WO2022102174A1 - 血液浄化装置 - Google Patents

血液浄化装置 Download PDF

Info

Publication number
WO2022102174A1
WO2022102174A1 PCT/JP2021/027726 JP2021027726W WO2022102174A1 WO 2022102174 A1 WO2022102174 A1 WO 2022102174A1 JP 2021027726 W JP2021027726 W JP 2021027726W WO 2022102174 A1 WO2022102174 A1 WO 2022102174A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
circuit
dialysate
air
pump
Prior art date
Application number
PCT/JP2021/027726
Other languages
English (en)
French (fr)
Inventor
輝 千秋
拓実 本間
佑哉 毛受
和也 辻
邦彦 秋田
Original Assignee
日機装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日機装株式会社 filed Critical 日機装株式会社
Priority to CN202180075008.2A priority Critical patent/CN116419768A/zh
Priority to EP21891422.4A priority patent/EP4245329A4/en
Priority to US18/033,825 priority patent/US20230398277A1/en
Publication of WO2022102174A1 publication Critical patent/WO2022102174A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/30Single needle dialysis ; Reciprocating systems, alternately withdrawing blood from and returning it to the patient, e.g. single-lumen-needle dialysis or single needle systems for hemofiltration or pheresis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3653Interfaces between patient blood circulation and extra-corporal blood circuit
    • A61M1/3656Monitoring patency or flow at connection sites; Detecting disconnections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1601Control or regulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1621Constructional aspects thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3643Priming, rinsing before or after use
    • A61M1/3644Mode of operation
    • A61M1/3646Expelling the residual body fluid after use, e.g. back to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3643Priming, rinsing before or after use
    • A61M1/3644Mode of operation
    • A61M1/3649Mode of operation using dialysate as priming or rinsing liquid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3643Priming, rinsing before or after use
    • A61M1/3644Mode of operation
    • A61M1/3652Mode of operation using gas, e.g. air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/104Extracorporeal pumps, i.e. the blood being pumped outside the patient's body
    • A61M60/109Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems
    • A61M60/113Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems in other functional devices, e.g. dialysers or heart-lung machines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/247Positive displacement blood pumps
    • A61M60/253Positive displacement blood pumps including a displacement member directly acting on the blood
    • A61M60/258Piston pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/30Medical purposes thereof other than the enhancement of the cardiac output
    • A61M60/36Medical purposes thereof other than the enhancement of the cardiac output for specific blood treatment; for specific therapy
    • A61M60/37Haemodialysis, haemofiltration or diafiltration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/424Details relating to driving for positive displacement blood pumps
    • A61M60/457Details relating to driving for positive displacement blood pumps the force acting on the blood contacting member being magnetic

Definitions

  • This disclosure relates to a blood purification device.
  • a blood purification device (dialysis device) is used to circulate blood from patients outside the body and perform treatment (dialysis treatment) to strain waste products and water in the blood with a blood purifier.
  • the blood purifier draws blood from the patient, introduces the blood into the blood purifier (blood flow path) through the blood circuit, and also introduces the blood from the dialysate supply source (dialysate supply unit) through the dialysate circuit to the blood purifier (dialysis). Introduce dialysate into the fluid flow path). Then, the blood purification device purifies the blood by exchanging components such as waste products and electrolytes between the blood and the dialysate via the blood purifier, and returns the purified blood to the body.
  • the blood return step is performed by feeding the liquid in the circuit by driving a blood pump provided in the blood circuit.
  • the blood pump may be driven in the subsequent step.
  • a drainage step of extracting the dialysate remaining in the blood circuit may be performed.
  • the puncture needle punctured by the patient it is necessary to remove the puncture needle punctured by the patient and then drive the blood pump.
  • air may be mixed in the body, or blood may be removed or water should be removed again. There is.
  • An object of the present embodiment is to provide a blood purification device that prevents the blood pump from being driven until the puncture needle is removed after the blood return process is completed.
  • the blood purification device is connected to a puncture needle pierced by a patient, and a blood circuit through which blood from the patient flows, and a blood circuit provided in the blood circuit and driven to send liquid in the blood circuit.
  • a blood pump for liquid, a needle removal detection unit for detecting that the puncture needle has been removed from the patient, and a blood return step of returning the blood in the blood circuit to the patient are started, and the blood return step is completed.
  • a control device which deactivates the blood pump in response to the determination that the blood pump has been performed, is included.
  • a method is a method performed by a blood purifying device, wherein the blood purifying device is connected to a puncture needle pierced by a patient, and a blood circuit through which blood from the patient flows is described.
  • the method comprising a blood pump provided in the blood circuit and driven to send liquid in the blood circuit, and a needle removal detection unit for detecting that the puncture needle has been removed from the patient.
  • a needle removal detection unit for detecting that the puncture needle has been removed from the patient.
  • a step of deactivating the blood pump is a method performed by a blood purifying device, wherein the blood purifying device is connected to a puncture needle pierced by a patient, and a blood circuit through which blood from the patient flows.
  • the blood purification device it is possible to prevent the blood pump from being driven in a state where the puncture needle is not removed after the blood return step is completed.
  • the blood purification device is a blood pump provided in the blood circuit in a state where the puncture needle is not pulled out after the blood return step performed when the dialysis treatment and the hemofiltration dialysis treatment are completed. Prevent driving.
  • the blood return step is performed by introducing a dialysate into the blood circuit and then introducing air to push the blood remaining in the blood circuit into the body.
  • a blood return step is performed after performing dialysis treatment (HD), which is a chronic blood purification therapy, mainly for chronic renal failure or the like
  • HD dialysis treatment
  • the dialysis treatment is merely an example of chronic blood purification therapy, and the present embodiment may be applied to hemofiltration treatment (HF), hemofiltration dialysis treatment (HDF), and the like.
  • FIG. 1 is a piping diagram showing the configuration of the blood purification device 100 according to the first embodiment.
  • the blood purifying device 100 includes a blood circuit 1, a blood purifier 2, an air introduction unit 3, a needle extraction detection unit 4, a blood shading detection unit 5 (in this embodiment, blood shading detection units 5a and 5b), and a bubble detection unit 6.
  • bubble detection units 6a and 6b dialysate introduction line IL, drainage line EL, priming liquid line PL, water removal line RL, bypass line BL (in this embodiment, bypass lines BL1 and BL2).
  • Diasate filter DF dialysate filters DF1 and DF2 in this embodiment
  • power supply PS electrode EPa, electrode EPb, electrode EPc
  • control device C Also included is control device C.
  • These components are merely examples and may include other components (not shown). Further, for example, some components such as the blood shading detection unit 5 and the bubble detection unit 6 are not essential components.
  • the blood circuit 1 is a flow path for introducing the blood bleeding from the patient P into the blood purifier 2 at the time of dialysis treatment and returning the blood (purified blood) derived from the blood purifier 2 to the body.
  • the blood circuit 1 is mainly composed of a dialysate and a tube through which blood can pass. Blood flows from the blood removal side puncture needle RN punctured in the blood removal side (artery) of patient P to the blood return side puncture needle AN punctured in the blood return side (vein) of patient P.
  • the blood circuit 1 includes a blood removal side circuit 1a and a blood return side circuit 1b.
  • the blood removal side circuit 1a is a flow path for introducing the blood removed from the patient P into the blood purifier 2.
  • One end of the blood removal side circuit 1a is attached to the blood removal side puncture needle RN, and the other end is coupled to the blood purifier 2.
  • An on-off valve (solenoid valve) V1 is provided in the blood removal side circuit 1a. By opening and closing the on-off valve V1, the blood flow in the blood removal side circuit 1a is controlled.
  • the blood return side circuit 1b is a flow path for returning the blood derived from the blood purifier 2 into the body.
  • One end of the blood return side circuit 1b is attached to the blood return side puncture needle AN, and the other end is coupled to the blood purifier 2.
  • An on-off valve (solenoid valve) V2 is provided in the blood return side circuit 1b. By opening and closing the on-off valve V2, the blood flow in the blood return side circuit 1b is controlled.
  • the blood pump P1 is provided in the blood removal side circuit 1a and proceeds from the blood removal side circuit 1a to the blood return side circuit 1b (hereinafter referred to as a positive flow direction) or from the blood return side circuit 1b to the blood removal side.
  • the liquid is sent in the blood circuit 1 in the direction of travel to the circuit 1a (hereinafter referred to as the reverse direction of the liquid feeding).
  • the blood pump P1 is composed of a squeeze pump having a stator and a rotor, and drives the rotor to rotate.
  • the rotor is rotated by an actuator (not shown) such as an electric motor under the control of the control device C.
  • the blood pump P1 is driven according to a predetermined operation in a blood return step or the like described later, but is also driven by a manual operation by the user (for example, by pressing a manual button (not shown)).
  • the blood removal side circuit 1a sandwiched between the stator and the rotor is squeezed to generate a flow in the positive direction of the liquid feed. Further, when the blood pump P1 rotates in the reverse direction, the blood removal side circuit 1a is squeezed to generate a flow in the reverse direction of the liquid feeding.
  • the rotation speed of the rotor is controlled and detected by closed loop control using a pulse motor (not shown). Instead of the closed loop control using the pulse motor, the blood pump P1 may be provided with a rotary encoder, and the rotation speed of the rotor may be controlled by detecting the rotation of the rotary encoder.
  • the blood purifier 2 is also called a dialyzer and purifies the blood of patient P.
  • the blood purifier 2 includes a blood purifying membrane (not shown) provided inside.
  • the blood purification membrane is composed of a bundle of hollow fibers (hollow fiber membranes) having holes in the side walls.
  • the inside of the blood purification membrane is a blood flow path (not shown), and the outside of the blood purification membrane (hollow fiber) is a dialysate flow path (not shown).
  • the blood flowing through the blood purifier 2 flows through the blood flow path and is removed by diffusion, ultrafiltration, or both by passing unwanted substances such as uremic substances through the pores of the blood purifying membrane.
  • the dialysate flowing through the blood purifier 2 passes through the dialysate flow path, and only substances necessary for the human body such as the electrolyte contained in the dialysate pass through the pores to be supplemented with blood. It is also possible that the inside of the blood purification membrane functions as a dialysate flow path and the outside of the blood purification membrane functions as a blood flow path.
  • the dialysate introduction line IL is a flow path from the dialysate supply unit to the blood purifier 2 that supplies the dialysate from the dialysate supply unit DS to the blood purifier 2.
  • the dialysate introduction line IL is mainly composed of a tube through which the dialysate can pass.
  • the dialysate introduction line IL is provided with an on-off valve (solenoid valve) V3 and a dialysate port P. By opening and closing the on-off valve V3, the flow of dialysate to the blood purifier 2 is controlled.
  • the dialysate port P takes out dialysate.
  • the blood circuit 1 and the dialysate introduction line IL are connected via the blood purification membrane of the blood purifier 2 to allow blood and dialysate to flow to each other.
  • the drainage line EL is a flow path from the blood purifier 2 to the drainage section, which discharges the drainage of the dialysate from the blood purifier 2 to the drainage section (not shown).
  • the drainage line EL is mainly composed of a tube through which drainage can pass.
  • the water removal line RL is a flow path from the drainage line EL to the drainage portion for removing water from the blood in the blood purifier 2.
  • the water removal line RL is mainly composed of a tube through which drainage can pass.
  • the compound pump P2 is provided over the dialysate introduction line IL and the drainage line EL.
  • the dual pump P2 introduces the dialysate on the downstream side of the dialysate introduction line IL in the liquid feeding direction, and discharges the dialysate on the downstream side of the drainage line EL in the liquid feeding direction. That is, the dual pump P2 serves as a dialysate supply pump for supplying the dialysate to the blood circuit 1 and a drainage pump for discharging the dialysate from the drainage section.
  • a plunger (not shown) is provided in the housing of the compound pump P2.
  • a dialysate supply pump (not shown) may be provided in the dialysate introduction line IL, and a drainage pump (not shown) may be provided in the drainage line EL. ..
  • the dialysate supply pump and the drainage pump are composed of a squeeze pump having a stator and a rotor, and drive the rotor to rotate. The rotor is rotated by an actuator (not shown) such as an electric motor under the control of the control device C.
  • an actuator such as an electric motor under the control of the control device C.
  • the water removal pump P3 is provided on the water removal line RL.
  • the water removal pump P3 discharges the water in the blood from the water removal line RL in order to remove the water from the blood in the blood purifier 2.
  • the amount of the dialysate introduced into the blood purifier 2 and the amount of the dialysate discharged are equal to each other. Therefore, by driving the water removal pump P3, the amount of the dialysate in the blood purifier 2 is equal. Remove water from the blood.
  • the priming solution line PL is a connecting flow path connecting the dialysate introduction line IL and the blood circuit 1 for introducing the priming solution (dialysate) into the blood circuit 1 and the blood purifier 2.
  • the priming solution line PL is a flow path from the dialysate port P to the blood removal side circuit 1a.
  • the priming liquid line PL is provided with an on-off valve (solenoid valve) V4. By opening and closing the on-off valve V4, the flow of the priming liquid to the blood removal side circuit 1a is controlled.
  • a priming step of removing the air in the circuit is performed by filling the blood circuit 1 and the blood purifier 2 with the priming solution (by replacing the air in the circuit with the priming solution).
  • the on-off valve V4 is opened and the on-off valve V3 is closed, so that the priming liquid flows through the priming liquid line PL and is introduced into the blood circuit 1 and the blood purifier 2.
  • both the dialysate introduction line IL and the priming solution line PL are used to introduce the dialysate into the blood circuit 1 in the blood return step. That is, the dialysate introduction line IL and the priming solution line PL serve as a dialysate introduction circuit for introducing the dialysate into the blood circuit 1.
  • the priming liquid line PL is used to introduce air into the blood circuit 1 in the blood return step. That is, the priming liquid line PL serves as an air introduction circuit for introducing air into the blood circuit 1.
  • the drainage line EL is used to send the drainage from the blood circuit 1 in the drainage step after the blood return step is performed. The details will be described later.
  • the bypass line BL1 and the bypass line BL2 are flow paths from the dialysate introduction line IL to the drainage line EL, respectively.
  • the bypass line BL1 is provided with an on-off valve (solenoid valve) V5.
  • the bypass line BL2 is provided with an on-off valve (solenoid valve) V6.
  • the bypass line BL1 and the bypass line BL2 are flow paths for preventing inappropriate dialysate from flowing into the blood circuit 1.
  • the blood purification device 100 is provided with a warmer (not shown) for heating the dialysate, and when the dialysate exceeds a predetermined temperature by the warmer during dialysis treatment, high temperature dialysis is performed.
  • the dialysate flows through the bypass line BL1 and the bypass line BL2 to the drainage line EL.
  • the on-off valve V5 and / or V6 is opened.
  • the air introduction unit 3 introduces air into the blood circuit 1 (blood removal side circuit 1a) via the priming liquid line PL.
  • the air introduction unit 3 is connected to the priming liquid line PL.
  • the air introduction unit 3 pushes the dialysate introduced into the blood circuit 1 via the dialysate introduction line IL and the priming solution line PL to the blood return side circuit 1b (or the blood removal side circuit 1a), and the dialysate in the blood circuit 1 It serves to return blood to patient P.
  • the details will be described later.
  • the air introduction unit 3 includes an air pump 3a, an air introduction path 3b, an on-off valve (solenoid valve) 3c, an air filter 3d, and an air filter 3e.
  • the air pump 3a has a rotor inside and drives the rotor to rotate.
  • the rotor is rotated by an actuator (not shown) such as an electric motor under the control of the control device C.
  • the rotation speed of the rotor is controlled and detected by closed loop control using a pulse motor (not shown).
  • a rotary encoder may be provided in the air pump 3a, and the rotation speed of the rotor may be controlled by detecting the rotation of the rotary encoder.
  • the air pump 3a By driving the air pump 3a, air is introduced into the blood circuit 1 through the air introduction path 3b and through the priming liquid line PL.
  • the on-off valve 3c is provided between the air introduction path 3b and the priming liquid line PL.
  • the air flow to the priming liquid line PL is controlled by opening and closing the on-off valve 3c.
  • the air filter 3d and the air filter 3e capture and remove bacteria and dust in the air.
  • the air introduction unit 3 is connected to the priming liquid line PL, but is not limited to such a configuration.
  • the air introduction unit 3 may be connected to a replacement fluid line (not shown).
  • a fluid replacement line is a flow path that introduces dialysate into a blood circuit to supplement the blood, for example, in order to increase the amount of blood filtered from the patient in hemofiltration dialysis treatment.
  • the air from the air introduction unit 3 is introduced into the blood circuit 1 via the replacement fluid line.
  • the dialysate filter DF (dialysate filter DF1 and DF2) purifies the dialysate by capturing substances such as endotoxin contained in the dialysate supplied from the dialysate supply unit DS.
  • the dialysate filter DF is provided in the dialysate introduction line IL, respectively, and includes a primary chamber and a secondary chamber (not shown). Further, the dialysate filter DF1 is provided with a dialysate purifying membrane inside.
  • the dialysate purification membrane is composed of a bundle of hollow fibers (hollow fiber membranes) having holes in the side walls.
  • the dialysate filter DF is configured to allow dialysate to flow from the primary chamber (inside the dialysate purification membrane) to the secondary chamber (outside the dialysate purification membrane).
  • the dialysate filter DF has the property of not allowing air to pass through due to the surface tension of water molecules by allowing water to pass through.
  • the (blood removal side) electrode EPa is provided in the blood removal side circuit 1a.
  • the (blood return side) electrode EPb is provided in the blood return side circuit 1b.
  • the electrode EPa and the electrode EPb are composed of a conductor connected to a flexible tube, and the electrode EPa is electrically connected to the power supply PS by a connecting means such as an alligator clip. Further, the electrode EPb is electrically connected to the needle removal detection unit 4. The electrodes EPa and EPb do not come into physical contact with blood, but are electrically connected via the blood circuit 1.
  • the power supply PS applies a voltage having a high frequency (several kHz to several tens of kHz) weak current (1 mA or less) to the electrode EPa.
  • a voltage flows through the blood of the patient P through the blood sampling side puncture needle RN and the blood return side puncture needle AN. Since the blood circulating outside the body through the blood removal side circuit 1a and the blood return side circuit 1b is a conductor through which an electric current flows, the blood removal side puncture needle RN and the blood return side puncture needle AN should be normally punctured by the patient P. For example, a current flows through the blood of the patient P through the blood removal side puncture needle RN and the blood return side puncture needle AN.
  • the (body surface side) electrode EPc is attached in close contact with the body surface (skin) of patient P.
  • the electrode EPc is composed of an electrode attached in close contact with the puncture portion of the blood removal side puncture needle RN and the blood return side puncture needle AN at a position sandwiching the heart, and detects an electrical signal from the body of the patient P. do. Further, the electrode EPc is electrically connected to the needle removal detection unit 4 (the connection state is not shown in FIG. 1).
  • the electrode EPc is used, for example, in dialysis treatment to measure an electrocardiogram (biological information) from a patient P.
  • the needle removal detection unit 4 detects that the blood removal side puncture needle RN and / or the blood return side puncture needle AN punctured by the patient P has been removed.
  • the needle removal detection unit 4 is connected to the control device C.
  • FIG. 2 shows the relationship between the needle removal detection unit 4, the electrode EPa, the electrode EPb, the electrode EPc, and the control device C.
  • the electrode EPa and the electrode EPb are connected to the differential amplifier circuit A1, and the electrode EPb is connected to the impedance adjustment circuit IA. Further, the electrode EPc and the impedance adjustment circuit IA are connected to the differential amplifier circuit A2.
  • the impedance adjustment circuit IA adjusts the impedance at the measured voltage input to the differential amplifier circuit A1 and the impedance at the measured voltage input to the differential amplifier circuit A2. Since there is a difference between the "blood impedance" obtained from the electrodes EPa and EPb and the "body fluid impedance and skin impedance” obtained from the electrodes EPb and EPc, the impedance adjustment circuit IA has this difference. To adjust.
  • the impedance adjustment circuit IA preferably adjusts the load resistance by a variable resistance or the like, or adjusts the load resistance by using automatic gain control (AGC) so that the heartbeat component can be extracted.
  • AGC automatic gain control
  • the differential amplifier circuit A1 generates an electric signal that amplifies the voltage difference between the measured voltage from the electrode EPa and the measured voltage from the electrode EPb.
  • the differential amplifier A2 generates an electric signal that amplifies the voltage difference between the measured voltage from the electrode EPc and the measured voltage from the impedance adjustment circuit IA.
  • the differential amplifier circuit A1 is connected to the needle removal detection unit 4 via the rectifier circuit R.
  • the differential amplifier circuit A2 is connected to the needle removal detection unit 4 via the high frequency cutoff filter HF.
  • the high frequency cutoff filter HF removes the high frequency component applied by the power supply PS from the electric signal generated by the differential amplifier circuit A2.
  • the electric signal generated by the differential amplifier circuit A1 is input to the needle removal detection unit 4, and the electric signal generated by the differential amplifier circuit A2 is input to the needle removal detection unit 4.
  • the needle removal detection unit 4 acquires a predetermined biological parameter (electrocardiogram in this embodiment) by detecting a change in impedance in the body of the patient P based on an electric signal input from the differential amplifier circuit A2. do. That is, in the present embodiment, the electrode EPb and the electrode EPc are paired to detect an electric signal from the body of the patient P, and the needle removal detection unit 4 is an electrocardiogram as a biological parameter based on the detected electric signal. In real time. In addition, the needle removal detection unit 4 monitors the current flowing through the electrode EPb and monitors the change in impedance of the patient P in the body detected by the needle removal detection unit 4 in real time.
  • a predetermined biological parameter electronic signal in this embodiment
  • the control device C is a processing device that controls the components of the blood purification device 100, such as controlling the drive of the blood pump P1 described above.
  • the control device C includes an arithmetic unit and a storage device (storage device such as RAM and ROM).
  • the arithmetic unit may be implemented by a processor such as a CPU or a microcontroller, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or the like, but the format is not limited.
  • a signal indicating a change in the current value and impedance monitored and detected by the needle removal detection unit 4 is transmitted to the control device C.
  • the control device C determines whether or not the blood removal side puncture needle RN and / or the blood return side puncture needle AN has been removed from the patient P based on the signal indicating the change in the current value and the impedance.
  • the current from the power supply PS does not reach the electrode EPb, and the needle removal detection unit 4 does not detect the current (current).
  • the waveform corresponding to the value is interrupted). Similarly, changes in impedance will not be detected.
  • the control device C determines that the blood removal side puncture needle RN and / or the blood return side puncture needle AN has been removed from the patient P.
  • the power supply PS applies a voltage to the electrode EPa
  • the needle removal detection unit 4 monitors the current flowing through the electrode EPb, but the voltage is applied to either or both of the electrode EPa and the electrode EPb. It may be applied.
  • the power supply PS is connected to the electrode EPb.
  • the needle removal detection unit 4 may monitor the current flowing through either or both of the electrode EPa and the electrode EPb.
  • the electrode EPa is connected to the needle removal detection unit 4.
  • the blood shading detection unit 5 detects the shading of blood flowing through the blood circuit 1.
  • the blood shading detection unit 5a is provided in the blood removal side circuit 1a
  • the blood shading detection unit 5b is provided in the blood return side circuit 1b.
  • the blood shading detection unit 5a and the blood shading detection unit 5b are implemented by, for example, an infrared radiator that emits infrared rays and an infrared sensor that detects the light.
  • the amount of infrared rays that pass through blood changes depending on the amount of red blood cells. Therefore, by detecting the amount of infrared light transmitted through the blood, it is possible to detect the shade of blood flowing through the blood circuit 1.
  • the detected infrared light intensity is transmitted to the control device C.
  • the control device C determines whether or not the amount of light exceeds a predetermined threshold value.
  • the shade of blood flowing through the blood circuit 1 detected by the blood shade detection unit 5 serves as a reference for determining the amount of blood returned in the blood return step. Details will be described later.
  • the blood shade detection unit 5a and the blood tint detection unit 5b are provided, respectively, but only one of the blood tint detection unit 5a and the blood tint detection unit 5b may be provided.
  • the blood shading detection unit 5b is provided in the blood return side circuit 1b.
  • the blood shading detection unit 5a is provided in the blood removal side circuit 1a.
  • the bubble detection unit 6 detects that bubbles have been generated in the blood and / or the dialysate flowing through the blood circuit 1 in the blood return step.
  • the bubble detection unit 6a is provided in the blood removal side circuit 1a
  • the bubble detection unit 6b is provided in the blood return side circuit 1b.
  • the bubble detection unit 6a and the bubble detection unit 6b are implemented by, for example, an ultrasonic radiator that emits ultrasonic waves and an ultrasonic sensor that detects the ultrasonic waves.
  • Ultrasonic sensors detect voltage according to the vibration of blood and / or dialysate. Bubbles have a higher decay rate than blood and / or dialysate. Therefore, the bubble detection unit 6 can detect that bubbles have been generated by determining that the voltage value has fallen below a predetermined threshold value. The detected voltage value is transmitted to the control device C. The control device C determines whether or not the voltage value exceeds a predetermined threshold value.
  • the bubbles generated in the blood circuit 1 detected by the bubble detection unit 6 serve as a reference for terminating the blood return process in the middle. Details will be described later.
  • the bubble detection unit 6a and the bubble detection unit 6b are provided, respectively, but only one of the bubble detection unit 6a and the bubble detection unit 6b may be provided.
  • the bubble detection unit 6b is provided in the blood return side circuit 1b.
  • the bubble detection unit 6a is provided in the blood removal side circuit 1a.
  • the blood pump P1 is in an inactive state from the end of the blood return step until the needle removal is detected, and is in the active state when the needle removal is detected.
  • the inactive state means that the blood pump P1 is not driven even by a manual operation by the user. That is, the blood pump P1 is not driven unless it becomes active.
  • the above-mentioned two states are managed by the control device C by mounting the state machine as two state modes "active mode" and "inactive mode".
  • the state mode is stored in a register (not shown).
  • the control device C refers to the state mode stored in the register, and instructs to drive the blood pump P1 only when the state mode is the active mode.
  • the blood pump P1 is driven according to a predefined operation under the control of the controller C in the dialysis treatment and blood return steps.
  • the blood pump P1 is driven by an instruction of the control device C in response to a manual operation by the user (for example, by pressing a manual (drive) button (not shown).
  • the control device C does not instruct the blood pump P1 to be driven even by pressing the drive button. That is, when the state mode is in the inactive mode, the blood pump P1 is locked so that it is not driven.
  • FIG. 3 shows the transition of the state mode for the blood pump P1 and the operating state for a predetermined action.
  • the operating state indicates whether the blood pump P1 is driven or stopped.
  • the action performed at time points T1 to T6 causes the state mode to transition between the active mode and the inactive mode, and the blood pump P1 is in either the driven state or the stopped state.
  • the dialysis treatment is performed before the time point T1.
  • the state mode for the blood pump P1 is assumed to be in the active mode as the initial (default) state mode.
  • the blood pump P1 is driven (rotated) (transitions from the stopped state to the driven state) according to the instruction of the control device C.
  • the dialysate is introduced into the blood circuit 1 (dialysate introduction stage), and then air is introduced into the blood circuit 1 (air introduction stage).
  • FIG. 4 shows the flow of the dialysate at the stage of introducing the dialysate in the blood return process.
  • FIG. 5 shows the flow of dialysate and air at the air introduction stage.
  • the on-off valve shown in the figure is shaded, and when the on-off valve is closed, the on-off valve shown in the figure is shown in white.
  • the figures after FIG. 6 which will be described later are also displayed in the same manner.
  • the on-off valve V4 and the on-off valve V2 are opened under the control of the control device C. Further, the blood pump P1 rotates in the forward direction. Further, the compound pump P2 is driven. As a result, the dialysate from the dialysate supply unit passes through the dialysate introduction line IL, the priming solution line PL, the blood removal side circuit 1a, the blood purifier 2, and the blood return side circuit 1b. In FIG. 4, the flow of this dialysate is indicated by a thick chain arrow.
  • the dialysate pushes out the blood remaining in the blood purifier 2 and the blood circuit 1 (blood return side circuit 1b), and the blood is returned to the body.
  • the stage is switched to the air introduction stage.
  • the dual pump P2 stops driving under the control of the control device C. Instead, the air pump 3a is driven. As a result, the air passes through the air introduction path 3b, the priming liquid line PL, the blood removal side circuit 1a, the blood purifier 2, and the blood return side circuit 1b. In FIG. 5, this air flow is indicated by a thick solid arrow. This air flow pushes out the blood remaining in the blood purifier 2 and the blood circuit 1 through the dialysate introduced into the blood circuit 1 at the stage of introducing the dialysate, and the blood is returned to the body.
  • blood is returned by introducing air into the blood circuit 1, so that the amount of dialysate used for blood return is compared with the case where blood is returned using only dialysate. Can be reduced. Further, since the dialysate is introduced into the blood circuit 1 and then the air is introduced into the blood circuit 1, the air pushes the blood into the body through the dialysate, so that the air is taken into the patient P. Can be prevented.
  • the instruction of the control device C is used.
  • the state mode for the blood pump P1 transitions to the inactive mode, and the blood pump P1 stops driving (transitions from the driving state to the stopped state).
  • the end of the blood return step is determined, for example, based on whether a certain period of time has passed and / or whether the blood return amount has reached a predetermined threshold value.
  • Whether or not a certain period of time has passed may be determined by the control device C based on the time measured by the timer from the start of the blood return process. Whether or not the blood return amount has reached a predetermined threshold value may be determined by the control device C based on whether or not the rotation speed of the blood pump P1 exceeds the predetermined threshold value (described above). The rotation speed of the blood pump P1 is detected by the closed loop control). Further, whether or not the blood return amount has reached a predetermined threshold value may be determined by the control device C based on whether or not the shade of blood flowing through the blood circuit 1 is below the predetermined threshold value. Good (the blood density detection unit 5 detects the concentration of blood flowing through the blood circuit 1).
  • the power supply PS and the needle removal detection unit 4 detect (monitor) the removal of the blood removal side puncture needle RN and / or the blood return side puncture needle AN. Instruct to do.
  • the power supply PS applies a voltage to the electrode EPa, a current flows between the electrode EPa and the electrode EPb, and the needle removal detection unit 4 detects the current via the patient P. ..
  • the needle removal detection unit 4 cannot detect the energization between the electrodes (or does not detect the change in impedance from the electrode EPc), so that the needle removal detection unit 4 does not detect the change in impedance.
  • An indicator indicating the detection of non-energization is transmitted to the control device C, and the control device C determines that the needle has been removed based on the indicator.
  • the state mode for the blood pump P1 is in the inactive mode, for example, even if the drive button is pressed by the user, the blood pump P1 is not driven. In such a state, the state mode does not shift to the active mode and the blood pump P1 is not driven until the needle withdrawal of the puncture needle is detected.
  • the state mode for the blood pump P1 is changed to the active mode according to the instruction of the control device C. Transition.
  • the state mode is in the active mode, for example, when the drive button is pressed by the user, the blood pump P1 is driven.
  • a drainage step for withdrawing the dialysate remaining in the blood circuit 1 is performed.
  • the drainage step is performed at the time point T5.
  • the drainage step may be automatically started under the control of the control device C in response to the completion of the blood return step and the detection of needle removal, or may be started by a manual operation by the user. ..
  • FIG. 6 shows the flow of drainage (dialysate) in the drainage process.
  • air is introduced from the puncture needle RN by rotating the blood pump P1 in the forward direction, and the liquid remaining in the blood removal side circuit 1a is discharged to the drainage line EL.
  • the on-off valve V1 is opened under the control of the control device C.
  • the blood pump P1 rotates in the forward direction.
  • the dialysate (drainage) remaining in the blood removal side circuit 1a and the blood purifier 2 passes through the blood removal side circuit 1a, the blood purifier 2, and the drainage line EL.
  • the flow of this dialysate is indicated by a thick chain arrow. In this way, the drainage liquid is discharged to the permeation drainage unit.
  • a step (manual step) of removing the blood circuit 1 coupled to the blood pump P1 may be performed instead of performing the above-mentioned drainage step. Also in this removal step, it is necessary to manually rotate the rotor of the blood pump P1 in order to remove the blood circuit 1. That is, the blood pump P1 is also driven in the removal step of the blood circuit 1. Further, the drainage step shown in FIG. 6 is merely an example, and for example, a blood return step may be performed in which the liquid remaining in the blood return side circuit 1b is discharged to the drainage line EL.
  • the detection of the needle withdrawal of the puncture needle is monitored, and the blood pump P1 is not driven (inactivated) until the needle withdrawal is detected. Control.
  • the blood pump P1 it is possible to prevent the blood pump P1 from being driven by starting the drainage step or the removal step of the blood circuit 1 without removing the needle after the blood return step is completed.
  • the process shown in FIG. 7 corresponds to the process from the blood return step described in FIG. 3 to the detection of needle removal. Although not shown, it is assumed that dialysis treatment is performed before the blood return process. Further, it is assumed that the operation mode of the blood pump P1 described with reference to FIG. 3 is in the active mode (the state mode indicating the active mode is stored in the register).
  • control device C instructs the on-off valve (on-off valve V4 and on-off valve V2), the blood pump P1, and the compound pump P2 to execute the dialysate introduction step in the blood return step.
  • the on-off valve is opened, the blood pump P1 rotates in the forward direction, and the compound pump P2 is driven (step S701). In this way, as described in FIG. 4, the dialysate from the dialysate supply unit is introduced into the blood circuit 1.
  • control device C determines whether or not the conditions for ending the dialysate introduction stage are satisfied (step S702). The process of step S702 is repeated until the conditions for ending the dialysate introduction stage are satisfied.
  • the conditions for ending the dialysate introduction stage may include that a certain period of time has passed since the start of the dialysate introduction stage and / or that the amount of blood returned has reached a predetermined threshold value. As described above, whether or not a certain period of time has elapsed may be determined by the control device C based on the time measured by the timer from the start of the dialysate introduction stage. Whether or not the blood return amount has reached a predetermined threshold value may be determined by the control device C based on whether or not the rotation speed of the blood pump P1 exceeds the predetermined threshold value.
  • whether or not the blood return amount has reached a predetermined threshold value may be determined by the control device C based on whether or not the shade of blood flowing through the blood circuit 1 is below the predetermined threshold value.
  • Good the blood shade detection unit 5 detects the shade of blood flowing through the blood circuit 1).
  • the control device C instructs the on-off valve (on-off valve 3c), the compound pump P2, and the air pump 3a to execute the air introduction stage in the blood return process. do.
  • the dual pump P2 stops driving.
  • the on-off valve 3c is opened and the air pump 3a is rotated (step S703). In this way, as described in FIG. 5, the air from the air introduction unit 3 is introduced into the blood circuit 1.
  • control device C determines whether or not the air introduction stage end condition (blood return process end condition) is satisfied (step S704).
  • the process of step S704 is repeated until the blood return step end condition is satisfied.
  • the conditions for ending the blood return process include that a certain period of time has passed since the start of the dialysate introduction stage (or the air introduction stage) and / or that the blood return amount has reached a predetermined threshold value.
  • the blood return step end condition may include that the blood flowing through the blood circuit 1 is no longer detected and / or that bubbles are detected in the blood circuit 1.
  • the fact that the blood flowing through the blood circuit 1 is no longer detected may be determined by the control device C based on whether or not the shading of the blood flowing through the blood circuit 1 is below a predetermined threshold value (blood shading detection).
  • the concentration of blood flowing through the blood circuit 1 is detected by the part 5).
  • the detection of bubbles in the blood circuit 1 indicates whether or not the voltage corresponding to the ultrasonic vibration of the blood and / or the dialysate flowing through the blood circuit 1 has fallen below a predetermined threshold by the control device C. It may be determined based on (the voltage is detected by the bubble detection unit 6).
  • the control device C determines the on-off valve (on-off valve 3c, on-off valve V4, and on-off valve V2), the blood pump P1, and the air pump 3a so as to end the blood return process. To instruct. In response to this instruction, the on-off valve closes, and the blood pump P1 and the air pump 3a stop driving (step S705).
  • step S706 the control device C deactivates the blood pump P1 (step S706). Specifically, the operation mode of the blood pump P1 is changed to the inactive mode (the operation mode stored in the register is updated to the inactive mode). By the process of step S706, the blood pump P1 is locked so as not to be driven.
  • the control device C instructs the power supply PS and the needle extraction detection unit 4 to start the needle extraction detection (monitoring) of the puncture needle (blood removal side puncture needle RN and blood return side puncture needle AN).
  • the power supply PS applies a voltage to the electrode EPa.
  • the needle removal detection unit 4 detects the current flowing in the blood of the patient P and / or the change in the impedance in the body of the patient P (step S707).
  • step S708 determines whether or not needle removal has been detected.
  • the process of step S708 is repeated until needle removal is detected.
  • the criteria for determining whether or not the needle has been removed are as described above.
  • the blood pump P1 When it is detected that the needle has been removed, the blood pump P1 is activated (step S709). Specifically, the operation mode of the blood pump P1 is changed to the active mode (the operation mode stored in the register is updated to the active mode). By the process of step S709, the blood pump P1 can be driven by the instruction of the control device C. After that, the above-mentioned drainage step or the removal step of the blood pump P1 is executed.
  • the blood purification device 100 As described above, the blood purification device 100 according to the first embodiment has been described. According to the first embodiment, after the blood return step is completed, the blood pump P1 is inactive until the needle removal is detected, so that the puncture needle is not removed and the drainage step is performed. It is possible to prevent such things from starting.
  • the needle removal monitoring (that is, step S707 shown in FIG. 7) is executed after the blood return step is completed, but the timing at which the needle removal monitoring starts is after the blood return step is completed. It does not have to be. Needle withdrawal monitoring may be started before the blood return process starts (for example, during dialysis treatment), or may be performed at the timing when the blood return process starts. That is, the needle removal monitoring may be started at any timing, and at least the blood return process is executed at the end timing.
  • the blood return step is performed by introducing air into the blood circuit 1 after introducing the dialysate into the blood circuit 1, but the blood circuit 1 is not introduced with air. Blood may be returned only by introducing a dialysate into 1.
  • the blood return step is performed by the flow of the dialysate shown in FIG. 4, and the blood return step is terminated by determining that the blood return step end condition described in FIG. 7 (step S704) is satisfied.
  • the configuration for monitoring and detecting the needle removal described in the present embodiment is merely an example, and the configuration using the electrode EPc is not an essential configuration. At least to detect the withdrawal of the blood removal side puncture needle RN and / or the blood return side puncture needle AN based on the energization state between the two electrodes provided in the blood removal side circuit 1a and the blood return side circuit 1b. The configuration of is adopted.
  • FIG. 8 is a piping diagram showing the configuration of the blood purification device 200 according to the second embodiment.
  • the blood purification device 200 is different from the blood purification device 100 according to the first embodiment, except that the configuration of the air introduction unit 3 is different and the blood removal side air trap chamber 7a and the blood return side air trap chamber 7b are further included. It has the same configuration.
  • the blood removal side air trap chamber 7a is provided in the blood removal side circuit 1a, and the blood return side air trap chamber 7b is provided in the blood return side circuit 1b.
  • the blood removal side air trap chamber 7a is provided mainly for the purpose of capturing air so that air that may be generated by driving the blood pump P1 does not flow into the blood purifier 2 in dialysis treatment or the like.
  • the blood return side air trap chamber 7b is provided mainly for the purpose of capturing air so that the above-mentioned air does not flow into the patient's body through the blood circuit 1. That is, both the blood removal side air trap chamber 7a and the blood return side air trap chamber 7b serve as a chamber for accommodating blood in the blood circuit 1.
  • the air introduction unit 3 (air introduction path 3b) is connected to the blood removal side air trap chamber 7a and the blood return side air trap chamber 7b, and air is introduced into the blood removal side air trap chamber 7a and the blood return side air trap chamber 7b. do.
  • the blood removal side air trap chamber 7a and the blood return side air trap chamber 7b each have two layers, a blood layer and an air layer, and when air accumulates in the chamber, the liquid level drops and the hollow thread of the blood purifier 2 is formed. There is a risk of air locks that allow air to enter.
  • the air introduction unit 3 (air pump 3a) rotates in the forward direction to introduce air into the blood return side air trap chamber 7b, lowers the liquid level, and rotates in the reverse direction to return the air. Air is discharged from the blood side air trap chamber 7b to raise the liquid level.
  • the air introduction unit 3 (air pump 3a) introduces air into the blood removal side air trap chamber 7a by rotating forward to lower the liquid level, and reverse rotation causes the blood removal side air trap. Air is discharged from the chamber 7a to raise the liquid level.
  • the air introduction unit 3 further includes an on-off valve (solenoid valve) 3f.
  • the on-off valve 3f is provided between the air introduction path 3b and the blood removal side air trap chamber 7a.
  • By opening and closing the on-off valve 3f the flow of air from the air introduction unit 3 to the blood removal side air trap chamber 7a is controlled (the air introduction unit 3 flows air to the blood removal side air trap chamber 7a).
  • By opening and closing the on-off valve 3c the flow of air from the air introduction unit 3 to the blood return side air trap chamber 7b is controlled (the air introduction unit 3 flows air to the blood return side air trap chamber 7b).
  • the air introduction unit 3 functions as a liquid level adjusting pump for the blood removal side air trap chamber 7a and the blood return side air trap chamber 7b as described above. (Liquid level adjustment pumps are not normally used for blood return).
  • the air introduction unit 3 plays a role of introducing air into the blood circuit 1 in order to return the blood in the blood circuit 1 and the blood purifier 2 to the body in the blood return step.
  • the blood removal side air trap chamber 7a and the blood return side air trap chamber 7b are not essential configurations.
  • the air introduction unit 3 may be connected to the blood return side circuit 1b as shown in FIG. As shown in the above, the air introduction unit 3 may be connected to the blood removal side circuit 1a. Further, it is not always necessary that both the blood removal side air trap chamber 7a and the blood return side air trap chamber 7b are provided, and only one of them may be provided.
  • FIGS. 11 to 13 the blood return step according to the second embodiment, in the configuration described with reference to FIG. 8, the dialysate is first introduced into the blood circuit 1 (dialysate introduction stage), and then air is introduced into the blood circuit 1. (Air introduction stage).
  • FIG. 11 shows the dialysate introduction stage.
  • FIG. 12 shows an air introduction stage in which the air introduction unit 3 introduces air into the blood return side circuit 1b.
  • FIG. 13 shows an air introduction stage in which the air introduction unit 3 introduces air into the blood removal side circuit 1a.
  • the air introduction step shown in FIGS. 12 and 13 is performed either after the dialysate introduction step shown in FIG.
  • FIG. 11 shows the flow of the dialysate at the stage of introducing the dialysate.
  • FIG. 12 shows the flow of dialysate and air at the air introduction stage in which air is introduced into the blood return side circuit 1b.
  • FIG. 13 shows the flow of dialysate and air at the air introduction stage in which air is introduced into the blood removal side circuit 1a.
  • the on-off valve shown in the figure is shaded, and when the on-off valve is closed, the on-off valve shown in the figure is shown in white.
  • the on-off valve V4 and the on-off valve V2 are opened under the control of the control device C. Further, the blood pump P1 rotates in the forward direction. Further, the compound pump P2 is driven. As a result, the dialysate from the dialysate supply unit passes through the dialysate introduction line IL, the priming solution line PL, the blood removal side circuit 1a, the blood purifier 2, and the blood return side circuit 1b. In FIG. 11, the flow of this dialysate is indicated by a thick chain arrow.
  • the dialysate pushes out the blood remaining in the blood purifier 2 and the blood circuit 1 (blood return side circuit 1b), and the blood is returned to the body.
  • the stage is switched to the air introduction stage.
  • the on-off valve V4 closes under the control of the control device C, and the blood pump P1 and the compound pump P2 stop driving. Instead, the on-off valve 3c opens. Further, the air pump 3a is driven. As a result, the air passes through the air introduction path 3b and the blood return side circuit 1b. In FIG. 12, this air flow is indicated by a thick solid arrow. This air flow pushes out the blood remaining in the blood circuit 1 through the dialysate introduced into the blood circuit 1 at the stage of introducing the dialysate, and the blood is returned to the body.
  • the on-off valve V4 and the on-off valve 3c are closed under the control of the control device C, and the double pump P2 stops driving. Instead, the on-off valve 3f opens. Further, the air pump 3a is driven. As a result, the air passes through the air introduction path 3b, the blood removal side circuit 1a, the blood purifier 2, and the blood return side circuit 1b. In FIG. 13, this air flow is indicated by a thick solid arrow. This air flow pushes out the blood remaining in the blood purifier 2 and the blood circuit 1 through the dialysate introduced into the blood circuit 1 at the stage of introducing the dialysate, and the blood is returned to the body.
  • the air introduction unit 3 is connected to the blood removal side air trap chamber 7a, and the air introduction unit 3 introduces air into the blood circuit 1, but the blood pump P1 plays the role of the air introduction unit 3. You may play. If all the dialysate introduced from the priming fluid line PL in the dialysate introduction stage continues to rotate in the positive direction even after passing through the air pump P1, the air pump P1 introduces air into the blood return side circuit 1b. .. Therefore, in this case, the air introduction unit 3 may not be provided.
  • the air introduction unit 3 plays a role as a liquid level adjusting pump during dialysis treatment, and also plays a role of introducing air into the blood circuit 1 for blood return in the blood return step.
  • the blood pump P1 plays a role of sending dialysate in the blood circuit 1, and also plays a role of introducing air into the blood circuit 1 for blood return at the air introduction stage of the blood return step.
  • the conditions for ending the dialysate introduction stage and the conditions for ending the blood return step in the second embodiment are the same as the conditions described in the first embodiment. Further, the process of changing the state mode of the blood pump P1 is the same as the process described in the first embodiment.
  • the blood purification device 200 As described above, the blood purification device 200 according to the second embodiment has been described. Also in the second embodiment, it is possible to prevent the drainage process and the like from starting in a state where the puncture needle is not removed, and as compared with the case where blood is returned using only the dialysate. , The amount of dialysate used for blood return can be reduced.
  • a third embodiment will be described.
  • an acute blood purification therapy an example in which an aferesis therapy for removing a causative substance of a disease is performed for an acute disease and then a blood return step is performed will be described.
  • aferesis therapy is merely an example, and the present embodiment may be applied to continuous renal replacement therapy (CRRT), intermittent renal replacement therapy (IRRT), and the like.
  • Apheresis therapy is a treatment method in which plasma exchange is performed in order to separate and remove pathogenic substances in the blood.
  • Apheresis therapy may use a double lumen catheter for temporary blood purification vascular access.
  • the structure of the needle removal detection unit is different due to the use of the puncture needle having a double lumen structure. Therefore, in the third embodiment, only the configuration of the needle removal detection unit and the puncture needle will be described.
  • the configuration of the needle extraction detection unit and the puncture needle shown in the present embodiment may be applied to an acute blood purification device used for acute blood purification therapy such as apheresis treatment.
  • FIG. 14 is a diagram showing the configuration of the needle removal detection unit 4 and the puncture needle N.
  • a puncture needle N is punctured in the neck of patient P.
  • a needle removal detection unit 4 is attached to the puncture needle N, and the needle removal detection unit 4 is connected to the power supply PS.
  • the puncture needle N has a double lumen structure (double lumen catheter DLC).
  • the double lumen catheter DLC mainly includes a puncture needle N, a double lumen tube DLT, a blood removal side branch BA, and a blood return side branch BR.
  • the double lumen catheter DLC has a structure in which one puncture needle N branches into a blood removal side circuit 1a and a blood return side circuit 1b.
  • One end of the double lumen tube DLT is connected to the puncture needle N.
  • the other end of the double lumen tube DLT branches into the blood removal side branch BA and the blood return side branch BR.
  • the blood removal side branch portion BA is connected to the blood removal side circuit 1a
  • the blood return side branch portion BR is connected to the blood return side circuit 1b.
  • FIG. 14 shows a state in which the neck is punctured
  • the puncture destination is not limited to this, and the puncture may be performed in the thigh or the subclavian artery.
  • the puncture needle N is formed integrally with the wing portion W.
  • the wing portion W is provided with a needle removal detecting portion 4.
  • the needle removal detection unit 4 is mounted as, for example, a sheet-shaped touch sensor, and is vapor-deposited on the wing portion W. That is, the needle removal detection unit 4 is integrated with the puncture needle N.
  • the touch sensor may be a capacitive touch sensor, a resistance film type touch sensor, or the like.
  • the power supply PS is applied to the electrode of the touch sensor while the puncture needle N is punctured by the patient P, and the needle comes into contact with the patient P.
  • the change in the resistance value of the transparent conductive film caused by the above is detected.
  • the needle removal detection unit 4 detects whether or not the puncture needle N has been punctured by the patient P by detecting a change in capacitance or a change in the resistance value of the transparent conductive film in any of the above-mentioned methods. be able to. That is, the needle removal detection unit 4 can detect that the puncture needle N has been removed from the patient P by detecting the contact state of the puncture needle N with the patient's body surface by the touch sensor. The needle removal detection unit 4 transmits the above-mentioned capacitance value or resistance value to the control device C, and the control device C determines that the needle has been removed based on the change in the value. In this way, the needle removal detection unit 4 can detect that the needle has been removed even when the puncture needle that punctures the patient P, such as the double lumen catheter DLC, is a single needle.
  • the needle removal detection unit 4 With the configuration of the needle removal detection unit 4 described above, it is detected that the puncture needle N has been removed from the patient P.
  • the conditions for ending the dialysate introduction stage and the conditions for ending the blood return step in the third embodiment are the same as those described in the first embodiment. Further, the process of changing the state mode of the blood pump P1 is the same as the process described in the first embodiment. Further, in the third embodiment, the blood return step described in the second embodiment may be applied.
  • the blood purification device As described above, the blood purification device according to the third embodiment has been described. Also in the third embodiment, it is possible to prevent the drainage process and the like from starting in a state where the puncture needle is not removed, and in acute blood purification therapy, a single needle puncture needle such as a double lumen catheter is used. Even when used, the withdrawal of the puncture needle can be detected.
  • the blood purification device is implemented by a computer program executed by the control device C, and the computer program may be stored in a non-temporary storage medium.
  • non-temporary storage media include read-only memory (ROM), random access memory (RAM), registers, cache memory, semiconductor memory devices, magnetic media such as internal hard disks and removable disk devices, optomagnetic media, and Includes optical media such as CD-ROM discs and digital multipurpose discs (DVDs).

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Urology & Nephrology (AREA)
  • Mechanical Engineering (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • External Artificial Organs (AREA)

Abstract

穿刺針が抜針されるまでは血液ポンプを駆動しないようにする。血液浄化装置は、患者に穿刺された穿刺針と接続され、患者からの血液が流動する血液回路と、血液回路に設けられ、駆動することによって血液回路内の液体を送液する血液ポンプと、患者から穿刺針が抜針されたことを検出する抜針検出部と、血液回路内の血液を患者に戻す返血工程を開始させ、返血工程が終了したと判定したことに応答して、血液ポンプを非活性状態にする、制御装置と、を含む。

Description

血液浄化装置
 本開示は、血液浄化装置に関する。
 人間の臓器の一部である腎臓が正常に機能しなくなると(腎不全)、体内の余分な水分を尿にし、体内の不要な老廃物を排出するなどの機能が働かなくなる。腎不全に対応するために、患者からの血液を体外循環させて、血液浄化器により血液中の老廃物および水分を漉す治療(透析治療)を行うための血液浄化装置(透析装置)が使用される。
 血液浄化装置は、患者から血液を抜き取り、血液回路を通じて血液浄化器(血液流路)に血液を導入すると共に、透析液の供給源(透析液供給部)から透析液回路を通じて血液浄化器(透析液流路)に透析液を導入する。そして、血液浄化装置は、血液浄化器を介して血液と透析液との間で老廃物や電解質等の成分を交換して血液を浄化し、浄化した血液を体内に戻す。
 透析治療により、血液が血液回路に導入された後、血液が血液回路に残存するため、生理食塩水または透析液を血液回路に流すことによって残存した血液を体内に戻す工程(返血工程)が一般に行われている。返血工程は、血液回路に設けられた血液ポンプを駆動することにより回路内の液体を送液することによって行われる。
 通常、上述した返血工程が終了すると、その後の工程において血液ポンプを駆動することがある、例えば、後工程として、血液回路内に残存した透析液を抜き出す排液工程が行われることがある。排液工程では、患者に穿刺された穿刺針を抜針してから、血液ポンプを駆動する必要がある。返血工程が終了した後、穿刺針が抜針されないままの状態で、排液工程が開始し、血液ポンプを駆動すると、体内に空気が混入したり、再度、脱血や除水を行う恐れがある。
 本実施形態は、返血工程が終了した後、穿刺針が抜針されるまでは血液ポンプを駆動しないようにする血液浄化装置を提供することを目的とする。
 実施形態に係る血液浄化装置は、患者に穿刺された穿刺針と接続され、患者からの血液が流動する血液回路と、前記血液回路に設けられ、駆動することによって前記血液回路内の液体を送液する血液ポンプと、前記患者から前記穿刺針が抜針されたことを検出する抜針検出部と、前記血液回路内の血液を患者に戻す返血工程を開始させ、前記返血工程が終了したと判定したことに応答して、前記血液ポンプを非活性状態にする、制御装置と、を含む。
 別の実施形態に係る方法は、血液浄化装置によって実行される方法であって、前記血液浄化装置は、患者に穿刺された穿刺針と接続され、患者からの血液が流動する血液回路と、前記血液回路に設けられ、駆動することによって前記血液回路内の液体を送液する血液ポンプと、前記患者から前記穿刺針が抜針されたことを検出する抜針検出部と、を含み、前記方法は、前記穿刺針が抜針されたことを検出するステップと、前記血液回路内の血液を患者に戻す返血工程を開始するステップと、前記返血工程が終了したと判定したことに応答して、前記血液ポンプを非活性状態にするステップと、を含む。
 実施形態に係る血液浄化装置によれば、返血工程が終了した後、穿刺針が抜針されないままの状態で血液ポンプを駆動することを防止することができる。
第1の実施形態に係る血液浄化装置の構成を示す配管図である。 抜針検出部、電極、および制御装置の関係を示す図である。 血液ポンプの状態モードおよび動作状態の関係を示す図である。 第1の実施形態に係る透析液導入段階における透析液の流れを示す図である。 第1の実施形態に係る空気導入段階における透析液および空気の流れを示す図である。 排液工程における排液の流れを示す図である。 第1の実施形態に係る処理を示すフローチャートである。 第2の実施形態に係る血液浄化装置の構成を示す配管図である。 第2の実施形態に係る血液浄化装置の構成を示す配管図である。 第2の実施形態に係る血液浄化装置の構成を示す配管図である。 第2の実施形態に係る透析液導入段階における透析液の流れを示す図である。 第2の実施形態に係る空気導入段階における透析液および空気の流れを示す図である。 第2の実施形態に係る空気導入段階における透析液および空気の流れを示す図である。 第3の実施形態に係る抜針検出部および穿刺針の構成を示す図である。
 以下、添付図面を参照して、実施形態に係る血液浄化装置を説明する。実施形態に係る血液浄化装置は、透析治療および血液濾過透析治療などが終了すると行われる返血工程が終了した後、穿刺針が抜針されないままの状態で、血液回路に設けられた血液ポンプを駆動することを防止する。返血工程は、血液回路に透析液を導入し、その後、空気を導入することにより、血液回路に残存した血液を体内に押し出すことによって行われる。
<第1の実施形態>
 まず、第1の実施形態を説明する。第1の実施形態では、主に、慢性腎不全などに対して慢性血液浄化療法である透析治療(HD)を行った後、返血工程を行う例を説明する。なお、透析治療は慢性血液浄化療法としての例示にすぎず、本実施形態は、血液濾過治療(HF)および血液濾過透析治療(HDF)などにも適用されてもよい。
 図1は、第1の実施形態に係る血液浄化装置100の構成を示す配管図である。血液浄化装置100は、血液回路1、血液浄化器2、空気導入部3、抜針検出部4、血液濃淡検出部5(本実施形態では、血液濃淡検出部5aおよび5b)、気泡検出部6(本実施形態では、気泡検出部6aおよび6b)、透析液導入ラインIL、排液ラインEL、プライミング液ラインPL、除水ラインRL、バイパスラインBL(本実施形態では、バイパスラインBL1およびBL2)、血液ポンプP1、複式ポンプP2、除水ポンプP3、透析液供給部DS、透析液フィルタDF(本実施形態では、透析液フィルタDF1およびDF2)、電源PS、電極EPa、電極EPb、電極EPc、ならびに制御装置Cを含む。これらの構成要素は例示にすぎず、図示しない他の構成要素が含まれてもよい。また、例えば、血液濃淡検出部5および気泡検出部6などの一部の構成要素は必須の構成要素ではない。
 血液回路1は、透析治療のとき、患者Pから脱血した血液を血液浄化器2に導入すると共に、血液浄化器2から導出した血液(浄化された血液)を体内に戻す流路である。血液回路1は、透析液および血液が通ることが可能なチューブが主体として構成される。血液は、患者Pの脱血側(動脈)に穿刺された脱血側穿刺針RNから患者Pの返血側(静脈)に穿刺された返血側穿刺針ANに流れる。血液回路1は、脱血側回路1aおよび返血側回路1bを含む。
 脱血側回路1aは、患者Pから脱血した血液を血液浄化器2に導入する流路である。脱血側回路1aの一端は、脱血側穿刺針RNに取り付けられ、他端は、血液浄化器2に結合される。脱血側回路1aには、開閉弁(電磁弁)V1が設けられる。開閉弁V1の開閉によって、脱血側回路1a内の血液の流れが制御される。返血側回路1bは、血液浄化器2から導出された血液を体内に戻す流路である。返血側回路1bの一端は、返血側穿刺針ANに取り付けられ、他端は、血液浄化器2に結合される。返血側回路1bには、開閉弁(電磁弁)V2が設けられる。開閉弁V2の開閉によって、返血側回路1b内の血液の流れが制御される。
 血液ポンプP1は、脱血側回路1aに設けられ、脱血側回路1aから返血側回路1bに進行する方向(以下、送液正方向と称する)、または返血側回路1bから脱血側回路1aに進行する方向(以下、送液逆方向と称する)に血液回路1内で液体を送液する。血液ポンプP1は、固定子および回転子を有するしごき型ポンプから構成され、回転子が回転するよう駆動する。回転子は、制御装置Cによる制御の下、電動モータなどのアクチュエータ(図示しない)によって回転する。血液ポンプP1は、後述する返血工程などにおいて予め定義された動作に従って駆動するが、ユーザによる手動操作によっても駆動する(例えば、図示しない手動ボタンの押下によって)。
 血液ポンプP1が正回転することによって、固定子および回転子に挟持された脱血側回路1aをしごき、送液正方向の流れを生じさせる。また、血液ポンプP1が逆回転することによって、脱血側回路1aをしごき、送液逆方向の流れを生じさせる。血液ポンプP1では、パルスモータ(図示せず)を使用した閉ループ制御によって回転子の回転数が制御および検出される。なお、パルスモータを使用した閉ループ制御の代わりに、血液ポンプP1にロータリエンコーダが設けられ、ロータリエンコーダの回転を検出することによって回転子の回転数が制御されてもよい。
 血液浄化器2は、ダイアライザとも称され、患者Pの血液を浄化する。血液浄化器2は、内部に設けられた血液浄化膜(図示せず)を含む。血液浄化膜は、側壁に孔を有する中空糸(中空糸膜)が束になって構成される。血液浄化膜の内側が血液流路(図示せず)であり、血液浄化膜(中空糸)の外側が透析液流路(図示せず)である。血液浄化器2を流れる血液は、血液流路を流れ、拡散、限外濾過、またはこれらの両方により、尿毒素物質などの不要な物質が血液浄化膜の孔を通ることによって除去される。血液浄化器2を流れる透析液は、透析液流路を通り、透析液が有する電解質など人体に必要な物質のみが孔を通ることによって血液に補われる。なお、血液浄化膜の内側が透析液流路として、血液浄化膜の外側が血液流路として機能することも可能である。
 透析液導入ラインILは、透析液供給部DSからの透析液を血液浄化器2に供給する、透析液供給部から血液浄化器2までの流路である。透析液導入ラインILは、透析液が通ることが可能なチューブが主体として構成される。透析液導入ラインILには、開閉弁(電磁弁)V3および透析液ポートPが設けられる。開閉弁V3の開閉によって、血液浄化器2への透析液の流れが制御される。透析液ポートPは、透析液を取り出す。血液回路1および透析液導入ラインILは、血液浄化器2の血液浄化膜を介して接続され、血液および透析液を相互に流通させる。
 排液ラインELは、血液浄化器2からの透析液の排液を排液部(図示せず)に排出する、血液浄化器2から排液部までの流路である。排液ラインELは、排液が通ることが可能なチューブが主体として構成される。除水ラインRLは、血液浄化器2内の血液からの水分を取り除く、排液ラインELから排液部までの流路である。除水ラインRLは、排液が通ることが可能なチューブが主体として構成される。
 複式ポンプP2は、透析液導入ラインILおよび排液ラインELにわたって設けられる。複式ポンプP2は、透析液導入ラインILの送液方向下流側に透析液を導入する一方で、排液ラインELの送液方向下流側に透析液の排液を排出する。つまり、複式ポンプP2は、透析液を血液回路1に供給するための透析液供給ポンプ、および透析液を排液部から排出するための排液ポンプとしての役割を果たす。複式ポンプP2の筐体内には、プランジャ(図示せず)が設けられる。プランジャを挟んで、析液導入ラインIL側の容積と、排液ラインEL側の容積に区画されており、プランジャの往復動によって、透析液の導入と排液の排出が連動している。
 なお、複式ポンプP2の代わりに、透析液供給ポンプ(図示せず)が透析液導入ラインILに設けられ、排液ポンプ(図示せず)が排液ラインELに設けられる構成であってもよい。この場合、透析液供給ポンプおよび排液ポンプは、固定子および回転子を有するしごき型ポンプから構成され、回転子が回転するよう駆動する。回転子は、制御装置Cによる制御の下、電動モータなどのアクチュエータ(図示しない)によって回転する。透析液供給ポンプが駆動(回転)することによって、固定子および回転子に挟持された透析液導入ラインILをしごき、透析液の流れを生じさせる。排液ポンプについても同様である。
 除水ポンプP3は、除水ラインRLに設けられる。除水ポンプP3は、血液浄化器2内の血液からの水分を取り除くために、除水ラインRLから血液内の水分を排出する。複式ポンプP2を駆動することによって、血液浄化器2に導入される透析液と排出される透析液の量が等量になるため、除水ポンプP3を駆動することによって、血液浄化器2内の血液からの水分を取り除く。
 プライミング液ラインPLは、血液回路1および血液浄化器2にプライミング液(透析液)を導入する、透析液導入ラインILと血液回路1とを連結する連結流路である。具体的には、プライミング液ラインPLは、透析液ポートPから脱血側回路1aまでの流路である。プライミング液ラインPLには、開閉弁(電磁弁)V4が設けられる。開閉弁V4の開閉によって、脱血側回路1aへのプライミング液の流れが制御される。
 透析治療の前に、プライミング液で血液回路1および血液浄化器2を満たすことによって(回路内の空気をプライミング液で置換することによって)、回路内の空気を除去するプライミング工程が行われる。プライミング工程では、開閉弁V4が開放し、開閉弁V3が閉鎖することによって、プライミング液がプライミング液ラインPLを流れ、血液回路1および血液浄化器2に導入される。
 本実施形態では、透析液導入ラインILおよびプライミング液ラインPLはいずれも、返血工程において、血液回路1に透析液を導入するために使用される。つまり、透析液導入ラインILおよびプライミング液ラインPLは、血液回路1に透析液を導入するための透析液導入回路としての役割を果たす。また、プライミング液ラインPLは、返血工程において、血液回路1に空気を導入するために使用される。つまり、プライミング液ラインPLは、血液回路1に空気を導入する空気導入回路としての役割を果たす。更に、排液ラインELは、返血工程が行われた後の排液工程において、血液回路1からの排液を送液するために使用される。この詳細は後述する。
 バイパスラインBL1およびバイパスラインBL2はそれぞれ、透析液導入ラインILから排液ラインELまでの流路である。バイパスラインBL1には、開閉弁(電磁弁)V5が設けられる。同様に、バイパスラインBL2には、開閉弁(電磁弁)V6が設けられる。開閉弁V5およびV6の開閉によって、透析液導入ラインILから排液ラインELへの透析液の流れが制御される。
 バイパスラインBL1およびバイパスラインBL2は、不適切な透析液を血液回路1に流すことを防止するための流路である。例えば、血液浄化装置100には、透析液を加温するための加温器(図示しない)が設けられ、透析治療中にその加温器によって透析液が所定の温度を上回る場合、高温の透析液を血液回路1に流すことを防止するために、透析液がバイパスラインBL1およびバイパスラインBL2を通じて、排液ラインELに流れる。この場合、開閉弁V5および/またはV6が開放する。
 空気導入部3は、プライミング液ラインPLを介して血液回路1(脱血側回路1a)に空気を導入する。空気導入部3は、プライミング液ラインPLに接続される。空気導入部3は、透析液導入ラインILおよびプライミング液ラインPLを介して血液回路1に導入された透析液を返血側回路1b(または脱血側回路1a)に押し出し、血液回路1内の血液を患者Pに戻す役割を果たす。この詳細は後述する。
 空気導入部3は、空気ポンプ3a、空気導入路3b、開閉弁(電磁弁)3c、空気フィルタ3d、および空気フィルタ3eを含む。空気ポンプ3aは、内部に回転子を有し、回転子が回転するよう駆動する。回転子は、制御装置Cによる制御の下、電動モータなどのアクチュエータ(図示しない)によって回転する。空気ポンプ3aでは、パルスモータ(図示せず)を使用した閉ループ制御によって回転子の回転数が制御および検出される。なお、パルスモータを使用した閉ループ制御の代わりに、空気ポンプ3aにロータリエンコーダが設けられ、ロータリエンコーダの回転を検出することによって回転子の回転数が制御されてもよい。
 空気ポンプ3aが駆動することによって、空気導入路3bを通じて、プライミング液ラインPLを介して空気が血液回路1に導入される。開閉弁3cは、空気導入路3bとプライミング液ラインPLとの間に設けられる。開閉弁3cの開閉によって、プライミング液ラインPLへの空気の流れが制御される。空気フィルタ3dおよび空気フィルタ3eは、空気中の菌やごみを捕捉し除去する。
 なお、本実施形態では、空気導入部3は、プライミング液ラインPLに接続されるが、そのような構成に限定されない。空気導入部3は、補液ライン(図示せず)に接続されてもよい。補液ラインは、例えば、血液濾過透析治療において患者からの血液を濾過する量を増大させるために、血液に補液するために透析液を血液回路に導入する流路である。この構成を採用する場合、空気導入部3からの空気は、補液ラインを介して血液回路1に導入される。
 透析液フィルタDF(透析液フィルタDF1およびDF2)は、透析液供給部DSから供給される透析液に含まれるエンドトキシンなどの物質を捕捉することによって、透析液を清浄化する。透析液フィルタDFはそれぞれ、透析液導入ラインILに設けられ、一次チャンバおよび二次チャンバ(図示せず)を含む。また、透析液フィルタDF1は、内部に透析液浄化膜が設けられる。透析液浄化膜は、側壁に孔を有する中空糸(中空糸膜)が束になって構成される。透析液フィルタDFは、一次チャンバ(透析液浄化膜の内側)から二次チャンバ(透析液浄化膜の外側)に透析液が流動するように構成されている。透析液フィルタDFは、通水することで、水分子の表面張力によって空気を通過させない特性を有する。
 (脱血側)電極EPaは、脱血側回路1aに設けられる。(返血側)電極EPbは、返血側回路1bに設けられる。電極EPaおよび電極EPbは、可撓性チューブに接続された導電体から構成され、電極EPaは、ワニ口クリップなどの接続手段によって電源PSに電気的に接続される。また、電極EPbは、抜針検出部4に電気的に接続される。なお、電極EPaおよび電極EPbは、血液と物理的に接触するわけではなく、血液回路1を介して電気的に接続される。
 電源PSは、高周波数(数kHz~数10kHz)の微弱電流(1mA以下)となる電圧を、電極EPaに印加する。電源PSが電極EPaに電圧を印加することによって、脱血側穿刺針RNおよび返血側穿刺針ANを介して患者Pの血液に電流が流れる。脱血側回路1aおよび返血側回路1bを通じて体外循環する血液は、電流を流す導体であることから、脱血側穿刺針RNおよび返血側穿刺針ANが患者Pに正常に穿刺されていれば、脱血側穿刺針RNおよび返血側穿刺針ANを介して患者Pの血液に電流が流れる。
 (体表側)電極EPcは、患者Pの体表(皮膚)に密着して取り付けられる。電極EPcは、脱血側穿刺針RNおよび返血側穿刺針ANの穿刺部に対して、心臓を挟んだ位置に密着して取り付けられる電極から構成され、患者Pの体内からの電気信号を検出する。また、電極EPcは、抜針検出部4に電気的に接続される(図1では、接続状態を示さず)。電極EPcは、例えば、透析治療において、患者Pから心電図(生体情報)を測定するために使用される。
 抜針検出部4は、患者Pに穿刺された脱血側穿刺針RNおよび/または返血側穿刺針ANが抜針されたことを検出する。抜針検出部4は、制御装置Cと接続される。図2は、抜針検出部4、電極EPa、電極EPb、電極EPc、および制御装置Cとの関係を示す。
 図2に示すように、電極EPaおよび電極EPbは、差動増幅回路A1に接続されるとともに、電極EPbは、インピーダンス調整回路IAに接続される。また、電極EPcおよびインピーダンス調整回路IAは、差動増幅回路A2に接続される。インピーダンス調整回路IAは、差動増幅回路A1に入力される測定電圧におけるインピーダンス、および差動増幅回路A2に入力される測定電圧におけるインピーダンスを調整する。電極EPaおよび電極EPbから得られる「血液のインピーダンス」と、電極EPbおよび電極EPcから得られる「体液のインピーダンスおよび皮膚のインピーダンス」との間には差があるため、インピーダンス調整回路IAは、この差を調整する。インピーダンス調整回路IAは、負荷抵抗を可変抵抗などにより調整するもの、または心拍成分を抽出できるように自動利得制御(AGC)を使用して調整するものが好ましい。
 差動増幅回路A1は、電極EPaからの測定電圧と電極EPbからの測定電圧との電圧差を増幅した電気信号を生成する。差動増幅器A2は、電極EPcからの測定電圧とインピーダンス調整回路IAからの測定電圧との電圧差を増幅した電気信号を生成する。
 さらに、差動増幅回路A1は、整流回路Rを介して抜針検出部4に接続される。差動増幅回路A2は、高域遮断フィルタHFを介して抜針検出部4に接続される。高域遮断フィルタHFは、差動増幅回路A2によって生成された電気信号から、電源PSによって印加された高周波数成分を取り除く。差動増幅回路A1によって生成された電気信号は、抜針検出部4に入力され、差動増幅回路A2によって生成された電気信号は、抜針検出部4に入力される。
 抜針検出部4は、差動増幅回路A2から入力される電気信号に基づいて、患者Pの体内におけるインピーダンスの変化を検出することによって、所定の生体パラメータ(本実施形態においては心電図)を取得する。すなわち、本実施形態では、電極EPbおよび電極EPcが一対となって患者Pの体内からの電気信号を検出し、抜針検出部4は、検出された電気信号に基づいて、生体パラメータとしての心電図をリアルタイムに取得する。また、抜針検出部4は、電極EPbを流れる電流を監視すると共に、抜針検出部4によって検出された患者Pの体内におけるインピーダンスの変化をリアルタイムに監視する。
 制御装置Cは、上述した血液ポンプP1の駆動を制御するなど、血液浄化装置100の構成要素を制御する処理装置である。制御装置Cは、演算装置と記憶装置(RAMおよびROMなどの記憶装置)とを含む。演算装置は、CPUやマイクロコントローラなどのプロセッサ、ASIC(Application Specific Integrated Circuit)、またはFPGA(Field Programmable Gate Array)などで実装されてもよいが、その形式は限定されない。
 抜針検出部4によって監視および検出された電流値およびインピーダンスの変化を示す信号は、制御装置Cに送信される。制御装置Cは、電流値およびインピーダンスの変化を示す信号に基づいて、患者Pから脱血側穿刺針RNおよび/または返血側穿刺針ANが抜針されたか否かを判定する。脱血側穿刺針RNおよび/または返血側穿刺針ANが患者Pから抜針されると、電源PSからの電流が電極EPbまで至らなくなり、抜針検出部4が電流を検出しなくなる(電流値に対応する波形が途切れる)。また、インピーダンスの変化も同様に、検出されなくなる。制御装置Cは、このような状態となったことに応答して、脱血側穿刺針RNおよび/または返血側穿刺針ANが患者Pから抜針されたと判定する。
 なお、本実施形態では、電源PSが電極EPaに電圧を印加し、抜針検出部4が電極EPbを流れる電流を監視しているが、電圧は、電極EPaおよび電極EPbのいずれかまたは両方に印加されてもよい。電圧が電極EPbに印加される場合、電源PSは電極EPbに接続される。また、抜針検出部4は、電極EPaおよび電極EPbのいずれかまたは両方を流れる電流を監視してもよい。電極EPaを流れる電流を監視する場合、電極EPaは、抜針検出部4に接続される。
 血液濃淡検出部5(血液濃淡検出部5aおよび血液濃淡検出部5b)は、血液回路1を流れる血液の濃淡を検出する。血液濃淡検出部5aは、脱血側回路1aに設けられ、血液濃淡検出部5bは、返血側回路1bに設けられる。血液濃淡検出部5aおよび血液濃淡検出部5bは、例えば、赤外線を放射する赤外線放射器、およびその光を検出する赤外線センサによって実装される。赤外線は、赤血球の量に応じて血液を透過する量が変わる。よって、血液を透過した赤外線の光量を検出することによって、血液回路1を流れる血液の濃淡を検出することができる。検出された赤外線の光量は、制御装置Cに送信される。制御装置Cは、光量が予め定められた閾値を超えたか否かを判定する。
 血液濃淡検出部5によって検出される血液回路1を流れる血液の濃淡は、返血工程における返血量を判定するための基準となる。詳細については後述する。なお、本実施形態では、血液濃淡検出部5aおよび血液濃淡検出部5bがそれぞれ設けられるが、血液濃淡検出部5aおよび血液濃淡検出部5bのいずれか1つのみが設けられてもよい。送液正方向の返血工程が行われる場合、血液濃淡検出部5bが返血側回路1bに設けられることが好ましい。一方、後述する送液逆方向の返血工程が行われる場合、血液濃淡検出部5aが脱血側回路1aに設けられることが好ましい。
 気泡検出部6(気泡検出部6aおよび気泡検出部6b)は、返血工程において血液回路1を流れる血液および/または透析液に気泡が発生したことを検出する。気泡検出部6aは、脱血側回路1aに設けられ、気泡検出部6bは、返血側回路1bに設けられる。気泡検出部6aおよび気泡検出部6bは、例えば、超音波を放射する超音波放射器、およびその超音波を検出する超音波センサによって実装される。
 超音波センサは、血液および/または透析液の振動に応じた電圧を検出する。気泡は、血液および/または透析液よりも減衰率が高い。よって、気泡検出部6は、電圧値が予め定められた閾値を下回ったことを判定することによって気泡が発生したことを検出することができる。検出された電圧値は、制御装置Cに送信される。制御装置Cは、電圧値が予め定められた閾値を超えたか否かを判定する。
 気泡検出部6によって検出される血液回路1に生じる気泡は、返血工程を途中で終了させるための基準となる。詳細については後述する。なお、本実施形態では、気泡検出部6aおよび気泡検出部6bがそれぞれ設けられるが、気泡検出部6aおよび気泡検出部6bのいずれか1つのみが設けられてもよい。送液正方向の返血工程が行われる場合、気泡検出部6bが返血側回路1bに設けられることが好ましい。一方、後述する送液逆方向の返血工程が行われる場合、気泡検出部6aが脱血側回路1aに設けられることが好ましい。
 次に、図3を参照して、血液ポンプP1の状態モードおよび駆動状態の関係を説明する。本実施形態では、血液ポンプP1は、返血工程が終了してから抜針が検出されるまでは非活性状態になり、抜針が検出されると活性状態にある。非活性状態とは、ユーザによる手動操作などによっても血液ポンプP1が駆動しないことを意味する。つまり、血液ポンプP1は、活性状態にならない限り駆動しない。上述した2つの状態は、2つの状態モード「活性モード」および「非活性モード」として、制御装置Cが状態機械を実装することによって管理される。状態モードは、レジスタ(図示しない)に記憶される。
 制御装置Cは、レジスタに記憶された状態モードを参照し、状態モードが活性モードである場合に限り、血液ポンプP1を駆動するよう指示する。よって、状態モードが活性モードにあるとき、血液ポンプP1は、透析治療および返血工程において、制御装置Cにより制御の下、予め定義された動作に従って駆動する。また、状態モードが活性モードにあるとき、血液ポンプP1は、ユーザによる手動操作に応答して(例えば、図示しない手動(駆動)ボタンの押下によって)、制御装置Cの指示によって駆動する。
 一方で、状態モードが非活性モードにあるとき、制御装置Cは、駆動ボタンの押下によっても血液ポンプP1を駆動するよう指示しない。つまり、状態モードが非活性モードにあるとき、血液ポンプP1は、駆動しないようロックがかけられる。
 図3は、血液ポンプP1についての状態モードの遷移、および所定のアクションに対する動作状態を示す。動作状態は、血液ポンプP1が駆動または停止しているかを示す。図3に示す例では、時点T1乃至T6において行われたアクションによって、状態モードが活性モードと非活性モードとの間で遷移し、血液ポンプP1が駆動状態または停止状態のいずれかにある。なお、図3には示さないが、時点T1の前に、透析治療が行われているものとする。
 図3に示すように、血液ポンプP1に対する状態モードは、初期(デフォルト)の状態モードとして活性モードにあるものとする。このような状態モードの下、時点T1において返血工程が開始すると、制御装置Cの指示によって、血液ポンプP1が駆動(回転)する(停止状態から駆動状態に遷移する)。本実施形態に係る返血工程では、最初に、血液回路1に透析液が導入され(透析液導入段階)、その後、血液回路1に空気が導入される(空気導入段階)。
 図4は、返血工程における透析液導入段階での透析液の流れを示す。図5は、空気導入段階での透析液および空気の流れを示す。図4および図5において、開閉弁が開放している場合、図に示す開閉弁は網掛けで表示され、開閉弁が閉鎖している場合、図に示す開閉弁は白抜きで表示される。後述する図6以降の図も同様に表示される。
 図4に示す透析液導入段階では、制御装置Cによる制御の下、開閉弁V4および開閉弁V2が開放する。また、血液ポンプP1が正回転する。更に、複式ポンプP2が駆動する。これによって、透析液供給部からの透析液は、透析液導入ラインIL、プライミング液ラインPL、脱血側回路1a、血液浄化器2、および返血側回路1bを通る。図4では、この透析液の流れを、太鎖線矢印で示している。この透析液の流れにより、透析液が血液浄化器2および血液回路1(返血側回路1b)に残存した血液を押し出し、血液が体内に戻される。このような状態で、予め定められた量の透析液が血液回路1を流れると、空気導入段階に切り替わる。
 図5に示す空気導入段階に切り替わると、制御装置Cによる制御の下、複式ポンプP2が駆動を停止する。代わりに、空気ポンプ3aが駆動する。これによって、空気は、空気導入路3b、プライミング液ラインPL、脱血側回路1a、血液浄化器2、および返血側回路1bを通る。図5では、この空気の流れを、太実線矢印で示している。この空気の流れにより、透析液導入段階において血液回路1に導入された透析液を介して、血液浄化器2および血液回路1に残存した血液を押し出し、血液が体内に戻される。
 上記説明した返血工程では、空気を血液回路1に導入することによって返血を行うので、透析液のみを使用して返血を行う場合と比較して、返血に使用する透析液の量を減少させることができる。また、透析液を血液回路1に導入してから空気を血液回路1に導入するので、空気は、透析液を介して血液を体内に押し出すことになるので、患者Pに空気が取り込まれることを防止することができる。
 図3の説明に戻ると、図4または図5に示した返血工程が終了すると、つまり、時点T2において、制御装置Cが、返血工程が終了したと判定すると、制御装置Cの指示によって、血液ポンプP1についての状態モードは非活性モードに遷移し、血液ポンプP1は駆動を停止する(駆動状態から停止状態に遷移する)。返血工程の終了は、例えば、一定期間が経過したか否か、および/または返血量が予め定められた閾値に到達したか否かなどに基づいて判定される。
 一定期間が経過したか否かは、制御装置Cによって、返血工程の開始からタイマによって計測された時間に基づいて判定されてもよい。返血量が予め定められた閾値に到達したか否かは、制御装置Cによって、血液ポンプP1の回転数が予め定められた閾値を上回ったか否かに基づいて判定されてもよい(上述した閉ループ制御によって、血液ポンプP1の回転数を検出する)。また、返血量が予め定められた閾値に到達したか否かは、制御装置Cによって、血液回路1を流れる血液の濃淡が予め定められた閾値を下回ったか否かに基づいて判定されてもよい(血液濃淡検出部5によって、血液回路1を流れる血液の濃度を検出する)。
 また、制御装置Cは、返血工程が終了したと判定すると、電源PSおよび抜針検出部4に、脱血側穿刺針RNおよび/または返血側穿刺針ANの抜針を検出(監視)するよう指示する。時点T3において、抜針監視が開始すると、電源PSが電圧を電極EPaに印加し、電極EPaと電極EPbとの間に電流が流れ、患者Pを介して抜針検出部4が電流を検出する。抜針がされると、抜針検出部4は、電極間の通電を検出することができなくなるので(または、電極EPcからのインピーダンスの変化を検出しなくなる)、抜針検出部4が、その非通電の検出を示すインジケータを制御装置Cに送信し、制御装置Cがそのインジケータに基づいて抜針がされたと判定する。
 血液ポンプP1についての状態モードが非活性モードにあるとき、例えば、ユーザによって駆動ボタンが押下されても、血液ポンプP1は駆動しない。このような状態では、穿刺針の抜針が検出されるまでは、状態モードが活性モードに遷移せず、血液ポンプP1は駆動しない。
 その後、穿刺針の抜針が検出されると、つまり、時点T4において、制御装置Cが、抜針がされたと判定すると、制御装置Cの指示によって、血液ポンプP1についての状態モードは活性モードに遷移する。状態モードが活性モードにあるとき、例えば、ユーザによって駆動ボタンが押下されると、血液ポンプP1は駆動する。
 返血工程が終了し、穿刺針の抜針が検出されると、血液回路1に残存した透析液を抜き出すための排液工程が行われる。図3に示す例では、時点T5の時点において排液工程が行われる。排液工程は、返血工程が終了し、抜針が検出されたことに応答して、制御装置Cの制御の下、自動で開始してもよく、ユーザによる手動操作によって開始してもよい。
 図6に、排液工程における排液(透析液)の流れを示す。図6に示す排液工程は、血液ポンプP1を正回転させることによって、穿刺針RNから空気を導入し、脱血側回路1aに残存する液体を排液ラインELに排出する。この排液工程では、制御装置Cによる制御の下、開閉弁V1が開放する。また、血液ポンプP1が正回転する。これによって、脱血側回路1aおよび血液浄化器2に残存した透析液(排液)は、脱血側回路1a、血液浄化器2、および排液ラインELを通る。図6では、この透析液の流れを、太鎖線矢印で示している。このようにして、排液は、透排液部に排出される。
 なお、上述した排液工程を行う代わりに、血液ポンプP1に結合した血液回路1を取り外す工程(手動工程)が行われることもある。この取り外し工程でも、血液回路1を取り外すために、血液ポンプP1の回転子を手動で回転させる必要がある。つまり、血液回路1の取り外し工程においても、血液ポンプP1を駆動することになる。また、図6に示した排液工程は例示にすぎず、例えば、返血側回路1bに残存する液体を排液ラインELに排出する返血工程が行われてもよい。
 本実施形態によれば、返血工程が終了したことに応答して、穿刺針の抜針検出を監視し、抜針が検出されるまでは血液ポンプP1を駆動させない(非活性にする)よう制御する。これによって、返血工程が終了した後に抜針がされないまま排液工程または血液回路1の取り外し工程が開始し、血液ポンプP1を駆動することを防止することができる。
 次に、図7に示すフローチャートを参照して、第1の実施形態に係る処理を説明する。図7に示す処理は、図3において説明した返血工程が行われてから抜針が検出されるまでの処理に対応する。図示しないが、返血工程の前に透析治療が行われているものとする。また、図3において説明した血液ポンプP1についての動作モードが活性モードにあるものとする(活性モードを示す状態モードがレジスタに記憶されている)。
 まず、制御装置Cは、返血工程のうちの透析液導入段階を実行するよう、開閉弁(開閉弁V4および開閉弁V2)、血液ポンプP1、ならびに複式ポンプP2に指示する。この指示に応じて、開閉弁が開放し、血液ポンプP1が正回転し、複式ポンプP2が駆動する(ステップS701)。このようにして、図4において説明したように、透析液供給部からの透析液は、血液回路1に導入される。
 次に、制御装置Cは、透析液導入段階終了条件が満たされたか否かを判定する(ステップS702)。ステップS702の処理は、透析液導入段階終了条件が満たされるまで繰り返される。
 透析液導入段階終了条件は、透析液導入段階が開始してから一定期間が経過したこと、および/または返血量が予め定められた閾値に到達したことを含んでもよい。上述したように、一定期間が経過したか否かは、制御装置Cによって、透析液導入段階の開始からタイマによって計測された時間に基づいて判定されてもよい。返血量が予め定められた閾値に到達したか否かは、制御装置Cによって、血液ポンプP1の回転数が予め定められた閾値を上回ったか否かに基づいて判定されてもよい。また、返血量が予め定められた閾値に到達したか否かは、制御装置Cによって、血液回路1を流れる血液の濃淡が予め定められた閾値を下回ったか否かに基づいて判定されてもよい(血液濃淡検出部5によって、血液回路1を流れる血液の濃淡を検出する)。
 透析液導入段階終了条件が満たされたと判定すると、制御装置Cは、返血工程のうちの空気導入段階を実行するよう、開閉弁(開閉弁3c)、複式ポンプP2、ならびに空気ポンプ3aに指示する。この指示に応じて、複式ポンプP2が駆動を停止する。また、開閉弁3cが開放し、空気ポンプ3aが回転する(ステップS703)。このようにして、図5において説明したように、空気導入部3からの空気は、血液回路1に導入される。
 次に、制御装置Cは、空気導入段階終了条件(返血工程終了条件)が満たされたか否かを判定する(ステップS704)。ステップS704の処理は、返血工程終了条件が満たされるまで繰り返される。
 返血工程終了条件は、透析液導入段階(または、空気導入段階)が開始してから一定期間が経過したこと、および/または返血量が予め定められた閾値に到達したことを含む。また、返血工程終了条件は、血液回路1を流れる血液を検出しなくなったこと、および/または血液回路1において気泡を検出したことを含んでもよい。血液回路1を流れる血液を検出しなくなったことは、制御装置Cによって、血液回路1を流れる血液の濃淡が予め定められた閾値を下回ったか否かに基づいて判定されてもよい(血液濃淡検出部5によって、血液回路1を流れる血液の濃度を検出する)。また、血液回路1において気泡を検出したことは、制御装置Cによって、血液回路1を流れる血液および/または透析液の超音波による振動に応じた電圧が予め定められた閾値を下回ったか否かに基づいて判定されてもよい(気泡検出部6によって、電圧を検出する)。
 返血工程終了条件が満たされたと判定すると、制御装置Cは、返血工程を終了させるよう、開閉弁(開閉弁3c、開閉弁V4、および開閉弁V2)、血液ポンプP1、ならびに空気ポンプ3aに指示する。この指示に応じて、開閉弁が閉鎖し、血液ポンプP1および空気ポンプ3aが駆動を停止する(ステップS705)。
 次に、制御装置Cは、血液ポンプP1を非活性状態にする(ステップS706)。具体的には、血液ポンプP1についての動作モードを非活性モードに遷移させる(レジスタに記憶された動作モードを非活性モードに更新する)。ステップS706の処理によって、血液ポンプP1は、駆動しないようロックがかけられる。
 次に、制御装置Cは、穿刺針(脱血側穿刺針RNおよび返血側穿刺針AN)抜針検出(監視)を開始するよう、電源PSならびに抜針検出部4に指示する。この指示に応じて、電源PSは、電圧を電極EPaに印加する。また、抜針検出部4は、患者Pの血液に流れる電流および/または患者Pの体内におけるインピーダンスの変化を検出する(ステップS707)。
 次に、制御装置Cは、抜針が検出されたか否かを判定する(ステップS708)。ステップS708の処理は、抜針が検出されるまで繰り返される。抜針がされたか否かを判定する基準は、上記説明した通りである。
 抜針がされたことを検出すると、血液ポンプP1を活性状態にする(ステップS709)。具体的には、血液ポンプP1についての動作モードを活性モードに遷移させる(レジスタに記憶された動作モードを活性モードに更新する)。ステップS709の処理によって、血液ポンプP1は、制御装置Cの指示によって、血液ポンプP1は駆動することができる。その後は、上述した排液工程または血液ポンプP1の取り外し工程が実行される。
 以上のように、第1の実施形態に係る血液浄化装置100を説明した。第1の実施形態によれば、返血工程が終了した後、抜針が検出されるまでは血液ポンプP1を非活性状態にするので、穿刺針が抜針されないままの状態で、排液工程などが開始することを防止することができる。
 本実施形態では、返血工程が終了した後に、抜針監視(つまり、図7に示したステップS707)が実行されるが、抜針監視が開始するタイミングは、返血工程が終了した後でなくてもよい。抜針監視は、返血工程が開始する前(例えば、透析治療の間)から開始してもよく、返血工程が開始するタイミングで実行されてもよい。つまり、抜針監視は、いずれかのタイミングで開始してもよく、少なくとも、返血工程が終了タイミングで実行されることになる。
 なお、本実施形態では、血液回路1に透析液を導入した後に、血液回路1に空気を導入することによって、返血工程を行っているが、血液回路1に空気を導入せず、血液回路1に透析液を導入することのみによって返血が行われてもよい。この場合、図4に示した透析液の流れによって返血工程が行われ、図7(ステップS704)で説明した返血工程終了条件が満たされたと判断することによって返血工程を終了する。
 また、本実施形態で説明した抜針を監視および検出する構成は例示にすぎず、電極EPcを使用する構成は、必須の構成ではない。少なくとも、脱血側回路1aおよび返血側回路1bに設けられた2つの電極間の通電状態に基づいて、脱血側穿刺針RNおよび/または返血側穿刺針ANの抜針を検出するための構成が採用される。
<第2の実施形態>
 次に、第2の実施形態を説明する。第2の実施形態でも、慢性血液浄化療法として透析治療を行った後、返血工程を行う例を説明する。第2の実施形態は、第1の実施形態と比較して、返血工程のみが異なる。第2の実施形態に係る返血工程では、空気導入部3が血液回路1に空気を直接導入する。図8は、第2の実施形態に係る血液浄化装置200の構成を示す配管図である。血液浄化装置200は、空気導入部3の構成が異なること、脱血側エアトラップチャンバ7aおよび返血側エアトラップチャンバ7bを更に含むことを除き、第1の実施形態に係る血液浄化装置100と同一の構成を有する。
 図8に示すように、脱血側エアトラップチャンバ7aは、脱血側回路1aに設けられ、返血側エアトラップチャンバ7bは、返血側回路1bに設けられる。脱血側エアトラップチャンバ7aは、透析治療などにおいて、血液ポンプP1を駆動することによって生じ得る空気が血液浄化器2に流入しないよう、空気を捕捉することを主な目的として設けられる。返血側エアトラップチャンバ7bは、上述した空気が血液回路1を通じて患者の体内に空気が流入しないように、空気を捕捉することを主な目的として設けられる。つまり、脱血側エアトラップチャンバ7aおよび返血側エアトラップチャンバ7bは共に、血液回路1内で血液を収容するチャンバとしての役割を果たす。
 空気導入部3(空気導入路3b)は、脱血側エアトラップチャンバ7aおよび返血側エアトラップチャンバ7bに接続され、脱血側エアトラップチャンバ7aおよび返血側エアトラップチャンバ7bに空気を導入する。脱血側エアトラップチャンバ7aおよび返血側エアトラップチャンバ7bはそれぞれ、血液層と空気層の2層になっており、チャンバ内に空気がたまると液面が下がり、血液浄化器2の中空糸に空気が入るエアロックが生じるおそれがある。
 図8に示す例では、空気導入部3(空気ポンプ3a)は、正回転することによって、返血側エアトラップチャンバ7bに空気を導入して液面を下降させ、逆回転することによって、返血側エアトラップチャンバ7bから空気を排出して液面を上昇させる。同様に、空気導入部3(空気ポンプ3a)は、正回転することによって、脱血側エアトラップチャンバ7aに空気を導入して液面を下降させ、逆回転することによって、脱血側エアトラップチャンバ7aから空気を排出して液面を上昇させる。
 空気導入部3は、開閉弁(電磁弁)3fを更に含む。開閉弁3fは、空気導入路3bと脱血側エアトラップチャンバ7aとの間に設けられる。開閉弁3fの開閉によって、空気導入部3から脱血側エアトラップチャンバ7aへの空気の流れが制御される(空気導入部3は、脱血側エアトラップチャンバ7aに空気を流動する)。開閉弁3cの開閉によって、空気導入部3から返血側エアトラップチャンバ7bへの空気の流れが制御される(空気導入部3は、返血側エアトラップチャンバ7bに空気を流動する)。
 空気導入部3は、透析治療などにおいては(つまり、返血工程以外では)、上述したように脱血側エアトラップチャンバ7aおよび返血側エアトラップチャンバ7bに対する液面調整ポンプとしての機能を果たす(液面調整ポンプは、通常は返血に使用されない)。一方で、空気導入部3は、返血工程では、血液回路1および血液浄化器2内の血液を体内に戻すために血液回路1に空気を導入する役割を果たす。
 なお、脱血側エアトラップチャンバ7aおよび返血側エアトラップチャンバ7bは必須の構成ではない。例えば、脱血側エアトラップチャンバ7aおよび返血側エアトラップチャンバ7bが設けられない場合、図9に示すように、空気導入部3は、返血側回路1bに接続されてもよく、図10に示すように、空気導入部3は、脱血側回路1aに接続されてもよい。また、脱血側エアトラップチャンバ7aおよび返血側エアトラップチャンバ7bは必ずしも両方が設けられる必要はなく、いずれかのみが設けられてもよい。
 次に、図11乃至13を参照して、第2の実施形態に係る返血工程を説明する。第2の実施形態に係る返血工程では、図8で説明した構成において、最初に、血液回路1に透析液が導入され(透析液導入段階)、その後、血液回路1に空気が導入される(空気導入段階)。図11は、透析液導入段階を示す。図12は、空気導入部3が返血側回路1bに空気を導入する空気導入段階を示す。図13では、空気導入部3が脱血側回路1aに空気を導入する空気導入段階を示す。図12および図13に示す空気導入段階は、図11に示す透析液導入段階の後に、両者のいずれかが行われる。
 図11は、透析液導入段階での透析液の流れを示す。図12は、返血側回路1bに空気を導入する空気導入段階での透析液および空気の流れを示す。図13は、脱血側回路1aに空気を導入する空気導入段階での透析液および空気の流れを示す。以下の図において、開閉弁が開放している場合、図に示す開閉弁は網掛けで表示され、開閉弁が閉鎖している場合、図に示す開閉弁は白抜きで表示される。
 図11に示す透析液導入段階では、制御装置Cによる制御の下、開閉弁V4および開閉弁V2が開放する。また、血液ポンプP1が正回転する。更に、複式ポンプP2が駆動する。これによって、透析液供給部からの透析液は、透析液導入ラインIL、プライミング液ラインPL、脱血側回路1a、血液浄化器2、および返血側回路1bを通る。図11では、この透析液の流れを、太鎖線矢印で示している。この透析液の流れにより、透析液が血液浄化器2および血液回路1(返血側回路1b)に残存した血液を押し出し、血液が体内に戻される。このような状態で、予め定められた量の透析液が血液回路1を流れると、空気導入段階に切り替わる。
 図12に示す返血側回路1bに空気を導入する空気導入段階に切り替わると、制御装置Cによる制御の下、開閉弁V4が閉鎖し、血液ポンプP1および複式ポンプP2が駆動を停止する。代わりに、開閉弁3cが開放する。また、空気ポンプ3aが駆動する。これによって、空気は、空気導入路3bおよび返血側回路1bを通る。図12では、この空気の流れを、太実線矢印で示している。この空気の流れにより、透析液導入段階において血液回路1に導入された透析液を介して、血液回路1に残存した血液を押し出し、血液が体内に戻される。
 図13に示す脱血側回路1aに空気を導入する空気導入段階に切り替わると、制御装置Cによる制御の下、開閉弁V4および開閉弁3cが閉鎖し、複式ポンプP2が駆動を停止する。代わりに、開閉弁3fが開放する。また、空気ポンプ3aが駆動する。これによって、空気は、空気導入路3b、脱血側回路1a、血液浄化器2、および返血側回路1bを通る。図13では、この空気の流れを、太実線矢印で示している。この空気の流れにより、透析液導入段階において血液回路1に導入された透析液を介して、血液浄化器2および血液回路1に残存した血液を押し出し、血液が体内に戻される。
 図13に示した構成では、空気導入部3が脱血側エアトラップチャンバ7aに接続され、空気導入部3が血液回路1に空気を導入するが、血液ポンプP1が空気導入部3の役割を果たしてもよい。空気ポンプP1は、透析液導入段階においてプライミング液ラインPLから導入された全ての透析液が空気ポンプP1を通った後も正回転を続けると、返血側回路1bに空気を導入することになる。よって、この場合、空気導入部3は設けられなくてもよい。
 上述したように、空気導入部3は、透析治療のときに液面調整ポンプとしての役割を果たすと共に、返血工程では、返血のために血液回路1に空気を導入する役割を果たす。血液ポンプP1は、透析液を血液回路1内で送液する役割を果たすと共に、返血工程の空気導入段階では、返血のために血液回路1に空気を導入する役割を果たす。
 なお、第2の実施形態における透析液導入段階終了条件および返血工程終了条件は、第1の実施形態で説明した条件と同様である。また、血液ポンプP1についての状態モードの遷移を行う処理についても第1の実施形態で説明した処理と同様である。
 以上のように、第2の実施形態に係る血液浄化装置200を説明した。第2の実施形態でも、穿刺針が抜針されないままの状態で、排液工程などが開始することを防止することができると共に、透析液のみを使用して返血を行う場合と比較して、返血に使用する透析液の量を減少させることができる。
<第3の実施形態>
 次に、第3の実施形態を説明する。第3の実施形態では、主に、急性血液浄化療法として、急性疾患に対して病気の原因物質を除去するアフェレシス療法を行った後、返血工程を行う例を説明する。なお、急性血液浄化療法として、アフェレシス療法は例示にすぎず、本実施形態は、持続的腎代替療法(CRRT)および間欠的腎代替療法(IRRT)などにも適用されてもよい。
 アフェレシス療法は、血液内の病原性物質を分離し除去するために、血漿交換などを行う治療法である。アフェレシス療法では、一時的血液浄化用バスキュラーアクセスとして、ダブルルーメンカテーテルを使用することがある。第3の実施形態は、第1の実施形態と比較して、ダブルルーメン構造を有する穿刺針が使用されることに伴い、抜針検出部の構造が異なる。よって、第3の実施形態では、抜針検出部および穿刺針の構成のみを説明する。本実施形態に示す抜針検出部および穿刺針の構成は、アフェレシス治療などの急性血液浄化療法に使用される急性血液浄化装置に適用されてもよい。
 図14は、抜針検出部4および穿刺針Nの構成を示す図である。図14に示すように、患者Pの頸には穿刺針Nが穿刺される。穿刺針Nには、抜針検出部4が取り付けられ、抜針検出部4は、電源PSに接続される。穿刺針Nは、ダブルルーメン構造(ダブルルーメンカテーテルDLC)を有する。
 ダブルルーメンカテーテルDLCは主に、穿刺針N、ダブルルーメンチューブDLT、脱血側分岐部BA、および返血側分岐部BRを含む。ダブルルーメンカテーテルDLCは、1つの穿刺針Nから脱血側回路1aおよび返血側回路1bに分岐する構造を有する。ダブルルーメンチューブDLTの一端は、穿刺針Nに接続される。ダブルルーメンチューブDLTの他端は、脱血側分岐部BAおよび返血側分岐部BRに分岐する。脱血側分岐部BAは、脱血側回路1aに接続され、返血側分岐部BRは、返血側回路1bに接続される。なお、図14は、頸に穿刺される状態を示しているが、穿刺先はこれに限らず、大腿または鎖骨下などに穿刺してもよい。
 穿刺針Nは、翼部Wと一体となって形成される。翼部Wは、抜針検出部4が設けられる。抜針検出部4は、例えば、シート状のタッチセンサとして実装され、翼部Wに蒸着される。つまり、抜針検出部4は、穿刺針Nと一体化される。タッチセンサは、静電容量方式タッチセンサまたは抵抗膜方式タッチセンサなどであってもよい。抜針検出部4が静電容量方式タッチセンサとして実装される場合、患者Pに穿刺針Nが穿刺されている間は、電源PSがタッチセンサの電極に印加し、針が患者Pに接触することによって生じる静電容量(電荷)の変化を検出する。抜針検出部4が抵抗膜方式タッチセンサとして実装される場合、患者Pに穿刺針Nが穿刺されている間は、電源PSがタッチセンサの電極に印加し、針が患者Pに接触することによって生じる透明導電膜の抵抗値変化を検出する。
 抜針検出部4は、上述したいずれかの方式において、静電容量の変化または透明導電膜の抵抗値変化を検出することによって、穿刺針Nが患者Pに穿刺されているか否かを検出することができる。つまり、抜針検出部4は、タッチセンサが患者の体表面に対する穿刺針Nの接触状態を検出することによって、患者Pから穿刺針Nが抜針されたことを検出することができる。なお、抜針検出部4は、上述した静電容量値または抵抗値を制御装置Cに送信し、制御装置Cがその値の変化に基づいて抜針がされたと判定する。このようにして、抜針検出部4は、ダブルルーメンカテーテルDLCなどの、患者Pに穿刺する穿刺針が単針である場合も、抜針がされたことを検出することができる。
 上記説明した抜針検出部4の構成によって、患者Pから穿刺針Nが抜針されたことを検出する。第3の実施形態における透析液導入段階終了条件および返血工程終了条件も、第1の実施形態で説明した条件と同様である。また、血液ポンプP1についての状態モードの遷移を行う処理についても第1の実施形態で説明した処理と同様である。さらに、第3の実施形態において、第2の実施形態で説明した返血工程が適用されてもよい。
 以上のように、第3の実施形態に係る血液浄化装置を説明した。第3の実施形態でも、穿刺針が抜針されないままの状態で、排液工程などが開始することを防止することができると共に、急性血液浄化療法においてダブルルーメンカテーテルなどの単針の穿刺針が使用される場合でも、穿刺針の抜針を検出することができる。
 上記説明した実施形態は例示にすぎず、実施形態の範囲は、説明した例に限定されない。説明した処理および構成要素に加え、追加の処理および/または構成要素が追加されてもよい。また、発明の概念から逸脱することなく、説明した処理および/もしくは構成要素に変更が加えられてもよく、または特定の処理および/もしくは構成要素が省略されてもよい。さらに、説明した処理の順序は変更されてもよい。
 また、実施形態に係る血液浄化装置は、制御装置Cによって実行されるコンピュータプログラムによって実装されるが、当該コンピュータプログラムは、非一時的記憶媒体に記憶されてもよい。非一時的記憶媒体の例は、リードオンリメモリ(ROM)、ランダムアクセスメモリ(RAM)、レジスタ、キャッシュメモリ、半導体メモリ装置、内蔵ハードディスクおよび取外可能ディスク装置などの磁気媒体、光磁気媒体、ならびにCD-ROMディスクおよびデジタル多用途ディスク(DVD)などの光学媒体などを含む。
 1   血液回路
 1a  脱血側回路
 1b  返血側回路
 2   血液浄化器
 3   空気導入部
 3a  空気ポンプ
 3b  空気導入路
 3c  開閉弁
 3d  空気フィルタ
 3e  空気フィルタ
 3f  開閉弁
 4   抜針検出部
 5、5a、5b 血液濃淡検出部
 6、6a、6b 気泡検出部
 7a  脱血側エアトラップチャンバ
 7b  返血側エアトラップチャンバ
 100 血液浄化装置
 200 血液浄化装置
 IL  透析液導入ライン
 EL  排液ライン
 PL  プライミング液ライン
 P1  血液ポンプ
 P2  透析液ポンプ
 P3  排液ポンプ
 P   透析液ポート
 V1~V6 開閉弁
 EPa 電極
 EPb 電極
 EPc 電極
 IA  インピーダンス調整回路
 A1  差動増幅回路
 A2  差動増幅回路
 R   整流回路
 HF  高域遮断フィルタ
 N   穿刺針
 W   翼部
 RN  脱血側穿刺針
 AN  返血側穿刺針
 DLC ダブルルーメンカテーテル
 DLT ダブルルーメンチューブ
 BA  脱血側分岐部
 BR  返血側分岐部
 C   制御装置
 PS  電源

Claims (13)

  1.  患者に穿刺された穿刺針と接続され、患者からの血液が流動する血液回路と、
     前記血液回路に設けられ、駆動することによって前記血液回路内の液体を送液する血液ポンプと、
     前記患者から前記穿刺針が抜針されたことを検出する抜針検出部と、
     前記血液回路内の血液を患者に戻す返血工程を開始させ、前記返血工程が終了したと判定したことに応答して、前記血液ポンプを非活性状態にする、制御装置と、
     を備えたことを特徴とする血液浄化装置。
  2.  前記制御装置は、前記抜針が検出されたことに応答して、前記血液ポンプを活性状態にする、ことを特徴とする請求項1に記載の血液浄化装置。
  3.  前記制御装置は、返血量および/または経過時間に基づいて、前記返血工程が終了したと判定する、ことを特徴とする請求項1または2に記載の血液浄化装置。
  4.  前記制御装置は、前記血液回路を流れる血液を検出しなかったこと、および/または前記血液回路において気泡を検出したことに基づいて、前記返血工程が終了したと判定する、ことを特徴とする請求項1乃至3のいずれか一項に記載の血液浄化装置。
  5.  前記返血工程において、前記血液回路に透析液を導入する透析液導入回路と、
     前記返血工程において、前記血液回路に空気を導入して、前記血液回路に導入された透析液を押し出す空気導入部と、
     を更に備えたことを特徴とする請求項1乃至4のいずれか一項に記載の血液浄化装置。
  6.  前記制御装置は、返血量および/または経過時間に基づいて、前記血液回路に前記透析液を導入する透析液導入段階を終了させるか否かを判定し、前記透析液導入段階が終了したと判定したことに応答して、前記血液回路に前記空気を導入する空気導入段階を開始させる、ことを特徴とする請求項5に記載の血液浄化装置。
  7.  前記空気導入部は、前記透析液導入回路に接続され、前記透析液導入回路を通じて前記血液回路に前記空気を導入する、ことを特徴とする請求項5または6に記載の血液浄化装置。
  8.  前記透析液導入回路は、プライミング液ラインを含み、前記プライミング液ラインは、前記返血工程の前に行われるプライミング工程では、前記透析液を前記血液回路に導入して、前記血液回路を前記透析液で満たす、ことを特徴とする請求項7に記載の血液浄化装置。
  9.  前記空気導入部は、前記血液回路に接続され、前記血液回路に前記空気を導入する、ことを特徴とする請求項5または6に記載の血液浄化装置。
  10.  前記血液回路に設けられ、前記血液回路内の血液を収容するチャンバをさらに備え、
     前記空気導入部は、前記チャンバに接続され、前記返血工程以外では、前記チャンバに空気を流動することによって前記チャンバ内の液面を調整する、
     ことを特徴とする請求項9に記載の血液浄化装置。
  11.  前記血液回路に設けられ、前記血液回路内の血液を収容するチャンバをさらに備え、
     前記血液ポンプは、前記チャンバに接続され、前記返血工程では、前記空気導入部として前記チャンバに空気を導入する、
     ことを特徴とする請求項9に記載の血液浄化装置。
  12.  前記抜針検出部は、前記穿刺針と一体となって構成されたタッチセンサを含み、前記患者の体表面に対する前記穿刺針の接触状態を前記タッチセンサが検出することによって、前記穿刺針が抜針されたことを検出する、ことを特徴とする請求項1乃至11のいずれか一項に記載の血液浄化装置。
  13.  血液浄化装置によって実行される方法であって、前記血液浄化装置は、
     患者に穿刺された穿刺針と接続され、患者からの血液が流動する血液回路と、
     前記血液回路に設けられ、駆動することによって前記血液回路内の液体を送液する血液ポンプと、
     前記患者から前記穿刺針が抜針されたことを検出する抜針検出部と、を含み、
     前記方法は、
     前記穿刺針が抜針されたことを検出するステップと、
     前記血液回路内の血液を患者に戻す返血工程を開始するステップと、
     前記返血工程が終了したと判定したことに応答して、前記血液ポンプを非活性状態にするステップと、
     を備えたことを特徴とする方法。
PCT/JP2021/027726 2020-11-13 2021-07-27 血液浄化装置 WO2022102174A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180075008.2A CN116419768A (zh) 2020-11-13 2021-07-27 血液净化装置
EP21891422.4A EP4245329A4 (en) 2020-11-13 2021-07-27 BLOOD PURIFYING DEVICE
US18/033,825 US20230398277A1 (en) 2020-11-13 2021-07-27 Blood purification apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-189213 2020-11-13
JP2020189213A JP7536608B2 (ja) 2020-11-13 2020-11-13 血液浄化装置

Publications (1)

Publication Number Publication Date
WO2022102174A1 true WO2022102174A1 (ja) 2022-05-19

Family

ID=81601042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027726 WO2022102174A1 (ja) 2020-11-13 2021-07-27 血液浄化装置

Country Status (5)

Country Link
US (1) US20230398277A1 (ja)
EP (1) EP4245329A4 (ja)
JP (1) JP7536608B2 (ja)
CN (1) CN116419768A (ja)
WO (1) WO2022102174A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024004226A (ja) * 2022-06-28 2024-01-16 日機装株式会社 血液浄化装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007020801A (ja) * 2005-07-14 2007-02-01 Nikkiso Co Ltd 穿刺部の監視装置
JP2010269050A (ja) * 2009-05-25 2010-12-02 Nikkiso Co Ltd 血液浄化装置
JP2013039241A (ja) * 2011-08-17 2013-02-28 Nikkiso Co Ltd 血液浄化装置
JP2016165401A (ja) * 2015-03-10 2016-09-15 日機装株式会社 血液浄化装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011108785A1 (de) * 2011-07-29 2013-01-31 Fresenius Medical Care Deutschland Gmbh Verfahren zum Entfernen von Fluid aus einem Blutfilter nach Beendigung einer Blutbehandlungssitzung und Behandlungsvorrichtung zum Durchführen desselben

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007020801A (ja) * 2005-07-14 2007-02-01 Nikkiso Co Ltd 穿刺部の監視装置
JP2010269050A (ja) * 2009-05-25 2010-12-02 Nikkiso Co Ltd 血液浄化装置
JP2013039241A (ja) * 2011-08-17 2013-02-28 Nikkiso Co Ltd 血液浄化装置
JP2016165401A (ja) * 2015-03-10 2016-09-15 日機装株式会社 血液浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4245329A4 *

Also Published As

Publication number Publication date
JP2022078501A (ja) 2022-05-25
CN116419768A (zh) 2023-07-11
EP4245329A4 (en) 2024-10-16
EP4245329A1 (en) 2023-09-20
US20230398277A1 (en) 2023-12-14
JP7536608B2 (ja) 2024-08-20

Similar Documents

Publication Publication Date Title
JP6685374B2 (ja) 血液浄化装置及びそのプライミング方法
JP4798653B2 (ja) 血液浄化装置
US20130150768A1 (en) Blood Purification Apparatus And Method For Inspecting Liquid Leakage Thereof
KR101862425B1 (ko) 이동식 한외 여과 장치,관련 방법 및 컴퓨터 프로그램 제품
US20180133384A1 (en) Blood purification apparatus
JPS62233166A (ja) 血液循環処理装置
US10610634B2 (en) Blood purification apparatus
JP2011161060A (ja) 血液浄化装置
WO2007007596A1 (ja) 血液成分採取回路および血液成分採取装置
US11964089B2 (en) Blood purification apparatus and method of trapping bubbles therein
CN107427621B (zh) 血液净化装置
US11406747B2 (en) Extracorporeal circulation apparatus and method of discharging bubbles therefrom
CN107405440B (zh) 血液净化装置
WO2022102174A1 (ja) 血液浄化装置
US20200206407A1 (en) Blood Purification Apparatus and Method of Discharging Bubbles Therefrom
CN114423468A (zh) 血液净化装置
JP7412296B2 (ja) 血液浄化装置
WO2017159872A1 (ja) 血液透析装置及び制御プログラム
JP5276909B2 (ja) 血液浄化装置
JP6017713B2 (ja) 血液浄化装置
JP7292331B2 (ja) 血液浄化装置
JP7422928B1 (ja) 血液浄化装置
WO2023032960A1 (ja) 血液浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021891422

Country of ref document: EP

Effective date: 20230613