WO2022100201A1 - 电极片、电芯组件、电池组件及电子设备 - Google Patents

电极片、电芯组件、电池组件及电子设备 Download PDF

Info

Publication number
WO2022100201A1
WO2022100201A1 PCT/CN2021/114557 CN2021114557W WO2022100201A1 WO 2022100201 A1 WO2022100201 A1 WO 2022100201A1 CN 2021114557 W CN2021114557 W CN 2021114557W WO 2022100201 A1 WO2022100201 A1 WO 2022100201A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
electrode sheet
heating layer
tab
cell assembly
Prior art date
Application number
PCT/CN2021/114557
Other languages
English (en)
French (fr)
Inventor
谢红斌
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022100201A1 publication Critical patent/WO2022100201A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of electronic technology, and in particular, to an electrode sheet, a cell assembly, a battery assembly, and an electronic device.
  • a battery is indispensable in a mobile phone, and the charging of the battery is easily affected by the environment of the mobile phone. As mobile phones are often faced with harsh environments, the charging efficiency of batteries is reduced and safety issues are prone to occur.
  • Embodiments of the present application provide an electrode sheet, a cell assembly, a battery assembly, and an electronic device.
  • An embodiment of the present application provides an electrode sheet, wherein the electrode sheet includes a current collector and a heating layer in conduction with the current collector, and the heating layer is used to receive current from a power source and generate heat.
  • An embodiment of the present application provides a cell assembly, wherein the cell assembly includes the above-mentioned electrode sheet.
  • Embodiments of the present application provide a cell assembly, wherein,
  • the battery pack includes:
  • the first electrode sheet includes a first current collector and a first heating layer in conduction with the first current collector;
  • the second electrode sheet includes a second current collector
  • a power input circuit is provided with a first conductive end and a second conductive end, and a control unit electrically connecting the first conductive end and the second conductive end, the first conductive end and the second conductive end are used for electrically connected to an input power supply, the control unit is also electrically connected to the first current collector, the first heating layer and the second current collector;
  • control unit When the control unit receives the first control signal, the control unit conducts the first conductive end with the first current collector, and conducts the second conductive end with the second current collector , and disconnected from the first heating layer;
  • control unit When the control unit receives the second control signal, the control unit conducts the first conductive end and the first current collector, and conducts the second conductive end and the first heating layer , and disconnected from the second current collector.
  • An embodiment of the present application provides a battery assembly, wherein the battery assembly includes a protection circuit and the above-mentioned cell assembly, and the first electrode sheet and the second electrode sheet are connected to the protection circuit.
  • An embodiment of the present application provides an electronic device, wherein the electronic device includes the above-mentioned battery assembly, and the battery assembly is connected to the power source through an electrical connection line; or, the battery assembly is connected to the power source through a wireless charging method.
  • An embodiment of the present application provides an electronic device, wherein the electronic device includes the above-mentioned battery assembly, the battery assembly is a first battery assembly, and the electronic device further includes a second battery assembly, and the second battery assembly is the power supply.
  • FIG. 1 is a three-dimensional schematic diagram of an electronic device provided by an embodiment of the present application.
  • Figure 2 is an exploded schematic view of the electronic device of Figure 1;
  • FIG. 3 is a schematic block diagram of a charging circuit of the battery assembly of the electronic device of FIG. 1;
  • FIG. 4 is an exploded schematic diagram of the battery assembly provided by the embodiment of the present application.
  • FIG. 5 is a schematic cross-sectional view of a cell assembly provided by an embodiment of the present application.
  • FIG. 6 is an exploded schematic view of the cell assembly of FIG. 5;
  • FIG. 7 is a schematic cross-sectional view of a first electrode sheet of the cell assembly of FIG. 6;
  • FIG. 8 is a schematic structural diagram of the cell assembly of FIG. 6 connected to a power supply
  • FIG. 9 is another schematic structural diagram of the cell assembly of FIG. 6 connected to a power source
  • FIG. 10 is a schematic structural diagram of a cell assembly connected to a power supply provided by another embodiment of the present application.
  • FIG. 11 is another schematic structural diagram of the battery cell assembly of FIG. 10 connected to the power supply;
  • FIG. 12 is a schematic structural diagram of the cell assembly of FIG. 9 connected to a power source
  • FIG. 13 is a schematic cross-sectional view of a first electrode sheet of a cell assembly provided in an embodiment of the present application.
  • FIG. 14 is a schematic perspective view of the first electrode sheet of FIG. 13;
  • FIG. 15 is a schematic cross-sectional view of another embodiment of the first electrode sheet of FIG. 13;
  • FIG. 16 is a schematic cross-sectional view of another embodiment of the first electrode sheet of FIG. 13;
  • FIG. 17 is a schematic cross-sectional view of another embodiment of the first electrode sheet of FIG. 13;
  • FIG. 18 is a schematic cross-sectional view of another embodiment of the first electrode sheet of FIG. 13;
  • FIG. 19 is a schematic cross-sectional view of another embodiment of the first electrode sheet of FIG. 13;
  • FIG. 20 is another schematic structural diagram of the cell assembly of FIG. 9 connected to a power source
  • FIG. 21 is a schematic diagram of another embodiment of the cell assembly of FIG. 20 connected to a power source;
  • FIG. 22 is a schematic diagram of a state in which the cell assembly of FIG. 21 is connected to a power source;
  • FIG. 23 is another state schematic diagram of the cell assembly of FIG. 21 being connected to a power source
  • FIG. 24 is another partial block diagram of the cell assembly of FIG. 21 connected to a power source
  • Figure 25 is a graph of the battery cell assembly provided by the present application with a capacity of 5100mAh charged at a rate of 0.7C at a normal temperature of 25°C and charged at a rate of 1.5C after being heated to 50°C;
  • FIG. 26 is another schematic structural diagram of the cell assembly of FIG. 10 connected to a power source
  • FIG. 27 is a schematic structural diagram of the cell assembly of FIG. 26 connected to a power source;
  • FIG. 28 is a schematic structural diagram of another embodiment of the cell assembly of FIG. 26 connected to a power source;
  • FIG. 29 is a schematic diagram of a state in which the cell assembly of FIG. 28 is connected to a power source
  • FIG. 30 is another state schematic diagram of the cell assembly of FIG. 28 being connected to a power source
  • 31 is a schematic structural diagram of a first arrangement of the first tab and the second tab in the first electrode provided by the embodiment of the present application;
  • 32 is a schematic structural diagram of a second arrangement manner of the first tab and the second tab in the first electrode provided by the embodiment of the present application;
  • 33 is a schematic structural diagram of a third arrangement manner of the first tab and the second tab in the first electrode provided by the embodiment of the present application;
  • 34 is a schematic structural diagram of a fourth arrangement of the first tab and the second tab in the first electrode provided by the embodiment of the present application;
  • FIG. 35 is a schematic structural diagram of another cell assembly in the battery assembly provided in FIG. 4;
  • FIG. 36 is a schematic structural diagram of another cell assembly in the battery assembly provided in FIG. 4;
  • FIG. 37 is a schematic structural diagram of another embodiment of the cell assembly of FIG. 36;
  • FIG. 38 is a schematic structural diagram of another embodiment of the cell assembly of FIG. 36;
  • FIG. 39 is a schematic structural diagram of another embodiment of the cell assembly of FIG. 36;
  • FIG. 40 is a schematic structural diagram of a plurality of battery cell components charging each other according to an embodiment of the present application.
  • FIG. 41 is a schematic structural diagram of wireless charging of a cell assembly provided by an embodiment of the present application.
  • An embodiment of the present application provides an electrode sheet, the electrode sheet includes a current collector and a heating layer in conduction with the current collector, where the heating layer is used to receive current from a power source and generate heat.
  • the electrode sheet is provided with two layers of the current collectors, and the heating layer is provided between the two layers of the current collectors.
  • multiple layers of the heating layers are arranged between the two layers of the current collectors, and the multiple layers of the heating layers are arranged at intervals, and some or all of the heating layers receive current and generate heat.
  • the electrode sheet is provided with one layer of the current collector and one layer of the heating layer, and one layer of the heating layer and the one layer of the current collector are stacked.
  • the electrode sheet is provided with a layer of the current collector and a layer of the heating layer, and the heating layer is provided in the current collector.
  • an active material layer is provided on the surface of the current collector away from the heating layer.
  • the orthographic projection of the active material layer on the side of the heating layer facing the active material layer is located on the heating layer.
  • the heating layer is attached to the current collector.
  • the heating layer and the current collector are arranged at intervals, and a thermally conductive and conductive layer is arranged between the heating layer and the current collector, and the thermally conductive and conductive layer is used to transmit current from the current collector to the heating layer , or to transmit current from the heating layer to the current collector, and to uniformly transfer the heat of the heating layer to the current collector.
  • the resistance of the heating layer is greater than the resistance of the current collector.
  • An embodiment of the present application provides a cell assembly, and the cell assembly includes the electrode sheet provided by the above embodiments of the present application.
  • An embodiment of the present application provides a cell assembly, the cell assembly comprising:
  • the first electrode sheet includes a first current collector and a first heating layer in conduction with the first current collector;
  • the second electrode sheet includes a second current collector
  • a power input circuit is provided with a first conductive end and a second conductive end, and a control unit electrically connecting the first conductive end and the second conductive end, the first conductive end and the second conductive end are used for electrically connected to an input power supply, the control unit is also electrically connected to the first current collector, the first heating layer and the second current collector;
  • control unit When the control unit receives the first control signal, the control unit conducts the first conductive end with the first current collector, and conducts the second conductive end with the second current collector , and disconnected from the first heating layer;
  • control unit When the control unit receives the second control signal, the control unit conducts the first conductive end and the first current collector, and conducts the second conductive end and the first heating layer , and disconnected from the second current collector.
  • the second electrode sheet is provided with a second heating layer in conduction with the second current collector;
  • the control unit is also electrically connected to the second heating layer
  • control unit When the control unit receives a third control signal, the control unit conducts the first conductive end with the second heating layer and disconnects the first current collector, and connects the second conductive end with the second heating layer. The conductive end is connected to the second current collector and disconnected from the first heating layer.
  • control unit when the control unit receives the fourth control signal, the control unit conducts the first conductive end with the first current collector and the second heating layer, and connects the second conductive end communicate with the first heating layer and the second current collector.
  • the cell assembly includes a first tab connected to the first current collector, and a second tab connected to the first current collector or/and the first heating layer; the cell The assembly further includes a third tab connected to the second current collector, and the control unit is electrically connected to the first tab, the second tab and the third tab to control the first tab and the third tab.
  • the first conductive end is disconnected or turned on, and the second tab is controlled to be disconnected or turned on from the second conductive end, and the second conductive end is controlled to be disconnected or turned off from the third tab on.
  • the battery core assembly further includes a fourth tab connected to the second current collector or/and the second heating layer, and the control unit is further configured to control the fourth tab and the first conductive tab terminal is disconnected or turned on.
  • control unit is provided with four switches, and one end of the four switches is respectively connected to the first tab, the second tab, the third tab and the fourth tab, wherein the first tab is connected
  • first tab is connected
  • the other ends of the two switches of the tab and the fourth tab are both connected to the first conductive terminal, and the other ends of the two switches connected to the second tab and the third tab are both connected to the second conductive terminal.
  • the cell assembly further includes a temperature sensor, the temperature sensor is connected to the control unit, and the temperature sensor is configured to send a first control signal when the temperature of the cell assembly is at a first preset temperature threshold to the control unit, and sending a second control signal to the control unit when it is detected that the temperature of the cell assembly is at a second preset temperature threshold.
  • the first electrode sheet is provided with a first active material layer on the surface of the first current collector away from the first heating layer.
  • the second electrode sheet is provided with a second active material layer on the surface of the second current collector away from the second heating layer.
  • the cell assembly further includes a separator disposed between the first electrode sheet and the second electrode sheet, and a membrane covering the first electrode sheet, the second electrode sheet and the separator encapsulation layer.
  • the first electrode sheet, the separator and the second electrode sheet are wound together and encapsulated in the encapsulation layer, and the control unit is electrically connected to the winding edge of the first electrode sheet and the The winding edge of the second electrode sheet.
  • the cell assembly is provided with a plurality of the first electrode sheets, a plurality of the second electrode sheets and at least one of the separators, and the plurality of the first electrode sheets and the plurality of the second electrode sheets are mutually After being cross-laminated and encapsulated in the encapsulation layer, each of the diaphragms is arranged between the adjacent first electrode sheets and the second electrode sheets.
  • the control unit receives a control signal, the control The unit controls a plurality of first current collectors of the first electrode sheets to be connected in series or/and in parallel to the first conductive ends, and controls a plurality of second current collectors of the second electrode sheets to be connected in series or/and in parallel on the second conductive end.
  • An embodiment of the present application provides a battery assembly, and the battery assembly includes the battery cell assembly provided by the above embodiments of the present application.
  • the present application provides an electronic device, including the battery assembly provided by the above embodiments of the present application, wherein the battery assembly is connected to the power source through an electrical connection line; or, the battery assembly is connected to the power source through a wireless charging method.
  • An embodiment of the present application provides an electronic device, including the battery assembly provided by the above embodiments of the present application, the battery assembly is a first battery assembly, and the electronic device further includes a second battery assembly, the second battery assembly for the power supply.
  • any lower limit can be combined with any upper limit to form an unspecified range; and any lower limit can be combined with any other lower limit to form an unspecified range, and likewise any upper limit can be combined with any other upper limit to form an unspecified range.
  • every point or single value between the endpoints of a range is included within the range, even if not expressly recited.
  • each point or single value may serve as its own lower or upper limit in combination with any other point or single value or with other lower or upper limits to form a range not expressly recited.
  • FIG. 1 is a schematic structural diagram of an electronic device 100 according to an embodiment of the present application.
  • the electronic device 100 may be a rechargeable device such as a telephone, a television, a tablet computer, a mobile phone, a camera, a personal computer, a notebook computer, a wearable device, an electric vehicle, an airplane, and the like.
  • the present application takes the electronic device 100 as a mobile phone as an example for description. Those skilled in the art can easily conceive of structural design of other rechargeable devices according to the technical means of this embodiment to improve charging efficiency.
  • FIG. 1 shows the definition with reference to the electronic device 100 at the first viewing angle
  • the width direction of the electronic device 100 is defined as the X direction
  • the length direction of the electronic device 100 is defined as the Y direction
  • the thickness direction of the electronic device 100 is defined as Z direction.
  • the electronic device 100 provided by the present application includes a battery assembly 10 .
  • the electronic device 100 is a mobile phone.
  • the electronic device 100 further includes a display screen 20 , a middle frame 30 and a casing 40 .
  • the frame 30 and the casing 40 of the display screen 20 are fixedly connected in sequence.
  • the battery assembly 10 is provided on the middle frame 30 .
  • the battery assembly 10 is used to supply power to the display screen 20 and the mainboard disposed on the middle frame 30 and other devices.
  • the battery assembly 10 includes, but is not limited to, lithium ion batteries, lithium metal batteries, lithium-polymer batteries, lead-acid batteries, nickel-metal hydride batteries, nickel-manganese-cobalt batteries, lithium-sulfur batteries, lithium-air batteries , Ni-MH batteries, lithium-ion batteries, iron batteries, nano batteries and all solid-state batteries.
  • the embodiment of the present application is described by taking the battery assembly 10 as an example of a lithium-ion battery. Those skilled in the art can easily conceive of structural designs for other types of batteries according to the technical means of this embodiment.
  • the present application does not specifically limit the shape of the battery assembly 10 .
  • the battery assembly 10 can be in the form of a column, a bag, an arc, a soft-packed square, a cylinder, a diamond column, a special shape, or the like.
  • the electronic device 100 further includes a charging interface 50 , a charging circuit 60 and a charging control unit 70 .
  • the charging interface 50 is disposed on the middle frame 30 , so that the charging interface 50 is connected to an external power source (hereinafter referred to as a power source). Specifically, the charging interface 50 may be connected to the power source 200 through a charging cable.
  • the types of the charging interface 50 include, but are not limited to, the Micro USB interface, the USB Type C interface of mobile phones with Android and Windows phone systems, and the Lightning interface of mobile phones with IOS system.
  • the charging circuit 60 is connected to the charging interface 50 and the battery assembly 10 .
  • the charging circuit 60 can be an integrated chip, which is provided on the main board and is used to control the charging current of the battery assembly 10 and the like.
  • the charging interface 50 is connected to the charging circuit 60 through a flexible circuit board.
  • the charging control unit 70 is connected to the charging circuit 60 .
  • the charging interface 50 , the charging circuit 60 , the charging control unit 70 , and the battery assembly 10 form a charging circuit of the electronic device 100 .
  • the battery assembly 10 is connected to a power source 200 via a charging circuit 60 , so that the power source 200 can charge the battery assembly 10 .
  • the current output terminal of the power supply 200 includes a first output terminal 210 and a second output terminal 220 .
  • the first output terminal 210 is the positive terminal of the power supply 200 and the second output terminal 220 is the negative terminal of the power supply 200 ; or, the first output terminal 210 is the negative terminal of the power supply 200 and the second output terminal 220 is the positive terminal of the power supply 200 extreme.
  • the power supply 200 may be an external power supply of the electronic device 100 .
  • the power supply 200 is a power supply formed by connecting a power adapter disposed outside the electronic device 100 and a commercial power cable, or it may be a power supply disposed outside the electronic device 100 . mobile power.
  • the power source 200 can be connected to the charging circuit 60 via the charging interface 50 .
  • the charging interface 50 includes a first charging terminal 51 and a second charging terminal 52 .
  • the first charging terminal 51 is connected to the first output terminal 210 .
  • the second charging terminal 52 is connected to the second output terminal 220 .
  • the power source 200 may also be the internal power source 200 of the electronic device 100 .
  • the power source 200 is a backup of the battery assembly 10 provided in the electronic device 100 .
  • the power source 200 can be directly connected to the charging circuit 60 .
  • the first output terminal 210 is the negative terminal
  • the second output terminal 220 is the positive terminal.
  • the battery assembly 10 includes a battery core assembly 1 and a battery casing 2 .
  • the battery assembly 10 may not have the battery casing 2 , and the protection circuit may be encapsulated in the encapsulation layer 8 of the battery core assembly 1 .
  • the cell assembly 1 includes a first electrode sheet 4 , a second electrode sheet 5 , an electrolyte 6 , a separator 7 and an encapsulation layer 8 .
  • the first electrode sheet 4 forms the positive electrode of the cell assembly 1
  • the second electrode sheet 5 forms the negative electrode of the cell assembly 1 .
  • the first electrode sheet 4 forms the negative electrode of the cell assembly 1
  • the second electrode sheet 5 forms the positive electrode of the cell assembly 1 .
  • This embodiment is described by taking the first electrode sheet 4 forming the positive electrode of the cell assembly 1 as an example, and the second electrode sheet 5 forming the negative electrode of the cell assembly 1 as an example.
  • the first electrode sheet 4 includes a first current collector 41 and a first active material 42 disposed on the first current collector 41 . If the first electrode sheet 4 is a positive electrode, the first current collector 41 is a positive current collector. If the first electrode sheet 4 is a negative electrode, the first current collector 41 is a negative electrode current collector.
  • the first current collector 41 is a conductive sheet.
  • the first current collector 41 is an aluminum foil with a thickness of 10-20 microns.
  • the first active material 42 includes a layered or spinel-structured transition metal oxide or polyanionic compound with high electrode potential and stable structure, such as lithium cobaltate, lithium manganate, lithium iron phosphate, Ternary materials, etc.
  • the first active material layer 42 is a mixture of an active material and a binder. The first active material layer 42 is attached to the surface of the first current collector 41 .
  • the active material can be lithium iron phosphate, lithium manganese iron phosphate, lithium vanadium phosphate, lithium vanadyl phosphate, lithium cobaltate, lithium manganate, lithium nickelate, lithium nickel cobalt manganate, lithium-rich manganese-based materials, nickel cobalt aluminate It is composed of at least one of lithium, graphite, silicon oxide, tin oxide, lithium titanate, etc., and the binder can be polyvinylidene fluoride, vinylidene fluoride-fluorinated olefin copolymer, polytetrafluoroethylene, carboxylate It is composed of at least one of sodium methyl cellulose, styrene-butadiene rubber, polyurethane, fluorinated rubber, polyvinyl alcohol, polyvinylidene fluoride, polyamide, and the like.
  • the first electrode sheet 4 , the separator 7 and the second electrode sheet 5 are all sheet-like.
  • the separator 7 is disposed between the first electrode sheet 4 and the second electrode sheet 5 to prevent the first electrode sheet 4 and the second electrode sheet 5 from directly contacting each other.
  • the separator 7 is a specially shaped polymer film, and the separator 7 has a microporous structure, which allows the free passage of lithium ions, but the electrons cannot.
  • the material of the diaphragm 7 includes, but is not limited to, polyethylene (PE), polypropylene (PP) or their composite films.
  • the composite membrane is, for example, a PP/PE/PP three-layer membrane.
  • the second electrode sheet 5 includes a second current collector 51 and a second active material 52 disposed on the second current collector 51 .
  • the second current collector 51 is a conductive sheet.
  • the second current collector 51 is a copper foil of 10-20 microns.
  • the second active material 52 can be layered graphite, metal element and metal oxide, such as graphite, carbon fiber, graphene, lithium titanate, etc., whose potential is as close to the lithium potential as possible, has a stable structure and can store a large amount of lithium.
  • the encapsulation layer 8 is a steel shell, an aluminum shell, a nickel-plated iron shell, an aluminum-plastic film, or the like.
  • the encapsulation layer 8 may be an aluminum-plastic film for encapsulating the first electrode sheet 4 , the second electrode sheet 5 and the diaphragm 7 .
  • the electrolyte 6 can be an organic solvent in which an electrolyte lithium salt is dissolved to provide lithium ions.
  • the electrolyte lithium salt includes LiPF6, LiClO4, LiBF4, etc.
  • the organic solvent is mainly composed of diethyl carbonate (DEC), One or more of propylene carbonate (PC), ethylene carbonate (EC), dimethyl ester (DMC), etc. are mixed to form.
  • Li+ is intercalated and deintercalated back and forth between the first electrode sheet 4 and the second electrode sheet 5 .
  • Li+ is deintercalated from the first electrode sheet 4 (positive electrode), and embedded in the second electrode sheet 5 (negative electrode) through the electrolyte 6 , and the second electrode sheet 5 is in a lithium-rich state.
  • the first electrode sheet 4 and the second electrode sheet 5 can be electrically connected when both are energized.
  • the first electrode sheet 4 and the second electrode sheet 5 of the cell assembly 1 are both connected to the protection circuit 3 .
  • the protection circuit 3 can monitor the voltage of the cell assembly 1 so as to control the charging and discharging of the cell assembly 1 .
  • the first electrode sheet 4 further includes a first heating layer 43 that is in conduction with the first current collector 41 .
  • the first heating layer 43 and the first current collector 41 may be in direct contact and conduct, or may be connected and conducted through a conductive cable, or may be coupled and conducted through a coupling element.
  • the first heating layer 43 and the first current collector 41 are laminated, bonded, contacted and conducted for illustration.
  • the first heating layer 43 is a metal sheet, and the material of the first heating layer 43 is made of at least one of aluminum, copper, nickel, copper, cobalt, tungsten, tin, lead, iron, silver, gold, platinum or alloys thereof. a composition.
  • the thickness of the first heating layer 43 is 1 mm ⁇ 40 mm.
  • the first heating layer 43 is formed on the first current collector 41 by at least one of coating, calendering, rolling, bonding, evaporation, vapor deposition, chemical deposition, magnetron sputtering, and chemical plating. superior.
  • the first heating layer 43 When the first current collector 41 and the first heating layer 43 are together in a loop connecting the first output end 210 and the second output end 220, the first heating layer 43 generates Joule heat, thereby realizing the heating of the cell assembly 1,
  • the temperature of the cell assembly 1 is increased so that the temperature of the cell assembly 1 reaches a preset temperature before charging, so as to ensure the charging safety and charging efficiency of the cell assembly 1 .
  • the first heating layer 43 is a conductive layer, and the resistance of the first heating layer 43 is greater than that of the first current collector 41 .
  • the heating efficiency of the first heating layer 43 is much greater than that of the first current collector 41 connected to the current, thereby improving the self-heating efficiency of the first electrode sheet 4 .
  • the first current collector 41 , the electrolyte 6 and the second current collector 51 are together in a circuit connecting the first output terminal 210 and the second output terminal 220 , the voltage of the first current collector 41 and the voltage of the second current collector 51 are formed.
  • the voltage difference realizes the charging of the battery cell assembly 1 .
  • the orthographic projection of the first active material layer 42 on the side of the first heating layer 43 facing the first active material layer 42 is located on the first heating layer 43 , that is, the first heating layer 43 completely covers the first active material layer 43 . , so that after the first heating layer 43 generates heat, all regions of the first active material layer 42 can be heated.
  • the first heating layer 43 is completely overlapped with the first current collector 41, and the edge of the first heating layer 43 protrudes from the first active material layer 43, so that the first active material layer 43 can be completely heated.
  • the first heating layer 43 can also be completely overlapped with the first active material layer 43 .
  • the cell assembly 1 further includes a power input circuit 9 , and the power input circuit 9 is provided with a first conductive end 91 and a second conductive end 92 , and is electrically connected to the first conductive end 91 and the second conductive end 92 the control unit 93.
  • the first conductive terminal 91 and the second conductive terminal 92 are used for electrical connection with the power source 200 .
  • the control unit 93 also electrically connects the first current collector 41 , the first heating layer 43 and the second current collector 51 .
  • the power input circuit 9 is arranged on the circuit board, and the circuit board is arranged outside the encapsulation layer 8 .
  • the circuit board and the first electrode sheet 4 and the second electrode sheet 5 may be connected via conductive cables, so that the control unit 93 is electrically connected to the first current collector 41 , the first heating layer 43 and the second current collector 51 .
  • the power input circuit 9 is used to input the current of the power source 200 to the cell assembly 1, so that the cell assembly 1 obtains electrical energy to achieve temperature increase or/and charging.
  • the first conductive terminal 91 and the second conductive terminal 92 together constitute the current receiving port of the power input circuit 9 .
  • the first conductive terminal 91 and the second conductive terminal 92 are disposed on the circuit board.
  • the first conductive terminal 91 and the second conductive terminal 92 are connected to the charging circuit 60 to receive the current of the power source 200 via the charging circuit 60 .
  • the first conductive terminal 91 is a positive terminal
  • the second conductive terminal 92 is a negative terminal.
  • the charging circuit 60 is connected to the first output terminal 210 and the second output terminal 220 of the power supply 200 , the power input circuit 9 is connected to the charging circuit 60 , and the first conductive terminal 91 is correspondingly connected to the second output terminal 220 , the second conductive terminal 92 is correspondingly connected to the first output terminal 210 .
  • the control unit 93 controls the first conductive terminal 91 and the second conductive terminal 92 to connect with the first current collector 41, the second current collector 51 and the electrolyte 6 to form a circuit, the first conductive terminal 91 and the second conductive terminal 92 start to receive current, so that the cell assembly 1 can obtain electrical energy.
  • the control unit 93 is used to control the electric energy obtained by the first conductive end 91 and the second conductive end 92 to charge the cell assembly 1 or to heat the cell assembly 1 .
  • the control unit 93 controls the electric core assembly 1 to obtain from the first output end 210 and the second output end 220 by controlling the second conductive end 92 to conduct with the second current collector 51 or with the first heating layer 43 .
  • the electric energy is charged or supplied to the first heating layer 43 to generate heat for self-heating.
  • the control unit 93 controls the second conductive terminal 92 to conduct with the second current collector 51 or with the first heating layer 43 by receiving the control signal.
  • the control signal received by the control unit 93 comes from the processor of the electronic device 100, or from the communication module of the electronic device 100, or from the sensing device.
  • the control unit 93 when the control unit 93 receives the first control signal, the control unit 93 conducts the first conductive end 91 with the first current collector 41 and conducts the second conductive end 92 with the second current collector 51 , and disconnected from the first heating layer 43, so that the first current collector 41, the electrolyte 6, and the second current collector 51 are connected to the first conductive end 91 and the second conductive end 92, and the first electrode sheet 4 is connected to the second
  • the electrode sheets 5 are respectively connected to the positive and negative electrodes of the power supply 200, a potential difference is generated between the first electrode sheet 4 and the second electrode sheet 5, and lithium ions move between the first electrode sheet 4 and the second electrode sheet 5 under the action of the potential difference , to realize the charging of the battery assembly 10 .
  • the first control signal is a control signal for controlling the charging of the battery cell assembly 1 .
  • the first conductive end 91 can also be connected to the first heating layer 43, so that the first conductive end 91 is indirectly connected to the first current collector 41 through the first heating layer 43, thereby realizing the first A potential difference is generated between a current collector 41 and a second current collector 51 to realize the charging of the cell assembly 1 .
  • the control unit 93 when the control unit 93 receives the second control signal, the control unit 93 conducts the first conductive terminal 91 with the first current collector 41 , and conducts the second conductive terminal 92 with the first heating layer 43 . , and disconnected from the second current collector 51, so that the first current collector 41 and the first heating layer 43 are connected to the first conductive end 91 and the second conductive end 92, and the first heating layer 43 receives the first conductive end 91 and the second conductive end 92.
  • the electrical energy input by the second conductive end 92 is converted into Joule heat energy, so that the temperature of the first heating layer 43 is increased, so that the first heating layer 43 heats the cell assembly 1 .
  • the second control signal is a control signal for controlling the heating and heating of the first electrode sheet 4 of the cell assembly 1 .
  • the second conductive end 92 may also be connected to the space between the first current collector 41 and the first conductive end 91 , so that the second conductive end 92 is indirectly connected to the first heating element through the first current collector 41 .
  • the layer 43 is turned on, so that the first heating layer 43 can obtain electrical energy from the first conductive end 91 and the second conductive end 92 for heating and heating; of course, the first conductive end 91 can also be directly connected to the first heating layer 43.
  • the two conductive ends 92 are connected to the space between the first heating layer 43 and the first conductive end 91 , so that the first heating layer 43 directly obtains the electric energy of the first conductive end 91 and the second conductive end 92 for heating and heating.
  • the internal reaction speed of the battery assembly 10 of the electronic device 100 decreases, that is, the lithium ion between the first active material layer 42 and the second active material 52 decreases.
  • the de-embedding and embedding rates decrease, resulting in a slower charging rate of the battery assembly 10 , and it is impossible to achieve fast charging, which affects the use of the electronic device 100 .
  • the battery assembly 10 is charged in a low temperature environment, which will lead to lithium precipitation in the negative electrode, that is, lithium crystals will be formed on the negative electrode of the battery assembly 10 .
  • the battery core assembly 1 of the present application uses the first current collector 41 to conduct conduction with the first heating layer 43 .
  • the control unit 93 controls the first current collector 41 and the first heating layer 43 It is connected to the first conductive end 91 and the second conductive end 92, so that the first heating layer 43 receives electric energy for heating, so that the cell assembly 1 is in a self-heating mode, so as to increase the temperature of the cell assembly 1, thereby facilitating The battery cell assembly 1 is charged after the temperature reaches a requirement, so as to ensure the charging safety of the battery assembly 10 and the charging efficiency of the battery assembly 10 .
  • the control unit 93 controls the first current collector 41 and the second current collector 51 to connect with the first conductive terminal 91 and the second conductive terminal 92 respectively, so as to realize the first An electrode sheet 4 and a second electrode sheet 5 generate a potential difference, that is, the cell assembly 1 is in a charging mode.
  • the second electrode sheet 5 is further provided with a second heating layer 53 that is electrically connected to the second current collector 51 .
  • the second heating layer 53 and the second current collector 51 may be in direct contact and conduct, or may be connected and conducted through a conductive cable, or may be coupled and conducted through a coupling element.
  • the second heating layer 53 and the second current collector 51 are laminated, bonded, contacted, and conducted for illustration.
  • the second heating layer 53 can be made of the same material as the first heating layer 43 , or can be made of a different material from the first heating layer 43 .
  • the second heating layer 53 may be provided with the same thickness as the first heating layer 43 , or may be provided with a different thickness from the first heating layer 43 .
  • the second heating layer 53 may be formed on the second current collector 51 by the same molding process as the first heating layer 43 , or may be formed on the second current collector 51 by a different molding process from that of the first heating layer 43 .
  • the structure of the combination of the second heating layer 53 and the second current collector 51 can be referred to the structure of the combination of the first heating layer 42 and the first current collector 41 , which will not be repeated here.
  • the second heating layer 53 is a metal sheet, and the material of the second heating layer 53 is made of at least one of aluminum, copper, nickel, copper, cobalt, tungsten, tin, lead, iron, silver, gold, platinum or alloys thereof. a composition.
  • the thickness of the second heating layer 53 is 1 mm ⁇ 40 mm.
  • the second heating layer 53 is formed on the second current collector 51 by at least one of coating, calendering, rolling, bonding, evaporation, vapor deposition, chemical deposition, magnetron sputtering, and chemical plating. superior.
  • the second heating layer 53 When the second current collector 51 and the second heating layer 53 are in a loop connecting the first output end 210 and the second output end 220 together via the power input circuit 9 and the charging circuit 60, the second heating layer 53 generates Joule heat, thereby realizing Heating the cell assembly 1 to increase the temperature of the cell assembly 1 so that the temperature of the cell assembly 1 reaches a preset temperature before charging, so as to ensure the charging safety and charging of the cell assembly 1 efficiency.
  • the second heating layer 53 is a conductive layer, and the resistance of the second heating layer 53 is greater than that of the second current collector 51 .
  • the heating efficiency of the second heating layer 53 is much greater than that of the second current collector 51 connected to the current, thereby improving the self-heating efficiency of the second electrode sheet 4 .
  • the combination of the second heating layer 53 and the second current collector 51 enables the second electrode sheet 5 to receive current for heating and heating, that is, the negative electrode of the cell assembly 1 can receive current for heating and heating.
  • the first electrode sheet 4 and the second electrode sheet 5 are respectively provided with a first heating layer 43 and a second heating layer 53, that is, both the positive electrode and the negative electrode of the battery core assembly 1 have the function of electrifying and heating up, so that the battery core
  • the assembly 1 can select the first electrode sheet 4 to heat up and increase the temperature according to the needs, and also can select the second electrode sheet 5 to heat up and increase the temperature, so as to meet the different heating and heating requirements of the battery core assembly 1 .
  • the second electrode sheet 5 may only be provided with a second current collector 51, that is, the cell assembly 1 is only provided with a negative electrode, which has the function of heating and heating by electrification.
  • control unit 93 is also electrically connected to the second heating layer 53 .
  • the control unit 93 can control the conduction between the first conductive end 91 and the first current collector 41 or the second heating layer 53 .
  • the control unit 93 controls the conduction between the first conductive end 91 and the first current collector 41 , the first conductive end 91 is disconnected from the second heating layer 53 , and the control unit 93 also controls the second conductive end 92 and the second current collector 51 is turned on, the second conductive terminal 92 is disconnected from the first heating layer 43.
  • the first conductive terminal 91 and the second conductive terminal 92 are connected to the first output terminal 210 and the second output terminal 220 through the charging circuit 60 In the passage, the battery cell assembly 1 is charged.
  • the control unit 93 controls the first conductive end 91 to be disconnected from the first current collector 41 , the first conductive end 91 is connected to the second heating layer 53 , and the control unit 93 also controls the second conductive end 92 and the second current collector 51 On, the second conductive terminal 92 is disconnected from the first heating layer 43. At this time, if the first conductive terminal 91 and the second conductive terminal 92 are connected to the path of the first output terminal 210 and the second output terminal 220 through the charging circuit 60 , the cell assembly 1 can be heated by using the second heating layer 53 to energize and heat up.
  • the control unit 93 when the control unit 93 receives the third control signal, the control unit 93 conducts the first conductive end 91 to the second heating layer 53 and disconnects the first current collector 41 , and connects the second conductive end 91 to the second heating layer 53 .
  • the terminal 92 is connected to the second tab and disconnected from the first heating layer 43, so that the second heating layer 53 and the second current collector 51 are integrally connected to the first conductive terminal 91 and the second conductive terminal 92, and the second heating layer
  • the layer 53 receives the current of the first conductive end 91 and the second conductive end 92 and generates Joule heat, so as to realize the heating and heating of the second electrode sheet 5 .
  • the third control signal is a control signal for controlling the temperature and heating of the second electrode sheet 5 of the cell assembly 1 .
  • the control unit 93 may also control the first conductive end 91 to be connected to the space between the second current collector 51 and the second conductive end 92 , so that the first conductive end 91
  • the second current collector 51 is indirectly connected to the second heating layer 53, so that the second heating layer 53 can obtain the electrical energy of the first conductive end 91 and the second conductive end 92 for heating and heating; of course, the second conductive end 92 can also be used.
  • the first conductive terminal 91 is connected to the space between the second heating layer 53 and the first conductive terminal 91, so that the second heating layer 53 can directly obtain the first conductive terminal 91 and the second conductive terminal.
  • 92 electric energy for heating and heating.
  • the difference between the third control signal and the second control signal is that the third control signal is used to instruct the control unit 93 to control different electrodes in the cell assembly 1 to heat up. It can be understood that the second control signal instructs the control control unit 93 to control the positive electrode of the cell assembly 1 to perform heating, while the third control signal instructs the control unit 93 to control the negative electrode of the cell assembly 1 to perform heating. Warm up.
  • the second control signal includes a first voltage value and a first duration
  • the control unit 93 controls the voltage to which the first heating layer 43 is connected according to the first voltage value, so as to control the heating temperature of the first heating layer 43
  • the control unit 93 controls the duration of the current received by the first heating layer 43 according to the first duration, so as to disconnect the connection with the first conductive terminal 91 and the second conductive terminal 92 when the duration of the current received by the first heating layer 43 reaches the first duration. connect.
  • the third control signal includes a second voltage value and a second duration.
  • the control unit 93 controls the voltage to which the second heating layer 53 is connected according to the second voltage value, so as to control the heating temperature of the second heating layer 53 .
  • the second duration controls the duration that the second heating layer 53 receives the current, so that when the duration of the second heating layer 53 receiving the current reaches the second duration, the connection with the first conductive terminal 91 and the second conductive terminal 92 is disconnected.
  • the control unit 93 controls the first electrode sheet 4 and the second electrode sheet 5 to alternately cycle and heat according to the first heating mode and the second heating mode, respectively. Specifically, when the first electrode sheet 4 is heated according to the first heating mode, the control unit 93 controls the first electrode sheet 4 of the cell assembly 1 to heat up and heat at the first voltage, and after the temperature continues for a first time period, the temperature is stopped. The temperature of the first electrode sheet 4 is heated. When the second electrode sheet 5 is heated according to the second heating mode, the second electrode sheet 5 is controlled to be heated and heated at the second voltage, and the temperature increase and heating of the second electrode sheet 5 is stopped after the temperature continues for a second period of time.
  • the first voltage and the second voltage may be the same or different, and the first duration and the second duration may be the same or different, that is, the first heating mode and the second heating mode may be the same or different.
  • the control unit 93 to control the first electrode sheet 4 and the second electrode sheet 5 to be cyclically alternately heated, the first heating layer 43 and the second heating layer 53 can be cyclically alternately heated, so as to reduce the temperature of the first heating layer 43 and the second heating layer 53 loss, and ensure the uniformity of the temperature rise of the cell assembly 1 .
  • the control unit 93 can control the first electrode sheet 4 and the second electrode sheet 5 to start passing through the first conductive end 91 after the first electrode sheet 4 is heated according to the first heating mode.
  • the second conductive terminal 92 is connected to the charging circuit 60 and the power supply 200 for charging.
  • the control unit 93 controls the second electrode sheet 5 to be heated according to the second heating mode, and then controls the first electrode sheet 4 after the second electrode sheet 5 is heated for a certain period of time.
  • the second electrode sheet 5 starts to be connected to the charging circuit 60 via the first conductive terminal 91 and the second conductive terminal 92 for charging.
  • the heating method in which the control unit 93 controls the heating of the first heating layer 43 or the heating of the second heating layer 53 is not limited, and the control unit 93 controls the first current collector 41 and the second current collector 51 to receive The charging method by which the current is charged is also not limited.
  • control unit 93 can also control the conduction between the first conductive end 91 and the first current collector 41 and the second heating layer 53 , and connect the second conductive end 92 with the first heating layer 43 .
  • the second current collector 51 is conductive, so that the first heating layer 43 and the second heating layer 53 are connected to the first conductive terminal 91 and the second conductive terminal 92 in parallel, and the first current collector 41 and the second current collector 51 are connected to each other.
  • the first conductive terminal 91 and the second conductive terminal 92 are connected.
  • the battery core assembly 1 can simultaneously use the first heating layer 43 and the second heating layer 53 for heating and heating, and can also generate a potential difference between the first electrode sheet 4 and the second electrode sheet 5 to achieve charging, that is, It is said that the cell assembly 1 can be heated by the first electrode sheet 4 and the second electrode sheet 5 while being charged by the first electrode sheet 4 and the second electrode sheet 5 .
  • the control unit 93 when the control unit 93 receives the four control signals, the control unit 93 conducts the first conductive terminal 91 with the first current collector 41 and the second heating layer 53 , and connects the second conductive terminal 92 with the first heating layer 53 .
  • the layer 43 and the second current collector 51 are conductive.
  • the difference between the fourth control signal and the first control signal is that the control unit 93 can be instructed to control the cell assembly 1 to be heated and charged at the same time, so as to satisfy different usage modes of the cell assembly 1 .
  • the cell assembly 1 includes a first tab 44 connected to the first current collector 41 , and a first tab 44 connected to the first current collector 41 or/and the first heating
  • the second tab 45 connected to the layer 43;
  • the cell assembly 1 further includes a third tab 54 connected to the second current collector 51, and the control unit 93 is electrically connected to the first tab 44, the second tab 45 and the third tab 54.
  • the triode 54 is used to control the disconnection or conduction between the first tab 44 and the first conductive terminal 91 , the disconnection or conduction between the second tab 45 and the second conductive terminal 92 , and the control of the second conductive terminal 92 It is disconnected or turned on with the third tab 54 .
  • one end of the first tab 44 is fixedly connected to the first current collector 41 , and the other end of the first tab 44 is electrically connected to the control unit 93 .
  • the first tab 44 may be electrically connected to the control unit 93 via a conductive cable.
  • One end of the second tab 45 may be fixedly connected to the first current collector 41 , or fixedly connected to the first heating layer 43 , or fixedly connected to both the first current collector 41 and the first heating layer 43 . connect.
  • the other end of the second tab 45 is electrically connected to the control unit 93 , and the second tab 45 may be electrically connected to the control unit 93 via a conductive cable.
  • One end of the third tab 54 is fixedly connected to the second current collector 51 , and the other end is electrically connected to the control unit 93 .
  • the third tab 54 may be electrically connected to the control unit 93 via a conductive cable.
  • the control unit 93 can connect the first tab 44 and the third tab 54 to the first conductive terminal, respectively 91 and the second conductive terminal 92 are connected, so that the first tab 44 and the third tab 54 are connected to the power supply 200 through the first conductive terminal 91 and the second conductive terminal 92 respectively, that is to say, the control unit 93 controls the first
  • the tab 44 is connected to the first conductive terminal 91
  • the third tab 54 is controlled to be connected to the second conductive terminal 92.
  • the first tab 44 and the third tab 54 respectively constitute the positive tab and the third tab of the cell assembly 1. Negative tab.
  • the control unit 93 can control the conduction between the second tab 45 and the second conductive terminal 92, so that the second tab 45 cooperates with the first tab 44 to connect the first heating layer 43 to the power supply 200, so that the first tab 45 is connected to the power supply 200.
  • the heating layer 43 receives electric current to perform heating and heating.
  • the second tab 45 is used as an independent tab of the first electrode sheet 4 to form a negative terminal and a positive terminal respectively with the first tab 44 when the first electrode sheet 4 needs to be connected to a current for heating and heating.
  • the first tab 44 , the second tab 45 and the third tab 54 are all made of conductive material.
  • the material of the first tab 44 is aluminum (Al) metal
  • the material of the second tab 45 is tweezer metal
  • the material of the third tab 54 is copper metal.
  • the first tab 44 is welded with the first current collector 41
  • the second tab 45 is welded with the first current collector 41 or/and the first heating layer 43
  • the third tab 54 is welded with the second current collector 51 .
  • connection methods between the tabs and the current collector and the heating layer include but are not limited to ultrasonic welding, laser welding, riveting, electrical connection with conductive glue, and the like.
  • first tab 44 and the third tab 54 are welded with the first current collector 41 and the second current collector 51 respectively, so that when the battery cell assembly 1 is charged, the first current collector 41 and the second current collector 51 are respectively welded.
  • the two current collectors 51 preferentially generate a potential difference, thereby improving the charging efficiency, while preventing the first heating layer 43 from being connected to the first conductive end 91 and the second conductive end 92, so as to reduce the internal charge of the cell assembly 1 in the charging state. resistance.
  • the first electrode sheet 4 is provided with two layers of the first current collector 41 and one layer of the first heating layer 43 , and one layer of the first heating layer 43 is provided on the two layers of the first collector between fluids 41 .
  • a first active material layer 42 is attached to the surfaces of the two layers of the first current collector 41 facing away from the first heating layer 43 , so as to increase the surface utilization rate of the first electrode sheet 4 .
  • the first heating layer 43 completely covers the side of the first current collector 41 away from the first active material layer 42 , so that after the first heating layer 43 is heated and heated, the temperature of the first electrode sheet 4 is evenly heated.
  • the first heating layer 43 and the two layers of the first current collectors 41 can be integrally formed. After the first heating layer 43 is attached to the two layers of the first current collectors 41, the two layers of the first current collectors 41 and the one layer of the first current collectors 41 are attached. The heating layer 43 is rolled to make the combination of the first heating layer 43 and the first current collector 41 more stable, so as to ensure the reliability of the first electrode sheet 4 .
  • the first heating layer 43 may be plated or vacuum sputtered on the side of the first current collector 41 away from the first active material layer 42 , and then another first current collector 41 is attached to the first heating layer 43 .
  • the first tab 44 is welded to one of the first current collectors 41
  • the second tab 45 is welded to the first heating layer 43 .
  • one of the first current collectors 41 is provided with a hollow hole
  • the hollow hole partially exposes the first heating layer 43
  • the second tab 45 is welded to the part of the first heating layer 43 exposed through the hollow hole through the hollow hole.
  • both the first tab 44 and the second tab 45 are welded to the same first current collector 41 , and the first tab 44 and the second tab 45 are arranged at intervals.
  • first tab 44 and the second tab 45 are welded to the two first current collectors 41 respectively, and the first tab 44 and the second tab 45 are arranged at intervals.
  • FIG. 15 which is substantially the same as the embodiment shown in FIG. 14 , the difference is that the cell assembly 1 includes two first tabs 44 , and the two first tabs 44 are respectively fixed On one side of the two first current collectors 41 facing away from the first heating layer 43 .
  • the protruding parts of the two first tabs 44 relative to the first current collector 41 are fixedly connected together, so that the two first tabs 44 together constitute the positive tab of the first electrode sheet 4 .
  • the cell assembly 1 can also be provided with two, or three, or more than three second tabs 45, and two, or three, or more than three second tabs 45 can be combined with Two layers of the first current collector 41 and one layer of the first heating layer 43 are fixedly connected in any combination, and the second tabs 45 only need to be spaced from the first tabs 44, two, or three, or more than three.
  • the second tabs 45 are fixed together, and finally form a conductive tab for the first heating layer 43 to access current.
  • the cell assembly 1 may also be provided with two or more first tabs 44, two or more first tabs 44 and two layers of first current collectors 41 and a layer of the first heating layer 43 are fixedly connected in any combination, and two or more than two first tabs 44 are fixed together to form the positive tabs of the first electrode sheet 4, and Another conductive tab is formed for the first heating layer 43 to receive current.
  • the number of the first tabs 44 and the number of the second tabs 45 are not limited, the connection method of the first tabs 44 to the first current collector 41 or/and the first heating layer 43 , and The connection manner of the second tab 45 to the first current collector 41 or/and the first heating layer 43 is not limited.
  • FIG. 16 which is substantially the same as the embodiment shown in FIG. 13 , the difference is that multiple layers of first heating layers 43 are arranged between two layers of first current collectors 41 , and multiple layers of first heating layers 43 are arranged at intervals, and the control unit 93 controls the second conductive terminal 92 to conduct conduction with one or more of the first heating layers 43 .
  • the cell assembly 1 is provided with a plurality of second tabs 45 , the plurality of second tabs 45 are arranged at intervals from each other, and the plurality of second tabs 45 are respectively fixedly connected to the plurality of first heating layers 43 , respectively.
  • An insulating layer 431 is disposed between two adjacent first heating layers 43 .
  • the control unit 93 When the control unit 93 receives the second control signal, the second control signal includes the heating layer determination signal, and the control unit 93 determines, according to the heating layer determination signal, that one or more of the second tabs 45 are connected to the second conductive terminal 92, It is realized to determine that one or more of the first heating layers 43 are connected to the first conductive end 91 and the second conductive end 92, so that the battery core assembly 1 can select one or more of them to receive current for heating and heating according to needs, In order to meet the various heating and heating modes of the cell assembly 1.
  • control unit 93 can control the plurality of second tabs 45 to conduct conduction with the second conductive terminals 92 , and further The plurality of first heating layers 43 are connected to the first conductive end 91 and the second conductive end 92 at the same time, so as to satisfy the simultaneous heating and temperature rise of the plurality of first heating layers 43, so that the temperature of the battery core assembly 1 can be increased rapidly .
  • control unit 93 can control one of the second tabs 45 and the second conductive The terminal 92 is turned on, so that the temperature of one of the first heating layers 43 is heated, so that the cell assembly 1 can be slowly heated.
  • first heating layers 43 are respectively connected to the first conductive end 91 and the second end through the first tab 44 and the second tab 45, and a plurality of first heating layers 43 connected in parallel may be used.
  • the first conductive terminal 91 and the second conductive terminal 92 are connected to the first conductive terminal 91 and the second conductive terminal 92 in a series connection manner.
  • the first electrode sheet 4 is provided with a first current collector 41 and a first heating layer 43 .
  • the heating layer 43 is laminated on one side of the first current collector 41 .
  • a layer of the first current collector 41 and a layer of the first heating layer 43 are provided by using the first electrode sheet 4 , thereby reducing the production cost of the first electrode sheet 4 .
  • the first electrode sheet 4 is further provided with a protective layer 46 , the protective layer 46 is attached to the side of the first heating layer 43 away from the first current collector 41 , and the first heating layer 43 is attached to the first current collector 41 .
  • the protective layer 46 protects the first heating layer 43 to ensure the safety of the first heating layer 43, and the protective layer 46 can also increase the durability of the first electrode sheet 4, prevent the first electrode sheet 4 from being punctured, and increase the safety of the first electrode sheet 4. The safety of the cell assembly 1 is described.
  • the first electrode sheet 4 is provided with a first current collector 41 and a first heating layer 43 .
  • the heating layer 43 is disposed in the first current collector 41 .
  • the first heating layer 43 is integrated in the first current collector 41 , so that the inside of the first current collector 41 can receive current, the first current collector 41 can generate heat as a whole, and the thinness of the first electrode sheet 4 is guaranteed.
  • the first active material layers 42 are provided on opposite sides of the first current collector 41 to increase the surface utilization rate of the first current collector 41 .
  • the first electrode sheet 4 is provided with a first heating layer 43 and a first current collector 41 arranged at intervals, and the first heating layer A thermally conductive and conductive layer 430 is provided between 43 and the first current collector 41.
  • the first thermally conductive and conductive layer 430 is used to transmit current from the first current collector 41 to the first heating layer 43, or to transmit current from the first heating layer 43. to the first current collector 41 , and is used to uniformly transfer the heat of the first heating layer 43 to the first current collector 41 .
  • the thermally and electrically conductive layer 430 completely covers the first current collector 41 .
  • the thermally and electrically conductive layer 430 can conduct the heat evenly to each position of the first current collector 41 , so that the first current collector 41 is evenly heated, and also makes the various regions of the battery core assembly 1 . Equilibrium heating.
  • the control unit 93 controls the first tab 44 and the second tab 45 to connect with the first tab 44 and the second tab 45 respectively
  • the thermally conductive layer 430 conducts the first current collector 41 and the first heating layer 43, so that the first tab 44, the first current collector 41, and the thermally conductive layer 430 , the first heating layer 43 and the second tabs form a loop between the first conductive end 91 and the second conductive end 92 , so that the first heating layer 43 can receive current and generate heat.
  • the thermally conductive layer 430 is not responsible for transmitting current to
  • the first current collector 41 is only responsible for transferring heat to the first current collector 41, and when the first tab 44 and the third tab 54 are connected to the power supply 200, the thermally conductive layer 430 is responsible for transferring current from the first heating layer 43 to the first heating layer 43.
  • a current collector 41 is used to generate a potential difference between the first current collector 41 and the second current collector 51 to realize the charging of the cell assembly 1 .
  • the thermally conductive layer 430 will The current collector 41 transmits current to the first heating layer 43, so that the first heating layer 43 is connected to the power supply 200 to generate heat.
  • the thermally and electrically conductive layer 430 is a graphite layer, or a copper layer, or a silver layer, or a magnesium-aluminum alloy layer.
  • the present application protects an electrode sheet, and the structure of the electrode sheet refers to the first electrode sheet 4 in the embodiment of the present application, and details are not described herein again.
  • the electrode sheet can be applied not only to the battery core assembly 1 in the embodiment of the present application, but also to other electronic devices.
  • the electronic device can be energized by using the electrode sheet or can be heated by the electrode sheet, and the heat generation of the electrode sheet is balanced.
  • the electronic device is a device such as an electrotherapy massage sheet or a hot compress electromagnetic sheet applied to a wearable device.
  • the structure in which the first current collector 41 of the first electrode sheet 4 and the first heating layer 43 are stacked and combined in the embodiment of the present application can be understood as a composite current collector structure, and can also be understood as an assembly structure of the current collector and the heating layer .
  • control unit 93 is provided with a first switch unit 931, one end of the first switch unit is connected to the second conductive terminal 92, and one end is connected to the first heating layer 43, Another end is connected to the second current collector 51 .
  • the first switch unit 931 is a single-pole double-throw analog switch, so as to reduce the number of components of the battery assembly 10, save cost and reduce volume.
  • the first switch unit 931 and the protection circuit 3 can be arranged on the same circuit board, so as to improve the device concentration of the battery assembly 10 and the utilization rate of the circuit board.
  • the first switch unit 931 has a first terminal 9311 , a second terminal 9312 and a third terminal 9313 , and the first terminal 9311 of the first switch unit 931 is connected to the second conductive terminal 92 .
  • the second end 9312 of the first switch unit 931 is connected to the second tab 45 .
  • the third terminal 9313 of the first switch unit 931 is connected to the third tab 54 .
  • the first switch unit 931 is used to receive the first control signal and turn on the second conductive terminal 92 and the third tab 54 under the action of the first control signal; or, the first switch unit 931 is used to receive the second control signal and The second conductive terminal 92 and the second tab 45 are turned on under the action of the second control signal.
  • the second conductive terminal 92 is connected to the first tab 44 , the second conductive end 92 is disconnected from the third tab 54, at this time, the first conductive end 91, the first tab 44, the first electrode sheet 4, the second electrode sheet 5, the third tab 54 and the second A charging path is formed between the conductive ends 92, the first electrode sheet 4 and the second electrode sheet 5 are respectively electrically connected to the positive and negative electrodes of the power supply 200, a potential difference is generated between the first electrode sheet 4 and the second electrode sheet 5, and lithium ions are in the potential difference. It moves between the first electrode sheet 4 and the second electrode sheet 5 under the action to realize the charging of the battery assembly 10 . At this time, the battery assembly 10 enters a charging mode.
  • the cell assembly 1 is affected by the low temperature, resulting in a decrease in the internal reaction speed and other reasons, so that the fast charging cannot be achieved. charging, thus affecting the normal operation of the battery. Therefore, by making the first switch unit 931 turn on the second conductive terminal 92 and the second tab 45 and disconnect the second conductive terminal 92 and the third tab 54 , the first heating layer 43 is electrically connected to the positive and negative terminals of the power supply 200 . Extremely, the first heating layer 43 generates Joule heat. In this way, heat is generated inside the cell, which can rapidly increase the temperature inside the cell, thereby increasing the reaction speed inside the cell assembly 1 and increasing the charging rate of the battery.
  • the first switch unit 931 turns on the second conductive terminal 92 and the second tab 45 and disconnects the second conductive terminal 931.
  • the terminal 92 is connected to the third tab 54 so that the first heating layer 43 is electrically connected to the positive and negative poles of the power supply 200 .
  • the charging rate of the normal fast charging of the battery is 1.5C (used to indicate the charging and discharging capacity rate of the battery), and after heating to 50 °C, the charging rate is 3C fast charging mode.
  • the charging circuit 60 when the charging circuit 60 receives a charging command, it controls the cell assembly 1 to enter the self-heating mode before the cell assembly 1 enters the charging stage, so that the reaction inside the cell assembly 1 is awakened at low temperature At a normal charging temperature, the reaction speed inside the cell assembly 1 can be increased, and the charging rate of the cell assembly 1 can be greatly improved.
  • the first heating layer 43 is added on the first current collector 41 of the first electrode sheet 4 , and the first switch unit 931 is used to select the second tab 45 and the The second conductive end 92 or the third tab 54 and the second conductive end 92 can enable the cell assembly 1 to be switched to a self-heating mode or a charging mode.
  • controlling the cell assembly 1 to enter the self-heating mode can effectively solve the problem of the cell at a low temperature (lower than the normal charging temperature of the cell assembly 1).
  • the charging rate can be further improved at non-low temperature; thus, the present application has very little structural change to the battery core component 1, and the increase volume of the battery core component 1 is very small. In this case, it not only effectively solves the problem of low charging rate or cannot be charged normally at low temperature, but also effectively breaks through the designed rated charging rate of the battery cell assembly 1 and greatly improves the charging speed of the battery cell assembly 1 .
  • the control unit 93 includes a first switch 9301 and a second switch 9302 .
  • One end of the first switch 9301 is used to connect to the second conductive terminal 92 .
  • the other end of the first switch 9301 is connected to the second tab 45 .
  • the first switch 9301 may be a triode switch or a field effect transistor switch.
  • One end of the second switch 9302 is used to connect to the second conductive terminal 92 .
  • the other end of the second switch 9302 is connected to the third tab 54 .
  • the second switch 9302 may be a triode switch or a field effect transistor switch.
  • the first switch 9301 , the second switch 9302 and the protection circuit 3 are arranged on the same circuit board, so that the components of the battery assembly 10 are arranged in a centralized manner.
  • the gating accuracy is improved. to reduce the gating error.
  • control unit 93 and the protection circuit 3 may be arranged on the same circuit board, so that the components of the battery assembly 10 are arranged in a centralized manner, which facilitates component molding and saves space.
  • the control unit 93 is an integrated chip.
  • the control unit 93 is provided with a control circuit 930 for gating the second conductive terminal 92 and the second tab 45 or the second conductive terminal 92 and the third tab 54 according to the control signal received by the control unit 93 .
  • the control circuit 930 is used to control the first switch unit 931 to select the second conductive terminal 92 and the second tab 45 or to select the second conductive terminal 92 and the third tab 54 .
  • the control circuit 930 controls the first switch unit 931 to select the second conductive terminal 92 and the third tab 54 according to the first control signal.
  • the battery cell assembly 1 enters the charging mode.
  • the control circuit 930 controls the first switch unit 931 to select the second conductive terminal 92 and the second tab 45 according to the second control signal, and the cell assembly 1 enters the self-heating mode at this time.
  • the control unit 93 connects the first switch 9301 and the second switch 9302. As shown in FIG. 21 , the control unit 93 receives the first control signal, and the control circuit 930 is used to control the first switch 9301 to be turned off and the second switch 9302 to be turned on according to the first control signal. At this time, the battery cell assembly 1 is charged. model. As shown in FIG. 22 , the control unit 93 receives the second control signal, and the control circuit 930 is used to control the first switch 9301 to be turned on and the second switch 9302 to be turned off according to the second control signal. heating mode.
  • the first switch 9301 and the second switch 9302 are both triodes.
  • the first switch 9301 and the second switch 9302 are of different types.
  • the first switch 9301 is an N-type transistor
  • the second switch 9302 is a P-type transistor.
  • the first switch 9301 is a P-type transistor
  • the second switch 9302 is an N-type transistor.
  • the first switch 9301 includes an emitter, a base and a collector. The base of the first switch 9301 is connected to the control circuit 930 , the emitter of the first switch 9301 is connected to the second conductive terminal 92 , and the collector of the first switch 9301 is connected to the second tab 45 .
  • the second switch 9302 includes an emitter, a base, and a collector.
  • the base of the second switch 9302 is connected to the control circuit 930
  • the collector of the second switch 9302 is connected to the second conductive terminal 92
  • the emitter of the second switch 9302 is connected to the third tab 54 .
  • the control circuit 930 when the control unit 93 receives the first control signal, the control circuit 930 generates a high-level signal and sends the high-level signal to the base of the first switch 9301 and the second switch The base of 9302, the high-level signal disconnects the emitter and collector of the first switch 9301, and the emitter and collector of the second switch 9302 conduct, at this time, the battery assembly 10 enters the charging mode.
  • the first control signal is a signal received by the processor of the electronic device 100 when the battery assembly 10 meets the charging condition after the battery assembly 10 is connected to the conductive end of the power source 200 .
  • the charging condition of the battery assembly 10 is that the ambient temperature where the battery assembly 10 is located meets the charging safety requirements of the battery assembly 10 .
  • the control circuit 930 when the control unit 93 receives the second control signal, the control circuit 930 generates a low-level signal, and sends the low-level signal to the base of the first switch 9301 and the base of the second switch 9302 , the low-level signal makes the emitter and collector of the second switch 9302 disconnected, and the emitter and collector of the first switch 9301 are turned on, at this time, the battery assembly 10 enters the self-heating mode.
  • the second control signal is a signal received by the processor of the electronic device 100 when the battery assembly 10 does not meet the charging condition after the battery assembly 10 is connected to the conductive end of the power source 200 .
  • the fact that the battery assembly 10 does not meet the charging condition is that the ambient temperature where the battery assembly 10 is located does not meet the charging safety requirements of the battery assembly 10 .
  • the cell assembly 1 further includes a temperature sensor 80 .
  • the temperature sensor 80 is connected to the control unit 93 .
  • the temperature sensor 80 is configured to send a first control signal to the control unit 93 when the temperature of the cell assembly 1 is at a first preset temperature threshold, and to detect that the temperature of the cell assembly 1 is at the first preset temperature
  • the second control signal is sent to the control unit 93 when the threshold is reached.
  • the temperature sensor 80 is provided on the main board of the electronic device 100 and is close to the position where the cell assembly 1 is located.
  • the control unit 93 controls the first switch 9301 to be turned off and the second switch 9302 to be turned on according to the first control signal.
  • the first preset temperature threshold is a temperature that ensures the charging rate of the battery cell assembly 1 .
  • the capacity of the cell assembly 1 decreases, and the voltage drops, especially in the process of continuous charging, lithium ions are easily deposited on the negative electrode to form a polarization voltage, which makes the cell assembly 1 .
  • the first preset temperature threshold is greater than X and less than Y, where X is in the range of 10°C to 12°C, and Y is in the range of 55°C to 80°C.
  • the temperature sensor 80 When the temperature sensor 80 detects that the temperature of the cell assembly 1 meets the first preset threshold, the temperature sensor 80 sends a first control signal to the control unit 93 via the processor of the electronic device 100 , that is, the electronic device 100 The processor of the device sends the first control signal to the control unit 93 .
  • the control unit 93 controls the first switch 9301 to be turned off and the second switch 9302 to be turned on according to the first control signal, so that the battery cell assembly 1 enters the charging mode, thereby enabling the battery cell assembly 1 to be charged normally.
  • the temperature sensor 80 sends a second control signal to the control unit 93 when it detects that the temperature of the cell assembly 1 meets the second preset temperature threshold.
  • the second preset temperature threshold is less than or equal to X.
  • the control unit 93 is used to control the first switch 9301 to be turned on and the second switch 9302 to be turned off according to the second control signal, so that the first heating layer 43 of the first electrode sheet 4 starts to heat up, so that the cell assembly 1 is in the In the self-heating mode, the temperature of the cell assembly 1 begins to rise, so that after the temperature of the cell assembly 1 rises to the first preset temperature threshold, the cell assembly 1 can ensure the charging safety and charging rate, and then Turn off the second switch 9302 and turn on the first switch 9301 to start the normal charging mode (or fast charging mode).
  • the temperature sensor 80 is also used to detect that the temperature of the cell assembly 1 is at the third preset temperature threshold, and send a heating stop signal to the control unit 93, and the control unit 93 controls the first switch 9301 to turn off according to the stop heating signal, so as to The cell assembly 1 stops self-heating.
  • the third preset temperature is greater than or equal to Y, where Y is a high-temperature critical temperature that affects the charging performance of the battery cell assembly 1 . For example, the value of Y is 60°C.
  • the temperature sensor 80 detects that the temperature of the cell assembly 1 is greater than or equal to 60° C.
  • the temperature sensor 80 sends a heating stop signal to the control unit 93 .
  • the control unit 93 controls the first switch 9301 to turn off according to the heating stop signal, so that the cell assembly 1 enters the heating stop mode.
  • the problem of low charging efficiency at low temperature is effectively solved, and the charging rate of the cell assembly 1 can be made faster. high.
  • the battery cell assembly 1 further includes a charging detection unit 110 .
  • the charging detection unit 110 and the protection circuit 3 may be provided on the same circuit board, and the charging detection unit 110 may also be provided on the main board of the electronic device 100 .
  • the charge detection unit 110 is connected to the control unit 93 .
  • the charging detection unit 110 is used to detect the connection state of the battery cell assembly 1 and the power supply 200, and send a connection instruction to the control unit 93 when the battery cell assembly 1 and the power supply 200 are connected.
  • the turn-on command and the first control signal control the first switch 9301 to turn off and the second switch 9302 to turn on, so that the cell assembly 1 enters the charging mode;
  • the control unit 93 controls the first switch according to the turn-on command and the second control signal 9301 turns on the second switch 9302 and turns off, so that the cell assembly 1 enters the self-heating mode.
  • the charging detection unit 110 detects that the battery cell assembly 1 has changed from an unconnected state to an on state, and the charging detection unit 110 sends a turn-on instruction to the control unit 93 , the control unit 93 controls the battery cell assembly 1 to enter the mode to be heated or to be charged.
  • the control unit 93 receives the first control signal, and the control unit 93 turns on the first switch 9301 and turns off the first control signal.
  • the second switch 9302 allows the current loop to heat the cell assembly 1, so that the temperature of the cell assembly 1 rises to a higher temperature range, and then turns on the second switch 9302 and turns off the first switch 9301 to turn on the more
  • the normal fast charging rate of the cell assembly 1 at room temperature is 1.5C, and after heating to 50°C, a fast charging mode with a fast charging rate of 3C starts.
  • FIG. 25 is a graph of a 0.7C battery pack 11 with a capacity of 5100mAh charged at 0.7C at room temperature of 25°C and charged at a rate of 1.5C after heating to 50°C. It can be seen from the figure that the full charge time at room temperature is 155min, and the charging time after heating is shortened to 88min. It can be seen that the charging speed of the battery can be greatly improved after heating.
  • the cell assembly 1 further includes a fourth tab 55 connected to the second current collector 51 or/and the second heating layer 53 , and the control unit 93 It is also used to control the fourth tab 55 to be disconnected or connected to the first conductive terminal 91 .
  • one end of the fourth tab 55 may be fixedly connected to the second current collector 51 , or may be fixedly connected to the second heating layer 53 , or may be fixedly connected to both the second current collector 51 and the first current collector 51 .
  • the two heating layers 53 are fixedly connected.
  • the other end of the fourth tab 55 is electrically connected to the control unit 93 , and the fourth tab 55 may be electrically connected to the control unit 93 via a conductive cable.
  • the control unit 93 can control the conduction between the third tab 54 and the second conductive terminal 92, and control the conduction between the fourth tab 55 and the first conductive terminal 91, so that the third tab 54 and the fourth tab 55 cooperate together
  • the second heating layer 53 is connected to the power source 200 , so that the second heating layer 53 receives current to perform heating and heating, and the cell assembly 1 is in a self-heating mode.
  • the fourth tab 55 is used as an independent tab of the second electrode sheet 5 to form a negative terminal and a positive terminal respectively with the third tab 54 when the second electrode sheet 5 needs to be connected to a current for heating and heating.
  • the material of the fourth tab 55 is the same as that of the second tab 45 , or the same as that of the first tab 44 .
  • the fourth tab 55 is welded with the second current collector 51 or/and the second heating layer 53 .
  • connection method of the fourth tab 55 and the second electrode sheet 5 may refer to the connection method of the second tab 45 and the first electrode sheet 4 .
  • the number of the fourth tabs 55 is not limited, and the connection method between the fourth tab 55 and the second current collector 51 or/and the second heating layer 53 is also not limited, and the second electrode sheet 5 is provided with
  • the structures of the second current collector 51 and the second heating layer 53 are similar to the structures in which the first current collector 41 and the first heating layer 43 are provided on the first electrode sheet 4 , and are not repeated here.
  • the control unit 93 includes a second switch unit 932 .
  • One end of the second switch unit 932 is used to connect to the first conductive end 91 .
  • the other ends of the second switch unit 932 are respectively connected to the first tab 44 and the fourth tab 55 .
  • the second switch unit 932 is configured to receive the control signal and conduct the first conductive terminal 91 and the first tab 44 under the action of the control signal; or, the second switch unit 932 is configured to receive the control signal and under the action of the control signal
  • the first conductive terminal 91 and the fourth tab 55 are turned on.
  • the second switch unit 932 is connected to the protection circuit 3 .
  • the second switch unit 932 is connected to the first output terminal 210 of the power supply 200 via the protection circuit 3 . Further, the second switch unit 932 and the protection circuit 3 may be arranged on the same circuit board, so as to improve the device concentration of the battery assembly 10 and the utilization rate of the circuit board.
  • the other ends of the second switch unit 932 are respectively connected to the first tab 44 and the fourth tab 55 .
  • the second switch unit 932 is configured to receive the control signal and turn on the first conductive end 91 and the first tab 44 or turn on the first conductive end 91 and the fourth tab 55 under the action of the control signal.
  • the second switch unit 932 may be a single-pole double-throw analog switch, so as to reduce the number of components of the cell assembly 1, save cost and reduce volume.
  • the control unit 93 includes a third switch 9303 and a fourth switch 9304 .
  • One end of the third switch 9303 and one end of the fourth switch 9304 are both used for connecting to the first conductive end 91 .
  • the other end of the third switch 9303 is connected to the first tab 44 .
  • the other side of the fourth switch 9304 is connected to the fourth tab 55 .
  • the third switch 9303 may be a triode switch or a field effect transistor switch.
  • the fourth switch 9304 may be a triode switch or a field effect transistor switch.
  • the third switch 9303 and the fourth switch 9304 and the protection circuit 3 are arranged on the same circuit board, so that the devices are arranged in a centralized manner.
  • the selection is improved. Pass accuracy and reduce gating errors.
  • the third switch 9303 and the fourth switch 9304 are both connected to the control unit 93 .
  • the second control signal is used to instruct the control unit 93 to control the third switch 9303 to be turned on and the fourth switch 9304 to be turned off, as well as to control the first switch 9301 to be turned on and the second switch 9302 to be turned off, so that the first conductive terminal 91 and the second switch 9302 are turned off.
  • One tab 44 is connected, and the second conductive terminal 92 is connected to the second tab 45 .
  • the first heating layer 43 of the first electrode sheet 4 is connected to the first conductive terminal 91 and the second conductive terminal 92
  • the current entering the power supply 200 generates heat, so that the cell assembly 1 enters the self-heating mode.
  • the third control signal is used to instruct the control unit 93 to control the third switch 9303 to be turned off and the fourth switch 9304 to be turned on, and to control the first switch 9301 to be turned off and the second switch 9302 to be turned on, so that the first switch 9301 is turned off and the second switch 9302 is turned on.
  • the conductive end 91 is connected to the fourth tab 55, and the second conductive end 92 is connected to the third tab 54.
  • the second heating layer 53 of the second electrode sheet 5 passes through the first conductive end 91 and the third tab 54.
  • the two conductive terminals 92 are connected to the current of the power supply 200 to generate heat, so that the cell assembly 1 enters a self-heating mode.
  • both the third switch 9303 and the fourth switch 9304 are triodes.
  • the connection method of the third switch 9303 to the first conductive terminal 91, the control unit 93, and the third tab 54 can refer to the connection method of the first switch 9301 to the second conductive terminal 92, the control unit 93, and the second tab 45. This will not be repeated here.
  • the connection method of the fourth switch 9304 with the first conductive terminal 91 , the control unit 93 and the fourth tab 55 can refer to the connection between the second switch 9302 and the second conductive terminal 92 , the control unit 93 and the third tab 54 method, which will not be repeated here.
  • both the first heating layer 43 of the first electrode sheet 4 and the second heating layer 53 of the second electrode sheet 5 can be independently self-heating.
  • controlling the self-heating of the first heating layer 43 of the first electrode sheet 4 and the second heating layer 53 of the second electrode sheet 5 includes but is not limited to the following embodiments.
  • the control unit 93 controls the first switch 9301 to be turned on, the second switch 9302 to be turned off, the third switch 9303 to be turned on, and the fourth switch 9304 to be turned off.
  • the first electrode sheet is The first heating layer 43 of 4 can be connected to the power supply 200 through the first conductive end 91 and the second conductive end 92 to conduct self-heating.
  • the control unit 93 controls the first switch 9301 to be turned off, the second switch 9302 to be turned on, the third switch 9303 to be turned off, and the fourth switch 9304 to be turned on, at this time, the second electrode sheet
  • the second heating layer 53 of 5 can be connected to the power supply 200 through the first conductive end 91 and the second conductive end 92 for self-heating. There is a time interval between the first heating stage and the second heating stage. Further, the self-heating of the first heating layer 43 of the first electrode sheet 4 and the second heating layer 53 of the second electrode sheet 5 can be controlled alternately.
  • the heating uniformity of the cell assembly 1 can be improved; on the other hand, the first electrode sheet 4 and the second electrode sheet 5 can be The frequency of use is balanced to improve the stability of the battery.
  • This application does not specifically limit the specific structures of the first electrode sheet 4 and the second electrode sheet 5 .
  • This application uses the following examples to illustrate the structures of the first electrode sheet 4 and the second electrode sheet 5 .
  • the provided structures of the first electrode sheet 4 and the second electrode sheet 5 include but are not limited to the following embodiments.
  • both the first electrode sheet 4 and the second electrode sheet 5 are roughly in the shape of a rectangular plate.
  • the first electrode sheet 4 includes two long sides 401 disposed opposite to each other, and two short sides 402 connected between the two long sides 401 .
  • the length of each long side 401 is greater than or equal to the length of each short side 402 .
  • first tab 44 and the second tab 45 are respectively located on the two short sides 402 .
  • first tabs 44 and the second tabs 45 are arranged approximately diagonally, so that the conductive path between the first tabs 44 and the second tabs 45 can be increased, thereby increasing the current through the second heating layer 53
  • the internal resistance value of the first heating layer 43 is increased, and the heating efficiency of the battery core assembly 1 is improved.
  • the first tab 44 and the second tab 45 are respectively disposed on the two long sides 401 . Further, the first tabs 44 and the second tabs 45 are arranged approximately diagonally, similar to the previous embodiment, so that the conductive path between the first tabs 44 and the second tabs 45 can be increased, and further The internal resistance of the current passing through the first heating layer 43 is increased, thereby increasing the calorific value of the second heating layer 53 , and improving the heating efficiency of the battery core assembly 1 .
  • the first tab 44 and the second tab 45 are located on one long side 401 and are respectively close to the two short sides 402 .
  • this embodiment realizes that the first tab 44 and the second tab 45 are arranged on the same side.
  • the lead connected to the first tab 44 and the lead connected to the second tab 45 All can be led out from the long side 401 to avoid clutter of leads.
  • placing the first tab 44 and the second tab 45 close to the two short sides 402 can effectively increase the conductive path between the first tab 44 and the second tab 45, thereby increasing the first heating layer
  • the calorific value of 43 can improve the heating efficiency of the battery core assembly 1 .
  • the first tab 44 and the second tab 45 are located on one short side 402 and close to the two long sides 401 respectively.
  • this embodiment realizes that the first tab 44 and the second tab 45 are arranged on the same side, so that the lead connected to the first tab 44 and the lead connected to the second tab 45 All can be led out from the short side 402 to avoid clutter of leads.
  • placing the first tab 44 and the second tab 45 close to the two long sides 401 can effectively increase the conductive path between the second tab 45 and the third tab 54, thereby increasing the second heating layer 53 calorific value to improve the heating efficiency of the battery core assembly 1 .
  • first tab 44 and the second tab 45 are disposed on the first electrode sheet 4
  • third tab 54 and the fourth tab 55 are disposed on the first electrode sheet 4
  • this embodiment provides a wound cell structure.
  • the cell assembly 1 further includes a separator 7 laminated between the first electrode sheet 4 and the second electrode sheet 5 .
  • the first electrode sheet 4 , the separator 7 and the second electrode sheet 5 are wound together to form the cell assembly 1 .
  • the first electrode sheet 4 , the second electrode sheet 5 and the separator 7 are wound and encapsulated in the encapsulation layer 8 .
  • the long side 401 of the first electrode sheet 4 is a winding side.
  • the first tab 44 and the second tab 45 are located on one long side 401 and are respectively close to the two short sides 402 . Further, the first tab 44 and the second tab 45 may be close to the seal of the encapsulation layer 8 .
  • the third tab 54 and the fourth tab 55 are located on the winding edge of the second electrode sheet 5 and close to the seal of the encapsulation layer 8 . In this way, the first tabs 44 , the second tabs 45 , the third tabs 54 and the fourth tabs 55 can be connected to the protection circuit 3 through short electrical connecting wires, reducing the wiring inside the cell assembly 1 length.
  • this embodiment provides a laminated cell structure.
  • the cell assembly 1 is provided with a plurality of first electrode sheets 4 , a plurality of first tabs 44 and at least one second tab 45 .
  • the plurality of first electrode sheets 4 are stacked on each other and arranged at intervals.
  • Each of the first tabs 44 is correspondingly connected to each of the first electrode sheets 4 .
  • a plurality of first tabs 44 are connected in parallel to form the positive tabs of the cell assembly 1 .
  • the cell assembly 1 is provided with a plurality of second electrode sheets 5 and a plurality of third tabs 54 .
  • Each second electrode sheet 5 is disposed between two adjacent first electrode sheets 4 .
  • the cell assembly 1 further includes a plurality of separators 7 , and a separator 7 is provided between each adjacent first electrode sheet 4 and the second electrode sheet 5 .
  • Each of the third tabs 54 is correspondingly connected to each of the second electrode sheets 5 .
  • a plurality of third tabs 54 are connected in parallel to form the negative tabs of the cell assembly 1 .
  • the number of the second tabs 45 is multiple.
  • a plurality of second tabs 45 are connected in parallel.
  • the plurality of second tabs 45 are connected in parallel to the second conductive terminal 92 through the first switch 9301
  • the plurality of first tabs 44 are connected in parallel to the first conductive terminal 91 through the third switch 9303 .
  • the control unit 93 controls the first switch 9301 to be turned on, the second switch 9302 to be turned off, the third switch 9303 to be turned on, and the fourth switch 9304 to be turned off
  • the first heating layers 43 of the plurality of first electrode sheets 4 are connected to each other. After the current is applied, it generates heat to increase the temperature of the cell assembly 1 .
  • the number of the second tab 45 is one.
  • a second tab 45 is disposed on any one of the plurality of first electrode sheets 4 .
  • one of the first electrode sheets 4 is provided with the first tab 44 and the second tab 45 .
  • the control unit 93 controls the first switch 9301 to be turned on, the second switch 9302 to be turned off, the third switch 9303 to be turned on, and the fourth switch 9304 to be turned off, so that a current flows through the first heating layer 43 of one of the first electrode sheets 4 , and the third switch 9303 is turned on and the fourth switch 9304 is turned off.
  • the first heating layer 43 of an electrode sheet 4 generates heat.
  • a first electrode sheet 4 Compared with the heat generation of a plurality of first electrode sheets, a first electrode sheet 4 provided in this embodiment generates heat from a single sheet, and the internal resistance of a single electrode sheet is higher than that of a plurality of first electrode sheets.
  • the sub-electrode sheets connected in parallel with the electrode sheets 4 have large internal resistance, so that the calorific value of a single sub-electrode sheet is greater than the calorific value of the electrode sheets of the plurality of first electrode sheets 4 connected in parallel, thereby achieving faster heating.
  • the first switch 9301 includes a plurality of sub-switches 9300 .
  • Each of the sub-switches 9300 is connected to a second tab 45 and the second conductive terminal 92 .
  • the sub-switch 9300 is used for receiving the control signal and turning on or off under the action of the control signal.
  • the number of the first electrode sheets 4 connected between the first conductive end 91 and the second conductive end 92 can be controlled when the cell assembly 1 is self-heating, thereby controlling the The internal resistance of the self-heating of the cell assembly 1 adjusts the heating rate of the self-heating of the cell assembly 1 .
  • a fifth switch 9305 is provided in the two adjacent first electrode sheets 4 , and one end of the fifth switch 9305 is The second tab 45 of one of the first electrode sheets 4 is connected, and the other end is connected to the first tab 44 of the other electrode sheet.
  • the fifth switch 9305 is used to control the connection between the first tabs 44 and the second tabs 45 of the two adjacent first electrode sheets 4 .
  • the fifth switch 9305 is also connected to the control circuit 930 to receive the control signal of the control circuit 930 .
  • the fifth switches 9305 between the plurality of first electrode sheets 4 are all turned on to the adjacent first tabs 44 and the second tabs 45 , so that the plurality of first electrode sheets 4 Connected in series, through the control unit 93, the first tab 44 of the first electrode sheet 4 at the head end is connected to the first conductive terminal 91 through the third switch 9303, and the second tab 45 of the first electrode sheet 4 at the end is connected through the first conductive end 91.
  • the switch 9301 turns on the second conductive terminal 92 , so that the first heating layers 43 of the plurality of first electrode sheets 4 are connected in series to the first conductive terminal 91 and the second conductive terminal 92 in sequence.
  • the first heating layers 43 of the plurality of first electrode sheets 4 generate heat in series.
  • the plurality of first heating layers 43 provided in this embodiment generate heat.
  • the internal resistance of the layers 43 in series is higher, so that the self-heating efficiency of the cell assembly 1 is higher and the temperature rises faster.
  • the above is a structural improvement for the first heating layer 43 of the first electrode sheet 4 to be connected to the power supply 200 through the first conductive terminal 91 and the second conductive terminal 92, and the second heating layer 53 of the second electrode sheet 5 is connected to the power supply 200 through the first conductive terminal.
  • the structural improvement of the connection of the power supply 200 to the power supply 200 by the 91 and the second conductive end 92 reference may be made to the structural improvement of the first heating layer 43 of the first electrode sheet 4 , which will not be repeated here.
  • the cell assembly 1 further includes a heating element.
  • the heating element is connected between the second tab 45 and the first switch unit 931 .
  • the heating element can be made of a material with good heating effect in a power-on state, for example, metal heating wire, graphene, positive temperature coefficient thermistor (positive temperature coefficient, PTC) and the like.
  • the control unit 93 controls the self-heating of the first heating layer 43 of the first electrode sheet 4, the heating element is energized, so that the heating element and the first heating layer 43 of the second electrode sheet 5 can be connected in series to generate heat, The heating rate of the battery cell assembly 1 is further increased, and the time for the battery to be fully charged is accelerated.
  • the number of the cell assemblies 1 in the electronic device 100 provided by the present application may be one or more.
  • the electronic device 100 may include the first cell assembly 1 and the second cell assembly 1 , the first cell assembly 1 and the second cell assembly 1 .
  • the battery cell assemblies 1 can be charged with each other or independently charged from an external power source 200 .
  • the charging methods of the battery cell assembly 1 include but are not limited to the following embodiments.
  • the electronic device 100 includes the first cell assembly 101 and the second cell assembly 102 .
  • the positive tab of the first cell assembly 101 is connected to the positive tab of the second cell assembly 1 through a switch.
  • the negative tab of the first cell assembly 101 is connected to the negative tab of the second cell assembly 1 through a switch.
  • the first cell assembly 101 and the second cell assembly 102 can work at the same time or work in a time-sharing manner. Wherein, when the temperature of the first cell assembly 101 is too low, the second cell assembly 102 can charge the first cell assembly 101 . Likewise, when the temperature of the second cell assembly 102 is too low, the first cell assembly 101 can charge the second cell assembly 102 .
  • the temperature of the first cell assembly 101 and the temperature of the second cell assembly 102 can be increased, and the temperatures of the first cell assembly 101 and the second cell assembly 102 can be raised to normal charging Above the temperature, the problem that the electronic device 100 cannot be charged normally when the temperature is lower than the normal charging temperature is effectively solved.
  • the above description of any one of the embodiments of the structure of the cell assembly 1 can be combined into this embodiment.
  • the second cell assembly 101 needs to be charged.
  • the positive pole of 102 corresponds to the second output terminal 220 of the power supply 200 in the above-mentioned embodiment
  • the negative pole of the second battery cell assembly 102 corresponds to the first output terminal 210 of the power supply 200 in the above-mentioned embodiment.
  • the cell assembly 102 charges the first cell assembly 101 .
  • this embodiment does not specifically limit the number of the battery cell assemblies 1 .
  • the battery cell assemblies 1 can be charged without an external power supply 200 .
  • the discharge performance of the cell assembly 1 at low temperature is improved.
  • the cell assembly 1 can be electrically connected to an external power source 200 through an electrical connecting wire.
  • an electrical connecting wire In this embodiment, reference may be made to the above-mentioned specific descriptions when describing the cell assembly 1 , which will not be described herein again.
  • the battery cell assembly 1 can also be charged by an external wireless charger in a wireless charging manner.
  • the electronic device 100 may include a wireless charging coil.
  • a wireless charging coil The above description of any embodiment of the structure of the cell assembly 1 can be combined into this embodiment, wherein one end of the wireless charging coil can be equivalent to the first output end 210 of the power supply 200 in the above embodiment, The other end of the wireless charging coil may be equivalent to the second output end 220 of the power supply 200 in the above embodiment, so that the battery cell assembly 1 can be charged.
  • connection between the circuit of the electronic device and the electronic device, and the connection between the electronic device and the electronic device can be turned on when power is on, which is an electrical connection relationship.
  • the circuit of the electronic device includes a charging circuit 60, a protection circuit 3, and the like.
  • the electronic device of the electronic device 100 includes a charging interface 50 , the battery assembly 10 , a charging terminal, an electrode, a current collector, a positive electrode material, a negative electrode material, a switch unit, a switch, and the like.
  • the electronic device 10 may be a computing device such as a laptop computer, a computer monitor including an embedded computer, a tablet computer, a cellular phone, a media player, or other hand-held or portable electronic devices, smaller devices such as wristwatch devices , hanging devices, headset or earpiece devices, devices embedded in eyeglasses or other devices worn on the user's head, or other wearable or miniature devices), televisions, computer monitors that do not contain embedded computers , gaming devices, navigation devices, embedded systems (such as systems in which electronic devices with displays are installed in kiosks or cars), devices that implement the functionality of two or more of these devices, or other electronic equipment.
  • the electronic device is a portable device, such as a cell phone, media player, tablet computer, or other portable device with a battery. It should be noted that FIG. 1 is only an exemplary example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请公开了一种电极片、电芯组件、电池组件及电子设备,所述电极片包括集流体和与所述集流体导通的加热层,所述加热层用以从电源接收电流并产生热量。采用电极片包括集流体和与集流体导通的加热层,从而当集流体和加热层接通电源后,可以利用加热层接收电流加热,使得电极片的温度提高,从而可以使得电极片在恶劣环境下提高导电效率,并且保证安全性。

Description

电极片、电芯组件、电池组件及电子设备 技术领域
本申请涉及电子技术领域,具体涉及一种电极片、电芯组件、电池组件及电子设备。
背景技术
目前手机中电池必不可少,电池的充电容易受手机的环境影响。随着手机常面临恶劣环境,导致电池的充电效率降低以及容易出现安全问题。
发明内容
本申请实施例提供一种电极片、电芯组件、电池组件及电子设备。
本申请实施例提供一种电极片,其中,所述电极片包括集流体和与所述集流体导通的加热层,所述加热层用以从电源接收电流并产生热量。
本申请实施例提供一种电芯组件,其中,所述电芯组件包括上述的电极片。
本申请实施例提供一种电芯组件,其中,
所述电芯组件包括:
第一电极片,所述第一电极片包括第一集流体和与所述第一集流体导通的第一加热层;
第二电极片,与所述第一电极片相对设置,所述第二电极片包括第二集流体;
电源输入电路,设有第一导电端和第二导电端,以及电连接所述第一导电端和所述第二导电端的控制单元,所述第一导电端和所述第二导电端用以与输入电源电连接,所述控制单元还电连接所述第一集流体、所述第一加热层和所述第二集流体;
当所述控制单元接收第一控制信号时,所述控制单元将所述第一导电端与所述第一集流体导通,以及将所述第二导电端与所述第二集流体导通,并与所述第一加热层断开;
当所述控制单元接收第二控制信号时,所述控制单元将所述第一导电端与所述第一集流体导通,以及将所述第二导电端与所述第一加热层导通,并与所述第二集流体断开。
本申请实施例提供一种电池组件,其中,所述电池组件包括保护电路及上述的电芯组件,所述第一电极片和所述第二电极片连接保护电路。
本申请实施例提供一种电子设备,其中,所述电子设备包括上述的电池组件,所述电池组件通过电连接线连接所述电源;或者,所述电池组件通过无线充电方式连接所述电源。
本申请实施例提供一种电子设备,其中,所述电子设备包括上述的电池组件,所述电池组件为第一电池组件,所述电子设备还包括第二电池组件,所述第二电池组件为所述电源。
附图说明
为了更清楚地说明申请的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的电子设备的立体示意图;
图2是图1的电子设备的分解示意图;
图3是图1的电子设备的电池组件的充电电路框图示意图;
图4是本申请实施例提供的电池组件的分解示意图;
图5是本申请实施例提供的电芯组件的截面示意图;
图6是图5的电芯组件的分解示意图;
图7是图6的电芯组件的第一电极片的截面示意图;
图8是图6的电芯组件连接电源的结构示意图;
图9是图6的电芯组件连接电源的另一结构示意图;
图10是本申请另一实施例提供的电芯组件连接电源的结构示意图;
图11是图10电芯组件连接电源的另一结构示意图;
图12是图9的电芯组件连接电源的结构示意图;
图13是本申请实施例提供的电芯组件的第一电极片的截面示意图;
图14是图13的第一电极片的立体示意图;
图15是图13的第一电极片的另一实施方式的截面示意图;
图16是图13的第一电极片的另一实施方式的截面示意图;
图17是图13的第一电极片的另一实施方式的截面示意图;
图18是图13的第一电极片的另一实施方式的截面示意图;
图19是图13的第一电极片的另一实施方式的截面示意图;
图20是图9的电芯组件连接电源的另一结构示意图;
图21是图20的电芯组件连接电源的另一实施例示意图;
图22是图21的电芯组件连接电源的一状态示意图;
图23是图21的电芯组件连接电源的另一状态示意图;
图24是图21的电芯组件连接电源的另一局部框示图;
图25是本申请提供的容量为5100mAh的电芯组件在常温25℃下以0.7C充电和加热到50℃后以1.5C倍率充电的曲线图;
图26是图10的电芯组件连接电源的另一结构示意图;
图27是图26的电芯组件连接电源的结构示意图;
图28是图26的电芯组件连接电源的另一实施例的结构示意图;
图29是图28的电芯组件连接电源的一状态示意图;
图30是图28的电芯组件连接电源的另一状态示意图;
图31本申请实施例提供的第一电极中第一极耳和第二极耳的第一种设置方式的结构示意图;
图32本申请实施例提供的第一电极中第一极耳和第二极耳的第二种设置方式的结构示意图;
图33本申请实施例提供的第一电极中第一极耳和第二极耳的第三种设置方式的结构示意图;
图34本申请实施例提供的第一电极中第一极耳和第二极耳的第四种设置方式的结构示意图;
图35是图4提供的电池组件中另一种电芯组件的结构示意图;
图36是图4提供的电池组件中另一种电芯组件的结构示意图;
图37是图36的电芯组件的另一实施例的结构示意图;
图38是图36的电芯组件的另一实施例的结构示意图;
图39是图36的电芯组件的另一实施例的结构示意图;
图40是本申请实施例提供的多个电芯组件相互充电的结构示意图;
图41是本申请实施例提供的电芯组件无线充电的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。本申请所列举的实施例之间可以适当的相互结合。
本申请实施例提供了一种电极片,所述电极片包括集流体和与所述集流体导通的加热层,所述加热层用以从电源接收电流并产生热量。
其中,所述电极片设置两层所述集流体,所述加热层设置于两层所述集流体之间。
其中,两层所述集流体之间设置多层所述加热层,多层所述加热层间隔设置,其中部分或全部的所述加热层接收电流并产生热量。
其中,所述电极片设置一层所述集流体和一层所述加热层,一层所述加热层与所述一层所述集流体层叠设置。
其中,所述电极片设置一层所述集流体和一层所述加热层,所述加热层设置于所述集流体内。
其中,所述集流体背离所述加热层的表面设有活性材料层。
其中,所述活性材料层在所述加热层朝向所述活性材料层一面的正投影位于所述加热层上。
其中,所述加热层与所述集流体相贴合。
其中,所述加热层与所述集流体间隔设置,所述加热层与所述集流体之间设有导热导电层,所述导热导电层用以从所述集流体传输电流至所述加热层,或用以从所述加热层传输电流至所述集流体,并且用以将所述加热层的热量均衡传递至所述集流体。
其中,所述加热层的电阻大于所述集流体的电阻。
本申请实施例提供了一种电芯组件,所述电芯组件包括本申请上述实施例提供的电极片。
本申请实施例提供了一种电芯组件,所述电芯组件包括:
第一电极片,所述第一电极片包括第一集流体和与所述第一集流体导通的第一加热层;
第二电极片,与所述第一电极片相对设置,所述第二电极片包括第二集流体;
电源输入电路,设有第一导电端和第二导电端,以及电连接所述第一导电端和所述第二导电端的控制单元,所述第一导电端和所述第二导电端用以与输入电源电连接,所述控制单元还电连接所述第一集流体、所述第一加热层和所述第二集流体;
当所述控制单元接收第一控制信号时,所述控制单元将所述第一导电端与所述第一集流体导通,以及将所述第二导电端与所述第二集流体导通,并与所述第一加热层断开;
当所述控制单元接收第二控制信号时,所述控制单元将所述第一导电端与所述第一集流体导通,以及将所述第二导电端与所述第一加热层导通,并与所述第二集流体断开。
其中,所述第二电极片设有与所述第二集流体导通的第二加热层;
所述控制单元还电连接所述第二加热层;
当所述控制单元接收第三控制信号时,所述控制单元将所述第一导电端与所述第二加热层导通,并与所述第一集流体断开,以及将所述第二导电端与所述第二集流体导通,并与所述第一加热层断开。
其中,当所述控制单元接收第四控制信号时,所述控制单元将所述第一导电端与所述第一集流体及所述第二加热层导通,以及将所述第二导电端与所述第一加热层及所述第二集流体导通。
其中,所述电芯组件包括与所述第一集流体连接的第一极耳,以及与所述第一集流体或/和所述第一加热层连接的第二极耳;所述电芯组件还包括与所述第二集流体连接的第三极耳,所述控制单元电连接所述第一极耳、第二极耳和第三极耳,以控制所述第一极耳与所述第一导电端断开或导通,以及控制所述第二极耳与所述第二导电端断开或导通,以及控制所述第二导电端与所述第三极耳断开或导通。
其中,所述电芯组件还包括与所述第二集流体或/和第二加热层连接的第四极耳,所述控制单元还用以控制所述第四极耳与所述第一导电端断开或导通。
其中,所述控制单元设有四个开关,四个所述开关的一端分别连接所述第一极耳、第二极耳、第三极耳和第四极耳,其中连接所述第一极耳和第四极耳的两个开关另一端均连接所述第一导电端,其中连接所述第二极耳和第三极耳的两个开关另一端均连接所述第二导电端。
其中,所述电芯组件还包括温度传感器,所述温度传感器连接所述控制单元,所述温度传感器用于检测到所述电芯组件的温度在第一预设温度阈值时发送第一控制信号至所述控制单元,以及检测到所述电芯组件的温度在第二预设温度阈值时发送第二控制信号至所述控制单元。
其中,所述第一电极片在所述第一集流体背离所述第一加热层的表面设有第一活性材料层。
其中,所述第二电极片在所述第二集流体背离所述第二加热层的表面设有第二活性材料层。
其中,所述电芯组件还包括设置于所述第一电极片和所述第二电极片之间的隔膜,以及包覆所述第一电极片、所述第二电极片和所述隔膜的封装层。
其中,所述第一电极片、所述隔膜和所述第二电极片共同卷绕后封装于所述封装层内,所述控制单元电连接所述第一电极片的卷绕边和所述第二电极片的卷绕边。
其中,所述电芯组件设置多个所述第一电极片、多个所述第二电极片和至少一个所述隔膜,多个所述第一电极片和多个所述第二电极片相互交错层叠后封装于所述封装层内,每一所述隔膜设置于相邻的所述第一电极片和所述第二电极片之间,当所述控制单元接收控制信号时,所述控制单元控制多个所述第一电极片的第一集流体串联或/和并联连接于所述第一导电端,以及控制多个所述第二电极片的第二集流体串联或/和并联连接于所述第二导电端。
本申请实施例提供了一种电池组件,所述电池组件包括如本申请上述实施例提供的电芯组件。
本申请提供了一种电子设备,包括如本申请上述实施例提供的电池组件,所述电池组件通过电连接线连接所述电源;或者,所述电池组件通过无线充电方式连接所述电源。
本申请实施例提供了一种电子设备,包括如本申请上述实施例提供的电池组件,所述电池组件为第一电池组件,所述电子设备还包括第二电池组件,所述第二电池组件为所述电源。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。为了简便,本文仅明确地公开了一些数值范围。然而,任意下限可以与任何上限组合形成未明确记载的范围;以及任意下限可以与其它下限组合形成未明确记载的范围,同样任意上限可以与任意其它上限组合形成未明确记载的范围。此外,尽管未明确记载,但是范围端点间的每个点或单个数值都包含在该范围内。因而,每个点或单个数值可以作为自身的下限或上限与任意其它点或单个数值组合或与其它下限或上限组合形成未明确记载的范围。在本文的描述中,需要说明的是,除非另有说明,“以上”、“以下”为包含本数,“一个或多个”中“多个”的含义是两个以上。本发明的上述发明内容并不意欲描述本发明中的每个公开的实施方式或每种实现方式。如下描述更具体地举例说明示例性实施方式。在整篇申请中的多处,通过一系列实施例提供了指导,这些实施例可以以各种组合形式使用。在各个实例中,列举仅作为代表性组,不应解释为穷举。
请参照图1,图为本申请实施例提供的一种电子设备100的结构示意图。电子设备100可以为电话、电视、平板电脑、手机、照相机、个人计算机、笔记本电脑、可穿戴设备、电动汽车、飞机等可充电设备。请参照图,本申请中以电子设备100为手机为例进行说明,本领域技术人员可以根据本实施例的技术手段容易想到对于其他的可充电设备进行结构设计,以实现提高充电效率。
为了便于描述,图1示以电子设备100处于第一视角为参照进行定义,电子设备100的宽度方向定义为X向,电子设备100的长度方向定义为Y向,电子设备100的厚度方向定义为Z向。
请参照图2,本申请提供的所述电子设备100包括电池组件10。本实施例中,所述电子设备100为手机。所述电子设备100还包括显示屏20、中框30及壳体40。显示屏20中框30及壳体40依次固定连接。电池组件10设于中框30。电池组件10用于为显示屏20及设于中框30上的主板等器件进行供电。
电池组件10包括但不限于为锂离子电池、锂金属电池、锂-聚合物电池、铅-酸电池、镍-金属氢化物电池、镍-锰-钴电池、锂-硫电池、锂-空气电池、镍氢电池、锂离子电池、铁电池、纳米电池等所有固态电池。本申请实施例以电池组件10为锂离子电池为例进行说明,本领域技术人员可以根据本实施例的技术手段容易想到对于其他种类的电池进行结构设计。
本申请对于电池组件10的形状不做具体的限定。电池组件10可呈柱状形式、袋状形式、弧状形式、软包方状、圆柱形式、菱柱形式或异形等。
请参照图3,所述电子设备100还包括充电接口50、充电电路60及充电控制单元70。
请参照图2,充电接口50设于中框30上,以使充电接口50连接外接电源(后续简称电源)。具体的,充电接口50可以通过充电线与电源200连接。充电接口50的种类包括但不限于Android和Windows phone系统手机的Micro USB接口、USB Type C接口以及IOS系统手机的Lightning接口。
请参照图3,充电电路60连接充电接口50和电池组件10。充电电路60可为集成芯片,设于主板上,用于控制电池组件10的充电电流等。充电接口50通过柔性电路板与充电电路60连接。
请参照图3,充电控制单元70连接充电电路60。充电接口50、充电电路60、充电控制单元70、电池组件10形成所述电子设备100的充电回路。
请参照图3,所述电池组件10经充电电路60连接电源200,以实现电源200对所述电池组件10充电。电源200的电流输出端包括第一输出端210和第二输出端220。第一输出端210为电源200的正极端,且第二输出端220为电源200的负极端;或者,第一输出端210为电源200的负极端,且第二输出端220为电源200的正极端。利用第一输出端210和第二输出端220与充电电路60连接,即可实现电源200向所述电池组件10充电。电源200可以是所述电子设备100的外部电源,例如电源200为设置于所述电子设备100外的电源适配器与市电电缆连接所形成的电源,也可以是设置于所述电子设备100外的移动电源。当电源200为所述电子设备100的外部电源时,电源200可以经充电接口50与充电电路60连接。充电接口50包括第一充电端51和第二充电端52。第一充电端51连接第一输出端210。第二充电端52连接第二输出端220。
可以理解的是,电源200也可以是所述电子设备100的内部电源200。例如电源200为设置于所述电子设备100内的备用所述电池组件10。当电源200为所述电子设备100的内部电源200时,电源200可以与充电电路60直接连接。本实施例中,第一输出端210为负极端,第二输出端220为正极端。当电流流通于第二输出端220、充电电路60、所述电池组件10的正极、所述电池组件10的负极、第一输出端210时,所述电池组件10充电。
本申请为了更加清楚地描述充电过程和充电回路,以所述电池组件10连接电源200的正负极的状态为例进行举例说明。后续涉及极耳连接电源200的导电端时,就不再赘述。
请参照图4,本实施例中,所述电池组件10包括电芯组件1和电池外壳2。当然,在其他实施方式中,所述电池组件10可不具有电池外壳2,保护电路可以封装于电芯组件1的封装层8内。
请参照图5,所述电芯组件1包括第一电极片4、第二电极片5、电解液6、隔膜7及封装层8。可选的,第一电极片4形成所述电芯组件1的正极,及第二电极片5形成所述电芯组件1的负极。再可选的,第一电极片4形成所述电芯组件1的负极,及第二电极片5形成所述电芯组件1的正极。本实施例以第一电极片4形成所述电芯组件1的正极,及第二电极片5形成所述电芯组件1的负极为例进行说明。
请参照图6,第一电极片4包括第一集流体41及设于第一集流体41上的第一活性材料42。若第一电极片4为正极电极,则第一集流体41为正极集流体。若第一电极片4为负极电极,则第一集流体41为负极集流体。
可选的,第一集流体41为导电薄片。举例而言,第一集流体41为厚度10-20微米的铝箔。第一活性材料42包括电极电势较高、结构稳定的具有嵌锂能力的层状或尖晶石结构的过渡金属氧化物或聚阴离子型化合物,如钴酸锂、锰酸锂、磷酸铁锂、三元材料等。第一活性材料层42为活性物质与粘合剂的混合物。第一活性材料层42附着于第一集流体41的表面。活性物质可以为磷酸铁锂、磷酸锰铁锂、磷酸钒锂、磷酸钒氧锂、钴酸锂、锰酸锂、镍酸锂、镍钴锰酸锂、富锂锰基材料、镍钴铝酸锂、石墨、氧化亚硅、氧化锡、钛酸锂等中的至少一种组成,粘合剂可以为聚偏二氟乙烯、偏氟乙烯-氟化烯烃的共聚物、聚四氟乙烯、羧甲基纤维素钠、丁苯橡胶、聚胺酯、氟化橡胶、聚乙烯醇、聚偏氟乙烯、聚酰胺等中的至少一种组成。
可选的,请参照图6,第一电极片4、隔膜7及第二电极片5皆为薄片状。隔膜7间隔设于第一电极片4与第二电极片5之间,用于防止第一电极片4与第二电极片5直接接触。隔膜7是一种经特殊成 型的高分子薄膜,隔膜7有微孔结构,可以让锂离子自由通过,而电子不能通过。隔膜7的材质包括但不限于聚乙烯(PE)、聚丙烯(PP)或它们的复合膜。复合膜例如为PP/PE/PP三层隔膜。
可选的,请参照图6,第二电极片5包括第二集流体51及设于第二集流体51上的第二活性材料52。第二集流体51为导电薄片。举例而言,第二集流体51为10-20微米的铜箔。第二活性材料52可以为电位尽可能接近锂电位、结构稳定的并可大量储锂的层状石墨、金属单质及金属氧化物,如石墨、碳纤维、石墨烯、钛酸锂等。
可选的,请参照图6,封装层8为钢壳、铝壳、镀镍铁壳、铝塑膜等。本实施例中,封装层8可以为铝塑膜,用于封装第一电极片4、第二电极片5及隔膜7。
可选的,请参照图6,电解液6可以为溶有电解质锂盐的有机溶剂,提供锂离子,电解质锂盐有LiPF6、LiClO4、LiBF4等,有机溶剂主要由碳酸二乙酯(DEC)、碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、二甲酯(DMC)等其中的一种或几种混合组成。
所述电池组件10在充放电过程中,Li+在第一电极片4与第二电极片5之间往返嵌入和脱嵌。充电时,Li+从第一电极片4(正极)脱嵌,经过电解液6嵌入第二电极片5(负极),第二电极片5处于富锂状态。放电时则相反。换言之,第一电极片4与第二电极片5在皆通电时能够电性导通。
所述电芯组件1的第一电极片4和第二电极片5皆连接保护电路3。保护电路3可监视所述电芯组件1的电压,从而对于所述电芯组件1的充放电进行管控。
请参阅图7,第一电极片4还包括与第一集流体41导通的第一加热层43。第一加热层43与第一集流体41可以直接接触导通,也可以是经导电线缆连接导通,还可以是经耦合元件耦合导通。本实施方式中,以第一加热层43与第一集流体41层叠贴合接触导通进行举例说明。
可选的,第一加热层43为金属片,第一加热层43的材质由铝、铜、镍、铜、钴、钨、锡、铅、铁、银、金、铂或其合金中的至少一种组成。
可选的,第一加热层43的厚度为1mm~40mm。
可选的,第一加热层43通过涂布、压延、辊压、粘接、蒸镀、气相沉积、化学沉积、磁控溅射、化学镀中的至少一种方式形成于第一集流体41上。
当第一集流体41和第一加热层43共同处于连接第一输出端210和第二输出端220的回路中,第一加热层43产生焦耳热量,从而实现对所述电芯组件1加热,提高所述电芯组件1的温度,以使得所述电芯组件1的温度达到预设温度后进行充电,保证所述电芯组件1的充电安全性以及充电效率。第一加热层43为导电层,第一加热层43的电阻大于第一集流体41的电阻。当第一加热层43接入电源200的电流时,第一加热层43的发热效率远大于第一集流体41接入电流的发热效率,从而使得第一电极片4的自加热升温效率提高。
当第一集流体41、电解液6和第二集流体51共同处于连接第一输出端210和第二输出端220的回路中,第一集流体41的电压与第二集流体51的电压形成电压差,实现所述电芯组件1充电。
可以理解的是,第一活性材料层42在第一加热层43朝向第一活性材料层42一面的正投影位于第一加热层43上,即第一加热层43完全覆盖第一活性材料层43,以使得第一加热层43产生热量后,可以使得第一活性材料层42整体各个区域都可以受热。可选的,第一加热层43与第一集流体41完全重合,第一加热层43存在边缘相对第一活性材料层43凸出,以便于第一活性材料层43可以完全受热。当然,在其他实施方式中,第一加热层43也可以是与第一活性材料层43完全重合。
请参阅图8,所述电芯组件1还包括电源输入电路9,电源输入电路9设有第一导电端91和第二导电端92,以及电连接第一导电端91和第二导电端92的控制单元93。第一导电端91和第二导电端92用以与电源200电连接。控制单元93还电连接第一集流体41、第一加热层43和第二集流体51。电源输入电路9设置于电路板上,电路板设置于封装层8外。电路板与第一电极片4和第二电极片5可以经导电线缆连接,以实现控制单元93电连接第一集流体41、第一加热层43和第二集流体51。
电源输入电路9用以将电源200的电流输入至所述电芯组件1,从而使得所述电芯组件1获取电能 实现温度提高或/和充电。第一导电端91和第二导电端92共同构成电源输入电路9的电流接收端口。第一导电端91和第二导电端92设置于电路板。第一导电端91和第二导电端92与充电电路60连接,以经充电电路60接收电源200的电流。第一导电端91为正极端子,第二导电端92为负极端子。
本实施方式中,充电电路60与电源200的第一输出端210和第二输出端220接通,电源输入电路9与充电电路60接通,第一导电端91对应与第二输出端220连接,第二导电端92对应与第一输出端210连接。控制单元93控制第一导电端91和第二导电端92与第一集流体41、第二集流体51和电解液6接通形成回路后,第一导电端91和第二导电端92开始接收电流,从而实现所述电芯组件1获取电能。
控制单元93用以控制第一导电端91和第二导电端92所获取的电能对所述电芯组件1充电或者是对所述电芯组件1进行加热。
控制单元93通过控制第二导电端92与第二集流体51导通或与第一加热层43导通,从而实现控制所述电芯组件1从第一输出端210和第二输出端220获取的电能进行充电或是提供至第一加热层43产生热量进行自加热。
控制单元93通过接收控制信号来控制第二导电端92与第二集流体51导通或是与第一加热层43导通。控制单元93接收的控制信号来自所述电子设备100的处理器,或者是来自所述电子设备100的通信模块,或者来自于传感器件。
如图8所示,当控制单元93接收第一控制信号时,控制单元93将第一导电端91与第一集流体41导通,以及将第二导电端92与第二集流体51导通,并与第一加热层43断开,从而使得第一集流体41、电解液6、第二集流体51连通于第一导电端91和第二导电端92,第一电极片4与第二电极片5分别连接于电源200的正负极,第一电极片4与第二电极片5之间产生电势差,锂离子在电势差作用下于第一电极片4向第二电极片5之间移动,实现所述电池组件10的充电。此时,所述电池组件10进入充电模式。第一控制信号为控制所述电芯组件1充电的控制信号。当然,在其他实施方式中,也可以是第一导电端91与第一加热层43导通,实现第一导电端91经第一加热层43间接与第一集流体41导通,从而实现第一集流体41与第二集流体51产生电势差,实现所述电芯组件1进行充电。
如图9所示,当控制单元93接收第二控制信号时,控制单元93将第一导电端91与第一集流体41导通,以及将第二导电端92与第一加热层43导通,并与第二集流体51断开,从而使得第一集流体41和第一加热层43连通于第一导电端91和第二导电端92,第一加热层43接收第一导电端91和第二导电端92输入的电能,并将电能转换成焦耳热能,使得第一加热层43升温,实现第一加热层43对所述电芯组件1加热。第二控制信号为控制所述电芯组件1的第一电极片4加热升温的控制信号。当然,在其他实施方式中,也可以是第二导电端92连接于第一集流体41与第一导电端91相间隔处,使得第二导电端92经第一集流体41间接与第一加热层43导通,从而实现第一加热层43获取第一导电端91和第二导电端92电能进行升温加热;当然,还可以是第一导电端91直接与第一加热层43导通,第二导电端92连接于第一加热层43与第一导电端91相间隔处,实现第一加热层43直接获取第一导电端91和第二导电端92的电能进行升温加热。
可以理解的是,所述电子设备100在处于低温环境时,所述电子设备100的所述电池组件10内部反应速度下降,即第一活性材料层42和第二活性材料52之间锂离子的脱嵌和入嵌速率下降,导致所述电池组件10的充电速率变慢,无法实现快速充电,影响所述电子设备100使用。在所述电池组件10的安全性方面,所述电池组件10处于低温环境下充电,会导致负极析锂,即所述电池组件10的负极电极上会形成锂晶体。由于所述电池组件10的内部析锂的出现,容易使得所述电池组件10的充电容量降低,而且锂晶体还会刺破隔膜7,导致出现安全事故。本申请的所述电芯组件1利用第一集流体41与第一加热层43导通,当所述电池组件10处于低温环境时,控制单元93控制第一集流体41和第一加热层43与第一导电端91和第二导电端92接通,从而第一加热层43接收电能进行加热,使得所述电芯组件1处于自加热模式,以提高所述电芯组件1温度,从而便于所述电芯组件1在温度达到要求后进行充电,保证所述电池组件10的充电安全性,以及保证所述电池组件10的充电效率。当所述电芯组件1的温度 升温到满足充电要求时,控制单元93控制第一集流体41和第二集流体51分别与第一导电端91和第二导电端92接通,从而实现第一电极片4和第二电极片5产生电势差,即所述电芯组件1处于充电模式。
请参阅图10,在另一实施例中,第二电极片5还设有与第二集流体51导通的第二加热层53。
本实施方式中,第二加热层53与第二集流体51可以直接接触导通,也可以是经导电线缆连接导通,还可以是经耦合元件耦合导通。本实施方式中,以第二加热层53与第二集流体51层叠贴合接触导通进行举例说明。第二加热层53可以选用与第一加热层43相同材质,也可以选用与第一加热层43不同材质。第二加热层53可以设置于第一加热层43相同厚度,也可以设置与第一加热层43不同厚度。第二加热层53可以采用与第一加热层43相同成型工艺形成于第二集流体51上,也可以采用与第一加热层43不同成型工艺形成于第二集流体51上。第二加热层53与第二集流体51相结合的结构可参照第一加热层42与第一集流体41相结合的结构,在此不再赘述。
可选的,第二加热层53为金属片,第二加热层53的材质由铝、铜、镍、铜、钴、钨、锡、铅、铁、银、金、铂或其合金中的至少一种组成。
可选的,第二加热层53的厚度为1mm~40mm。
可选的,第二加热层53通过涂布、压延、辊压、粘接、蒸镀、气相沉积、化学沉积、磁控溅射、化学镀中的至少一种方式形成于第二集流体51上。
当第二集流体51和第二加热层53共同经电源输入电路9及充电电路60处于连接第一输出端210和第二输出端220的回路中,第二加热层53产生焦耳热量,从而实现对所述电芯组件1加热,提高所述电芯组件1的温度,以使得所述电芯组件1的温度达到预设温度后进行充电,保证所述电芯组件1的充电安全性以及充电效率。第二加热层53为导电层,第二加热层53的电阻大于第二集流体51的电阻。当第二加热层53接入电源200的电流时,第二加热层53的发热效率远大于第二集流体51接入电流的发热效率,从而使得第二电极片4的自加热升温效率提高。
可以理解的是,第二加热层53与第二集流体51复合,可以使得第二电极片5接收电流进行升温加热,即所述电芯组件1的负极电极可以接收电流进行升温加热。第一电极片4和第二电极片5分别设置第一加热层43和第二加热层53,即所述电芯组件1的正极电极和负极电极均具有通电升温的功能,使得所述电芯组件1可以根据需要选择第一电极片4加热升温,也可以选择第二电极片5加热升温,以满足所述电芯组件1不同的加热升温需求。当然,若第一电极片4为所述电芯组件1的负极电极,第二电极片5为所述电芯组件1的正极电极,那么也可以是第二电极片5仅设置第二集流体51,即所述电芯组件1仅设置负极电极具有通电加热升温功能。
本实施方式中,控制单元93还电连接第二加热层53。控制单元93可以控制第一导电端91与第一集流体41或第二加热层53导通。当控制单元93控制第一导电端91与第一集流体41导通,则第一导电端91与第二加热层53断开,控制单元93还控制第二导电端92与第二集流体51导通,则第二导电端92与第一加热层43断开,此时若第一导电端91和第二导电端92经充电电路60接入第一输出端210和第二输出端220的通路中,则所述电芯组件1进行充电。当控制单元93控制第一导电端91与第一集流体41断开,则第一导电端91与第二加热层53导通,控制单元93还控制第二导电端92与第二集流体51导通,第二导电端92与第一加热层43断开,此时若第一导电端91和第二导电端92经充电电路60接入第一输出端210和第二输出端220的通路中,则所述电芯组件1可利用第二加热层53通电升温加热。
如图10所示,当控制单元93接收第三控制信号时,控制单元93将第一导电端91与第二加热层53导通,并与第一集流体41断开,以及将第二导电端92与第二极耳导通,并与第一加热层43断开,实现第二加热层53和第二集流体51整体接通第一导电端91和第二导电端92,第二加热层53接收第一导电端91和第二导电端92的电流,并产生焦耳热量,以实现第二电极片5升温加热。第三控制信号为控制所述电芯组件1的第二电极片5升温加热的控制信号。当然,在其他实施方式中,控制单元93接收第三控制信号时,也可以是控制第一导电端91连接于第二集流体51与第二导电端92相间隔处,使得 第一导电端91经第二集流体51间接导通于第二加热层53,从而实现第二加热层53获取第一导电端91和第二导电端92电能进行升温加热;当然,还可以是第二导电端92直接与第二加热层53导通,第一导电端91连接于第二加热层53与第一导电端91相间隔处,实现第二加热层53直接获取第一导电端91和第二导电端92的电能进行升温加热。
请一并参阅图9和图10,第三控制信号与第二控制信号的区别在于用以指示控制单元93控制所述电芯组件1内不同的电极进行升温加热。可以理解的是,第二控制信号以指示控制控制单元93控制所述电芯组件1的正极电极进行升温加热,而第三控制信号以指示控制单元93控制所述电芯组件1的负极电极进行升温加热。
可选的,第二控制信号包括第一电压值和第一时长,控制单元93根据第一电压值控制第一加热层43接入的电压大小,以控制第一加热层43的加热温度大小,控制单元93根据第一时长控制第一加热层43接收电流的时长,以在第一加热层43接收电流的时长达到第一时长时,断开与第一导电端91和第二导电端92的连接。第三控制信号包括第二电压值和第二时长,控制单元93根据第二电压值控制第二加热层53接入的电压大小,以控制第二加热层53的加热温度大小,控制单元93根据第二时长控制第二加热层53接收电流的时长,以在第二加热层53接收电流的时长达到第二时长时,断开与第一导电端91和第二导电端92的连接。
在一种使用场景中,控制单元93控制第一电极片4和第二电极片5分别按照第一加热模式和第二加热模式交替循环加热。具体的,第一电极片4按照第一加热模式加热时,控制单元93控制所述电芯组件1的第一电极片4在第一电压下进行升温加热,并持续升温第一时长后,停止第一电极片4升温加热。第二电极片5按照第二加热模式加热时,控制第二电极片5在第二电压下进行升温加热,并持续升温第二时长后,停止第二电极片5升温加热。第一电压与第二电压可以相同也可以不同,第一时长与第二时长可以相同也可以不同,即第一加热模式与第二加热模式可以相同也可以不同。利用控制单元93控制第一电极片4和第二电极片5循环交替加热,可以使得第一加热层43和第二加热层53循环交替发热,以降低第一加热层43和第二加热层53的损耗,并且保证所述电芯组件1的升温均衡性。
可以理解的是,还有另外的使用场景中,控制单元93可以控制第一电极片4按照第一加热模式加热后,控制第一电极片4和第二电极片5开始经第一导电端91和第二导电端92接入充电电路60及电源200进行充电。待第一电极片4和第二电极片5充电一定时长后,控制单元93控制第二电极片5按照第二加热模式加热,待第二电极片5加热一定时长后再控制第一电极片4和第二电极片5开始经第一导电端91和第二导电端92接入充电电路60进行充电。本申请实施方式中,对于控制单元93控制第一加热层43加热或者控制第二加热层53加热的加热方式并不限定,以及对控制单元93控制第一集流体41和第二集流体51接收电流进行充电的充电方式也不限定。
进一步地,在图10的实施例中,控制单元93还可以控制第一导电端91与第一集流体41及第二加热层53导通,以及将第二导电端92与第一加热层43及第二集流体51导通,以使得第一加热层43和第二加热层53并联连接于第一导电端91和第二导电端92,而且第一集流体41和第二集流体51接通第一导电端91和第二导电端92。所述电芯组件1可以同时利用第一加热层43和第二加热层53进行升温加热,并且同时还可以使得第一电极片4和第二电极片5之间产生电势差而实现充电,也就是说所述电芯组件1可以一边利用第一电极片4和第二电极片5加热,一边利用第一电极片4和第二电极片5进行充电。
请参阅图11,当控制单元93接收四控制信号时,控制单元93将第一导电端91与第一集流体41及第二加热层53导通,以及将第二导电端92与第一加热层43及第二集流体51导通。第四控制信号与第一控制信号的区别在于,可以指示控制单元93控制所述电芯组件1加热升温与充电同时进行,以满足所述电芯组件1不同的使用模式。
进一步地,请参阅图12,在图9的实施例中,所述电芯组件1包括与第一集流体41连接的第一极耳44,以及与第一集流体41或/和第一加热层43连接的第二极耳45;所述电芯组件1还包括与第二集 流体51连接的第三极耳54,控制单元93电连接第一极耳44、第二极耳45和第三极耳54,以控制第一极耳44与第一导电端91断开或导通,以及控制第二极耳45与第二导电端92断开或导通,以及控制第二导电端92与第三极耳54断开或导通。
本实施方式中,第一极耳44的一端与第一集流体41固定连接,第一极耳44的另一端与控制单元93电连接。第一极耳44可以是经导电线缆与控制单元93电连接。第二极耳45的一端可以是与第一集流体41固定连接,也可以是与第一加热层43固定连接,还可以是既与第一集流体41固定连接又与第一加热层43固定连接。第二极耳45的另一端与控制单元93电连接,第二极耳45可以是经导电线缆与控制单元93电连接。第三极耳54的一端与第二集流体51固定连接,另一端与控制单元93电连接。第三极耳54可以经导电线缆与控制单元93电连接。
利用第一极耳44和第三极耳54分别与第一集流体41和第二集流体51固定连接,控制单元93可以将第一极耳44和第三极耳54分别与第一导电端91和第二导电端92导通,从而使得第一极耳44和第三极耳54分别经第一导电端91和第二导电端92接通电源200,也就是说控制单元93控制第一极耳44接通第一导电端91,以及控制第三极耳54接通第二导电端92,第一极耳44和第三极耳54分别构成所述电芯组件1的正极极耳和负极极耳。控制单元93可以控制第二极耳45与第二导电端92导通,从而使得第二极耳45与第一极耳44共同配合将第一加热层43接通至电源200,以使得第一加热层43接收电流进行升温加热。第二极耳45作为第一电极片4的独立极耳,以在第一电极片4需要接入电流进行升温加热时,与第一极耳44分别形成负极端子和正极端子。
可选的,第一极耳44、第二极耳45和第三极耳54均采用导电材质。例如,第一极耳44的材质为铝(Al)金属,第二极耳45的材质为镊金属,第三极耳54的材质为铜金属。
可选的,第一极耳44与第一集流体41焊接,第二极耳45与第一集流体41或/和第一加热层43焊接,第三极耳54与第二集流体51焊接。
可选的,上述的极耳与集流体及加热层之间连接方式包括但不限于超声焊接、激光焊接、铆接、导电胶电连接等等。
可以理解的是,利用第一极耳44和第三极耳54分别与第一集流体41和第二集流体51焊接,使得所述电芯组件1在充电时,第一集流体41和第二集流体51优先产生电势差,进而使得充电效率提高,而避免第一加热层43接入第一导电端91和第二导电端92,以减小所述电芯组件1在充电状态时的内阻。
在图9的实施例中,如图13所示,第一电极片4设置两层第一集流体41和一层第一加热层43,一层第一加热层43设置于两层第一集流体41之间。两层第一集流体41背离第一加热层43的一面均附着有第一活性材料层42,以增加第一电极片4的表面利用率。第一加热层43完全覆盖于第一集流体41背离第一活性材料层42层一面,使得第一加热层43升温加热后,第一电极片4升温加热均衡。
第一加热层43与两层第一集流体41可以是一体形成,将第一加热层43贴合于两层第一集流体41后,再将两层第一集流体41和一层第一加热层43进行辊压,以使得第一加热层43与第一集流体41结合更加稳固,以保证第一电极片4的可靠性。当然,也可以是在第一加热层43的两面分别涂布导电胶,然后两层第一集流体41分别经导电胶贴合于第一加热层43的两面。还可以是在第一集流体41背离第一活性材料层42一侧镀设或真空溅射出第一加热层43,然后再将另一第一集流体41贴合于第一加热层43上。
可选的,如图14所示,第一极耳44与其中一个第一集流体41焊接,第二极耳45与第一加热层43焊接。具体的,其中一个第一集流体41设有镂空孔,镂空孔将第一加热层43部分露出,第二极耳45经镂空孔焊接于第一加热层43露出于镂空孔的部分。
可选的,第一极耳44和第二极耳45均焊接于同一个第一集流体41上,第一极耳44与第二极耳45间隔设置。
可选的,第一极耳44和第二极耳45分别焊接于两个第一集流体41上,第一极耳44与第二极耳45间隔设置。
在另一个实施例中,请参阅图15,与图14所示实施例大致相同,不同的是,所述电芯组件1包括两个第一极耳44,两个第一极耳44分别固定于两个第一集流体41背离第一加热层43一面。两个第一极耳44相对第一集流体41凸出的部分固定连接在一起,使得两个第一极耳44共同构成第一电极片4的正极极耳。
可以理解的是,所述电芯组件1也可以设置两个、或三个、或三个以上的第二极耳45,两个、或三个、或三个以上第二极耳45可以与两层第一集流体41和一层第一加热层43以任意方式组合固定连接,第二极耳45只需满足与第一极耳44间隔设置,两个、或三个、或三个以上的第二极耳45共同固定在一起,最终形成为第一加热层43接入电流的导电极耳。当然,在其他实施方式中,所述电芯组件1也可以是设置两个或两个以上的第一极耳44,两个或两个以上的第一极耳44与两层第一集流体41和一层第一加热层43以任意方式组合固定连接,两个、或两个三个以上的第一极耳44共同固定在一起,最终形成为第一电极片4的正极极耳,以及形成为第一加热层43接入电流的另一导电极耳。
本申请的实施方式中,第一极耳44的数量和第二极耳45的数量并不限定,第一极耳44与第一集流体41或/和第一加热层43的连接方式,以及第二极耳45与第一集流体41或/和第一加热层43的连接方式并不限定。
在另一个实施例中,请参阅图16,与图13所示实施例大致相同,不同的是,两层第一集流体41之间设置多层第一加热层43,多层第一加热层43间隔设置,控制单元93控制第二导电端92与其中一层或多层第一加热层43导通。
具体的,所述电芯组件1设有多个第二极耳45,多个第二极耳45相互间隔设置,多个第二极耳45分别对应固定连接多个第一加热层43,相邻两个第一加热层43之间设置有绝缘层431。当控制单元93接收第二控制信号时,第二控制信号包括加热层确定信号,控制单元93根据加热层确定信号,确定其中一个或者多个第二极耳45与第二导电端92导通,实现确定其中的一个或多个第一加热层43接入第一导电端91和第二导电端92,使得所述电芯组件1可以根据需要选择其中的一个或多个接收电流进行加热升温,以满足所述电芯组件1多种加热升温模式。例如,当所述电芯组件1处于极寒环境中,所述电芯组件1需要快速升温,则控制单元93可以控制其中的多个第二极耳45与第二导电端92导通,进而使得其中的多个第一加热层43同时接入第一导电端91和第二导电端92,以满足多个第一加热层43同时加热升温,使得所述电芯组件1可以快速温度升高。又例如,当所述电芯组件1处于略微低温环境中,过高的升温速率容易对所述电芯组件1造成损伤,则控制单元93可以控制其中的一个第二极耳45与第二导电端92导通,进而使得其中一个第一加热层43升温加热,以使得所述电芯组件1可以缓慢升温。
可以理解的是,多个第一加热层43分别经第一极耳44和第二极耳45接入第一导电端91和第二端中,可以采用多个第一加热层43并联连接的方式接入第一导电端91和第二导电端92,也可以是采用串联连接的方式接入第一导电端91和第二导电端92。
请参阅图17,在另一个实施例中,与图13所示实施例大致相同,不同的是,第一电极片4设置一层第一集流体41和一层第一加热层43,第一加热层43层叠于第一集流体41的一面。利用第一电极片4设置一层第一集流体41和一层第一加热层43,从而减小第一电极片4的生产成本。具体的,第一电极片4还设置防护层46,防护层46贴合于第一加热层43背离第一集流体41一面,第一加热层43与第一集流体41贴合。防护层46对第一加热层43进行防护,以保证第一加热层43的安全性,并且防护层46还可增加第一电极片4的耐久度,防止第一电极片4刺破,增加所述电芯组件1的安全性。
请参阅图18,在另一个实施例中,与图13所示实施例大致相同,不同的是,第一电极片4设置一层第一集流体41和一层第一加热层43,第一加热层43设置于第一集流体41内。利用第一加热层43集成于第一集流体41内,使得第一集流体41的内部可接收电流,第一集流体41整体可产生热量升温,且保证了第一电极片4的纤薄性能。第一集流体41相对的两面均设有第一活性材料层42,以增大第一集流体41的表面利用率。
请参阅图19,在另一个实施例中,与图13所示实施例大致相同,不同的是,第一电极片4设置第一加热层43与第一集流体41间隔设置,第一加热层43与第一集流体41之间设有导热导电层430,第一导热导电层430用以从第一集流体41传输电流至第一加热层43,或用以从第一加热层43传输电流至第一集流体41,并且用以将第一加热层43的热量均衡传递至第一集流体41。导热导电层430完全覆盖第一集流体41。当第一加热层43接收电流产生热量后,导热导电层430可均衡地将传导至第一集流体41的各个位置,使得第一集流体41均衡受热,也使得所述电芯组件1各个区域均衡升温。若采用第一极耳44和第二极耳45分别连接第一集流体41和第一加热层43的结构方式,则当控制单元93控制第一极耳44和第二极耳45分别与第一导电端91和第二导电端92接通时,导热导电层430将第一集流体41和第一加热层43导通,使得第一极耳44、第一集流体41、导热导电层430、第一加热层43、第二极耳形成第一导电端91和第二导电端92之间的回路,从而使得第一加热层43实现接收电流产生热量。若采用第一极耳44和第二极耳45均连接于第一加热层43,则当第一极耳44和第二极耳45接通电源200,导热导电层430并不负责传输电流至第一集流体41,只负责传输热量至第一集流体41,而当第一极耳44和第三极耳54接通电源200,导热导电层430负责从第一加热层43传输电流至第一集流体41,以使第一集流体41与第二集流体51产生电势差,实现所述电芯组件1充电。若采用第一极耳44和第二极耳45均连接至第一集流体41的结构方式,则当第一极耳44和第二极耳45接通电源200,导热导电层430从第一集流体41传输电流至第一加热层43,实现第一加热层43接通电源200产生热量。可选的,导热导电层430为石墨层、或铜层、或银层、或镁铝合金层。
可以理解的是,本申请保护一种电极片,电极片的结构参照本申请实施方式中的第一电极片4,在此不再赘述。该电极片除了可应用于本申请实施方式中的所述电芯组件1,还可以应用于其他电子器件,该电子器件可以利用电极片通电也可以利用电极片进行发热,且该电极片发热均衡。例如,该电子器件为应用于穿戴设备的电疗按摩片或热敷电磁片等器件。
本申请实施方式中的第一电极片4的第一集流体41与第一加热层43层叠相结合的结构可以理解为一种复合集流体结构,也可以理解为集流体与加热层的组装结构。
进一步地,在图9所示的实施例中,请参阅图20,控制单元93设有第一开关单元931,第一开关单元的一端连接第二导电端92,一端连接第一加热层43,还有一端连接第二集流体51。
可选的,第一开关单元931为单刀双掷模拟开关,以减少所述电池组件10的器件数量,节省成本及减小体积。第一开关单元931与保护电路3可以设于同一电路板上,以提高所述电池组件10的器件集中性和提高电路板的利用率。
具体的,第一开关单元931具有第一端9311、第二端9312及第三端9313,第一开关单元931的第一端9311连接第二导电端92。第一开关单元931的第二端9312连接第二极耳45。第一开关单元931的第三端9313连接第三极耳54。第一开关单元931用于接收第一控制信号并在第一控制信号的作用下导通第二导电端92与第三极耳54;或者,第一开关单元931用于接收第二控制信号并在第二控制信号的作用下导通第二导电端92与第二极耳45。
当第一开关单元931的第一端9311与第二端9312导通,且第一开关单元931的第一端9311与第三端9313断开时,第二导电端92与第二极耳45连接,第二导电端92与第三极耳54断开,此时,第一导电端91、第一极耳44、第一加热层43、第二极耳45和第二导电端92之间形成充电通路,换言之,第一加热层43接入电源200的正极和负极,第一加热层43在电流流过时产生焦耳热。此时,所述电池组件10进入自加热模式。
当第一开关单元931的第一端9311与第二端9312断开,且第一开关单元931的第一端9311与第三端导通时,第二导电端92与第一极耳44连接,第二导电端92与第三极耳54断开,此时,第一导电端91、第一极耳44、第一电极片4、第二电极片5、第三极耳54及第二导电端92之间形成充电通路,第一电极片4和第二电极片5分别电连接电源200的正极和负极,第一电极片4与第二电极片5之间产生电势差,锂离子在电势差作用下于第一电极片4与第二电极片5之间移动,实现所述电池组件10的 充电。此时,所述电池组件10进入充电模式。
第一种场景中,在低于所述电芯组件1的正常充电温度(例如,低于10℃)下,所述电芯组件1受到低温影响而导致内部的反应速度下降等原因不能实现快速充电,从而影响到电池的正常工作。所以通过使第一开关单元931导通第二导电端92与第二极耳45及断开第二导电端92与第三极耳54,以使第一加热层43电连接电源200的正负极,第一加热层43产生焦耳热,如此,电芯内部产生热量,可快速提高电芯内部的温度,进而提高所述电芯组件1内部的反应速度,提高电池的充电速率。
第二种场景中,在所述电芯组件1的正常充电温度下,在进行充电前,通过使第一开关单元931导通第二导电端92与第二极耳45及断开第二导电端92与第三极耳54,以使第一加热层43电连接电源200的正负极,如此,电芯内部产生热量,可有效地提高充电倍率。例如,电芯正常快充的充电倍率为1.5C(用来表示电池充放电能力倍率),加热到50℃后开始充电倍率为3C快充模式。
换言之,当充电电路60接收充电指令时,在所述电芯组件1进入充电阶段前,控制所述电芯组件1进入自加热模式,如此,在低温时唤醒所述电芯组件1内部的反应速度,在正常充电温度时可提高所述电芯组件1内部的反应速度,皆可极大地提高所述电芯组件1的充电倍率。
本申请实施例提供的所述电芯组件1,通过在第一电极片4的第一集流体41上增设第一加热层43,并利用第一开关单元931以选通第二极耳45与第二导电端92或第三极耳54与第二导电端92,以使所述电芯组件1能够切换至自加热模式或充电模式。在所述电芯组件1进入充电模式前,控制所述电芯组件1进入自加热模式,可有效地解决在低温(低于所述电芯组件1的正常充电温度)下的所述电芯组件1内部反应速度低的问题,还可以在非低温下进一步提高充电速率;如此,本申请在对于所述电芯组件1结构改变极小,和所述电芯组件1的增加体积极小的情况下,不仅有效地解决低温下的充电速率低或无法正常充电的问题,还可以有效地突破所述电芯组件1设计的额定充电倍率,大幅度提升所述电芯组件1的充电速度。
请参阅图21,在另一个实施例中,与图20所示实施例大致相同,不同的是,控制单元93包括第一开关9301和第二开关9302。第一开关9301的一端用于连接第二导电端92。第一开关9301的另一端连接第二极耳45。可选的,第一开关9301可以为三极管开关或场效应管开关。
第二开关9302的一端用于连接第二导电端92。第二开关9302的另一端连接第三极耳54。可选的,第二开关9302可以为三极管开关或场效应管开关。可选的,第一开关9301、第二开关9302与保护电路3设于同一电路板上,以使所述电池组件10的器件集中设置。
通过将第一开关9301和第二开关9302相互独立,以分别控制第二极耳45与第二导电端92导通和第三极耳54与第二导电端92的导通,提高选通准确性,减少选通误差。
本实施方式中,控制单元93可以与保护电路3设于同一个电路板上,以使所述电池组件10的器件集中设置,便于器件成型和节省空间。控制单元93为集成芯片。控制单元93设有控制电路930,控制电路930用以根据控制单元93所接收的控制信号选通第二导电端92与第二极耳45或第二导电端92与第三极耳54。
在图21所示的实施例中,控制电路930用以控制第一开关单元931选通第二导电端92与第二极耳45或选通第二导电端92与第三极耳54。控制单元93在接收第一控制信号后,控制电路930根据第一控制信号控制第一开关单元931选通第二导电端92与第三极耳54,此时所述电芯组件1进入充电模式。控制电路930根据第二控制信号控制第一开关单元931选通第二导电端92与第二极耳45,此时所述电芯组件1进入自加热模式。
控制单元93连接第一开关9301和第二开关9302。如图21所示,控制单元93接收第一控制信号,控制电路930用以根据第一控制信号控制第一开关9301断开及第二开关9302导通,此时所述电芯组件1进入充电模式。如图22所示,控制单元93接收第二控制信号,控制电路930用以根据第二控制信号控制第一开关9301导通及第二开关9302断开,此时所述电芯组件1进入自加热模式。
举例而言,第一开关9301和第二开关9302皆为三极管。第一开关9301和第二开关9302的类型不 同。例如,第一开关9301为N型三极管,且第二开关9302为P型三极管。或者,第一开关9301为P型三极管,且第二开关9302为N型三极管。本实施例中,第一开关9301包括发射极、基极和集电极。第一开关9301的基极连接控制电路930,第一开关9301的发射极连接第二导电端92,第一开关9301的集电极连接第二极耳45。第二开关9302包括发射极、基极和集电极。第二开关9302的基极连接控制电路930,第二开关9302的集电极连接第二导电端92,第二开关9302的发射极连接第三极耳54。
可以理解的是,如图22所示,当控制单元93接收到第一控制信号时,控制电路930产生高电平信号并将高电平信号发送至第一开关9301的基极和第二开关9302的基极,该高电平信号使第一开关9301的发射极与集电极断开,及第二开关9302的发射极与集电极导通,此时,所述电池组件10进入充电模式。第一控制信号为所述电池组件10在与电源200的导电端接通后,所述电池组件10满足充电条件的状态下通过所述电子设备100的处理器所接受的信号。其中,所述电池组件10满足充电条件为所述电池组件10所处的环境温度符合所述电池组件10充电安全性要求。
如图23所示,当控制单元93接收到第二控制信号时,控制电路930产生低电平信号,并将低电平信号发送至第一开关9301的基极和第二开关9302的基极,该低电平信号使第二开关9302的发射极与集电极断开,及第一开关9301的发射极与集电极导通,此时,所述电池组件10进入自加热模式模式。第二控制信号为所述电池组件10在与电源200的导电端接通后,所述电池组件10在不满足充电条件的状态下通过所述电子设备100的处理器所接收的信号。其中,所述电池组件10不满足充电条件为所述电池组件10所处的环境温度不符合所述电池组件10充电安全性要求。
进一步地,请参阅图24,所述电芯组件1还包括温度传感器80。温度传感器80连接控制单元93。温度传感器80用于检测到所述电芯组件1的温度在第一预设温度阈值时发送第一控制信号至控制单元93,以及检测到所述电芯组件1的温度在第一预设温度阈值时发送第二控制信号至控制单元93。
可选的,温度传感器80设于所述电子设备100的主板上,且靠近于所述电芯组件1所在的位置。控制单元93根据第一控制信号控制第一开关9301断开及第二开关9302导通。
第一预设温度阈值为保证所述电芯组件1充电速率的温度。一般地,在环境温度过低时,所述电芯组件1的容量降低,电压下降,特别是在持续充电的过程中锂离子容易在负极沉积而形成极化电压,使所述电芯组件1失去电活性,导致所述电芯组件1在低温环境下充进所述电芯组件1的电量较少,因此所述电芯组件1在预设的温度阈值环境下,处于正常充电状态且充电速率不受影响。可选的,第一预设温度阈值为大于X小于Y,X在10℃~12℃的范围内,Y在55℃~80℃的范围内。
当温度传感器80检测到所述电芯组件1的温度满足第一预设阈值时,温度传感器80经所述电子设备100的处理器发送第一控制信号至控制单元93,即所述电子设备100的处理器发送第一控制信号至控制单元93。控制单元93根据第一控制信号控制第一开关9301断开及第二开关9302导通,以使所述电芯组件1进入充电模式,进而使得所述电芯组件1正常充电。
温度传感器80检测到所述电芯组件1的温度满足第二预设温度阈值时发送第二控制信号至控制单元93。第二预设温度阈值为小于或等于X。
控制单元93用于根据第二控制信号控制第一开关9301导通及第二开关9302断开,以使第一电极片4的第一加热层43开始发热,从而使得所述电芯组件1处于自加热模式,所述电芯组件1温度开始上升,以使所述电芯组件1温度上升至第一预设温度阈值后,所述电芯组件1可以保证充电安全性以及充电速率,然后再断开第二开关9302及导通第一开关9301,开始正常的充电模式(或快充模式)。
温度传感器80还用于检测到所述电芯组件1的温度在第三预设温度阈值时,发送停止加热信号至控制单元93,控制单元93根据停止加热信号控制第一开关9301断开,以使得所述电芯组件1停止自加热。第三预设温度为大于或等于Y,Y为影响所述电芯组件1充电性能的高温临界温度。例如,Y的取值为60℃。当温度传感器80检测到所述电芯组件1的温度大于或等于60℃时,温度传感器80发送停止加热信号至控制单元93。控制单元93根据停止加热信号控制第一开关9301断开,以使所述电芯组件1进入停止加热模式。本实施例中,由于在充电模式前,所述电芯组件1的温度已上升至60℃,有效地 解决了低温下充电效率低的问题,还可以使得所述电芯组件1的充电速率较高。
可选的,所述电芯组件1还包括充电检测单元110。可选的,充电检测单元110可以与保护电路3设于同一电路板上,充电检测单元110还可以设于所述电子设备100的主板上。
充电检测单元110连接控制单元93。充电检测单元110用于检测所述电芯组件1与电源200的接通状态,并在所述电芯组件1与电源200的接通时发送接通指令至控制单元93,控制单元93根据接通指令及第一控制信号控制第一开关9301断开及第二开关9302导通,以使所述电芯组件1进入充电模式;控制单元93根据接通指令及第二控制信号控制第一开关9301导通第二开关9302断开,以使所述电芯组件1进入自加热模式。
换言之,在所述电芯组件1接通电源200时,充电检测单元110检测到所述电芯组件1从未接通状态转变成接通状态,充电检测单元110发送接通指令至控制单元93,控制单元93控制所述电芯组件1进入待加热或待充电模式。
如此,当所述电芯组件1已经处于正常的充电温度区间(或快充温度区间)内时,即控制单元93接收到第一控制信号,控制单元93导通第一开关9301及断开第二开关9302,让电流回路加热所述电芯组件1,使所述电芯组件1温度上升到更高的温度区间,然后再导通第二开关9302及断开第一开关9301,以开启更大的充电倍率,比如在室温下所述电芯组件1正常的快充速率为1.5C,加热到50℃后开始快充速率为3C的快充模式。
请参阅图25,是一0.7C所述电芯组件11容量为5100mAh在常温25℃下以0.7C充电和加热到50℃后以1.5C倍率充电的曲线图。从图中可以看出常温满充时间为155min,而加热后提升倍率充电时间缩短至88min,可见加热后电池的充电速度可以大幅度提升。
进一步地,请参阅图26,在图10所示实施例中,所述电芯组件1还包括与第二集流体51或/和第二加热层53连接的第四极耳55,控制单元93还用以控制第四极耳55与第一导电端91断开或导通。
本实施方式中,第四极耳55的一端可以是与第二集流体51固定连接,也可以是与第二加热层53固定连接,还可以是既与第二集流体51固定连接又与第二加热层53固定连接。第四极耳55的另一端与控制单元93电连接,第四极耳55可以是经导电线缆与控制单元93电连接。控制单元93可以控制第三极耳54与第二导电端92导通,以及控制第四极耳55与第一导电端91导通,从而使得第三极耳54与第四极耳55共同配合将第二加热层53接通至电源200,以使得第二加热层53接收电流进行升温加热,进而所述电芯组件1处于自加热模式。第四极耳55作为第二电极片5的独立极耳,以在第二电极片5需要接入电流进行升温加热时,与第三极耳54分别形成负极端子和正极端子。
可选的,第四极耳55材质与第二极耳45材质相同,或者与第一极耳44材质相同。
可选的,第四极耳55与第二集流体51或/和第二加热层53焊接。
在图26所示实施例中,第四极耳55与第二电极片5的连接方式可参考第二极耳45与第一电极片4的连接方式。本申请实施方式中,对第四极耳55的数量并不限定,对第四极耳55与第二集流体51或/和第二加热层53连接方式也不限定,第二电极片5设置第二集流体51和第二加热层53的结构与第一电极片4设置第一集流体41和第一加热层43的结构类似,在此并不作赘述。
进一步地,请参阅图27,在图26所示实施例中,控制单元93包括第二开关单元932。第二开关单元932的一端用于连接第一导电端91。第二开关单元932的另两端分别连接第一极耳44和第四极耳55。第二开关单元932用于接收控制信号并在控制信号的作用下导通第一导电端91与第一极耳44;或者,第二开关单元932用于接收控制信号并在控制信号的作用下导通第一导电端91与第四极耳55。
第二开关单元932的一端连接保护电路3。第二开关单元932经保护电路3连接电源200的第一输出端210。进一步地,第二开关单元932与保护电路3可以设于同一电路板上,以提高所述电池组件10的器件集中性和提高电路板的利用率。
请参阅图27,第二开关单元932的另两端分别连接第一极耳44和第四极耳55。第二开关单元932用于接收控制信号并在控制信号的作用下导通第一导电端91与第一极耳44或者导通第一导电端91与 第四极耳55。可选的,第二开关单元932可以为单刀双掷模拟开关,以减少所述电芯组件1的器件数量,节省成本及减小体积。
请参阅图28,与图27所示实施例大致相同,不同的是,控制单元93包括第三开关9303和第四开关9304。第三开关9303的一端和第四开关9304的一端皆用于连接第一导电端91。第三开关9303的另一端连接第一极耳44。第四开关9304的另一连接第四极耳55。可选的,第三开关9303可以为三极管开关或场效应管开关。可选的,第四开关9304可以为三极管开关或场效应管开关。可选的,第三开关9303、第四开关9304与保护电路3设于同一电路板上,以使器件集中设置。
通过将第三开关9303和第四开关9304相互独立,以分别控制第一极耳44与第一导电端91的导通和控制第四极耳55与第一导电端91的导通,提高选通准确性,减少选通误差。
请参阅图29,第三开关9303和第四开关9304皆连接控制单元93。第二控制信号用以指示控制单元93控制第三开关9303导通且第四开关9304断开,以及控制第一开关9301导通且第二开关9302断开,以使第一导电端91与第一极耳44接通,且第二导电端92与第二极耳45接通,此时,使得第一电极片4的第一加热层43经第一导电端91和第二导电端92接入电源200的电流发热,使得所述电芯组件1进入自加热模式。
请参阅图30,第三控制信号用以指示控制单元93控制第三开关9303断开且第四开关9304导通,以及控制第一开关9301断开且第二开关9302导通,以使第一导电端91与第四极耳55接通,且第二导电端92与第三极耳54接通,此时,使得第二电极片5的第二加热层53经第一导电端91和第二导电端92接入电源200的电流发热,使得所述电芯组件1进入自加热模式。
可选的,第三开关9303和第四开关9304皆为三极管。第三开关9303与第一导电端91、控制单元93、第三极耳54的连接方式可以参考第一开关9301与第二导电端92、控制单元93及第二极耳45的连接方式,在此不再赘述。同样的,第四开关9304与第一导电端91、控制单元93、第四极耳55的连接方式可以参考第二开关9302与第二导电端92、控制单元93及第三极耳54的连接方式,在此不再赘述。
本申请实施例通过增设极耳和开关,使得第一电极片4的第一加热层43和第二电极片5的第二加热层53皆能独立的自加热。其中,控制第一电极片4的第一加热层43、第二电极片5的第二加热层53自加热包括但不限于以下的实施方式。
请参阅图29,在第一加热阶段内,控制单元93控制第一开关9301导通、第二开关9302断开、第三开关9303导通、第四开关9304断开,此时第一电极片4的第一加热层43可经第一导电端91和第二导电端92接入电源200进行自加热。
请参阅图30,在第二加热阶段内,控制单元93控制第一开关9301断开、第二开关9302导通、第三开关9303断开及第四开关9304导通,此时第二电极片5的第二加热层53可经第一导电端91和第二导电端92接入电源200进行自加热。第一加热阶段与第二加热阶段之间具有时间间隔。进一步地,可以交替控制第一电极片4的第一加热层43和第二电极片5的第二加热层53自加热。
换言之,分时控制第一电极片4和第二电极片5自加热,一方面可以提高所述电芯组件1发热的均匀性;另一方面可以使第一电极片4和第二电极片5使用频率均衡,提高电池的稳定性。
本申请对于第一电极片4和第二电极片5的具体结构不做具体的限定,本申请通过以下的举例对于第一电极片4和第二电极片5的结构进行说明,当然,本申请提供的第一电极片4和第二电极片5的结构包括不限于以下的实施方式。
可选的,请参阅图31,第一电极片4和第二电极片5均大致呈矩形板件状。第一电极片4包括相对设置的两个长边401、及连接在两个长边401、之间的两个短边402。每个长边401的长度皆大于或等于每个短边402的长度。
在第一种可能的实施方式中,请参阅图30,第一极耳44与第二极耳45分别位于两个短边402。
进一步地,第一极耳44与第二极耳45大致呈对角设置,如此,可以增长第一极耳44与第二极耳45之间的导电路径,进而提高电流经过第二加热层53的内阻值,进而增加第一加热层43的发热量,提 高所述电芯组件1的升温效率。
在第二种可能的实施方式中,请参阅图32,第一极耳44与第二极耳45分别设于两个长边401。进一步地,第一极耳44与第二极耳45大致呈对角设置,与上一实施方式相类似的,如此可以增长第一极耳44与第二极耳45之间的导电路径,进而提高电流经过第一加热层43的内阻值,进而增加第二加热层53的发热量,提高所述电芯组件1的升温效率。
在第三种可能的实施方式中,请参阅图33,第一极耳44和第二极耳45位于一个长边401上且分别靠近两个短边402。
本实施方式相对于上两个实施方式而言,实现了第一极耳44与第二极耳45设于同一边,如此,连接第一极耳44的引线和连接第二极耳45的引线皆可以从该长边401引出,以避免引线杂乱。同时,将第一极耳44与第二极耳45分别靠近两个短边402,可以有效地增大第一极耳44与第二极耳45之间的导电路径,进而增加第一加热层43的发热量,提高所述电芯组件1的升温效率。
在第四种可能的实施方式中,请参阅图34,第一极耳44和第二极耳45位于一个短边402且分别靠近两个长边401。
本实施方式与第三种实施方式相类似地,实现了第一极耳44与第二极耳45设于同一边,如此,连接第一极耳44的引线和连接第二极耳45的引线皆可以从该短边402引出,以避免引线杂乱。同时,将第一极耳44与第二极耳45分别靠近两个长边401,可以有效地增大第二极耳45与第三极耳54之间的导电路径,进而增加第二加热层53的发热量,提高所述电芯组件1的升温效率。
以上为第一极耳44和第二极耳45设置在第一电极片4上的实施方式,第三极耳54和第四极耳55设置在第一电极片4上的实施方式可以参考上述的实施方式,在此不再赘述。
本申请实施例对于所述电芯组件1的结构形式不做具体的说明,本申请提供的所述电芯组件1包括但不限于以下的实施方式。
在一种可能的实施方式中,请参阅图35,本实施例提供了一种卷绕式电芯结构。所述电芯组件1还包括层叠设于第一电极片4与第二电极片5之间的隔膜7。第一电极片4、隔膜7和第二电极片5共同卷绕后形成所述电芯组件1。第一电极片4、第二电极片5和隔膜7卷绕后封装于封装层8。第一电极片4的长边401为卷绕边。第一极耳44和第二极耳45位于一个长边401上且分别靠近两个短边402。进一步地,第一极耳44和第二极耳45可靠近封装层8的封口。第三极耳54和第四极耳55位于第二电极片5的卷绕边,并且靠近封装层8的封口。如此,第一极耳44、第二极耳45、第三极耳54和第四极耳55可通过较短的电连接线连接至保护电路3,减小所述电芯组件1内部的线路长度。
请参阅图36,在另一种可能的实施方式中,本实施例提供了一种叠片式电芯结构。,所述电芯组件1设置多个第一电极片4、多个第一极耳44和至少一个第二极耳45。多个第一电极片4相互层叠且间隔设置。每个第一极耳44对应连接每一个第一电极片4。多个第一极耳44并联形成所述电芯组件1的正极极耳。
请参阅图36,所述电芯组件1设置多个第二电极片5、多个第三极耳54。每个第二电极片5设于相邻的两个第一电极片4之间。所述电芯组件1还包括多个隔膜7,每相邻的第一电极片4与第二电极片5之间设有一个隔膜7。每个第三极耳54对应连接每一个第二电极片5。多个第三极耳54并联形成所述电芯组件1的负极极耳。可选的,请参阅图36,第二极耳45的数量为多个。多个第二极耳45并联连接。结合上述实施方式中,多个第二极耳45并联后通过第一开关9301连接第二导电端92,多个第一极耳44并联后通过第三开关9303连接第一导电端91。当控制单元93控制第一开关9301导通、第二开关9302断开、第三开关9303导通及第四开关9304断开时,使得的多个第一电极片4的第一加热层43接通电流后发热,以增加所述电芯组件1的温度。
可选的,请参阅图37,第二极耳45的数量为一个。一个第二极耳45设于多个第一电极片4其中的任意一个第一电极片4上。换言之,其中一个第一电极片4设有第一极耳44和第二极耳45。控制单元93控制第一开关9301导通、第二开关9302断开、第三开关9303导通及第四开关9304断开,电流流通 其中一个第一电极片4的第一加热层43,该第一电极片4的第一加热层43发热,相较于多个第一极片发热,本实施方式提供的一个第一电极片4为单片发热,单个电极片的内阻比多个第一电极片4相并联的子电极片的内阻大,从而单个子电极片的发热量大于多个第一电极片4相并联的电极片的发热量,进而实现更快的升温。
可选的,请参阅图38,第二极耳45的数量为多个。第一开关9301包括多个子开关9300。每个子开关9300皆连接一个第二极耳45与第二导电端92。子开关9300用于接收控制信号并在控制信号的作用下导通或断开。通过控制多个子开关9300的通断,可以控制在所述电芯组件1自加热时连接于第一导电端91与第二导电端92之间的第一电极片4的数量,从而控制所述电芯组件1自加热的内阻,调节所述电芯组件1自加热的升温速度。
请参阅图39,在另一实施例中,与图36所示实施例大致相同,不同的是,相邻的两个第一电极片4中设有第五开关9305,第五开关9305的一端连接其中一个第一电极片4的第二极耳45,另一端连接另一个电极片的第一极耳44。第五开关9305用以控制相邻两个第一电极片4的第一极耳44与第二极耳45接通,第五开关9305还连接控制电路930,以接收控制电路930的控制信号。当控制单元93接收控制信号,以使多个第一电极片4之间的第五开关9305均导通相邻的第一极耳44和第二极耳45,使得多个第一电极片4串联,通过控制单元93将首端的第一电极片4的第一极耳44经第三开关9303导通第一导电端91,并将末端第一电极片4的第二极耳45经第一开关9301导通第二导电端92,使得多个第一电极片4的第一加热层43依次串联后接入第一导电端91和第二导电端92。
如此,多个第一电极片4的第一加热层43串联发热,相对于一个第一加热层43或多个并联的第一加热层43发热而言,本实施方式提供的多个第一加热层43串联的内阻更大,使得所述电芯组件1的自加热的效率更高,升温更快。
上述是对于第第一电极片4的第一加热层43经第一导电端91和第二导电端92接入电源200的结构改进,第二电极片5第二加热层53经第一导电端91和第二导电端92接入电源200的结构改进可以参考第第一电极片4的第一加热层43的结构改进,在此不再赘述。
所述电芯组件1还包括加热件。加热件连接于第二极耳45与第一开关单元931之间。加热件可以为通电状态下发热效果较好的材质,例如,金属电热丝、石墨烯、正温度系数热敏电阻(positive temperature coefficient,PTC)等等。
通过增设加热件,在控制单元93控制第一电极片4的第一加热层43自加热时,加热件通电,如此,可以使得加热件与第二电极片5的第一加热层43串联发热,进一步提高了所述电芯组件1的升温速率,加快电池充满电的时间。
可选的,本申请提供的所述电子设备100中的所述电芯组件1的数量可以为一个或多个。当所述电芯组件1的数量为多个时,所述电子设备100可包括第一所述电芯组件1和第二所述电芯组件1,第一所述电芯组件1与第二所述电芯组件1之间可相互充电或独立从外界电源200充电。
本申请实施例提供的所述电芯组件1的充电方式包括但不限于以下的实施方式。
第一种可选的实施方式中,请参阅图40,所述电子设备100中包括第一所述电芯组件101和第二所述电芯组件102。第一所述电芯组件101的正极极耳通过开关连接第二所述电芯组件1的正极极耳。第一所述电芯组件101的负极极耳通过开关连接第二所述电芯组件1的负极极耳。第一所述电芯组件101和第二所述电芯组件102可同时工作或分时工作。其中,在第一所述电芯组件101的温度过低时,第二所述电芯组件102可对第一所述电芯组件101进行充电。同样的,在第二所述电芯组件102的温度过低时,第一所述电芯组件101可对第二所述电芯组件102进行充电。如此,可以提高第一所述电芯组件101的温度和第二所述电芯组件102的温度,将第一所述电芯组件101和第二所述电芯组件102的温度提升至正常充电温度之上,有效地解决在低于正常充电温度下所述电子设备100无法正常充电的问题。
可以理解的,上述对于所述电芯组件1的结构的任意一种实施方式的描述可以结合到本实施方式中,当第一所述电芯组件101需充电时,第二所述电芯组件102的正极相当于上述实施方式中的电源200的 第二输出端220,第二所述电芯组件102的负极相当于上述实施方式中的电源200的第一输出端210,如此,实现第二所述电芯组件102对第一所述电芯组件101充电。
当然,本实施例对所述电芯组件1的数量并不做具体的限定。
本实施方式通过设置多个所述电芯组件1,并使多个所述电芯组件1之间可相互充电,从而无需在外接电源200的情况下即可对所述电芯组件1充电,提高所述电芯组件1在低温下的放电性能。
第二种可选的实施方式中,所述电芯组件1可通过电连接线电连接外接电源200。本实施方式可以参考上述在说明所述电芯组件1时的具体描述,在此不再说明。
第三种可选的实施方式中,请参阅图41,所述电芯组件1还可以通过无线充电方式由外界无线充电器进行充电。
具体的,所述电子设备100可以包括无线充电线圈。上述对于所述电芯组件1的结构的任意一种实施方式的描述可以结合到本实施方式中,其中,无线充电线圈的一端可以相当于上述实施方式中的电源200的第一输出端210,无线充电线圈的另一端可以相当于上述实施方式中的电源200的第二输出端220,如此,实现对所述电芯组件1充电。
本申请实施例以所述电芯组件1通过电连接线电连接外接电源200的方式为例进行说明,本领域技术人员可以将本申请的发明构思应用于所述电芯组件1通过无线充电或所述电芯组件1之间相互充电的应用场景下。
需要说明是的,本申请中电子设备的电路与电子器件之间的连接、电子器件与电子器件之间的连接,在通电时能够导通,即为电性连接关系。电子设备的电路包括充电电路60、保护电路3等。所述电子设备100的电子器件包括充电接口50、所述电池组件10、充电端、电极、集流体、正极材料、负极材料、开关单元及开关等。
电子设备10可为计算设备诸如膝上型计算机、包含嵌入式计算机的计算机监视器、平板电脑、蜂窝电话、媒体播放器、或其他手持式或便携式电子设备、较小的设备(诸如腕表设备、挂式设备、耳机或听筒设备、被嵌入在眼镜中的设备或者佩戴在用户的头部上的其他设备,或其他可佩戴式或微型设备)、电视机、不包含嵌入式计算机的计算机显示器、游戏设备、导航设备、嵌入式系统(诸如其中具有显示器的电子设备被安装在信息亭或汽车中的系统)、实现这些设备中的两个或更多个设备的功能的设备、或其他电子设备。在本申请的示例性配置中,电子设备是便携式设备,诸如蜂窝电话、媒体播放器、平板电脑、或者其他具备电池的便携式设备。需要说明的是,图1仅为示例性的举例。
以上是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (26)

  1. 一种电极片,其特征在于,所述电极片包括集流体和与所述集流体导通的加热层,所述加热层用以从电源接收电流并产生热量。
  2. 如权利要求1所述的电极片,其特征在于,所述电极片设置两层所述集流体,所述加热层设置于两层所述集流体之间。
  3. 如权利要求2所述的电极片,其特征在于,两层所述集流体之间设置多层所述加热层,多层所述加热层间隔设置,其中部分或全部的所述加热层接收电流并产生热量。
  4. 如权利要求1所述的电极片,其特征在于,所述电极片设置一层所述集流体和一层所述加热层,一层所述加热层与所述一层所述集流体层叠设置。
  5. 如权利要求1所述的电极片,其特征在于,所述电极片设置一层所述集流体和一层所述加热层,所述加热层设置于所述集流体内。
  6. 如权利要求1~5任意一项所述的电极片,其特征在于,所述集流体背离所述加热层的表面设有活性材料层。
  7. 如权利要求6所述的电极片,其特征在于,所述活性材料层在所述加热层朝向所述活性材料层一面的正投影位于所述加热层上。
  8. 如权利要求1~5任意一项所述的电极片,其特征在于,所述加热层与所述集流体相贴合。
  9. 如权利要求1~5任意一项所述的电极片,其特征在于,所述加热层与所述集流体间隔设置,所述加热层与所述集流体之间设有导热导电层,所述导热导电层用以从所述集流体传输电流至所述加热层,或用以从所述加热层传输电流至所述集流体,并且用以将所述加热层的热量均衡传递至所述集流体。
  10. 如权利要求1~5任意一项所述的电极片,其特征在于,所述加热层的电阻大于所述集流体的电阻。
  11. 一种电芯组件,其特征在于,所述电芯组件包括权利要求1~10任意一项所述的电极片。
  12. 一种电芯组件,其特征在于,所述电芯组件包括:
    第一电极片,所述第一电极片包括第一集流体和与所述第一集流体导通的第一加热层;
    第二电极片,与所述第一电极片相对设置,所述第二电极片包括第二集流体;
    电源输入电路,设有第一导电端和第二导电端,以及电连接所述第一导电端和所述第二导电端的控制单元,所述第一导电端和所述第二导电端用以与输入电源电连接,所述控制单元还电连接所述第一集流体、所述第一加热层和所述第二集流体;
    当所述控制单元接收第一控制信号时,所述控制单元将所述第一导电端与所述第一集流体导通,以及将所述第二导电端与所述第二集流体导通,并与所述第一加热层断开;
    当所述控制单元接收第二控制信号时,所述控制单元将所述第一导电端与所述第一集流体导通,以及将所述第二导电端与所述第一加热层导通,并与所述第二集流体断开。
  13. 如权利要求12所述的电芯组件,其特征在于,所述第二电极片设有与所述第二集流体导通的第二加热层;
    所述控制单元还电连接所述第二加热层;
    当所述控制单元接收第三控制信号时,所述控制单元将所述第一导电端与所述第二加热层导通,并与所述第一集流体断开,以及将所述第二导电端与所述第二集流体导通,并与所述第一加热层断开。
  14. 如权利要求13所述的电芯组件,其特征在于,当所述控制单元接收第四控制信号时,所述控制单元将所述第一导电端与所述第一集流体及所述第二加热层导通,以及将所述第二导电端与所述第一加热层及所述第二集流体导通。
  15. 如权利要求13所述的电芯组件,其特征在于,所述电芯组件包括与所述第一集流体连接的第一极耳,以及与所述第一集流体或/和所述第一加热层连接的第二极耳;所述电芯组件还包括与所述第二集流体连接的第三极耳,所述控制单元电连接所述第一极耳、第二极耳和第三极耳,以控制所述第一极耳与所述第一导电端断开或导通,以及控制所述第二极耳与所述第二导电端断开或导通,以及控制所述第 二导电端与所述第三极耳断开或导通。
  16. 如权利要求15所述的电芯组件,其特征在于,所述电芯组件还包括与所述第二集流体或/和第二加热层连接的第四极耳,所述控制单元还用以控制所述第四极耳与所述第一导电端断开或导通。
  17. 如权利要求16所述的电芯组件,其特征在于,所述控制单元设有四个开关,四个所述开关的一端分别连接所述第一极耳、第二极耳、第三极耳和第四极耳,其中连接所述第一极耳和第四极耳的两个开关另一端均连接所述第一导电端,其中连接所述第二极耳和第三极耳的两个开关另一端均连接所述第二导电端。
  18. 如权利要求12~17任意一项所述的电芯组件,其特征在于,所述电芯组件还包括温度传感器,所述温度传感器连接所述控制单元,所述温度传感器用于检测到所述电芯组件的温度在第一预设温度阈值时发送第一控制信号至所述控制单元,以及检测到所述电芯组件的温度在第二预设温度阈值时发送第二控制信号至所述控制单元。
  19. 如权利要求12~17任意一项所述的电芯组件,其特征在于,所述第一电极片在所述第一集流体背离所述第一加热层的表面设有第一活性材料层。
  20. 如权利要求13~17任意一项所述的电芯组件,其特征在于,所述第二电极片在所述第二集流体背离所述第二加热层的表面设有第二活性材料层。
  21. 如权利要求12~17任意一项所述的电芯组件,其特征在于,所述电芯组件还包括设置于所述第一电极片和所述第二电极片之间的隔膜,以及包覆所述第一电极片、所述第二电极片和所述隔膜的封装层。
  22. 如权利要求21所述的电芯组件,其特征在于,所述第一电极片、所述隔膜和所述第二电极片共同卷绕后封装于所述封装层内,所述控制单元电连接所述第一电极片的卷绕边和所述第二电极片的卷绕边。
  23. 如权利要求21所述的电芯组件,其特征在于,所述电芯组件设置多个所述第一电极片、多个所述第二电极片和至少一个所述隔膜,多个所述第一电极片和多个所述第二电极片相互交错层叠后封装于所述封装层内,每一所述隔膜设置于相邻的所述第一电极片和所述第二电极片之间,当所述控制单元接收控制信号时,所述控制单元控制多个所述第一电极片的第一集流体串联或/和并联连接于所述第一导电端,以及控制多个所述第二电极片的第二集流体串联或/和并联连接于所述第二导电端。
  24. 一种电池组件,其特征在于,所述电池组件包括如权利要求11~23任意一项的电芯组件。
  25. 一种电子设备,其特征在于,包括如权利要求24所述的电池组件,所述电池组件通过电连接线连接所述电源;或者,所述电池组件通过无线充电方式连接所述电源。
  26. 一种电子设备,其特征在于,包括如权利要求24所述的电池组件,所述电池组件为第一电池组件,所述电子设备还包括第二电池组件,所述第二电池组件为所述电源。
PCT/CN2021/114557 2020-11-16 2021-08-25 电极片、电芯组件、电池组件及电子设备 WO2022100201A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011281277.8 2020-11-16
CN202011281277.8A CN114512675A (zh) 2020-11-16 2020-11-16 电极片、电芯组件、电池组件及电子设备

Publications (1)

Publication Number Publication Date
WO2022100201A1 true WO2022100201A1 (zh) 2022-05-19

Family

ID=81546190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114557 WO2022100201A1 (zh) 2020-11-16 2021-08-25 电极片、电芯组件、电池组件及电子设备

Country Status (2)

Country Link
CN (1) CN114512675A (zh)
WO (1) WO2022100201A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090087723A1 (en) * 2007-10-01 2009-04-02 Ohara Inc. Heat generation mechanism-provided secondary battery
JP2012018786A (ja) * 2010-07-07 2012-01-26 Dainippon Screen Mfg Co Ltd 電池用電極の製造方法、電池の製造方法、電池、車両および電子機器
CN108832074A (zh) * 2018-05-22 2018-11-16 华为技术有限公司 电池极片及其制备方法、电池管理方法及相关装置
CN109860786A (zh) * 2017-06-28 2019-06-07 湖南妙盛汽车电源有限公司 一种圆柱型锂离子电池
CN110957539A (zh) * 2018-09-27 2020-04-03 北京好风光储能技术有限公司 一种可加热式双极性电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090087723A1 (en) * 2007-10-01 2009-04-02 Ohara Inc. Heat generation mechanism-provided secondary battery
JP2012018786A (ja) * 2010-07-07 2012-01-26 Dainippon Screen Mfg Co Ltd 電池用電極の製造方法、電池の製造方法、電池、車両および電子機器
CN109860786A (zh) * 2017-06-28 2019-06-07 湖南妙盛汽车电源有限公司 一种圆柱型锂离子电池
CN108832074A (zh) * 2018-05-22 2018-11-16 华为技术有限公司 电池极片及其制备方法、电池管理方法及相关装置
CN110957539A (zh) * 2018-09-27 2020-04-03 北京好风光储能技术有限公司 一种可加热式双极性电池

Also Published As

Publication number Publication date
CN114512675A (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
US10103412B2 (en) Universal rechargeable battery constituted by employing lithium-ion battery and control method
US9608463B2 (en) Electronic device
US20140197797A1 (en) Electrochemical device
WO2022111126A1 (zh) 电池组件及其加热方法、电子设备
CN113178612B (zh) 电池组件及其控制方法和电子设备
JP6302271B2 (ja) リチウムイオン二次電池の回復方法
CN101552350A (zh) 层叠式电池和具备该层叠式电池的电池模块
CN103441237B (zh) 带扣式锂离子电池的链式锂离子电池组
WO2022111052A1 (zh) 电子设备
KR102417105B1 (ko) 개선된 전극 탭과 집전체 연결 구조를 갖는 전극 조립체 및 그 제조 방법
JP6904547B2 (ja) 二次電池状態推定装置及びこれを含むバッテリーパック
WO2022100201A1 (zh) 电极片、电芯组件、电池组件及电子设备
CN113937424A (zh) 电芯组件、电池组件及电子设备
CN113178666B (zh) 电池和电子设备
WO2023272464A1 (zh) 电池和具有所述电池的用电装置
WO2021235154A1 (ja) 二次電池
CN213660476U (zh) 一种快速充电的聚合物锂电池
CN107534134B (zh) 负极、电池、电池组、电子设备、电动车辆、蓄电装置及电力系统
WO2022051914A1 (zh) 一种电化学装置及电子装置
WO2022000329A1 (zh) 一种电化学装置及电子装置
EP3748763B1 (en) Electrode assembly and researchable battery including the same
CN203445186U (zh) 扣式锂离子电池以及链式锂离子电池组
CN103456912B (zh) 链式锂离子电池组
KR20210034390A (ko) 이차 전지 및 이를 포함하는 디바이스
JP7306576B2 (ja) 二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21890730

Country of ref document: EP

Kind code of ref document: A1