WO2022100411A1 - 一种tsn网络转发时间特性的测量方法及终端 - Google Patents
一种tsn网络转发时间特性的测量方法及终端 Download PDFInfo
- Publication number
- WO2022100411A1 WO2022100411A1 PCT/CN2021/125676 CN2021125676W WO2022100411A1 WO 2022100411 A1 WO2022100411 A1 WO 2022100411A1 CN 2021125676 W CN2021125676 W CN 2021125676W WO 2022100411 A1 WO2022100411 A1 WO 2022100411A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time
- tsn
- forwarding
- recording module
- measuring
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 238000005259 measurement Methods 0.000 claims abstract description 21
- 239000000284 extract Substances 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000006855 networking Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000004883 computer application Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
Definitions
- the invention relates to the technical field of computer applications, in particular to a method and a terminal for measuring the forwarding time characteristics of a TSN network.
- Time Sensitive Networking refers to a set of protocol standards being developed by the TSN task group in the IEEE802.1 working group. Deterministic and reliable to ensure that Ethernet can provide a stable and consistent service level for the transmission of critical data.
- Time Sensitive Networking is a new generation network standard based on Ethernet, which has functions such as time synchronization and delay guarantee to ensure real-time performance.
- TSN actually refers to a set of "sub-standards" based on specific application requirements under the framework of the IEEE802.1 standard, aiming to establish a "universal" time-sensitive mechanism for the Ethernet protocol to ensure the time determinism of network data transmission. .
- TSN is only a protocol standard for the second layer in the Ethernet communication protocol model, that is, the data link layer (more precisely, the MAC layer). It is a set of protocol standards rather than a protocol, that is to say, TSN will provide a set of general time-sensitive mechanisms for the MAC layer of the Ethernet protocol. Interoperability is possible.
- TSN network equipment includes TSN switches and TSN terminals.
- TSN equipment has global time synchronization (compliant with IEEE 802.1AS protocol), time gate shaper (compliant with IEEE 802.1Qbv protocol) and flow filtering supervision (compliant with IEEE 802.1Qci protocol, optional) Features.
- the process of transmitting time-sensitive services in TSN is as follows: first, the TSN devices of the entire network must synchronize the global time; then the 1Qci input stream filtering and supervision module discards or enqueues time-sensitive service streams in different global time periods according to the configuration of the control plane. And which output queue to enter into the queue; the last 1Qbv output queue time gate control module schedules and outputs the service flows of different queues in different global time periods according to the configuration of the control plane.
- TSN By controlling the input and output control of each TSN device based on the global time, TSN can control the forwarding time of the service flow in each device, thereby realizing the time determinism of the end-to-end transmission of the service flow.
- the time points and actions of Tb and Tc are mainly controlled to realize the certainty of the message forwarding time. Therefore, precise control of Tb and Tc, that is, to ensure that the actual forwarding time Tb2, Tc2 of the device is the same as the expected time Tb1, Tc1 or the deviation is fixed, is the key to the deterministic forwarding of the TSN network.
- the actual network forwarding in TSN is not an ideal model, and there are deviations between actual and expected, including:
- Tb1 and Tc1 are the expected time of the control plane configuration, but the actual time of the TSN device is Tb2 and Tc2, which cannot be completely consistent with Tb1 and Tc1 or have a fixed deviation. The deviation depends on the specific implementation of the TSN device.
- Ta2 and Td2 When Tb2 and Tc2 are determined, under different packet lengths and network traffic, Ta2 and Td2 will also fluctuate and cannot be fixed. The deviation also depends on the specific implementation of TSN equipment.
- Cycle available time nominal CycleTime time - physical line delay - Ta Max Jitter - Tb Max Jitter - Tc Max Jitter - Td Max Jitter. The greater the jitter, the less time available for the cycle, and the lower the efficiency of the TSN network.
- IEEE 802.1ag and ITU-T Y.1731 define that DM and 1DM in CFM OAM can only measure the end-to-end two-way and one-way delays of the head and tail nodes, but cannot measure the nodes. time between and within the node.
- INT In-Band Network Telemetry
- the main purpose of the present invention is to provide a method and a terminal for measuring the forwarding time characteristic of a TSN network, aiming to solve the problem of accurately measuring the forwarding time characteristic of the TSN network in the prior art.
- the present invention provides a method for measuring the forwarding time characteristic of a TSN network, and the method for measuring the forwarding time characteristic of the TSN network includes the following steps:
- stamp before also including:
- the method for measuring the forwarding time characteristic of the TSN network wherein the first time recording module is set after the line receives the fixed frame and before the reception is temporarily stored;
- the second time recording module is arranged after the forwarding search and before the output is queued;
- the third time recording module is arranged after the output is queued and before the temporary storage is sent;
- the fourth time recording module is set after the temporary storage is sent and before the frame is sent.
- the method for measuring the forwarding time characteristics of the TSN network wherein the recording of the actual time stamp of the same packet passing through a preset number of key processing points inside the TSN device specifically includes:
- the first time recording module records the global time Ta2 at the moment of receiving the SFD field of the message of the line, as the line receiving time of the data packet;
- the second time recording module records the global time Tb2 at the moment when the message is written into the output queue, as the actual time when the data packet enters the queue;
- the third time recording module records the global time Tc2 at the moment when the message is read out of the first byte from the queue, as the actual time when the data packet is out of the queue;
- the fourth time recording module records the global time Td2 at the moment of sending the SFD field of the message, as the actual time when the data packet is sent by the line.
- the method for measuring the forwarding time characteristics of the TSN network specifically includes:
- the time stamp collector collects four time stamps of Ta2, Tb2, Tc2 and Td2 of the same message
- the 4 timestamps are carried in the original packet and sent to the TSN control plane, or the 4 timestamps are packaged into an independent measurement packet and sent to the TSN control plane through an additional forwarding channel .
- the method for measuring the forwarding time characteristic of the TSN network wherein the comparing the preset number of time stamps with the expected time stamps, and obtaining the difference between the actual time and the expected time according to the comparison result, specifically including:
- the TSN control plane configures the TSN device to perform timestamp recording on the selected service flow
- the TSN control plane parses the original packet or the measurement packet from the TSN device, extracts Ta2, Tb2, Tc2, Td2 in the original packet or the measurement packet, and compares it with the expected Ta1, Tb1, Tc1, Td1, Measure the deviation between the two.
- the method for measuring the forwarding time characteristic of the TSN network wherein the TSN control plane is configured with a timestamp control table, and the timestamp control table is set after the forwarding lookup and before the second time recording module;
- the time stamp control table uses the service flow number as a table index, and stores the time stamp control information of the service flow.
- the method for measuring the forwarding time characteristic of the TSN network wherein the TSN control plane controls the time when the packet sent by the packet transmitter reaches the TSN device, and the packet transmitter controls the packet sending time, the packet length and the number of bursts.
- the present invention also provides a terminal, wherein the terminal includes: a memory, a processor, and a measurement of a TSN network forwarding time characteristic stored in the memory and running on the processor
- the terminal includes: a memory, a processor, and a measurement of a TSN network forwarding time characteristic stored in the memory and running on the processor
- the present invention also provides a storage medium, wherein the storage medium stores a measurement program of the forwarding time characteristic of the TSN network, and the measurement program of the forwarding time characteristic of the TSN network is implemented as above when executed by the processor. The steps of the method for measuring the forwarding time characteristic of the TSN network.
- the present invention records the actual time stamps of the same message passing through a preset number of key processing points inside the TSN device; collects the preset number of time stamps, saves them, and sends them to the TSN control plane at the same time; The expected timestamp is compared, and the difference between the actual time and the expected time is obtained according to the comparison result.
- the invention accurately measures the TSN network forwarding time characteristic, detects whether the TSN network function is normal according to the measurement result, evaluates the TSN network performance, and further adjusts and optimizes the calculation of the service path forwarding time of the TSN network.
- Fig. 1 is the principle schematic diagram of TSN equipment forwarding time model in the prior art of the present invention
- FIG. 2 is a flowchart of a preferred embodiment of the method for measuring the forwarding time characteristic of the TSN network according to the present invention
- FIG. 3 is a schematic diagram of connections between devices in a preferred embodiment of the method for measuring forwarding time characteristics of TSN networks according to the present invention
- FIG. 4 is a schematic diagram of the principle of the processing of the forwarding plane of the TSN equipment and the processing of the TSN control plane in the preferred embodiment of the method for measuring the forwarding time characteristics of the TSN network of the present invention
- FIG. 5 is a schematic diagram of the principle of a method for realizing a TSN device that collects four internal timestamps in the preferred embodiment of the method for measuring the forwarding time characteristics of the TSN network of the present invention
- Fig. 6 is the device connection schematic diagram of adding the packet transmitter in the preferred embodiment of the measuring method of the TSN network forwarding time characteristic of the present invention
- FIG. 7 is a schematic diagram of the measurement of 1Qbv windowing time and windowing size in a preferred embodiment of the method for measuring the TSN network forwarding time characteristic of the present invention
- FIG. 8 is a schematic diagram of an operating environment of a preferred embodiment of the terminal of the present invention.
- the method for measuring the forwarding time characteristics of the TSN network includes the following steps:
- Step S10 Record the actual time stamp of the same packet passing through a preset number of key processing points inside the TSN device.
- the TSN control plane is respectively connected to TSN terminal A, TSN switch 1, TSN switch 2, TSN switch 3 and TSN terminal B.
- TSN terminal A, TSN switch 1, TSN switch 2 , TSN switch 3 and TSN terminal B are connected in sequence (TSN terminal A, TSN switch 1, TSN switch 2, TSN switch 3 and TSN terminal B all represent TSN devices) for information exchange.
- the method of the present invention is divided into two parts, one is TSN control plane to TSN equipment: TSN timestamp recording configuration, and the other is TSN equipment to TSN control plane: TSN timestamp recording result.
- the method further includes: adding 4 timestamp collectors and 1 timestamp collector in advance on the internal forwarding plane path of the TSN device, such as As shown in FIG. 4 , the four time stamp collectors are the first time recording module (ie the time stamp record A in FIG. 4 ), the second time recording module (ie the time stamp record B in FIG. 4 ), the third time recording module The recording module (ie the timestamp record C in FIG. 4 ) and the fourth time recording module (ie the timestamp record D in FIG. 4 ), the timestamp collector is the timestamp collector E in FIG. 4 .
- the first time recording module (time stamp recording A) is set after the line receives the fixed frame and before receiving the temporary storage;
- the second time recording module (time stamp recording B) is set after the forwarding search (that is, after the message is received and forwarded and searched), before the output is queued (that is, entered into the queue);
- the third time recording module (timestamp record C) is set after the output is queued (that is, the message is read from the queue), Before sending the temporary storage;
- the fourth time recording module (timestamp record D) is set after the sending temporary storage (that is, the message is read out from the sending temporary storage) and before the frame is sent.
- the step S10 specifically includes:
- Step S11 the first time recording module records the global time Ta2 at the moment of receiving the SFD field of the message of the line, as the line receiving time of the data packet;
- Step S12 the second time recording module records the global time Tb2 at the moment when the message is written into the output queue, as the actual time when the data packet enters the queue;
- Step S13 the third time recording module records the global time Tc2 at the moment when the message is read out of the first byte from the queue, as the actual time when the data packet is out of the queue;
- Step S14 the fourth time recording module records the global time Td2 at the moment of sending the SFD field of the packet as the actual time when the data packet is sent by the line.
- Step S20 Collect and save the preset number of time stamps, and send them to the TSN control plane at the same time.
- step S20 specifically includes:
- Step S21 the time stamp collector (that is, the time stamp collection E in FIG. 4 ) collects the four time stamps of Ta2, Tb2, Tc2 and Td2 of the same message;
- Step S22 by modifying the original message, carrying 4 time stamps in the original message and sending it to the TSN control plane, or packaging the 4 time stamps into an independent measurement message, and sending it to the described TSN through an extra forwarding channel.
- TSN control plane by modifying the original message, carrying 4 time stamps in the original message and sending it to the TSN control plane, or packaging the 4 time stamps into an independent measurement message, and sending it to the described TSN through an extra forwarding channel.
- Step S30 Compare the preset number of time stamps with the expected time stamps, and obtain the difference between the actual time and the expected time according to the comparison result.
- step S30 specifically includes:
- Step S31 the TSN control plane configures the TSN device to perform timestamp recording on the selected service flow, and which timestamps are recorded;
- Step S32 the TSN control plane parses the original packet or measurement packet from the TSN device, and extracts Ta2, Tb2, Tc2, Td2 in the original packet or measurement packet, and the expected Ta1, Tb1, Tc1, Td1 For comparison, measure the deviation between the two.
- the invention provides a method for accurately measuring the time forwarding characteristics of the TSN network. By recording the actual time stamps of the same message passing through 4 key processing points inside the TSN device, and collecting the 4 time stamps, saving them and sending them to the TSN control plane, Compare with the expected timestamp to measure the difference between the actual time and the expected time.
- A timestamp record A
- B timestamp record B
- C timestamp record C
- D timestamp record D
- E timestamp collection E
- the time stamp control table F is configured by the TSN control plane, and uses the service flow ID FlowID (network flow number) as a table index to store the time stamp control information of the service flow:
- Valid signal (Valid means that the data is valid);
- Bitmap Bitmap signals of which time stamps need to be recorded
- Bitmap is 4 bits, corresponding to Ta2, Tb2, Tc2, Td2 time stamps respectively;
- the first time recording module (timestamp record A) records the Ta timestamps of all messages, and the Ta timestamps and the messages are subsequently processed along with them;
- the message is normally received and temporarily stored and forwarded, and the service flow number FlowID and output queue number QueueID of the message are obtained;
- the message uses the FlowID to find the timestamp control table F to obtain the Valid, Bitmap, and SeqID of the message, and adds 1 to the SeqID and writes it back to the timestamp control table F;
- the information to be carried at each location is as follows:
- the timestamp collector uses the SeqID as an index for valid packets, and saves the QueueID, timestamp Bitmap, and Ta2, Tb2, Tc2, and Td2 information of the packets, and waits for the TSN control plane to read the above. and calculate.
- the measurement method has a packet transmitter, and the packet transmitter can control the packet transmission time, packet length, and burst quantity.
- the packet transmitter can be a standard network tester or an autonomous packet transmitter inside the TSN device.
- the time when the packet sent by the packet sender reaches the TSN device is controlled manually or by the TSN control plane, and falls within the gated closing window of 1Qbv, that is, the Gate OFF of Figure 7 ( Figure 7 shows the measurement of 1Qbv windowing time and window size). period.
- the measurement process is as follows.
- the manual or TSN control plane controls the packet transmitter to use a minimum 64-byte packet to continuously burst M packets at the line peak value, and perform it in multiple iterations:
- the 1Qbv window can only accommodate M 64-byte packets.
- the 1bv window size is greater than or equal to (M*64B*8)/line rate, less than or equal to ( M+1)*(64B*8)/line rate, the measurement accuracy is (64B*8)/line rate.
- the invention can accurately measure the TSN network forwarding time characteristic, can detect whether the TSN network function is normal according to the measurement solution, evaluate the TSN network performance, and further adjust and optimize the service path forwarding time calculation of the TSN network.
- the present invention also provides a terminal correspondingly, and the terminal includes a processor 10 , a memory 20 and a display 30 .
- FIG. 8 only shows some components of the terminal, but it should be understood that it is not required to implement all the shown components, and more or less components may be implemented instead.
- the memory 20 may be an internal storage unit of the terminal, such as a hard disk or a memory of the terminal. In other embodiments, the memory 20 may also be an external storage device of the terminal, such as a plug-in hard disk equipped on the terminal, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, flash memory card (Flash Card), etc. Further, the memory 20 may also include both an internal storage unit of the terminal and an external storage device.
- the memory 20 is used to store application software and various types of data installed in the terminal, such as program codes of the installation terminal. The memory 20 can also be used to temporarily store data that has been output or is to be output.
- the memory 20 stores a TSN network forwarding time characteristic measurement program 40, and the TSN network forwarding time characteristic measurement program 40 can be executed by the processor 10, thereby realizing the TSN network forwarding time characteristic in this application. Measurement methods.
- the processor 10 may be a central processing unit (Central Processing Unit, CPU), a microprocessor or other data processing chips, which are used to execute program codes or process data stored in the memory 20, such as A method for measuring the forwarding time characteristics of the TSN network and the like are performed.
- CPU Central Processing Unit
- microprocessor or other data processing chips, which are used to execute program codes or process data stored in the memory 20, such as A method for measuring the forwarding time characteristics of the TSN network and the like are performed.
- the display 30 may be an LED display, a liquid crystal display, a touch-sensitive liquid crystal display, an OLED (Organic Light-Emitting Diode, organic light-emitting diode) touch device, and the like.
- the display 30 is used for displaying information on the terminal and for displaying a visual user interface.
- the components 10-30 of the terminal communicate with each other via the system bus.
- the processor 10 executes the measurement program 40 of the TSN network forwarding time characteristic in the memory 20, the following steps are implemented:
- the preset number is 4; the actual time stamp of the key processing points where the same message passes through the preset number inside the TSN device, the record also includes:
- the first time recording module is set after the line receives the fixed frame and before the receiving temporary storage
- the second time recording module is arranged after the forwarding search and before the output is queued;
- the third time recording module is arranged after the output is queued and before the temporary storage is sent;
- the fourth time recording module is set after the temporary storage is sent and before the frame is sent.
- the recording of the actual time stamps of the key processing points that the same message passes through a preset number inside the TSN device specifically includes:
- the first time recording module records the global time Ta2 at the moment of receiving the SFD field of the message of the line, as the line receiving time of the data packet;
- the second time recording module records the global time Tb2 at the moment when the message is written into the output queue, as the actual time when the data packet enters the queue;
- the third time recording module records the global time Tc2 at the moment when the message is read out of the first byte from the queue, as the actual time when the data packet is out of the queue;
- the fourth time recording module records the global time Td2 at the moment of sending the SFD field of the message, as the actual time when the data packet is sent by the line.
- the preset number of time stamps are collected and saved, and sent to the TSN control plane at the same time, specifically including:
- the time stamp collector collects four time stamps of Ta2, Tb2, Tc2 and Td2 of the same message
- the 4 timestamps are carried in the original packet and sent to the TSN control plane, or the 4 timestamps are packaged into an independent measurement packet and sent to the TSN control plane through an additional forwarding channel .
- the preset number of time stamps are compared with the expected time stamps, and the difference between the actual time and the expected time is obtained according to the comparison result, which specifically includes:
- the TSN control plane configures the TSN device to perform timestamp recording on the selected service flow
- the TSN control plane parses the original packet or the measurement packet from the TSN device, extracts Ta2, Tb2, Tc2, Td2 in the original packet or the measurement packet, and compares it with the expected Ta1, Tb1, Tc1, Td1, Measure the deviation between the two.
- the TSN control plane is configured with a timestamp control table, and the timestamp control table is set after the forwarding search and before the second time recording module;
- the time stamp control table uses the service flow number as a table index, and stores the time stamp control information of the service flow.
- the TSN control plane controls the time when the packet sent by the packet transmitter reaches the TSN device, and the packet transmitter controls the packet sending time, the length of the packet and the number of bursts.
- the present invention further provides a storage medium, wherein the storage medium stores a measurement program of the TSN network forwarding time characteristic, and the TSN network forwarding time characteristic described above is realized when the measurement program of the TSN network forwarding time characteristic is executed by the processor.
- the steps of the method of measuring the characteristic are described above.
- the present invention provides a method and a terminal for measuring the forwarding time characteristics of a TSN network.
- the method includes: recording the actual time stamps of the same packet passing through a preset number of key processing points inside the TSN device; Set and save the number of time stamps, and send them to the TSN control plane at the same time; compare the preset number of time stamps with the expected time stamps, and obtain the difference between the actual time and the expected time according to the comparison result.
- the invention accurately measures the TSN network forwarding time characteristic, detects whether the TSN network function is normal according to the measurement result, evaluates the TSN network performance, and further adjusts and optimizes the calculation of the service path forwarding time of the TSN network.
- the storage medium may be a memory, a magnetic disk, an optical disk, or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本发明公开了一种TSN网络转发时间特性的测量方法及终端,所述方法包括:记录同一个报文经过TSN设备内部预设个数的关键处理点的实际时间戳;收集预设个数时间戳并保存,同时发送给TSN控制平面;将预设个数时间戳与预期时间戳进行比较,根据比较结果得到实际时间与预期时间的差异。本发明通过精确测量TSN网络转发时间特性,根据测量结果来检测TSN网络功能是否正常,评估TSN网络性能,并进一步调整和优化TSN网络的业务路径转发时间计算。
Description
本发明涉及计算机应用技术领域,尤其涉及一种TSN网络转发时间特性的测量方法及终端。
时间敏感网络(TSN:Time Sensitive Networking)指的是IEEE802.1工作组中的TSN任务组正在开发的一套协议标准,该标准定义了以太网数据传输的时间敏感机制,为标准以太网增加了确定性和可靠性,以确保以太网能够为关键数据的传输提供稳定一致的服务级别。时间敏感网络(TSN)是以以太网为基础的新一代网络标准,具有时间同步、延时保证等确保实时性的功能。TSN其实指的是在IEEE802.1标准框架下,基于特定应用需求制定的一组“子标准”,旨在为以太网协议建立“通用”的时间敏感机制,以确保网络数据传输的时间确定性。既然是隶属于IEEE802.1下的协议标准,TSN就仅仅是关于以太网通讯协议模型中的第二层,也就是数据链路层(更确切的说是MAC层)的协议标准。是一套协议标准而不是一种协议,就是说TSN将会为以太网协议的MAC层提供一套通用的时间敏感机制,在确保以太网数据通讯的时间确定性的同时,为不同协议网络之间的互操作提供了可能性。
TSN网络设备包括TSN交换机和TSN终端,TSN设备具有全局时间同步(符合IEEE 802.1AS协议)、时间门控整形器(符合IEEE 802.1Qbv协议)以及流过滤监管(符合IEEE 802.1Qci协议,可选)功能。
TSN的传送时间敏感业务的过程为:首先全网TSN设备必须全局时间同步;然后1Qci输入流过滤和监管模块根据控制面的配置在不同的全局时间段将时间敏感业务流进行丢弃或者入队,以及入队到哪个输出队列;最后1Qbv输出队列时间门控模块根据控制面的配置,在不同的全局时间段将不同队列的业务流调度输出。
TSN通过控制面对每个TSN设备基于全局时间的输入、输出控制,可以控制业务流在每个设备的转发时间,从而实现业务流端到端传送的时间确定性。如 图1所示的TSN设备转发时间模型中,主要控制Tb、Tc的时间点及其动作实现报文转发时间的确定性。因此,精确控制Tb、Tc,也就是保证设备实际转发时间Tb2、Tc2与预期时间Tb1、Tc1相同或者偏差固定,是TSN网络的确定性转发的关键。
TSN实际网络转发中预期时间和实际时间如下表所示:
在TSN实际网络转发并非理想模型,实际和预期存在偏差,包括:
(1)Tb1、Tc1是控制面配置的预期时间,但TSN设备的实际时间为Tb2、Tc2并不能做到与Tb1、Tc1完全一致或者固定偏差,偏差大小取决于TSN设备的具体实现。
(2)在Tb2、Tc2确定的情况下,在不同的包长、网络流量下,Ta2、Td2也会存在波动,不能做到固定,偏差大小同样取决于TSN设备的具体实现。
TSN设备的实际操作时间与预期时间存在非固定偏差,会降低TSN网络的带宽效率。比如对于TSN的CQF应用,为了下游节点能够容纳线路延时和时间波动,上游节点在循环周期(CycleTime)的可用时间需要取保守值,Cycle可用时间=标称CycleTime时间-物理线路延时-Ta最大抖动-Tb最大抖动-Tc最大抖动-Td最大抖动。抖动越大,循环周期可用时间越少,TSN网络效率越低。
目前没有专门测量TSN网络转发时间特性的方法,IEEE 802.1ag和ITU-T Y.1731定义了CFM OAM中的DM、1DM只能测量首尾节点的端到端双向、单向延时,无法测量节点之间以及节点内部的时间。INT(带内网络遥测)可以记录进入、输出设备的时间戳,也就是图1中的Ta、Td,但无法精细测量设备内的Tb、Tc时间。
因此,现有技术还有待于改进和发展。
发明内容
本发明的主要目的在于提供一种TSN网络转发时间特性的测量方法及终端,旨在解决现有技术中精确测量TSN网络转发时间特性的问题。
为实现上述目的,本发明提供一种TSN网络转发时间特性的测量方法,所述TSN网络转发时间特性的测量方法包括如下步骤:
记录同一个报文经过TSN设备内部预设个数的关键处理点的实际时间戳;
收集预设个数时间戳并保存,同时发送给TSN控制平面;
将预设个数时间戳与预期时间戳进行比较,根据比较结果得到实际时间与预期时间的差异。
可选地,所述的TSN网络转发时间特性的测量方法,其中,所述预设个数为4个;所述记录同一个报文经过TSN设备内部预设个数的关键处理点的实际时间戳,之前还包括:
预先在所述TSN设备的内部转发平面路径上增加4个时戳采集器和1个时戳收集器,4个时戳采集器分别为第一时间记录模块、第二时间记录模块、第三时间记录模块以及第四时间记录模块。
可选地,所述的TSN网络转发时间特性的测量方法,其中,所述第一时间记录模块设置在线路接收定帧之后,接收暂存之前;
所述第二时间记录模块设置在转发查找之后,输出排队之前;
所述第三时间记录模块设置在输出排队之后,发送暂存之前;
所述第四时间记录模块设置在发送暂存之后,发送成帧之前。
可选地,所述的TSN网络转发时间特性的测量方法,其中,所述记录同一个报文经过TSN设备内部预设个数的关键处理点的实际时间戳,具体包括:
所述第一时间记录模块在收到线路的报文的SFD字段时刻,记录此时的全局时间Ta2,作为数据包线路接收时间;
所述第二时间记录模块在将报文写入输出队列的时刻,记录此时的全局时间Tb2,作为数据包入队的实际时间;
所述第三时间记录模块在将报文从队列中读出第一个字节的时刻,记录此时的全局时间Tc2,作为数据包出队的实际时间;
所述第四时间记录模块在发送报文的SFD字段时刻,记录此时的全局时间Td2,作为数据包线路发送的实际时间。
可选地,所述的TSN网络转发时间特性的测量方法,其中,所述收集预设个数时间戳并保存,同时发送给TSN控制平面,具体包括:
所述时戳收集器收集同一报文的Ta2、Tb2、Tc2和Td2这4个时戳;
通过修改原始报文将4个时戳携带在原始报文中送至所述TSN控制平面,或者将4个时戳打包成独立的测量报文,通过额外的转发通道送给所述TSN控制平面。
可选地,所述的TSN网络转发时间特性的测量方法,其中,所述将预设个数时间戳与预期时间戳进行比较,根据比较结果得到实际时间与预期时间的差异,具体包括:
所述TSN控制平面配置所述TSN设备对选定的业务流进行时戳记录;
所述TSN控制平面解析来自所述TSN设备的原始报文或者测量报文,提取原始报文或者测量报文中Ta2、Tb2、Tc2、Td2,与预期的Ta1、Tb1、Tc1、Td1进行比较,测量得到两者之间的偏差。
可选地,所述的TSN网络转发时间特性的测量方法,其中,所述TSN控制平面配置一个时戳控制表,所述时戳控制表设置在转发查找之后,第二时间记录模块之前;
所述时戳控制表以业务流号为表索引,保存业务流的时戳控制信息。
可选地,所述的TSN网络转发时间特性的测量方法,其中,所述TSN控制平面通过控制发包器发送报文到达所述TSN设备的时间,所述发包器控制发包时间、报文长度和突发数量。
此外,为实现上述目的,本发明还提供一种终端,其中,所述终端包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的TSN网络转发时间特性的测量程序,所述TSN网络转发时间特性的测量程序被所述处理器执行时实现如上所述的TSN网络转发时间特性的测量方法的步骤。
此外,为实现上述目的,本发明还提供一种存储介质,其中,所述存储介质存储有TSN网络转发时间特性的测量程序,所述TSN网络转发时间特性的测量程序被处理器执行时实现如上所述的TSN网络转发时间特性的测量方法的步骤。
本发明通过记录同一个报文经过TSN设备内部预设个数的关键处理点的实际时间戳;收集预设个数时间戳并保存,同时发送给TSN控制平面;将预设个数时间戳与预期时间戳进行比较,根据比较结果得到实际时间与预期时间的差异。本发明通过精确测量TSN网络转发时间特性,根据测量结果来检测TSN网络功能是否正常,评估TSN网络性能,并进一步调整和优化TSN网络的业务路径转发时间计算。
图1是本发明现有技术中TSN设备转发时间模型的原理示意图;
图2是本发明TSN网络转发时间特性的测量方法的较佳实施例的流程图;
图3是本发明TSN网络转发时间特性的测量方法的较佳实施例中设备之间连接示意图;
图4是本发明TSN网络转发时间特性的测量方法的较佳实施例中TSN设备转发面的处理和TSN控制面的处理的原理示意图;
图5是本发明TSN网络转发时间特性的测量方法的较佳实施例中4个内部时戳采集的TSN设备的一种实现方法的原理示意图;
图6是本发明TSN网络转发时间特性的测量方法的较佳实施例中增加发包 器的设备连接示意图;
图7是本发明TSN网络转发时间特性的测量方法的较佳实施例中1Qbv开窗时间和开窗大小测量的示意图;
图8为本发明终端的较佳实施例的运行环境示意图。
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明较佳实施例所述的TSN网络转发时间特性的测量方法,如图2所示,所述TSN网络转发时间特性的测量方法包括以下步骤:
步骤S10、记录同一个报文经过TSN设备内部预设个数的关键处理点的实际时间戳。
具体地,如图3所示,TSN控制平面分别与TSN终端A、TSN交换机1、TSN交换机2、TSN交换机3和TSN终端B进行通信连接,另外,TSN终端A、TSN交换机1、TSN交换机2、TSN交换机3和TSN终端B依次连接(TSN终端A、TSN交换机1、TSN交换机2、TSN交换机3和TSN终端B均表示TSN设备),用于进行信息交互。本发明的方法分为两个部分,一是TSN控制平面到TSN设备:TSN时戳记录配置,二是TSN设备到TSN控制平面:TSN时戳记录结果。
其中,所述预设个数优选为4个;在所述步骤S10之前还包括:预先在所述TSN设备的内部转发平面路径上增加4个时戳采集器和1个时戳收集器,如图4所示,4个时戳采集器分别为第一时间记录模块(即图4中的时戳记录A)、第二时间记录模块(即图4中的时戳记录B)、第三时间记录模块(即图4中的时戳记录C)以及第四时间记录模块(即图4中的时戳记录D),时戳收集器即图4中的时戳收集E。
如图4所示,所述第一时间记录模块(时戳记录A)设置在线路接收定帧之后,接收暂存之前;所述第二时间记录模块(时戳记录B)设置在转发查找之后(即报文完成接收以及转发查找之后),输出排队(即入队)之前;所述第三时 间记录模块(时戳记录C)设置在输出排队(即报文从队列中读出)之后,发送暂存之前;所述第四时间记录模块(时戳记录D)设置在发送暂存(即报文从发送暂存读出)之后,发送成帧之前。
所述步骤S10具体包括:
步骤S11、所述第一时间记录模块在收到线路的报文的SFD字段时刻,记录此时的全局时间Ta2,作为数据包线路接收时间;
步骤S12、所述第二时间记录模块在将报文写入输出队列的时刻,记录此时的全局时间Tb2,作为数据包入队的实际时间;
步骤S13、所述第三时间记录模块在将报文从队列中读出第一个字节的时刻,记录此时的全局时间Tc2,作为数据包出队的实际时间;
步骤S14、所述第四时间记录模块在发送报文的SFD字段时刻,记录此时的全局时间Td2,作为数据包线路发送的实际时间。
步骤S20、收集预设个数时间戳并保存,同时发送给TSN控制平面。
具体地,所述步骤S20具体包括:
步骤S21、所述时戳收集器(即图4中的时戳收集E)收集同一报文的Ta2、Tb2、Tc2和Td2这4个时戳;
步骤S22、通过修改原始报文将4个时戳携带在原始报文中送至所述TSN控制平面,或者将4个时戳打包成独立的测量报文,通过额外的转发通道送给所述TSN控制平面。
步骤S30、将预设个数时间戳与预期时间戳进行比较,根据比较结果得到实际时间与预期时间的差异。
具体地,所述步骤S30具体包括:
步骤S31、所述TSN控制平面配置所述TSN设备对选定的业务流进行时戳记录,记录哪些时戳;
步骤S32、所述TSN控制平面解析来自所述TSN设备的原始报文或者测量报文,提取原始报文或者测量报文中Ta2、Tb2、Tc2、Td2,与预期的Ta1、Tb1、Tc1、Td1进行比较,测量得到两者之间的偏差。
本发明提供一种可以精确测量TSN网络时间转发特性的方法,通过记录同一个报文经过TSN设备内部4个关键处理点的实际时间戳,并收集4个时间戳 保存起来送给TSN控制平面,与预期时间戳进行比较,从而测量得到实际时间与预期时间的差异。
进一步地,如图5所示,除了A(时戳记录A)、B(时戳记录B)、C(时戳记录C)、D(时戳记录D)、E(时戳收集E)外,还增加1个时戳控制表F。
其中,所述时戳控制表F由所述TSN控制平面配置,以业务流号FlowID(网络流程编号)为表索引,保存业务流的时戳控制信息:
(1)时戳记录是否有效:Valid信号(Valid就是数据有效的意思);
(2)需要记录的哪些时戳的Bitmap(位图)信号,Bitmap为4比特,分别对应Ta2、Tb2、Tc2、Td2时戳;
(3)记录时戳的报文当前序号SeqID(唯一标识);初始化为SeqID为0,每次查找到时戳记录有效的报文后自动加1;每次控制平面对该业务流发起一次新的TSN时戳记录时,将对应业务流的当前SeqID置为0。
在正常的TSN转发处理外,TSN设备的转发面在图5所示的①-⑥点的新增的处理流程如下:
①、第一时间记录模块(时戳记录A)记录所有报文的Ta时戳,Ta时戳与报文随路一起后续处理;
②、报文进行正常的接收暂存以及转发查找,获得报文的业务流号FlowID、输出队列号QueueID;
③、报文使用FlowID查找时戳控制表F获得该报文的Valid、Bitmap、SeqID、并将SeqID加1后回写到时戳控制表F中;
④、记录时戳Tb2,Ta2、Tb2和报文随路一起进行后续处理;
⑤、记录时戳Tc2,Ta2、Tb2、Tc2和报文随路一起进行后续处理;
⑥、记录时戳Td2,将时戳信息Ta2、Tb2、Tc2、Td2以及转发信息、时戳控制信息一起送给时戳收集器(时戳收集E)。
各位置需要携带的信息如下:
其中,时戳收集器(时戳收集E)将Valid有效的报文,以SeqID为索引,保存报文的QueueID、时戳Bitmap以及Ta2、Tb2、Tc2、Td2信息,以上等待TSN控制平面读取并计算。
进一步地,如图6所示,测量方法除了TSN控制平面以及TSN设备外,还有1个发包器,发包器可以控制发包时间、报文长度、突发数量。发包器可以是标准网络测试仪,也可以是TSN设备内部的自主发包器。发包器通过人工或者TSN控制平面控制其发送的报文达到TSN设备的时间,落在1Qbv的门控关闭窗口内,即图7(图7表示1Qbv开窗时间和开窗大小测量)的Gate OFF时间段。
测量流程如下,人工或者TSN控制平面控制发包器使用最小64字节报文以线路峰值连续突发M个报文,以多次迭代方式进行:
(1)第1次:发包器发送包长=64,M=1(突发1个报文,P0),TSN设备记录报文P0的4个时戳,此时得到的Tc2为1Qbv开窗的起始时间。
(2)第2次:包长=64,M=2(突发2个报文,P0、P1),记录报文P0、P1的4个时戳,如果Tc2(P1)-Tc2(P0)<=(64*8)/线路速率。则认为P0、P1在同一1Qbv窗口内发出,判断1Qbv窗口大于等于(2*64B*8)/线路速率。
……
(M+1)第M+1次:包长=64,突发M+1个报文(P0、P1…Pm),记录所有报文的4个时戳,如果Tc2(Pm)-Tc2(Pm-1)>=1个1Qbv循环周期,且Tc2(Pm-1)-Tc2(Pm-2)<=(64*8)/线路速率,则认为Pm-2、Pm-1在同一1Qbv窗口内发出,Pm-1、Pm不在同一1Qbv窗口内发出,1Qbv开窗只能容纳M个64字节报文,此时1bv窗口大小大于等于(M*64B*8)/线路速率,小于等于(M+1)*(64B*8)/线路速率,测量精度为(64B*8)/线路速率。
本发明可以精确测量TSN网络转发时间特性,可以根据测量解决来检测TSN网络功能是否正常,评估TSN网络性能,并进一步调整和优化TSN网络的业务路径转发时间计算。
进一步地,如图8所示,基于上述TSN网络转发时间特性的测量方法,本发明还相应提供了一种终端,所述终端包括处理器10、存储器20及显示器30。图8仅示出了终端的部分组件,但是应理解的是,并不要求实施所有示出的组件,可以替代的实施更多或者更少的组件。
所述存储器20在一些实施例中可以是所述终端的内部存储单元,例如终端的硬盘或内存。所述存储器20在另一些实施例中也可以是所述终端的外部存储设备,例如所述终端上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器20还可以既包括所述终端的内部存储单元也包括外部存储设备。所述存储器20用于存储安装于所述终端的应用软件及各类数据,例如所述安装终端的程序代码等。所述存储器20还可以用于暂时地存储已经输出或者将要输出的数据。在一实施例中,存储器20上存储有TSN网络转发时间特性的测量程序40,该TSN网络转发时间特性的测量程序40可被处理器10所执行,从而实现本申请中TSN网络转发时间特性的测量方法。
所述处理器10在一些实施例中可以是一中央处理器(Central Processing Unit,CPU),微处理器或其他数据处理芯片,用于运行所述存储器20中存储的程序代码或处理数据,例如执行所述TSN网络转发时间特性的测量方法等。
所述显示器30在一些实施例中可以是LED显示器、液晶显示器、触控式液晶显示器以及OLED(Organic Light-Emitting Diode,有机发光二极管)触摸器等。所述显示器30用于显示在所述终端的信息以及用于显示可视化的用户界面。所述终端的部件10-30通过系统总线相互通信。
在一实施例中,当处理器10执行所述存储器20中TSN网络转发时间特性的测量程序40时实现以下步骤:
记录同一个报文经过TSN设备内部预设个数的关键处理点的实际时间戳;
收集预设个数时间戳并保存,同时发送给TSN控制平面;
将预设个数时间戳与预期时间戳进行比较,根据比较结果得到实际时间与预期时间的差异。
其中,所述预设个数为4个;所述记录同一个报文经过TSN设备内部预设个数的关键处理点的实际时间戳,之前还包括:
预先在所述TSN设备的内部转发平面路径上增加4个时戳采集器和1个时戳收集器,4个时戳采集器分别为第一时间记录模块、第二时间记录模块、第三时间记录模块以及第四时间记录模块。
其中,所述第一时间记录模块设置在线路接收定帧之后,接收暂存之前;
所述第二时间记录模块设置在转发查找之后,输出排队之前;
所述第三时间记录模块设置在输出排队之后,发送暂存之前;
所述第四时间记录模块设置在发送暂存之后,发送成帧之前。
其中,所述记录同一个报文经过TSN设备内部预设个数的关键处理点的实际时间戳,具体包括:
所述第一时间记录模块在收到线路的报文的SFD字段时刻,记录此时的全局时间Ta2,作为数据包线路接收时间;
所述第二时间记录模块在将报文写入输出队列的时刻,记录此时的全局时间Tb2,作为数据包入队的实际时间;
所述第三时间记录模块在将报文从队列中读出第一个字节的时刻,记录此时的全局时间Tc2,作为数据包出队的实际时间;
所述第四时间记录模块在发送报文的SFD字段时刻,记录此时的全局时间Td2,作为数据包线路发送的实际时间。
其中,所述收集预设个数时间戳并保存,同时发送给TSN控制平面,具体包括:
所述时戳收集器收集同一报文的Ta2、Tb2、Tc2和Td2这4个时戳;
通过修改原始报文将4个时戳携带在原始报文中送至所述TSN控制平面,或者将4个时戳打包成独立的测量报文,通过额外的转发通道送给所述TSN控制平面。
其中,所述将预设个数时间戳与预期时间戳进行比较,根据比较结果得到实际时间与预期时间的差异,具体包括:
所述TSN控制平面配置所述TSN设备对选定的业务流进行时戳记录;
所述TSN控制平面解析来自所述TSN设备的原始报文或者测量报文,提取原始报文或者测量报文中Ta2、Tb2、Tc2、Td2,与预期的Ta1、Tb1、Tc1、Td1进行比较,测量得到两者之间的偏差。
其中,所述TSN控制平面配置一个时戳控制表,所述时戳控制表设置在转发查找之后,第二时间记录模块之前;
所述时戳控制表以业务流号为表索引,保存业务流的时戳控制信息。
其中,所述TSN控制平面通过控制发包器发送报文到达所述TSN设备的时间,所述发包器控制发包时间、报文长度和突发数量。
本发明还提供一种存储介质,其中,所述存储介质存储有TSN网络转发时间特性的测量程序,所述TSN网络转发时间特性的测量程序被处理器执行时实现如上所述的TSN网络转发时间特性的测量方法的步骤。
综上所述,本发明提供一种TSN网络转发时间特性的测量方法及终端,所述方法包括:记录同一个报文经过TSN设备内部预设个数的关键处理点的实际时间戳;收集预设个数时间戳并保存,同时发送给TSN控制平面;将预设个数时间戳与预期时间戳进行比较,根据比较结果得到实际时间与预期时间的差异。本发明通过精确测量TSN网络转发时间特性,根据测量结果来检测TSN网络功能是否正常,评估TSN网络性能,并进一步调整和优化TSN网络的业务路径转发时间计算。
当然,本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关硬件(如处理器,控制器等)来完成,所述的程序可存储于一计算机可读取的存储介质中,所述程序在执行时可包括如上述各方法实施例的流程。其中所述的存储介质可为存储器、磁碟、光盘等。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。
Claims (10)
- 一种TSN网络转发时间特性的测量方法,其特征在于,所述TSN网络转发时间特性的测量方法包括:记录同一个报文经过TSN设备内部预设个数的关键处理点的实际时间戳;收集预设个数时间戳并保存,同时发送给TSN控制平面;将预设个数时间戳与预期时间戳进行比较,根据比较结果得到实际时间与预期时间的差异。
- 根据权利要求1所述的TSN网络转发时间特性的测量方法,其特征在于,所述预设个数为4个;所述记录同一个报文经过TSN设备内部预设个数的关键处理点的实际时间戳,之前还包括:预先在所述TSN设备的内部转发平面路径上增加4个时戳采集器和1个时戳收集器,4个时戳采集器分别为第一时间记录模块、第二时间记录模块、第三时间记录模块以及第四时间记录模块。
- 根据权利要求2所述的TSN网络转发时间特性的测量方法,其特征在于,所述第一时间记录模块设置在线路接收定帧之后,接收暂存之前;所述第二时间记录模块设置在转发查找之后,输出排队之前;所述第三时间记录模块设置在输出排队之后,发送暂存之前;所述第四时间记录模块设置在发送暂存之后,发送成帧之前。
- 根据权利要求3所述的TSN网络转发时间特性的测量方法,其特征在于,所述记录同一个报文经过TSN设备内部预设个数的关键处理点的实际时间戳,具体包括:所述第一时间记录模块在收到线路的报文的SFD字段时刻,记录此时的全局时间Ta2,作为数据包线路接收时间;所述第二时间记录模块在将报文写入输出队列的时刻,记录此时的全局时间Tb2,作为数据包入队的实际时间;所述第三时间记录模块在将报文从队列中读出第一个字节的时刻,记录此时 的全局时间Tc2,作为数据包出队的实际时间;所述第四时间记录模块在发送报文的SFD字段时刻,记录此时的全局时间Td2,作为数据包线路发送的实际时间。
- 根据权利要求4所述的TSN网络转发时间特性的测量方法,其特征在于,所述收集预设个数时间戳并保存,同时发送给TSN控制平面,具体包括:所述时戳收集器收集同一报文的Ta2、Tb2、Tc2和Td2这4个时戳;通过修改原始报文将4个时戳携带在原始报文中送至所述TSN控制平面,或者将4个时戳打包成独立的测量报文,通过额外的转发通道送给所述TSN控制平面。
- 根据权利要求5所述的TSN网络转发时间特性的测量方法,其特征在于,所述将预设个数时间戳与预期时间戳进行比较,根据比较结果得到实际时间与预期时间的差异,具体包括:所述TSN控制平面配置所述TSN设备对选定的业务流进行时戳记录;所述TSN控制平面解析来自所述TSN设备的原始报文或者测量报文,提取原始报文或者测量报文中Ta2、Tb2、Tc2、Td2,与预期的Ta1、Tb1、Tc1、Td1进行比较,测量得到两者之间的偏差。
- 根据权利要求3所述的TSN网络转发时间特性的测量方法,其特征在于,所述TSN控制平面配置一个时戳控制表,所述时戳控制表设置在转发查找之后,第二时间记录模块之前;所述时戳控制表以业务流号为表索引,保存业务流的时戳控制信息。
- 根据权利要求1所述的TSN网络转发时间特性的测量方法,其特征在于,所述TSN控制平面通过控制发包器发送报文到达所述TSN设备的时间,所述发包器控制发包时间、报文长度和突发数量。
- 一种终端,其特征在于,所述终端包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的TSN网络转发时间特性的测量程序,所述 TSN网络转发时间特性的测量程序被所述处理器执行时实现如权利要求1-8任一项所述的TSN网络转发时间特性的测量方法的步骤。
- 一种存储介质,其特征在于,所述存储介质存储有TSN网络转发时间特性的测量程序,所述TSN网络转发时间特性的测量程序被处理器执行时实现如权利要求1-8任一项所述的TSN网络转发时间特性的测量方法的步骤。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011260180.9 | 2020-11-12 | ||
CN202011260180.9A CN112511376B (zh) | 2020-11-12 | 2020-11-12 | 一种tsn网络转发时间特性的测量方法及终端 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022100411A1 true WO2022100411A1 (zh) | 2022-05-19 |
Family
ID=74957255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/125676 WO2022100411A1 (zh) | 2020-11-12 | 2021-10-22 | 一种tsn网络转发时间特性的测量方法及终端 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112511376B (zh) |
WO (1) | WO2022100411A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115396333A (zh) * | 2022-08-24 | 2022-11-25 | 北京智芯微电子科技有限公司 | 用于通信网络延时测试的可视化芯片、方法和交换机 |
CN115426068A (zh) * | 2022-09-20 | 2022-12-02 | 北京智芯微电子科技有限公司 | Tsn时钟同步系统和方法、计算机存储介质及芯片 |
CN115801544A (zh) * | 2023-01-29 | 2023-03-14 | 北京智芯微电子科技有限公司 | 网络监测方法、设备、系统及存储介质 |
CN116366570A (zh) * | 2023-05-30 | 2023-06-30 | 新华三技术有限公司 | 一种报文转发方法、装置及可编程器件 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112511376B (zh) * | 2020-11-12 | 2022-04-15 | 鹏城实验室 | 一种tsn网络转发时间特性的测量方法及终端 |
CN114285515B (zh) * | 2021-12-14 | 2023-12-19 | 昆高新芯微电子(江苏)有限公司 | 实现任意tsn时窗周期的方法和装置 |
CN114390009B (zh) * | 2021-12-20 | 2024-04-26 | 中国电子科技集团公司第五十四研究所 | 一种时间敏感网络中的数据处理方法及装置 |
CN115065646B (zh) * | 2022-04-29 | 2024-04-02 | 中国电子技术标准化研究院 | 一种基于软硬件协同的报文定时发送方法及装置 |
CN114978754B (zh) * | 2022-06-21 | 2023-09-19 | 奥特酷智能科技(南京)有限公司 | 一种tsn异常检测方法及系统 |
CN115277500A (zh) * | 2022-09-26 | 2022-11-01 | 北京智芯微电子科技有限公司 | Tsn流量的时延可视化方法、系统、存储介质和控制器 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180316592A1 (en) * | 2017-04-26 | 2018-11-01 | Microsemi Storage Solutions, Inc. | Scheduled network setup test method and system |
WO2020136487A2 (en) * | 2018-12-26 | 2020-07-02 | Abb Schweiz Ag | A tsn enabled controller |
US20200259896A1 (en) * | 2019-02-13 | 2020-08-13 | Telefonaktiebolaget Lm Ericsson (Publ) | Industrial Automation with 5G and Beyond |
WO2020187422A1 (en) * | 2019-03-21 | 2020-09-24 | Huawei Technologies Co., Ltd. | Network entities and methods for a wireless network system for determining time information |
CN112511376A (zh) * | 2020-11-12 | 2021-03-16 | 鹏城实验室 | 一种tsn网络转发时间特性的测量方法及终端 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101751248B (zh) * | 2008-11-28 | 2013-01-02 | 国际商业机器公司 | 为Web应用设计时间敏感的性能测试用例的方法和系统 |
CN103138887B (zh) * | 2011-12-05 | 2018-01-30 | 中兴通讯股份有限公司 | 一种1588事件报文的处理方法及系统 |
CN107800500A (zh) * | 2016-08-29 | 2018-03-13 | 南京中兴新软件有限责任公司 | 一种确定时间同步报文时钟时间的方法、装置和设备 |
US10250868B1 (en) * | 2017-03-29 | 2019-04-02 | Amazon Technologies, Inc. | Synchronizing data streams |
CN108650051B (zh) * | 2018-05-10 | 2019-06-21 | 西安电子科技大学 | 通用全硬件一步式1588的时钟同步装置及方法 |
US11528722B2 (en) * | 2018-07-08 | 2022-12-13 | Intel Corporation | Apparatus, system and method of scheduling time sensitive networking (TSN) wireless communications |
EP3895440A1 (en) * | 2018-12-14 | 2021-10-20 | Diehl Metering Systems GmbH | Method for collecting data in a network, sensor, consumption meter, temporary receiver and network |
CN110971331B (zh) * | 2019-11-26 | 2021-08-06 | 中国信息通信研究院 | 一种逐跳时延测量方法和系统 |
CN111585836B (zh) * | 2020-04-26 | 2023-06-13 | 工业互联网创新中心(上海)有限公司 | 时间敏感网络的自动测试方法和装置 |
-
2020
- 2020-11-12 CN CN202011260180.9A patent/CN112511376B/zh active Active
-
2021
- 2021-10-22 WO PCT/CN2021/125676 patent/WO2022100411A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180316592A1 (en) * | 2017-04-26 | 2018-11-01 | Microsemi Storage Solutions, Inc. | Scheduled network setup test method and system |
WO2020136487A2 (en) * | 2018-12-26 | 2020-07-02 | Abb Schweiz Ag | A tsn enabled controller |
US20200259896A1 (en) * | 2019-02-13 | 2020-08-13 | Telefonaktiebolaget Lm Ericsson (Publ) | Industrial Automation with 5G and Beyond |
WO2020187422A1 (en) * | 2019-03-21 | 2020-09-24 | Huawei Technologies Co., Ltd. | Network entities and methods for a wireless network system for determining time information |
CN112511376A (zh) * | 2020-11-12 | 2021-03-16 | 鹏城实验室 | 一种tsn网络转发时间特性的测量方法及终端 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115396333A (zh) * | 2022-08-24 | 2022-11-25 | 北京智芯微电子科技有限公司 | 用于通信网络延时测试的可视化芯片、方法和交换机 |
CN115396333B (zh) * | 2022-08-24 | 2024-01-16 | 北京智芯微电子科技有限公司 | 用于通信网络延时测试的可视化芯片、方法和交换机 |
CN115426068A (zh) * | 2022-09-20 | 2022-12-02 | 北京智芯微电子科技有限公司 | Tsn时钟同步系统和方法、计算机存储介质及芯片 |
CN115426068B (zh) * | 2022-09-20 | 2023-10-27 | 北京智芯微电子科技有限公司 | Tsn时钟同步系统和方法、计算机存储介质及芯片 |
CN115801544A (zh) * | 2023-01-29 | 2023-03-14 | 北京智芯微电子科技有限公司 | 网络监测方法、设备、系统及存储介质 |
CN115801544B (zh) * | 2023-01-29 | 2023-05-23 | 北京智芯微电子科技有限公司 | 网络监测方法、设备、系统及存储介质 |
CN116366570A (zh) * | 2023-05-30 | 2023-06-30 | 新华三技术有限公司 | 一种报文转发方法、装置及可编程器件 |
CN116366570B (zh) * | 2023-05-30 | 2023-08-18 | 新华三技术有限公司 | 一种报文转发方法、装置及可编程器件 |
Also Published As
Publication number | Publication date |
---|---|
CN112511376B (zh) | 2022-04-15 |
CN112511376A (zh) | 2021-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022100411A1 (zh) | 一种tsn网络转发时间特性的测量方法及终端 | |
CN112105080B (zh) | 一种时间敏感网络数据传输系统及传输方法 | |
US20240214323A1 (en) | Packet transmission method and apparatus | |
US11032205B2 (en) | Flow control method and switching device | |
CN105991384B (zh) | 兼容时间触发以太网与1553b的航天以太网通信方法 | |
WO2019033857A1 (zh) | 报文控制方法及网络装置 | |
WO2019071598A1 (zh) | 发送和接收时钟同步报文的方法和装置 | |
WO2021052374A1 (zh) | 网络拥塞控制方法、节点、系统及存储介质 | |
WO2012065477A1 (zh) | 报文拥塞避免方法及系统 | |
CN108881031B (zh) | 一种基于sdn网络的自适应可靠数据传输方法 | |
CN104641602A (zh) | 输出实时网络流量延迟以及缓冲区占用 | |
US12047300B2 (en) | Packet forwarding method, device, and system | |
US20230171175A1 (en) | Real-time network-wide link latency monitoring with in-network int sampling and aggregation | |
WO2015131626A1 (zh) | 用于网络设备的时间同步方法、装置及时间同步服务器 | |
CN108614792B (zh) | 1394事务层数据包存储管理方法及电路 | |
CN109547157B (zh) | 一种支持时间触发以太网的万兆网络控制器及控制方法 | |
WO2022174672A1 (zh) | 时延测量方法、装置、设备和计算机可读存储介质 | |
CN113542148A (zh) | 一种报文聚合方法、装置、网络网卡及可读存储介质 | |
CN107835109B (zh) | 一种测试软件定义的分组传送网网络的方法及系统 | |
CN110545214A (zh) | 一种基于视联网的时延检测方法和交换机 | |
CN115065646A (zh) | 一种基于软硬件协同的报文定时发送方法及装置 | |
CN117014967A (zh) | 移动通信系统、方法和用户面节点 | |
WO2017088489A1 (zh) | 一种数据报文传输方法、系统及通信系统 | |
US9930627B2 (en) | Metered interface | |
Zheng et al. | Design of time-triggered service processing flow on ethernet end system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21890938 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21890938 Country of ref document: EP Kind code of ref document: A1 |