WO2022100274A1 - 终端天线的工作模式确定方法、装置、终端及存储介质 - Google Patents

终端天线的工作模式确定方法、装置、终端及存储介质 Download PDF

Info

Publication number
WO2022100274A1
WO2022100274A1 PCT/CN2021/118780 CN2021118780W WO2022100274A1 WO 2022100274 A1 WO2022100274 A1 WO 2022100274A1 CN 2021118780 W CN2021118780 W CN 2021118780W WO 2022100274 A1 WO2022100274 A1 WO 2022100274A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
scenario
signal strength
throughput
working mode
Prior art date
Application number
PCT/CN2021/118780
Other languages
English (en)
French (fr)
Inventor
孔领领
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21890802.8A priority Critical patent/EP4240065A4/en
Publication of WO2022100274A1 publication Critical patent/WO2022100274A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/25Monitoring; Testing of receivers taking multiple measurements
    • H04B17/254Monitoring; Testing of receivers taking multiple measurements measuring at different reception times
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0871Hybrid systems, i.e. switching and combining using different reception schemes, at least one of them being a diversity reception scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of antenna technologies, and in particular, to a method, apparatus, terminal, and storage medium for determining a working mode of a terminal antenna.
  • the working modes of the terminal antenna include a single-input single-output (Single-Input Single-Output, SISO) mode and a multiple-input multiple-output (Multiple Input Multiple Output, MIMO) mode.
  • SISO Single-Input Single-Output
  • MIMO Multiple Input Multiple Output
  • the terminal determines whether the operation mode of the terminal antenna is the MIMO mode or the SISO mode based on the throughput. Exemplarily, when the throughput is high, it is determined that the terminal antenna uses the MIMO mode; when the throughput is low, it is determined that the working mode of the terminal antenna uses the SISO mode.
  • Embodiments of the present application provide a method, device, terminal, and storage medium for determining a working mode of a terminal antenna.
  • the technical solution includes:
  • an embodiment of the present application provides a method for determining a working mode of a terminal antenna, and the method includes:
  • the terminal Based on the received signal strength of the terminal within the target period, it is determined that the terminal is in a first signal scene or a second signal scene, and the signal strength corresponding to the first signal scene is higher than the signal strength corresponding to the second signal scene signal strength;
  • the working mode of the terminal antenna is determined based on the throughput of the terminal within the target period.
  • an embodiment of the present application provides an apparatus for determining a working mode of a terminal antenna, and the apparatus includes:
  • a signal strength acquisition module used to acquire the received signal strength of the terminal within the target period
  • a scene determination module configured to determine that the terminal is in a first signal scene or a second signal scene based on the received signal strength of the terminal within the target period, and the signal strength corresponding to the first signal scene is higher than the signal strength of the first signal scene the signal strength corresponding to the second signal scenario;
  • a working mode switching module configured to determine the working mode of the terminal antenna based on the throughput of the terminal within the target period if the terminal is in the first signal scenario.
  • an embodiment of the present application provides a terminal, where the terminal includes a processor, a memory, and a wireless communication chip, the memory stores computer instructions, and the computer instructions are loaded and executed by the wireless communication chip as in a The method for determining the working mode of the terminal antenna described in the aspect.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and the computer program is loaded and executed by a processor to implement the terminal according to one aspect A method for determining the working mode of an antenna.
  • an embodiment of the present application provides a computer program product, where the computer program product or computer program includes computer instructions, and the computer instructions are stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer instruction from the computer-readable storage medium, and the processor executes the computer instruction, so that the computer device executes the above-mentioned method for determining the working mode of the terminal antenna.
  • FIG. 1 is a schematic diagram of a working mode of a terminal antenna provided by an embodiment of the present application
  • FIG. 2 is a flowchart of a method for determining a working mode of a terminal antenna provided by an embodiment of the present application
  • FIG. 3 is a flowchart of a method for determining a working mode of a terminal antenna provided by an embodiment of the present application
  • FIG. 4 is a flowchart of a method for determining a working mode of a terminal antenna provided by an embodiment of the present application
  • FIG. 5 is a structural block diagram of an apparatus for determining a working mode of a terminal antenna provided by an embodiment of the present application
  • FIG. 6 is a structural block diagram of an apparatus provided by an embodiment of the present application.
  • SISO Single input single output, that is, a single transmitting antenna is used at the transmitting end to transmit signals, and a single receiving antenna is used at the receiving end to receive signals.
  • MIMO Multiple Input Multiple Output, that is, multiple transmit antennas are used at the transmitting end to transmit signals independently, and multiple receive antennas are used at the receiving end to receive signals.
  • TRP Total Radiated Power
  • TIS Total Isotropic Sensitivity
  • TRS Total Isotropic Sensitivity
  • the data streams sent and received by multiple transmit/receive antennas can also be different, increasing the transmission rate.
  • the terminal antenna is controlled to switch between the SISO mode and the MIMO mode only according to the throughput.
  • the SISO mode may cause problems such as reduced communication distance and communication drop, and when the throughput is large, the MIMO mode may be used. There will be a problem of wasting power consumption.
  • an embodiment of the present application provides a method for switching the working mode of a terminal antenna.
  • the working mode of the terminal antenna is determined based on the throughput of the terminal, so that the working mode of the terminal antenna can take into account the communication quality.
  • the power consumption of the terminal can be saved on the premise of meeting the business needs.
  • the terminal antenna uses the MIMO mode, so that the TRP and TIS of the terminal can be improved, thereby improving the communication quality and communication distance; for another example, when the terminal is in the target When the signal is strong and the throughput is small during the period, it is determined that the terminal antenna uses the SISO mode, which can effectively save the power consumption of the terminal.
  • each step is performed by a terminal configured with a terminal antenna, the terminal antenna supports both SISO mode and MIMO mode, and the processor in the terminal also supports the terminal antenna in either the SISO mode or the MIMO mode. switch flexibly.
  • the above-mentioned terminal may be a smart phone, a tablet computer, a personal computer, or the like.
  • a wireless communication chip is installed in the terminal, and the execution subject of each step may also be the above-mentioned wireless communication chip.
  • FIG. 1 shows a schematic diagram of a working mode of a terminal antenna according to an embodiment of the present application.
  • the MIMO mode is used regardless of the throughput, and the MIMO mode is used to make up for the weak signal problem to meet service requirements.
  • the MIMO mode is used to improve the communication quality to meet service requirements. If the throughput is low and the SISO mode can also meet the service requirements, the SISO mode is used to save terminal power consumption.
  • FIG. 2 shows a flowchart of a method for determining a working mode of a terminal antenna provided by an embodiment of the present application. The method includes:
  • Step 201 Acquire the received signal strength of the terminal within the target time period.
  • the received signal strength is used to characterize the quality of the signal received by the terminal.
  • the received signal strength can be represented by RSSI (Received Signal Strength Indication).
  • the target period can be any period.
  • the time length of the target period is preset by the terminal, or can be customized by the technician. Exemplarily, the time length of the target period is 5 seconds.
  • the terminal acquires the received signal strength of the terminal in each time unit within the target period.
  • the terminal acquires the received signal strength of the terminal every second within the target period.
  • the terminal acquires the received signal strength of the terminal within a target period of time every preset time.
  • the preset time is preset by the terminal, or is customized by the technician. Exemplarily, the preset time is 10 seconds.
  • Step 202 Based on the received signal strength of the terminal within the target period, it is determined that the terminal is in the first signal scenario or the second signal scenario.
  • the signal strength corresponding to the first signal scene is higher than the signal strength corresponding to the second signal scene.
  • the first signal scenario is also referred to as a strong signal scenario
  • the second signal scenario is also referred to as a weak signal scenario.
  • the terminal determines that it is in a strong signal scenario or a weak signal scenario based on its received signal strength within the target period.
  • Step 203 if the terminal is in the first signal scenario, determine the working mode of the terminal antenna based on the throughput of the terminal within the target period.
  • Throughput refers to the amount of data successfully transmitted per unit of time to a network, device, port, virtual circuit or other facility.
  • the working mode of the terminal antenna includes SISO mode or MIMO mode.
  • the working mode of the terminal antenna is determined to be the MIMO mode, so that the TRP and TIS of the terminal can be improved, thereby improving the communication quality and communication distance.
  • the terminal when the terminal is in a strong signal scenario within the target period and the throughput is small, it is determined that the working mode of the terminal antenna is the SISO mode, because of the requirements for communication quality and communication distance when the throughput is small If it is lower, switch to SISO mode at this time, which can effectively save the power consumption of the terminal.
  • the technical solutions provided by the embodiments of the present application determine the working mode of the terminal antenna based on the throughput of the terminal when the terminal is in a strong signal scenario, so that the working mode of the terminal antenna can take into account both the communication quality and the power consumption of the terminal There are two factors to save terminal power consumption on the premise of meeting business needs.
  • the terminal antenna uses the MIMO mode, so that the TRP and TIS of the terminal can be improved, thereby improving the communication quality and communication distance; for another example, when the terminal is in the target When the signal is strong and the throughput is small during the period, it is determined that the terminal antenna uses the SISO mode, which can effectively save the power consumption of the terminal.
  • step 202 includes the following sub-steps:
  • Step 202a acquiring the variation trend of the received signal strength of the terminal within the target period.
  • the variation trend is used to characterize the variation of the received signal strength over a period of time.
  • the variation trend of the received signal strength of the terminal within the target period includes a stronger trend, a weaker trend and a maintenance trend.
  • the increasing trend refers to the overall trend of the terminal's received signal strength during the target period
  • the weakening trend refers to the overall weakening trend of the terminal's received signal strength within the target period
  • the maintenance trend refers to the terminal The received signal strength in the target period remains stable as a whole.
  • the terminal compares the received signal strength of the last time unit within the target period with the received signal strength of the first time unit to determine a change trend of the received signal strength of the terminal within the target period.
  • the change trend of the received signal strength of the terminal in the target period is a trend of becoming stronger; if the received signal strength of the last time unit If the strength is less than the received signal strength of the first time unit, the change trend of the received signal strength of the terminal in the target period is a weakening trend; if the received signal strength of the last time unit is equal to the received signal strength of the first time unit, Then, the change trend of the received signal strength of the terminal in the target period is the maintenance trend.
  • Step 202b based on the change trend and the signal strength threshold, determine that the terminal is in the first signal scenario or the second signal scenario.
  • the signal strength threshold is a predefined parameter, which is represented by RSSI_Thr.
  • the signal strength threshold is -75dBm.
  • the signal strength threshold is a fixed value.
  • the signal strength threshold has a negative correlation with the delay requirement of the service scenario where the terminal is located. That is, the higher the latency requirement of the service scenario where the terminal is located, that is, the smaller the latency required by the service scenario where the terminal is located, the larger the signal strength threshold; the lower the latency requirement of the service scenario where the terminal is located. , that is, when the time delay required by the service scenario in which the terminal is located is larger, the signal strength threshold is smaller.
  • the terminal when the signal strength threshold is determined based on the delay requirement of the service scenario where the terminal is located, the terminal stores the service scenario where the terminal is located, the delay requirement of the service scenario where the terminal is located, and the first time between the signal strength thresholds. Then, based on the service scenario where the terminal is located, the above-mentioned first correspondence is searched to obtain the corresponding signal strength threshold, and then the determined signal strength threshold is transmitted to the wireless communication chip through a predetermined interface. Or, the terminal stores a second correspondence between the service scenario where the terminal is located, the delay requirement of the service scenario where the terminal is located, and the functional relationship between the delay requirement of the service scenario where the terminal is located and the signal strength threshold Mode. After determining the service scenario where the terminal is located, the terminal searches the second corresponding relationship to obtain the delay requirement of the service scenario where the terminal is located, and then obtains the corresponding signal strength threshold through the above functional relationship.
  • the change trend is a stronger trend or a maintenance trend
  • the received signal strength of the terminal in the target time unit within the target period is greater than or equal to the signal strength threshold
  • the change trend is When the trend becomes stronger or maintains the trend
  • the received signal strength of the terminal in the target time unit within the target period is less than the signal strength threshold
  • equals can be classified as greater than, that is, greater than or equal to, and can also be classified as less than, that is, less than or equal to, which is not limited in this application.
  • the above target time unit refers to the last time unit within the target time period. Since the received signal strength of the last time unit in the target period is relatively close to the received signal strength of the current moment, by comparing the relationship between the received signal strength of the last time unit and the signal strength threshold, the received signal at the current moment can be intuitively reflected. The size of the intensity is more accurate when determining the working mode later.
  • the terminal if the average value of the received signal strength of the terminal within the target period is greater than or equal to the signal strength threshold, it is determined that the terminal is in the first signal scenario; if the average value of the received signal strength of the terminal within the target period of time is greater than or equal to the signal strength threshold If it is less than the signal strength threshold, it is determined that the terminal is in the second signal scenario.
  • the target time unit refers to the last time unit within the target period.
  • step 202b is further implemented as: determining that the terminal is in the first signal scene or the second signal scene based on the change trend, the signal strength threshold and the signal strength margin.
  • the signal strength margin is also a predefined parameter, which is represented by C.
  • the signal strength margin is 2dB.
  • the target time unit is the last time unit within the target period.
  • the terminal compares the received signal strength of the last time unit within the target period with the sum of the signal strength threshold and the signal strength margin. If the received signal strength of the last time unit within the target period is greater than or equal to the signal strength threshold and the signal strength If the received signal strength of the last time unit in the target period is less than the sum of the signal strength threshold and the signal strength margin, it is determined that the terminal is in a weak signal scene. Exemplarily, when the received signal strength RSSI of the terminal in the last time unit within the target period is greater than or equal to RSSI_Thr+C, the terminal is in a strong signal scenario; the received signal strength RSSI of the terminal in the last time unit within the target period is less than RSSI_Thr+ When C, the terminal is in a weak signal scenario.
  • the change trend is a weakening trend
  • the received signal strength of the terminal in the target time unit within the target period is less than the difference between the signal strength threshold and the signal strength margin
  • the change trend For the weakening trend and the received signal strength of the terminal in the target time unit within the target period is greater than or equal to the difference between the signal strength threshold and the signal strength margin, it is determined that the terminal is in the first signal scenario.
  • the terminal compares the received signal strength of the last time unit within the target period with the difference between the signal strength threshold and the signal strength margin. If the received signal strength of the last time unit within the target period is less than the signal strength threshold and the signal strength margin If the difference between the two, it is determined that the terminal is in a weak signal scenario; if the received signal strength of the last time unit within the target period is greater than or equal to the sum of the signal strength threshold and the signal strength margin, it is determined that the terminal is in a strong signal scenario.
  • the terminal when the RSSI of the terminal in the target period is greater than or equal to RSSI_Thr-C, the terminal is in a strong signal scenario; when the RSSI of the terminal in the target period is less than RSSI_Thr-C, the terminal is in a weak signal scenario.
  • the technical solutions provided by the embodiments of the present application determine whether the terminal antenna is in a strong-signal scenario or a weak-signal scenario according to the change trend, the signal strength threshold and the signal strength margin, preliminarily determine the signal strength by the signal strength threshold, and set the signal strength margin This parameter is determined to avoid frequent switching of the terminal antenna between the SISO mode and the MIMO mode.
  • FIG. 3 shows a flowchart of a method for determining a working mode of a terminal antenna according to an embodiment of the present application.
  • step 203 is alternatively implemented as step 203a and step 203b.
  • the method includes:
  • Step 301 Acquire the received signal strength of the terminal within the target time period.
  • Step 302 Based on the received signal strength of the terminal within the target period, it is determined that the terminal is in the first signal scenario or the second signal scenario.
  • the signal strength corresponding to the first signal scene is higher than the signal strength corresponding to the second signal scene.
  • Step 203a if the terminal is in the first signal scenario, it is determined that the terminal is in the first throughput scenario or the second throughput scenario based on the throughput of the terminal within the target period.
  • the throughput corresponding to the first throughput scenario is greater than the throughput corresponding to the second throughput scenario.
  • the first throughput scenario is also a high throughput scenario
  • the second throughput scenario is also a low throughput scenario.
  • the terminal obtains the average value of the throughput of the terminal in the target period; if the average value of the throughput of the terminal in the target period is greater than the throughput threshold, it is determined that the terminal is in the first throughput scenario; if the terminal is in the target period If the average value of the internal throughput is less than the throughput threshold, it is determined that the terminal is in the second throughput scenario.
  • the throughput threshold is a predefined parameter, which is represented by T-PUT_Thr. Exemplarily, the throughput threshold is 30Mps/s. The throughput threshold is used to distinguish the first throughput scenario from the second throughput scenario.
  • the terminal obtains the maximum value of the throughput of the terminal in the target period; if the maximum value of the throughput of the terminal in the target period is greater than the throughput threshold, it is determined that the terminal is in the first throughput scenario; if the terminal is in the target period If the maximum value of the internal throughput is less than the throughput threshold, it is determined that the terminal is in the second throughput scenario.
  • Step 203b based on the terminal being in the first throughput scenario or the second throughput scenario, determine the working mode of the terminal antenna.
  • the terminal is in the first throughput scenario, it is determined that the working mode of the terminal antenna is the MIMO mode.
  • the working mode of the terminal antenna remains unchanged; if the current working mode of the terminal antenna is the SISO mode, the working mode of the terminal antenna is controlled by Switch from SISO mode to MIMO mode.
  • the terminal is in the second throughput scenario, it is determined that the working mode of the terminal antenna is the SISO mode.
  • the working mode of the terminal antenna is the SISO mode, the working mode of the terminal antenna remains unchanged; if the current working mode of the terminal antenna is the MIMO mode, the working mode of the terminal antenna is controlled by MIMO mode is switched to SISO mode.
  • the working mode of the terminal antenna is SISO mode to meet the service requirements.
  • the working mode of the terminal antenna is determined to be the SISO mode to save the power consumption of the terminal.
  • the working mode of the terminal antenna is SISO mode, which usually does not meet the service requirements. In this case, the working mode of the terminal antenna is determined to be the MIMO mode to improve communication quality and communication distance.
  • Step 305 if the terminal is in the second signal scenario, determine that the working mode of the terminal antenna is the MIMO mode.
  • the terminal When the terminal is in a weak signal scenario, in order to compensate for the deterioration of communication quality and shortened communication distance caused by the weak signal, the terminal adopts the MIMO mode regardless of the high or low throughput to improve the communication quality and communication distance.
  • the working mode of the terminal antenna is the MIMO mode
  • the working mode of the terminal antenna remains unchanged. If the working mode of the terminal antenna is the SISO mode, the working mode of the terminal antenna is switched to the MIMO mode.
  • the terminal detects that the RSSIs in the first 5 seconds are -74dBm, -72dBm, -73dBm, -70dBm, -70dBm, and determines that the signal strength trend is becoming stronger; because -70>-75+2, it is considered that the terminal is currently in a strong signal Scenario; after that, the throughputs of the first 5 seconds are detected as 15Mbps/s, 18Mbps/s, 20Mbps/s, 22Mbps/s, 16Mbps/s, and the average value is 18.2Mbps/s, which is less than 30Mbps/s.
  • the terminal is currently in a low throughput scenario.
  • the terminal is currently in a strong signal + low throughput scenario.
  • the SISO mode can fully meet the user's needs. If it is currently in MIMO mode, you can switch to SISO mode to reduce power consumption.
  • the terminal can perform the next round of detection after waiting for 10s.
  • the technical solutions provided by the embodiments of the present application can improve the TRP and TIS of the terminal by determining that the terminal antenna uses the MIMO mode when the terminal is in a strong signal scenario within the target period and the throughput is relatively large. Improve communication quality and communication distance; when the terminal is in a strong signal scenario within the target period and the throughput is small, determine that the terminal antenna uses the SISO mode, which can effectively save terminal power consumption; when the terminal is in a weak signal scene within the target period, In order to make up for the problems such as the degradation of communication quality and the shortening of communication distance caused by weak signals, no matter the throughput is high or low, the terminal adopts the MIMO mode to improve the communication quality and communication distance.
  • FIG. 4 shows a flowchart of a method for determining a working mode of a terminal antenna provided by an embodiment of the present application, and the method includes:
  • Step 401 record the RSSI of the T1 period.
  • Step 402 according to the set logic, determine the change trend of the RSSI in the T1 period.
  • step 403 When the change trend of the RSSI is an increasing trend or a constant trend, step 403 is executed.
  • step 404 is executed.
  • Step 403 detecting whether the RSSI at the current moment is greater than RSSI_Thr+C.
  • step 405 is performed; if the RSSI at the current moment is less than or equal to RSSI_Thr+C, step 410 is performed.
  • Step 404 detecting whether the RSSI at the current moment is less than RSSI_Thr-C.
  • step 405 is executed; if the RSSI at the current moment is greater than or equal to RSSI_Thr-C, step 410 is executed.
  • Step 405 it is determined that the terminal is in a strong signal scenario.
  • Step 406 record the throughput in the T2 time period and take an average value, which is recorded as T-put.
  • Step 407 check whether T-put is less than or equal to T-PUT_thr.
  • step 408 When T-put is less than or equal to T-PUT_thr, step 408 is executed. Or when it is greater than T-PUT_thr, step 409 is executed.
  • Step 408 it is determined that the working mode of the terminal antenna is the SISO mode.
  • the terminal When the terminal is in a strong signal and low throughput scenario, it is determined that the working mode of the terminal antenna is the SISO mode.
  • the terminal detects that the working mode of the terminal antenna is the SISO mode or the MIMO mode. If the working mode of the terminal antenna is the SISO mode, it remains unchanged; if the working mode of the terminal antenna is the MIMO mode, it switches to the SISO mode.
  • Step 409 it is determined that the working mode of the terminal antenna is the MIMO mode.
  • the terminal When the terminal is in a strong signal and high throughput scenario, or in a weak signal scenario, it is determined that the working mode of the terminal antenna is the MIMO mode.
  • the terminal detects that the working mode of the terminal antenna is the SISO mode or the MIMO mode. If the working mode of the terminal antenna is the MIMO mode, it remains unchanged; if the working mode of the terminal antenna is the SISO mode, it switches to the MIMO mode.
  • Step 410 it is determined that the terminal is in a weak signal scenario.
  • step 409 is performed.
  • Step 411 wait for the time T0, and enter the next cycle.
  • FIG. 5 a block diagram of an apparatus for determining a working mode of a terminal antenna provided by an exemplary embodiment of the present application is shown.
  • the apparatus for determining the working mode of the terminal antenna is implemented by software, hardware or a combination of the two to become all or a part of the terminal.
  • the device for determining the working mode of the terminal antenna includes:
  • the signal strength acquisition module 501 is configured to acquire the received signal strength of the terminal within the target period.
  • Scenario determination module 502 configured to determine that the terminal is in a first signal scenario or a second signal scenario based on the received signal strength of the terminal within the target period, and the signal strength corresponding to the first signal scenario is higher than that of the first signal scenario. the signal strength corresponding to the second signal scenario.
  • the working mode determining module 503 is configured to, if the terminal is in the first signal scenario, determine the working mode of the terminal antenna based on the throughput of the terminal within the target period.
  • the technical solutions provided by the embodiments of the present application determine the working mode of the terminal antenna based on the throughput of the terminal when the terminal is in a strong signal scenario, so that the working mode of the terminal antenna can take into account both the communication quality and the power consumption of the terminal There are two factors to save terminal power consumption on the premise of meeting business needs.
  • the terminal antenna uses the MIMO mode, so that the TRP and TIS of the terminal can be improved, thereby improving the communication quality and communication distance; for another example, when the terminal is in the target When the signal is weak and the throughput is small during the period, it is determined that the terminal antenna uses the SISO mode, which can effectively save the power consumption of the terminal.
  • the working mode determination module 503 is configured to:
  • the terminal Based on the throughput of the terminal within the target period, it is determined that the terminal is in a first throughput scenario or a second throughput scenario, and the throughput corresponding to the first throughput scenario is greater than the second throughput scenario corresponding throughput;
  • An operation mode of the terminal antenna is determined based on the terminal being in the first throughput scenario or the second throughput scenario.
  • the working mode determination module 503 is used for:
  • the terminal is in the first throughput scenario, determining that the working mode of the terminal antenna is a multiple-input multiple-output MIMO mode;
  • the terminal is in the second throughput scenario, it is determined that the working mode of the terminal antenna is a single-input single-output SISO mode.
  • the apparatus further includes: a working mode switching module (not shown in the figure).
  • the working mode switching module is used for:
  • the terminal When the terminal is in the first throughput scenario, if the working mode of the terminal antenna is the SISO mode, switching to the MIMO mode;
  • the terminal When the terminal is in the second throughput scenario, if the working mode of the terminal antenna is the MIMO mode, switch to the SISO mode.
  • the working mode determination module 503 is configured to: if the terminal is in the second signal scenario, determine that the working mode of the terminal antenna is MIMO model.
  • the scene determination module 502 is configured to:
  • the terminal Based on the change trend and the signal strength threshold, it is determined that the terminal is in the first signal scenario or the second signal scenario.
  • the scene determination module 502 is configured to:
  • the change trend is a stronger trend or a maintained trend, and the received signal strength of the terminal in the target time unit within the target period is greater than the signal strength threshold, it is determined that the terminal is in the first signal scenario ;
  • the change trend is a weakening trend
  • the received signal strength of the terminal in the target time unit within the target period is less than the signal strength threshold
  • the target time unit is the last time unit in the target time period.
  • the scene determination module 502 is configured to:
  • the signal strength threshold and the signal strength margin Based on the change trend, the signal strength threshold and the signal strength margin, it is determined that the terminal is in the first signal scenario or the second signal scenario.
  • the scene determination module 502 is configured to:
  • the change trend is a maintenance trend.
  • the signal strength threshold is negatively correlated with the delay requirement of the service scenario in which the terminal is located.
  • FIG. 6 shows a structural block diagram of a computer device provided by an exemplary embodiment of the present application.
  • a computer device in this application may include one or more of the following components: a processor 610 and a memory 620 .
  • Processor 610 may include one or more processing cores.
  • the processor 610 uses various interfaces and lines to connect various parts of the entire computer equipment, and executes the computer by running or executing the instructions, programs, code sets or instruction sets stored in the memory 620, and calling the data stored in the memory 620.
  • the processor 610 may adopt at least one of digital signal processing (Digital Signal Processing, DSP), field programmable gate array (Field-Programmable Gate Array, FPGA), and programmable logic array (Programmable Logic Array, PLA).
  • DSP Digital Signal Processing
  • FPGA field programmable gate array
  • PROM Logic Array programmable logic array
  • a hardware form is implemented.
  • the processor 610 may integrate one or a combination of a central processing unit (Central Processing Unit, CPU) and a modem. Among them, the CPU mainly handles the operating system and application programs; the modem is used to handle wireless communication. It can be understood that, the above-mentioned modem may not be integrated into the processor 610,
  • the processor 610 executes the program instructions in the memory 620, the method for determining the working mode of the terminal antenna provided by each of the foregoing method embodiments is implemented.
  • the memory 620 may include random access memory (Random Access Memory, RAM), or may include read-only memory (Read-Only Memory, ROM).
  • the memory 620 includes a non-transitory computer-readable storage medium.
  • Memory 620 may be used to store instructions, programs, codes, sets of codes, or sets of instructions.
  • the memory 620 may include a stored program area and a stored data area, wherein the stored program area may store an instruction for implementing an operating system, an instruction for at least one function, an instruction for implementing each of the above method embodiments, and the like; the storage data area Data and the like created according to the use of the computer equipment may be stored.
  • the structure of the above-mentioned computer device is only illustrative, and in actual implementation, the computer device may include more or less components, which is not limited in this embodiment.
  • FIG. 6 does not constitute a limitation to the computer device 600, and may include more or less components than the one shown, or combine some components, or adopt different component arrangements.
  • an embodiment of the present application provides a computer device, the computer device includes a wireless communication chip, and the wireless communication chip stores computer instructions, and the computer instructions are used to execute the above method for determining a working mode of a terminal antenna.
  • a computer-readable storage medium is also provided, and a computer program is stored in the computer-readable storage medium, and the computer program is loaded and executed by the processor of the terminal to realize the above method embodiments.
  • a method for determining the working mode of the terminal antenna is also provided, and a computer program is stored in the computer-readable storage medium, and the computer program is loaded and executed by the processor of the terminal to realize the above method embodiments.
  • the above-mentioned computer-readable storage medium may be a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic tape, a floppy disk, an optical data storage device, and the like.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • magnetic tape a magnetic tape
  • floppy disk a magnetic tape
  • optical data storage device an optical data storage device
  • a computer program product comprising computer instructions stored in a computer-readable storage medium from which a processor of a computer device reads the computer-readable storage medium Computer instructions, the processor executes the computer instructions, so that the computer device executes the method for determining the working mode of the terminal antenna provided in the foregoing aspect or various optional implementations of the aspect.
  • references herein to "a plurality” means two or more.
  • “And/or”, which describes the association relationship of the associated objects means that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • “first,” “second,” and similar terms do not denote any order, quantity, or importance, but are merely used to distinguish the various components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请实施例提供一种终端天线的工作模式确定方法、装置、终端及存储介质。该方法包括:获取终端在目标时段内的接收信号强度;基于终端在目标时段内的接收信号强度,确定终端处于第一信号场景或第二信号场景;若终端处于第一信号场景,则基于终端在目标时段内的吞吐量,确定终端天线的工作模式。本申请实施例提供的技术方案,通过在终端处于强信号场景时,基于终端的吞吐量来确定终端天线的工作模式,使得终端天线的工作模式能兼顾通信质量与终端功耗两方面因素,在满足业务需求的前提下节省终端功耗。

Description

终端天线的工作模式确定方法、装置、终端及存储介质
本申请要求于2020年11月16日提交的申请号为202011282659.2、发明名称为“终端天线的工作模式确定方法、装置、终端及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及天线技术领域,特别涉及终端天线的工作模式确定方法、装置、终端及存储介质。
背景技术
终端天线的工作模式包括单输入单输出(Single-Input Single-Output,SISO)模式与多输入多输出(Multiple Input Multiple Output,MIMO)模式。
相关技术中,终端基于吞吐量来确定终端天线的工作模式是MIMO模式还是SISO模式。示例性地,当吞吐量较高时,确定终端天线使用MIMO模式;当吞吐量较低时,确定终端天线的工作模式使用SISO模式。
发明内容
本申请实施例提供一种终端天线的工作模式确定方法、装置、终端及存储介质。该技术方案包括:
一方面,本申请实施例提供一种终端天线的工作模式确定方法,所述方法包括:
获取终端在目标时段内的接收信号强度;
基于所述终端在所述目标时段内的接收信号强度,确定所述终端处于第一信号场景或第二信号场景,所述第一信号场景对应的信号强度高于所述第二信号场景对应的信号强度;
若所述终端处于所述第一信号场景,则基于所述终端在所述目标时段内的吞吐量,确定终端天线的工作模式。
一方面,本申请实施例提供一种终端天线的工作模式确定装置,所述装置包括:
信号强度获取模块,用于获取终端在目标时段内的接收信号强度;
场景确定模块,用于基于所述终端在所述目标时段内的接收信号强度,确定所述终端处于第一信号场景或第二信号场景,所述第一信号场景对应的信号强度高于所述第二信号场景对应的信号强度;
工作模式切换模块,用于若所述终端处于所述第一信号场景,则基于所述终端在目标时段内的吞吐量,确定终端天线的工作模式。
又一方面,本申请实施例提供了一种终端,所述终端包括处理器、存储器和无线通信芯片,所述存储器存储有计算机指令,所述计算机指令由所述无线通信芯片加载并执行如一方面所述的终端天线的工作模式确定方法。
又一方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,所述计算机程序由处理器加载并执行以实现如一方面所述的终端天线的工作模式确定方法。
又一方面,本申请实施例提供了一种计算机程序产品,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述终端天线的工作模式确定方法。
附图说明
图1是本申请一个实施例提供的终端天线的工作模式示意图;
图2是本申请一个实施例提供的终端天线的工作模式确定方法的流程图;
图3是本申请一个实施例提供的终端天线的工作模式确定方法的流程图;
图4是本申请一个实施例提供的终端天线的工作模式确定方法的流程图;
图5是本申请一个实施例提供的终端天线的工作模式确定装置的结构框图;
图6是本申请一个实施例提供的装置的结构框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
下面对本申请实施例涉及的相关名词进行介绍。
SISO:单输入单输出,也即在发射端采用单根发射天线发送信号,在接收端采用单根接收天线来接收信号。
MIMO:多输入多输出,也即在发射端采用多根发射天线各自独立发送信号,在接收端采用多根接收天线来接收信号。需要说明的是,多根发射/接收天线收发的数据流可以是相同的,此时总辐射功率(Total Radiated Power,TRP)和总全向灵敏度(Total Isotropic Sensitivity,TIS)得以提升,进而提升通信距离。多根发射/接收天线收发的数据流也可以是不同的,提升传输速率。
相关技术中,仅根据吞吐量来控制终端天线在SISO模式和MIMO模式之间切换,吞吐量较小时采用SISO模式可能出现通信距离降低、通信掉线等问题,吞吐量较大时采用MIMO模式可能会出现功耗浪费的问题。
基于此,本申请实施例提供一种终端天线的工作模式切换方法,通过在终端处于强信号场景时,基于终端的吞吐量来确定终端天线的工作模式,使得终端天线的工作模式能兼顾通信质量与终端功耗两方面因素,在满足业务需求的前提下节省终端功耗。例如,当终端在目标时段内处于强信号场景且吞吐量较大时,确定终端天线使用MIMO模式,使得终端的TRP和TIS得以提升,进而提升通信质量和通信距离;再例如,当终端在目标时段内处于强信号场景且吞吐量较小时,确定终端天线使用SISO模式,能有效节省终端功耗。
本申请实施例提供的技术方案,各步骤的执行主体为配置有终端天线的终端,该终端天线既支持SISO模式也支持MIMO模式,终端中的处理器还支持 终端天线在SISO模式和MIMO模式之间灵活切换。上述终端可以为智能手机、平板电脑、个人计算机等等。可选地,终端中安装有无线通信芯片,各步骤的执行主体也可以为上述无线通信芯片。
图1示出了本申请一个实施例示出的终端天线的工作模式示意图。在弱信号场景,无论吞吐量高低均采用MIMO模式,通过MIMO模式来弥补信号弱的问题以满足业务需求。在强信号场景下,若吞吐量高,则采用MIMO模式,提升通信质量以满足业务需求,若吞吐量低,此时SISO模式也能满足业务需求,则采用SISO模式以节省终端功耗。
图2示出了本申请一个实施例提供的终端天线的工作模式确定方法的流程图。该方法包括:
步骤201,获取终端在目标时段内的接收信号强度。
接收信号强度用于表征终端接收到的信号质量。接收信号强度可以用RSSI(Received Signal Strength Indication,接收信号强度指示)进行表示。
目标时段可以是任意一个时段。目标时段的时间长度由终端预先设定,或者,由技术人员自定义设定。示例性地,目标时段的时间长度为5秒。
可选地,终端获取终端在目标时段内的每个时间单元的接收信号强度。示例性地,终端获取终端在目标时段内的每一秒的接收信号强度。
可选地,终端每隔预设时间获取终端在一个目标时段内的接收信号强度。预设时间由终端预先设定,或者,由技术人员自定义设定。示例性地,预设时间为10秒。
步骤202,基于终端在目标时段内的接收信号强度,确定终端处于第一信号场景或第二信号场景。
第一信号场景对应的信号强度高于第二信号场景对应的信号强度。第一信号场景也称为强信号场景,第二信号场景也称为弱信号场景。终端基于其在目标时段内的接收信号强度来判断自身处于强信号场景或者弱信号场景。
步骤203,若终端处于第一信号场景,则基于终端在目标时段内的吞吐量,确定终端天线的工作模式。
吞吐量是指对网络、设备、端口、虚电路或其他设施,单位时间内成功地传送数据的数量。终端天线的工作模式包括SISO模式或MIMO模式。
在一种可能的实现方式中,当终端在目标时段内处于强信号场景,且吞吐量较大时,确定终端天线的工作模式为MIMO模式,使得终端的TRP和TIS得以提升,进而提升通信质量和通信距离。
在另一种可能的实现方式中,当终端在目标时段内处于强信号场景,且吞吐量较小时,确定终端天线的工作模式为SISO模式,由于吞吐量较小时对通信质量和通信距离的要求较低,此时切换至SISO模式,能有效节省终端功耗。
综上所述,本申请实施例提供的技术方案,通过在终端处于强信号场景时,基于终端的吞吐量来确定终端天线的工作模式,使得终端天线的工作模式能兼 顾通信质量与终端功耗两方面因素,在满足业务需求的前提下节省终端功耗。例如,当终端在目标时段内处于强信号场景且吞吐量较大时,确定终端天线使用MIMO模式,使得终端的TRP和TIS得以提升,进而提升通信质量和通信距离;再例如,当终端在目标时段内处于强信号场景且吞吐量较小时,确定终端天线使用SISO模式,能有效节省终端功耗。
在上文实施例中提到,终端根据自身在目标时段内的接收信号强度判断自身处于强信号场景或弱信号场景。下面对这一判断过程进行介绍。在基于图2所示实施例提供的可选实施例中,步骤202包括如下子步骤:
步骤202a,获取终端在目标时段内的接收信号强度的变化趋势。
变化趋势用于表征接收信号强度在一段时间内的变化情况。可选地,终端在目标时段内的接收信号强度的变化趋势包括变强趋势、变弱趋势和维持趋势。其中,变强趋势是指终端在目标时段内的接收信号强度整体呈现变强的趋势,变弱趋势是指终端在目标时段内的接收信号强度整体呈现变弱的趋势,维持趋势是指终端在目标时段内的接收信号强度整体保持稳定的趋势。
可选地,终端将目标时段内的最后一个时间单元的接收信号强度与第一个时间单元的接收信号强度进行比对,以确定终端在目标时段内的接收信号强度的变化趋势。
可选地,若最后一个时间单元的接收信号强度大于第一个时间单元的接收信号强度,则终端在目标时段内的接收信号强度的变化趋势为变强趋势;若最后一个时间单元的接收信号强度小于第一个时间单元的接收信号强度,则终端在目标时段内的接收信号强度的变化趋势为变弱趋势;若最后一个时间单元的接收信号强度等于第一个时间单元的接收信号强度,则终端在目标时段内的接收信号强度的变化趋势为维持趋势。
步骤202b,基于变化趋势、信号强度门限,确定终端处于第一信号场景或第二信号场景。
信号强度门限是一种预定义参数,采用RSSI_Thr来表示。示例性地,信号强度门限为-75dBm。
在一种可能的实现方式中,信号强度门限为固定值。在另一种可能的实现方式中,信号强度门限与终端所处的业务场景的时延要求呈负相关关系。也即,终端所处的业务场景的时延要求越高,也即终端所处的业务场景所要求的时延越小时,信号强度门限越大;终端所处的业务场景的时延要求越低,也即终端所处的业务场景所要求的时延越大时,则信号强度门限越小。
可选地,当信号强度门限基于终端所处的业务场景的时延要求确定时,终端保存有终端所处的业务场景、终端所处的业务场景的时延要求以及信号强度门限之间的第一对应关系,之后基于终端所处的业务场景查找上述第一对应关系,得到相应的信号强度门限,之后通过预定接口将该确定出的信号强度门限传递至无线通信芯片。或者,终端保存有终端所处的业务场景、终端所处的业务场景的时延要求之间的第二对应关系,以及终端所处的业务场景的时延要求 与信号强度门限之间的函数关系式。终端确定终端所处的业务场景后,查找第二对应关系得到终端所处的业务场景的时延要求,之后通过上述函数关系式得出相应的信号强度门限。
可选地,当变化趋势为变强趋势或维持趋势时,若终端在目标时段内的目标时间单元的接收信号强度大于或等于信号强度门限,则确定终端处于第一信号场景;当变化趋势为变强趋势或维持趋势时,若终端在目标时段内的目标时间单元的接收信号强度小于信号强度门限,则确定终端处于第二信号场景。其中,在考虑等于的情况下,可以将等于归于大于,即大于或等于,也可以将等于归于小于,即小于或等于,本申请对此不作限定。下文中再次出现此类情况时,以上述描述为准,本申请对此不再赘述。可选地,上述目标时间单元是指目标时段内的最后一个时间单元。由于目标时段内的最后一个时间单元的接收信号强度与当前时刻的接收信号强度较为接近,通过比对最后一个时间单元的接收信号强度与信号强度门限的大小关系,能直观反应当前时刻的接收信号强度的大小,后续确定工作模式时更加准确。
在其他可能的实现方式中,若终端在目标时段内的接收信号强度的平均值大于或等于信号强度门限,则确定终端处于第一信号场景;若终端在目标时段内的接收信号强度的平均值小于信号强度门限,则确定终端处于第二信号场景。
可选地,当变化趋势为变弱趋势时,若终端在目标时段内的目标时间单元的接收信号强度大于或等于信号强度门限,则确定终端处于第一信号场景;当变化趋势为变弱趋势时,若终端在目标时段内的目标时间单元的接收信号强度小于信号强度门限,则确定终端处于第二信号场景。可选地,目标时间单元是指目标时段内的最后一个时间单元。
可选地,步骤202b还实现为:基于变化趋势、信号强度门限以及信号强度余量,确定终端处于第一信号场景或第二信号场景。
信号强度余量也是一种预定义参数,采用C来表示。示例性地,信号强度余量为2dB。通过设置信号强度余量这一参数,避免终端天线在SISO模式与MIMO模式之间频繁切换。
可选地,当变化趋势为变强趋势或维持趋势,且终端在目标时段内的目标时间单元的接收信号强度大于或等于信号强度门限和信号强度余量之和,则确定终端处于第一信号场景。当变化趋势为变强趋势或维持趋势,且终端在目标时段内的目标时间单元的接收信号强度小于信号强度门限和信号强度余量之和,则确定终端处于第二信号场景。可选地,目标时间单元是目标时段内的最后一个时间单元。
终端将目标时段内的最后一个时间单元的接收信号强度与信号强度门限和信号强度余量之和做比较,若目标时段内的最后一个时间单元的接收信号强度大于或等于信号强度门限和信号强度余量之和,则确定终端处于强信号场景;若目标时段内的最后一个时间单元的接收信号强度小于信号强度门限和信号强度余量之和,则确定终端处于弱信号场景。示例性地,终端在目标时段内的最后一个时间单元的接收信号强度RSSI大于或等于RSSI_Thr+C时,终端处于强 信号场景;终端在目标时段内的最后一个时间单元接收信号强度RSSI小于RSSI_Thr+C时,终端处于弱信号场景。
可选地,若变化趋势为变弱趋势,且终端在目标时段内的目标时间单元的接收信号强度小于信号强度门限和信号强度余量之差,则确定终端处于第二信号场景;若变化趋势为变弱趋势,且终端在目标时段内的目标时间单元的接收信号强度大于或等于信号强度门限和信号强度余量之差,则确定终端处于第一信号场景。
终端将目标时段内的最后一个时间单元的接收信号强度与信号强度门限和信号强度余量之差做比较,若目标时段内的最后一个时间单元的接收信号强度小于信号强度门限和信号强度余量之差,则确定终端处于弱信号场景;若目标时段内的最后一个时间单元的接收信号强度大于或等于信号强度门限和信号强度余量之和,则确定终端处于强信号场景。示例性地,终端在目标时段内的接收信号强度RSSI大于或等于RSSI_Thr-C时,终端处于强信号场景;终端在目标时段内的接收信号强度RSSI小于RSSI_Thr-C时,终端处于弱信号场景。
本申请实施例提供的技术方案,通过变化趋势、信号强度门限和信号强度余量来判断终端天线处于强信号场景还是弱信号场景,通过信号强度门限初步判断信号的强弱,通过设置信号强度余量这一参数,避免终端天线在SISO模式与MIMO模式之间频繁切换。
图3示出了本申请一个实施例示出的终端天线的工作模式确定方法的流程图。在基于图2所示实施例提供的可选实施例中,步骤203替代实现为步骤203a和步骤203b。该方法包括:
步骤301,获取终端在目标时段内的接收信号强度。
步骤302,基于终端在目标时段内的接收信号强度,确定终端处于第一信号场景或第二信号场景。
第一信号场景对应的信号强度高于第二信号场景对应的信号强度。
步骤203a,若终端处于第一信号场景,基于终端在目标时段内的吞吐量,确定终端处于第一吞吐量场景或第二吞吐量场景。
第一吞吐量场景对应的吞吐量大于第二吞吐量场景对应的吞吐量。第一吞吐量场景也即是高吞吐量场景,第二吞吐量场景也即是低吞吐量场景。
可选地,终端获取终端在目标时段内的吞吐量的平均值;若终端在目标时段内的吞吐量的平均值大于吞吐量门限,则确定终端处于第一吞吐量场景;若终端在目标时段内的吞吐量的平均值小于吞吐量门限,则确定终端处于第二吞吐量场景。吞吐量门限是一种预定义参数,采用T-PUT_Thr来表示。示例性地,吞吐量门限为30Mps/s。吞量门限值用于区分第一吞吐量场景和第二吞吐量场景。
可选地,终端获取终端在目标时段内的吞吐量的最大值;若终端在目标时段内的吞吐量的最大值大于吞吐量门限,则确定终端处于第一吞吐量场景;若终端在目标时段内的吞吐量的最大值小于吞吐量门限,则确定终端处于第二吞 吐量场景。
步骤203b,基于终端处于第一吞吐量场景或第二吞吐量场景,确定终端天线的工作模式。
若终端处于第一吞吐量场景,则确定终端天线的工作模式为MIMO模式。当终端处于第一吞吐量场景时,若终端天线的当前工作模式为MIMO模式,则终端天线的工作模式保持不变;若终端天线的当前工作模式为SISO模式,则控制终端天线的工作模式由SISO模式切换至MIMO模式。
若终端处于第二吞吐量场景,则确定终端天线的工作模式为SISO模式。当终端处于第二吞吐量场景时,若终端天线的当前工作模式为SISO模式,则终端天线的工作模式保持不变;若终端天线的当前工作模式为MIMO模式,则控制终端天线的工作模式由MIMO模式切换至SISO模式。
当终端处于强信号且低吞吐量场景时,终端天线的工作模式为SISO模式即可满足业务需求,此时确定终端天线的工作模式为SISO模式,节省终端的功耗。当终端处于强信号且高吞吐量场景时,终端天线的工作模式为SISO模式通常不满足业务需求,此时确定终端天线的工作模式为MIMO模式,提升通信质量以及通信距离。
步骤305,若终端处于第二信号场景,则确定终端天线的工作模式为MIMO模式。
终端处于弱信号场景时,为弥补弱信号所造成的通信质量下降、通信距离缩短等问题,无论吞吐量高或低,终端均采用MIMO模式,以提升通信质量和通信距离。
当终端处于第二信号场景时,若终端天线的工作模式为MIMO模式,则终端天线的工作模式保持不变。若终端天线的工作模式为SISO模式,则终端天线的工作模式切换至MIMO模式。
在一个示例中,设定RSSI_thr=-75dBm,T-PUT_thr=30Mbps/s,C=2dB,T0=10秒、T1、T2=5秒。终端检测到前5秒的RSSI分别为-74dBm、-72dBm、-73dBm、-70dBm、-70dBm,确定信号强度变化趋势为变强趋势;由于-70>-75+2,认为终端当前处于强信号场景;之后检测到前5秒的吞吐量分别为,15Mbps/s、18Mbps/s、20Mbps/s、22Mbps/s、16Mbps/s,平均值为18.2Mbps/s,小于30Mbps/s,认为终端当前处于低吞吐量场景。终端当前处于强信号+低吞吐量场景,此时SISO模式完全能满足用户需求。若是当前为MIMO模式,则可切到SISO模式,来降低功耗。终端在等待10s后可进行下一轮检测。
综上所述,本申请实施例提供的技术方案,通过在终端在目标时段内处于强信号场景,且吞吐量较大时,确定终端天线使用MIMO模式,使得终端的TRP和TIS得以提升,进而提升通信质量和通信距离;当终端在目标时段内处于强信号场景,且吞吐量较小时,确定终端天线使用SISO模式,能有效节省终端功耗;当终端在目标时段内处于弱信号场景时,为弥补弱信号所造成的通信质量下降、通信距离缩短等问题,无论吞吐量高或低,终端均采用MIMO模式,以提升通信质量和通信距离。
图4示出了本申请一个实施例提供的终端天线的工作模式确定方法的流程图,该方法包括:
步骤401,记录T1时段的RSSI。
步骤402,按照设定逻辑判断T1时段内RSSI的变化趋势。
当RSSI的变化趋势为增大趋势或不变趋势,执行步骤403。当RSSI的变化趋势为降低趋势,执行步骤404。
步骤403,检测当前时刻的RSSI是否大于RSSI_Thr+C。
若当前时刻的RSSI大于RSSI_Thr+C,则执行步骤405;若当前时刻的RSSI小于或等于RSSI_Thr+C,则执行步骤410。
步骤404,检测当前时刻的RSSI是否小于RSSI_Thr-C。
若当前时刻的RSSI小于RSSI_Thr-C,则执行步骤405;若当前时刻的RSSI大于或等于RSSI_Thr-C,则执行步骤410。
步骤405,确定终端处于强信号场景。
步骤406,记录T2时间段内的吞吐量并取平均值,记为T-put。
步骤407,检测T-put是否小于或等于T-PUT_thr。
当T-put小于或等于T-PUT_thr,执行步骤408。或者大于T-PUT_thr时,执行步骤409。
步骤408,确定终端天线的工作模式为SISO模式。
当终端处于强信号且低吞吐量场景时,确定终端天线的工作模式为SISO模式。可选地,终端检测终端天线的工作模式是SISO模式或者MIMO模式,若终端天线的工作模式是SISO模式,则保持不变;若终端天线的工作模式是MIMO模式,则切换至SISO模式。
步骤409,确定终端天线的工作模式为MIMO模式。
当终端处于强信号且高吞吐量场景,或者处于弱信号场景时,确定终端天线的工作模式为MIMO模式。可选地,终端检测终端天线的工作模式是SISO模式或者MIMO模式,若终端天线的工作模式是MIMO模式,则保持不变;若终端天线的工作模式是SISO模式,则切换至MIMO模式。
步骤410,确定终端处于弱信号场景。
终端确定自身处于弱信号场景后,执行步骤409。
步骤411,等待时间T0,进入下一周期。
以下为本申请装置实施例,对于装置实施例中未详细阐述的部分,参考方法实施例中公开的技术细节。
参考图5,示出了本申请一个示例性实施例提供的终端天线的工作模式确定装置的框图。该终端天线的工作模式确定装置通过软件、硬件或者两者的组合实现成为终端的全部或一部分。该终端天线的工作模式确定装置包括:
信号强度获取模块501,用于获取终端在目标时段内的接收信号强度。
场景确定模块502,用于基于所述终端在所述目标时段内的接收信号强度, 确定所述终端处于第一信号场景或第二信号场景,所述第一信号场景对应的信号强度高于所述第二信号场景对应的信号强度。
工作模式确定模块503,用于若所述终端处于所述第一信号场景,则基于所述终端在目标时段内的吞吐量,确定终端天线的工作模式。
综上所述,本申请实施例提供的技术方案,通过在终端处于强信号场景时,基于终端的吞吐量来确定终端天线的工作模式,使得终端天线的工作模式能兼顾通信质量与终端功耗两方面因素,在满足业务需求的前提下节省终端功耗。例如,当终端在目标时段内处于强信号场景且吞吐量较大时,确定终端天线使用MIMO模式,使得终端的TRP和TIS得以提升,进而提升通信质量和通信距离;再例如,当终端在目标时段内处于弱信号场景且吞吐量较小时,确定终端天线使用SISO模式,能有效节省终端功耗。
在基于图5所示实施例提供的可选实施例中,所述工作模式确定模块503,用于:
基于所述终端在所述目标时段内的吞吐量,确定所述终端处于第一吞吐量场景或第二吞吐量场景,所述第一吞吐量场景对应的吞吐量大于所述第二吞吐量场景对应的吞吐量;
基于所述终端处于所述第一吞吐量场景或所述第二吞吐量场景,确定所述终端天线的工作模式。
可选地,所述工作模式确定模块503,用于:
若所述终端处于所述第一吞吐量场景,则确定所述终端天线的工作模式为多输入多输出MIMO模式;
若所述终端处于所述第二吞吐量场景,则确定所述终端天线的工作模式为单输入单输出SISO模式。
可选地,所述装置还包括:工作模式切换模块(图中未示出)。
所述工作模式切换模块,用于:
当所述终端处于所述第一吞吐量场景时,若所述终端天线的工作模式为所述SISO模式,则切换至所述MIMO模式;
当所述终端处于所述第二吞吐量场景时,若所述终端天线的工作模式为所述MIMO模式,则切换至所述SISO模式。
在基于图5所示实施例提供的可选实施例中,所述工作模式确定模块503,用于:若所述终端处于所述第二信号场景,则确定所述终端天线的工作模式为MIMO模式。
在基于图5所示实施例提供的可选实施例中,所述场景确定模块502,用于:
获取所述终端在所述目标时段内的接收信号强度的变化趋势;
基于所述变化趋势、信号强度门限,确定所述终端处于所述第一信号场景或所述第二信号场景。
可选地,所述场景确定模块502,用于:
若所述变化趋势为变强趋势或维持趋势,且所述终端在所述目标时段内的目标时间单元的接收信号强度大于所述信号强度门限,则确定所述终端处于所 述第一信号场景;
若所述变化趋势为变弱趋势,且所述终端在所述目标时段内的目标时间单元的接收信号强度小于所述信号强度门限,则确定所述终端处于所述第二信号场景。
可选地,所述目标时间单元为所述目标时段内的最后一个时间单元。
可选地,所述场景确定模块502,用于:
基于所述变化趋势、所述信号强度门限以及信号强度余量,确定所述终端处于所述第一信号场景或所述第二信号场景。
可选地,所述场景确定模块502,用于:
比较所述终端在所述目标时段内的第一个时间单元的接收信号强度,与最后一个时间单元的接收信号强度;
若所述第一个时间单元的接收信号强度大于所述最后一个时间单元的接收信号强度,则确定所述变化趋势为变弱趋势;
若所述第一个时间单元的接收信号强度小于所述最后一个时间单元的接收信号强度,则确定所述变化趋势为变强趋势;
若所述第一个时间单元的接收信号强度等于所述最后一个时间单元的接收信号强度,则确定所述变化趋势为维持趋势。
可选地,所述信号强度门限与所述终端所处的业务场景的时延要求呈负相关关系。
图6示出了本申请一个示例性实施例提供的计算机设备的结构方框图。本申请中的计算机设备可以包括一个或多个如下部件:处理器610和存储器620。
处理器610可以包括一个或者多个处理核心。处理器610利用各种接口和线路连接整个计算机设备内的各个部分,通过运行或执行存储在存储器620内的指令、程序、代码集或指令集,以及调用存储在存储器620内的数据,执行计算机设备的各种功能和处理数据。可选地,处理器610可以采用数字信号处理(Digital Signal Processing,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵列(Programmable Logic Array,PLA)中的至少一种硬件形式来实现。处理器610可集成中央处理器(Central Processing Unit,CPU)和调制解调器等中的一种或几种的组合。其中,CPU主要处理操作系统和应用程序等;调制解调器用于处理无线通信。可以理解的是,上述调制解调器也可以不集成到处理器610中,单独通过一块芯片进行实现。
可选地,处理器610执行存储器620中的程序指令时实现下上述各个方法实施例提供的终端天线的工作模式确定方法。
存储器620可以包括随机存储器(Random Access Memory,RAM),也可以包括只读存储器(Read-Only Memory,ROM)。可选地,该存储器620包括非瞬时性计算机可读介质(non-transitory computer-readable storage medium)。存储器620可用于存储指令、程序、代码、代码集或指令集。存储器620可包括存储程序区和存储数据区,其中,存储程序区可存储用于实现操作系统的指令、用于 至少一个功能的指令、用于实现上述各个方法实施例的指令等;存储数据区可存储根据计算机设备的使用所创建的数据等。
上述计算机设备的结构仅是示意性的,在实际实现时,计算机设备可以包括更多或更少的组件,本实施例对此不作限定。
本领域技术人员可以理解,图6中示出的结构并不构成对计算机设备600的限定,可以包括比图示更多或更少的组件,或者组合某些组件,或者采用不同的组件布置。
在示例性实施例中,本申请实施例提供一种计算机设备,计算机设备包括无线通信芯片,无线通信芯片存储有计算机指令,计算机指令用于执行上述终端天线的工作模式确定方法。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,所述计算机程序由终端的处理器加载并执行以实现上述方法实施例中的终端天线的工作模式确定方法。
可选地,上述计算机可读存储介质可以是只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁带、软盘和光数据存储设备等。
在示例性实施例中,还提供了一种计算机程序产品,该计算机程序产品包括计算机指令,该计算机指令存储在计算机可读存储介质中,计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述一方面或者一方面的各种可选实现方式中提供的终端天线的工作模式确定方法。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本文中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种终端天线的工作模式确定方法,其特征在于,所述方法包括:
    获取终端在目标时段内的接收信号强度;
    基于所述终端在所述目标时段内的接收信号强度,确定所述终端处于第一信号场景或第二信号场景,所述第一信号场景对应的信号强度高于所述第二信号场景对应的信号强度;
    若所述终端处于所述第一信号场景,则基于所述终端在所述目标时段内的吞吐量,确定终端天线的工作模式。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述终端在所述目标时段内的吞吐量,确定终端天线的工作模式,包括:
    基于所述终端在所述目标时段内的吞吐量,确定所述终端处于第一吞吐量场景或第二吞吐量场景,所述第一吞吐量场景对应的吞吐量大于所述第二吞吐量场景对应的吞吐量;
    基于所述终端处于所述第一吞吐量场景或所述第二吞吐量场景,确定所述终端天线的工作模式。
  3. 根据权利要求2所述的方法,其特征在于,所述基于所述终端处于所述第一吞吐量场景或所述第二吞吐量场景,确定所述终端天线的工作模式,包括:
    若所述终端处于所述第一吞吐量场景,则确定所述终端天线的工作模式为多输入多输出MIMO模式;
    若所述终端处于所述第二吞吐量场景,则确定所述终端天线的工作模式为单输入单输出SISO模式。
  4. 根据权利要求3所述的方法,其特征在于,
    所述确定所述终端天线的工作模式为多输入多输出MIMO模式之后,还包括:若所述终端天线的工作模式为所述SISO模式,则切换至所述MIMO模式;
    所述确定所述终端天线的工作模式为单输入单输出SISO模式之后,还包括:若所述终端天线的工作模式为所述MIMO模式,则切换至所述SISO模式。
  5. 根据权利要求2所述的方法,其特征在于,所述基于所述终端在所述目标时段内的吞吐量,确定所述终端处于第一吞吐量场景或第二吞吐量场景,包括:
    获取所述终端在所述目标时段内的吞吐量的平均值;
    若所述终端在所述目标时段内的吞吐量的平均值大于吞吐量门限,则确定所述终端处于所述第一吞吐量场景;
    若所述终端在所述目标时段内的吞吐量的平均值小于所述吞吐量门限,则确定所述终端处于所述第二吞吐量场景。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若所述终端处于所述第二信号场景,则确定所述终端天线的工作模式为MIMO模式。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述基于所述终端在所述目标时段内的接收信号强度,确定所述终端处于第一信号场景或第二信号场景,包括:
    获取所述终端在所述目标时段内的接收信号强度的变化趋势;
    基于所述变化趋势、信号强度门限,确定所述终端处于所述第一信号场景或所述第二信号场景。
  8. 根据权利要求7所述的方法,其特征在于,所述基于所述变化趋势、信号强度门限,确定所述终端处于所述第一信号场景或所述第二信号场景,包括:
    若所述变化趋势为变强趋势或维持趋势,且所述终端在所述目标时段内的目标时间单元的接收信号强度大于所述信号强度门限,则确定所述终端处于所述第一信号场景;
    若所述变化趋势为变弱趋势,且所述终端在所述目标时段内的目标时间单元的接收信号强度小于所述信号强度门限,则确定所述终端处于所述第二信号场景。
  9. 根据权利要求8所述的方法,其特征在于,所述目标时间单元为所述目标时段内的最后一个时间单元。
  10. 根据权利要求7所述的方法,其特征在于,所述基于所述变化趋势、信号强度门限,确定所述终端处于所述第一信号场景或所述第二信号场景,包括:
    基于所述变化趋势、所述信号强度门限以及信号强度余量,确定所述终端处于所述第一信号场景或所述第二信号场景。
  11. 根据权利要求7所述的方法,其特征在于,所述获取所述终端在所述目标时段内的接收信号强度的变化趋势,包括:
    比较所述终端在所述目标时段内的第一个时间单元的接收信号强度,与最后一个时间单元的接收信号强度;
    若所述第一个时间单元的接收信号强度大于所述最后一个时间单元的接收信号强度,则确定所述变化趋势为变弱趋势;
    若所述第一个时间单元的接收信号强度小于所述最后一个时间单元的接收信号强度,则确定所述变化趋势为变强趋势;
    若所述第一个时间单元的接收信号强度等于所述最后一个时间单元的接收信号强度,则确定所述变化趋势为维持趋势。
  12. 根据权利要求7所述的方法,其特征在于,所述信号强度门限与所述终端所处的业务场景的时延要求呈负相关关系。
  13. 一种终端天线的工作模式确定装置,其特征在于,所述装置包括:
    信号强度获取模块,用于获取终端在目标时段内的接收信号强度;
    场景确定模块,用于基于所述终端在所述目标时段内的接收信号强度,确定所述终端处于第一信号场景或第二信号场景,所述第一信号场景对应的信号强度高于所述第二信号场景对应的信号强度;
    工作模式切换模块,用于若所述终端处于所述第一信号场景,则基于所述终端在目标时段内的吞吐量,确定终端天线的工作模式。
  14. 根据权利要求13所述的装置,其特征在于,所述工作模式切换模块,用于:
    基于所述终端在所述目标时段内的吞吐量,确定所述终端处于第一吞吐量场景或第二吞吐量场景,所述第一吞吐量场景对应的吞吐量大于所述第二吞吐量场景对应的吞吐量;
    基于所述终端处于所述第一吞吐量场景或所述第二吞吐量场景,确定所述终端天线的工作模式。
  15. 根据权利要求13所述的装置,其特征在于,所述工作模式切换模块还用于:
    若所述终端处于所述第二信号场景,则确定所述终端天线的工作模式为MIMO模式。
  16. 根据权利要求13至15任一项所述的装置,其特征在于,所述场景确定模块,用于:
    获取所述终端在所述目标时段内的接收信号强度的变化趋势;
    基于所述变化趋势、信号强度门限,确定所述终端处于所述第一信号场景或所述第二信号场景。
  17. 根据权利要求16所述的装置,其特征在于,所述场景确定模块,用于:
    基于所述变化趋势、所述信号强度门限以及信号强度余量,确定所述终端处于所述第一信号场景或所述第二信号场景。
  18. 一种终端,其特征在于,所述终端包括处理器、存储器和无线通信芯片,所述存储器存储有计算机指令,所述计算机指令由所述无线通信芯片加载并执行如权利要求1至12任一项所述的终端天线的工作模式确定方法。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存 储有计算机程序,所述计算机程序由处理器加载并执行以实现如权利要求1至12任一项所述的终端天线的工作模式确定方法。
  20. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现如权利要求1至12任一所述的终端天线的工作模式确定方法。
PCT/CN2021/118780 2020-11-16 2021-09-16 终端天线的工作模式确定方法、装置、终端及存储介质 WO2022100274A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21890802.8A EP4240065A4 (en) 2020-11-16 2021-09-16 METHOD AND DEVICE FOR DETERMINING THE OPERATING MODE OF A TERMINAL ANTENNA AS WELL AS TERMINAL DEVICE AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011282659.2 2020-11-16
CN202011282659.2A CN114513224B (zh) 2020-11-16 2020-11-16 终端天线的工作模式确定方法、装置、终端及存储介质

Publications (1)

Publication Number Publication Date
WO2022100274A1 true WO2022100274A1 (zh) 2022-05-19

Family

ID=81547221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118780 WO2022100274A1 (zh) 2020-11-16 2021-09-16 终端天线的工作模式确定方法、装置、终端及存储介质

Country Status (3)

Country Link
EP (1) EP4240065A4 (zh)
CN (1) CN114513224B (zh)
WO (1) WO2022100274A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115801952A (zh) * 2022-11-09 2023-03-14 昆山贝松精密电子有限公司 一种天线系统的控制方法和系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116707590B (zh) * 2023-07-28 2023-11-14 北京小米移动软件有限公司 天线切换的方法、装置、终端设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049795A (ja) * 2009-08-27 2011-03-10 Nec Access Technica Ltd 無線通信装置およびその通信制御方法
CN106231662A (zh) * 2016-09-30 2016-12-14 维沃移动通信有限公司 一种终端天线的切换控制方法及终端
CN111106887A (zh) * 2018-10-29 2020-05-05 中国移动通信有限公司研究院 一种选择上行控制信道发射方式的方法及终端
WO2020118729A1 (zh) * 2018-12-14 2020-06-18 华为技术有限公司 一种WiFi网络下的模式切换方法及终端设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109450508B (zh) * 2018-11-26 2022-04-01 维沃移动通信有限公司 天线确定方法、装置及移动终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049795A (ja) * 2009-08-27 2011-03-10 Nec Access Technica Ltd 無線通信装置およびその通信制御方法
CN106231662A (zh) * 2016-09-30 2016-12-14 维沃移动通信有限公司 一种终端天线的切换控制方法及终端
CN111106887A (zh) * 2018-10-29 2020-05-05 中国移动通信有限公司研究院 一种选择上行控制信道发射方式的方法及终端
WO2020118729A1 (zh) * 2018-12-14 2020-06-18 华为技术有限公司 一种WiFi网络下的模式切换方法及终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4240065A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115801952A (zh) * 2022-11-09 2023-03-14 昆山贝松精密电子有限公司 一种天线系统的控制方法和系统
CN115801952B (zh) * 2022-11-09 2024-02-09 昆山贝松精密电子有限公司 一种天线系统的控制方法和系统

Also Published As

Publication number Publication date
CN114513224B (zh) 2023-04-14
CN114513224A (zh) 2022-05-17
EP4240065A4 (en) 2024-05-01
EP4240065A1 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
WO2022100274A1 (zh) 终端天线的工作模式确定方法、装置、终端及存储介质
US10848193B2 (en) Method and system for reducing radiation damage from mobile terminals
CN103428773B (zh) 设置非连续接收模式参数的方法
EP2945418B1 (en) Method and apparatus for adjusting network configuration
CN111654316A (zh) 天线切换方法、装置、存储介质及电子设备
CN112188576B (zh) 5g终端在业务并发时的功耗优化方法、装置、设备及介质
US20160080067A1 (en) Adaptive use of receiver diversity
CN109495875B (zh) Sim卡选择方法、装置、电子设备及存储介质
US20230327721A1 (en) Antenna switching method and apparatus
US20040267983A1 (en) Data flow control system, method and program
RU2735615C1 (ru) Способ сетевого соединения и устройство
KR102302358B1 (ko) 무선 통신 시스템에서 전력 선호 정보의 선택 방법 및 장치
US9794077B2 (en) Control method, device and optical transceiver
WO2023071340A1 (zh) 业务切片的调整方法、电子设备和存储介质
CN109756963B (zh) 工作模式的确定方法、装置和设备
WO2023274142A1 (zh) 多播业务传输、传输指示方法、装置、终端及网络侧设备
CN112752319A (zh) 网络切换方法、装置、终端及存储介质
US9100910B1 (en) Packet classification based power saving receiver
WO2021129800A1 (zh) 终端移动性互操作的方法及网络设备
CN114884529A (zh) 功率放大器的切换方法、装置、电子设备以及存储介质
CN110972311B (zh) 一种基于wlan的带宽选择方法、装置及存储介质
CN104360600A (zh) 一种双天线pos机的控制方法及装置
CN116488729A (zh) 天线控制方法、装置、存储介质及电子装置
CN114466400A (zh) 设备控制方法、装置、设备及计算机可读存储介质
CN112929928A (zh) 小区的切换方法、装置和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021890802

Country of ref document: EP

Effective date: 20230601