙げられる。
[Underlayer forming composition coating process]
In this step, the above-described composition for forming a lower layer film is applied to a substrate. Specifically, the composition for forming the lower layer film is applied to one surface side of the substrate so that the obtained lower layer film has a desired thickness, and then the composition for forming the lower layer film by pre-baking (PB) as necessary. The lower layer film is formed by volatilizing the [C] solvent of the product. The method for applying the composition for forming the lower layer film to the substrate is not particularly limited, and appropriate application means such as spin coating, cast coating, roll coating, etc. can be employed. Examples of the substrate include a silicon wafer and a wafer coated with aluminum.
 本工程で形成する下層膜の平均厚さの下限としては、1nmが好ましく、10nmがより好ましく、20nmがさらに好ましい。一方、上記平均厚さの上限としては、20,000nmが好ましく、1,000nmがより好ましく、100nmがさらに好ましい。 The lower limit of the average thickness of the lower layer film formed in this step is preferably 1 nm, more preferably 10 nm, and further preferably 20 nm. On the other hand, the upper limit of the average thickness is preferably 20,000 nm, more preferably 1,000 nm, and even more preferably 100 nm.
 本工程におけるPB温度の下限としては、150℃が好ましく、200℃がより好ましく、250℃がさらに好ましい。一方、PB温度の上限としては、400℃が好ましく、350℃がより好ましく、300℃以下がさらに好ましい。また、PB時間の下限としては、15秒が好ましく、30秒がより好ましく、45秒がさらに好ましい。一方、PB時間の上限としては、1,200秒が好ましく、600秒がより好ましく、300秒がさらに好ましい。PB温度及びPB温度を上記範囲とすることで、下層膜に必要な特性を確実に発揮させることができる。 The lower limit of the PB temperature in this step is preferably 150 ° C, more preferably 200 ° C, and even more preferably 250 ° C. On the other hand, the upper limit of the PB temperature is preferably 400 ° C., more preferably 350 ° C., and further preferably 300 ° C. or less. Further, the lower limit of the PB time is preferably 15 seconds, more preferably 30 seconds, and even more preferably 45 seconds. On the other hand, the upper limit of the PB time is preferably 1,200 seconds, more preferably 600 seconds, and even more preferably 300 seconds. By setting the PB temperature and the PB temperature in the above ranges, it is possible to reliably exhibit the characteristics necessary for the lower layer film.
 本工程では、[B1]有機重合体を含有する下層膜形成用組成物を用い、有機下層膜を形成することが好ましい。これにより、下層膜及びレジスト膜のエッチング選択性を向上することができる。この場合、有機下層膜における炭素含有率の下限としては、50質量%が好ましく、60質量%がより好ましく、80質量%がさらに好ましい。一方、上記炭素原子含有率の上限としては、99質量%が好ましく、95質量%がより好ましい。上記炭素原子含有率を上記範囲とすることで、下層膜及びレジスト膜のエッチング選択性をより向上することができる。ここで上記炭素原子含有率は、燃焼法による元素分析により測定される値をいう。 In this step, it is preferable to form an organic underlayer film using a composition for forming an underlayer film containing [B1] an organic polymer. Thereby, the etching selectivity of the lower layer film and the resist film can be improved. In this case, as a minimum of the carbon content rate in an organic underlayer film, 50 mass% is preferred, 60 mass% is more preferred, and 80 mass% is still more preferred. On the other hand, the upper limit of the carbon atom content is preferably 99% by mass, and more preferably 95% by mass. The etching selectivity of a lower layer film and a resist film can be improved more by making the said carbon atom content rate into the said range. Here, the carbon atom content is a value measured by elemental analysis by a combustion method.
[レジスト膜形成用感放射線性組成物塗工工程]
 本工程では、下層膜形成用組成物塗工工程により形成した下層膜上に直接又は間接に上述のレジスト膜形成用感放射線性組成物を塗工する。具体的には、得られるレジスト膜が所望の厚さとなるようにレジスト膜形成用感放射線性組成物を下層膜における基板と反対側の面上に塗工した後、必要に応じてプレベーク(PB)によってレジスト膜形成用感放射線性組成物の[Q]溶媒等を揮発させることでレジスト膜を形成する。レジスト膜形成用感放射線性組成物を塗工する方法としては、特に限定されないが、例えば下層膜形成用組成物塗工工程において例示した塗工方法と同様の方法等が挙げられる。
[Resistance film forming radiation sensitive composition coating process]
In this step, the above-mentioned radiation sensitive composition for forming a resist film is applied directly or indirectly on the lower layer film formed by the lower layer film forming composition coating step. Specifically, the resist film-forming radiation-sensitive composition is applied on the surface of the lower layer film opposite to the substrate so that the resulting resist film has a desired thickness, and then pre-baked (PB) as necessary. The resist film is formed by volatilizing the [Q] solvent or the like of the radiation-sensitive composition for forming a resist film. Although it does not specifically limit as a method to apply the radiation sensitive composition for resist film formation, For example, the method similar to the coating method illustrated in the composition application | coating process for lower layer film | membrane etc. is mentioned.
 本工程で形成するレジスト膜の平均厚さの下限としては、1nmが好ましく、5nmがより好ましく、10nmがさらに好ましく、20nmが特に好ましい。一方、上記平均厚さの上限としては、1,000nmが好ましく、200nmがより好ましく、100nmがさらに好ましく、70nmが特に好ましい。 The lower limit of the average thickness of the resist film formed in this step is preferably 1 nm, more preferably 5 nm, still more preferably 10 nm, and particularly preferably 20 nm. On the other hand, the upper limit of the average thickness is preferably 1,000 nm, more preferably 200 nm, still more preferably 100 nm, and particularly preferably 70 nm.
 本工程におけるPB温度の下限としては、50℃が好ましく、70℃がより好ましい。一方、上記PB温度の上限としては、140℃が好ましく、100℃がより好ましい。また、上記PB時間の下限としては、5秒が好ましく、10秒がより好ましい。一方、上記PB時間の上限としては、600秒が好ましく、300秒がより好ましい。 As the lower limit of the PB temperature in this step, 50 ° C is preferable, and 70 ° C is more preferable. On the other hand, the upper limit of the PB temperature is preferably 140 ° C, and more preferably 100 ° C. The lower limit of the PB time is preferably 5 seconds, and more preferably 10 seconds. On the other hand, the upper limit of the PB time is preferably 600 seconds, and more preferably 300 seconds.
 本工程では、環境雰囲気中に含まれる塩基性不純物等の影響を防止するため、例えば形成したレジスト膜上に保護膜を設けることもできる。また、後述するように露光工程で液浸露光を行う場合は、液浸媒体とレジスト膜との直接的な接触を避けるため、形成したレジスト膜上に液浸用保護膜を設けてもよい。 In this step, for example, a protective film can be provided on the formed resist film in order to prevent the influence of basic impurities and the like contained in the environmental atmosphere. Further, as described later, when immersion exposure is performed in the exposure step, an immersion protective film may be provided on the formed resist film in order to avoid direct contact between the immersion medium and the resist film.
[露光工程]
 本工程では、レジスト膜形成用感放射線性組成物塗工工程により形成したレジスト膜を露光する。具体的には、例えば所定のパターンを有するマスク等を介してレジスト膜に放射線を照射する。本工程では、必要に応じ、水等の液浸媒体を介した放射線の照射、つまり液浸露光を採用してもよい。露光する放射線としては、例えば可視光線、紫外線、遠紫外線、EUV(波長13.5nm)、X線、γ線等の電磁波や、電子線、α線等の荷電粒子線などが挙げられる。これらの中で、感度向上等の観点から、EUV及び電子線が好ましい。
[Exposure process]
In this step, the resist film formed in the radiation sensitive composition coating step for forming a resist film is exposed. Specifically, for example, the resist film is irradiated with radiation through a mask having a predetermined pattern. In this step, radiation irradiation through an immersion medium such as water, that is, immersion exposure may be employed as necessary. Examples of radiation to be exposed include visible rays, ultraviolet rays, far ultraviolet rays, EUV (wavelength 13.5 nm), electromagnetic waves such as X-rays and γ rays, and charged particle beams such as electron rays and α rays. Among these, EUV and an electron beam are preferable from the viewpoint of improving sensitivity.
[現像工程]
 本工程では、露光工程で露光されたレジスト膜を現像する。これにより、所定のネガ型のパターンが形成される。現像液としては、例えばアルカリ水溶液、有機溶媒含有液等が挙げられ、現像性等の観点から、有機溶媒含有液が好ましい。
[Development process]
In this step, the resist film exposed in the exposure step is developed. As a result, a predetermined negative pattern is formed. Examples of the developer include an alkaline aqueous solution and an organic solvent-containing solution. From the viewpoint of developability and the like, an organic solvent-containing solution is preferable.
 上記アルカリ水溶液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物のうち少なくとも1種を溶解させたアルカリ水溶液などが挙げられる。 Examples of the alkaline aqueous solution include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, ethyl Dimethylamine, triethanolamine, tetramethylammonium hydroxide (TMAH), pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, 1,5-diazabicyclo- [4.3 0.0] -5-nonene, and an alkaline aqueous solution in which at least one kind is dissolved.
 上記アルカリ水溶液におけるアルカリ性化合物の含有量の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましい。上記含有量の上限としては、20質量%が好ましく、10質量%がより好ましく、5質量%がさらに好ましい。 The lower limit of the content of the alkaline compound in the alkaline aqueous solution is preferably 0.1% by mass, more preferably 0.5% by mass, and even more preferably 1% by mass. As an upper limit of the said content, 20 mass% is preferable, 10 mass% is more preferable, and 5 mass% is further more preferable.
 上記アルカリ水溶液としては、TMAH水溶液が好ましく、2.38質量%TMAH水溶液がより好ましい。 As the alkaline aqueous solution, a TMAH aqueous solution is preferable, and a 2.38% by mass TMAH aqueous solution is more preferable.
 上記有機溶媒含有液中の有機溶媒としては、例えばレジスト膜形成用感放射線性組成物における[Q]溶媒として例示した有機溶媒と同様のもの等が挙げられる。これらの中で、エーテル系溶媒が好ましく、多価アルコール部分エーテルアセテート系溶媒がより好ましく、プロピレングリコールモノメチルエーテルアセテートがさらに好ましい。 Examples of the organic solvent in the organic solvent-containing liquid include the same organic solvents exemplified as the [Q] solvent in the radiation-sensitive composition for forming a resist film. Of these, ether solvents are preferred, polyhydric alcohol partial ether acetate solvents are more preferred, and propylene glycol monomethyl ether acetate is even more preferred.
 上記有機溶媒含有液における有機溶媒の含有量の下限としては、80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましく、99質量%が特に好ましい。上記有機溶媒の含有量を上記範囲とすることで、露光部及び未露光部での現像液に対する溶解速度のコントラストをより向上できる。なお、上記有機溶媒含有液の有機溶媒以外の成分としては、例えば水、シリコーンオイル等が挙げられる。 The lower limit of the content of the organic solvent in the organic solvent-containing liquid is preferably 80% by mass, more preferably 90% by mass, further preferably 95% by mass, and particularly preferably 99% by mass. By making content of the said organic solvent into the said range, the contrast of the dissolution rate with respect to the developing solution in an exposure part and an unexposed part can be improved more. In addition, as components other than the organic solvent of the said organic solvent containing liquid, water, silicone oil, etc. are mentioned, for example.
 上記現像液には、必要に応じて界面活性剤を適当量添加してもよい。上記界面活性剤としては、例えばイオン性又は非イオン性のフッ素系界面活性剤、シリコーン系の界面活性剤等を用いることができる。 An appropriate amount of a surfactant may be added to the developer as necessary. As the surfactant, for example, an ionic or nonionic fluorine-based surfactant, a silicone-based surfactant, or the like can be used.
 現像方法としては、例えば現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液吐出ノズルをスキャンしながら現像液を吐出しつづける方法(ダイナミックディスペンス法)等が挙げられる。 As a developing method, for example, a method in which a substrate is immersed in a tank filled with a developer for a certain period of time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and is left stationary for a certain time (paddle method) ), A method of spraying the developer on the substrate surface (spray method), a method of continuously discharging the developer while scanning the developer discharge nozzle at a constant speed on the substrate rotating at a constant speed (dynamic dispensing method), etc. Is mentioned.
 上記現像後の基板は、水、アルコール等のリンス液を用いてリンスした後、乾燥させることが好ましい。上記リンスの方法としては、例えば一定速度で回転している基板上にリンス液を吐出しつづける方法(回転塗布法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面にリンス液を噴霧する方法(スプレー法)等が挙げられる。 The substrate after the development is preferably rinsed with a rinse liquid such as water or alcohol and then dried. As the rinsing method, for example, a method of continuously discharging a rinsing liquid onto a substrate rotating at a constant speed (rotary coating method), a method of immersing the substrate in a tank filled with the rinsing liquid for a predetermined time (dip method) ), A method (spray method) of spraying a rinse liquid on the substrate surface, and the like.
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.
<金属含有化合物>
(合成例1)
 tert-ブチルトリクロロスズ(下記式(p-1)で表される化合物)10.0mmolを0.3Mテトラメチルアンモニウムヒドロキシド水溶液中100gに投入し、室温で激しく90分撹拌した。析出した沈殿物を濾過後、50gの水で2回水洗することにより、下記式(P-1)で表される金属含有化合物(P-1)を得た。
<Metal-containing compounds>
(Synthesis Example 1)
10.0 mmol of tert-butyltrichlorotin (compound represented by the following formula (p-1)) was added to 100 g of 0.3M tetramethylammonium hydroxide aqueous solution, and stirred vigorously at room temperature for 90 minutes. The deposited precipitate was filtered and washed twice with 50 g of water to obtain a metal-containing compound (P-1) represented by the following formula (P-1).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
<レジスト膜形成用感放射線性組成物の調製>
(合成例2)
 金属含有化合物(P-1)3.0質量部と、[Q]溶媒としての4-メチル-2-ペンタノール97.0質量部とを混合し、得られた混合物を孔径0.2μmのメンブレンフィルターで濾過することにより、レジスト膜形成用感放射線性組成物(J-1)を調製した。
<Preparation of radiation-sensitive composition for resist film formation>
(Synthesis Example 2)
3.0 parts by mass of the metal-containing compound (P-1) and 97.0 parts by mass of 4-methyl-2-pentanol as a [Q] solvent were mixed, and the resulting mixture was mixed with a membrane having a pore size of 0.2 μm. By filtering with a filter, a radiation-sensitive composition (J-1) for forming a resist film was prepared.
<下層膜形成用組成物の調製>
 下層膜形成用組成物の調製に用いた[A1]光塩基発生剤、[A2]光酸発生剤、[B1]有機重合体、[B2]無機重合体、及び[C]溶媒を以下に示す。
<Preparation of composition for forming lower layer film>
[A1] Photobase generator, [A2] Photoacid generator, [B1] organic polymer, [B2] inorganic polymer, and [C] solvent used for the preparation of the underlayer film forming composition are shown below. .
([A1]光塩基発生剤)
A-1:2-ニトロベンジルシクロヘキシルカルバメート(下記式(a-1)で表される化合物)
A-2:2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルホリノプロパン-1-オン(下記式(a-2)で表される化合物)
A-3:2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタン-1-オン(下記式(a-3)で表される化合物)
([A1] Photobase generator)
A-1: 2-nitrobenzylcyclohexyl carbamate (compound represented by the following formula (a-1))
A-2: 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one (compound represented by the following formula (a-2))
A-3: 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one (compound represented by the following formula (a-3))
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
([A2]光酸発生剤)
A-4:トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート(下記式(a-4)で表される化合物)
A-5:トリフェニルスルホニウムトリフルオロメタンスルホネート(下記式(a-5)で表される化合物)
A-6:トリフェニルスルホニウム-10-カンファースルホネート(下記式(a-6)で表される化合物)
([A2] Photoacid generator)
A-4: Triphenylsulfonium nonafluoro-n-butanesulfonate (compound represented by the following formula (a-4))
A-5: Triphenylsulfonium trifluoromethanesulfonate (compound represented by the following formula (a-5))
A-6: Triphenylsulfonium-10-camphorsulfonate (compound represented by the following formula (a-6))
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
([B1]有機重合体)
B-1:下記式(b-1)で表される樹脂(Mw:2,000)
B-2:下記式(b-2)で表される樹脂(Mw:1,100)
B-3:下記式(b-3)で表される樹脂(Mw:2,000)
B-4:下記式(b-4)で表される樹脂(Mw:1,800)
B-5:下記式(b-5)で表される樹脂(Mw:2,800)
B-6:下記式(b-6)で表される樹脂(Mw:2,000)
([B1] organic polymer)
B-1: Resin represented by the following formula (b-1) (Mw: 2,000)
B-2: Resin represented by the following formula (b-2) (Mw: 1,100)
B-3: Resin represented by the following formula (b-3) (Mw: 2,000)
B-4: Resin represented by the following formula (b-4) (Mw: 1,800)
B-5: Resin represented by the following formula (b-5) (Mw: 2,800)
B-6: Resin represented by the following formula (b-6) (Mw: 2,000)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
([B2]無機重合体)
B-7:下記式(b-7)で表される樹脂(Mw:1,500)
B-8:下記式(b-8)で表される樹脂(Mw:2,000)
B-9:下記式(b-9)で表される樹脂(Mw:2,000)
B-10:下記式(b-10)で表される樹脂(Mw:3,000)
B-11:下記式(b-11)で表される樹脂(Mw:2,500)
B-12:下記式(b-12)で表される樹脂(Mw:3,000)
([B2] inorganic polymer)
B-7: Resin represented by the following formula (b-7) (Mw: 1,500)
B-8: Resin represented by the following formula (b-8) (Mw: 2,000)
B-9: Resin represented by the following formula (b-9) (Mw: 2,000)
B-10: Resin represented by the following formula (b-10) (Mw: 3,000)
B-11: Resin represented by the following formula (b-11) (Mw: 2,500)
B-12: Resin represented by the following formula (b-12) (Mw: 3,000)
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 なお、有機重合体(B-1)~(B-6)及び無機重合体(B-7)~(B-12)は、従来公知の方法により合成した。 The organic polymers (B-1) to (B-6) and the inorganic polymers (B-7) to (B-12) were synthesized by a conventionally known method.
([C]溶媒)
C-1:プロピレングリコールモノメチルエーテルアセテート
C-2:プロピレングリコールモノエチルエーテル
([C] solvent)
C-1: Propylene glycol monomethyl ether acetate C-2: Propylene glycol monoethyl ether
[下層膜形成用組成物の調製]
(合成例3)
 光塩基発生剤(A-1)0.3質量部及び有機重合体(B-1)2.7質量部を溶媒(C-1)97.0質量部に溶解させた。この溶液を孔径0.45μmのメンブランフィルターで濾過して下層膜形成用組成物(U-1)を調製した。
[Preparation of composition for forming lower layer film]
(Synthesis Example 3)
0.3 parts by mass of the photobase generator (A-1) and 2.7 parts by mass of the organic polymer (B-1) were dissolved in 97.0 parts by mass of the solvent (C-1). This solution was filtered through a membrane filter having a pore diameter of 0.45 μm to prepare a composition for forming an underlayer film (U-1).
(合成例4~26)
 各成分の種類及び含有量が下記表1に示す通りとなるようにした以外は、合成例3と同様に操作して、下層膜形成用組成物(U-2)~(U-21)及び(u-1)~(u-3)を調製した。表1中の「-」は該当する成分を使用しなかったことを示す。
(Synthesis Examples 4 to 26)
Except that the types and contents of the respective components are as shown in Table 1 below, the same operations as in Synthesis Example 3 were performed, and the underlayer film forming compositions (U-2) to (U-21) and (U-1) to (u-3) were prepared. “-” In Table 1 indicates that the corresponding component was not used.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
<評価>
 レジスト膜形成用感放射線性組成物と、実施例及び比較例の下層膜形成用組成物とを用いて下記方法によりパターンを形成し、各パターン形成方法における感度及びパターン倒れ耐性を評価した。評価結果を表2に示す。
<Evaluation>
A pattern was formed by the following method using the radiation-sensitive composition for forming a resist film and the compositions for forming a lower layer film of Examples and Comparative Examples, and the sensitivity and pattern collapse resistance in each pattern forming method were evaluated. The evaluation results are shown in Table 2.
[下層膜の形成]
 東京エレクトロン社の「クリーントラックACT-8」内で、シリコン基板上に下層膜形成用組成物をスピンコートした後、270℃、180秒間の条件でPBを行い、平均厚さ50nmの下層膜を形成した。
[Formation of lower layer film]
In “Clean Track ACT-8” of Tokyo Electron Co., Ltd., after spin-coating a composition for forming an underlayer film on a silicon substrate, PB was performed at 270 ° C. for 180 seconds to form an underlayer film having an average thickness of 50 nm. Formed.
[レジスト膜の形成]
 東京エレクトロン社の「クリーントラックACT-8」内で、上記下層膜を形成したシリコン基板上にレジスト膜形成用感放射線性組成物(J-1)をスピンコートした後、80℃、60秒間の条件でPBを行い、平均厚さ50nmのレジスト膜を形成した。
[Formation of resist film]
In the “Clean Track ACT-8” of Tokyo Electron Co., Ltd., after spin-coating the radiation-sensitive composition (J-1) for forming a resist film on the silicon substrate on which the lower layer film was formed, it was heated at 80 ° C. for 60 seconds. PB was performed under the conditions to form a resist film having an average thickness of 50 nm.
[パターン形成]
 簡易型の電子線描画装置(日立製作所社の「HL800D」、出力:50KeV、電流密度:5.0アンペア/cm)を用いて上記レジスト膜に電子線を照射した。電子線の照射後、上記「クリーントラックACT-8」内で、上記レジスト膜に対し、プロピレングリコールモノメチルエーテルアセテートを用い、23℃で1分間、パドル法により現像した後、乾燥させることでパターンを形成した。
[Pattern formation]
The resist film was irradiated with an electron beam using a simple electron beam drawing apparatus (“HL800D” manufactured by Hitachi, Ltd., output: 50 KeV, current density: 5.0 amperes / cm 2 ). After the electron beam irradiation, the resist film is developed with propylene glycol monomethyl ether acetate at 23 ° C. for 1 minute in the “Clean Track ACT-8” by the paddle method and then dried to form a pattern. Formed.
[感度]
 露光量を変量させながら上記パターン形成を行い、線幅150nmのライン部と、隣接するライン部間に形成される幅150nmのスペース部とからなるライン・アンド・スペースパターン(1L1S)を1対1の線幅に形成できる露光量(最適露光量)を求めた。この最適露光量を感度(μC/cm)とした。感度は、その数値が低いほど良好であると評価できる。
[sensitivity]
The pattern is formed while varying the exposure amount, and a line-and-space pattern (1L1S) consisting of a line portion having a line width of 150 nm and a space portion having a width of 150 nm formed between adjacent line portions is 1: 1. The exposure amount (optimal exposure amount) that can be formed with a line width of was determined. This optimum exposure amount was defined as sensitivity (μC / cm 2 ). It can be evaluated that the lower the numerical value, the better the sensitivity.
[パターン倒れ耐性]
 上記ライン・アンド・スペースパターンの形成において、露光量を変量させることで得られるパターンの線幅を次第に細くし、レジストパターンの倒壊が確認されない最小のラインパターンの線幅を求め、これを最小倒壊前寸法(nm)とした。パターン倒れ耐性は、最小倒壊前寸法(nm)の数値が低いほど良好であると評価できる。
[Pattern fall resistance]
In the formation of the above line and space pattern, the line width of the pattern obtained by varying the exposure dose is gradually narrowed to obtain the minimum line pattern line width in which the resist pattern is not confirmed to be collapsed. The previous dimension (nm) was used. It can be evaluated that the pattern collapse resistance is better as the numerical value of the minimum collapse dimension (nm) is lower.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表2から明らかなように、実施例のパターン形成方法は、比較例のパターン形成方法と比べ、感度及びパターン倒れ耐性がいずれも良好であった。 As is clear from Table 2, the sensitivity and the pattern collapse resistance of the pattern formation method of the example were better than those of the pattern formation method of the comparative example.
 本発明のパターン形成方法によれば、優れた感度を発揮しつつパターン倒れを抑制できる。従って、このパターン形成方法は、今後ますます微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。 According to the pattern forming method of the present invention, pattern collapse can be suppressed while exhibiting excellent sensitivity. Therefore, this pattern forming method can be suitably used for a semiconductor device processing process and the like that are expected to be further miniaturized in the future.

Claims (7)

  1.  基板に下層膜形成用組成物を塗工する工程と、
     上記下層膜形成用組成物塗工工程により形成された下層膜上に直接又は間接にレジスト膜形成用感放射線性組成物を塗工する工程と、
     上記レジスト膜形成用感放射線性組成物塗工工程により形成されたレジスト膜を露光する工程と、
     上記露光されたレジスト膜を現像する工程と
     を備え、
     上記下層膜形成用組成物が、放射線の作用により塩基を発生する感放射線性塩基発生剤、又は放射線の作用により酸を発生する感放射線性酸発生剤を含有し、
     上記レジスト膜形成用感放射線性組成物が、金属含有化合物を固形分換算で50質量%以上含有するパターン形成方法。
    Applying a composition for forming an underlayer film to a substrate;
    Coating the radiation-sensitive composition for forming a resist film directly or indirectly on the lower layer film formed by the above-mentioned composition for forming a lower layer film; and
    Exposing the resist film formed by the radiation sensitive composition coating process for forming the resist film;
    A step of developing the exposed resist film,
    The composition for forming an underlayer film contains a radiation-sensitive base generator that generates a base by the action of radiation, or a radiation-sensitive acid generator that generates an acid by the action of radiation,
    The pattern formation method in which the said radiation sensitive composition for resist film formation contains a metal containing compound 50 mass% or more in conversion of solid content.
  2.  上記下層膜形成用組成物が有機重合体をさらに含有し、
     上記下層膜形成用組成物塗工工程で、有機下層膜を形成する請求項1に記載のパターン形成方法。
    The underlayer film forming composition further contains an organic polymer,
    The pattern forming method according to claim 1, wherein an organic underlayer film is formed in the underlayer film forming composition coating step.
  3.  上記有機下層膜における炭素含有率が50質量%以上である請求項2に記載のパターン形成方法。 The pattern formation method according to claim 2, wherein the organic underlayer film has a carbon content of 50% by mass or more.
  4.  上記有機重合体の重量平均分子量が30,000以下である請求項2又は請求項3に記載のパターン形成方法。 The pattern forming method according to claim 2 or 3, wherein the organic polymer has a weight average molecular weight of 30,000 or less.
  5.  上記有機重合体が芳香環を有する請求項2、請求項3又は請求項4に記載のパターン形成方法。 The pattern forming method according to claim 2, wherein the organic polymer has an aromatic ring.
  6.  上記金属含有化合物が、下記式(1)で表される化合物に由来する請求項1から請求項5のいずれか1項に記載のパターン形成方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Mは、金属原子である。Lは、配位子又は炭素数1~20の1価の有機基である。aは、0~6の整数である。aが2以上の場合、複数のLは同一でも異なっていてもよい。Yは、1価の加水分解性基である。bは、2~6の整数である。複数のYは同一でも異なっていてもよい。なお、LはYに該当しない配位子又は有機基である。)
    The pattern formation method according to any one of claims 1 to 5, wherein the metal-containing compound is derived from a compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), M is a metal atom. L is a ligand or a monovalent organic group having 1 to 20 carbon atoms. A is an integer of 0 to 6. a is 2) In the above case, a plurality of L may be the same or different, Y is a monovalent hydrolyzable group, b is an integer of 2 to 6. A plurality of Y may be the same or different. (Note that L is a ligand or organic group not corresponding to Y.)
  7.  上記金属含有化合物を構成する金属原子が、周期表において第4族、第12族又は第14族に属し、かつ第4周期、第5周期又は第6周期に属する第1金属原子を含む請求項1から請求項6のいずれか1項に記載のパターン形成方法。 The metal atom constituting the metal-containing compound includes a first metal atom belonging to Group 4, Group 12, or Group 14 in the periodic table and belonging to the fourth period, the fifth period, or the sixth period. The pattern formation method of any one of Claims 1-6.
PCT/JP2018/001668 2017-03-22 2018-01-19 Pattern forming method WO2018173446A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017056678 2017-03-22
JP2017-056678 2017-03-22

Publications (1)

Publication Number Publication Date
WO2018173446A1 true WO2018173446A1 (en) 2018-09-27

Family

ID=63586116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001668 WO2018173446A1 (en) 2017-03-22 2018-01-19 Pattern forming method

Country Status (1)

Country Link
WO (1) WO2018173446A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102636A1 (en) * 2020-11-12 2022-05-19 三菱マテリアル株式会社 Organic tin compound, method for producing same, liquid composition for forming euv resist film using same, and method for forming euv resist film
JP2022096615A (en) * 2020-12-17 2022-06-29 ローム アンド ハース エレクトロニック マテリアルズ エルエルシー Photoresist underlayer compositions and patterning methods
WO2022182473A1 (en) * 2021-02-23 2022-09-01 Lam Research Corporation Halogen-and aliphatic-containing organotin photoresists and methods thereof
US11921427B2 (en) 2018-11-14 2024-03-05 Lam Research Corporation Methods for making hard masks useful in next-generation lithography
US11988965B2 (en) 2020-01-15 2024-05-21 Lam Research Corporation Underlayer for photoresist adhesion and dose reduction

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057829A (en) * 2001-08-09 2003-02-28 Murata Mfg Co Ltd Method for forming pattern and method for manufacturing circuit board and ceramic multilayered substrate by using the same
JP2004512672A (en) * 2000-06-06 2004-04-22 イーケーシー テクノロジー,インコーポレイティド Electronic material manufacturing method
JP2009076233A (en) * 2007-09-19 2009-04-09 Toray Ind Inc Pattern forming method and manufacturing method of circuit board material using the same
JP2010508560A (en) * 2006-11-01 2010-03-18 ステイト オブ オレゴン アクティング バイ アンド スルー ザ ステイト ボード オブ ハイヤー エデュケーション オン ビハーフ オブ オレゴン ステイト ユニバーシティー Solution processing thin film and laminate, apparatus provided with thin film and laminate, use and manufacturing method
JP2014111734A (en) * 2012-11-01 2014-06-19 Fujifilm Corp Photosensitive composition and gray cured film, gray pixel, and solid-state imaging element using the same
JP2015129938A (en) * 2013-12-30 2015-07-16 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド Pattern formation method using antireflective coating composition containing photoacid generator
WO2016065120A1 (en) * 2014-10-23 2016-04-28 Inpria Corporation Organometallic solution based high resolution patterning compositions and corresponding methods
WO2016208300A1 (en) * 2015-06-24 2016-12-29 富士フイルム株式会社 Pattern forming method, laminate, and resist composition for organic solvent development

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004512672A (en) * 2000-06-06 2004-04-22 イーケーシー テクノロジー,インコーポレイティド Electronic material manufacturing method
JP2003057829A (en) * 2001-08-09 2003-02-28 Murata Mfg Co Ltd Method for forming pattern and method for manufacturing circuit board and ceramic multilayered substrate by using the same
JP2010508560A (en) * 2006-11-01 2010-03-18 ステイト オブ オレゴン アクティング バイ アンド スルー ザ ステイト ボード オブ ハイヤー エデュケーション オン ビハーフ オブ オレゴン ステイト ユニバーシティー Solution processing thin film and laminate, apparatus provided with thin film and laminate, use and manufacturing method
JP2009076233A (en) * 2007-09-19 2009-04-09 Toray Ind Inc Pattern forming method and manufacturing method of circuit board material using the same
JP2014111734A (en) * 2012-11-01 2014-06-19 Fujifilm Corp Photosensitive composition and gray cured film, gray pixel, and solid-state imaging element using the same
JP2015129938A (en) * 2013-12-30 2015-07-16 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド Pattern formation method using antireflective coating composition containing photoacid generator
WO2016065120A1 (en) * 2014-10-23 2016-04-28 Inpria Corporation Organometallic solution based high resolution patterning compositions and corresponding methods
WO2016208300A1 (en) * 2015-06-24 2016-12-29 富士フイルム株式会社 Pattern forming method, laminate, and resist composition for organic solvent development

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11921427B2 (en) 2018-11-14 2024-03-05 Lam Research Corporation Methods for making hard masks useful in next-generation lithography
US11988965B2 (en) 2020-01-15 2024-05-21 Lam Research Corporation Underlayer for photoresist adhesion and dose reduction
WO2022102636A1 (en) * 2020-11-12 2022-05-19 三菱マテリアル株式会社 Organic tin compound, method for producing same, liquid composition for forming euv resist film using same, and method for forming euv resist film
JP2022096615A (en) * 2020-12-17 2022-06-29 ローム アンド ハース エレクトロニック マテリアルズ エルエルシー Photoresist underlayer compositions and patterning methods
WO2022182473A1 (en) * 2021-02-23 2022-09-01 Lam Research Corporation Halogen-and aliphatic-containing organotin photoresists and methods thereof

Similar Documents

Publication Publication Date Title
KR101711681B1 (en) Resist composition and patterning process
WO2018173446A1 (en) Pattern forming method
TWI432896B (en) Resist composition and patterning process
WO2018179704A1 (en) Pattern forming method
TW201831570A (en) Radiation-sensitive composition, pattern formation method, and metal-containing resin and method for manufacturing same
JP6666572B2 (en) Radiation-sensitive composition and pattern forming method
US20190310551A1 (en) Radiation-sensitive composition, pattern-forming method and metal oxide
TWI596159B (en) Reverse pattern forming method and polysiloxane resin composition
JP7297256B2 (en) Lithographic composition, patterning method, and compound
TWI801658B (en) Actinic radiation-sensitive or radiation-sensitive resin composition, actinic radiation-sensitive or radiation-sensitive film, method for forming pattern, method for manufacturing electronic device, and compound
EP3598232A1 (en) Radiation sensitive composition and pattern forming method
US20200356000A9 (en) Radiation-sensitive composition and pattern-forming method
US10120277B2 (en) Radiation-sensitive composition and pattern-forming method
US10108088B2 (en) Radiation-sensitive composition and pattern-forming method
WO2017169440A1 (en) Radiation-sensitive composition and pattern formation method
US20230069221A1 (en) Composition for resist underlayer film formation, and method of producing semiconductor substrate
CN101943858B (en) Compositions comprising sulfonamide material and processes for photolithography
KR20150126968A (en) Composition for forming upper layer film and resist pattern forming method using same
US20190094691A1 (en) Radiation-sensitive composition and pattern-forming method
JP2020042217A (en) Composition, composition for forming metal- or semimetal-containing film, metal- or semimetal-containing film and production method of the same, and pattern forming method
JPWO2017141756A1 (en) Radiation-sensitive composition and pattern forming method
US20200387068A1 (en) Radiation-sensitive composition, pattern-forming method and compound
US20210181627A1 (en) Pattern-forming method and radiation-sensitive composition
US20230408917A1 (en) Resist composition and method for forming resist pattern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18772645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP