WO2022100269A1 - 电源提供装置、电路控制方法及供电系统 - Google Patents

电源提供装置、电路控制方法及供电系统 Download PDF

Info

Publication number
WO2022100269A1
WO2022100269A1 PCT/CN2021/118072 CN2021118072W WO2022100269A1 WO 2022100269 A1 WO2022100269 A1 WO 2022100269A1 CN 2021118072 W CN2021118072 W CN 2021118072W WO 2022100269 A1 WO2022100269 A1 WO 2022100269A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
supply device
unit
circuit
Prior art date
Application number
PCT/CN2021/118072
Other languages
English (en)
French (fr)
Inventor
田晨
张加亮
朱经鹏
陆伟伟
孙涓涓
孙巨禄
Original Assignee
Oppo广东移动通信有限公司
南京博兰得电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司, 南京博兰得电子科技有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21890797.0A priority Critical patent/EP4236052A4/en
Publication of WO2022100269A1 publication Critical patent/WO2022100269A1/zh
Priority to US18/316,227 priority patent/US20230283185A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/143Arrangements for reducing ripples from dc input or output using compensating arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/50Charging of capacitors, supercapacitors, ultra-capacitors or double layer capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the embodiments of the present application relate to the technical field of power conversion, and in particular, to a power supply device, a circuit control method, and a power supply system.
  • the volume of the power supply device is relatively large, which makes it inconvenient to carry around and affects the charging of electronic devices at any time.
  • Embodiments of the present application provide a power supply device, a circuit control method, and a power supply system.
  • the technical solution is as follows:
  • a power supply device includes:
  • an input rectifier circuit for converting the received AC voltage into a first pulsating DC voltage
  • a first-stage conversion circuit connected to the input rectifier circuit, for converting the first pulsating DC voltage into a second pulsating DC voltage
  • a valley-filling circuit includes an energy storage unit and a first switch unit, the first switch unit is respectively connected to the first-stage conversion circuit and the energy storage unit, and the first switch unit is used to store energy in the energy storage unit.
  • the voltage of the unit is lower than the first voltage value, it is turned on, so that the energy storage unit obtains electrical energy from the first-stage conversion circuit; the energy storage unit is connected to the first-stage conversion circuit for use in all
  • the voltage value of the first pulsating DC voltage is lower than the second voltage value, electric energy is provided to increase the valley voltage of the first pulsating DC voltage;
  • the second-stage conversion circuit is connected to the first-stage conversion circuit, and is used for converting the second pulsating DC voltage into a constant DC voltage and outputting it.
  • the first switch unit is configured to turn off when the voltage of the energy storage unit is higher than or equal to the first voltage value.
  • the first-stage conversion circuit includes a second switch unit, a transformer unit and a first rectifier unit;
  • the transformer unit is used to convert the modulated voltage into an AC output voltage, where the modulated voltage is the voltage that the first pulsating DC voltage is chopped by the second switch unit; the first rectifier unit is used to convert the The AC output voltage is converted into the second pulsating DC voltage.
  • the energy storage unit is connected to both ends of the secondary winding of the transformer unit, and is used to obtain electric energy provided by the transformer unit;
  • the first switch unit is used to control the turn-on and turn-off of a target loop, where the target loop is a loop between the energy storage unit and the secondary winding;
  • the first switch unit controls the target circuit to be turned on, and the energy storage unit obtains the electrical energy provided by the transformer unit .
  • the valley filling circuit further includes a step-down circuit
  • the step-down circuit is configured to work when the first pulsating DC voltage is lower than the second voltage value
  • the energy storage unit releases the stored electrical energy through the step-down circuit to increase the first pulsating DC voltage.
  • the step-down circuit includes a diode, a third switch unit and a filter inductor;
  • the diode is connected between the filter inductor and the first end of the energy storage unit;
  • the third switch unit is connected between the filter inductor and the second end of the energy storage unit;
  • the inductor is connected between the third switch unit and the first filter capacitor, and the first filter capacitor is connected in parallel with the output end of the input rectifier circuit.
  • the valley filling circuit further includes a second rectifier unit; the second rectifier unit is respectively connected with the transformer unit and the first switch unit, and the first switch unit is connected with the first switch unit through the second rectifier unit.
  • the transformer units are connected; the second rectifier unit is used for rectifying the AC voltage from the transformer unit into a DC voltage, and the DC voltage is used for providing electrical energy for the energy storage unit.
  • the power supply device includes a second filter capacitor, and the second filter capacitor is connected to the output port of the first-stage conversion circuit.
  • a circuit control method which is applied to the above-mentioned power supply device, and the method includes:
  • the second pulsating DC voltage is converted into a constant DC voltage and output.
  • a power supply system including an electronic device and a power supply device provided by an embodiment of the present application, where the power supply device is used to provide electrical energy to the electronic device.
  • the electronic device directly uses the power provided by the power supply device to work.
  • the electronic device charges the battery with the power provided by the power supply device.
  • the electronic device can shunt the power provided by the power supply device, with a part for normal operation and another part to charge the battery.
  • a computer-readable storage medium having stored therein at least one instruction that is loaded and executed by a processor to implement circuit control as provided in various aspects of the present application method. It should be noted that, the present application may also implement the above-mentioned circuit control method through a hardware circuit, which is not limited in this embodiment of the present application.
  • a computer program product comprising computer instructions stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions to cause the computer device to perform the methods provided in the various alternative implementations of the circuit control aspects described above.
  • the present application may also implement the above-mentioned circuit control method through a hardware circuit, which is not limited in this embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a power supply device provided by the related art
  • FIG. 2 is a schematic structural diagram of a power supply device including a two-stage architecture according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a power supply device provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a power supply device provided based on the embodiment shown in FIG. 3;
  • FIG. 5 is a schematic diagram of a power supply device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a simulation waveform of a key voltage provided by an embodiment of the present application.
  • FIG. 7 is a flowchart of a circuit control method provided by an exemplary embodiment of the present application.
  • FIG. 8 is a block diagram of a power supply system provided by an exemplary embodiment of the present application.
  • a plurality means two or more.
  • “And/or”, which describes the association relationship of the associated objects means that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the associated objects are an "or" relationship.
  • a power supply device wherein the power supply device comprises:
  • an input rectifier circuit for converting the received AC voltage into a first pulsating DC voltage
  • a first-stage conversion circuit connected to the input rectifier circuit, for converting the first pulsating DC voltage into a second pulsating DC voltage
  • a valley filling circuit includes an energy storage unit and a first switch unit, wherein the first switch unit is respectively connected to the first-stage conversion circuit and the energy storage unit, and the first switch unit is used to store energy in the energy storage unit.
  • the first switch unit When the voltage of the unit is lower than the first voltage value, it is turned on, so that the energy storage unit obtains electrical energy from the first-stage conversion circuit; the energy storage unit is connected to the first-stage conversion circuit for use in all When the voltage value of the first pulsating DC voltage is lower than the second voltage value, electric energy is provided to increase the valley voltage of the first pulsating DC voltage;
  • the second-stage conversion circuit is connected to the first-stage conversion circuit, and is used for converting the second pulsating DC voltage into a constant DC voltage and outputting it.
  • the first switch unit is configured to turn off when the voltage of the energy storage unit is higher than or equal to the first voltage value.
  • the first-stage conversion circuit includes a second switch unit, a transformer unit and a first rectifier unit;
  • the transformer unit configured to convert the modulated voltage into an AC output voltage, where the modulated voltage is the voltage obtained by the chopper processing of the first pulsating DC voltage by the second switch unit;
  • the first rectifying unit is used for converting the AC output voltage into the second pulsating DC voltage.
  • the energy storage unit is connected to both ends of the secondary winding of the transformer unit, and is used to obtain electric energy provided by the transformer unit;
  • the first switch unit is used to control the turn-on and turn-off of a target loop, where the target loop is a loop between the energy storage unit and the secondary winding;
  • the first switch unit controls the target circuit to be turned on, and the energy storage unit obtains the electrical energy provided by the transformer unit .
  • the valley filling circuit further includes a step-down circuit
  • the step-down circuit is configured to work when the first pulsating DC voltage is lower than the second voltage value
  • the energy storage unit releases the stored electric energy through the step-down circuit, so as to increase the valley voltage of the first pulsating DC voltage.
  • the step-down circuit includes a diode, a third switch unit and a filter inductor;
  • the diode is connected between the filter inductor and the first end of the energy storage unit;
  • the third switch unit is connected between the filter inductor and the second end of the energy storage unit;
  • the inductor is connected between the third switch unit and the first filter capacitor, and the first filter capacitor is connected in parallel with the output end of the input rectifier circuit.
  • the valley filling circuit further includes a second rectifier unit
  • the second rectifier unit is respectively connected with the transformer unit and the first switch unit, and the first switch unit is connected with the transformer unit through the second rectifier unit;
  • the second rectification unit is used for rectifying the AC voltage from the transformer unit into a DC voltage, and the DC voltage is used for providing electrical energy for the energy storage unit.
  • the power supply device includes a second filter capacitor, and the second filter capacitor is connected to the output port of the first-stage conversion circuit.
  • the input rectifier circuit is connected to an external AC input, and the external AC input is used to input the AC voltage to the power supply device.
  • the part of the input rectifier circuit connected to the external AC input is a three-phase port or a two-phase port.
  • the second-stage conversion circuit is connected to a first port of a matching cable, and the cable provides the constant direct current to the outside through the second port.
  • the first port includes a serial universal bus USB (Universal Serial Bus, universal serial bus) port.
  • USB Universal Serial Bus, universal serial bus
  • the cable includes a power management chip, and the power management chip is used to manage the power of the current flowing through the cable.
  • the second port includes one of a Type-C interface, a micro USB interface or a lightning interface.
  • the power supply device includes a three-layer printed circuit board PCB, which are a first PCB, a second PCB and a third PCB;
  • the first PCB is used to connect the transformer unit
  • the second PCB is provided with an output port of the second-stage conversion circuit, and the second PCB is arranged at a spatial position between the first PCB and the third PCB;
  • the third PCB is the main board of the power supply device.
  • the filter capacitor when the size of the filter capacitor is greater than a threshold, the filter capacitor is connected to the first PCB, or the filter capacitor is connected to the third PCB, and the second PCB is The space occupied by the filter capacitor is hollow.
  • the power supply device provided by the present application can ensure that the second-stage conversion circuit has a sufficiently high valley voltage through the valley filling circuit without using electrolytic capacitors or other large-volume capacitors, thereby ensuring the stability of the overall output voltage of the power supply device. .
  • the power supply device can control the voltage across the energy storage unit in the valley-filling circuit, and try to use its ability to store electrical energy on the premise that the voltage does not exceed the voltage rating, reducing the withstand voltage of the energy storage unit. Therefore, the miniaturized design of the power supply device is realized and the portability of the power supply device is improved.
  • the commercial power input into the power supply device in this embodiment of the present application may be an AC voltage.
  • the instantaneous value of the alternating voltage may be an alternating voltage value.
  • the voltage output by the transformer unit is also an AC voltage.
  • Pulsating DC voltage the electrical signal output by the first-stage conversion circuit indicated in the embodiment of the present application after being processed by the first rectifier unit, the value of the electrical signal is the value of the pulsating DC voltage. Without the intervention of the valley filling circuit, the valley voltage value in the pulsating DC voltage will approach 0 or be equal to 0.
  • a bulky energy storage unit is usually provided for storing electrical energy.
  • the larger energy storage unit makes the power supply device bulkier.
  • the power supply device 100 includes: a pre-rectification unit 110 , a switch unit 120 , a transformer unit 130 , a filter unit 140 , a control unit 150 and an energy storage unit 160 .
  • the overall function of the power supply device 100 is to convert the commercial power as an alternating current (Alternating Current, AC) into a DC voltage of a specified form.
  • AC Alternating Current
  • the present application will introduce the functions of each unit when the power supply device 100 operates.
  • the pre-rectification unit 110 is used to rectify the AC voltage received by the power supply device 100 .
  • the voltage S1 rectified by the pre-rectification unit 110 is a pulsating DC voltage.
  • FIG. 1 please refer to FIG. 1 .
  • the switching unit 120, the transformer unit 130 and the filtering unit 140 will convert the S1, thereby converting the pulsating direct current S1 into the stable direct current S4. Among them, a part of the voltage S1 will be charged to the energy storage unit 160, which is usually an electrolytic capacitor.
  • the voltage S1 is filtered by an electrolytic capacitor to obtain a DC voltage with less fluctuation.
  • the electrolytic capacitor uses its own storage capacity to maintain a stable output voltage.
  • the control unit 150 respectively samples the voltage output by the power supply device 100 and the current of the switching unit 120, and controls the switching mode of the switching unit 120 and the respective duration of the switching according to the voltage sampling signal and the current sampling signal, To control the output voltage and/or output current of the power supply device 100 .
  • the power supply device may be a power adapter (adapter).
  • the volume of the power supply device is usually large, which is not convenient for users to carry around. If the user carries the power supply device with him, it will occupy a large space and affect the user to carry other objects. If the user abandons carrying the power supply device with him because of its large size, the electronic device will not be able to be used continuously because it cannot be charged in time.
  • FIG. 2 is a schematic structural diagram of a power supply device including a two-stage architecture according to an embodiment of the present application.
  • the power supply device 200 includes a first-stage conversion circuit 210 , a second-stage conversion circuit 220 , a valley filling circuit 230 , an input port 2A, an output port 2B, and an input rectifier circuit 250 .
  • the input rectifier circuit 250 is used to convert the received alternating current into the first pulsating direct current voltage.
  • the input rectifier circuit 250 may be a rectifier bridge BD1, and the rectifier bridge BD1 is used to connect to the commercial power.
  • the commercial power is usually AC voltage, and the difference is that the voltage and frequency of the AC power are different in different regions.
  • the voltage of the commercial power ranges from 100V to 240V, and the frequency of the commercial power ranges from 50Hz to 60Hz.
  • the first-stage conversion circuit 210 may be a DCX circuit.
  • the first-stage conversion circuit 210 receives the first pulsating DC voltage output by the rectifier bridge BD1 and converts it into a second pulsating DC voltage. It should be noted that the lowest value of the second pulsating DC voltage output by the first-stage conversion power supply 210 alone is close to 0 or equal to 0.
  • the first-stage conversion circuit 210 is used for efficient isolation conversion of the first pulsating DC voltage, which may be boost conversion, buck conversion or other conversions, which can be set according to specific design parameters.
  • the first-stage conversion circuit 210 there is a unit for boosting the input AC voltage, so that regardless of whether the input AC voltage is in a low-voltage range or a high-voltage range, the first-stage conversion circuit 210 can provide a similar range at the output end. bus voltage to provide voltage support for the output voltage.
  • the power supply device does not need to set a large volume of electrolytic capacitors, and can set film capacitors, ceramic capacitors, tantalum capacitors or small electrolytic capacitors, thereby reducing the size of the power supply device.
  • the capacitor may also be of other types, which is not limited in this embodiment of the present application.
  • the lowest value of the second pulsating DC voltage originally output by the first-stage conversion circuit 210 is close to 0, and the amplitude of the voltage jitter is too large, which is not conducive to subsequent The circuit outputs constant direct current. It should be noted that the input voltage value of the second-stage conversion circuit 220 is equal to the output voltage value of the first-stage conversion circuit 210 .
  • the present application achieves the effect that the lowest voltage value in the input voltage of the first-stage conversion circuit is greater than the second voltage value by adding a valley filling circuit at the input end of the first-stage conversion circuit.
  • the valley portion output by the second-stage conversion circuit 220 is maintained at a specified value under the action of the valley filling circuit.
  • the valley equivalent to the pulsating DC voltage is filled. Therefore, the valley filling circuit in the power supply device provided by the present application has the voltage valley filling function of the pulsating direct current.
  • the second-stage conversion circuit 220 connected to the first-stage conversion circuit 210 is used to convert the pulsating DC voltage output by the first-stage conversion circuit 210 to obtain a constant DC voltage, and output the constant DC current to meet the Electricity needs of various electronic devices.
  • a drive circuit In the actual assembly of the power supply device, a drive circuit, a voltage detection circuit, a current detection circuit and an MCU (Microcontroller Unit, microcontroller unit) control circuit may also be included.
  • MCU Microcontroller Unit, microcontroller unit
  • the corresponding electronic device when the electrolytic capacitor is removed from the power supply device in order to reduce the volume, the corresponding electronic device needs to be able to receive pulsating direct current.
  • the reduced size power supply device can only charge electronic equipment capable of accepting the pulsating DC voltage.
  • users usually carry multiple electronic devices such as smartphones, tablet computers, and laptops when they travel, study, or travel abroad.
  • the above-mentioned electronic devices all require their corresponding power supply devices to be charged. Therefore, users carry a large number of power supply devices when they go out and take up a large space.
  • the reduced size power supply device can only charge one of the above-mentioned specified devices, for example, the reduced volume power supply device can only charge the correspondingly designed smartphone, because the smartphone can accept and use pulsating direct current .
  • the present application designs a power supply device capable of outputting a constant DC voltage while reducing the size of the power supply device.
  • the voltage output by the reduced-volume power supply device is a constant DC voltage
  • the user can charge multiple electronic devices through the power supply device, so that the user can only carry a small-sized power supply device, which can meet the needs of many portable devices. charging needs of electronic devices.
  • the transformer unit can be arranged in the transformer, and isolation plates are arranged on both sides of the transformer, and the isolation plates are used to divide the physical space of the transformer and other components.
  • the input sorting circuit is connected to the external AC input, and obtains the AC power from the port of the external AC input.
  • the part of the input finishing circuit connected to the external AC input is a three-phase port or a two-phase port.
  • the second-stage conversion circuit is connected to the first port of the matching cable, and the cable provides constant direct current to the outside through the second port.
  • the matching cable may be a data cable.
  • the first port includes a serial universal bus USB port.
  • the cable includes a power management chip, and the power management chip is used to manage the power of the current flowing through the cable.
  • the second port includes one of a Type-C interface, a micro USB interface, or a lightning bolt interface.
  • the devices in the power supply device 200 may include three-layer printed circuit boards (PCBs), which are respectively a first PCB, a second PCB and a third PCB; the first PCB is used to connect the transformer unit; the second PCB is provided with The output port of the second-stage conversion circuit, the second PCB is arranged in the space between the first PCB and the third PCB; the third PCB is the main board of the power supply device.
  • PCBs printed circuit boards
  • the filter capacitor when the size of the filter capacitor is larger than the threshold, the filter capacitor is connected to the first PCB, or the filter capacitor is connected to the third PCB, and the second PCB is hollowed out at the space occupied by the filter capacitor.
  • the threshold may be one of a volume threshold, a height threshold, or other size thresholds, which is not limited in this application.
  • At least one filter capacitor may also be added to the first-stage conversion circuit. It should be noted that the capacitance of the filter capacitor can be freely adjusted according to design requirements. In a possible implementation manner, if there are at least two filter capacitors, the at least two filter capacitors may be arranged in parallel at the output end of the first-stage conversion circuit.
  • FIG. 3 is a schematic structural diagram of a power supply device provided by an embodiment of the present application.
  • a first-stage conversion circuit 210 a second-stage conversion circuit 220 , a second filter capacitor 240 and an input rectifier circuit 250 are included.
  • the functions of the first-stage conversion circuit 210 and the second-stage conversion circuit 220 are the same as those shown in FIG. 2 , and will not be repeated here.
  • the second filter capacitor 240 is connected to the output port of the first-stage conversion circuit 210 .
  • the second filter capacitor 240 is connected to the input port of the second-stage conversion circuit 220 .
  • the volume of the second filter capacitor has a positive correlation with the capacitance value.
  • the volume of the second filter capacitor in the present application needs to be smaller than the specified size, so the capacity of the second filter capacitor will be limited.
  • the preset capacitance value is the capacitance value of the capacitor with the same filtering capability.
  • the volume of the filter capacitor will also be reduced accordingly.
  • FIG. 4 is a schematic structural diagram of a power supply device provided based on the embodiment shown in FIG. 3 .
  • a first-stage conversion circuit 210 a second-stage conversion circuit 220 , a first second filter capacitor 241 and a second second filter capacitor 242 are included.
  • the setting method of the first second filter capacitor 241 and the second second filter capacitor 242 in parallel can be replaced by the method of setting a single capacitor as shown in FIG. 3 .
  • the designer can choose one of the setting methods in Figure 3 and Figure 4 to select the actual required filter capacitor arrangement.
  • the setting method of the filter capacitor shown in FIG. 3 is a setting method in which only one filter capacitor is arranged in the power supply device.
  • the setting method of the filter capacitor shown in FIG. 4 is a setting method of setting a plurality of filter capacitors in the power supply device.
  • the power supply device may connect multiple filter capacitors in parallel between the first-stage conversion circuit 210 and the second-stage conversion circuit 220 therein.
  • N can be an integer greater than or equal to 2.
  • the filter capacitor may be one of a film capacitor, a multi-layer ceramic capacitor (MLCC, Multi-Layer Ceramic Capacitors), a chip capacitor or an electrolytic capacitor.
  • the filter capacitor may be configured as a multilayer ceramic capacitor.
  • FIG. 5 is a schematic diagram of a power supply device provided by an embodiment of the present application.
  • a pre-rectification unit 511 a first-stage conversion circuit 51 , a second-stage conversion circuit 52 and a valley filling circuit are included.
  • the ranges included in the first-stage conversion circuit 51 and the second-stage conversion circuit 52 are shown by dashed boxes, and the valley filling circuit is the connection between the electrical connection point E and the electrical connection point F and the secondary winding n2. connected electrical paths.
  • the pre-rectification unit 511 is used to receive alternating current, which may be an input to a power supply device. That is, the alternating current may be the commercial power that the power supply device obtains from the socket through the plug. After the pre-rectification unit 511 obtains the commercial power, the pre-rectification unit can convert the AC voltage into the first pulsating DC voltage. It should be noted that the first pulsating DC voltage may be the voltage between the electrical connection point C and the electrical connection point D in FIG. 5 .
  • the first-stage conversion circuit 51 includes a switch unit 512 and a voltage conversion unit 513 .
  • the switch unit 512 is used to connect the pre-rectification unit 511 and the transformer unit 513 .
  • the switch unit 512 includes a bridge-connected first switch Q1 , a second switch Q2 , a third switch Q3 and a fourth switch Q4 .
  • the switch unit 512 further includes a first filter capacitor C1.
  • the first filter capacitor C1 has the function of energy storage in addition to the function of filtering. It should be noted that, the number of the first filter capacitor C1 may be either one, or a plurality of energy storage capacitors connected in parallel with the first filter capacitor C1 on the basis of setting the first filter capacitor C1.
  • the first filter capacitor C1 is connected in parallel with the output end of the input rectification circuit (ie, the pre-rectification unit 511 ).
  • the transformer unit 513 is used to convert the modulated voltage into an AC output voltage, where the modulated voltage is the voltage that has been chopped by the switch unit 512 .
  • the transformer unit 513 includes a primary coil n1, a secondary coil n2, a secondary coil n3, a secondary coil n4 and a magnetic core.
  • the secondary coil n3 and the secondary coil n4 of the transformer unit 513 are connected to the first rectifier unit, and the first rectifier unit is used to convert the AC output voltage into a second pulsating DC voltage.
  • the secondary coil n3 is connected to the switch tube SR1 in the first rectifier unit.
  • the secondary coil n4 is connected to the switch tube SR2 in the first rectifier unit.
  • the first rectifier unit includes a switch tube SR1 and a switch tube SR2. The first rectifying unit is used for converting the AC output voltage output by the transformer unit into a second pulsating DC voltage.
  • a capacitor Cr is provided, and the capacitor Cr is a resonance capacitor.
  • the first function of the resonance point-on is to isolate the DC voltage and prevent the transformer unit 513 from entering a saturated state; the other function is to realize the soft switching of the switching units Q1-Q4 through resonance to reduce losses.
  • the first-stage conversion circuit may be a DCX circuit, which can compress the first pulsating DC voltage input by the pre-rectification unit 511 through the alternate working modes of full-bridge and half-bridge of the switching units Q1 to Q4 to compress the The fluctuation range of a pulsating DC voltage.
  • the transformer unit can convert the modulated voltage into an AC output voltage, where the modulated voltage is the voltage obtained by the chopper processing of the first pulsating DC voltage by the second switching unit.
  • the functions of the secondary coil n3 and the secondary coil n4 are to convert the electric energy input by the primary coil n1 into the transformer unit 513 to the second-stage transformer circuit 52 .
  • the second pulsating DC voltage in the embodiment of the present application is lower than the first pulsating DC voltage.
  • both ends of the secondary coil n2 are connected to the valley filling circuit.
  • the first-stage conversion circuit shown in the embodiments of the present application can realize the function of a DC voltage transformation unit, and convert high-voltage pulsating DC power into low-voltage pulsating output.
  • the voltage fluctuation range is in the range of 90V to 264V
  • the range of the low voltage is 90Vac to 130Vac
  • the range of the high voltage is 180Vac to 264Vac.
  • the energy storage unit is a capacitor Cbulk and the second rectifier unit is a rectifier bridge BD2 as an example for introduction.
  • the first end of the capacitor Cbulk is the end of the capacitor Cbulk connected to the switch Q5, and the second end of the capacitor Cbulk is the end of the capacitor Cbulk connected to the positive pole of the rectifier bridge BD2.
  • the second rectifier unit (namely the rectifier bridge BD2) is respectively connected with the secondary winding n3 in the voltage transformer and the first switch unit (namely the switch tube Q5).
  • the second rectifying unit is used for rectifying the AC voltage output from the secondary winding n3 in the voltage transformer into a DC voltage, so that the DC voltage can provide electrical energy for the energy storage unit. Due to the existence of the second rectifying unit, the AC voltage output by the transformer unit can be rectified into a DC voltage, so as to smoothly provide electrical energy to the energy storage unit.
  • the second rectifying unit may also be a diode or other electronic components having a rectifying function.
  • the secondary coil n2 in the transformer unit of the first-stage conversion circuit is rectified by the rectifier bridge BD2 to charge the capacitor Cbulk and store energy.
  • the switch tube Qv, the freewheeling diode D1 and the filter inductor Lv constitute a buck (step-down) circuit.
  • the second voltage value can be a set value
  • the buck circuit starts to work
  • Cbulk releases energy through the buck circuit
  • increases the valley voltage value of Vdc_in thereby improving the first-stage conversion circuit. the output voltage.
  • the peak current of the second-stage conversion circuit which can also be said to be the second-stage buck-boost circuit, is reduced, and the required volume of the magnetic element is reduced.
  • the switch tube Q5 is turned off when the rectified voltage of BD2 is higher than DC 400V (DC400V), and is turned on when it is lower than DC 400V, so as to play the role of voltage clipping.
  • the transformer unit can be designed with a higher turns ratio n2:n1, and the voltage at both ends of Cbulk is controlled by cutting the top during the AC input high voltage period of the entire power supply device to ensure that the voltage does not exceed the rated voltage value of Cbulk .
  • the secondary winding n2, the rectifier bridge BD2, the capacitor Cbulk and the switch tube Q5 constitute the target loop shown in the embodiment of the present application.
  • the valley-fill circuit provided by the present application includes a capacitor Cbulk serving as a charging unit and a switch transistor Q5 serving as a first switch unit.
  • the switch tube Q5 is respectively connected with the first-stage conversion circuit and the capacitor Cbulk.
  • the switch transistor Q5 is turned on when the voltage of the capacitor Cbulk is lower than the first voltage value (ie, DC400V in the above example), so that the capacitor Cbulk obtains electrical energy from the first-stage conversion circuit.
  • the capacitor Cbulk it is connected to the first-stage conversion circuit, and is used for providing electric energy to increase the valley voltage of the first pulsating DC voltage when the voltage value of the first pulsating DC voltage is lower than the second voltage value .
  • FIG. 6 is a schematic diagram of a simulation waveform of a key voltage provided by an embodiment of the present application.
  • the first-stage conversion circuit is in the half-bridge working mode, that is, the first switch Q1 and the second switch Q2 do not work, and the output power of the power supply device is 70 watts.
  • the input valley voltage of the first-stage conversion circuit is very low and close to 0V, and the output voltage Vo cannot be regulated.
  • the turns ratio of n1:n2 in the MLCC and the transformer unit can be adjusted, so that the valley voltage input by the first-stage transformer circuit can be effectively improved.
  • V_bulk is the Cbulk voltage
  • Vrec is the AC rectified voltage without the valley filling circuit
  • Vrec_in is the AC rectified voltage after the valley filling circuit is added.
  • V_bulk is lower than 400V
  • Q5 remains on.
  • the winding voltage of n2 is rectified by BD2 to charge and store the capacitor Cbulk, and the buck does not work.
  • V_bulk exceeds 400V, Q5 is turned off, the Cbulk capacitor maintains the current voltage, and the adapter power continues to be borne by the AC input.
  • the AC rectified voltage gradually decreases after the peak, and when V_bulk is lower than 400V, Q5 is closed again.
  • V_bulk is lower than 400V
  • Q5 is closed again.
  • the buck circuit starts to work, and the energy of Cbulk charges C1 through the buck circuit, which effectively increases the input valley voltage of DCX and maintains power transmission. If there is no valley filling circuit in this technical solution, the valley voltage will drop to 0 along the green curve.
  • the time point when Q5 is turned off is the right endpoint of t1 , that is, the end time.
  • the start-up time of the Buck circuit is the left endpoint of t3, that is, the start time of t3.
  • the value of V1 can be reasonably designed, and the automatic startup and shutdown of the valley filling circuit can be realized through the newly added buck circuit.
  • the application can control the voltage at both ends of the energy storage capacitor Cbulk through Q5, and try to use its energy storage capacity as much as possible on the premise that the voltage does not exceed the rated value of the capacitor, so as to reduce the requirements for the withstand voltage of the capacitor, thereby reducing the size , to help achieve a miniaturized design.
  • the first switch unit in this application may be implemented as Q5
  • the energy storage capacitor may be implemented as Cbulk.
  • Q5 has the function of turning on or off according to the voltage across the energy storage capacitor Cbulk.
  • the first switch unit controls the energy storage capacitor Cbulk to conduct to the second-stage conversion circuit, so as to obtain electrical energy from the second-stage conversion circuit.
  • the first switch unit controls the energy storage capacitor Cbulk to turn off the second-stage conversion circuit, so that the voltage across the energy storage capacitor Cbulk is too high and the energy storage is burned out Capacitor Cbulk. It can be seen that the first switch unit in the valley-filling circuit achieves the top clipping effect on the voltage of the input energy storage capacitor Cbulk on the signal waveform, ensuring that the voltage across the Cbulk is not higher than the first voltage value.
  • the second stage conversion circuit 52 includes a fifth switch S1, a sixth switch S2, a seventh switch S3, an eighth switch S4, a second inductor LB, a second filter capacitor C2, a second filter capacitor C3, a third Capacitor C4 and fourth capacitor Co.
  • the second filter capacitor C2 and the second filter capacitor C3 are both used for filtering.
  • the second-stage conversion circuit 52 is a DC/DC circuit, and the function of the second-stage conversion circuit is to convert the low-voltage pulsating DC power output by the first-stage conversion circuit into a stable DC output for supplying electronic equipment.
  • the second-stage conversion circuit 52 adopts the Buck-Boost circuit to convert the input voltage higher than, lower than or equal to the output voltage value into a stable output voltage.
  • the structures of the first-stage conversion circuit and the second-stage conversion circuit shown in FIG. 5 are only schematic illustrations.
  • the first-stage conversion circuit can also use other DCX implementation forms, and the second-stage conversion circuit can also be other DC/DC circuit topologies.
  • the first-stage conversion circuit adopts a working mode of switching back and forth between the full-bridge and the half-bridge.
  • the first-stage conversion circuit adopts the full-bridge mode
  • the power supply device can maintain the second-stage conversion circuit to work within a narrow input voltage variation range within a wide input voltage variation range, which facilitates the optimal design of the second-stage conversion circuit.
  • the first-stage conversion circuit adopts the full-bridge mode, so that the four switch units (ie, switch tubes) in the circuit work, and the fixed voltage gain is Z1, for example.
  • the first-stage conversion circuit adopts the half-bridge mode, and the fixed voltage gain is Z2, for example.
  • Z1 is required to be greater than Z2. Since the lower-voltage AC power is supported by the high gain (that is, the gain of Z1) supported by the full-bridge mode, the final output voltage range of the first-stage conversion circuit can be controlled in a relatively narrow range.
  • the power supply device provided by the present application can ensure that the second-stage conversion circuit has a sufficiently high valley voltage through the valley filling circuit without using electrolytic capacitors or other large-capacity capacitors, thereby ensuring the power supply device. overall output voltage stability.
  • the power supply device can control the voltage at both ends of the energy storage unit in the valley filling circuit, and try to utilize the ability of the stored electrical energy on the premise that the voltage does not exceed the rated capacity value, reducing the resistance to the energy storage unit. Therefore, the miniaturized design of the power supply device is realized, and the portability of the power supply device is improved.
  • FIG. 7 is a flowchart of a circuit control method provided by an exemplary embodiment of the present application. This circuit control method can be applied to the control of the power supply device shown above.
  • the circuit control method includes:
  • Step 710 Convert the received AC voltage into a first pulsating DC voltage.
  • Step 720 converting the first pulsating DC voltage into a second pulsating DC voltage.
  • Step 730 Control the energy storage unit to obtain electrical energy when the voltage at both ends is lower than the first voltage value.
  • Step 740 When the voltage value of the first pulsating DC voltage is lower than the second voltage value, the energy storage unit is controlled to provide power to the circuit port outputting the first pulsating DC voltage to increase the valley voltage of the first pulsating DC voltage.
  • Step 750 Convert the second pulsating DC voltage into a constant DC voltage and output it.
  • control method provided by the embodiments of the present application may be implemented by a control chip, or directly implemented by a circuit by a power supply device as described in the present application, which is not limited in the present application.
  • the circuit control method provided by this embodiment is applied to the power supply device provided by the embodiment of the present application, and can convert the input AC voltage into a pulsating DC voltage through two-stage adjustment, and then convert the pulsating DC voltage into Adjusted to a constant DC voltage, wherein the application can increase the valley voltage of the first pulsating DC voltage through the energy storage unit to reduce its fluctuation and realize the final output constant DC voltage, and the voltage value of the energy storage unit used for energy supply
  • the first voltage value that is always maintained is guaranteed not to be burned, which is convenient for electronic equipment to directly use the electric energy, so that the power supply device can automatically output constant direct current after the volume is reduced, which is convenient to provide constant direct current to electronic equipment.
  • FIG. 8 is a block diagram of a power supply system provided by an exemplary embodiment of the present application.
  • the power supply system may include the power supply device and electronic equipment provided in the above embodiments.
  • a power supply system 800 includes an electronic device 810 and a power supply device 820 .
  • the power supply device 820 may provide power to the electronic device 810 through a wired cable or a wireless induction coil.
  • the power supply system may be a scenario where a power adapter charges a smartphone, a tablet computer, a notebook computer, a smart watch, a cleaning robot, smart glasses, a Bluetooth speaker, a Bluetooth headset or a smart bracelet. It should be noted that the above charging scenarios are only exemplary descriptions, and do not limit the present application.
  • the electronic device 810 can either work with the power provided by the power supply device, or can charge the battery with the power provided by the power supply device.
  • the electronic device 810 may use the power to drive each built-in electronic unit to work, and the electronic unit may include various power-consuming electronic devices, which will not be repeated here.
  • the power supply system further includes a cable matched with the power supply device, and the cable is used to connect the power supply device and the electronic equipment.
  • the charging system provided by the present application can provide electrical energy through the power supply device with a reduced volume without changing the internal structure of the electronic device, thereby reducing the space occupied by the power supply device in the charging system and improving the performance of the charging system.
  • the convenience of charging electronic devices can provide electrical energy through the power supply device with a reduced volume without changing the internal structure of the electronic device, thereby reducing the space occupied by the power supply device in the charging system and improving the performance of the charging system.
  • the power supply device provided in the above embodiments executes the circuit control method
  • only the division of the above functional modules is used as an example for illustration.
  • the above functions can be allocated by different functional modules as required. , that is, dividing the internal structure of the device into different functional modules to complete all or part of the functions described above.
  • the power supply device provided in the above-mentioned embodiments and the circuit control method embodiments belong to the same concept, and the specific implementation process thereof is detailed in the method embodiments, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

一种电源提供装置(200)、电路控制方法及供电系统(800),属于电源转换技术领域。该电源提供装置(200)能够在不使用电解电容或其它大体积电容的情况下,通过填谷电路(230)保证第二级变换电路(220)有足够高的波谷电压,从而保证电源提供装置(200)整体输出电压的稳定。另一方面,电源提供装置(200)能够通过控制填谷电路(230)中的储能单元两端的电压,在保证该电压不超过电压额定值的前提下尽量利用其存储电能的能力,降低对该储能单元耐压的要求,从而实现电源提供装置(200)的小型化设计,提高电源提供装置(200)的便携性。

Description

电源提供装置、电路控制方法及供电系统
本申请要求于2020年11月12日提交的申请号为202011262842.6、发明名称为“电源提供装置、电路控制方法及供电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电源转换技术领域,特别涉及一种电源提供装置、电路控制方法及供电系统。
背景技术
随着当前技术的发展,移动终端在日常生活中给用户带来的便利越来越多,但因需要频繁充电而造成使用的局限。
相关技术中,电源提供装置的体积较大,导致不便于随身携带,影响电子设备随时充电。
在上述背景技术部分公开的信息,仅示意性加强对本申请背景的理解,并不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本申请实施例提供了一种电源提供装置、电路控制方法及供电系统。所述技术方案如下:
根据本申请的一方面内容,提供了一种电源提供装置,所述电源提供装置包括:
输入整流电路,用于将接收到的交流电压转换为第一脉动直流电压;
第一级变换电路,与所述输入整流电路相连,用于将所述第一脉动直流电压转换为第二脉动直流电压;
填谷电路,包括储能单元和第一开关单元,所述第一开关单元分别与所述第一级变换电路和所述储能单元连接,所述第一开关单元用于在所述储能单元的电压低于第一电压值时导通,以使得所述储能单元从所述第一级变换电路获取电能;所述储能单元与所述第一级变换电路连接,用于在所述第一脉动直流电压的电压值低于第二电压值时,提供电能,以升高所述第一脉动直流电压的波谷电压;
第二级变换电路,与所述第一级变换电路连接,用于将所述第二脉动直流电压转换为恒定直流电压并输出。
可选地,所述第一开关单元用于在所述储能单元的电压高于或等于所述第一电压值时关断。
可选地,所述第一级变换电路包括第二开关单元、变压单元和第一整流单元;
所述变压单元,用于将调制电压转变为交流输出电压,所述调制电压是第一脉动直流电压经过所述第二开关单元斩波处理的电压;所述第一整流单元用于将所述交流输出电压转变为所述第二脉动直流电压。
可选地,所述储能单元与所述变压单元的次级绕组的两端相连,用于获取所述变压单元提供的电能;
所述第一开关单元用于控制目标回路的导通和关断,所述目标回路是所述储能单元与所述次级绕组之间的回路;
其中,当所述储能单元的两端电压低于所述第一电压值时,所述第一开关单元控制所述目标回路导通,所述储能单元获取所述变压单元提供的电能。
可选地,所述填谷电路还包括降压电路;
所述降压电路用于在所述第一脉动直流电压低于所述第二电压值时工作;
当所述降压电路工作时,所述储能单元通过所述降压电路释放存储的电能,以提高所述第一脉动直流电压。
可选地,所述降压电路包括二极管、第三开关单元和滤波电感;
所述二极管连接所述滤波电感和所述储能单元的第一端之间;
所述第三开关单元连接所述滤波电感和所述储能单元的第二端之间;
所述电感连接在所述第三开关单元和第一滤波电容之间,所述第一滤波电容并联在所述输入整流电路的输出端。
所述填谷电路还包括第二整流单元;所述第二整流单元分别与所述变压单元和所述第一开关单元相连,所述第一开关单元通过所述第二整流单元与所述变压单元相连;所述第二整流单元用于将来自于所述变压单元的交流电压整流为直流电压,所述直流电压用于为所述储能单元提供电能。
可选地,所述电源提供装置包括第二滤波电容,所述第二滤波电容连接在所述第一级变换电路的输出端口。
根据本申请的另一方面内容,提供了一种电路控制方法,应用于如上述电源提供装置中,所述方法包括:
将接收到的交流电压转换为第一脉动直流电压;
将所述第一脉动直流电压转换为第二脉动直流电压;
控制储能单元在两端的电压低于第一电压值时获取电能;
控制所述储能单元在所述第一脉动直流电压的电压值低于第二电压值时,向输出所述第一脉动直流电压的电路端口提供电能,以升高所述第一脉动直流电压的波谷电压;
将所述第二脉动直流电压转换为恒定直流电压并输出。
根据本申请的另一方面内容,提供了一种供电系统,该供电系统包括电子设备和本申请实施例提供的电源提供装置,该电源提供装置用于向电子设备提供电能。一种可能的场景中,电子设备直接使用该电源提供装置提供的电能工作。另一种可能的场景中,电子设备将电源提供装置提供的电能充至电池中。或者,电子设备可以对电源提供装置提供的电能进行分流,一部分 为正常工作供能,另一部分充至电池中。
根据本申请的另一方面内容,提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现如本申请各个方面提供的电路控制方法。需要说明的是,本申请还可以通过硬件电路实现上述电路控制方法,本申请实施例对此不作限定。
根据本申请的一个方面,提供了一种计算机程序产品,该计算机程序产品包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述电路控制方面的各种可选实现方式中提供的方法。需要说明的是,本申请还可以通过硬件电路实现上述电路控制方法,本申请实施例对此不作限定。
附图说明
为了更清楚地介绍本申请实施例中的技术方案,下面将对本申请实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是相关技术提供的一种电源提供装置的一种结构示意图;
图2是本申请实施例示出的一种包括两级架构的电源提供装置的结构示意图;
图3是本申请实施例提供的一种电源提供装置的结构示意图;
图4是基于图3所示实施例提供的一种电源提供装置的结构示意图;
图5是本申请实施例提供的一种电源提供装置的原理图;
图6是本申请实施例提供的一种关键电压的仿真波形的示意图;
图7是本申请一个示例性实施例提供的一种电路控制方法的流程图;
图8是本申请一个示例性实施例提供的一种供电系统的框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本 领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。此外,在本申请的描述中,除非另有说明,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
在本申请实施例中,提供有如下技术方案:
一种电源提供装置,其中,所述电源提供装置包括:
输入整流电路,用于将接收到的交流电压转换为第一脉动直流电压;
第一级变换电路,与所述输入整流电路相连,用于将所述第一脉动直流电压转换为第二脉动直流电压;
填谷电路,包括储能单元、第一开关单元,所述第一开关单元分别与所述第一级变换电路和所述储能单元连接,所述第一开关单元用于在所述储能单元的电压低于第一电压值时导通,以使得所述储能单元从所述第一级变换电路获取电能;所述储能单元与所述第一级变换电路连接,用于在所述第一脉动直流电压的电压值低于第二电压值时,提供电能,以升高所述第一脉动直流电压的波谷电压;
第二级变换电路,与所述第一级变换电路连接,用于将所述第二脉动直流电压转换为恒定直流电压并输出。
可选地,所述第一开关单元用于在所述储能单元的电压高于或等于所述第一电压值时关断。
可选地,所述第一级变换电路包括第二开关单元、变压单元和第一整流单元;
所述变压单元,用于将调制电压转变为交流输出电压,所述调制电压是第一脉动直流电压经过所述第二开关单元斩波处理的电压;
所述第一整流单元用于将所述交流输出电压转变为所述第二脉动直流电压。
可选地,所述储能单元与所述变压单元的次级绕组的两端相连,用于获取所述变压单元提供的电能;
所述第一开关单元用于控制目标回路的导通和关断,所述目标回路是所述储能单元与所述次级绕组之间的回路;
其中,当所述储能单元的两端电压低于所述第一电压值时,所述第一开关单元控制所述目标回路导通,所述储能单元获取所述变压单元提供的电能。
可选地,所述填谷电路还包括降压电路;
所述降压电路用于在所述第一脉动直流电压低于所述第二电压值时工作;
当所述降压电路工作时,所述储能单元通过所述降压电路释放存储的电能,以提高所述第一脉动直流电压的波谷电压。
可选地,所述降压电路包括二极管、第三开关单元和滤波电感;
所述二极管连接所述滤波电感和所述储能单元的第一端之间;
所述第三开关单元连接所述滤波电感和所述储能单元的第二端之间;
所述电感连接在所述第三开关单元和第一滤波电容之间,所述第一滤波电容并联在所述输入整流电路的输出端。
可选地,所述填谷电路还包括第二整流单元;
所述第二整流单元分别与所述变压单元和所述第一开关单元相连,所述第一开关单元通过所述第二整流单元与所述变压单元相连;
所述第二整流单元用于将来自于所述变压单元的交流电压整流为直流电压,所述直流电压用于为所述储能单元提供电能。
可选地,所述电源提供装置包括第二滤波电容,所述第二滤波电容连接在所述第一级变换电路的输出端口。
可选地,所述输入整流电路与外部交流输入相接,所述外部交流输入用于向所述电源提供装置输入所述交流电压。
可选地,所述输入整流电路与所述外部交流输入相接的部分是三相端口或两相端口。
可选地,所述第二级变换电路与配套的线缆的第一端口相连,所述线缆通过第二端口向外部提供所述恒定直流电。
可选地,所述第一端口包括串行通用总线USB(Universal Serial Bus,通用串行总线)端口。
可选地,所述线缆中包括功率管理芯片,所述功率管理芯片用于管理流经所述线缆的电流的功率。
可选地,所述第二端口包括Type-C接口、micro USB接口或雷电lightning接口中的一种。
可选地,所述电源提供装置中包括三层印刷电路板PCB,分别为第一PCB、第二PCB和第三PCB;
所述第一PCB用于连接变压单元;
所述第二PCB中设置有所述第二级变换电路的输出端口,所述第二PCB设置于所述第一PCB和所述第三PCB之间的空间位置;
所述第三PCB是所述电源提供装置的主板。
可选地,在所述滤波电容的尺寸大于阈值的情况下,所述滤波电容连接在所述第一PCB上,或者,所述滤波电容连接在所述第三PCB上,第二PCB在所述滤波电容所占空间处呈镂空状。
本申请提供的电源提供装置,能够在不使用电解电容或其它大体积电容的情况下,通过填谷电路保证第二级变换电路有足够高的波谷电压,从而保证电源提供装置整体输出电压的稳定。另一方面,电源提供装置能够通过控制填谷电路中的储能单元两端的电压,在保证该电压不超过电压额定值的前提下尽量利用其存储电能的能力,降低对该储能单元耐压的要求,从而实现电源提供装置的小型化设计,提高电源提供装置的便携性。
为了便于理解,下面对本申请实施例涉及的名词进行介绍。
交流电压:一方面,本申请实施例中输入到电源提供装置中的市电可以是交流电压。该交流电压的瞬时值可以是交流电压值。另一方面,变压单元输出的电压也是交流电压。
脉动直流电压:本申请实施例中指示的第一级变换电路经过第一整流单元处理后,输出的电信号,该电信号的数值是脉动直流电压值。在没有填谷电路的干预情况下,脉动直流电压中的波谷电压值将趋近0或者等于0。
在本领域中常见的电源提供装置中,通常设置有体积较大的储能单元用于存储电能。然而,较大的储能单元使得电源提供装置的体积较大。
请参见图1,图1是相关技术提供的一种电源提供装置的一种结构示意图。在图1中,电源提供装置100包括:前置整流单元110、开关单元120、变压单元130、滤波单元140、控制单元150和储能单元160。
需要说明的是,电源提供装置100整体的功能是将作为交流电压(Alternating Current,AC)的市电转换为指定形式的直流电压。在此基础上,本申请将在下面分别介绍各个单元在电源提供装置100工作时的作用。
前置整流单元110用于将电源提供装置100接收的交流电压进行整流。前置整流单元110整流后的电压S1是脉动直流电压,详情可参见图1。
在电源提供装置100得到电压S1后,开关单元120、变压单元130和滤波单元140将对S1进行转换,从而将作为脉动直流电的S1转换为稳定的直流电S4。其中,电压S1中的一部分将充能至储能单元160,通常该储能单元是电解电容。电压S1经过电解电容滤波,得到波动较小的直流电压。该电解电容在交流输入的电压较低时,利用自身存储的能力保持稳定的输出电压。
控制单元150分别对电源提供装置100输出的电压采样,及对开关单元120的电流采样,并根据电压采样信号和电流采样信号,对开关单元120的开关方式以及开断各自持续的时长进行控制,以控制电源提供装置100的输出电压和/或输出电流。
可选地,在本申请的一种可能的方式中,电源提供装置可以是电源适配器(adapter)。
然而,在电源转换技术领域中,由于电解电容的体积较大,造成电源提供装置的体积通常较大,不利于用户随身携带。若用户随身携带该电源提供装置,则其将占用较大空间,影响用户携带其他物件。若用户因体积较大放弃随身携带该电源提供装置,则电子设备将会因无法及时充电而无法持续使用。
在本申请中,将会采用以下技术手段减小电源提供装置的体积。请参见图2,图2是本申请实施例示出的一种包括两级架构的电源提供装置的结构示意图。
在图2中,电源提供装置200包括第一级变换电路210、第二级变换电路 220、填谷电路230、输入端口2A、输出端口2B和输入整流电路250。
在本申请实施例中,输入整流电路250用于将接收到的交流电转换为第一脉动直流电压。其中,输入整流电路250可以是整流桥BD1,整流桥BD1用于连接市电。在本技术领域中,市电通常为交流电压,区别在于地区不同,交流电的电压和频率有所区别。示意性的,在当前技术发展的现状中,市电的电压取值范围在100V至240V之间,市电的频率取值在50Hz至60Hz之间。示意性的,第一级变换电路210可以是DCX电路。
在第一级变换电路210接收整流桥BD1输出的第一脉动直流电压,转换为第二脉动直流电压。需要说明的是,第一级变换电源210单独输出的第二脉动直流电压的最低值是趋近0或者等于0。其中,第一级变换电路210用于对第一脉动直流电压进行高效的隔离变换,就可以是升压变换,也可以是降压变换或者是其它变换,可以根据具体的设计参数来设定。
需要说明的是,本申请实施例在第一级变换电路210中没有设置电解电容,无需通过电解电容稳定输出电压。在第一级变换电路210中,存在对输入的交流电压进行升压的单元,使得无论输入的AC电压是在低压范围还是高压范围,第一级变换电路210都能够在输出端提供相似范围的母线电压,从而为输出电压提供电压支持。另外,在填谷电路的存在下,电源提供装置中无需设置较大体积的电解电容,可以设置薄膜电容、陶瓷电容、钽电容或体积较小的电解电容,进而减少了电源提供装置的体积。需要说明的是,电容也可以是其它形态的类型,本申请实施例对此不作限定。
在上述结构中,因为本申请实施例提供的方案去除了电解电容,第一级变换电路210原本输出的第二脉动直流电压的最低值接近于0,电压抖动的幅值过大,不利于后续电路输出恒定直流电。需要说明的是,第二级变换电路220的输入电压值等于第一级变换电路210输出的电压值。
在此基础上,本申请通过在第一级变换电路的输入端增设填谷电路,来实现第一级变换电路的输入电压中的最低电压值大于第二电压值的效果。在脉动直流电压的波形上,第二级变换电路220输出的波谷部分在填谷电路的作用下维持在指定的数值。通俗的来说,相当于脉动直流电压的波谷被填平。因此,本申请提供的电源提供装置中的填谷电路具有脉动直流电的电压填谷功能。
在此基础上,与第一级变换电路210连接的第二级变换电路220用于将第一级变换电路210输出的脉动直流电压进行变换,得到恒定直流电压,并将恒定直流电输出,以满足各式电子设备的用电需求。
在电源提供装置的实际装配中,还可以包括驱动电路、电压检测电路、电流检测电路和MCU(Microcontroller Unit,微控制单元)控制电路。上述实际装配中涉及的电路在本领域中的功能较为常见,此处不再赘述。
示意性的,当电源提供装置为了减小体积而去除电解电容时,对应的电子设备需要能够接受脉动直流电。在该场景中,缩小体积的电源提供装置仅能够为能够接受脉动直流电压的电子设备进行充电。在生活中,用户在外旅 行、学习或者出差时,通常携带有智能手机、平板电脑和笔记本电脑等多个电子设备。上述电子设备均需要各自对应的电源提供装置进行充电,因此,造成用户出门携带电源提供装置的数量较多,占用空间较大。若缩小体积的电源提供装置仅能够为上述一种指定的设备充电,例如,缩小体积后的电源提供装置仅能够为事先经过对应设计的智能手机充电,原因在于该智能手机能够接受并使用脉动直流电。然而,用户使用的多个电子设备较大可能不都是基于缩小体积的电源提供装置的标准进行制造。因此,本申请在缩小电源提供装置的体积的情况下,设计了一种能够输出恒定直流电压的电源提供装置。当缩小体积的电源提供装置输出的电压是恒定直流电压时,用户可以通过该电源提供装置为多个电子设备进行充电,便于用户仅携带一个小体积的电源提供装置,便可满足随身携带的多个电子设备的充电需求。
需要说明的是,基于图2所提供的电源提供装置200。变压单元可以设置在变压器中,变压器两侧设置有隔离板,隔离板用于分割变压器和其它元件的物理空间。
可选地,输入整理电路与外部交流输入相接,从外部交流输入的端口中获取交流电。在另一种可能的方式中,输入整理电路与外部交流输入相接的部分是三相端口或两相端口。
可选地,在电源提供装置200的输出端,第二级变换电路与配套的线缆的第一端口相连,线缆通过第二端口向外部提供恒定直流电。示意性地,配套的线缆可以是数据线。
可选地,第一端口包括串行通用总线USB端口。线缆中包括功率管理芯片,功率管理芯片用于管理流经线缆的电流的功率。第二端口包括Type-C接口、micro USB接口或雷电lightning接口中的一种。
可选地,电源提供装置200中的器件可以包括三层印刷电路板PCB,分别为第一PCB、第二PCB和第三PCB;第一PCB用于连接变压单元;第二PCB中设置有第二级变换电路的输出端口,第二PCB设置于第一PCB和第三PCB之间的空间位置;第三PCB是电源提供装置的主板。
可选地,在滤波电容的尺寸大于阈值的情况下,滤波电容连接在第一PCB上,或者,滤波电容连接在第三PCB上,第二PCB在滤波电容所占空间处呈镂空状。其中,阈值可以是体积阈值、高度阈值或者其它尺寸阈值中的一种,本申请对此不作限制。
在本申请提供的电源提供装置中,还可以在第一级变换电路中增加至少一个滤波电容。需要说明的是,该滤波电容的容值可以根据设计需求来自由调整。在一种可能的实现方式中,若存在至少两个滤波电容,则至少两个滤波电容可以按照并联的方式设置在第一级变换电路的输出端。
请参见图3,图3是本申请实施例提供的一种电源提供装置的结构示意图。在图3中,包括第一级变换电路210、第二级变换电路220、第二滤波电容240 和输入整流电路250。
其中,第一级变换电路210和第二级变换电路220的用于与图2中所示的内容相同,本处不再赘述。
第二滤波电容240连接在第一级变换电路210的输出端口。换言之,第二滤波电容240连接在第二级变换电路220的输入端口。一种可能的方式中,第二滤波电容的体积与电容值成正相关关系。示意性的,本申请中第二滤波电容的体积需要小于指定大小,因此,第二滤波电容的容量将受到限制。
需要说明的是,预设电容值是同等滤波能力的电容的电容值。当滤波电容的电容值较小时,滤波电容的体积也将相应的减小。
相似的,请参见图4,图4是基于图3所示实施例提供的一种电源提供装置的结构示意图。在图4中,包括第一级变换电路210、第二级变换电路220、第一个第二滤波电容241和第二个第二滤波电容242。需要说明的是,第一个第二滤波电容241和第二个第二滤波电容242并联的设置方式可以通过如图3中单独设置一个电容的方式来替代。基于设置电容的空间和电路排布方式,设计人员可以在图3和图4的设置方式中择一选择实际需要的滤波电容排布方式。
需要说明的是,图3所示的滤波电容的设置方式是电源提供装置中仅设置一个滤波电容的设置方式。图4所示的滤波电容的设置方式是电源提供装置中设置多个滤波电容的设置方式。在电源提供装置中需要设置两个以及两个以上的滤波电容时,电源提供装置可以在其中的第一级变换电路210和第二级变换电路220之间并联多个滤波电容。
比如设计人员需要设置N个滤波电容,则设计人员可以根据图4的设计方式在第一个第二滤波电容241两端并联N-1个数的滤波电容,一共N个电容并联在第二级变换电路220的输入端口两侧。其中,N可以是大于或等于2的整数。
示意性的,在滤波电容的一种实现方式中,滤波电容可以是薄膜电容、多层陶瓷电容(MLCC,Multi-Layer Ceramic Capacitors)、贴片电容或电解电容中的一种。在本申请实施例中,滤波电容可以被设置为多层陶瓷电容。
请参见图5,图5是本申请实施例提供的一种电源提供装置的原理图。在图5中,包括前置整流单元511、第一级变换电路51、第二级变换电路52和填谷电路。需要说明的是,第一级变换电路51和第二级变换电路52包括的范围均通过虚线框示出,填谷电路是电性连接点E和电性连接点F之间与次级绕组n2相连的电性通路。
第一,前置整流单元511,用于接收交流电,该交流电可以是对于电源提供装置的输入。也即,该交流电可以是电源提供装置通过插头从插座中获取的市电。在前置整流单元511获取到市电后,前置整流单元可以将该交流电压转换为第一脉动直流电压。需要说明的是,第一脉动直流电压可以是图5中电性连接点C与电性连接点D之间的电压。
第二,第一级变换电路51,包括开关单元512和变压单元513。
(1)开关单元512,用于连接前置整流单元511和变压单元513。如图5所示,开关单元512包括桥接的第一开关Q1、第二开关Q2、第三开关Q3和第四开关Q4。在开关单元512中,还包括第一滤波电容C1。示例性的,该第一滤波电容C1除了滤波的作用,还具备储能的作用。需要说明的是,第一滤波电容C1的数量既可以是一个,也可以是在设置第一滤波电容C1的基础上,设置与第一滤波电容C1并联的多个储能电容。该第一滤波电容C1并联在输入整流电路(也即前置整流单元511)的输出端。
(2)变压单元513,用于将调制电压转变为交流输出电压,所述调制电压是经过开关单元512斩波处理的电压。
其中,变压单元513上包括初级线圈n1、次级线圈n2、次级线圈n3、次级线圈n4和磁芯。
变压单元513的次级线圈n3以及次级线圈n4与第一整流单元相连,第一整流单元用于将交流输出电压转变为第二脉动直流电压。示意性的,次级线圈n3与第一整流单元中的开关管SR1相连。次级线圈n4与第一整流单元中的开关管SR2相连。第一整流单元包括开关管SR1和开关管SR2。第一整流单元用于将变压单元输出的交流输出电压转变为第二脉动直流电压。
在初级线圈n1与第三开关单元Q3,或者,初级线圈n1与第四开关单元Q4之间的连接点的通路上,设置有电容Cr,电容Cr是谐振电容。该谐振点通的第一个作用是隔离直流电压,防止变压单元513进入饱和状态;另外一个作用是通过谐振实现开关单元Q1~开关单元Q4的软开关,减小损耗。
在本实施例中,第一级变换电路可以是DCX电路,能够将前置整流单元511输入的第一脉动直流电压,通过开关单元Q1至Q4的全桥和半桥交替的工作方式,压缩第一脉动直流电压的波动范围。变压单元能够将调制电压转变为交流输出电压,调制电压是第一脉动直流电压经过第二开关单元斩波处理的电压。
次级线圈n3和次级线圈n4的作用是将初级线圈n1输入到变压单元513中的电能,转换到第二级变换电路52。
可选地,在降压场景中,本申请实施例中第二脉动直流电压低于第一脉动直流电压。
其中,次级线圈n2的两端与填谷电路相连。
示意性的,本申请实施例所示的第一级变换电路可以实现直流变压单元的功能,将高压脉动直流电转换为低压脉动输出。可选的,若电压波动范围在90V至264V的区间,则低电压的范围是90Vac至130Vac,高电压的范围是180Vac至264Vac。
在本例中,以储能单元是电容Cbulk且第二整流单元是整流桥BD2为例进行介绍。其中,电容Cbulk的第一端是电容Cbulk与开关管Q5连接的一端,电容Cbulk的第二端是电容Cbulk与整流桥BD2的正极连接的一端。
在图5中,第二整流单元(也即整流桥BD2)分别与电压器中的次级绕 组n3,以及,第一开关单元(也即开关管Q5)相连。第二整流单元用于将从电压器中的次级绕组n3中输出的交流电压整流为直流电压,以便直流电压能够为储能单元提供电能。由于第二整流单元的存在,使得变压单元输出的交流电压能够被整流为直流电压,从而顺利对储能单元提供电能。
可选地,第二整流单元还可以是二极管或者其它具备整流功能的电子元件。
在本申请中,为了保证电源提供装置最终输出的是恒定直流电,在第一级变换电路的变压单元中的次级线圈n2,经整流桥BD2整流后给电容Cbulk充电储能。示意性的,开关管Qv、续流二极管D1和滤波电感Lv构成buck(降压)电路。当整流后电压Vdc_in低于第二电压值时,该第二电压值可以是设定值,buck电路启动工作,Cbulk经buck电路释放能量,提高Vdc_in的波谷电压值,从而提高第一级变换电路的输出电压。相应的,第二级变换电路,也可以说是第二级buck-boost电路峰值电流减小,需要的磁性元件体积减小。开关管Q5在BD2整流电压高于直流400伏(DC400V)时关断,低于直流400伏时导通,从而起到电压削顶作用。在该设计中,变压单元可以设计数值更高的匝数比n2:n1,在整个电源提供装置的AC输入高压的时段中削顶控制Cbulk两端电压,保证电压不超过Cbulk的额定电压值。
可选地,次级绕组n2、整流桥BD2、电容Cbulk和开关管Q5构成本申请实施例中所示的目标回路。
也即,本申请提供的填谷电路,包括充当充能单元的电容Cbulk和充当第一开关单元的开关管Q5。开关管Q5分别与第一级变换电路和电容Cbulk连接。开关管Q5在电容Cbulk的电压低于第一电压值(也即上述举例的DC400V)时导通,以使得电容Cbulk从第一级变换电路获取电能。另一方面,关于电容Cbulk,其与第一级变换电路连接,用于在第一脉动直流电压的电压值低于第二电压值时,提供电能,以升高第一脉动直流电压的波谷电压。
在一种可能的应用方式中,请参见图6,图6是本申请实施例提供的一种关键电压的仿真波形的示意图。在图6中,以180Vac为输入,第一级变换电路处于半桥工作模式,也即第一开关Q1和第二开关Q2不工作,电源提供装置的输出功率是70瓦。第一级变换电路的输入波谷电压很低且接近0V,输出电压Vo无法稳压。经过本申请提供的填谷电路的设计,能够在调整MLCC以及变压单元中的n1:n2的匝数比,实现第一级变换电路输入的谷底电压可以有效提高。
在图6中,V_bulk为Cbulk电压,Vrec为没有设计填谷电路的AC整流电压,Vrec_in为增加填谷电路后的AC整流电压。在t1时间段,V_bulk低于400V,Q5保持导通,此时n2绕组电压经BD2整流给电容Cbulk充电储能,buck不工作。在t2时间段,当V_bulk超过400V,Q5关断,Cbulk电容维持当前电压,适配器功率继续由AC输入承担。AC整流电压波峰过后逐渐降低,V_bulk低于400V时Q5重新闭合。在t3时间段,当AC整流电压下降到设定值V1,buck电路启动工作,Cbulk的能量经过buck电路给C1充电,有效 提高了DCX的输入波谷电压,维持功率传输。若没有本技术方案填谷电路,波谷电压将沿绿色曲线下降到0。
示意性说明,在图6中,Q5关断的时间点是t1的右端点,也即结束时刻。Buck电路的启动时刻是t3的左端点,也即t3的开始时刻。
在本申请中,可以通过合理设计V1的数值,通过新增的buck电路实现填谷电路的自动启动和关断。另一方面,本申请能够通过Q5控制储能电容Cbulk两端电压,在保证该电压不超过电容额定值的前提下尽量利用其储能能力,降低对该电容耐压的要求、从而减小尺寸,帮助实现小型化设计。需要说明的是,本申请中的第一开关单元可以实现为Q5,储能电容可以实现为Cbulk。其中,Q5具备根据储能电容Cbulk两端电压进行导通或关断的功能。当储能电容Cbulk两端电压低于第一电压值时,第一开关单元控制储能电容Cbulk导通至第二级变换电路,以从第二级变换电路中获取到电能。当储能电容Cbulk两端电压等于或高于第一电压值时,第一开关单元控制储能电容Cbulk与第二级变换电路关断,以便储能电容Cbulk两端的电压过高,烧毁储能电容Cbulk。由此可见,填谷电路中的第一开关单元实现了对输入储能电容Cbulk的电压在信号波形上的削顶作用,保证了Cbulk两端的电压不高于第一电压值。
第三,第二级变换电路52,包括第五开关S1、第六开关S2、第七开关S3、第八开关S4、第二电感LB、第二滤波电容C2、第二滤波电容C3、第三电容C4和第四电容Co。
其中,第二滤波电容C2和第二滤波电容C3均用于滤波。
在一种可能的应用场景中,第二级变换电路52是DC/DC电路,该第二级变换电路的作用是将第一级变换电路输出的低压脉动直流电转换为稳定的直流输出,供给电子设备。在图5所示的场景中第二级变换电路52采用升降压电路Buck-Boost,将高于、低于或者等于输出电压值的输入电压转换为稳定的输出电压。需要说明的是,图5中所示的第一级变换电路和第二级变换电路的结构仅为示意性说明。第一级变换电路也可以使用其它的DCX实现形式,第二级变换电路也可以是其它DC/DC电路拓扑。
示意性的,在图5所示的电路工作时,第一级变换电路采用全桥和半桥来回切换的工作模式。当输入第一级变换电路的电流属于低压范围时,第一级变换电路采用全桥模式;当输入第一级变换电路的电流属于高压范围时,第一级变换电路采用半桥模式。基于上述设计模式,电源提供装置能够在较宽的输入电压变化范围内,维持第二级变换电路工作在较窄的输入电压变化范围,便于第二级变换电路的优化设计。
例如,当输入的交流电压处于低压范围时,第一级变换电路采用全桥模式,令电路中的4个开关单元(也即开关管)工作,固定的电压增益比如是Z1。同一场景中,当输入的交流电压处于高压范围时,第一级变换电路采用半桥模式,固定的电压增益比如是Z2。在本申请中,要求Z1大于Z2。由于较低电压的交流电得到全桥模式支持的高增益(也即Z1的增益),因此,最 终第一级变换电路输出的电压范围能够被控制在相对较窄的范围。
综上所述,本申请提供的电源提供装置,能够在不使用电解电容或其它大容量电容的情况下,通过填谷电路保证第二级变换电路有足够高的波谷电压,从而保证电源提供装置整体输出电压的稳定。另一方面,电源提供装置能够通过控制填谷电路中的储能单元两端的电压,在保证该电压不超过容量额定值的前提下尽量利用其存储的电能的能力,降低对该储能单元耐压的要求,从而实现电源提供装置的小型化设计,提高电源提供装置的便携性。
请参考图7,图7是本申请一个示例性实施例提供的一种电路控制方法的流程图。该电路控制方法可以应用在控制上述所示的电源提供装置的过程中。在图7中,电路控制方法包括:
步骤710,将接收到的交流电压转换为第一脉动直流电压。
步骤720,将第一脉动直流电压转换为第二脉动直流电压。
步骤730,控制储能单元在两端的电压低于第一电压值时获取电能。
步骤740,控制储能单元在第一脉动直流电压的电压值低于第二电压值时,向输出第一脉动直流电压的电路端口提供电能,以升高第一脉动直流电压的波谷电压。
步骤750,将第二脉动直流电压转换为恒定直流电压并输出。
需要说明的是,本申请实施例提供的控制方法既可以能够通过控制芯片实现,也可以通过如本申请介绍的电源提供装置直接通过电路实现,本申请对此不作限定。
综上所述,本实施例提供的电路控制方法,应用在本申请实施例提供的电源提供装置中,能够将输入的交流电压经过两级的调整,转变为脉动直流电压,再将脉动直流电压调整为恒定直流电压,其中,本申请可以通过储能单元升高第一脉动直流电压的波谷电压,以降低其波动并实现最终输出恒定直流电压,并且用于供能的储能单元的电压值始终维持的第一电压值一下,保证不被烧毁,便于电子设备直接使用该电能,从而在电源提供装置在减小体积后能够自动输出恒定直流电,便于向电子设备提供恒定直流电。
请参考图8,图8是本申请一个示例性实施例提供的一种供电系统的框图。该供电系统可以包括上述实施例提供的电源提供装置和电子设备。在图8中,供电系统800包括电子设备810和电源提供装置820。
其中,电源提供装置820可以通过有线线缆或者无线感应线圈向电子设备810提供电能。
示意性的,该供电系统可以是电源适配器给智能手机、平板电脑、笔记本电脑、智能手表、扫地机器人、智能眼镜、蓝牙音箱、蓝牙耳机或智能手环充电的场景。需要说明的是,上述充电场景仅为示例性说明,不对本申请形成限定。
可选的,电子设备810既可以通过电源提供装置提供的电能工作,也可 以将电源提供装置提供的电能充至电池中。在电子设备810通过电源提供装置提供的电能工作时,电子设备可以是通过该电能驱动内置的各个电子单元工作,电子单元可以包括各个耗电的电子器件,本处不再赘述。
可选地,供电系统还包括与电源提供装置配套的线缆,线缆用于连接电源提供装置和电子设备。
综上所述,本申请提供的充电系统,能够在电子设备不改变其内部结构的情况下,通过缩小体积后的电源提供装置提供电能,降低了充电系统中电源提供装置所占用的空间,提高了电子设备充电的便利性。
需要说明的是:上述实施例提供的电源提供装置在执行电路控制方法时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的电源提供装置与电路控制方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的能够实现的示例性的实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种电源提供装置,其中,所述电源提供装置包括:
    输入整流电路,用于将接收到的交流电压转换为第一脉动直流电压;
    第一级变换电路,与所述输入整流电路相连,用于将所述第一脉动直流电压转换为第二脉动直流电压;
    填谷电路,包括储能单元、第一开关单元,所述第一开关单元分别与所述第一级变换电路和所述储能单元连接,所述第一开关单元用于在所述储能单元的电压低于第一电压值时导通,以使得所述储能单元从所述第一级变换电路获取电能;所述储能单元与所述第一级变换电路连接,用于在所述第一脉动直流电压的电压值低于第二电压值时,提供电能,以升高所述第一脉动直流电压的波谷电压;
    第二级变换电路,与所述第一级变换电路连接,用于将所述第二脉动直流电压转换为恒定直流电压并输出。
  2. 根据权利要求1所述的电源提供装置,所述第一开关单元用于在所述储能单元的电压高于或等于所述第一电压值时关断。
  3. 根据权利要求1所述的电源提供装置,所述第一级变换电路包括第二开关单元、变压单元和第一整流单元;
    所述变压单元,用于将调制电压转变为交流输出电压,所述调制电压是第一脉动直流电压经过所述第二开关单元斩波处理的电压;
    所述第一整流单元用于将所述交流输出电压转变为所述第二脉动直流电压。
  4. 根据权利要求3所述的电源提供装置,
    所述储能单元与所述变压单元的次级绕组的两端相连,用于获取所述变压单元提供的电能;
    所述第一开关单元用于控制目标回路的导通和关断,所述目标回路是所述储能单元与所述次级绕组之间的回路;
    其中,当所述储能单元的两端电压低于所述第一电压值时,所述第一开关单元控制所述目标回路导通,所述储能单元获取所述变压单元提供的电能。
  5. 根据权利要求4所述的电源提供装置,所述填谷电路还包括降压电路;
    所述降压电路用于在所述第一脉动直流电压低于所述第二电压值时工作;
    当所述降压电路工作时,所述储能单元通过所述降压电路释放存储的电能,以提高所述第一脉动直流电压的波谷电压。
  6. 根据权利要求5所述的电源提供装置,所述降压电路包括二极管、第三开关单元和滤波电感;
    所述二极管连接所述滤波电感和所述储能单元的第一端之间;
    所述第三开关单元连接所述滤波电感和所述储能单元的第二端之间;
    所述电感连接在所述第三开关单元和第一滤波电容之间,所述第一滤波电容并联在所述输入整流电路的输出端。
  7. 根据权利要求3所述的电源提供装置,所述填谷电路还包括第二整流单元;
    所述第二整流单元分别与所述变压单元和所述第一开关单元相连,所述第一开关单元通过所述第二整流单元与所述变压单元相连;
    所述第二整流单元用于将来自于所述变压单元的交流电压整流为直流电压,所述直流电压用于为所述储能单元提供电能。
  8. 根据权利要求1所述的电源提供装置,所述电源提供装置包括第二滤波电容,所述第二滤波电容连接在所述第一级变换电路的输出端口。
  9. 根据权利要求8所述的电源提供装置,所述输入整流电路与外部交流输入相接,所述外部交流输入用于向所述电源提供装置输入所述交流电压。
  10. 根据权利要求9所述的电源提供装置,所述输入整流电路与所述外部交流输入相接的部分是三相端口或两相端口。
  11. 根据权利要求8所述的电源提供装置,所述第二级变换电路与配套的线缆的第一端口相连,所述线缆通过第二端口向外部提供所述恒定直流电。
  12. 根据权利要求11所述的电源提供装置,所述第一端口包括串行通用总线USB端口。
  13. 根据权利要求11所述的电源提供装置,所述线缆中包括功率管理芯片,所述功率管理芯片用于管理流经所述线缆的电流的功率。
  14. 根据权利要求11所述的电源提供装置,所述第二端口包括Type-C接口、micro USB接口或雷电lightning接口中的一种。
  15. 根据权利要求8所述的电源提供装置,所述电源提供装置中包括三层印刷电路板PCB,分别为第一PCB、第二PCB和第三PCB;
    所述第一PCB用于连接变压单元;
    所述第二PCB中设置有所述第二级变换电路的输出端口,所述第二PCB设置于所述第一PCB和所述第三PCB之间的空间位置;
    所述第三PCB是所述电源提供装置的主板。
  16. 根据权利要求15所述的电源提供装置,在所述滤波电容的尺寸大于阈值的情况下,所述滤波电容连接在所述第一PCB上,或者,所述滤波电容连接在所述第三PCB上,第二PCB在所述滤波电容所占空间处呈镂空状。
  17. 一种电路控制方法,其中,应用于如权利要求1所述的电源提供装置中,所述方法包括:
    将接收到的交流电压转换为第一脉动直流电压;
    将所述第一脉动直流电压转换为第二脉动直流电压;
    控制储能单元在两端的电压低于第一电压值时获取电能;
    控制所述储能单元在所述第一脉动直流电压的电压值低于第二电压值时,向输出所述第一脉动直流电压的电路端口提供电能,以升高所述第一脉动直流电压的波谷电压;
    将所述第二脉动直流电压转换为恒定直流电压并输出。
  18. 一种供电系统,其中,所述供电系统包括电子设备和如权利要求1至16任一所述的电源提供装置,所述电源提供装置用于向所述电子设备提供的电能。
  19. 根据权利要求18所述的供电系统,所述电子设备将所述电源提供装置提供的电能存储在电池中;
    和/或,
    所述电子设备通过所述电源提供装置提供的电能驱动内部的电子单元工作。
  20. 根据权利要求18所述的供电系统,所述供电系统还包括与所述电源提供装置配套的线缆,所述线缆用于连接所述电源提供装置和所述电子设备。
PCT/CN2021/118072 2020-11-12 2021-09-13 电源提供装置、电路控制方法及供电系统 WO2022100269A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21890797.0A EP4236052A4 (en) 2020-11-12 2021-09-13 POWER SUPPLY DEVICE, CIRCUIT CONTROL METHOD AND POWER SUPPLY SYSTEM
US18/316,227 US20230283185A1 (en) 2020-11-12 2023-05-11 Power source supplying apparatus, circuit control method, and power supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011262842.6A CN112448601A (zh) 2020-11-12 2020-11-12 电源提供装置、电路控制方法及供电系统
CN202011262842.6 2020-11-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/316,227 Continuation US20230283185A1 (en) 2020-11-12 2023-05-11 Power source supplying apparatus, circuit control method, and power supply system

Publications (1)

Publication Number Publication Date
WO2022100269A1 true WO2022100269A1 (zh) 2022-05-19

Family

ID=74736985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118072 WO2022100269A1 (zh) 2020-11-12 2021-09-13 电源提供装置、电路控制方法及供电系统

Country Status (4)

Country Link
US (1) US20230283185A1 (zh)
EP (1) EP4236052A4 (zh)
CN (1) CN112448601A (zh)
WO (1) WO2022100269A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4068565A4 (en) * 2019-12-30 2023-04-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. POWER SUPPLY DEVICE AND CHARGE CONTROL METHOD
CN112448601A (zh) * 2020-11-12 2021-03-05 Oppo广东移动通信有限公司 电源提供装置、电路控制方法及供电系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1521928A (zh) * 2003-02-10 2004-08-18 ��˹̩�˹��ʹ�˾ 具有保持时间的单转换电源转换器
CN106160479A (zh) * 2015-03-31 2016-11-23 南车株洲电力机车研究所有限公司 两级功率变换电路及方法
US10224806B1 (en) * 2017-11-16 2019-03-05 Infineon Technologies Austria Ag Power converter with selective transformer winding input
CN109889062A (zh) * 2017-11-30 2019-06-14 英飞凌科技奥地利有限公司 电力转换器和控制电力转换器的方法
CN111771326A (zh) * 2018-02-15 2020-10-13 华为技术有限公司 包含并联转换器的ac到dc转换器
CN112448601A (zh) * 2020-11-12 2021-03-05 Oppo广东移动通信有限公司 电源提供装置、电路控制方法及供电系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2393181B1 (de) * 2010-06-02 2019-09-04 FRIWO Gerätebau GmbH Schaltung für ein System zur kontaklosen, induktiven Energieübertragung
CA2852646C (en) * 2011-10-17 2019-09-17 Queen's University At Kingston Ripple cancellation converter with high power factor
DK178633B1 (en) * 2015-04-10 2016-09-26 Pr Electronics As Universal input voltage DC-DC converter employing low voltage capacitor power bank
FR3071979B1 (fr) * 2017-10-02 2021-09-24 Schneider Electric Ind Sas Dispositif d'alimentation electrique pour une prise murale pourvue d'un connecteur et prise murale pourvue d'un connecteur et comprenant un tel dispositif d'alimentation electrique
CN110829557A (zh) * 2019-11-04 2020-02-21 国网江苏省电力有限公司江阴市供电分公司 一种隔离型无电解电容恒流充电电路及其切换方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1521928A (zh) * 2003-02-10 2004-08-18 ��˹̩�˹��ʹ�˾ 具有保持时间的单转换电源转换器
CN106160479A (zh) * 2015-03-31 2016-11-23 南车株洲电力机车研究所有限公司 两级功率变换电路及方法
US10224806B1 (en) * 2017-11-16 2019-03-05 Infineon Technologies Austria Ag Power converter with selective transformer winding input
CN109889062A (zh) * 2017-11-30 2019-06-14 英飞凌科技奥地利有限公司 电力转换器和控制电力转换器的方法
CN111771326A (zh) * 2018-02-15 2020-10-13 华为技术有限公司 包含并联转换器的ac到dc转换器
CN112448601A (zh) * 2020-11-12 2021-03-05 Oppo广东移动通信有限公司 电源提供装置、电路控制方法及供电系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4236052A4 *

Also Published As

Publication number Publication date
CN112448601A (zh) 2021-03-05
US20230283185A1 (en) 2023-09-07
EP4236052A4 (en) 2024-05-01
EP4236052A1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
TWI587603B (zh) 具有降壓-升壓操作之電池充電器及用於為一電池充電之方法
JP6302095B2 (ja) スイッチング電源及び該スイッチング電源を制御する方法
WO2021232785A1 (zh) 三桥臂拓扑装置、控制方法、以及不间断电源系统
WO2022100269A1 (zh) 电源提供装置、电路控制方法及供电系统
EP4220928A1 (en) Power supply apparatus and charging method, system, and storage medium
WO2022100196A1 (zh) 一种供电电源、电源提供方法及计算机存储介质
WO2022142803A1 (zh) 电源提供装置、充电方法及系统
WO2022155837A1 (zh) 一种谐振型交流/直流变换器、电子设备及适配器
WO2022206481A1 (zh) 一种电源转换电路和适配器
US20230170783A1 (en) Power supply device, circuit control method, and power supply system
WO2019019297A1 (zh) 直流ups电源装置、系统及控制方法
CN212849939U (zh) 一种充电器
CN210669601U (zh) 电池充电电路
WO2023109168A1 (zh) 显示装置及显示控制方法
CN114337264B (zh) 升压变换电路、装置及方法
CN211266788U (zh) 一种开关电源电路
CN110995022A (zh) 一种直流脉冲负载开关电源
WO2022007577A1 (zh) 电源提供装置及充电控制方法
WO2024125262A1 (zh) 开关电源电路、开关电源、电子设备及供电系统
WO2024119913A1 (zh) 供电系统及其控制方法、电子设备
CN212137547U (zh) 双负电压输出电路和电子设备
WO2021134288A1 (zh) 电源提供装置及充电控制方法
KR101619194B1 (ko) 태양전지모듈을 이용한 휴대용 통신장비용 충전 및 전력변환장치
CN118337073A (zh) 一种具有电容切换整流功能的电源适配器
CN117134605A (zh) 供电电路、供电控制方法和供电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021890797

Country of ref document: EP

Effective date: 20230526

NENP Non-entry into the national phase

Ref country code: DE