WO2022100271A1 - 透镜组件,成像设备,检测设备及检测系统 - Google Patents

透镜组件,成像设备,检测设备及检测系统 Download PDF

Info

Publication number
WO2022100271A1
WO2022100271A1 PCT/CN2021/118312 CN2021118312W WO2022100271A1 WO 2022100271 A1 WO2022100271 A1 WO 2022100271A1 CN 2021118312 W CN2021118312 W CN 2021118312W WO 2022100271 A1 WO2022100271 A1 WO 2022100271A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens element
lens assembly
assembly
image
Prior art date
Application number
PCT/CN2021/118312
Other languages
English (en)
French (fr)
Inventor
崔凯翔
Original Assignee
北京领邦智能装备股份公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京领邦智能装备股份公司 filed Critical 北京领邦智能装备股份公司
Priority to EP21890799.6A priority Critical patent/EP4246201A4/en
Publication of WO2022100271A1 publication Critical patent/WO2022100271A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/02Measures preceding sorting, e.g. arranging articles in a stream orientating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • B07C5/3422Sorting according to other particular properties according to optical properties, e.g. colour using video scanning devices, e.g. TV-cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/36Sorting apparatus characterised by the means used for distribution
    • B07C5/361Processing or control devices therefor, e.g. escort memory
    • B07C5/362Separating or distributor mechanisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/24Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/02Optical objectives with means for varying the magnification by changing, adding, or subtracting a part of the objective, e.g. convertible objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe

Definitions

  • the present application relates to the field of optical imaging, and in particular, to a lens assembly, an imaging device, a detection device and a detection system.
  • the purpose of the embodiments of the present application is to provide a lens assembly, an imaging device, a detection device, and a detection system, which are used to simplify the process of collecting images of the side circumference of the workpiece, improve the efficiency of image collection, improve the quality of the collected images, and improve the existing In the technology, when performing lateral imaging of a part with a metal surface, it is impossible to image the stains of non-metallic components on the surface or the imaging contrast is poor.
  • the present application provides a lens assembly, which is applied to a lens.
  • the entrance pupil position and the front focus of the lens assembly including a plurality of lens elements arranged on the same optical axis are located outside the lens assembly and on the object side of the lens assembly, and the object-side principal point of the lens assembly is made relatively
  • the front focus is far away from the lens assembly, so that a single imaging device including the lens assembly can simultaneously image the front surface of the workpiece and the imaging device and the side circumference of the workpiece;
  • arctan
  • the single imaging device including the lens assembly is suitable for the lateral peripheral imaging of parts with metal surfaces, and especially has better imaging quality for the imaging of non-metallic stains or defects on the metal surface.
  • the range of the focal length of the lens assembly is -18mm ⁇ f ⁇ -2mm.
  • the range of the focal length of the lens assembly is -11mm ⁇ f ⁇ -3mm.
  • the distance between the entrance pupil position and the front focus is less than 1 mm.
  • the maximum angular difference between the chief rays at the image plane of the lens assembly is 1°.
  • the maximum angle difference between the chief rays at the image plane of the lens assembly is 1°, the problem of invisible micro defects on the peripheral surface of the workpiece due to the Fresnel effect can be avoided.
  • the distance between the entrance pupil position and the front focus is less than 0.5mm.
  • the angle of the chief ray relative to the optical axis in the imaging optical path is further controlled, so that for metal surfaces, especially metals with non-metallic stains The surface has better imaging results.
  • the maximum angular difference between the chief rays at the image plane of the lens assembly is 0.3°.
  • the distance between the entrance pupil position and the front focus is less than 1 mm.
  • the maximum angular difference between the chief rays at the image plane of the lens assembly is 1°.
  • the distance between the entrance pupil position and the front focus is less than 0.5mm.
  • the maximum angular difference between the chief rays at the image plane of the lens assembly is 0.3°.
  • the plurality of lens elements include a front lens group and a rear lens group arranged from the object direction of the lens assembly to the image side of the lens assembly, and both the front lens group and the rear lens group have positive light.
  • the distance ⁇ between the rear focus of the front lens group and the front focus of the rear lens group satisfies, 1.5f1 ⁇ 2.5f1, where f1 represents the focal length of the front lens group.
  • the front lens group includes a first lens element, a second lens element, a third lens element and a fourth lens element arranged from the object direction of the lens assembly to the image side of the lens assembly; the first lens element a lens element has positive refractive power and the image-side surface of the first lens element is convex, one of the second lens element, the third lens element and the fourth lens element has a first property, The other two of the three have a second attribute and a third attribute, respectively, the first attribute includes having a negative optical power, the second attribute includes having a positive optical power and the object-side surface is convex, and the third attribute Attributes include having positive power and being a biconvex lens.
  • the imaging quality of the imaging device including the lens assembly provided by the present application can be improved to a certain extent by such arrangement of the front lens group.
  • the Abbe number of the first lens element is greater than 70
  • the second attribute and the third attribute further include that the Abbe number is greater than 70
  • the first attribute further includes that the refractive index is greater than 1.8.
  • the rear lens group includes a fifth lens element, a sixth lens element, a seventh lens element, an eighth lens element, and a ninth lens arranged from the object direction of the lens assembly to the image side of the lens assembly element and tenth lens element;
  • the fifth lens element is a biconcave lens and has a negative refractive power
  • the sixth lens element is a biconvex lens and has a positive refractive power
  • the seventh lens element is a biconcave lens and has a negative refractive power degree
  • the image-side surface of the eighth lens element is convex and the eighth lens element has a positive refractive power
  • the ninth lens element is a biconvex lens and has a positive refractive power
  • the image-side surface of the tenth lens element The surface is convex and the tenth lens element has negative refractive power
  • the fifth lens element is a biconcave lens and has negative refractive power
  • the image-side surface of the sixth lens element is convex and the first
  • the seventh lens element is a meniscus lens and has positive refractive power
  • the eighth lens element is a biconcave lens and has negative refractive power
  • the ninth lens element is a biconvex lens and has a negative refractive power.
  • the tenth lens element is a biconvex lens and has positive refractive power; or, the fifth lens element is a biconvex lens and has positive refractive power, and the sixth lens element is a biconcave lens and has negative light power, the image-side surface of the seventh lens element is concave and the seventh lens element has negative power, the image-side surface of the eighth lens element is convex and has positive power, the ninth lens element has a positive power
  • the lens element is a biconvex lens and has positive refractive power
  • the tenth lens element is a biconvex lens and has positive refractive power.
  • the imaging quality of the imaging device including the lens assembly provided by the present application can be further improved by such arrangement of the rear lens group.
  • the plurality of lens elements include a first lens element, a second lens element, a third lens element and a fourth lens element arranged from the object direction of the lens assembly to the image side of the lens assembly; the The first lens element has positive refractive power and the image-side surface of the first lens element is convex, and one of the second lens element, the third lens element and the fourth lens element has a first property , the other two of the three have a second attribute and a third attribute, respectively, the first attribute includes having a negative optical power, the second attribute includes having a positive optical power and the object-side surface is convex, and the third attribute includes The three attributes include having positive power and being a biconvex lens.
  • the Abbe number of the first lens element is greater than 70
  • the second attribute and the third attribute further include that the Abbe number is greater than 70
  • the first attribute further includes that the refractive index is greater than 1.8.
  • the plurality of lens elements further include a fifth lens element, a sixth lens element, a seventh lens element, an eighth lens element, a sixth lens element, and a fifth lens element arranged from the object direction of the lens assembly to the image side of the lens assembly.
  • the first lens element to the tenth lens element are arranged sequentially from the object direction of the lens assembly to the image side of the lens assembly;
  • the fifth lens element is a biconcave lens and having negative refractive power
  • the sixth lens element is a biconvex lens and has positive refractive power
  • the seventh lens element is a biconcave lens and has negative refractive power
  • the image-side surface of the eighth lens element is convex and the the eighth lens element has a positive refractive power
  • the ninth lens element is a lenticular lens and has a positive refractive power
  • the image-side surface of the tenth lens element is convex and the tenth lens element has a negative refractive power
  • the fifth lens element is a biconcave lens and has a negative refractive power
  • the image-side surface of the sixth lens element is a convex surface and the sixth lens element has a positive refractive power
  • the seventh lens element is a meniscus
  • the lens has
  • the seventh lens element has a negative refractive power
  • the image-side surface of the eighth lens element is convex and has a positive refractive power
  • the ninth lens element is a biconvex lens and has a positive refractive power
  • the tenth lens element has a positive refractive power. It is a biconvex lens with positive refractive power.
  • the lens element is a spherical lens.
  • the present application also provides an imaging apparatus including the above-mentioned lens assembly and a photosensitive element disposed on an image side of the lens assembly, the photosensitive element being configured to capture light projected onto a surface of the photosensitive element.
  • the imaging device further includes an adjustment mechanism, the adjustment mechanism is located between the photosensitive element and the lens assembly, and is configured to adjust between the photosensitive surface of the photosensitive element and the optical axis of the lens assembly angle.
  • the surface to be measured (for example, the surface of the workpiece facing the lens assembly) does not have a vertical axis of the lens assembly.
  • the case where the optical axis or the peripheral surface of the side to be measured (eg, the peripheral surface of the workpiece) is not parallel to the optical axis of the lens assembly achieves better image quality and greater depth of field, thereby addressing a wider range of imaging applications.
  • the present application also provides a detection device, including the above-mentioned imaging device and a processor signally connected to the imaging device, wherein the processor is configured to perform analysis and processing based on an image including an image of a subject captured by the imaging device.
  • the present application also provides a detection system, including: a feeding mechanism, a logistics mechanism, a sorting mechanism and the above-mentioned detection equipment; the feeding mechanism is configured to transfer the test piece to the logistics mechanism; the logistics mechanism is configured to The object to be tested is driven to move; the imaging device is arranged opposite to the table surface of the logistics mechanism, and is configured to capture images including the object when the logistics mechanism drives the object to be tested through the viewing range of the imaging device. an image of an image of the test piece, the processor is configured to generate a sorting instruction based on the image; the sorting mechanism is signally connected to the processor and configured to sort the test piece based on the sorting instruction pick.
  • a detection system including: a feeding mechanism, a logistics mechanism, a sorting mechanism and the above-mentioned detection equipment; the feeding mechanism is configured to transfer the test piece to the logistics mechanism; the logistics mechanism is configured to The object to be tested is driven to move; the imaging device is arranged opposite to the table surface of the logistics mechanism, and is configured to capture images
  • FIG. 1 is a schematic structural diagram of a lens assembly provided by an embodiment of the present application.
  • FIG. 2 is an enlarged view of the rear lens group in FIG. 1 .
  • FIG. 3 is a graph showing the relationship between the modulation transfer function (MTF) and the spatial frequency of the lens assembly shown in FIG. 1 under the working distance and field of view corresponding to group 1 in Table 5.
  • MTF modulation transfer function
  • FIG. 4 is a graph showing the relationship between the modulation transfer function and the spatial frequency of the lens assembly shown in FIG. 1 under the working distance and field of view corresponding to group 2 in Table 5.
  • FIG. 4 is a graph showing the relationship between the modulation transfer function and the spatial frequency of the lens assembly shown in FIG. 1 under the working distance and field of view corresponding to group 2 in Table 5.
  • FIG. 5 is a graph showing the relationship between the modulation transfer function and the spatial frequency of the lens assembly shown in FIG. 1 under the working distance and field of view corresponding to group 3 in Table 5.
  • FIG. 5 is a graph showing the relationship between the modulation transfer function and the spatial frequency of the lens assembly shown in FIG. 1 under the working distance and field of view corresponding to group 3 in Table 5.
  • FIG. 6 is a graph showing the relationship between the modulation transfer function and the spatial frequency of the lens assembly shown in FIG. 1 under the working distance and field of view corresponding to group 4 in Table 5.
  • FIG. 6 is a graph showing the relationship between the modulation transfer function and the spatial frequency of the lens assembly shown in FIG. 1 under the working distance and field of view corresponding to group 4 in Table 5.
  • FIG. 7 is a schematic structural diagram of an optional rear lens group of the present application.
  • FIG. 8 is an enlarged view of the rear lens group in FIG. 7 .
  • FIG. 9 is a graph showing the relationship between the modulation transfer function and the spatial frequency of the lens assembly shown in FIG. 7 under the working distance and field of view corresponding to group 1 in Table 5.
  • FIG. 9 is a graph showing the relationship between the modulation transfer function and the spatial frequency of the lens assembly shown in FIG. 7 under the working distance and field of view corresponding to group 1 in Table 5.
  • FIG. 10 is a graph showing the relationship between the modulation transfer function and the spatial frequency of the lens assembly shown in FIG. 7 under the working distance and field of view corresponding to group 2 in Table 5.
  • FIG. 10 is a graph showing the relationship between the modulation transfer function and the spatial frequency of the lens assembly shown in FIG. 7 under the working distance and field of view corresponding to group 2 in Table 5.
  • FIG. 11 is a graph showing the relationship between the modulation transfer function and the spatial frequency of the lens assembly shown in FIG. 7 under the working distance and field of view corresponding to group 3 in Table 5.
  • FIG. 11 is a graph showing the relationship between the modulation transfer function and the spatial frequency of the lens assembly shown in FIG. 7 under the working distance and field of view corresponding to group 3 in Table 5.
  • FIG. 12 is a graph showing the relationship between the modulation transfer function and the spatial frequency of the lens assembly shown in FIG. 7 under the working distance and field of view corresponding to group 4 in Table 5.
  • FIG. 12 is a graph showing the relationship between the modulation transfer function and the spatial frequency of the lens assembly shown in FIG. 7 under the working distance and field of view corresponding to group 4 in Table 5.
  • FIG. 13 is a schematic structural diagram of an optional lens assembly of the present application.
  • FIG. 14 is an enlarged view of the rear lens group in FIG. 13 .
  • 15 is a graph showing the relationship between the modulation transfer function and the spatial frequency of the lens assembly shown in FIG. 13 under the working distance and field of view corresponding to group 1 in Table 12.
  • 16 is a graph showing the relationship between the modulation transfer function and the spatial frequency of the lens assembly shown in FIG. 13 under the working distance and field of view corresponding to group 2 in Table 12.
  • 17 is a graph showing the relationship between the modulation transfer function and the spatial frequency of the lens assembly shown in FIG. 13 under the working distance and field of view corresponding to group 3 in Table 12.
  • FIG. 19 is a schematic diagram of adjusting the optical axis of the photosensitive element and the lens assembly by the adjusting mechanism according to an embodiment of the application.
  • lens assembly-10 10a, 10b; front lens group-11, 11a, 11b; rear lens group-12, 12a, 12b; first lens element-111, 111a, 111b; second lens element-112 , 112a, 112b; third lens element-113, 113a, 113b; fourth lens element-114, 114a, 114b; fifth lens element-121, 121a, 121b; sixth lens element-122, 122a, 122b; Seven lens elements - 123, 123a, 123b; Eighth lens elements - 124, 124a, 124b; Ninth lens elements - 125, 125a, 125b; Tenth lens elements - 126, 126a, 126b; Aperture stops - 13a, 13b ; Imaging device-20; Photosensitive element-21; Adjustment mechanism-22;
  • Lens assembly 10 which is applied to a lens.
  • Lens assembly 10 includes a plurality (at least two) of lens elements.
  • a plurality of lens elements are arranged with a common optical axis.
  • the lens elements may be spherical lenses or aspherical lenses or the like.
  • the entrance pupil position and the front focus of the lens assembly 10 are both located outside the lens assembly 10 and on the object side of the lens assembly 10 .
  • the entrance pupil is the effective aperture that restricts the incident light beam, which is generally the image formed by the aperture diaphragm on the front optical system, or can be naturally formed according to the limited aperture of the lens optical system.
  • the entrance pupil position generally refers to the position of the aperture diaphragm relative to the image (first-order image/Gaussian image) formed by the front optical system.
  • Front focus refers to the object-side focus of lens assembly 10 . In this embodiment, the distance between the entrance pupil position and the front focus is less than 1 mm.
  • the distance between the entrance pupil position and the front focus is less than 0.5mm, or even coincident.
  • the angle of the chief ray relative to the optical axis in the imaging optical path is further standardized, so that it has better performance for metal surfaces, especially metal surfaces with non-metallic stains. imaging effect.
  • the entrance pupil position, focal position, focal length, etc. appearing in the embodiments of this application are all for the first-order characteristics of the lens assembly 10 (or called paraxial characteristics).
  • the object-side principal point of the lens assembly 10 is further away from the lens assembly 10 than the front focus. It should be noted that the principal point is the intersection of the principal plane and the optical axis. In this embodiment, the object-side principal point of the lens assembly 10 is the intersection of the object-side principal plane of the lens assembly 10 and the optical axis of the lens assembly 10 .
  • represents the lateral imaging development angle, and 18° ⁇ 25°
  • H represents the full field of view image height corresponding to the lens assembly 10
  • f represents the focal length of the lens assembly 10
  • the lens assembly 10 by using the lens assembly 10 , the surface perpendicular to the optical axis of the lens assembly 10 and the side peripheral surface parallel to the lens assembly 10 can be simultaneously imaged on the image plane.
  • the use of the lens assembly 10 can realize the simultaneous imaging of the circular upper surface of the workpiece (ie, the surface facing the lens assembly 10 ) and the side peripheral cylindrical surface, wherein the upper surface is imaged as a circle, and the side surface is imaged as a circle.
  • the peripheral cylinder can be imaged as a ring concentric with the circle (at this time, the central axis of the cylindrical workpiece and the optical axis of the lens assembly 10 are coaxial).
  • the side circumference imaging development angle determines the side circumference imaging quality.
  • the side circumference imaging development angle By limiting the side circumference imaging development angle between 18° and 25°, it can be achieved on the basis of imaging the side circumference surface of the workpiece parallel to the optical axis. Improve imaging quality, especially for non-metallic stains or defects on metal surfaces.
  • the inventors of the present application have found through research that the non-metallic stains on the side peripheral surface of the workpiece exhibit different polarization characteristics for incident light at different angles, that is, for incident light at different angles, the metal surface of the workpiece and the non-metallic stain surface present different light rays absorption rate, and the difference is obvious.
  • the non-metallic stain surface has a high absorption rate for vertically incident light, while the metal surface of the workpiece has a low absorptivity and a high reflectivity for vertically incident light, so that the effective imaging of non-metallic stains on the metal surface of the workpiece can be achieved.
  • the non-metallic stains have a certain polarization characteristic for the incident light in a certain angle range, and the absorption rate decreases and the reflectance increases, the imaging presentation of the non-metallic stains on the metal surface is suppressed.
  • the lens assembly 10 has a certain field of view (visual range) when imaging a plane perpendicular to the optical axis with a certain working distance (representing the distance from the objective lens of the lens assembly 10).
  • the field of view is generally circular and has a radius R.
  • the entire field of view is imaged by the lens assembly 10, and the image is a circle with a radius r.
  • the full field of view image height H mentioned in the foregoing embodiment is the diameter of a circle whose radius is r (ie, 2r).
  • the size of the field of view of the lens assembly 10 will be different when imaging it, but the full field of view image height H corresponding to the field of view at different distances is the same or not much different (for example, not more than 1mm), and for The full field of view image height H of different working distances can be configured as the aforementioned lateral imaging development angle formula.
  • the focal length of the lens assembly 10 may range from -18mm ⁇ f ⁇ -2mm.
  • the size of the target surface of the photosensitive element used in conjunction with the lens assembly 10 in the imaging device ranges from 1/4 to 1.1 inches.
  • the focal length of the lens assembly 10 may be, for example, any one of -15 mm, -11 mm, -7 mm, -3 mm, and -1 mm, or a value between any two.
  • the focal length of the lens assembly 10 is in the range of -11mm ⁇ f ⁇ -3mm. In this way, the lens assembly 10 can be better matched with the sizes of different photosensitive elements, which is beneficial to improve the image resolution of the workpiece for surface inspection or metal surface inspection.
  • the size of the target surface of the photosensitive element (unit: inches) Image height (unit: mm) Focal length of the lens assembly (unit: mm) 1/2 4.8 -6 1/1.8 5.4 -6.75 2/3 6.6 -8.25
  • the maximum angle difference between the chief rays at the image plane of the lens assembly 10 is 1°.
  • a chief ray is a ray emitted by an object that can reach the center of the aperture stop (or a ray emitted by an object that can pass through the center of the entrance pupil or its reverse extension can pass through the center of the entrance pupil).
  • the lens assembly 10 can have a better depth of focus, so that when a workpiece with a certain thickness is imaged on the side circumference, Get better image quality.
  • the maximum angular difference between the chief rays at the image plane of the lens assembly 10 is 0.3°.
  • the plurality of lens elements include a front lens group 11 and a rear lens group 12 arranged from the object direction of the lens assembly 10 to the image side of the lens assembly 10 .
  • Both the front lens group 11 and the rear lens group 12 have positive refractive power.
  • the distance ⁇ between the rear focus of the front lens group 11 (ie, the image-side focus of the front lens group 11 ) and the front focus of the rear lens group 12 (ie, the object-side focus of the rear lens group 12 ) satisfies, 1.5f1 ⁇ 2.5f1, where f1 represents the focal length of the front lens group.
  • the focal length of the front lens group 11 ranges from 80 to 120 mm
  • the focal length of the rear lens group 12 ranges from 8 to 16 mm.
  • the focal length of the front lens group 11 can be any one of 80mm, 90mm, 100mm, 110mm, 120mm or a value between the two
  • the focal length of the rear lens group 12 can be 8mm, 10mm, 12mm , 14mm, 16mm or a value between the two.
  • the average effective clear aperture of the front lens group 11 is 7 times to 16 times the average effective clear aperture of the rear lens group 12 .
  • the front lens group 11 includes a first lens element 111 , a second lens element 112 , a third lens element 113 and a fourth lens element 114 arranged from the object direction of the lens assembly 10 to the image side of the lens assembly 10 .
  • the first lens element 111 has positive refractive power and the image-side surface of the first lens element 111 is convex.
  • One of the second lens element 112 , the third lens element 113 and the fourth lens element 114 has the first attribute, and the other two of the three have the second attribute and the third attribute, respectively.
  • the first attribute includes having a negative optical power.
  • the second attribute includes having positive optical power and the object-side surface being convex.
  • the third attribute includes having positive power and being a lenticular lens.
  • the Abbe number (ie, the dispersion coefficient) of the first lens element 111 is greater than 70.
  • the second attribute and the third attribute may further include Abbe numbers greater than 70, respectively.
  • the first property may also include an index of refraction greater than 1.8.
  • the second lens element 112 has a third property.
  • the third lens element 113 has a second property.
  • the fourth lens element 114 has the first property and is a biconcave lens.
  • the lens assembly 10 can have better image quality under high magnification (image ratio), and on the other hand , which breaks the technical prejudice that the high magnification lens of the non-cemented lens structure in the prior art cannot solve the problem of "purple fringing" in the image of the object due to dispersion, that is, the lens assembly 10 provided by the present application
  • the aforementioned arrangement of the lens elements included in the front lens group 11 can solve the problem of "purple fringing" in the image of the object due to dispersion, even if a non-cemented lens structure is used;
  • the structure of the lens assembly 10 reduces the difficulty of installation.
  • the rear lens group 12 includes a fifth lens element 121 , a sixth lens element 122 , a seventh lens element 123 , and an eighth lens element 121 , which are arranged from the object direction of the lens assembly 10 to the image side of the lens assembly 10 .
  • Lens element 124 , ninth lens element 125 and tenth lens element 126 are arranged from the object direction of the lens assembly 10 to the image side of the lens assembly 10 .
  • the fifth lens element 121 is a biconcave lens and has negative refractive power.
  • the sixth lens element 122 is a biconvex lens and has positive refractive power.
  • the seventh lens element 123 is a biconcave lens and has negative refractive power.
  • the image-side surface of the eighth lens element 124 is convex and the eighth lens element 124 has positive refractive power.
  • the ninth lens element 125 is a biconvex lens and has positive refractive power.
  • the image-side surface of the tenth lens element 126 is convex and the tenth lens element 126 has negative refractive power.
  • each lens element in the lens assembly 10 is shown in the following table.
  • SURF denotes an object, or the object-side surface of each lens element, or the image-side surface of each lens element, or the imaging plane.
  • a SURF of 0 corresponds to an object
  • a SURF of 1 corresponds to an object-side surface of the first lens element 111
  • a SURF of 2 corresponds to an image-side surface of the first lens element 111
  • a SURF of 3 corresponds to an object-side surface of the second lens element 112
  • SURF of 4 corresponds to the image-side surface of the first lens element 112
  • SURF of 19 corresponds to the object-side surface of the tenth lens element 126
  • SURF of 20 corresponds to the image-side surface of the tenth lens element 126
  • SURF is IMG corresponding to the imaging plane.
  • RADIUS corresponds to the radius of curvature, in mm.
  • RADIUS of INFINITE means the radius of curvature is infinite.
  • RADIUS is a positive sign that the center of the circle is located on the image side of the lens assembly 10 ;
  • RADIUS is a negative sign that the center of the circle is located on the object side of the lens assembly 10 .
  • THICKNESS corresponds to the distance between the current SURF and the adjacent next SURF among the SURFs numbered 0 to 20.
  • MEDIUM corresponds to the medium between the current SURF and the adjacent next SURF in the SURFs numbered 0 to 20.
  • INDEX corresponds to the refractive index.
  • V-NUMBER corresponds to the dispersion coefficient (Abbé number).
  • the glass in the MEDIUM column is only an example, and in other embodiments, it can also be resin or the like.
  • the effective clear apertures (radii) of the object-side surface and the image-side surface of each lens element in the lens assembly 10 may be as shown in the following table.
  • SURF represents the object-side surface of each lens element, or the image-side surface of each lens element, or the image plane.
  • the SURFs numbered 1 to 20 correspond to the object-side surfaces and the image-side surfaces of the first lens element 111 to the tenth lens element 126 in sequence.
  • the SURF numbered 21 corresponds to the IMG in Table 2, that is, the image plane.
  • (X OR R-APER) corresponds to the effective clear aperture (here refers to the radius), in mm.
  • the optical parameters of the lens assembly 10 may be shown in the following table.
  • the front focus position represents the distance of the front focus relative to the intersection of the optical axis of the lens assembly and the surface of SURF number 1;
  • the principal point interval represents the distance between the principal point on the object side and the principal point on the image side;
  • the entrance pupil position represents the entrance pupil position The distance from the intersection of the optical axis of the lens assembly and the surface of SURF number 1;
  • the position of the object point represents the distance between the object point relative to the optical axis of the lens assembly and the intersection of the surface of SURF number 1;
  • the object height represents the radius of the field of view
  • the total length of the lens assembly characterizes the distance between the intersection of the optical axis of the lens assembly and the surface of SURF number 1 from the intersection of the optical axis of the lens assembly and the surface of the SURF number 20;
  • the back focus position characterizes the light of the back focus relative to the lens assembly The distance between the axis and the intersection of the SURF number 20 surface;
  • the exit pupil position
  • the working distance and imaging field of view of the lens assembly 10 may be shown in the following table.
  • the working distance refers to the distance between the intersection of the optical axis of the lens assembly 10 and the object-side surface of the first lens element 111 and the object.
  • 3 to 6 respectively show the relationship between the modulation transfer function and the spatial frequency of the lens assembly 10 under the working distance and field of view corresponding to groups 1 to 4 in Table 5.
  • the entrance pupil position and the front focus of the lens assembly 10 including a plurality of lens elements with co-optical axes are located outside the lens assembly 10 and on the object side of the lens assembly 10, and the lens assembly 10 is The object-side principal point is farther from the lens assembly 10 than the front focus, so that a single imaging device including the lens assembly 10 can simultaneously image the workpiece and the imaging device and the side circumference of the workpiece; by making the side circumference corresponding to the lens assembly 10
  • the rear lens group 12 may be a standard lens with positive refractive power.
  • the lateral imaging development angle is 21.7°.
  • an optional lens assembly 10a of the present application which has a similar structure to the lens assembly 10, except that the front lens group 11a, the rear lens group 12a, the structural parameters of each element of the lens assembly 10a, the effective light pass Aperture, and optical parameters of lens assembly 10a.
  • the lens assembly 10a includes a front lens group 11a, a rear lens group 12a and an aperture stop 13a which are arranged on a common optical axis.
  • the front lens group 11a and the rear lens group 12a are arranged from the object direction of the lens assembly 10a to the image side of the lens assembly 10a.
  • the front lens group 11a includes a first lens element 111a, a second lens element 112a, a third lens element 113a and a fourth lens element 114a arranged from the object direction of the lens assembly 10a to the image side of the lens assembly 10a.
  • the first lens element 111a has positive refractive power and the image-side surface of the first lens element 111a is convex.
  • the second lens element 112a has negative refractive power (corresponding to the first property), and the second lens element 112a is a concave lens and has an object-side convex surface.
  • the third lens element 113a has positive refractive power and is a lenticular lens (corresponding to the third attribute).
  • the fourth lens element 114a has positive power and the object-side surface is convex (corresponding to the second property).
  • the rear lens group 12a includes a fifth lens element 121a, a sixth lens element 122a, a seventh lens element 123a, and an eighth lens element 124a arranged from the object direction of the lens assembly 10a to the image side of the lens assembly 10a , the ninth lens element 125a and the tenth lens element 126a.
  • the fifth lens element 121a is a biconcave lens and has negative refractive power
  • the image-side surface of the sixth lens element 122a is convex and the sixth lens element 122a has positive refractive power
  • the seventh lens element 123a is a meniscus lens and have positive power
  • eighth lens element 124a is a biconvex lens and has negative power
  • ninth lens element 125a is a biconvex lens and has positive power
  • tenth lens element 126a is a biconvex lens and has positive power.
  • the aperture stop 13a is provided between the fifth lens element 121a and the sixth lens element 122a.
  • SURF denotes the object, or the object-side surface of each lens element, or the image-side surface of each lens element, or the aperture stop, or the imaging plane.
  • SURF 0 corresponds to an object
  • SURF numbers 1 to 10 correspond to the object-side surface and image-side surface of the first lens element 111 a to the fifth lens element 121 a in sequence
  • SURF number 11 corresponds to an aperture stop
  • SURF is the imaging plane corresponding to the IMG.
  • RADIUS corresponds to the radius of curvature, in mm.
  • RADIUS of INFINITE means the radius of curvature is infinite.
  • RADIUS is a positive sign that the center of the circle is located on the image side of the lens assembly 10a; RADIUS is a negative sign that the center of the circle is located on the object side of the lens assembly 10a.
  • THICKNESS corresponds to the distance between the current SURF and the adjacent next SURF among the SURFs numbered 0 to 21.
  • MEDIUM corresponds to the medium between the current SURF and the adjacent next SURF among the SURFs numbered 0 to 21.
  • INDEX corresponds to the refractive index.
  • V-NUMBER corresponds to the dispersion coefficient (Abbé number).
  • the effective clear apertures of the object-side surface and the image-side surface of each lens element in the lens assembly 10a and the effective clear aperture (radius) of the aperture stop may be shown in the following table.
  • SURF denotes the object-side surface of each lens element, or the image-side surface of each lens element, or the aperture stop, or the image plane.
  • the SURFs numbered 1 to 10 and 12 to 21 correspond to the object-side surface and the image-side surface of each of the first lens element 111 a to the tenth lens element 126 a in order.
  • the SURF numbered 11 corresponds to the aperture stop 13a
  • the SURF numbered 22 corresponds to the IMG in Table 6, that is, the image plane.
  • (X OR R-APER) corresponds to the effective clear aperture (here refers to the radius), in mm.
  • the optical parameters of the lens assembly 10a may be shown in the following table.
  • the front focus position represents the distance of the front focus relative to the intersection of the optical axis of the lens assembly and the surface of SURF number 1;
  • the principal point interval represents the distance between the principal point on the object side and the principal point on the image side;
  • the entrance pupil position represents the entrance pupil position The distance from the intersection of the optical axis of the lens assembly and the surface with SURF number 1;
  • the position of the object point represents the distance between the object point relative to the optical axis of the lens component and the intersection of the surface with SURF number 1;
  • the object height represents the radius of the field of view
  • the total length of the lens assembly characterizes the distance between the intersection of the optical axis of the lens assembly and the surface of the SURF number 1 from the intersection of the optical axis of the lens assembly and the surface of the SURF number 21;
  • the back focus position characterizes the light of the back focus relative to the lens assembly The distance between the axis and the intersection of the SURF number 21 surface;
  • the lateral imaging development angle is 20.5°.
  • 9 to 12 show the relationship between the modulation transfer function and the spatial frequency of the lens assembly 10a under the working distance and field of view corresponding to groups 1 to 4 in Table 5.
  • an optional lens assembly 10b of the present application has a similar structure to the lens assembly 10, except that the front lens group 11b, the rear lens group 12b, the structural parameters of the lens assembly 10b, the effective clear aperture, Optical parameters, and the correspondence between working distance and field of view.
  • the lens assembly 10b includes a front lens group 11b, a rear lens group 12b and an aperture stop 13b.
  • the front lens group 11b includes a first lens element 111b, a second lens element 112b, a third lens element 113b and a fourth lens element 114b arranged from the object direction of the lens assembly 10b to the image side of the lens assembly 10b.
  • the first lens element 111b has positive refractive power and the image-side surface of the first lens element 111b is convex.
  • the second lens element 112b has positive refractive power and is a lenticular lens (corresponding to the third property).
  • the third lens element 113b has negative refractive power (corresponding to the first property), and the third lens element 113b has an image-side convex surface.
  • the fourth lens element 114b has positive power and the object-side surface is convex (corresponding to the second property).
  • the rear lens group 12b includes a fifth lens element 121b, a sixth lens element 122b, a seventh lens element 123b, and an eighth lens element 124b arranged from the object direction of the lens assembly 10b to the image side of the lens assembly 10b , the ninth lens element 125b and the tenth lens element 126b.
  • the fifth lens element 121b is a biconvex lens and has positive refractive power.
  • the sixth lens element 122b is a biconcave lens and has negative refractive power.
  • the image-side surface of the seventh lens element 123b is concave and the seventh lens element 123b has negative refractive power.
  • the image-side surface of the eighth lens element 124b is convex and has positive refractive power.
  • the ninth lens element 125b is a biconvex lens and has positive refractive power.
  • the tenth lens element 126b is a biconvex lens and has positive refractive power.
  • the aperture stop 13b is provided between the sixth lens element 122b and the seventh lens element 123b.
  • SURF denotes the object, or the object-side surface of each lens element, or the image-side surface of each lens element, or the aperture stop, or the imaging plane.
  • a SURF of 0 corresponds to an object
  • SURF numbers 1 to 12 correspond to the object-side surface and image-side surface of the first lens element 111b to the sixth lens element 122b in sequence
  • SURF number 13 corresponds to an aperture stop
  • SURF is the imaging plane corresponding to the IMG.
  • RADIUS corresponds to the radius of curvature, in mm.
  • a RADIUS of INFINITE indicates that the radius of curvature is infinite.
  • RADIUS is a positive sign that the center of the circle is located on the image side of the lens assembly 10b;
  • RADIUS is a negative sign that the center of the circle is located on the object side of the lens assembly 10b.
  • THICKNESS corresponds to the distance between the current SURF and the adjacent next SURF among the SURFs numbered 0 to 21, in mm.
  • MEDIUM corresponds to the medium between the current SURF and the adjacent next SURF among the SURFs numbered 0 to 21.
  • INDEX corresponds to the refractive index.
  • V-NUMBER corresponds to the dispersion coefficient (Abbé number).
  • the effective clear apertures of the object-side surface and the image-side surface of each lens element in the lens assembly 10b and the effective clear aperture (radius) of the aperture stop may be shown in the following table.
  • SURF denotes the object-side surface of each lens element, or the image-side surface of each lens element, or the aperture stop, or the image plane.
  • the SURFs numbered 1 to 12 and 14 to 21 correspond to the object-side surface and the image-side surface of the first lens element 111b to the tenth lens element 126b in sequence.
  • the SURF numbered 13 corresponds to the aperture stop 13b, and the SURF numbered 22 corresponds to the IMG in Table 6, that is, the image plane.
  • (X OR R-APER) corresponds to the effective clear aperture (here refers to the radius), in mm.
  • the optical parameters of the lens assembly 10b may be shown in the following table.
  • the focal position represents the distance of the focal point relative to the intersection of the optical axis of the lens assembly and the surface of SURF number 1;
  • the principal point interval represents the distance between the principal point on the object side and the principal point on the image side;
  • the entrance pupil position represents the distance between the entrance pupil position and the lens The distance between the optical axis of the component and the intersection of the surface with SURF number 1;
  • the position of the object point represents the distance between the object point relative to the optical axis of the lens component and the intersection of the surface with SURF number 1;
  • the object height represents the radius of the field of view;
  • the lens The overall length of the assembly represents the distance between the intersection of the optical axis of the lens assembly and the surface of SURF number 1 from the intersection of the optical axis of the lens assembly and the surface of SURF number 21;
  • the back focus position represents the distance between the optical axis of the lens assembly and the optical axis of the lens assembly.
  • the distance of the intersection of the surfaces; the image height corresponds to half the image height of the full field of view.
  • the distance from the object direction of the lens assembly 10b to the image side is positive, and vice versa.
  • the working distance and imaging field of view of the lens assembly 10b may be shown in the following table.
  • the working distance refers to the distance between the intersection of the optical axis of the lens assembly 10b and the object-side surface of the first lens element 111b and the object.
  • 15 to 18 are diagrams showing the relationship between the modulation transfer function and the spatial frequency of the lens assembly 10b under the working distance and field of view corresponding to groups 1 to 4 in Table 12.
  • the lateral imaging development angle is 21.7°.
  • an embodiment of the present application further provides an imaging device 20 , which includes the above-mentioned lens assembly 10 and a photosensitive element 21 disposed on the image side of the lens assembly 10 . light on the surface of element 21 .
  • the imaging device 20 further includes an adjustment mechanism 22 .
  • the adjustment mechanism 22 is located between the photosensitive element 21 and the lens assembly 10 , and is configured to adjust the angle between the photosensitive surface of the photosensitive element 21 and the optical axis of the lens assembly 10 .
  • the adjustment mechanism 22 may also be a rotary mechanical structure commonly used in the art, as long as the angle between the photosensitive surface of the photosensitive element and the optical axis of the lens assembly 10 can be adjusted.
  • is used to represent the inclination angle of the optical axis of the lens assembly 10 relative to the normal line of the measured object 30 , that is, the inclination angle of the object plane;
  • the inclination angle of the normal line of the photosensitive surface that is, the inclination angle of the image plane, the following relationship is satisfied between the inclination angle ⁇ of the object plane and the inclination angle ⁇ ' of the image plane:
  • M is the magnification of the lens assembly 10 , and specifically, refers to the magnification of the lens at the position of the intersection of the optical axis and the object plane.
  • the image plane inclination angle ⁇ ' can be obtained by knowing the object plane inclination angle ⁇ and the magnification of the lens assembly 10 by the above formula, or, the image plane inclination angle ⁇ ' and the lens can be known.
  • the magnification of the component 10 when the inclination angle ⁇ of the object plane is solved, there is a deviation within 2° or within 1° of the solution result.
  • the angle between the photosensitive surface of the photosensitive element 21 and the optical axis of the lens assembly 10 is adjusted by the adjustment mechanism 22, so that when imaging the non-perpendicular surface or the non-parallel side peripheral surface with respect to the optical axis of the lens assembly 10, Better imaging results were achieved. Further, for the lens assembly 10 with the position of the entrance pupil coincident with the position of the front focus (or the distance between them is less than 1 mm), an unexpectedly better imaging effect is obtained.
  • an embodiment of the present application further provides a detection device, including the above-mentioned imaging device and a processor signally connected to the imaging device, the processor is configured to perform analysis and processing based on an image including an image of a subject captured by the imaging device .
  • an embodiment of the present application also provides a detection system, including: a feeding mechanism, a logistics mechanism, a sorting mechanism, and the above-mentioned detection equipment; the feeding mechanism is configured to transmit the object to be tested to the logistics mechanism; the logistics mechanism is configured The imaging device is arranged opposite the table of the logistics mechanism, and is configured to collect an image containing the image of the tested object when the logistics mechanism drives the tested object to pass through the viewing range of the imaging device, and the processor is configured to generate an image based on the image. Sorting instruction; the sorting mechanism is signal-connected to the processor and configured to sort the DUT based on the sorting instruction.
  • the logistics mechanism can be a conveyor belt, a rotary table, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Lenses (AREA)

Abstract

一种透镜组件(10)、成像设备(20)、检测设备及检测系统,镜头组件(10)应用于镜头,包括:多个共光轴设置的透镜元件(111-114,121-126);透镜组件(10)的入瞳位置及前焦点均位于透镜组件(10)外,且位于透镜组件(10)的物方;透镜组件(10)的物方主点较前焦点远离透镜组件(10);透镜组件(10)对应的侧周成像展开角满足:α=arctan|H/2f|,其中,α表示侧周成像展开角,且18°≤α≤25°,H表示透镜组件(10)对应的满视野像高,f表示透镜组件(10)的焦距,且f<0。包含透镜组件(10)的单个成像设备(20)能够同时对工件与成像设备(20)的正对面及工件的侧周面进行成像,并具有较佳的成像品质。

Description

透镜组件,成像设备,检测设备及检测系统
相关申请的交叉引用
本公开要求于2020年11月16日提交中国专利局的申请号为2020112754857、名称为“透镜组件,成像设备,检测设备及检测系统”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本申请涉及光学成像领域,具体而言,涉及一种透镜组件,成像设备,检测设备及检测系统。
背景技术
在对工件的外观缺陷进行检测时,需要获取工件的侧周图像。现有技术中,为了采集完整的工件侧周图像,通常采用多个相机分别从不同角度进行拍摄,或者通过单个相机分多次从不同角度进行拍摄,然后再对所采集到的多个图像进行图像融合。然而,这样的方式,图像采集过程较为复杂,耗时较长,且最终的图像质量的影响因素较多(例如,相机的成像品质,图像融合水平等),因此,不利于工件检测。
另外,对于具有金属表面的零件的侧周成像一直面临一个问题,即表面上非金属成分的污渍往往不能成像或成像后图像对比度很差,不能作为进一步零件分选的图像依据。
发明内容
本申请实施例的目的在于提供一种透镜组件,成像设备,检测设备及检测系统,用以简化采集工件侧周图像的过程,提升图像采集效率,并改善所采集的图像质量,以及改善现有技术中在对具有金属表面的零件进行侧周成像时,无法对表面的非金属成分的污渍进行成像或所成像对比度较差的问题。
本申请提供一种透镜组件,应用于镜头,所述透镜组件包括:多个透镜元件,所述多个透镜元件共光轴设置;所述透镜组件的入瞳位置及前焦点均位于所述透镜组件外,且位于所述透镜组件的物方;所述透镜组件的物方主点较所述前焦点远离所述透镜组件;所述透镜组件对应的侧周成像展开角满足:α=arctan|H/2f|,其中,α表示所述侧周成像展开角,且18°≤α≤25°,H表示所述透镜组件对应的满视野像高,f表示所述透镜组件的焦距,且f<0。
本申请中,通过使包括多个共光轴设置的透镜元件的透镜组件的入瞳位置及前焦点均位于透镜组件外,且位于透镜组件的物方,并使透镜组件的物方主点较前焦点远离透镜组件,使得包含该透镜组件的单个成像设备能够同时对工件与成像设备的正对面及工件的侧周面进行成像;通过使透镜组件对应的侧周成像展开角满足:α=arctan|H/2f|,其中,α表示侧周成像展开角,且18°≤α≤25°,H表示透镜组件对应的满视野像高,f表示透镜组件的焦距,且f<0,能够使得包含该透镜组件的单个成像设备适用于具有金属表面的零件的侧周成像,尤其是对金属表面的非金属污渍或缺陷的成像具有较佳的成像品质。
可选地,所述透镜组件的焦距的范围为-18mm<f<-2mm。
可选地,所述透镜组件的焦距的范围为-11mm<f<-3mm。
可选地,所述入瞳位置与所述前焦点之间的距离小于1mm。
可选地,主光线在所述透镜组件的像平面处相互之间的最大角度差为1°。
本申请中,由于主光线在透镜组件的像平面处相互之间的最大角度差为1°,能够避免由于菲涅尔效应导致工件侧周面的微小缺陷不可见的问题。
可选地,所述入瞳位置与所述前焦点之间的距离小于0.5mm。
本申请中,通过尽量缩小透镜组件的前焦点与入瞳位置之间的距离,使得进一步控制了成像光路中主光线相对于光轴的角度,从而对于金属表面,尤其是具有非金属污渍的金属表面具有更优的成像效果。
可选地,主光线在所述透镜组件的像平面处相互之间的最大角度差为0.3°。
可选地,所述入瞳位置与所述前焦点之间的距离小于1mm。
可选地,主光线在所述透镜组件的像平面处相互之间的最大角度差为1°。
可选地,所述入瞳位置与所述前焦点之间的距离小于0.5mm。
可选地,主光线在所述透镜组件的像平面处相互之间的最大角度差为0.3°。
可选地,所述多个透镜元件包括自所述透镜组件的物方向所述透镜组件的像方排列的前透镜组及后透镜组,所述前 透镜组及所述后透镜组均具有正光焦度,所述前透镜组的后焦点与所述后透镜组的前焦点之间的距离Δ满足,1.5f1<Δ<2.5f1,其中f1表示所述前透镜组的焦距。
可选地,所述前透镜组包括自所述透镜组件的物方向所述透镜组件的像方排列的第一透镜元件,第二透镜元件,第三透镜元件及第四透镜元件;所述第一透镜元件具有正光焦度且所述第一透镜元件的像侧表面为凸面,所述第二透镜元件,所述第三透镜元件及所述第四透镜元件三者之一具有第一属性,三者中的另外两者分别具有第二属性及第三属性,所述第一属性包括具有负光焦度,所述第二属性包括具有正光焦度且物侧表面为凸面,所述第三属性包括具有正光焦度且为双凸透镜。
本申请中,通过对前透镜组做这样的设置,可以在一定程度上提升包括本申请所提供的透镜组件的成像设备的成像品质。
可选地,所述第一透镜元件的阿贝数大于70,所述第二属性及所述第三属性还分别包括阿贝数大于70,第一属性还包括折射率大于1.8。
可选地,所述后透镜组包括自所述透镜组件的物方向所述透镜组件的像方排列的第五透镜元件,第六透镜元件,第七透镜元件,第八透镜元件,第九透镜元件及第十透镜元件;所述第五透镜元件为双凹透镜且具有负光焦度,所述第六透镜元件为双凸透镜且具有正光焦度,第七透镜元件为双凹透镜且具有负光焦度,所述第八透镜元件的像侧表面为凸面且所述第八透镜元件具有正光焦度,所述第九透镜元件为双凸透镜且具有正光焦度,所述第十透镜元件的像侧表面为凸面且所述第十透镜元件具有负光焦度;或者,所述第五透镜元件为双凹透镜且具有负光焦度,所述第六透镜元件的像侧表面为凸面且所述第六透镜元件具有正光焦度,所述第七透镜元件为弯月透镜且具有正光焦度,所述第八透镜元件为双凹透镜且具有负光焦度,所述第九透镜元件为双凸透镜且具有正光焦度,所述第十透镜元件为双凸透镜且具有正光焦度;或者,所述第五透镜元件为双凸透镜且具有正光焦度,所述第六透镜元件为双凹透镜且具有负光焦度,所述第七透镜元件的像侧表面为凹面且所述第七透镜元件具有负光焦度,所述第八透镜元件的像侧表面为凸面且具有正光焦度,所述第九透镜元件为双凸透镜且具有正光焦度,所述第十透镜元件为双凸透镜且具有正光焦度。
本申请中,通过对后透镜组作这样的设置,可以进一步提升包括本申请所提供的透镜组件的成像设备的成像品质。
可选地,所述多个透镜元件包括自所述透镜组件的物方向所述透镜组件的像方排列的第一透镜元件,第二透镜元件,第三透镜元件及第四透镜元件;所述第一透镜元件具有正光焦度且所述第一透镜元件的像侧表面为凸面,所述第二透镜元件,所述第三透镜元件及所述第四透镜元件三者之一具有第一属性,三者中的另外两者分别具有第二属性及第三属性,所述第一属性包括具有负光焦度,所述第二属性包括具有正光焦度且物侧表面为凸面,所述第三属性包括具有正光焦度且为双凸透镜。
可选地,所述第一透镜元件的阿贝数大于70,所述第二属性及第三属性还分别包括阿贝数大于70,第一属性还包括折射率大于1.8。
可选地,所述多个透镜元件还包括自所述透镜组件的物方向所述透镜组件的像方排列的第五透镜元件,第六透镜元件,第七透镜元件,第八透镜元件,第九透镜元件及第十透镜元件,所述第一透镜元件至所述第十透镜元件自所述透镜组件的物方向所述透镜组件的像方顺序设置;所述第五透镜元件为双凹透镜且具有负光焦度,所述第六透镜元件为双凸透镜且具有正光焦度,第七透镜元件为双凹透镜且具有负光焦度,所述第八透镜元件的像侧表面为凸面且所述第八透镜元件具有正光焦度,所述第九透镜元件为双凸透镜且具有正光焦度,所述第十透镜元件的像侧表面为凸面且所述第十透镜元件具有负光焦度;或者,所述第五透镜元件为双凹透镜且具有负光焦度,所述第六透镜元件的像侧表面为凸面且所述第六透镜元件具有正光焦度,所述第七透镜元件为弯月透镜且具有正光焦度,所述第八透镜元件为双凹透镜且具有负光焦度,所述第九透镜元件为双凸透镜且具有正光焦度,所述第十透镜元件为双凸透镜且具有正光焦度;或者,所述第五透镜元件为双凸透镜且具有正光焦度,所述第六透镜元件为双凹透镜且具有负光焦度,所述第七透镜元件的像侧表面为凹面且所述第七透镜元件具有负光焦度,所述第八透镜元件的像侧表面为凸面且具有正光焦度,所述第九透镜元件为双凸透镜且具有正光焦度,所述第十透镜元件为双凸透镜且具有正光焦度。
可选地,所述透镜元件为球面透镜。
本申请还提供一种成像设备,包括上述透镜组件及设置在所述透镜组件像方的感光元件,所述感光元件配置为捕捉被投射到所述感光元件的表面上的光。
可选地,所述成像设备还包括调节机构,所述调节机构位于所述感光元件与所述透镜组件之间,配置成调节所述感光元件的感光面与所述透镜组件的光轴之间的夹角。
本申请中,得益于上述透镜组件的性质以及感光元件的感光面与透镜组件之间的光轴之间倾斜设置,可对待测表面 (例如,工件面向透镜组件的表面)没有垂直透镜组件的光轴或待测侧周表面(例如,工件的侧周表面)没有平行透镜组件的光轴的情况实现更好的像质和更大的景深,从而应对更为广泛的成像应用场景。
本申请还提供一种检测设备,包括上述成像设备及与所述成像设备信号连接的处理器,所述处理器配置成基于所述成像设备所采集的包含被摄件影像的图像进行分析处理。
本申请还提供一种检测系统,包括:上料机构,物流机构,分拣机构及上述检测设备;所述上料机构配置成将待测件传送至所述物流机构;所述物流机构配置成带动所述被测件运动;所述成像设备与所述物流机构的台面相对设置,配置成在所述物流机构带动所述被测件经过所述成像设备的取景范围时,采集包含所述被测件影像的图像,所述处理器配置成基于所述图像生成分拣指令;所述分拣机构与所述处理器信号连接,配置成基于所述分拣指令对所述被测件进行分拣。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一实施例提供的透镜组件的结构示意图。
图2为图1中后透镜组的放大图。
图3为图1所示的透镜组件在表5中组1所对应的工作距离及视野下的调制传递函数(MTF)与空间频率的关系图。
图4为图1所示的透镜组件在表5中组2所对应的工作距离及视野下的调制传递函数与空间频率的关系图。
图5为图1所示的透镜组件在表5中组3所对应的工作距离及视野下的调制传递函数与空间频率的关系图。
图6为图1所示的透镜组件在表5中组4所对应的工作距离及视野下的调制传递函数与空间频率的关系图。
图7为本申请可选的的后透镜组的结构示意图。
图8为图7中后透镜组的放大图。
图9为图7所示的透镜组件在表5中组1所对应的工作距离及视野下的调制传递函数与空间频率的关系图。
图10为图7所示的透镜组件在表5中组2所对应的工作距离及视野下的调制传递函数与空间频率的关系图。
图11为图7所示的透镜组件在表5中组3所对应的工作距离及视野下的调制传递函数与空间频率的关系图。
图12为图7所示的透镜组件在表5中组4所对应的工作距离及视野下的调制传递函数与空间频率的关系图。
图13为本申请可选的透镜组件的结构示意图。
图14为图13中后透镜组的放大图。
图15为图13所示的透镜组件在表12中组1所对应的工作距离及视野下的调制传递函数与空间频率的关系图。
图16为图13所示的透镜组件在表12中组2所对应的工作距离及视野下的调制传递函数与空间频率的关系图。
图17为图13所示的透镜组件在表12中组3所对应的工作距离及视野下的调制传递函数与空间频率的关系图。
图18为图13所示的透镜组件在表12中组4所对应的工作距离及视野下的调制传递函数与空间频率的关系图。
图19为本申请一实施例提供的通过调节机构对感光元件与透镜组件的光轴进行调节的示意图。
附图标记:透镜组件-10、10a,10b;前透镜组-11、11a、11b;后透镜组-12、12a、12b;第一透镜元件-111、111a、111b;第二透镜元件-112、112a、112b;第三透镜元件-113、113a、113b;第四透镜元件-114、114a、114b;第五透镜元件-121、121a、121b;第六透镜元件-122、122a、122b;第七透镜元件-123、123a、123b;第八透镜元件-124、124a、124b;第九透镜元件-125、125a、125b;第十透镜元件-126、126a、126b;孔径光阑-13a、13b;成像设备-20;感光元件-21;调节机构-22;被测件-30。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
请参阅图1,本申请一实施例提供一种透镜组件10,应用于镜头。透镜组件10包括多个(至少两个)透镜元件。多个透镜元件共光轴设置。透镜元件可以是球面透镜或非球面透镜等。
透镜组件10的入瞳位置及前焦点均位于透镜组件10外,且位于透镜组件10的物方。需要说明的是,入瞳是限制入 射光束的有效孔径,一般是孔径光阑对前方光学系统所成的像,也可以是根据透镜光学系统的有限孔径自然形成。相应地,入瞳位置一般是指孔径光阑相对前方光学系统所成的像(一阶像/高斯像)所在的位置。前焦点是指透镜组件10的物方焦点。本实施例中,入瞳位置与前焦点之间的距离小于1mm。优选地,入瞳位置与前焦点之间的距离小于0.5mm,甚至重合。通过尽量缩小透镜组件10的前焦点与入瞳位置之间的距离,使得进一步规范成像光路中主光线相对于光轴的角度,从而对于金属表面,尤其是具有非金属污渍的金属表面具有更优的成像效果。
需要说明的是,由于存在高阶像差,为使得本方案陈述的更为清晰,本申请实施例中所出现的入瞳位置、焦点位置、焦距等均是针对该透镜组件10的一阶特性(或称之为近轴特性)进行描述。
透镜组件10的物方主点较前焦点远离透镜组件10。需要说明的是,主点为主平面与光轴的交点。本实施例中,透镜组件10的物方主点为透镜组件10的物方主平面与透镜组件10的光轴的交点。
透镜组件10对应的侧周成像展开角为固定值,且满足:α=arctan|H/2f|。其中,α表示侧周成像展开角,且18°≤α≤25°,H表示透镜组件10对应的满视野像高,f表示透镜组件10的焦距,且f<0。
本实施例中,通过使用透镜组件10可以实现将垂直于透镜组件10的光轴的表面和平行于透镜组件10的侧周表面同时成像于像平面。以圆柱形工件为例,通过使用透镜组件10可实现对工件的圆形上表面(即,正对透镜组件10的表面)和侧周柱面同时成像,其中,上表面成像为圆形,侧周柱面可成像为与该圆形同心的环形(此时,圆柱形工件的中轴线和透镜组件10的光轴共轴)。其中,侧周成像展开角决定着侧周成像质量,通过将侧周成像展开角限定在18°~25°之间,能够实现在对工件平行于光轴的侧周表面进行成像的基础上,提升成像品质,尤其提升对金属表面的非金属污渍或缺陷的成像的成像品质。
本申请的发明人经研究发现,位于工件侧周表面的非金属污渍对于不同角度入射光线呈现不同偏振特性,即,对于不同角度入射光线,工件的金属表面与非金属污渍表面呈现出不同的光线吸收率,且差别明显。例如,非金属污渍表面对于垂直入射光线的吸收率高,而工件的金属表面对于垂直入射光线的吸收率较低且反射率高,由此,能够实现工件金属表面上的非金属污渍的有效成像。与之对比的,当非金属污渍对于一定角度区间内的入射光线呈一定偏振特性且吸收率降低而反射率提高时,抑制了金属表面上非金属污渍的成像展现。
需要说明的是,透镜组件10对于一定工作距离(表征与透镜组件10的物镜之间的距离)的垂直于光轴的平面进行成像时具备一定视野(可视范围)。该视野一般为圆形,且具有半径R。通过透镜组件10对整个视野进行成像,所成像为半径为r的圆形。前述实施例中所提到的满视野像高H为半径为r的圆形的直径(即2r)。
可以理解,对于不同工作距离的平面,透镜组件10在对其进行成像时视野大小会有不同,但不同距离视野对应的满视野像高H相同或相差不大(例如不超过1mm),且对于不同的工作距离的满视野像高H均可配置成前述侧周成像展开角公式。
透镜组件10的焦距的范围可以为-18mm<f<-2mm。相应地,成像设备中与透镜组件10配合使用的感光元件的靶面的尺寸范围为1/4~1.1英寸。本实施例中,透镜组件10的焦距例如可以是-15mm,-11mm,-7mm,-3mm,-1mm中的任一者或任意两者之间的一取值。优选地,透镜组件10的焦距的范围为-11mm<f<-3mm。由此,可以使得透镜组件10更好地与不同的感光元件的尺寸进行匹配,进而有利于提升用于表面检测或者金属表面检测的工件所成像的分辨率。
可以理解,常用的感光元件的靶面尺寸及对应的像高与透镜组件10的焦距之间的对应关系如下表所示。
感光元件的靶面尺寸(单位:英寸) 像高(单位:mm) 透镜组件的焦距(单位:mm)
1/2 4.8 -6
1/1.8 5.4 -6.75
2/3 6.6 -8.25
表1
本实施例中,主光线在透镜组件10的像平面处相互之间的最大角度差为1°。主光线是指物体发出的可到达孔径光阑的中心的光线(或物体发出的可通过入瞳中心或其反向延长线可通过入瞳中心的光线)。通过使主光线在透镜组件10的像平面处相互之间的最大角度差为1°,可以使得透镜组件10具备更好的焦深,进而可以在对具有一定厚度的工件进行侧周成像时,取得较佳的成像质量。优选地,主光线在透镜组件10的像平面处相互之间的最大角度差为0.3°。
本实施例中,多个透镜元件包括自透镜组件10的物方向透镜组件10的像方排列的前透镜组11及后透镜组12。前透镜组11及后透镜组12均具有正光焦度。可选地,前透镜组11的后焦点(即,前透镜组11的像方焦点)与后透镜组12的前焦点(即,后透镜组12的物方焦点)之间的距离Δ满足,1.5f1<Δ<2.5f1,其中f1表示前透镜组的焦距。
本实施例中,后透镜组12的焦距f2与前透镜组11的焦距f1之间的比值k满足如下关系:k=f2/f1,且0.08<k<0.15。可选地,前透镜组11的焦距范围为80~120mm,后透镜组12的焦距范围为8~16mm。示例性地,前透镜组11的焦距可 以是80mm,90mm,100mm,110mm,120mm中的任一者或任两者之间的一取值;后透镜组12的焦距可以是8mm,10mm,12mm,14mm,16mm中的任一者或任两者之间的一取值。通过对后透镜组12及前透镜组11各自的焦距进行这样的配置,能够实现更佳的放大倍率,使得后透镜组12实现成本更低,同时进一步提升成像质量。
本实施例中,前透镜组11的平均有效通光孔径是后透镜组12的平均有效通光孔径的7倍~16倍。通过对前透镜组11及后透镜组12各自的平均有效通光孔径进行这样的配置,可以减少透镜组件10的渐晕,对于物体不同位置发出的光线都能无差别的进行成像,从而提升成像一致性,有利于用于缺陷检测的严苛的工业环境。
本实施例中,前透镜组11包括自透镜组件10的物方向透镜组件10的像方排列的第一透镜元件111,第二透镜元件112,第三透镜元件113及第四透镜元件114。其中,第一透镜元件111具有正光焦度且第一透镜元件111的像侧表面为凸面。第二透镜元件112,第三透镜元件113及第四透镜元件114三者之一具有第一属性,三者中的另外两者分别具有第二属性及第三属性。第一属性包括具有负光焦度。第二属性包括具有正光焦度且物侧表面为凸面。第三属性包括具有正光焦度且为双凸透镜。通过对前透镜组做这样的设置,可以在一定程度上提升包括透镜组件10的成像设备的成像品质。
可选地,第一透镜元件111的阿贝数(即,色散系数)大于70。
可选地,第二属性及第三属性还可以分别包括阿贝数大于70。第一属性还可以包括折射率大于1.8。
图1所示的实施例中,第二透镜元件112具有第三属性。第三透镜元件113具有第二属性。第四透镜元件114具有第一属性且为双凹透镜。
本申请实施例中,通过对前透镜组11所包括的透镜元件进行前述的设置,一方面,可以使得透镜组件10可以在高倍率(像比物)下具有较佳的像质,另一方面,破除了现有技术中非胶合透镜结构的高倍率镜头在成像时,无法解决由于色散原因导致物体所成像存在“紫边”问题的技术偏见,也即,本申请所提供的透镜组件10通过对前透镜组11所包括的透镜元件作前述的设置,即便采用非胶合透镜结构,也能够解决由于色散原因导致物体所成像存在“紫边”问题;并且,相较于胶合透镜结构,简化了透镜组件10的结构,降低了安装难度。
请一并参阅图1及图2,后透镜组12包括自透镜组件10的物方向透镜组件10的像方排列的第五透镜元件121,第六透镜元件122,第七透镜元件123,第八透镜元件124,第九透镜元件125及第十透镜元件126。
第五透镜元件121为双凹透镜且具有负光焦度。第六透镜元件122为双凸透镜且具有正光焦度。第七透镜元件123为双凹透镜且具有负光焦度。第八透镜元件124的像侧表面为凸面且第八透镜元件124具有正光焦度。第九透镜元件125为双凸透镜且具有正光焦度。第十透镜元件126的像侧表面为凸面且第十透镜元件126具有负光焦度。通过对后透镜组12作这样的设置,可以进一步提升包括透镜组件10的成像设备的成像品质。
本实施例中,透镜组件10中各透镜元件的结构参数如下表所示。
SURF RADIUS THICKNESS MEDIUM INDEX V-NUMBER
0 INFINITE 105.5 空气    
1 625.70536 20.28634 玻璃 1.501 77.45
2 -85.06061 1 空气    
3 169.82707 15.14829 玻璃 1.501 77.46
4 -252.62377 1.1195 空气    
5 96.73819 14.22836 玻璃 1.501 77.46
6 -699.99725 5.10917 空气    
7 -182.83545 14.84872 玻璃 1.9 29.02
8 273.00838 289.28831 空气    
9 -14.16403 8.56406 玻璃 1.9 38.48
10 16.96304 2.29724 空气    
11 33.91019 1.96922 玻璃 1.9 22.55
12 -17.645 5.84837 空气    
13 -40.32761 1.77267 玻璃 1.9 22.55
14 31.66893 7.89439 空气    
15 615.81065 3.86557 玻璃 1.50768 76.8
16 -16.09775 1 空气    
17 27.73532 4.06777 玻璃 1.66782 61.16
18 -30.92936 1 空气    
19 -26.99265 2.67304 玻璃 1.9 22.55
20 -84.49752 38.17873 空气    
IMG INFINITE        
表2
其中,SURF表示物体,或各透镜元件的物侧表面,或各透镜元件的像侧表面,或成像面。具体地,SURF为0对应物体,SURF为1对应第一透镜元件111的物侧表面,SURF为2对应第一透镜元件111的像侧表面,SURF为3对应第二透镜元件112的物侧表面,SURF为4对应第一透镜元件112的像侧表面,以此类推,SURF为19对应第十透镜元件126的物侧表面,SURF为20对应第十透镜元件126的像侧表面,SURF为IMG对应成像面。RADIUS对应曲率半径,单位为mm。RADIUS为INFINITE表示曲率半径为无穷大。RADIUS为正表征圆心位于透镜组件10的像方;RADIUS为负表征圆心位于透镜组件10的物方。THICKNESS对应编号为0~20的SURF中当前SURF与相邻的下一SURF之间的距离。MEDIUM对应编号为0~20的SURF中当前SURF与相邻的下一SURF之间的介质。INDEX对应折射率。V-NUMBER对应色散系数(阿贝数)。
可以理解,上表中,MEDIUM列中的玻璃仅为示例,其他实施例中,也可以是树脂等。
本实施例中,透镜组件10中各透镜元件的物侧表面及像侧表面的有效通光孔径(半径)可以如下表所示。
SURF X or R-APER
1 51.121
2 51.348
3 51.3897
4 51.1878
5 46.223
6 45.8756
7 45.2771
8 41.744
9 2.2655
10 3.4544
11 4.6988
12 4.8737
13 5.438
14 5.738
15 8.8947
16 9.1447
17 9.5066
18 9.4089
19 8.9868
20 8.8573
21 2.3302
表3
其中,SURF表示各透镜元件的物侧表面,或各透镜元件的像侧表面,或像平面。具体地,编号为1~20的SURF依次对应第一透镜元件111至第十透镜元件126各自的物侧表面及像侧表面。编号为21的SURF对应表2中的IMG,即,像平面。(X OR R-APER)对应有效通光孔径(这里指半径),单位为mm。
本实施例中,透镜组件10的光学参数可以如下表所示。
Figure PCTCN2021118312-appb-000001
Figure PCTCN2021118312-appb-000002
表4
其中,前焦点位置表征前焦点相对透镜组件的光轴与SURF编号1的表面的交点的距离;主点间隔表征物方主点与像方主点之间的距离;入瞳位置表征入瞳位置与透镜组件的光轴与SURF编号为1的表面的交点的距离;物点位置表征物点相对于透镜组件的光轴与SURF编号为1的表面的交点之间的距离;物高表征视野半径;透镜组件总长表征透镜组件的光轴与SURF编号1的表面的交点距透镜组件的光轴与SURF编号为20的表面的交点之间的距离;后焦点位置表征后焦点相对于透镜组件的光轴与SURF编号为20的表面的交点的距离;出瞳位置表征相对于透镜组件的光轴与SURF编号为20的表面之间的距离;像点位置表征像点距透镜组件的光轴与SURF编号为20的表面的交点的距离;像高对应满视野像高的一半。另外,表中自透镜组件10的物方向其像方的距离为正,反之为负。
本实施例中,透镜组件10的工作距离和成像视野可以如下表所示。
工作距离(mm) 视野(mm)
1 105.5 10
2 88 24
3 63 44
4 35.5 66
表5
其中,工作距离是指透镜组件10的光轴与第一透镜元件111的物侧表面的交点与物体之间的距离。图3至图6分别示出了透镜组件10在表5中组1~4各自所对应的工作距离及视野下调制传递函数与空间频率的关系图。
本申请实施例中,通过使包括多个共光轴的透镜元件的透镜组件10的入瞳位置及前焦点均位于透镜组件10外,且位于透镜组件10的物方,并使透镜组件10的物方主点较前焦点远离透镜组件10,使得包含该透镜组件10的单个成像设备能够同时对工件与成像设备的正对面及工件的侧周面进行成像;通过使透镜组件10对应的侧周成像展开角满足:α=arctan|H/2f|,其中,α表示侧周成像展开角,且18°≤α≤25°,H表示透镜组件10对应的满视野像高,f表示透镜组件10的焦距,且f<0,能够使得包含该透镜组件10的单个成像设备适用于具有金属表面的零件的侧周成像,尤其是对金属表面的非金属污渍或缺陷的成像具有较佳的成像品质。
可以理解,其他实施例中,后透镜组12可以选用标准镜头,且具有正光焦度。
另外,本实施例中,侧周成像展开角为21.7°。
请参阅图7,本申请可选的一种透镜组件10a,其与透镜组件10具有类似的结构,区别在于前透镜组11a,后透镜组12a,透镜组件10a各元件的结构参数,有效通光孔径,以及透镜组件10a的光学参数。
接下来着重对透镜组件10a与透镜组件10的不同之处进行介绍。
本实施例中,透镜组件10a包括共光轴设置的前透镜组11a,后透镜组12a及孔径光阑13a。前透镜组11a及后透镜组12a自透镜组件10a的物方向透镜组件10a的像方排列。
本实施例中,前透镜组11a包括自透镜组件10a的物方向透镜组件10a的像方排列的第一透镜元件111a,第二透镜元件112a,第三透镜元件113a及第四透镜元件114a。
第一透镜元件111a具有正光焦度且第一透镜元件111a的像侧表面为凸面。第二透镜元件112a具有负光焦度(对应第一属性),且第二透镜元件112a为凹透镜并具有物侧凸面。第三透镜元件113a具有正光焦度且为双凸透镜(对应第三属性)。第四透镜元件114a具有正光焦度且物侧表面为凸面(对应第二属性)。
请一并参阅图8,后透镜组12a包括自透镜组件10a的物方向透镜组件10a的像方排列的第五透镜元件121a,第六透镜元件122a,第七透镜元件123a,第八透镜元件124a,第九透镜元件125a及第十透镜元件126a。具体地,第五透镜元件121a为双凹透镜且具有负光焦度;第六透镜元件122a的像侧表面为凸面且第六透镜元件122a具有正光焦度;第七透镜元件123a为弯月透镜且具有正光焦度;第八透镜元件124a为双凹透镜且具有负光焦度;第九透镜元件125a为双凸透镜且具有正光焦度;第十透镜元件126a为双凸透镜且具有正光焦度。
本实施例中,孔径光阑13a设置在第五透镜元件121a与第六透镜元件122a之间。
本实施例中,透镜组件10a中各元件的结构参数如下表所示。
SURF RADIUS THICKNESS MEDIUM INDEX V-NUMBER
0 INFINITE 105.5 空气    
1 1110.2528 15.35567 玻璃 1.5085 76.72
2 -86.20457 1 空气    
3 494.82068 14.86253 玻璃 1.9 31.47
4 95.42717 4.0084 空气    
5 129.22284 17.40319 玻璃 1.501 77.46
6 -153.49061 1 空气    
7 81.00558 20.41048 玻璃 1.501 77.46
8 327.2402 260.89991 空气    
9 -68.08376 25.8182 玻璃 1.87115 41.29
10 7.75529 2.75563 空气    
11 INFINITE 2.64173 空气    
12 48.77675 19.26983 玻璃 1.85777 23.47
13 -20.09665 1 空气    
14 -30.38492 3.33214 玻璃 1.51117 76.46
15 -12.54758 1 空气    
16 -13.84903 1 玻璃 1.88889 28.46
17 28.90087 1.31941 空气    
18 61.1692 2.24289 玻璃 1.51228 76.35
19 -17.78272 1 空气    
20 36.11054 1.85186 玻璃 1.59347 68.42
21 -26.72644 43.6381 空气    
IMG INFINITE        
表6
其中,SURF表示物体,或各透镜元件的物侧表面,或各透镜元件的像侧表面,或孔径光阑,或成像面。具体地,SURF为0对应物体,SURF编号1~10依次对应第一透镜元件111a至第五透镜元件121a各自的物侧表面及像侧表面,SURF编号11对应孔径光阑,SURF编号12~21依次对应第六透镜元件122a至第十透镜元件126a各自的物侧表面及像侧表面,SURF为IMG对应成像面。RADIUS对应曲率半径,单位为mm。RADIUS为INFINITE表示曲率半径为无穷大。RADIUS为正表征圆心位于透镜组件10a的像方;RADIUS为负表征圆心位于透镜组件10a的物方。THICKNESS对应编号为0~21的SURF中当前SURF与相邻的下一SURF之间的距离。MEDIUM对应编号为0~21的SURF中当前SURF与相邻的下一SURF之间的介质。INDEX对应折射率。V-NUMBER对应色散系数(阿贝数)。
本实施例中,透镜组件10a中各透镜元件的物侧表面及像侧表面的有效通光孔径以及孔径光阑的有效通光孔径(半径)可以如下表所示。
SURF X OR R-APER.
1 46.2991
2 46.4804
3 47.1202
4 46.4935
5 46.9855
6 47.2107
7 50.98
8 49.9126
9 3.207
10 0.9246
11 1.3203
12 1.9728
13 4.0214
14 4.0531
15 4.2364
16 4.1398
17 4.3374
18 4.7509
19 5.0116
20 5.3194
21 5.3506
22 2.2351
表7
其中,SURF表示各透镜元件的物侧表面,或各透镜元件的像侧表面,或孔径光阑,或像平面。具体地,编号为1~10及12~21的SURF依次对应第一透镜元件111a至第十透镜元件126a各自的物侧表面及像侧表面。编号为11的SURF对应孔径光阑13a,编号22的SURF对应表6中的IMG,即,像平面。(X OR R-APER)对应有效通光孔径(这里指半径),单位为mm。
本实施例中,透镜组件10a的光学参数可以如下表所示。
Figure PCTCN2021118312-appb-000003
表8
其中,前焦点位置表征前焦点相对透镜组件的光轴与SURF编号1的表面的交点的距离;主点间隔表征物方主点与 像方主点之间的距离;入瞳位置表征入瞳位置与透镜组件的光轴与SURF编号为1的表面的交点的距离;物点位置表征物点相对于透镜组件的光轴与SURF编号为1的表面的交点之间的距离;物高表征视野半径;透镜组件总长表征透镜组件的光轴与SURF编号1的表面的交点距透镜组件的光轴与SURF编号为21的表面的交点之间的距离;后焦点位置表征后焦点相对于透镜组件的光轴与SURF编号为21的表面的交点的距离;出瞳位置表征相对于透镜组件的光轴与SURF编号为21的表面之间的距离;像点位置表征像点距透镜组件的光轴与SURF编号为21的表面的交点的距离;像高对应满视野像高的一半。另外,表中自透镜组件10a的物方向其像方的距离为正,反之为负。
另外,本实施例中,侧周成像展开角为20.5°。图9至图12示出了透镜组件10a在表5中组1~4各自所对应的工作距离及视野下调制传递函数与空间频率的关系图。
请参阅图13,本申请可选的一种透镜组件10b,其与透镜组件10具有类似的结构,区别在于前透镜组11b,后透镜组12b,透镜组件10b的结构参数,有效通光孔径,光学参数,以及工作距离和视野之间的对应关系。
接下来着重对透镜组件10b与透镜组件10的不同之处进行介绍。本实施例中,透镜组件10b包括前透镜组11b,后透镜组12b及孔径光阑13b。
本实施例中,前透镜组11b包括自透镜组件10b的物方向透镜组件10b的像方排列的第一透镜元件111b,第二透镜元件112b,第三透镜元件113b及第四透镜元件114b。其中,第一透镜元件111b具有正光焦度且第一透镜元件111b的像侧表面为凸面。第二透镜元件112b具有正光焦度且为双凸透镜(对应第三属性)。第三透镜元件113b具有负光焦度(对应第一属性),且第三透镜元件113b具有像侧凸面。第四透镜元件114b具有正光焦度且物侧表面为凸面(对应第二属性)。
请一并参阅图14,后透镜组12b包括自透镜组件10b的物方向透镜组件10b的像方排列的第五透镜元件121b,第六透镜元件122b,第七透镜元件123b,第八透镜元件124b,第九透镜元件125b及第十透镜元件126b。具体地,第五透镜元件121b为双凸透镜且具有正光焦度。第六透镜元件122b为双凹透镜且具有负光焦度。第七透镜元件123b的像侧表面为凹面且第七透镜元件123b具有负光焦度。第八透镜元件124b的像侧表面为凸面且具有正光焦度。第九透镜元件125b为双凸透镜且具有正光焦度。第十透镜元件126b为双凸透镜且具有正光焦度。
本实施例中,孔径光阑13b设置在第六透镜元件122b与第七透镜元件123b之间。
本实施例中,透镜组件10b中各元件的结构参数如下表所示。
SURF RADIUS THICKNESS MEDIUM INDEX V-NUMBER
0 INFINITE 62.5 空气    
1 INFINITE 19.08162 玻璃 1.497 81.59
2 -52.197 1 空气    
3 110.00000 15.66015 玻璃 1.497 81.59
4 -110.00000 10.2556 空气    
5 -54.727 8.59083 玻璃 1.90366 31.32
6 -234.04 1 空气    
7 110.00000 15.66015 玻璃 1.497 81.59
8 -110.00000 183.12899 空气    
9 64.46800 6.51263 玻璃 1.92287 20.88
10 -64.46800 5.68845 空气    
11 -22.844 4.54428 玻璃 1.80401 46.57
12 18.039 32.51953 空气    
13 INFINITE 10.34198 空气    
14 INFINITE 3.8048 玻璃 1.92287 20.88
15 28.368 6.7419 空气    
16 INFINITE 6.94207 玻璃 1.497 81.59
17 -25.83 2.05151 空气    
18 57.40500 6.67032 玻璃 1.497 81.59
19 -57.40500 3.17662 空气    
20 57.40500 6.67032 玻璃 1.497 81.59
21 -57.40500 39.90901 空气    
IMG INFINITE        
表9
其中,SURF表示物体,或各透镜元件的物侧表面,或各透镜元件的像侧表面,或孔径光阑,或成像面。具体地,SURF为0对应物体,SURF编号1~12依次对应第一透镜元件111b至第六透镜元件122b各自的物侧表面及像侧表面,SURF编号13对应孔径光阑,SURF编号14~21依次对应第七透镜元件123b至第十透镜元件126b各自的物侧表面及像侧表面,SURF为IMG对应成像面。RADIUS对应曲率半径,单位为mm。RADIUS为INFINITE表示曲率半径为无穷大。RADIUS为正表征圆心位于透镜组件10b的像方;RADIUS为负表征圆心位于透镜组件10b的物方。THICKNESS对应编号为0~21的SURF中当前SURF与相邻的下一SURF之间的距离,单位为mm。MEDIUM对应编号为0~21的SURF中当前SURF与相邻的下一SURF之间的介质。INDEX对应折射率。V-NUMBER对应色散系数(阿贝数)。
本实施例中,透镜组件10b中各透镜元件的物侧表面及像侧表面的有效通光孔径以及孔径光阑的有效通光孔径(半径)可以如下表所示。
SURF X OR R-APER.
1 30.6634
2 32.6578
3 33.0151
4 32.5042
5 30.6937
6 33.3927
7 35.2213
8 35.2776
9 6.3043
10 5.5488
11 3.6122
12 3.0756
13 1.4199
14 2.4656
15 2.6715
16 3.9473
17 4.7758
18 5.0414
19 5.2616
20 5.2887
21 5.1292
22 1.7247
表10
其中,SURF表示各透镜元件的物侧表面,或各透镜元件的像侧表面,或孔径光阑,或像平面。具体地,编号为1~12及14~21的SURF依次对应第一透镜元件111b至第十透镜元件126b各自的物侧表面及像侧表面。编号为13的SURF对应孔径光阑13b,编号22的SURF对应表6中的IMG,即,像平面。(X OR R-APER)对应有效通光孔径(这里指半径),单位为mm。
本实施例中,透镜组件10b的光学参数可以如下表所示。
Figure PCTCN2021118312-appb-000004
Figure PCTCN2021118312-appb-000005
表11
其中,焦点位置表征焦点相对透镜组件的光轴与SURF编号1的表面的交点的距离;主点间隔表征物方主点与像方主点之间的距离;入瞳位置表征入瞳位置与透镜组件的光轴与SURF编号为1的表面的交点的距离;物点位置表征物点相对于透镜组件的光轴与SURF编号为1的表面的交点之间的距离;物高表征视野半径;透镜组件总长表征透镜组件的光轴与SURF编号1的表面的交点距透镜组件的光轴与SURF编号为21的表面的交点之间的距离;后焦点位置表征后焦点相对于透镜组件的光轴与SURF编号为21的表面的交点的距离;出瞳位置表征相对于透镜组件的光轴与SURF编号为21的表面之间的距离;像点位置表征像点距透镜组件的光轴与SURF编号为21的表面的交点的距离;像高对应满视野像高的一半。另外,表中自透镜组件10b的物方向其像方的距离为正,反之为负。
本实施例中,透镜组件10b的工作距离和成像视野可以如下表所示。
工作距离(mm) 视野(mm)
1 62.5 10
2 55 16
3 47.5 22
4 40 28
表12
其中,工作距离是指透镜组件10b的光轴与第一透镜元件111b的物侧表面的交点与物体之间的距离。图15至图18示出了透镜组件10b在表12中组1~4各自所对应的工作距离及视野下调制传递函数与空间频率的关系图。
另外,本实施例中,侧周成像展开角为21.7°。
基于同一发明构思,请参阅图19,本申请实施例还提供一种成像设备20,包括上述透镜组件10及设置在透镜组件10像方的感光元件21,感光元件21配置为捕捉被投射到感光元件21的表面上的光。
本实施例中,成像设备20还包括调节机构22。调节机构22位于感光元件21与透镜组件10之间,配置成调节感光元件21的感光面与透镜组件10的光轴之间的夹角。调节机构22也可以是本领域常用的旋转机械结构,只要能够对感光元件的感光面与透镜组件10的光轴之间的夹角进行调节即可。
本实施例中,采用θ表示透镜组件10的光轴相对于被测件30的法线的倾斜角,即,物平面倾斜角;采用θ’表示透镜组件10的光轴相对于感光元件21的感光面的法线的倾斜角,即,像平面倾斜角,则物平面倾斜角θ与像平面倾斜角θ’之间满足如下关系:
tan(θ’)=M tan(θ)
其中,M为透镜组件10的放大倍率,具体的,指的是光轴于物平面交点位置的镜头放大倍率。
可以理解,由于高阶像差的存在,通过上式在已知物平面倾斜角θ及透镜组件10的放大倍率,求解像平面倾斜角θ’,或者,已知像平面倾斜角θ’及透镜组件10的放大倍率,求解物平面倾斜角θ时,求解结果存在2°内或1°内的偏差。
通过调节机构22调节感光元件21的感光面与透镜组件10的光轴之间的夹角,从而在对相对于透镜组件10的光轴不垂直的表面或不平行的侧周面进行成像时,取得了更佳的成像效果。进一步的,对于入瞳位置和前焦点位置重合(或之间距离小于1mm)的透镜组件10,取得了意想不到的更佳的成像效果。
基于同一发明构思,本申请实施例还提供一种检测设备,包括上述成像设备及与成像设备信号连接的处理器,处理器配置成基于成像设备所采集的包含被摄件影像的图像进行分析处理。
基于同一发明构思,本申请实施例还提供一种检测系统,包括:上料机构,物流机构,分拣机构及上述检测设备; 上料机构配置成将待测件传送至物流机构;物流机构配置成带动被测件运动;成像设备与物流机构的台面相对设置,配置成在物流机构带动被测件经过成像设备的取景范围时,采集包含被测件影像的图像,处理器配置成基于图像生成分拣指令;分拣机构与处理器信号连接,配置成基于分拣指令对被测件进行分拣。物流机构可以是传送带,旋转台等。
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
以上所述仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (23)

  1. 一种透镜组件,应用于镜头,其特征在于,所述透镜组件包括:
    多个透镜元件,所述多个透镜元件共光轴设置;
    所述透镜组件的入瞳位置及前焦点均位于所述透镜组件外,且位于所述透镜组件的物方;所述透镜组件的物方主点较所述前焦点远离所述透镜组件;所述透镜组件对应的侧周成像展开角满足:α=arctan|H/2f|,其中,α表示所述侧周成像展开角,且18°≤α≤25°,H表示所述透镜组件对应的满视野像高,f表示所述透镜组件的焦距,且f<0。
  2. 如权利要求1所述的透镜组件,其特征在于,所述透镜组件的焦距的范围为-18mm<f<-2mm。
  3. 如权利要求2所述的透镜组件,其特征在于,所述透镜组件的焦距的范围为-11mm<f<-3mm。
  4. 如权利要求2所述的透镜组件,其特征在于,所述入瞳位置与所述前焦点之间的距离小于1mm。
  5. 如权利要求4所述的透镜组件,其特征在于,主光线在所述透镜组件的像平面处相互之间的最大角度差为1°。
  6. 如权利要求4所述的透镜组件,其特征在于,所述入瞳位置与所述前焦点之间的距离小于0.5mm。
  7. 如权利要求6所述的透镜组件,其特征在于,主光线在所述透镜组件的像平面处相互之间的最大角度差为0.3°。
  8. 如权利要求1所述的透镜组件,其特征在于,所述入瞳位置与所述前焦点之间的距离小于1mm。
  9. 如权利要求8所述的透镜组件,其特征在于,主光线在所述透镜组件的像平面处相互之间的最大角度差为1°。
  10. 如权利要求8所述的透镜组件,其特征在于,所述入瞳位置与所述前焦点之间的距离小于0.5mm。
  11. 如权利要求10所述的透镜组件,其特征在于,主光线在所述透镜组件的像平面处相互之间的最大角度差为0.3°。
  12. 如权利要求1至11任一项所述的透镜组件,其特征在于,所述多个透镜元件包括自所述透镜组件的物方向所述透镜组件的像方排列的前透镜组及后透镜组,所述前透镜组及所述后透镜组均具有正光焦度,所述前透镜组的后焦点与所述后透镜组的前焦点之间的距离Δ满足,1.5f1<Δ<2.5f1,其中f1表示所述前透镜组的焦距。
  13. 如权利要求12所述的透镜组件,其特征在于,所述前透镜组包括自所述透镜组件的物方向所述透镜组件的像方排列的第一透镜元件,第二透镜元件,第三透镜元件及第四透镜元件;所述第一透镜元件具有正光焦度且所述第一透镜元件的像侧表面为凸面,所述第二透镜元件,所述第三透镜元件及所述第四透镜元件三者之一具有第一属性,三者中的另外两者分别具有第二属性及第三属性,所述第一属性包括具有负光焦度,所述第二属性包括具有正光焦度且物侧表面为凸面,所述第三属性包括具有正光焦度且为双凸透镜。
  14. 如权利要求13所述的透镜组件,其特征在于,所述第一透镜元件的阿贝数大于70,所述第二属性及第三属性还分别包括阿贝数大于70,第一属性还包括折射率大于1.8。
  15. 如权利要求14所述的透镜组件,其特征在于,所述后透镜组包括自所述透镜组件的物方向所述透镜组件的像方排列的第五透镜元件,第六透镜元件,第七透镜元件,第八透镜元件,第九透镜元件及第十透镜元件;
    所述第五透镜元件为双凹透镜且具有负光焦度,所述第六透镜元件为双凸透镜且具有正光焦度,第七透镜元件为双凹透镜且具有负光焦度,所述第八透镜元件的像侧表面为凸面且所述第八透镜元件具有正光焦度,所述第九透镜元件为双凸透镜且具有正光焦度,所述第十透镜元件的像侧表面为凸面且所述第十透镜元件具有负光焦度;
    或者,所述第五透镜元件为双凹透镜且具有负光焦度,所述第六透镜元件的像侧表面为凸面且所述第六透镜元件具有正光焦度,所述第七透镜元件为弯月透镜且具有正光焦度,所述第八透镜元件为双凹透镜且具有负光焦度,所述第九透镜元件为双凸透镜且具有正光焦度,所述第十透镜元件为双凸透镜且具有正光焦度;
    或者,所述第五透镜元件为双凸透镜且具有正光焦度,所述第六透镜元件为双凹透镜且具有负光焦度,所述第七透镜元件的像侧表面为凹面且所述第七透镜元件具有负光焦度,所述第八透镜元件的像侧表面为凸面且具有正光焦度,所述第九透镜元件为双凸透镜且具有正光焦度,所述第十透镜元件为双凸透镜且具有正光焦度。
  16. 如权利要求1-11任一项所述的透镜组件,其特征在于,所述多个透镜元件包括自所述透镜组件的物方向所述透镜组件的像方排列的第一透镜元件,第二透镜元件,第三透镜元件及第四透镜元件;所述第一透镜元件具有正光焦度且所述第一透镜元件的像侧表面为凸面,所述第二透镜元件,所述第三透镜元件及所述第四透镜元件三者之一具有第一属性,三者中的另外两者分别具有第二属性及第三属性,所述第一属性包括具有负光焦度,所述第二属性包括具有正光焦度且物侧表面为凸面,所述第三属性包括具有正光焦度且为双凸透镜。
  17. 如权利要求16所述的透镜组件,其特征在于,所述第一透镜元件的阿贝数大于70,所述第二属性及第三属性还分别包括阿贝数大于70,第一属性还包括折射率大于1.8。
  18. 如权利要求17所述的透镜组件,其特征在于,所述多个透镜元件还包括自所述透镜组件的物方向所述透镜组件的像方排列的第五透镜元件,第六透镜元件,第七透镜元件,第八透镜元件,第九透镜元件及第十透镜元件,所述第一透镜元件至所述第十透镜元件自所述透镜组件的物方向所述透镜组件的像方顺序设置;
    所述第五透镜元件为双凹透镜且具有负光焦度,所述第六透镜元件为双凸透镜且具有正光焦度,第七透镜元件为双凹透镜且具有负光焦度,所述第八透镜元件的像侧表面为凸面且所述第八透镜元件具有正光焦度,所述第九透镜元件为双凸透镜且具有正光焦度,所述第十透镜元件的像侧表面为凸面且所述第十透镜元件具有负光焦度;
    或者,所述第五透镜元件为双凹透镜且具有负光焦度,所述第六透镜元件的像侧表面为凸面且所述第六透镜元件具有正光焦度,所述第七透镜元件为弯月透镜且具有正光焦度,所述第八透镜元件为双凹透镜且具有负光焦度,所述第九透镜元件为双凸透镜且具有正光焦度,所述第十透镜元件为双凸透镜且具有正光焦度;
    或者,所述第五透镜元件为双凸透镜且具有正光焦度,所述第六透镜元件为双凹透镜且具有负光焦度,所述第七透镜元件的像侧表面为凹面且所述第七透镜元件具有负光焦度,所述第八透镜元件的像侧表面为凸面且具有正光焦度,所述第九透镜元件为双凸透镜且具有正光焦度,所述第十透镜元件为双凸透镜且具有正光焦度。
  19. 如权利要求1所述的透镜组件,其特征在于,所述透镜元件为球面透镜。
  20. 一种成像设备,其特征在于,包括如权利要求1至19任一项所述的透镜组件及设置在所述透镜组件像方的感光元件,所述感光元件配置为捕捉被投射到所述感光元件的表面上的光。
  21. 如权利要求20所述的成像设备,其特征在于,所述成像设备还包括调节机构,所述调节机构位于所述感光元件与所述透镜组件之间,配置成调节所述感光元件的感光面与所述透镜组件的光轴之间的夹角。
  22. 一种检测设备,其特征在于,包括如权利要求20至21任一项所述的成像设备及与所述成像设备信号连接的处理器,所述处理器配置成基于所述成像设备所采集的包含被摄件影像的图像进行分析处理。
  23. 一种检测系统,其特征在于,包括:上料机构,物流机构,分拣机构及如权利要求22所述的检测设备;所述上料机构配置成将待测件传送至所述物流机构;所述物流机构配置成带动所述被测件运动;所述成像设备与所述物流机构的台面相对设置,配置成在所述物流机构带动所述被测件经过所述成像设备的取景范围时,采集包含所述被测件影像的图像,所述处理器配置成基于所述图像生成分拣指令;所述分拣机构与所述处理器信号连接,配置成基于所述分拣指令对所述被测件进行分拣。
PCT/CN2021/118312 2020-11-16 2021-09-14 透镜组件,成像设备,检测设备及检测系统 WO2022100271A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21890799.6A EP4246201A4 (en) 2020-11-16 2021-09-14 LENS ASSEMBLY, IMAGING DEVICE, DETECTION DEVICE AND DETECTION SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011275485.7A CN112099204B (zh) 2020-11-16 2020-11-16 透镜组件,成像设备,检测设备及检测系统
CN202011275485.7 2020-11-16

Publications (1)

Publication Number Publication Date
WO2022100271A1 true WO2022100271A1 (zh) 2022-05-19

Family

ID=73785548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118312 WO2022100271A1 (zh) 2020-11-16 2021-09-14 透镜组件,成像设备,检测设备及检测系统

Country Status (3)

Country Link
EP (1) EP4246201A4 (zh)
CN (1) CN112099204B (zh)
WO (1) WO2022100271A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112099204B (zh) * 2020-11-16 2021-03-09 北京领邦智能装备股份公司 透镜组件,成像设备,检测设备及检测系统
US20220326480A1 (en) * 2021-04-06 2022-10-13 Samsung Electro-Mechanics Co., Ltd. Optical imaging system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104107A (en) * 1980-12-20 1982-06-29 Asahi Optical Co Ltd Telephoto lens
CN202281857U (zh) * 2011-11-04 2012-06-20 广州长步道光电科技有限公司 双远心镜头
WO2014073685A1 (ja) * 2012-11-12 2014-05-15 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
CN105182504A (zh) * 2015-09-25 2015-12-23 浙江大华技术股份有限公司 一种光学镜头
CN108318994A (zh) * 2018-01-10 2018-07-24 佛山华国光学器材有限公司 一种低畸变镜头
CN109143532A (zh) * 2017-06-28 2019-01-04 福州开发区鸿发光电子技术有限公司 一种大孔径全画幅工业镜头
CN109991724A (zh) * 2019-04-16 2019-07-09 佛山科学技术学院 一种双远心定焦光学系统
CN210666175U (zh) * 2019-10-30 2020-06-02 深圳市安华光电技术有限公司 镜头的镜片组合、镜头及3d打印装置
CN112099204A (zh) * 2020-11-16 2020-12-18 北京领邦智能装备股份公司 透镜组件,成像设备,检测设备及检测系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102414597B (zh) * 2009-12-07 2014-01-08 奥林巴斯医疗株式会社 物镜及内窥镜装置
CN104459934A (zh) * 2014-12-18 2015-03-25 福建福光数码科技有限公司 高清电动变焦、聚焦监控镜头及其控制方法
CN204964860U (zh) * 2015-09-25 2016-01-13 浙江大华技术股份有限公司 一种光学镜头
CN107065119B (zh) * 2017-02-16 2023-10-10 公安部第一研究所 一种镜头长度离散可调的针孔摄像机
CN109343199B (zh) * 2018-10-11 2023-11-28 佛山科学技术学院 一种长工作距离大倍率物方远心显微光学系统
CN110873951A (zh) * 2019-12-01 2020-03-10 文志强 一种畸变小高精度的工业镜头

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104107A (en) * 1980-12-20 1982-06-29 Asahi Optical Co Ltd Telephoto lens
CN202281857U (zh) * 2011-11-04 2012-06-20 广州长步道光电科技有限公司 双远心镜头
WO2014073685A1 (ja) * 2012-11-12 2014-05-15 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
CN105182504A (zh) * 2015-09-25 2015-12-23 浙江大华技术股份有限公司 一种光学镜头
CN109143532A (zh) * 2017-06-28 2019-01-04 福州开发区鸿发光电子技术有限公司 一种大孔径全画幅工业镜头
CN108318994A (zh) * 2018-01-10 2018-07-24 佛山华国光学器材有限公司 一种低畸变镜头
CN109991724A (zh) * 2019-04-16 2019-07-09 佛山科学技术学院 一种双远心定焦光学系统
CN210666175U (zh) * 2019-10-30 2020-06-02 深圳市安华光电技术有限公司 镜头的镜片组合、镜头及3d打印装置
CN112099204A (zh) * 2020-11-16 2020-12-18 北京领邦智能装备股份公司 透镜组件,成像设备,检测设备及检测系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4246201A4 *

Also Published As

Publication number Publication date
CN112099204A (zh) 2020-12-18
EP4246201A4 (en) 2024-05-22
EP4246201A1 (en) 2023-09-20
CN112099204B (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
WO2022100271A1 (zh) 透镜组件,成像设备,检测设备及检测系统
CN109164558A (zh) 一种小型化物像双侧远心光学系统
CN110824669B (zh) 一种8k高分辨全景环带光学镜头
JP2016110073A (ja) 小型結像レンズ系
CN109683282B (zh) 一种低畸变广角定焦线扫机器视觉镜头光学系统
CN208937794U (zh) 一种小型化物像双侧远心光学系统
CN218213592U (zh) 一种工业镜头和近眼显示系统检测装置
CN109239892B (zh) 一种固定倍率光学检像系统及其成像方法
CN114690370A (zh) 结像镜组件、显微装置和光学检测设备
CN114185151A (zh) 一种具有长入瞳距的双波段像方远心扫描物镜
CN106154517B (zh) 双远心定焦镜头
US3536381A (en) Optical projection system
CN209765150U (zh) 一种超低畸变的双远心光学系统
CN112612131A (zh) 一种大靶面宽工作距高清工业镜头
CN112904533B (zh) 一种360度探测孔内部的光学镜头
CN214225561U (zh) 一种观察悬浮在液体中球凹面的光学投影镜头
CN115639663B (zh) 双远心镜头
CN204666941U (zh) 一种-0.1×双远心机器视觉物镜
CN112269251B (zh) 一种适用于工业检测的透射式外全景镜头
CN114460716B (zh) 包含两个非球面透镜的鱼眼镜头
CN209070198U (zh) 一种固定倍率光学检像系统
CN114578516B (zh) 成像质量稳定的光学镜头
CN114660775B (zh) 一种低畸变全高清投影镜头
CN110531493B (zh) 一种透镜系统和线扫机器视觉镜头
CN218630333U (zh) 一种容差性佳的0.8倍双远心镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021890799

Country of ref document: EP

Effective date: 20230616