WO2022102211A1 - 異常時対応教示システム、異常要因推定方法、異常時対応教示方法およびプログラム - Google Patents

異常時対応教示システム、異常要因推定方法、異常時対応教示方法およびプログラム Download PDF

Info

Publication number
WO2022102211A1
WO2022102211A1 PCT/JP2021/031714 JP2021031714W WO2022102211A1 WO 2022102211 A1 WO2022102211 A1 WO 2022102211A1 JP 2021031714 W JP2021031714 W JP 2021031714W WO 2022102211 A1 WO2022102211 A1 WO 2022102211A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormality
work
information
factor
treatment work
Prior art date
Application number
PCT/JP2021/031714
Other languages
English (en)
French (fr)
Inventor
克幸 長田
裕史 小原
知之 小島
奏 関根
大輝 藤村
俊重 安威
学 齋藤
Original Assignee
三菱パワー株式会社
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社, 三菱重工業株式会社 filed Critical 三菱パワー株式会社
Priority to DE112021005899.1T priority Critical patent/DE112021005899T5/de
Priority to JP2022561292A priority patent/JPWO2022102211A1/ja
Priority to KR1020237007554A priority patent/KR20230048096A/ko
Priority to CN202180056013.9A priority patent/CN116057490A/zh
Priority to US18/021,672 priority patent/US20230315077A1/en
Publication of WO2022102211A1 publication Critical patent/WO2022102211A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0275Fault isolation and identification, e.g. classify fault; estimate cause or root of failure
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0221Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0267Fault communication, e.g. human machine interface [HMI]
    • G05B23/0272Presentation of monitored results, e.g. selection of status reports to be displayed; Filtering information to the user

Definitions

  • This disclosure relates to an abnormality response teaching system, an abnormality factor estimation method, an abnormality response teaching method, and a program.
  • This disclosure claims priority based on Japanese Patent Application No. 2020-188660 filed in Japan on November 12, 2020, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses a technique for preferably displaying a fault tree in such a situation.
  • Patent Document 2 describes an abnormality that has occurred by detecting an abnormality in the plant based on data acquired from a plurality of sensors provided in the plant and linking maintenance history information associated with the detected abnormality.
  • An abnormality diagnosis system that clarifies the diagnosis and treatment to be performed and gives work instructions to service personnel is disclosed.
  • This abnormality diagnosis system presents the FTA showing the diagnosis flow together with the diagnosis result of the abnormality to the service staff. The service staff can promptly implement appropriate countermeasures by comparing the diagnosis result of the abnormality diagnosis system with the FTA and proceeding with the diagnosis work.
  • the work of estimating the cause of an abnormality by comparing the data measured by the sensor with the FTA has a high work cost, and it takes a lot of time to estimate the factor with high accuracy. Then, there is a possibility that there will be a delay in dealing with the occurrence of an abnormality.
  • the present disclosure provides an abnormality response teaching system, an abnormality factor estimation method, an abnormality response teaching method and a program that can solve the above-mentioned problems.
  • the abnormality response teaching system includes an operation parameter acquisition unit that acquires operation parameters measured during operation of the device, and a device included in the device that is executed before the device is started.
  • the operation parameter and the diagnostic information are input to the FTA analyzed for the cause of the abnormality.
  • a factor analysis unit for analyzing the cause of the abnormality is provided.
  • the anomalous factor estimation method acquires the operating parameters measured during the operation of the apparatus, and shows the result of the operation diagnosis of the apparatus included in the apparatus, which is executed before the activation of the apparatus. Diagnostic information is acquired, and when an abnormality occurs in the apparatus, the operating parameters and the diagnostic information are input to the FTA in which the cause of the abnormality is analyzed, and the cause of the abnormality is analyzed.
  • the abnormal response teaching method acquires the operation parameters measured during the operation of the device, and obtains the result of the operation diagnosis of the device included in the device, which is executed before the start of the device.
  • the indicated diagnostic information is acquired, and when an abnormality occurs in the apparatus, the operating parameters and the diagnostic information are input to the FTA in which the cause of the abnormality is analyzed, the cause of the abnormality is analyzed, and the factor is described.
  • the program acquires the operating parameters measured during the operation of the device to the computer and shows the result of the operation diagnosis of the device included in the device executed before the start of the device. Diagnostic information is acquired, and when an abnormality occurs in the device, the operation parameters and the diagnostic information are input to the FTA that analyzed the cause of the abnormality, and a process of analyzing the cause of the abnormality is executed. ..
  • abnormality response teaching system abnormality factor estimation method, abnormality response teaching method and program
  • the cause of the abnormality can be estimated with high accuracy and in a short time. ..
  • the method for teaching how to deal with an abnormality in the present disclosure when an abnormality occurs in a plant or the like, it is possible to grasp how to deal with the abnormality.
  • FIG. 1 is a block diagram showing an example of an abnormality response teaching system according to an embodiment.
  • the recovery management system 1 includes an abnormality response teaching system 10, a plant 20, a diagnostic system 30, and a terminal device 40.
  • the abnormality response teaching system 10 is communicably connected to the plant 20, the diagnostic system 30, and the terminal device 40.
  • Plant 20 is a plant subject to restoration management.
  • the plant 20 is provided with a large number of sensors 21.
  • the plant 20 includes a control device 22.
  • the sensor 21 outputs the measured value (operation parameter) to the error response teaching system 10.
  • the control device 22 acquires the operation parameters measured by the sensor 21, determines the operation state of the plant 20, and outputs the determination result to the abnormality response teaching system 10. For example, the control device 22 outputs an alarm signal when the operation parameter exceeds the threshold value, and further outputs a trip signal when the value at which the plant must be stopped.
  • the diagnostic system 30 confirms the operation of the equipment provided in the plant 20 before starting the plant 20, and outputs the result as diagnostic information to the error response teaching system 10.
  • the diagnostic system 30 outputs an instruction signal for changing the opening degree of the valve from closed to open and from open to closed in a stepwise manner to the valve provided in the plant 20, and the valve responds to the instruction signal. Diagnose the operation result.
  • a sensor capable of detecting an opening degree is attached to the valve, and the diagnostic system 30 acquires the opening degree detected by the sensor.
  • the diagnostic system 30 diagnoses that the operation of the valve is "normal” and outputs a value indicating normality to the abnormality response teaching system 10.
  • the diagnostic system 30 diagnoses that the valve operation is "almost normal”. Then, a value indicating that it is almost normal is output to the abnormality response teaching system 10. For example, when the operation of the valve is abnormal, the diagnostic system 30 diagnoses that the operation of the valve is "abnormal" and outputs a value indicating that the valve is abnormal to the error response teaching system 10.
  • the abnormality response teaching system 10 estimates the abnormality factor that caused the trip signal or the like based on the operation parameters, the diagnostic information by the diagnostic system 30, and the like. We will teach you how to deal with the abnormal factors.
  • the abnormality response teaching system 10 includes an operation data acquisition unit 11, a diagnosis information acquisition unit 12, an inspection work information acquisition unit 13, a factor analysis unit 14, an analysis result output unit 15, and a treatment work instruction unit 16.
  • a treatment work completion reception unit 17, a restart preparation completion notification unit 18, and a storage unit 19 are provided.
  • the operation data acquisition unit 11 acquires the latest operation data output by the plant 20.
  • the operation data includes operation parameters measured by the sensor 21, an alarm signal output by the control device 22, and a trip signal.
  • the alarm signal and trip signal serve as a trigger for processing that estimates the cause of abnormality and teaches the treatment work.
  • Operating parameters are used to determine anomalous factors.
  • the diagnostic information acquisition unit 12 acquires the diagnosis result (diagnosis information) of the operation diagnosis performed by the diagnosis system 30 before the start of the plant 20. If the operation is diagnosed as "abnormal” by the diagnostic system 30, the plant 20 is started after dealing with the abnormality. When the diagnosis system 30 diagnoses "normal” or “almost normal”, the plant 20 is started, and then when the plant 20 is stopped due to an abnormality, the diagnosis result by the diagnosis system 30 is used for estimating the cause of the abnormality. Will be done. For example, when "normal” is diagnosed by the diagnostic system 30, in the estimation of the abnormal factor, the item related to the operation of the device diagnosed as "normal” can be excluded from the candidates for the abnormal factor.
  • the inspection work information acquisition unit 13 acquires inspection work information including inspections performed on the plant 20, presence / absence of work, and operation confirmation results immediately after that. For example, in a periodic inspection, it is assumed that the equipment and parts included in the plant 20 are disassembled, and the valve that is closed during operation is opened. If there is a work mistake when assembling the disassembled equipment and returning it to the original state after the periodic inspection, or if you forget to return the valve to the original state after the periodic inspection, that will be the case in the operation of the plant 20 after the periodic inspection. , Trip, etc. may be a factor. In this way, inspections and construction involving disassembly of equipment can cause abnormalities.
  • the inspection work information acquisition unit 13 acquires inspection work information indicating the presence or absence of inspection and work before the start of the plant 20 in order to determine the possibility that the inspection and work have affected in estimating the cause of the abnormality.
  • the factor analysis unit 14 When the factor analysis unit 14 acquires an alarm signal or trip signal from the plant 20, the operation parameters measured by the sensor 21, the diagnostic information output by the diagnostic system 30, and the inspection work information are converted into an FTA (Fault Tree Analysis). It is input and the cause of abnormality of the plant 20 that is the source of the alarm signal and the trip signal is analyzed. To input to the FTA, apply the operation parameters, diagnostic information, and inspection work information to the judgment conditions set for each branch of the fault tree used in the FTA and each element, and judge whether or not the judgment conditions are satisfied. To say. For example, the factor analysis unit 14 inputs sensor data or the like into the FTA, and estimates anomalous factors by following in order while checking the determination conditions from the top of the tree.
  • FTA Failure Tree Analysis
  • the analysis result output unit 15 outputs an abnormal factor estimated by the factor analysis unit 14.
  • the treatment work instruction unit 16 identifies the treatment work for the abnormal factor estimated by the factor analysis unit 14, and transmits the treatment work instruction instructing the execution of the treatment work to the terminal device 40.
  • the treatment work is a work for removing the abnormal factor of the plant 20 and making the plant 20 restartable.
  • the treatment work completion reception unit 17 acquires information indicating the completion of the treatment work. For example, when the instructed treatment work is completed, the worker inputs the completion of the treatment work to the terminal device 40. When the completion of the treatment work is input, the terminal device 40 notifies the abnormality response teaching system 10 of the completion of the treatment work, and the treatment work completion reception unit 17 acquires this notification.
  • the restart preparation completion notification unit 18 notifies the control room in which the terminal device 40 and the operator of the plant 20 are monitoring the operation that the plant 20 can be restarted. The restart preparation completion notification unit 18 determines that the plant 20 can be restarted when all the treatment work is completed.
  • the storage unit 19 caused the operation data acquired by the operation data acquisition unit 11, the diagnostic information acquired by the diagnostic information acquisition unit 12, the inspection work information acquired by the inspection work information acquisition unit 13, an alarm signal, and a trip signal. Stores the fault tree for each event, information on the action work associated with the abnormal cause, and so on.
  • the terminal device 40 is, for example, a mobile terminal possessed by the operator of the plant 20.
  • the terminal device 40 displays the treatment work notified from the abnormality response teaching system 10.
  • the operator performs the work based on the information displayed on the terminal device 40, and deals with the abnormality of the plant 20.
  • the completion of the treatment work is input to the terminal device 40.
  • FIG. 2 shows an example of a fault tree.
  • FIG. 2 shows a part of a fault tree obtained as a result of analyzing the factors of trips due to misfire of a combustor among various events that cause trips of a gas turbine.
  • a misfire of a combustor occurs due to a poor fuel-air ratio or poor flame propagation (element 1).
  • poor fuel-to-air ratio occurs due to improper flow rate of ignition fuel or improper air flow rate at the time of ignition (element 2).
  • the improper flow rate of the ignited fuel is caused by a defect in the flow control valve that regulates the fuel flow rate, a defect in the fuel gas system, or the like (element 3).
  • a defective flow control valve is caused by a malfunction of the flow control valve or an error in the restoration work of the valve operated at the time of regular inspection (element 4).
  • the factor analysis unit 14 searches for the element 4 specified by these data by using the operation parameters, the diagnostic information, and the inspection work information.
  • a determination condition used for determining each branch on the tree is set in the storage unit 19 together with the fault tree, and the factor analysis unit 14 analyzes an abnormal factor based on this determination condition.
  • FIG. 3 shows an example of the judgment conditions for specifying the element 4.
  • Items marked with a circle in the table indicate that they are items used to determine the cause of the abnormality.
  • diagnostic information for the flow control valve, opening command for the flow control valve at the time of ignition, and operation parameter 1 for the opening command for example, a flow sensor that measures the fuel flow downstream of the flow control valve.
  • the presence or absence of an abnormality is determined by the difference in response indicated by the pressure sensor that measures the fuel pressure.
  • the diagnostic information is "almost normal" and the difference between the opening command and the response to the flow control valve is a predetermined value or more, the factor analysis unit 14 has a high possibility that the abnormal factor is a valve malfunction ( ⁇ ). ).
  • the factor analysis unit 14 determines that the possibility of valve malfunction cannot be ruled out ( ⁇ ). do. If the diagnostic information is "normal” and the difference between the opening command and the response to the flow control valve is within a predetermined value, the factor analysis unit 14 determines that the abnormal factor is unlikely to be a valve malfunction (x). do.
  • the presence or absence of an abnormality is determined based on the inspection work information and the diagnostic information for the fuel system valve. For example, when the diagnostic information is "normal” and the inspection work information is "none", the factor analysis unit 14 determines that the abnormal factor is unlikely to be a valve restoration error at the time of periodic inspection (x). For example, if the diagnostic information is "normal” and the inspection work information is "yes”, it is judged that there is a high possibility of valve malfunction ( ⁇ ).
  • the factor analysis unit 14 determines that the fuel gas replacement failure may be the cause of the combustor misfire trip based on the inspection work information.
  • the factor analysis unit 14 determines that the IGV malfunction may be the cause of the combustor misfire trip based on the operation parameter 2.
  • FIG. 3 shows an example of the determination condition of the element 4, the determination condition regarding the elements 1 to 3 may be set in the storage unit 19.
  • the operation parameters at the time of abnormality are compared with the fault tree, and the observer manually erases each element of the fault tree and estimates the cause of the abnormality.
  • the factor analysis unit 14 automatically determines the possibility that each element is an abnormal factor based on the predetermined determination conditions of each element, the operation parameter, and the like. This makes it possible to reduce the work cost of factor estimation and the time required for estimating anomalous factors.
  • a judgment is made using diagnostic information and inspection work information in addition to the operation parameters. This makes it possible to estimate the possibility of abnormal factors that cannot be determined by the operating parameters (for example, "valve restoration error at regular inspection" and "fuel gas replacement failure" in FIG. 3).
  • FIG. 4 shows the result of the factor analysis unit 14 deleting the fault tree based on the operation parameters, the diagnostic information, the inspection work information, and the judgment conditions of each element.
  • Factors judged to have a high possibility of anomalous factors are marked with a circle, factors judged to have a high possibility of anomalous factors are marked with a triangle, and factors judged to have a low possibility of anomalous factors. Is marked with a cross.
  • appropriate action work is registered in advance in association with each element indicating an abnormal factor defined in the fault tree.
  • the analysis result output unit 15 outputs to a display device or the like an image in which the fault tree, the analysis result of the abnormal factor by the factor analysis unit 14, and the treatment work are listed in association with each other, as illustrated in FIG. You may.
  • the analysis result output unit 15 displays the most probable abnormal factor (fuel gas replacement failure in the example of FIG. 4) in the most conspicuous manner, and the abnormal factor determined to be possible (FIG. 4). In the example of, valve malfunction, combustion cylinder abnormality) is displayed in a mode different from the abnormal factor considered to be highly probable, and the abnormal factor judged to be unlikely is grayed out.
  • the display may be performed according to the above. As a result, the observer can easily grasp the abnormal factor of the trip of the plant 20, the magnitude of the possibility thereof, and the treatment work required for each abnormal factor.
  • the treatment work instruction unit 16 instructs the worker to perform the treatment work based on the analysis result of the abnormal factor by the factor analysis unit 14 and the treatment work for the abnormal factor registered in the storage unit 19. For example, the treatment work instruction unit 16 identifies the corresponding treatment work for all the abnormal factors ( ⁇ and ⁇ ) determined by the factor analysis unit 14 to be possible, and terminals the abnormal factor and the treatment work instruction. It is transmitted to the device 40. For example, it is assumed that the determination result of the factor analysis unit 14 is "insufficient gas replacement", and "reignition" is registered in the storage unit 19 as the treatment work of "insufficient gas replacement". The treatment work instruction unit 16 transmits the abnormal factor "insufficient gas replacement” and the treatment work "reignition" to the terminal device 40.
  • FIG. 5 shows an example of a treatment work instruction transmitted to the terminal device 40.
  • the message "Ignition failure (combustor misfire trip) is likely to result in insufficient gas replacement, so perform ignition work" is displayed on the display screen of the terminal device 40.
  • the worker carries out the ignition work by referring to this display.
  • the treatment work instruction unit 16 may further transmit treatment work procedure information that teaches a specific method of performing the ignition work.
  • the procedure work procedure information may include not only sentences but also figures, photographs, moving images and the like.
  • the cause of the misfire trip of the combustor can be quickly confirmed and eliminated.
  • the treatment work instruction exemplified in FIG. 5 is a wording instruction for carrying out the ignition work.
  • the treatment work instruction unit 16 may instruct the worker to perform the treatment work by using not only the wording but also a figure or a moving image.
  • 6A and 6B show a schematic configuration diagram of the fuel system of the gas turbine. During the operation of the gas turbine, the fuel flows from the left side to the right side of the paper and is supplied from the manifolds M1 and M2 to the combustion chamber.
  • the fuel system is provided with an isolation valve V1, a vent valve V2, a shutoff valve V3, a vent valve V4, a shutoff valve V5, a pressure control valve V6, a flow control valve V7, and a flow control valve V8 in order from the upstream side in the fuel flow direction.
  • the isolation valve V1 and the vent valve V2 are valves that are manually opened and closed. As shown in FIG. 6A, the isolation valve V1 is open and the vent valve V2 is closed during the operation of the gas turbine. On the other hand, during the regular inspection, the isolation valve V1 is closed and the vent valve V2 is opened as shown in FIG. 6B.
  • the treatment work instruction unit 16 transmits the treatment work information such as "confirm the isolation valve V1 and the vent valve V2" to the terminal device 40 as a countermeasure against the "valve recovery error at the time of regular inspection".
  • the treatment work instruction unit 16 transmits, for example, FIG.
  • the treatment work instruction unit 16 may transmit a moving image showing a work procedure for guiding the positions of the isolation valve V1 and the vent valve V2, opening the isolation valve V1, and closing the vent valve V2.
  • the isolation valve for ensuring work safety is operated to isolate the equipment or parts to be worked on, and the equipment or parts are inspected or repaired.
  • the treatment work instruction unit 16 has the isolation valve instruction information for instructing the operation of the isolation valve, the work procedure for the component or the like existing at the position isolated by the isolation valve, and the position of the component and the component.
  • the work instruction information for instructing the information and the recovery valve instruction information for instructing the operation of the restoration valve may be output in the order of work.
  • a part that is easily mistakenly present near the part to be worked and the position information of the part may be output together.
  • FIG. 7 is a flowchart showing an example of the operation of the abnormality response teaching system according to the embodiment.
  • the operator inputs the inspection work information indicating whether or not the periodic inspection or the like has been carried out to the abnormality response teaching system 10.
  • the inspection work information acquisition unit 13 acquires the input inspection work information and records it in the storage unit 19 (step S1).
  • the person in charge of the diagnostic system 30 operates the diagnostic system 30 prior to starting the plant 20 to perform an operation diagnosis of a plurality of devices provided in the plant 20.
  • the result of the operation diagnosis is output to the display device or the like of the diagnosis system 30, and if an abnormality is diagnosed, appropriate measures are taken. If no abnormality is found in the operation diagnosis, the diagnosis system 30 outputs the diagnosis information for each device that has made the diagnosis to the abnormality response teaching system 10.
  • the diagnostic information acquisition unit 12 acquires diagnostic information and records it in the storage unit 19 (step S2).
  • the plant 20 starts to start by the operation of the operator of the plant 20 (step S3).
  • the operation data acquisition unit 11 acquires the operation parameters from the plant 20 and records them in the storage unit 19 (step S4).
  • the operation parameters include operation parameters measured by the sensor 21 of the plant 20, various control signals output by the control device 22, and the like.
  • the abnormality response teaching system 10 starts the analysis process of the abnormality factor.
  • the factor analysis unit 14 includes inspection work information, diagnostic information for each device, operation parameters before and after the occurrence of an abnormality, an FTA fault tree (FIG. 2) of an event indicated by an alarm signal or a trip signal, and a branch or element of the fault tree.
  • the determination condition (FIG. 3) for determining the above is read from the storage unit 19.
  • the factor analysis unit 14 analyzes the abnormal factor based on the fault tree (step S6).
  • the factor analysis unit 14 erases the elements that do not meet the judgment conditions based on the inspection work information, the diagnostic information, the operation parameters, and the judgment conditions of each element, and identifies the elements that meet the judgment conditions, that is, the abnormal factors. ..
  • the abnormality factor to be specified may be one or more.
  • the factor analysis unit 14 may have an abnormal factor with a high possibility ( ⁇ in FIG. 4), an abnormal factor with a medium possibility ( ⁇ in FIG. 3), etc., depending on the degree to which the operating parameters and the like match the judgment conditions. You may rank according to the size of.
  • the analysis result output unit 15 outputs the analysis result of the abnormal factor to a display device or the like (step S7).
  • the analysis result output unit 15 may display the anomalous factors remaining as a result of erasing the fault tree as illustrated in FIG. 4, together with the accuracy thereof.
  • the analysis result output unit 15 may further display the treatment work corresponding to the abnormal factor as illustrated in FIG.
  • the treatment work instruction unit 16 identifies the treatment work corresponding to the abnormal factor estimated by the factor analysis unit 14 (step S8).
  • the treatment work instruction unit 16 corresponds to an abnormal factor presumed to be possible ( ⁇ or ⁇ in FIG. 4) from the information for which the treatment work is set for each abnormal factor registered in advance in the storage unit 19. Read the action work.
  • the treatment work instruction unit 16 outputs a treatment work instruction instructing the execution of the treatment work specified in step S8 to the terminal device 40 (step S9).
  • the worker performs the indicated action work.
  • the treatment work is executed, the worker inputs the completion of the treatment work to the terminal device 40.
  • the terminal device 40 transmits the completion information of the treatment work to the error response teaching system 10.
  • the treatment work completion reception unit 17 acquires the treatment work completion information (step S10).
  • the worker may use the terminal device 40 to take a picture or a moving image of the work target portion after the treatment work is completed, and the terminal device 40 may transmit these image data to the abnormality response teaching system 10.
  • the error response teaching system 10 acquires image data.
  • the operator confirms the contents of the image data and confirms whether or not the treatment work has been performed correctly. When it is confirmed that the operation is performed correctly, the operator inputs to the abnormality response teaching system 10 that the treatment work has been completed.
  • the treatment work completion reception unit 17 acquires the treatment work completion information.
  • the treatment work completion reception unit 17 may display the acquisition status of completion information for the treatment work instructed by the treatment work instruction unit 16.
  • the recovery worker can check the progress of dealing with the abnormality.
  • the restart preparation completion notification unit 18 indicates that the restart preparation of the plant 20 is completed by the operator in charge of starting the plant 20. Notify the terminal device 40 or the like (step S11). This makes it possible to restart the plant 20.
  • the abnormality response teaching system 10 it is possible to automatically perform an analysis process of an abnormality factor using a fault tree. Since the abnormality factor is estimated using not only the operation parameter but also the diagnostic information and the inspection work information, the estimation accuracy of the abnormality factor can be improved. Inspection work information is not essential in the analysis process of abnormal factors by the factor analysis unit 14. For example, if the fault tree determination condition does not include the inspection work information, the inspection work information can be omitted. By registering information on the action work corresponding to the estimated abnormal factor in advance and providing it to the user side together with the estimated abnormal factor, it is possible to quickly deal with the abnormality. As a result, the plant 20 can be quickly restored to a normal operating state.
  • FIG. 8 is a diagram showing an example of the hardware configuration of the abnormality response teaching system according to the embodiment.
  • the computer 900 includes a CPU 901, a main storage device 902, an auxiliary storage device 903, an input / output interface 904, and a communication interface 905.
  • the above-mentioned abnormality response teaching system 10 is mounted on the computer 900.
  • Each of the above-mentioned functions is stored in the auxiliary storage device 903 in the form of a program.
  • the CPU 901 reads the program from the auxiliary storage device 903, expands it to the main storage device 902, and executes the above processing according to the program.
  • the CPU 901 reserves a storage area in the main storage device 902 according to the program.
  • the CPU 901 secures a storage area for storing the data being processed in the auxiliary storage device 903 according to the program.
  • the term "computer system” as used herein includes hardware such as an OS and peripheral devices.
  • the "computer system” shall include the homepage providing environment (or display environment) if the WWW system is used.
  • the "computer-readable recording medium” refers to a portable medium such as a CD, DVD, or USB, or a storage device such as a hard disk built in a computer system.
  • the above program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system.
  • the abnormality response teaching system 10 may be composed of a plurality of computers 900.
  • the abnormality response teaching system 10 the abnormality factor estimation method, the abnormality response teaching method and the program described in the embodiment are grasped as follows, for example.
  • the abnormality response teaching system 10 includes an operation parameter acquisition unit (operation data acquisition unit 11) that acquires operation parameters measured during operation of the apparatus (plant 20), and the apparatus.
  • the diagnostic information acquisition unit 12 that acquires diagnostic information indicating the result of the operation diagnosis of the device included in the device, which is executed before the start-up, and the operation parameter and the diagnostic information when an abnormality occurs in the device.
  • a factor analysis unit 14 for inputting into an FTA (fault tree) for analyzing the cause of the abnormality and analyzing the cause of the abnormality is provided.
  • FTA fault tree
  • the abnormality response teaching system 10 is the abnormality response instruction system 10 of (1), and acquires inspection work information showing the results of inspections and works performed on the device.
  • the inspection work information acquisition unit 13 is further provided, and the factor analysis unit 14 inputs the operation parameters, the diagnosis information, and the inspection work information into the FTA to analyze the factors.
  • the abnormality response teaching system 10 is the abnormality response teaching system 10 of (1) to (2), and instructs the treatment work for the factor analyzed by the factor analysis unit 14.
  • the treatment work instruction unit 16 for outputting the treatment work instruction information to be performed is further provided. By presenting the treatment work for confirming or removing the cause of the abnormality, it is possible to promptly take the treatment for the abnormality.
  • the treatment work instruction unit 16 may output the treatment work procedure information indicating the procedure of the treatment work in addition to the treatment work instruction information.
  • the abnormality response teaching system 10 is the abnormality response instruction system 10 of (3), and the treatment work instruction unit 16 operates an isolation valve for ensuring work safety.
  • the isolation valve instruction information instructing the above, the work procedure for the component existing at the position isolated by the isolation valve, the work instruction information instructing the position information of the component and the component, and the restart condition of the apparatus are satisfied.
  • the isolation valve is operated to ensure work safety, and the specified parts are inspected and restored. Even inexperienced workers will be able to carry out a series of treatment tasks such as operating the valve to create a restartable state and returning the isolation valve to its original state.
  • the abnormality response teaching system 10 is the abnormality response teaching system 10 of (3) to (4), and is the treatment work completion reception unit 17 that receives an input of completion of the treatment work. Further, when all the above-mentioned treatment operations are completed, a restart preparation completion notification unit 18 for notifying that the preparation for restart is completed is further provided. By providing a treatment work completion reception unit, it is possible to grasp the implementation status of the treatment work. By providing the restart preparation completion notification unit, it is possible to restart the plant 20 after all the treatment work is completed.
  • the abnormality response teaching system 10 is the abnormality response teaching system 10 of (1) to (5), and the analysis result by the factor analysis unit 14 is obtained from the fault tree of the FTA. Further includes an analysis result output unit 15 which is output together with the analysis result output unit 15. By outputting the analysis result together with the fault tree, the structure of the fault tree indicates which of the abnormal factors defined in the fault tree is the cause of the abnormality that occurred this time and which is not the cause of the abnormality. It can be confirmed while referring to.
  • the abnormality factor estimation method acquires the operation parameters measured during the operation of the device (plant 20), and performs the operation diagnosis of the device included in the device, which is executed before the device is started.
  • the operation parameters and the diagnostic information are input to the FTA that analyzed the cause of the abnormality, and the cause of the abnormality is analyzed. ..
  • the operation parameters measured during the operation of the device are acquired, and the operation of the device included in the device is executed before the device is started. Diagnostic information indicating the result of diagnosis is acquired, and when an abnormality occurs in the apparatus, the operation parameters and the diagnostic information are input to the FTA that analyzed the cause of the abnormality, and the cause of the abnormality is analyzed. Then, the treatment work instruction information for instructing the treatment work corresponding to the above factor is output.
  • the abnormality response teaching method according to the ninth aspect is the abnormality response teaching method of (8), and further, when the input of the completion of the treatment work is accepted and all the treatment work is completed. Notifies that it is ready to restart.
  • the program according to the tenth aspect acquires the operation parameters measured during the operation of the device (plant 20) in the computer, and performs the operation diagnosis of the device included in the device, which is executed before the start of the device.
  • the operation parameters and the diagnostic information are input to the FTA that analyzed the cause of the abnormality, and the cause of the abnormality is analyzed. Execute the process.
  • abnormality response teaching system abnormality factor estimation method, abnormality response teaching method and program
  • the cause of the abnormality can be estimated with high accuracy and in a short time. ..
  • the method for teaching how to deal with an abnormality in the present disclosure when an abnormality occurs in a plant or the like, it is possible to grasp how to deal with the abnormality.

Abstract

異常の要因を推定して、その要因に対する処置作業を教示する異常時対応教示システムを提供する。異常時対応教示システムは、装置の運転中に計測された運転パラメータを取得する運転パラメータ取得部と、装置の起動前に実行された装置が備える機器の動作診断の結果を示す診断情報を取得する診断情報取得部と、装置に異常が発生した場合に、運転パラメータと、診断情報とを異常の要因を分析したFTAに入力して、異常の要因を分析する要因分析部と、備える。

Description

異常時対応教示システム、異常要因推定方法、異常時対応教示方法およびプログラム
 本開示は、異常時対応教示システム、異常要因推定方法、異常時対応教示方法およびプログラムに関する。本開示は、2020年11月12日に、日本に出願された特願2020-188660号に基づき優先権を主張し、その内容をここに援用する。
 従来、プラントで異常が発生すると、監視員は、異常発生時にセンサによって計測された計測値と、フォルトツリーとを突き合わせて、異常の原因を推定する作業を行ってきた。特許文献1には、そのような状況でフォルトツリーの表示を好適に行う技術について開示されている。
 特許文献2には、プラントに設けられた複数のセンサから取得したデータに基づいて、プラントの異常を検知し、検知した異常と関連付けられた保守履歴情報を結びつけることにより、発生した異常に対して実施すべき診断、処置を明らかにし、サービス員への作業指示を行う異常診断システムが開示されている。この異常診断システムは、異常の診断結果とともに診断フローを示したFTAをサービス員へ提示する。サービス員は、異常診断システムによる診断結果をFTAと照らし合わせて診断作業を進めることによって、速やかに適切な対応策を実施することができる。
特開平03-213891号公報 特開2012-137934号公報
 センサが計測したデータとFTAを突き合わせて異常の原因を推定する作業は、作業コストが高く、高精度に要因を推定する為には多大な時間を要する。すると、異常発生時の対処に遅れが生じる可能性がある。
 本開示は、上述の課題を解決することのできる異常時対応教示システム、異常要因推定方法、異常時対応教示方法およびプログラムを提供する。
 本開示の一態様によれば、異常時対応教示システムは、装置の運転中に計測された運転パラメータを取得する運転パラメータ取得部と、前記装置の起動前に実行された前記装置が備える機器の動作診断の結果を示す診断情報を取得する診断情報取得部と、前記装置に異常が発生した場合に、前記運転パラメータと、前記診断情報とを前記異常の要因を分析したFTAに入力して、前記異常の要因を分析する要因分析部と、を備える。
 本開示の一態様によれば、異常要因推定方法は、装置の運転中に計測された運転パラメータを取得し、前記装置の起動前に実行された前記装置が備える機器の動作診断の結果を示す診断情報を取得し、前記装置に異常が発生した場合に、前記運転パラメータと、前記診断情報とを前記異常の要因を分析したFTAに入力して、前記異常の要因を分析する。
 本開示の一態様によれば、異常時対応教示方法は、装置の運転中に計測された運転パラメータを取得し、前記装置の起動前に実行された前記装置が備える機器の動作診断の結果を示す診断情報を取得し、前記装置に異常が発生した場合に、前記運転パラメータと、前記診断情報とを前記異常の要因を分析したFTAに入力して、前記異常の要因を分析し、前記要因に対応した処置作業を指示する処置作業指示情報を出力する。
 本開示の一態様によれば、プログラムは、コンピュータに、装置の運転中に計測された運転パラメータを取得し、前記装置の起動前に実行された前記装置が備える機器の動作診断の結果を示す診断情報を取得し、前記装置に異常が発生した場合に、前記運転パラメータと、前記診断情報とを前記異常の要因を分析したFTAに入力して、前記異常の要因を分析する処理を実行させる。
 上記した異常時対応教示システム、異常要因推定方法、異常時対応教示方法およびプログラムによれば、プラント等で異常が発生したときに、その異常の要因を高精度且つ短時間に推定することができる。本開示の異常時対応教示方法によれば、プラント等で異常が発生したときに、その異常への対処方法を把握することができる。
実施形態に係る異常時対応教示システムの一例を示すブロック図である。 実施形態に係るフォルトツリーの一例を示す図である。 実施形態に係るフォルトツリーの判断条件の一例を示す図である。 実施形態に係るフォルトツリーに基づく分析結果の一例を示す図である。 実施形態に係る処置作業指示情報の通知例を示す図である。 実施形態に係る処置作業指示情報の一例について説明する第1の図である。 実施形態に係る処置作業指示情報の一例について説明する第1の図である。 実施形態に係る異常時対応教示システムの動作の一例を示すフローチャートである。 実施形態に係る異常時対応教示システムのハードウェア構成の一例を示す図である。
<実施形態>
 以下、実施形態に係る異常時対応教示システムについて、図1~図8を参照しながら詳しく説明する。
(構成)
 図1は、実施形態に係る異常時対応教示システムの一例を示すブロック図である。
 復旧管理システム1は、異常時対応教示システム10と、プラント20と、診断システム30と、端末装置40とを含む。異常時対応教示システム10は、プラント20と、診断システム30と、端末装置40と、通信可能に接続されている。
 プラント20は、復旧管理対象のプラントである。プラント20には、多数のセンサ21が設けられている。プラント20は、制御装置22を備えている。センサ21は、計測した計測値(運転パラメータ)を異常時対応教示システム10へ出力する。制御装置22は、センサ21が計測した運転パラメータを取得し、プラント20の運転状態を判断し、その判断結果を異常時対応教示システム10へ出力する。例えば、制御装置22は、運転パラメータが閾値を超過すると警報信号を出力し、さらに、プラントを停止しなければならない値となるとトリップ信号を出力する。
 診断システム30は、プラント20の起動前に、プラント20が備える機器の動作確認を行い、その結果を診断情報として異常時対応教示システム10へ出力する。例えば、診断システム30は、プラント20が備える弁に対し、弁の開度を閉から開、開から閉へと、開度をステップ状に変化させる指示信号を出力し、その指示信号に対する弁の動作結果を診断する。例えば、弁には、開度を検知できるセンサが取り付けられており、診断システム30は、センサが検知した開度を取得する。例えば、弁の動作が全く正常な場合、診断システム30は、弁の動作は「正常」であると診断し、正常を示す値を異常時対応教示システム10へ出力する。弁の動作は異常では無いが、問題が無いといえない場合(例えば、開度指令に対する開動作に遅れが生じる等)、診断システム30は、弁の動作は、「ほぼ正常」であると診断し、ほぼ正常であることを示す値を異常時対応教示システム10へ出力する。例えば、弁の動作が異常な場合、診断システム30は、弁の動作は、「異常」であると診断し、異常であることを示す値を異常時対応教示システム10へ出力する。
 異常時対応教示システム10は、プラント20が警報信号やトリップ信号を出力したときに、運転パラメータ、診断システム30による診断情報などに基づいて、トリップ信号等の原因となった異常要因を推定し、その異常要因への処置作業を教示する。異常時対応教示システム10は、運転データ取得部11と、診断情報取得部12と、点検工事情報取得部13と、要因分析部14と、分析結果出力部15と、処置作業指示部16と、処置作業完了受付部17と、再起動準備完了通知部18と、記憶部19と、を備える。
 運転データ取得部11は、プラント20が出力した最新の運転データを取得する。運転データは、センサ21が計測した運転パラメータ、制御装置22が出力した警報信号、トリップ信号を含む。警報信号やトリップ信号は、異常要因を推定し処置作業を教示する処理のトリガとなる。運転パラメータは、異常要因を判断するために用いられる。
 診断情報取得部12は、プラント20の起動前に診断システム30が実施した動作診断の診断結果(診断情報)を取得する。診断システム30によって動作が「異常」と診断されれば、その異常に対処してからプラント20は起動される。診断システム30によって「正常」又は「ほぼ正常」と診断された場合には、プラント20は起動され、その後、プラント20が異常により停止すると、診断システム30による診断結果が、異常要因の推定に活用される。例えば、診断システム30によって「正常」と診断された場合、異常要因の推定において、「正常」と診断された機器の動作に関する項目を異常要因の候補から除くことができる。診断システム30によって「ほぼ正常」と診断された場合、異常要因の推定において、「ほぼ正常」と診断された機器に関する項目を、異常要因の可能性が高い候補からは除き、可能性は低いが異常要因である可能性を完全に否定しきれない対象として扱うことができる。
 点検工事情報取得部13は、プラント20に対して行われた点検、工事の有無やその直後の動作確認結果などを含む点検工事情報を取得する。例えば、定期点検において、プラント20が備える機器や部品を分解したり、運転中は閉じておく弁を開いたりしたとする。定期点検が終わって、分解した機器を組み立てて元に戻すときに作業ミスがあったり、定期点検後に弁を元の状態に戻し忘れたりすると、そのことが、定期点検後のプラント20の運転において、トリップ等の要因となる可能性がある。このように、機器の分解等を伴う点検や工事は、異常の原因となり得る。点検工事情報取得部13は、異常要因の推定にあたり、点検や工事が影響した可能性を判断するため、プラント20の起動前における点検や工事の有無を示す点検工事情報を取得する。
 要因分析部14は、プラント20から警報信号やトリップ信号を取得すると、センサ21が計測した運転パラメータと、診断システム30が出力した診断情報と、点検工事情報と、をFTA(Fault Tree Analysis)に入力し、警報信号やトリップ信号の元となったプラント20の異常要因を分析する。FTAに入力するとは、FTAで用いるフォルトツリーの各分岐や各要素に設定された判断条件に、運転パラメータ、診断情報、点検工事情報を当てはめてその判断条件を満たすか否かの判断を行うことをいう。例えば、要因分析部14は、センサデータ等をFTAに入力し、ツリーの頂上から判断条件を確認しながら順に辿っていくことによって異常要因を推定する。
 分析結果出力部15は、要因分析部14が推定した異常要因を出力する。
 処置作業指示部16は、要因分析部14が推定した異常要因への処置作業を特定し、処置作業の実施を指示する処置作業指示を端末装置40へ送信する。処置作業とは、プラント20の異常要因を取り除き、プラント20を再起動可能にするため作業である。
 処置作業完了受付部17は、処置作業の完了を示す情報を取得する。例えば、作業員は、指示された処置作業が完了すると、端末装置40へ処置作業の完了を入力する。端末装置40は、処置作業の完了が入力されると、処置作業の完了を異常時対応教示システム10へ通知し、処置作業完了受付部17がこの通知を取得する。
 再起動準備完了通知部18は、プラント20が再起動可能となったことを、端末装置40やプラント20の運転員が運転監視を行っている制御室へ通知する。再起動準備完了通知部18は、全ての処置作業が完了すると、プラント20が再起動可能となったと判断する。
 記憶部19は、運転データ取得部11が取得した運転データ、診断情報取得部12が取得した診断情報、点検工事情報取得部13が取得した点検工事情報、警報信号やトリップ信号の原因となった事象ごとのフォルトツリー、異常要因と対応付けられた処置作業の情報などを記憶する。
 端末装置40は、例えば、プラント20の運転員が所持する携帯端末である。端末装置40は、異常時対応教示システム10から通知された処置作業を表示する。運転員は、端末装置40に表示された情報に基づいて作業を行い、プラント20の異常に対処する。処置作業が完了すると、端末装置40に処置作業の完了を入力する。
 次に図2~図3を用いて異常要因の推定方法について説明する。
 図2にフォルトツリーの一例を示す。図2は、ガスタービンのトリップを引き起こす種々の事象のうち燃焼器の失火によるトリップについて、その要因を分析した結果得られるフォルトツリーの一部を示したものである。例えば、燃焼器の失火は、燃空比不良や火炎伝播不良(要素1)などによって発生する。例えば、燃空比不良は、着火燃料の流量不適性や着火時の空気流量の不適性が原因で発生する(要素2)。例えば、着火燃料の流量不適性は、燃料流量を調節する流調弁の不良、燃料ガス系統の不良などによって発生する(要素3)。例えば、流調弁の不良は、流調弁の動作不良や定検時に操作した弁の復旧作業の誤りなどによって発生する(要素4)。図2の例では、フォルトツリーを辿って、要素4のレベルまで事象を分析できると、燃焼器の失火によるトリップの原因を特定できたことになる。要因分析部14は、運転パラメータ、診断情報、点検工事情報を用いて、これらのデータによって特定される要素4を探索する。記憶部19には、フォルトツリーと共に、ツリー上の各分岐の判断に用いる判断条件が設定されていて、要因分析部14は、この判断条件に基づいて、異常要因を分析する。
 図3に要素4を特定するための判断条件の一例を示す。表中、〇が付された項目は、異常要因を特定する判断に用いられる項目であることを示す。例えば、弁動作不良の場合、流調弁に対する診断情報と、着火時の流調弁に対する開度指令と開度指令に対する運転パラメータ1(例えば、流調弁の下流で燃料流量を計測する流量センサや、燃料圧力を計測する圧力センサなどの計測値)が示す応答の差によって異常の有無を判断する。例えば、診断情報が「ほぼ正常」で、流調弁に対する開度指令と応答の差が所定値以上であれば、要因分析部14は、異常要因は、弁動作不良の可能性が高い(〇)と判断する。又は、流調弁に対する開度指令と応答の差が正常であっても診断情報が「ほぼ正常」であれば、要因分析部14は、弁動作不良の可能性を排除できない(△)と判断する。診断情報が「正常」で、流調弁に対する開度指令と応答の差が所定値以内であれば、要因分析部14は、異常要因が弁動作不良である可能性は低い(×)と判断する。
 例えば、定期点検時の弁復旧間違いの場合、点検工事情報と、燃料系統の弁に対する診断情報とに基づいて、異常の有無を判断する。例えば、診断情報が「正常」で、点検工事情報が「無し」の場合、要因分析部14は、異常要因が、定期点検時の弁復旧間違いである可能性は低い(×)と判断する。例えば、診断情報が「正常」、点検工事情報が「有り」の場合、弁動作不良の可能性が高い(〇)などと判断する。
 同様に、燃料ガス置換不良の場合、要因分析部14は、点検工事情報に基づいて、燃料ガス置換不良が燃焼器失火トリップの要因である可能性を判断する。IGV(Inlet Guide Vane)動作不良の場合、要因分析部14は、運転パラメータ2に基づいて、IGV動作不良が燃焼器失火トリップの要因である可能性を判断する。
 図3には、要素4の判断条件の一例を示したが、記憶部19には、要素1~3に関する判断条件が設定されていてもよい。
 一般に異常発生時の運転パラメータをフォルトツリーに照らし合わせて、監視員が手動で、フォルトツリーの各要素の消し込みを行い、異常要因を推定する作業が行われている。これに対し、本実施形態では、予め定められた各要素の判断条件と運転パラメータ等に基づいて、要因分析部14が、自動的に各要素が異常要因である可能性を判断する。これにより、要因推定の作業コスト、異常要因の推定に要する時間を低減することができる。本実施形態では、運転パラメータに加えて、診断情報と点検工事情報を用いた判断を行う。これにより、運転パラメータでは判断できない異常要因についてもその可能性を推定することができる(例えば、図3の「定検時の弁復旧間違い」、「燃料ガス置換不良」)。例えば、図3の「弁動作不良」の場合のように運転パラメータによって判断することが可能であっても、診断情報を併せて用いることによって、より細やかな判断を行うことができる。このように本実施形態によれば、異常要因の推定精度を向上することができる。
 次に図4~図5を用いて異常要因の分析結果の表示例および異常要因に対する処置作業を指示する処理について説明する。図4に要因分析部14が、運転パラメータと、診断情報と、点検工事情報と、各要素の判断条件と、に基づいてフォルトツリーの消し込みを行った結果を示す。異常要因の可能性が高いと判断された要因には〇が付され、異常要因の可能性があると判断された要因には△が付され、異常要因の可能性が低いと判断された要因には×が付されている。記憶部19には、フォルトツリーに定義された異常要因を示す各要素と対応付けて、適切な処置作業が予め登録されている。例えば、分析結果出力部15は、図4に例示するようにフォルトツリーと、要因分析部14による異常要因の分析結果と、処置作業とを対応付けて一覧表示した画像を表示装置等に出力してもよい。分析結果出力部15は、最も可能性が高いと考えられる異常要因(図4の例では、燃料ガス置換不良)を最も目立つ態様で表示し、可能性があると判断された異常要因(図4の例では、弁動作不良、燃焼筒異常)を、可能性が高いと考えられる異常要因とは異なる態様で表示し、可能性が低いと判断された異常要因をグレーアウトする等、可能性の大小に応じた表示を行ってもよい。これにより、監視員は、プラント20のトリップの異常要因とその可能性の大小、各異常要因に必要な処置作業を容易に把握することができる。
 処置作業指示部16は、要因分析部14による異常要因の分析結果と、記憶部19に登録された異常要因への処置作業とに基づいて、作業員に処置作業を指示する。例えば、処置作業指示部16は、要因分析部14によって、可能性があると判断された全ての異常要因(〇および△)について、対応する処置作業を特定し、異常要因および処置作業指示を端末装置40へ送信する。例えば、要因分析部14の判断結果が「ガス置換不足」であり、記憶部19には「ガス置換不足」の処置作業として「再着火」が登録されているとする。処置作業指示部16は、異常要因「ガス置換不足」とその処置作業「再着火」を端末装置40へ送信する。図5に端末装置40へ送信された処置作業指示の一例を示す。図5に示すように、端末装置40の表示画面には、「着火失敗(燃焼器失火トリップ)はガス置換不足の可能性が高いので着火作業を実施してください」とのメッセージが表示されている。作業員は、この表示を参照すると、着火作業を実施する。このとき、処置作業指示部16は、さらに着火作業の具体的な実施方法を教示する処置作業手順情報を送信してもよい。処置作業手順情報は、文章だけでなく、図、写真、動画などを含んでいてもよい。これにより、速やかに燃焼器の失火トリップの要因を確認し、取り除くことができる。このように、処置作業指示を行うことにより、作業員は、何を行うかが明確になり、速やかに異常要因を取り除き、プラント20を再起動できるようになる。
 図5に例示する処置作業指示は、着火作業の実施を文言にて指示するものである。処置作業指示部16は、文言だけではなく、図や動画を用いて、作業員へ処置作業を指示してもよい。
 図6A,図6Bにガスタービンの燃料系統の概略構成図を示す。燃料は、ガスタービンの運転中、紙面の左側から右側へ流れ、マニフォールドM1、M2から燃焼室へ供給される。燃料系統には、燃料流れ方向の上流側から順に隔離弁V1、ベント弁V2、遮断弁V3、ベント弁V4、遮断弁V5、圧調弁V6、流調弁V7および流調弁V8が設けられている。隔離弁V1とベント弁V2は、手動で開閉する弁である。図6Aに示すように、ガスタービンの運転中には、隔離弁V1が開、ベント弁V2が閉とされている。これに対し、定検中には、図6Bに示すように隔離弁V1が閉、ベント弁V2が開とされる。プラント20の起動前に定期点検が実施されており、プラント20に燃焼器の失火トリップが発生したとすると、点検工事情報「有り」が入力され、図3、図4を用いて説明したように、要因分析部14は、異常要因として「定検時の弁復旧間違い」の可能性あり(又は、可能性が高い)と推定する。すると、処置作業指示部16は、「定検時の弁復旧間違い」への対処として、例えば、「隔離弁V1とベント弁V2を確認」といった処置作業情報を端末装置40へ送信する。処置作業指示部16は、例えば、図6Aを送信し、「隔離弁V1が開、ベント弁V2が閉となっていることを確認してください。」、「隔離弁V1が閉、ベント弁V2が開となっていれば、隔離弁V1を開、ベント弁V2を閉としてください。」等のメッセージを送信してもよい。さらに処置作業指示部16は、隔離弁V1およびベント弁V2の位置を案内したり、隔離弁V1を開いたり、ベント弁V2を閉じたりする作業手順を示した動画などを送信してもよい。これにより、経験の浅い作業員でも確実に処置作業を実施することができる。
 一般的な例として、処置作業において、作業の安全を確保するための隔離用弁を操作して、作業対象の機器や部品を隔離し、その機器や部品に対する点検や修理等を行って、さらに復旧用弁を操作してプラント20の再起動条件を満たすための状態を作り出し、最後に隔離用弁を元に戻すという一連の処置作業を行う場合を考える。このような場合、例えば、処置作業指示部16は、隔離用弁の操作を指示する隔離弁指示情報と、隔離用弁によって隔離された位置に存在する部品等に対する作業手順および部品と部品の位置情報を指示する作業指示情報と、復旧用弁の操作を指示する復旧弁指示情報と、作業順に出力してもよい。作業指示情報においては、作業対象の部品の近くに存在する間違い易い部品やその部品の位置情報などを併せて出力してもよい。このように作業手順や作業位置を詳細化した情報を提供することで、異常発生時の緊迫した状況下でも、作業員は、誤りなく、処置作業を実施することができる。
(動作)
 次に図7を参照して異常時対応教示システム10の動作について説明する。
 図7は、実施形態に係る異常時対応教示システムの動作の一例を示すフローチャートである。
 前提としてプラント20の起動前であるとする。まず、運転員が、定期点検等を実施したか否かを示す点検工事情報を異常時対応教示システム10へ入力する。点検工事情報取得部13は、入力された点検工事情報を取得し、記憶部19に記録する(ステップS1)。次に、診断システム30の担当者が、プラント20の起動に先立ち、診断システム30を操作して、プラント20に備わる複数の機器の動作診断を行う。動作診断の結果は、診断システム30の表示装置等へ出力され、異常と診断されれば適切な対処が行われる。動作診断にて異常が発見されなかった場合、診断システム30は、診断を行った機器ごとの診断情報を異常時対応教示システム10へ出力する。診断情報取得部12は、診断情報を取得し、記憶部19に記録する(ステップS2)。次にプラント20の運転員の操作により、プラント20が起動を開始する(ステップS3)。プラント20が起動を開始すると、運転データ取得部11は、プラント20から運転パラメータを取得し、記憶部19に記録する(ステップS4)。運転パラメータには、プラント20のセンサ21が計測した運転パラメータ、制御装置22が出力した各種制御信号などが含まれる。その後もプラント20は運転を継続し、運転データ取得部11は、運転パラメータを取得し続ける。運転データ取得部11が、プラント20から警報信号やトリップ信号を取得すると(ステップS5;Yes)、異常時対応教示システム10は、異常要因の分析処理を開始する。まず、要因分析部14は、点検工事情報、機器ごとの診断情報、異常発生時前後の運転パラメータ、警報信号やトリップ信号が示す事象のFTAのフォルトツリー(図2)、フォルトツリーの分岐や要素を判断する為の判断条件(図3)を記憶部19から読み出す。次に要因分析部14は、フォルトツリーに基づいて異常要因を分析する(ステップS6)。要因分析部14は、点検工事情報、診断情報、運転パラメータと各要素の判断条件とに基づいて、判断条件に合致しない要素を消し込み、判断条件に合致する要素、つまり、異常要因を特定する。特定する異常要因は、1つでも複数でもよい。要因分析部14は、運転パラメータ等が判断条件に合致する程度に応じて、可能性が高い異常要因(図4の〇)、可能性が中程度の異常要因(図3の△)など可能性の大小に応じたランク付けを行ってもよい。次に、分析結果出力部15は、異常要因の分析結果を表示装置などに出力する(ステップS7)。例えば、分析結果出力部15は、図4にて例示するようにフォルトツリーに対する消し込みの結果、残った異常要因を、その確度とともに表示してもよい。分析結果出力部15は、図4にて例示するように異常要因に対応する処置作業をさらに表示してもよい。
 次に処置作業指示部16が、要因分析部14によって推定された異常要因に対応する処置作業を特定する(ステップS8)。処置作業指示部16は、記憶部19に予め登録された異常要因ごとに処置作業が設定された情報の中から、可能性あり(図4の〇又は△)と推定された異常要因に対応する処置作業を読み出す。次に処置作業指示部16は、図5にて例示したように、ステップS8で特定した処置作業の実施を指示する処置作業指示を端末装置40へ出力する(ステップS9)。作業員は、指示された処置作業を実行する。処置作業を実行すると、作業員は、処置作業の完了を端末装置40へ入力する。端末装置40は、処置作業の完了情報を異常時対応教示システム10へ送信する。異常時対応教示システム10では、処置作業完了受付部17が処置作業の完了情報を取得する(ステップS10)。又は、作業員が、端末装置40を使って処置作業完了後の作業対象箇所の写真や動画を撮影し、端末装置40がこれらの画像データを異常時対応教示システム10へ送信してもよい。異常時対応教示システム10は、画像データを取得する。運転員は、画像データの内容を確認し、処置作業が正しく実施されたかどうかを確認する。正しく実施されていることが確認できた場合、運転員は、処置作業が完了したことを異常時対応教示システム10へ入力する。処置作業完了受付部17は、処置作業の完了情報を取得する。処置作業完了受付部17は、処置作業指示部16が指示した処置作業に対する完了情報の取得状況を表示してもよい。これにより、復旧作業員は、異常への対処の進捗状況を確認することができる。処置作業完了受付部17が全ての処置作業指示に対する完了情報を取得すると、再起動準備完了通知部18は、プラント20の再起動準備が完了したことを、プラント20の起動を担当する運転員の端末装置40などへ通知する(ステップS11)。これにより、プラント20の再起動が可能になる。
(効果)
 以上説明したように、異常時対応教示システム10によれば、フォルトツリーを用いた異常要因の分析処理を自動的に行うことができる。運転パラメータだけではなく、診断情報や点検工事情報を用いて異常要因を推定するため、異常要因の推定精度を向上することができる。要因分析部14による異常要因の分析処理において、点検工事情報は必須ではない。例えば、フォルトツリーの判断条件に点検工事情報が含まれていない場合、点検工事情報を省略することができる。
 推定した異常要因に対応する処置作業の情報を予め登録し、可能性ありと推定された異常要因とともにユーザ側へ提供することで、異常への対処を迅速に行うことができる。これにより、プラント20を速やかに正常な運転状態に回復させることができる。処置作業の完了情報を取得し管理することで、異常への処置が漏れなく行われたか否かを把握することができる。
 全ての異常要因に対する処置作業が完了した段階で再起動準備完了通知を行うことで、再起動可能であることが担保された状態で、プラント20を再起動することができる。
 上記実施例では、ガスタービンを含むプラントを例に説明を行ったが、本実施形態の異常時対応教示システム10、異常要因推定方法、異常時対応教示方法およびプログラムの対象はこれに限定されず、蒸気タービン、ボイラ、コンプレッサ、過給機、エンジンなど、任意の機械、設備、装置に適用することができる。
 図8は、実施形態に係る異常時対応教示システムのハードウェア構成の一例を示す図である。
 コンピュータ900は、CPU901、主記憶装置902、補助記憶装置903、入出力インタフェース904、通信インタフェース905を備える。
 上述の異常時対応教示システム10は、コンピュータ900に実装される。そして、上述した各機能は、プログラムの形式で補助記憶装置903に記憶されている。CPU901は、プログラムを補助記憶装置903から読み出して主記憶装置902に展開し、当該プログラムに従って上記処理を実行する。CPU901は、プログラムに従って、記憶領域を主記憶装置902に確保する。CPU901は、プログラムに従って、処理中のデータを記憶する記憶領域を補助記憶装置903に確保する。
 異常時対応教示システム10の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各機能部による処理を行ってもよい。ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。「コンピュータ読み取り可能な記録媒体」とは、CD、DVD、USB等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。このプログラムが通信回線によってコンピュータ900に配信される場合、配信を受けたコンピュータ900が当該プログラムを主記憶装置902に展開し、上記処理を実行しても良い。上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。異常時対応教示システム10は、複数のコンピュータ900によって構成されていても良い。
 以上のとおり、本開示に係るいくつかの実施形態を説明したが、これら全ての実施形態は、例として提示したものであり、発明の範囲を限定することを意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これらの実施形態及びその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
<付記>
 実施形態に記載の異常時対応教示システム10、異常要因推定方法、異常時対応教示方法およびプログラムは、例えば以下のように把握される。
(1)第1の態様に係る異常時対応教示システム10は、装置(プラント20)の運転中に計測された運転パラメータを取得する運転パラメータ取得部(運転データ取得部11)と、前記装置の起動前に実行された前記装置が備える機器の動作診断の結果を示す診断情報を取得する診断情報取得部12と、前記装置に異常が発生した場合に、前記運転パラメータと、前記診断情報とを前記異常の要因を分析したFTA(フォルトツリー)に入力して、前記異常の要因を分析する要因分析部14と、備える。
 これにより、FTAに基づいて異常要因を分析する作業を自動化し、異常要因の分析に要する時間を短縮することができる。運転パラメータと診断情報を用いて異常要因を分析するため、異常要因の分析精度を向上することができる。これらにより、プラントを速やかに正常な運転状態に戻すことができる。
(2)第2の態様に係る異常時対応教示システム10は、(1)の異常時対応教示システム10であって、前記装置について実行された点検や工事の実績を示す点検工事情報を取得する点検工事情報取得部13、をさらに備え、前記要因分析部14は、前記運転パラメータと、前記診断情報と、前記点検工事情報とを、前記FTAに入力して、前記要因を分析する。
 異常要因の分析にさらに点検工事情報を用いることで、異常要因の分析精度をさらに向上することができる。
(3)第3の態様に係る異常時対応教示システム10は、(1)~(2)の異常時対応教示システム10であって、前記要因分析部14が分析した前記要因に対する処置作業を指示する処置作業指示情報を出力する処置作業指示部16をさらに備える。
 異常要因を確認したり、取り除いたりするための処置作業を提示することで、異常に対する処置を迅速に行うことができる。処置作業指示部16は、処置作業指示情報に加えて、処置作業の手順を示した処置作業手順情報を出力してもよい。
(4)第4の態様に係る異常時対応教示システム10は、(3)の異常時対応教示システム10であって、前記処置作業指示部16が、作業の安全を確保する隔離用弁の操作を指示する隔離弁指示情報と、前記隔離用弁によって隔離された位置に存在する部品に対する作業手順および前記部品と前記部品の位置情報を指示する作業指示情報と、前記装置の再起動条件を満たすための復旧用弁の操作を指示する復旧弁指示情報とを出力する。
 隔離用弁情報と、作業指示情報と、復旧弁指示情報とを出力することにより、作業の安全を確保するために隔離用弁を操作し、所定の部品などに対し点検作業などを行い、復旧弁を操作して再起動可能な状態を作り出して、隔離弁を元の状態に戻すという一連の処置作業について、経験の浅い作業員でも実施することができるようになる。
(5)第5の態様に係る異常時対応教示システム10は、(3)~(4)の異常時対応教示システム10であって、前記処置作業の完了の入力を受け付ける処置作業完了受付部17と、全ての前記処置作業が完了したときに、再起動の準備が完了したことを通知する再起動準備完了通知部18と、をさらに備える。
 処置作業完了受付部を備えることにより、処置作業の実施状況を把握することができる。再起動準備完了通知部を備えることにより、全ての処置作業が完了してから、プラント20の再起動を実行することができる。
(6)第6の態様に係る異常時対応教示システム10は、(1)~(5)の異常時対応教示システム10であって、前記要因分析部14による分析結果を、前記FTAのフォルトツリーとともに出力する分析結果出力部15、をさらに備える。
 フォルトツリーとともに分析結果を出力することにより、フォルトツリーで定義された異常要因のうち、どの異常要因が今回発生した異常の要因であり、どの異常要因が異常の要因では無いかをフォルトツリーの構造を参照しながら確認することができる。
(7)第7の態様に係る異常要因推定方法は、装置(プラント20)の運転中に計測された運転パラメータを取得し、前記装置の起動前に実行された前記装置が備える機器の動作診断の結果を示す診断情報を取得し、前記装置に異常が発生した場合に、前記運転パラメータと、前記診断情報とを前記異常の要因を分析したFTAに入力して、前記異常の要因を分析する。
(8)第8の態様に係る異常時対応教示方法は、装置(プラント20)の運転中に計測された運転パラメータを取得し、前記装置の起動前に実行された前記装置が備える機器の動作診断の結果を示す診断情報を取得し、前記装置に異常が発生した場合に、前記運転パラメータと、前記診断情報とを前記異常の要因を分析したFTAに入力して、前記異常の要因を分析し、前記要因に対応した処置作業を指示する処置作業指示情報を出力する。
(9)第9の態様に係る異常時対応教示方法は、(8)の異常時対応教示方法であって、さらに、前記処置作業の完了の入力を受け付け、全ての前記処置作業が完了したときに、再起動の準備が完了したことを通知する。
(10)第10の態様に係るプログラムは、コンピュータに、装置(プラント20)の運転中に計測された運転パラメータを取得し、前記装置の起動前に実行された前記装置が備える機器の動作診断の結果を示す診断情報を取得し、前記装置に異常が発生した場合に、前記運転パラメータと、前記診断情報とを前記異常の要因を分析したFTAに入力して、前記異常の要因を分析する処理を実行させる。
 上記した異常時対応教示システム、異常要因推定方法、異常時対応教示方法およびプログラムによれば、プラント等で異常が発生したときに、その異常の要因を高精度且つ短時間に推定することができる。本開示の異常時対応教示方法によれば、プラント等で異常が発生したときに、その異常への対処方法を把握することができる。
1・・・復旧管理システム
10・・・異常時対応教示システム
11・・・運転データ取得部
12・・・診断情報取得部
13・・・点検工事情報取得部
14・・・要因分析部
15・・・分析結果出力部
16・・・処置作業指示部
17・・・処置作業完了受付部
18・・・再起動準備完了通知部
19・・・記憶部
20・・・プラント
30・・・診断システム
40・・・端末装置
900・・・コンピュータ
901・・・CPU
902・・・主記憶装置
903・・・補助記憶装置
904・・・入出力インタフェース
905・・・通信インタフェース

Claims (10)

  1.  装置の運転中に計測された運転パラメータを取得する運転パラメータ取得部と、
     前記装置の起動前に実行された前記装置が備える機器の動作診断の結果を示す診断情報を取得する診断情報取得部と、
     前記装置に異常が発生した場合に、前記運転パラメータと、前記診断情報とを前記異常の要因を分析したFTAに入力して、前記異常の要因を分析する要因分析部と、
     を備える異常時対応教示システム。
  2.  前記装置について実行された点検や工事の実績を示す点検工事情報を取得する点検工事情報取得部、
     をさらに備え、
     前記要因分析部は、前記運転パラメータと、前記診断情報と、前記点検工事情報とを、前記FTAに入力して、前記要因を分析する、
     請求項1に記載の異常時対応教示システム。
  3.  前記要因分析部が分析した前記要因に対する処置作業を指示する処置作業指示情報を出力する処置作業指示部、
     をさらに備える請求項1または請求項2に記載の異常時対応教示システム。
  4.  前記処置作業指示部が、
     作業の安全を確保する隔離用弁の操作を指示する隔離弁指示情報と、
     前記隔離用弁によって隔離された位置に存在する部品に対する作業手順および前記部品と前記部品の位置情報を指示する作業指示情報と、
     前記装置の再起動条件を満たすための復旧用弁の操作を指示する復旧弁指示情報と、を出力する、
     請求項3に記載の異常時対応教示システム。
  5.  前記処置作業の完了の入力を受け付ける処置作業完了受付部と、
     全ての前記処置作業が完了したときに、再起動の準備が完了したことを通知する再起動準備完了通知部と、
     をさらに備える請求項3から請求項4の何れか1項に記載の異常時対応教示システム。
  6.  前記要因分析部による分析結果を、前記FTAのフォルトツリーとともに出力する分析結果出力部、
     をさらに備える請求項1から請求項5の何れか1項に記載の異常時対応教示システム。
  7.  装置の運転中に計測された運転パラメータを取得し、
     前記装置の起動前に実行された前記装置が備える機器の動作診断の結果を示す診断情報を取得し、
     前記装置に異常が発生した場合に、前記運転パラメータと、前記診断情報とを前記異常の要因を分析したFTAに入力して、前記異常の要因を分析する、
     異常要因推定方法。
  8.  装置の運転中に計測された運転パラメータを取得し、
     前記装置の起動前に実行された前記装置が備える機器の動作診断の結果を示す診断情報を取得し、
     前記装置に異常が発生した場合に、前記運転パラメータと、前記診断情報とを前記異常の要因を分析したFTAに入力して、前記異常の要因を分析し、
     前記要因に対応した処置作業を指示する処置作業指示情報を出力する、
     異常時対応教示方法。
  9.  さらに、前記処置作業の完了の入力を受け付け、
     全ての前記処置作業が完了したときに、前記装置の再起動の準備が完了したことを通知する、
     請求項8に記載の異常時対応教示方法。
  10.  コンピュータに、
     装置の運転中に計測された運転パラメータを取得し、
     前記装置の起動前に実行された前記装置が備える機器の動作診断の結果を示す診断情報を取得し、
     前記装置に異常が発生した場合に、前記運転パラメータと、前記診断情報とを前記異常の要因を分析したFTAに入力して、前記異常の要因を分析する処理、
     を実行させるプログラム。
PCT/JP2021/031714 2020-11-12 2021-08-30 異常時対応教示システム、異常要因推定方法、異常時対応教示方法およびプログラム WO2022102211A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112021005899.1T DE112021005899T5 (de) 2020-11-12 2021-08-30 Abnormalitätsreaktion-lehrsystem, abnormalitätsfaktor-schätzverfahren, abnormalitätsreaktion-lehrverfahren und programm
JP2022561292A JPWO2022102211A1 (ja) 2020-11-12 2021-08-30
KR1020237007554A KR20230048096A (ko) 2020-11-12 2021-08-30 이상 시 대응 교시 시스템, 이상 요인 추정 방법, 이상 시 대응 교시 방법 및 프로그램
CN202180056013.9A CN116057490A (zh) 2020-11-12 2021-08-30 异常时对应示教系统、异常要因推定方法、异常时对应示教方法及程序
US18/021,672 US20230315077A1 (en) 2020-11-12 2021-08-30 Abnormality response teaching system, abnormality factor estimation method, abnormality response teaching method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-188660 2020-11-12
JP2020188660 2020-11-12

Publications (1)

Publication Number Publication Date
WO2022102211A1 true WO2022102211A1 (ja) 2022-05-19

Family

ID=81601048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031714 WO2022102211A1 (ja) 2020-11-12 2021-08-30 異常時対応教示システム、異常要因推定方法、異常時対応教示方法およびプログラム

Country Status (6)

Country Link
US (1) US20230315077A1 (ja)
JP (1) JPWO2022102211A1 (ja)
KR (1) KR20230048096A (ja)
CN (1) CN116057490A (ja)
DE (1) DE112021005899T5 (ja)
WO (1) WO2022102211A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152912A (ja) * 1994-11-30 1996-06-11 Toshiba Corp プラント運転支援装置
JPH08202444A (ja) * 1995-01-25 1996-08-09 Hitachi Ltd 機械設備の異常診断方法および装置
JP2012137934A (ja) * 2010-12-27 2012-07-19 Hitachi Ltd 異常検知・診断方法、異常検知・診断システム、及び異常検知・診断プログラム並びに企業資産管理・設備資産管理システム
US20190235483A1 (en) * 2014-10-10 2019-08-01 Near-Miss Management Llc Dynamic Prediction of Risk Levels for Manufacturing Operations through Leading Risk Indicators: Dynamic Risk Fault Tree Method and System

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0816956B2 (ja) 1990-01-18 1996-02-21 株式会社日立製作所 フォールト・トリー表示方法、フォールト・トリー表示装置およびプロセス診断支援システム
JP7287107B2 (ja) 2019-05-17 2023-06-06 株式会社デンソー 電力変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152912A (ja) * 1994-11-30 1996-06-11 Toshiba Corp プラント運転支援装置
JPH08202444A (ja) * 1995-01-25 1996-08-09 Hitachi Ltd 機械設備の異常診断方法および装置
JP2012137934A (ja) * 2010-12-27 2012-07-19 Hitachi Ltd 異常検知・診断方法、異常検知・診断システム、及び異常検知・診断プログラム並びに企業資産管理・設備資産管理システム
US20190235483A1 (en) * 2014-10-10 2019-08-01 Near-Miss Management Llc Dynamic Prediction of Risk Levels for Manufacturing Operations through Leading Risk Indicators: Dynamic Risk Fault Tree Method and System

Also Published As

Publication number Publication date
KR20230048096A (ko) 2023-04-10
US20230315077A1 (en) 2023-10-05
DE112021005899T5 (de) 2023-08-24
CN116057490A (zh) 2023-05-02
JPWO2022102211A1 (ja) 2022-05-19

Similar Documents

Publication Publication Date Title
US5018069A (en) Reference system and method for diagnosing aircraft engine conditions
JP6636178B2 (ja) タービンユニットのテスト中の故障診断
CN108027611B (zh) 利用受专家意见监督的决策模式学习的用于机器维护的决策辅助系统和方法
WO2018181020A1 (ja) 予兆検知システム及び予兆検知方法
CN102619684B (zh) 故障诊断方法及系统
JP2010242760A (ja) センサの故障に対して防御可能な、航空転用ガスタービンのモデルベースの健全性監視及びプロファイリング
US10247032B2 (en) Gas turbine engine and test cell real-time diagnostic fault detection and corrective action system and method
EP3757696A1 (en) Control of power generation system by visually monitoring valve during operation
JP2016503530A (ja) 装置の構成要素の集合を監視するシステム
Volponi et al. Improved engine health monitoring using full flight data and companion engine information
US8867787B2 (en) Turbine inspection system, computer program product and method of inspecting
US8903692B2 (en) Method for the detection of failures in a turbomachine by means of a theoretical model of the thermodynamic cycle of the said turbomachine
JP5026046B2 (ja) ホームドア動作異常検出システム
EP3757356A1 (en) Control of power generation system by visually monitoring gauge during operation
JP2005149137A (ja) 遠隔監視システム、遠隔監視方法、及び遠隔監視プログラム
WO2022102211A1 (ja) 異常時対応教示システム、異常要因推定方法、異常時対応教示方法およびプログラム
Toirov et al. Algorithm and Software Implementation of the Diagnostic System for the Technical Condition of Powerful Units
US20090266150A1 (en) Sensor criticality determination process
JP2006040122A (ja) プログラマブルコントローラ
US20160195872A1 (en) System for Assisting Operation at the Time of Plant Accident and Method for Assisting Operation at the Time of Plant Accident
JP2006036177A (ja) 船舶のニューマチック自己診断システム及びその方法、及び前記方法を実現するためのプログラムを記録した、コンピューターで読み取れる記録媒体。
JP7378367B2 (ja) 故障診断装置および故障診断方法
Wiseman Intelligent Engine Systems Work Element 1.2: Malfunction and Operator Error Reduction
US10054002B2 (en) Method for assisting with the detection of damage to a turbojet duct
US20240019860A1 (en) Abnormality cause diagnosis device and abnormality cause diagnosis method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891459

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561292

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237007554

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21891459

Country of ref document: EP

Kind code of ref document: A1