WO2022100091A1 - 一种广义源储系统调度的集中控制方法 - Google Patents

一种广义源储系统调度的集中控制方法 Download PDF

Info

Publication number
WO2022100091A1
WO2022100091A1 PCT/CN2021/100825 CN2021100825W WO2022100091A1 WO 2022100091 A1 WO2022100091 A1 WO 2022100091A1 CN 2021100825 W CN2021100825 W CN 2021100825W WO 2022100091 A1 WO2022100091 A1 WO 2022100091A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
storage system
energy storage
output
thermal power
Prior art date
Application number
PCT/CN2021/100825
Other languages
English (en)
French (fr)
Inventor
李娟�
方绍凤
胡剑宇
王昱
周野
朱世平
余虎
唐宇
冯剑
刘利黎
颜科科
李静
邓笑冬
刘晔宁
Original Assignee
中国能源建设集团湖南省电力设计院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国能源建设集团湖南省电力设计院有限公司 filed Critical 中国能源建设集团湖南省电力设计院有限公司
Publication of WO2022100091A1 publication Critical patent/WO2022100091A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the invention relates to the technical field of new energy permeability power systems, in particular to a centralized control method for dispatching a generalized source-storage system.
  • this paper proposes a generalized energy storage system, that is to use a certain scale, advanced and economical energy storage system to formulate flexible and highly interactive operation strategies, and shift the distributed electric energy of new energy to the peak load period, so that it can closely track the power grid. Load changes, so as to achieve the purpose of reducing thermal power installed capacity, reducing system operating costs, and reducing waste water and new energy.
  • the present invention provides a centralized control method for generalized source-storage system scheduling, the purpose of which is to improve the existing traditional power supply system optimization model, apply the power system solution model and optimize the scheduling strategy, so as to reduce thermal power installed capacity and reduce system operation. cost, reducing the purpose of abandoning water and new energy.
  • a centralized control method for generalized source-storage system scheduling includes the following steps:
  • Step S1 determine a generalized source-storage system, including a traditional power supply unit, a new energy power supply unit, an energy storage system and a power transmission network, and the traditional power supply unit, the new energy power supply unit and the energy storage system are all connected to the power transmission network;
  • Step S2 according to the operation status of the traditional power supply system, the per-unit value index of the net load margin is proposed, and the constraint range of the output of the traditional power supply unit is determined according to the schedulable range of the net load margin;
  • Step S3 establishing the optimal mathematical model of the generalized source-storage system under the constraints of the dispatchable space according to the operation characteristics of the energy storage system;
  • step S4 the optimal mathematical model is solved, and the output includes the output curve of each unit, the total operating cost, the operation of energy storage, and the information of abandoned new energy, and is applied to the generalized source-storage system.
  • the traditional power supply unit includes a traditional thermal power supply unit
  • the step S2 specifically includes:
  • Step S21 According to the net load increment from the previous period to the current period in the scheduling period, the per-unit value of the net load margin is proposed:
  • represents the per-unit value of the net load margin of the power system, represent the total load of the power system in the t-th period and the t-1th period, respectively;
  • Step S22 obtain the constraints on the dispatchable range of traditional thermal power supply units based on the per-unit value of the net load margin:
  • the traditional power supply unit includes a traditional thermal power supply unit
  • the constraint range for determining the output of the traditional thermal power supply unit in the step S2 is specifically:
  • the dispatchable range of the output of traditional thermal power supply units is restricted to the intersection of the inherent unit output range and the output range determined by considering the net load margin per unit value:
  • Wind turbine operating constraints 0 ⁇ P Wj ⁇ P Wjmax
  • the operation characteristics of the energy storage system in the step S3 are specifically:
  • the energy storage system includes several energy storage devices, and the energy storage system is introduced into the power generation side, and the battery charging and discharging behaviors are tracked by the controller of the energy storage system, wherein the charging and discharging capacity of the energy storage system in the whole dispatching period T satisfies:
  • Equation 1 represents the charging power of the energy storage, Represents the discharge power of the energy storage, Q 0 is the storage capacity at the initial moment of the energy storage system; Q t is the storage capacity at the moment t of the energy storage system; and are the maximum charging power and the maximum discharging power of the i-th energy storage device in the t period, respectively, Q min and Q max are the upper and lower limits of the energy storage capacity of the energy storage system, respectively; N s represents the number of energy storage devices, represents the charging power coefficient of the energy storage, Represents the discharge power coefficient of the energy storage;
  • the traditional power supply units include traditional thermal power supply units and traditional hydroelectric units
  • the new energy power supply units include wind turbines, photovoltaic units and other new energy units.
  • the cost optimal mathematical model function of the generalized source-storage system under the schedulable space constraint in step S3 is:
  • the first item on the right side of the equal sign is the operating cost of traditional thermal power supply units
  • T is the total number of time periods in the dispatch cycle
  • N c is the total number of traditional thermal power supply units
  • u i,t is the start-stop state of the ith traditional thermal power supply unit in the t period.
  • the second item on the right is the penalty cost of abandoning new energy, where k n is the penalty coefficient for abandoning new energy, is the abandonment of new energy power in the t period, and ⁇ t is the number of hours corresponding to a period;
  • the third item on the right is the penalty cost of water abandonment, where N h is the total number of hydroelectric units, k hy is the penalty coefficient of water abandonment, is the abandoned water flow of the i-th hydroelectric unit in the t period;
  • the fourth item on the right is the operating cost of the energy storage system, where B i,t is the power generation price of the i-th energy storage device in the t-th period, are the discharge and charging power of the i-th energy storage device in the t-th period, respectively.
  • the optimal mathematical model of the generalized source-storage system in the step S3 is specifically an optimal mathematical model established under constraints with the goal of minimizing the operating cost of the system, and the constraints include the output dispatchable range of traditional thermal power supply units One or more constraints among constraints, power balance constraints, traditional thermal power supply unit operation constraints, and wind turbine operation constraints.
  • the step S4 specifically includes the following steps:
  • Step S41 according to the load, traditional power supply, and new energy prediction results, calculate the power profit and loss situation in the scheduling period, and determine the energy storage charging and discharging time period;
  • Step S42 determining the dispatching range of each unit in the current period according to the load forecast, the output information of the units in the previous period, and the charging/discharging situation of the energy storage;
  • Step S43 using the improved particle swarm optimization algorithm to solve the current time period, which is used for the hybrid particle swarm optimization algorithm to optimize the objective function as follows:
  • is the cost-power conversion coefficient, which is used to balance the role of the operating cost and the power balance equation in the objective function;
  • Step S44 determine whether the output of each unit satisfies the constraint condition, if so, go to step S46, otherwise go to step S45;
  • Step S45 Adjust the scheduling space of the relevant unit, and return to Step S43 after the adjustment is completed;
  • Step S46 determine whether all time periods in the scheduling space have been solved, if the solution is complete, go to step S47, otherwise return to step S42;
  • Step S47 Output the output curve of each unit, the total operating cost, the operation of energy storage, and the information on abandoned new energy, and the process ends.
  • the present invention proposes a net load margin index by mining the traditional optimal dispatching model.
  • the search can be effectively reduced. space to improve solution efficiency.
  • the hybrid particle swarm algorithm is introduced to solve the model, which greatly reduces the amount of calculation while ensuring the accuracy of the solution, and can effectively jump out of the local optimal search to obtain a better solution.
  • a generalized source-storage system optimization scheduling model and its solution process with schedulable space constraints are proposed, which can effectively reduce the total operating cost of the system, and reduce the abandonment of water and new energy.
  • FIG. 1 is a schematic structural diagram of a generalized source-storage system of a centralized control method for dispatching a generalized source-storage system according to the present invention
  • Fig. 2 is a working flow chart of a centralized control method for dispatching a generalized source-storage system according to the present invention
  • FIG. 3 is a flowchart of an optimal mathematical model of a centralized control method for generalized source-storage system scheduling of the present invention
  • Fig. 4 is the predicted output of each power curve adopted in the specific application example
  • Fig. 5 is the minimum surplus of electric power and the correction load in each time period in the specific application example
  • FIG. 6 is a prediction curve of the total output of thermal power units in each time period in a specific embodiment.
  • the present invention provides a centralized control method for generalized source-storage system scheduling.
  • a concept of a generalized energy storage system is proposed: the generalized source storage system is a unified dispatch linkage system constructed by space-time dispersion, various types of energy storage and various types of new energy.
  • a flexible and interactive operation strategy is formulated, and the distributed electric energy of new energy can be shifted and concentrated to the peak load period, so that it can closely track the load changes of the power grid, thereby reducing thermal power installations, reducing system operating costs, and reducing The purpose of abandoning water and new energy.
  • a new energy distribution method is proposed to shift and concentrate the distributed electric energy of new energy to the peak load period, so as to make it closely Track the load changes of the power grid, so as to achieve the generalized source-storage system for the purpose of properly supplementing the power shortage demand with new energy installed capacity.
  • the net load increment index is proposed, which effectively reduces the feasible range of the output variable of the unit;
  • the hybrid particle swarm algorithm combining the standard particle swarm and simulated annealing algorithm is used to solve the problem, which greatly reduces the amount of calculation while ensuring the accuracy of the solution, and it is not easy to fall into the local optimum.
  • Step S1 determining a generalized source-storage system, including a traditional power supply unit, a new energy power supply unit, an energy storage system and a power transmission network, and the traditional power supply unit, the new energy power supply unit and the energy storage system are all connected to the power transmission network;
  • Step S2 according to the operation status of the traditional power supply system, the per-unit value index of the net load margin is proposed, and the constraint range of the output of the traditional power supply unit is determined according to the schedulable range of the net load margin;
  • Step S3 establishing the optimal mathematical model of the generalized source-storage system under the constraints of the dispatchable space according to the operation characteristics of the energy storage system;
  • step S4 the optimal mathematical model is solved, and the output includes the output curve of each unit, the total operating cost, the operation of energy storage, and the information of abandoned new energy, and is applied to the generalized source-storage system.
  • Figure 4 is the predicted output of each power curve used in the specific application example
  • Figure 5 is the minimum power surplus and corrected load in each time period in the specific application example
  • Figure 6 is the specific implementation In the example, the total output prediction curve of thermal power units in each time period.
  • the traditional power supply unit includes a traditional thermal power supply unit
  • Step S21 According to the net load increment from the previous period to the current period in the scheduling period, the per-unit value of the net load margin is proposed:
  • represents the per-unit value of the net load margin of the power system, represent the total load of the power system in the t-th period and the t-1th period, respectively;
  • Step S22 obtaining the dispatchable range constraints of traditional thermal power supply units based on the per-unit value of the net load margin:
  • the dispatchable range of the output of the traditional thermal power supply unit is constrained to be the intersection of the inherent output range of the unit and the output range determined by considering the per-unit value of the marginal quantity of net load:
  • Wind turbine operating constraints 0 ⁇ P Wj ⁇ P Wjmax
  • N h represents the number of hydroelectric units
  • P t n represents the output of new energy
  • P Gi represents the total output of the ith thermal power unit
  • P i,t represents the output of the ith traditional thermal power unit at time t
  • P i,t-1 represents the output of the ith traditional thermal power unit at time t-1
  • ⁇ T represents the unit time interval
  • ⁇ 1 represents the positive spinning reserve rate
  • ⁇ 2 represents the negative spinning reserve rate
  • PL represents the maximum load of the system
  • N c represents the total number of traditional thermal power supply units
  • the operation characteristics of the energy storage system in the step S3 are specifically:
  • the energy storage system includes several energy storage devices, and the energy storage system is introduced into the power generation side, and the battery charging and discharging behaviors are tracked by the controller of the energy storage system, wherein the charging and discharging capacity of the energy storage system in the whole dispatching period T satisfies:
  • Equation 1 represents the charging power of the energy storage, Represents the discharge power of the energy storage, Q 0 is the storage capacity at the initial moment of the energy storage system; Q t is the storage capacity at the moment t of the energy storage system; and are the maximum charging power and the maximum discharging power of the i-th energy storage device in the t period, respectively, and generally do not exceed 20% of the maximum capacity; Q min and Q max are the upper and lower limits of the energy storage capacity of the energy storage system, respectively; N s represents The number of energy storage devices, represents the charging power coefficient of the energy storage, Represents the discharge power coefficient of the energy storage;
  • the traditional power supply units include traditional thermal power supply units and traditional hydroelectric units
  • the new energy power supply units include wind turbines, photovoltaic units and other new energy units.
  • the generalized source-storage system is a unified dispatch linkage system constructed with space-time dispersion, various types of energy storage and various types of new energy.
  • a flexible and interactive operation strategy is formulated, and the distributed electric energy of new energy can be shifted and concentrated to the peak load period, so that it can closely track the load changes of the power grid, thereby reducing thermal power installations, reducing system operating costs, and reducing The purpose of abandoning water and new energy;
  • the first item on the right side of the equal sign is the operating cost of traditional thermal power supply units
  • T is the total number of time periods in the dispatch cycle
  • N c is the total number of traditional thermal power supply units
  • u i,t is the start-stop state of the ith traditional thermal power supply unit in the t period.
  • the second item on the right is the penalty cost of abandoning new energy, where k n is the penalty coefficient for abandoning new energy (wind, light and other new energy), is the abandonment of new energy power in the t period, and ⁇ t is the number of hours corresponding to a period;
  • the third item on the right is the penalty cost of water abandonment, where N h is the total number of hydroelectric units, k hy is the penalty coefficient of water abandonment, is the abandoned water flow of the i-th hydroelectric unit in the t period;
  • the fourth item on the right is the operating cost of the energy storage system, where B i,t is the power generation price of the i-th energy storage device in the t-th period, are the discharge and charging power of the i-th energy storage device in the t-th period, respectively.
  • the optimal mathematical model of the generalized source-storage system in the step S3 is specifically an optimal mathematical model established under constraint conditions with the goal of minimizing the system operating cost.
  • the step S4 specifically includes the following steps:
  • Step S41 according to the load, hydropower, and new energy prediction results, calculate the power profit and loss situation in the dispatch period, and determine the energy storage charging and discharging time period;
  • the maximum load in the scheduling period can be obtained as The predicted hydropower output corresponding to the maximum load time is The predicted output of new energy is Then the minimum power-on capacity of thermal power required in the dispatch period is
  • is the reserve coefficient
  • the minimum surplus of electricity in each period of the dispatch period can be obtained for:
  • the energy storage discharge period is the maximum load period in the dispatch cycle.
  • the load is further corrected according to the charging/discharging situation of the energy storage. If the energy storage is in the charging state, the corrected load is:
  • the corrected load is:
  • Step S42 determining the dispatching range of each unit in the current period according to the load forecast, the output information of the units in the previous period, and the charging/discharging situation of the energy storage;
  • Step S43 using the improved particle swarm optimization algorithm to solve the current time period, which is used for the hybrid particle swarm optimization algorithm to optimize the objective function as follows:
  • is the cost-power conversion coefficient, which is used to balance the effect of the operating cost and the power balance equation in the objective function; for details on the particle swarm optimization algorithm, please refer to the existing documents: "[1] Yin Xin, Zhou Ye, He Yigang. Prediction of chaotic time series based on hybrid algorithm optimization neural network [J]. Journal of Hunan University (Natural Science Edition), 2010,37(006):41-45.
  • Step S44 determine whether the output of each unit satisfies the constraint condition, if so, go to step S46, otherwise go to step S45;
  • Step S45 Adjust the scheduling space of the relevant units, generally expanding the original scheduling space by 1.2 times to meet the requirements, and returning to step S43 after the adjustment;
  • Step S46 determine whether all time periods in the scheduling space have been solved, if the solution is complete, go to step S47, otherwise return to step S42;
  • Step S47 Output the output curve of each unit, the total operating cost, the operation of energy storage, and the information on abandoned new energy, and the process ends.
  • a provincial power grid with new energy and energy storage equipment is selected as the research object, in which the total installed capacity of traditional thermal power plants is 17845MW, the installed capacity of hydropower is 15880MW, the total installed capacity of new energy is 500MW, and the rated capacity of energy storage configuration is 100MW/300MkWh.
  • the traditional thermal power operating parameters are shown in Table 1.
  • the schedulable range constraints of each unit are obtained. Further, the solution is solved by using the standard particle swarm algorithm and the hybrid particle swarm algorithm respectively. In the above algorithm, the initial population size is 40, the initial temperature is 150 °C, the annealing mechanism is 0.25, and the decay factor is 0.75. The calculation results are shown in Table 2 below.
  • a net load margin index is proposed. Using this index and the schedulable range constraint determined by the output state of the thermal power unit in the previous period, the search space can be effectively reduced and the solution efficiency can be improved.
  • the hybrid particle swarm algorithm is introduced to solve the model, which greatly reduces the amount of calculation while ensuring the accuracy of the solution, and can effectively jump out of the local optimal search to obtain a better solution.
  • a generalized source-storage system optimization scheduling model with schedulable space constraints and its solution process are proposed, which can effectively reduce the total operating cost of the system, and reduce the abandonment of water and new energy.

Abstract

本发明提供了一种广义源储系统调度的集中控制方法。所述广义源储系统调度的集中控制方法包括如下步骤:步骤S1、确定广义源储系统;步骤S2、根据传统供电系统的运行状况,确定传统供电机组的约束范围;步骤S3、根据储能系统的运行特性,建立可调度空间约束下广义源储系统最优数学模型;步骤S4、对最优数学模型进行求解,输出包括各机组出力曲线、运行总成本、储能运行情况和弃新能源的信息,并应用于广义源储系统中。本发明在新能源高渗透率电力系统优化调度中,达到减少火电装机,降低系统运行成本,减少弃水、弃新能源的目的。

Description

一种广义源储系统调度的集中控制方法
本申请要求于2020年11月10日提交中国专利局、申请号为202011243276.4、发明名称为“一种广义源储系统调度的集中控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及新能源渗透率电力系统技术领域,特别涉及一种广义源储系统调度的集中控制方法。
背景技术
在新能源高渗透率系统中,由于传统电源的调节能力不足,电力系统运行中产生了较为严重的弃风弃光现象。负荷与新能源的随机波动性以及传统火电供电机组的调节能力的局限性,往往导致电力系统需要舍弃部分的新能源或者切除部分的可控负荷来实现电力系统的功率平衡,由此也使得新能源高渗透率电力系统的供电能力和可靠性有所下降。储能技术作为目前提高风电等新能源利用率的一种有效技术手段,成为现有研究的重点。
储能技术作为一种可以抑制新能源出力的波动性并且补偿其预测误差,而且使得大规模新能源能够接入电网的技术,它在电力系统中的应用越来越广泛。因此,本文提出广义储能系统,即利用一定规模、先进而经济的储能系统,制定灵活、互动性强的运行策略,将新能源分散的电能平移集中至高峰负荷时段,使其紧密跟踪电网负荷变动,从而达到减少火电装机,降低系统运行成本,减少弃水、弃新能源的目的。
储能在参与新能源高渗透率电力系统优化调度时,虽然可以很好的提升新能源的调度能力,但由于新能源出力预测误差较大,导致传统的电力系统求解模型以及优化调度策略已经远远不能满足现有的需要。目前,关于电力系统优化调度模型及其求解方法现在已有大量的成熟研究成果。但描述的几种方法都 是针对传统的电力系统模型展开,而随着电力系统优化模型的复杂程度越来越大,如何针对现有传统供电系统优化模型进行改进成为亟需解决的问题。
技术问题
现有的新能源出力预测误差较大,导致传统的电力系统求解模型以及优化调度策略已经远远不能满足现有的需要。
技术解决方案
本发明提供了一种广义源储系统调度的集中控制方法,其目的是为了针对现有传统供电系统优化模型进行改进,应用电力系统求解模型以及优化调度策略,从而达到减少火电装机,降低系统运行成本,减少弃水、弃新能源的目的。
为了达到上述目的,本发明的实施例提供的一种广义源储系统调度的集中控制方法,包括如下步骤:
步骤S1、确定广义源储系统,包括传统供电机组、新能源供电机组、储能系统及输电网,所述传统供电机组、新能源供电机组及储能系统均与所述输电网连接;
步骤S2、根据传统供电系统的运行状况,提出了净负荷边际量标幺值指标,根据净负荷边际量的可调度范围,确定传统供电机组出力的约束范围;
步骤S3、根据储能系统的运行特性,建立可调度空间约束下广义源储系统最优数学模型;
步骤S4、对最优数学模型进行求解,输出包括各机组出力曲线、运行总成本、储能运行情况和弃新能源的信息,并应用于广义源储系统中。
优选地,所述传统供电机组包括传统火电供电机组,所述步骤S2具体包括:
步骤S21、根据调度周期内上一时段到本时段的净负荷增量,提出净负荷边际量标幺值:
Figure PCTCN2021100825-appb-000001
式中,η表示电力系统的净负荷边际量标幺值,
Figure PCTCN2021100825-appb-000002
分别表示电力系统在第t时段和第t-1时段的总负荷;
步骤S22、获得基于净负荷边际量标幺值的传统火电供电机组可调度范围 约束:
当净负荷边际量标幺值η>0时,传统火电供电机组的可调度范围:
Figure PCTCN2021100825-appb-000003
Figure PCTCN2021100825-appb-000004
当净负荷边际量标幺值η≤0时,传统火电供电机组的可调度范围:
Figure PCTCN2021100825-appb-000005
Figure PCTCN2021100825-appb-000006
式中,
Figure PCTCN2021100825-appb-000007
为在t时段第i台传统火电供电机组发出的功率值;
Figure PCTCN2021100825-appb-000008
分别为第i台传统火电供电机组的向上爬坡值和向下爬坡值;P i min表示第i台传统火电供电机组最小出力,P i max表示第i台传统火电供电机组最大出力。
优选地,所述传统供电机组包括传统火电供电机组,所述步骤S2中确定传统火电供电机组出力的约束范围具体为:
传统火电供电机组出力的可调度范围约束为固有的机组出力范围与考虑净负荷边际量标幺值确定出力范围的交集:
Figure PCTCN2021100825-appb-000009
功率平衡约束:
Figure PCTCN2021100825-appb-000010
传统火电供电机组运行约束:
P Gimin≤P Gi≤P Gimax
Figure PCTCN2021100825-appb-000011
Figure PCTCN2021100825-appb-000012
风电机组运行约束:0≤P Wj≤P Wjmax
式中,
Figure PCTCN2021100825-appb-000013
表示水电出力,
Figure PCTCN2021100825-appb-000014
表示弃新能源功率,P t L表示系统的总负荷;
Figure PCTCN2021100825-appb-000015
表示电力系统的网络损耗;P Gimin、P Gimax分别表示各个传统火电供电机组的最大发出功率和最小发出功率;U Ri、D Ri分别表示各个传统火电供电机组的上爬坡速率和下爬坡速率;P Wjmax表示风电机组的最大出力;N h表示水电机组台数;P t n表示新能源出力;P Gi表示第i台火电机组总出力;P i,t表示第i台传统火电供电机组在t时刻的出力;P i,t-1表示第i台传统火电供电机组在t-1时刻的出力;ΔT表示单位时间间隔;β 1表示正旋转备用率;β 2表示负旋转备用率;P L表示系统的最大负荷;N c为传统火电供电机组总数;N W表示风电机组台数;P Wj表示风电机组出力;j表示第j台风电机组;α 1和α 2表示风电不确定性对火电机组产生的备用裕度,分别表示正、负旋转备用系数。
优选地,所述步骤S3中储能系统的运行特征具体为:
所述储能系统包括若干个储能设备,将储能系统引入发电侧,借助储能系统的控制器跟踪其蓄电池充放电行为,其中储能系统的充放电量在整个调度周期T内满足:
Figure PCTCN2021100825-appb-000016
Figure PCTCN2021100825-appb-000017
Q min≤Q t≤Q max
Figure PCTCN2021100825-appb-000018
式中,
Figure PCTCN2021100825-appb-000019
表示储能的充电功率,
Figure PCTCN2021100825-appb-000020
表示储能的放电功率,Q 0为储能系统初始时刻蓄电量;Q t为储能系统t时刻蓄电量;
Figure PCTCN2021100825-appb-000021
Figure PCTCN2021100825-appb-000022
分别为第i台储能设备第t时段的最大充电功率和最大放电功率,Q min和Q max分别为储能系统储能容量的上限和下限;N s表示储能设备的台数,
Figure PCTCN2021100825-appb-000023
表示储能的充电功率系数,
Figure PCTCN2021100825-appb-000024
表示储能的放电功率系数;
当储能系统处于放电状态时,有
Figure PCTCN2021100825-appb-000025
当储能系统处于充电状态时,有
Figure PCTCN2021100825-appb-000026
优选地,所述传统供电机组包括传统火电供电机组及传统水电机组,所述新能源供电机组包括风电机组、光伏机组及其他新能源机组。
优选地,所述步骤S3可调度空间约束下广义源储系统的成本最优数学模型函数为:
Figure PCTCN2021100825-appb-000027
式中,等号右边第一项为传统火电供电机组的运行成本,T为调度周期的时段总数,N c为传统火电供电机组总数,
Figure PCTCN2021100825-appb-000028
Figure PCTCN2021100825-appb-000029
分别为第i台传统火电供电机组第t时段的燃料成本和启停成本,
Figure PCTCN2021100825-appb-000030
为第i台传统火电供电机组第t时段的出力,u i,t为第i台传统火电供电机组第t时段启停状态,若传统火电供电机组为开机状态u i,t=1,停机状态u i,t=0;
右边第二项为弃新能源惩罚成本,其中,k n为弃新能源惩罚系数,
Figure PCTCN2021100825-appb-000031
为第t时段弃新能源功率,Δt为一个时段对应的小时数;
右边第三项为弃水惩罚成本,其中N h为水电机组总数,k hy为弃水惩罚系数,
Figure PCTCN2021100825-appb-000032
为第i台水电机组第t时段弃水流量;
右边第四项为储能系统运行成本,其中B i,t为第i台储能设备第t时段的发电上网价格,
Figure PCTCN2021100825-appb-000033
分别为第i台储能设备第t时段的放电和充电功率。
优选地,所述步骤S3中广义源储系统的最优数学模型具体为建立在约束条件下以系统运行成本最小为目标的最优数学模型,所述约束条件包括传统火电供电机组出力可调度范围约束、功率平衡约束、传统火电供电机组运行约束、风电机组运行约束中一种或多种约束条件。
优选地,所述步骤S4具体包括如下步骤:
步骤S41、根据负荷、传统供电、新能源预测结果,计算调度周期内的电力盈亏情况,确定储能充放电时间段;
步骤S42、根据负荷预测与上一时段机组出力信息以及储能充/放电情况,确定当前时段各机组的调度范围;
步骤S43、采用改进的粒子群优化算法进行当前时段求解,用于混合粒子群优化算法寻优目标函数如下:
Figure PCTCN2021100825-appb-000034
式中,ξ为成本功率转换系数,用于平衡运行成本和功率平衡方程在目标函数中的作用;
步骤S44、判断各机组出力是否满足约束条件,若满足进入步骤S46,否则进入步骤S45;
步骤S45:对相关机组的调度空间进行调整,调整完毕后返回步骤S43;
步骤S46:判断调度空间内所有时段是否求解完毕,若求解完毕进入步骤S47,否则返回步骤S42;
步骤S47:输出各机组出力曲线、运行总成本、储能运行情况和弃新能源的信息,流程结束。
有益效果
与现有技术相比,本发明通过对传统优化调度模型的挖掘,提出了净负荷边际量指标,利用该指标和火电机组在上一时段的出力状态确定的可调度范围约束,可以有效减少搜索空间,提高求解效率。引入混合粒子群算法对模型进行求解,在确保求解精度的同时大大减少了计算量,且能有效跳出局部最优搜索到更优解。提出了含可调度空间约束的广义源储系统优化调度模型及其求解流程,能有效降低系统运行总成本,减少弃水、弃新能源。
附图说明
图1为本发明的一种广义源储系统调度的集中控制方法的广义源储系统的结构示意图;
图2为本发明的一种广义源储系统调度的集中控制方法的工作流程图;
图3为本发明的一种广义源储系统调度的集中控制方法的最优数学模型的流程图;
图4为在具体应用实例中采用的各功率曲线预测出力;
图5为在具体应用实例中各时段电力最小盈余及修正负荷;
图6为具体实施例中各时间段火电机组总出力预测曲线。
本发明的实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明针对现有的问题,提供了一种广义源储系统调度的集中控制方法。本发明中,提出了一种广义储能系统概念:广义源储系统是一种时空分散、多种型式的储能加多种型式的新能源构筑的统一调度联动系统,通过利用一定规模、先进而经济的储能系统,制定灵活、互动性强的运行策略,将新能源分散的电能平移集中至高峰负荷时段,使其紧密跟踪电网负荷变动,从而达到减少火电装机,降低系统运行成本,减少弃水、弃新能源的目的。
为了有效地解决新能源高渗透率电力系统中由于传统电源的调节能力不足导致的弃风弃光或者切负荷现象,提出了一种将新能源分散的电能平移集中至高峰负荷时段,使其紧密跟踪电网负荷变动,从而达到利用新能源装机适当补充电力缺额需求目的广义源储系统。
首先基于传统火电最优调度方法,结合实际运行情况,提出净负荷增量指标,有效地缩减了机组出力变量的可行域范围;然后建立考虑可调度空间约束的广义源储系统优化调度模型,并运用标准粒子群与模拟退火算法相结合的混合粒子群算法进行求解,在确保求解精度的同时大大减少了计算量,且不易陷入局部最优。
如图1、图2及图3所示,包括如下步骤:
步骤S1、确定广义源储系统,包括传统供电机组、新能源供电机组、储能系统及输电网,所述传统供电机组、新能源供电机组及储能系统均与所述输电网连接,;
步骤S2、根据传统供电系统的运行状况,提出了净负荷边际量标幺值指标,根据净负荷边际量的可调度范围,确定传统供电机组出力的约束范围;
步骤S3、根据储能系统的运行特性,建立可调度空间约束下广义源储系统最优数学模型;
步骤S4、对最优数学模型进行求解,输出包括各机组出力曲线、运行总成本、储能运行情况和弃新能源的信息,并应用于广义源储系统中。如图4、图5及图6所示,图4为在具体应用实例中采用的各功率曲线预测出力,图5是在具体应用实例中各时段电力最小盈余及修正负荷,图6是具体实施例中各时间段火电机组总出力预测曲线。
所述步骤S2中,所述传统供电机组包括传统火电供电机组,所述步骤S2中确定传统火电供电机组出力的约束范围具体包括:
步骤S21、根据调度周期内上一时段到本时段的净负荷增量,提出净负荷边际量标幺值:
Figure PCTCN2021100825-appb-000035
式中,η表示电力系统的净负荷边际量标幺值,
Figure PCTCN2021100825-appb-000036
分别表示电力系统在第t时段和第t-1时段的总负荷;
步骤S22、获得基于净负荷边际量标幺值的传统火电供电机组可调度范围约束:
当净负荷边际量标幺值η>0时,传统火电供电机组的可调度范围:
Figure PCTCN2021100825-appb-000037
Figure PCTCN2021100825-appb-000038
当净负荷边际量标幺值η≤0时,传统火电供电机组的可调度范围:
Figure PCTCN2021100825-appb-000039
Figure PCTCN2021100825-appb-000040
式中,
Figure PCTCN2021100825-appb-000041
为在t时段第i台传统火电供电机组发出的功率值;
Figure PCTCN2021100825-appb-000042
分别为第i台传统火电供电机组的向上爬坡值和向下爬坡值;P i min表示第i台传统火电供电机组最小出力,P i max表示第i台传统火电供电机组最大出力。
其中,传统火电供电机组出力的可调度范围约束为固有的机组出力范围与考虑净负荷边际量标幺值确定出力范围的交集:
Figure PCTCN2021100825-appb-000043
功率平衡约束:
Figure PCTCN2021100825-appb-000044
传统火电供电机组运行约束:
P Gimin≤P Gi≤P Gimax
Figure PCTCN2021100825-appb-000045
Figure PCTCN2021100825-appb-000046
风电机组运行约束:0≤P Wj≤P Wjmax
式中,
Figure PCTCN2021100825-appb-000047
表示水电出力,ΔP t n表示弃新能源功率,P t L表示系统的总负荷;P t loss表示电力系统的网络损耗;P Gimin、P Gimax分别表示各个传统火电供电机组的最大发出功率和最小发出功率;U Ri、D Ri分别表示各个传统火电供电机组的上爬坡速率和下爬坡速率;P Wjmax表示风电机组的最大出力;N h表示水电机组台数;P t n表示新能源出力;P Gi表示第i台火电机组总出力;P i,t表示第i台传统火电供电机组在t时刻的出力;P i,t-1表示第i台传统火电供电机组在t-1时刻的出力;ΔT表示单位时间间隔;β 1表示正旋转备用率;β 2表示负旋转备用率;P L表示系统的最大负荷;N c为传统火电供电机组总数;N W表示风电机组台数;P Wj表示风电机组出力;j表示第j台风电机组;α 1和α 2表示风电不确定性对火电机组产生的备用裕度,分别表示正、负旋转备用系数。
所述步骤S3中储能系统的运行特征具体为:
所述储能系统包括若干个储能设备,将储能系统引入发电侧,借助储能系统的控制器跟踪其蓄电池充放电行为,其中储能系统的充放电量在整个调度周期T内满足:
Figure PCTCN2021100825-appb-000048
Figure PCTCN2021100825-appb-000049
Q min≤Q t≤Q max
Figure PCTCN2021100825-appb-000050
式中,
Figure PCTCN2021100825-appb-000051
表示储能的充电功率,
Figure PCTCN2021100825-appb-000052
表示储能的放电功率,Q 0为储能系统初始时刻蓄电量;Q t为储能系统t时刻蓄电量;
Figure PCTCN2021100825-appb-000053
Figure PCTCN2021100825-appb-000054
分别为第i台储能设备第t时段的最大充电功率和最大放电功率,一般不超过最大容量的20%;Q min和Q max分别为储能系统储能容量的上限和下限;N s表示储能设备的台数,
Figure PCTCN2021100825-appb-000055
表示储能的充电功率系数,
Figure PCTCN2021100825-appb-000056
表示储能的放电功率系数;
当储能系统处于放电状态时,有
Figure PCTCN2021100825-appb-000057
当储能系统处于充电状态时,有
Figure PCTCN2021100825-appb-000058
所述传统供电机组包括传统火电供电机组及传统水电机组,所述新能源供电机组包括风电机组、光伏机组及其他新能源机组。
所述建立广义源储系统的数学模型具体表现为:广义源储系统是一种时空分散、多种型式的储能加多种型式的新能源构筑的统一调度联动系统,通过利用一定规模、先进而经济的储能系统,制定灵活、互动性强的运行策略,将新能源分散的电能平移集中至高峰负荷时段,使其紧密跟踪电网负荷变动,从而达到减少火电装机,降低系统运行成本,减少弃水、弃新能源的目的;
针对分散式控制下每个风电场的储能系统都要参与抑制风电波动误差所引起的对冲效应,提出以系统净负荷波动量不超过系统可调控范围的集中控制策略。
所述步骤S3可调度空间约束下广义源储系统的成本最优数学模型函数为:
Figure PCTCN2021100825-appb-000059
式中,等号右边第一项为传统火电供电机组的运行成本,T为调度周期的时段总数,N c为传统火电供电机组总数,
Figure PCTCN2021100825-appb-000060
Figure PCTCN2021100825-appb-000061
分别为第i台传统火电供电 机组第t时段的燃料成本和启停成本,
Figure PCTCN2021100825-appb-000062
为第i台传统火电供电机组第t时段的出力,u i,t为第i台传统火电供电机组第t时段启停状态,若传统火电供电机组为开机状态u i,t=1,停机状态u i,t=0;
右边第二项为弃新能源惩罚成本,其中,k n为弃新能源(风、光等新能源)惩罚系数,
Figure PCTCN2021100825-appb-000063
为第t时段弃新能源功率,Δt为一个时段对应的小时数;
右边第三项为弃水惩罚成本,其中N h为水电机组总数,k hy为弃水惩罚系数,
Figure PCTCN2021100825-appb-000064
为第i台水电机组第t时段弃水流量;
右边第四项为储能系统运行成本,其中B i,t为第i台储能设备第t时段的发电上网价格,
Figure PCTCN2021100825-appb-000065
分别为第i台储能设备第t时段的放电和充电功率。
所述步骤S3中广义源储系统的最优数学模型具体为建立在约束条件下以系统运行成本最小为目标的最优数学模型,所述约束条件包括传统火电供电机组出力可调度范围约束、功率平衡约束、传统火电供电机组运行约束、风电机组运行约束中一种或多种约束条件。
所述步骤S4具体包括如下步骤:
步骤S41、根据负荷、水电、新能源预测结果,计算调度周期内的电力盈亏情况,确定储能充放电时间段;
根据预测结果,可得调度周期内最大负荷为
Figure PCTCN2021100825-appb-000066
最大负荷时刻对应的水电预测出力为
Figure PCTCN2021100825-appb-000067
新能源预测出力为
Figure PCTCN2021100825-appb-000068
则调度周期内所需的火电最小开机容量为
Figure PCTCN2021100825-appb-000069
Figure PCTCN2021100825-appb-000070
式中,α为备用系数;一个调度周期内若不考虑启停调峰,则认为开机容量不变。
若火电最大调峰能力为50%额定容量,则可得调度周期内各时段电力最小盈余
Figure PCTCN2021100825-appb-000071
为:
Figure PCTCN2021100825-appb-000072
Figure PCTCN2021100825-appb-000073
小于0,则取0,反之则说明该时段火电调峰能力不足需要弃水或新能源,即该时段需要通过储能充电来减少弃水或新能源。显然,储能放电时段为调度周期内最大负荷时段。
进一步根据储能充/放电情况修正负荷,若储能处于充电状态,则修正负荷为:
Figure PCTCN2021100825-appb-000074
若储能处于放电状态,则修正负荷为:
Figure PCTCN2021100825-appb-000075
则可预测各时间段火电机组的总出力为:
Figure PCTCN2021100825-appb-000076
其中,
Figure PCTCN2021100825-appb-000077
为水电机组第t时段的总出力;
Figure PCTCN2021100825-appb-000078
表示储能设备的充电总功率;P t sd表示储能设备的放电总功率;
步骤S42、根据负荷预测与上一时段机组出力信息以及储能充/放电情况,确定当前时段各机组的调度范围;
步骤S43、采用改进的粒子群优化算法进行当前时段求解,用于混合粒子群优化算法寻优目标函数如下:
Figure PCTCN2021100825-appb-000079
式中,ξ为成本功率转换系数,用于平衡运行成本和功率平衡方程在目标函数中的作用;关于粒子群优化算法具体请参阅现有文件:《[1]尹新,周野,何怡刚.基于混合算法优化神经网络的混沌时间序列预测[J].湖南大学学报(自然科学版),2010,37(006):41-45》。
步骤S44、判断个机组出力是否满足约束条件,若满足进入步骤S46,否则进入步骤S45;
步骤S45:对相关机组的调度空间进行调整,一般将原调度空间扩大1.2倍即可满足要求,调整完毕后返回步骤S43;
步骤S46:判断调度空间内所有时段是否求解完毕,若求解完毕进入步骤S47,否则返回步骤S42;
步骤S47:输出各机组出力曲线、运行总成本、储能运行情况和弃新能源的信息,流程结束。
选取某新能源、储能设备省级电网为研究对象,其中传统火电机装机总容量为17845MW,水电装机容量为15880MW,新能源总装机500MW,储能配 置额定容量为100MW/300MkWh。设置机组的最大、最小出力分别为50%PG、110%PG,机组爬坡率设置为30%额定功率/h,机组旋转备用量为总装机容量的10%,同时忽略启动和关停机组的时间。传统火电运行参数见表1。
表1传统火电供电机组的参数
Figure PCTCN2021100825-appb-000080
(1)模型与算法的对比
基于不考虑储能时的各时段火电机组总出力预测曲线,结合净负荷边际量标幺值,从而得到各台机组的可调度范围约束。进一步分别通过采用标准粒子群算法与混合粒子群算法进行求解。以上算法中初始种群规模数取40,初始温度取150℃,退火机制取0.25,衰减因子取0.75。其计算结果如下表2所示。
表2对比改进模型优化结果
Figure PCTCN2021100825-appb-000081
由表2可知,考虑净负荷边际量的可调度范围约束的含分散式储能的电力系统优化模型的求解与传统的电力系统优化模型的求解相比,其迭代和求解次数明显降低。这主要是因为通过考虑净负荷边际量的可调度范围约束,缩小了粒子变量的可调度执行域和范围,从而大大提高了求解速度。混合粒子群算法与标准粒子算法相比,迭代次数有所提高,但能有效跳出局部最优搜索到更优解。
若配置储能,可有效减少弃水、弃风,计算结果如表3所示。
表3配置储能对比结果
Figure PCTCN2021100825-appb-000082
由上述仿真结果可知,配置储能后可减少2台300MW火电开机,火电机组日发电总成本降低了1735吨标准煤,平均煤也有所降低,且避免了弃水,减少弃风1.7×106kWh,大大降低了系统运行的总成本。
采用本发明所提供的一种广义源储系统调度的集中控制方法,其技术优点体现如下:
通过对传统优化调度模型的挖掘,提出了净负荷边际量指标,利用该指标和火电机组在上一时段的出力状态确定的可调度范围约束,可以有效减少搜索空间,提高求解效率。引入混合粒子群算法对模型进行求解,在确保求解精度的同时大大减少了计算量,且能有效跳出局部最优搜索到更优解。提出了含可调度空间约束的广义源储系统优化调度模型及其求解流程,能有效降低系统运行总成本,减少弃水、弃新能源。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

  1. 一种广义源储系统调度的集中控制方法,其特征在于,包括如下步骤:
    步骤S1、确定广义源储系统,包括传统供电机组、新能源供电机组、储能系统及输电网,所述传统供电机组、新能源供电机组及储能系统均与所述输电网连接;
    步骤S2、根据传统供电系统的运行状况,提出了净负荷边际量标幺值指标,根据净负荷边际量的可调度范围,确定传统供电机组出力的约束范围;
    步骤S3、根据储能系统的运行特性,建立可调度空间约束下广义源储系统最优数学模型;
    步骤S4、对最优数学模型进行求解,输出包括各机组出力曲线、运行总成本、储能运行情况和弃新能源的信息,并应用于广义源储系统中。
  2. 根据权利要求1所述的一种广义源储系统调度的集中控制方法,其特征在于,所述传统供电机组包括传统火电供电机组,所述步骤S2具体包括:
    步骤S21、根据调度周期内上一时段到本时段的净负荷增量,提出净负荷边际量标幺值:
    Figure PCTCN2021100825-appb-100001
    式中,η表示电力系统的净负荷边际量标幺值,P t L
    Figure PCTCN2021100825-appb-100002
    分别表示电力系统在第t时段和第t-1时段的总负荷;
    步骤S22、获得基于净负荷边际量标幺值的传统火电供电机组可调度范围约束:
    当净负荷边际量标幺值η>0时,传统火电供电机组的可调度范围:
    Figure PCTCN2021100825-appb-100003
    Figure PCTCN2021100825-appb-100004
    当净负荷边际量标幺值η≤0时,传统火电供电机组的可调度范围:
    Figure PCTCN2021100825-appb-100005
    Figure PCTCN2021100825-appb-100006
    式中,
    Figure PCTCN2021100825-appb-100007
    为在t时段第i台传统火电供电机组发出的功率值;ΔP i +、ΔP i -分别为第i台传统火电供电机组的向上爬坡值和向下爬坡值;P i min表示第i台传统火电供电机组最小出力,P i max表示第i台传统火电供电机组最大出力。
  3. 根据权利要求1所述的一种广义源储系统调度的集中控制方法,其特征在于,所述传统供电机组包括传统火电供电机组,所述步骤S2中确定传统火电供电机组出力的约束范围具体为:
    传统火电供电机组出力的可调度范围约束为固有的机组出力范围与考虑净负荷边际量标幺值确定出力范围的交集:
    Figure PCTCN2021100825-appb-100008
    功率平衡约束:
    Figure PCTCN2021100825-appb-100009
    传统火电供电机组运行约束:
    P Gimin≤P Gi≤P Gimax
    Figure PCTCN2021100825-appb-100010
    Figure PCTCN2021100825-appb-100011
    风电机组运行约束:0≤P Wj≤P Wjmax
    式中,
    Figure PCTCN2021100825-appb-100012
    表示水电出力,ΔP t n表示弃新能源功率,P t L表示系统的总负荷;P t loss表示电力系统的网络损耗;P Gimin、P Gimax分别表示各个传统火电供电机组的最大发出功率和最小发出功率;U Ri、D Ri分别表示各个传统火电供电机组的上爬坡速率和下爬坡速率;P Wjmax表示风电机组的最大出力;N h表示水电机组台数;P t n表示新能源出力;P Gi表示第i台火电机组总出力;P i,t表示第i台传统火电供电机组在t时刻的出力;P i,t-1表示第i台传统火电供电机组在t-1时刻的出力;ΔT表示单位时间间隔;β 1表示正旋转备用率;β 2表示负旋转备用率;P L表 示系统的最大负荷;N c为传统火电供电机组总数;N W表示风电机组台数;P Wj表示风电机组出力;j表示第j台风电机组;α 1和α 2表示风电不确定性对火电机组产生的备用裕度,分别表示正、负旋转备用系数。
  4. 根据权利要求1所述的一种广义源储系统调度的集中控制方法,其特征在于,所述步骤S3中储能系统的运行特征具体为:
    所述储能系统包括若干个储能设备,将储能系统引入发电侧,借助储能系统的控制器跟踪其蓄电池充放电行为,其中储能系统的充放电量在整个调度周期T内满足:
    Figure PCTCN2021100825-appb-100013
    Figure PCTCN2021100825-appb-100014
    Q min≤Q t≤Q max
    Figure PCTCN2021100825-appb-100015
    式中,
    Figure PCTCN2021100825-appb-100016
    表示储能的充电功率,
    Figure PCTCN2021100825-appb-100017
    表示储能的放电功率,Q 0为储能系统初始时刻蓄电量;Q t为储能系统t时刻蓄电量;
    Figure PCTCN2021100825-appb-100018
    Figure PCTCN2021100825-appb-100019
    分别为第i台储能设备第t时段的最大充电功率和最大放电功率,Q min和Q max分别为储能系统储能容量的上限和下限;N s表示储能设备的台数,
    Figure PCTCN2021100825-appb-100020
    表示储能的充电功率系数,
    Figure PCTCN2021100825-appb-100021
    表示储能的放电功率系数;
    当储能系统处于放电状态时,有
    Figure PCTCN2021100825-appb-100022
    当储能系统处于充电状态时,有
    Figure PCTCN2021100825-appb-100023
  5. 根据权利要求1所述的一种广义源储系统调度的集中控制方法,其特征在于,所述传统供电机组包括传统火电供电机组及传统水电机组,所述新能源供电机组包括风电机组、光伏机组及其他新能源机组。
  6. 根据权利要求4所述的一种广义源储系统调度的集中控制方法,其特征在于,所述步骤S3可调度空间约束下广义源储系统的成本最优数学模型函 数为:
    Figure PCTCN2021100825-appb-100024
    式中,等号右边第一项为传统火电供电机组的运行成本,T为调度周期的时段总数,N c为传统火电供电机组总数,
    Figure PCTCN2021100825-appb-100025
    Figure PCTCN2021100825-appb-100026
    分别为第i台传统火电供电机组第t时段的燃料成本和启停成本,
    Figure PCTCN2021100825-appb-100027
    为第i台传统火电供电机组第t时段的出力,u i,t为第i台传统火电供电机组第t时段启停状态,若传统火电供电机组为开机状态u i,t=1,停机状态u i,t=0;
    右边第二项为弃新能源惩罚成本,其中,k n为弃新能源惩罚系数,ΔP t n为第t时段弃新能源功率,Δt为一个时段对应的小时数;
    右边第三项为弃水惩罚成本,其中N h为水电机组总数,k hy为弃水惩罚系数,
    Figure PCTCN2021100825-appb-100028
    为第i台水电机组第t时段弃水流量;
    右边第四项为储能系统运行成本,其中B i,t为第i台储能设备第t时段的发电上网价格,
    Figure PCTCN2021100825-appb-100029
    分别为第i台储能设备第t时段的放电和充电功率。
  7. 根据权利要求4所述的一种广义源储系统调度的集中控制方法,其特征在于,所述步骤S3中广义源储系统的最优数学模型具体为建立在约束条件下以系统运行成本最小为目标的最优数学模型,所述约束条件包括传统火电供电机组出力可调度范围约束、功率平衡约束、传统火电供电机组运行约束、风电机组运行约束中一种或多种约束条件。
  8. 根据权利要求1所述的一种广义源储系统调度的集中控制方法,其特征在于,所述步骤S4具体包括如下步骤:
    步骤S41、根据负荷、传统供电、新能源预测结果,计算调度周期内的电力盈亏情况,确定储能充放电时间段;
    步骤S42、根据负荷预测与上一时段机组出力信息以及储能充/放电情况,确定当前时段各机组的调度范围;
    步骤S43、采用改进的粒子群优化算法进行当前时段求解,用于混合粒子群优化算法寻优目标函数如下:
    Figure PCTCN2021100825-appb-100030
    式中,ξ为成本功率转换系数,用于平衡运行成本和功率平衡方程在目标函数中的作用;
    步骤S44、判断各机组出力是否满足约束条件,若满足进入步骤S46,否则进入步骤S45;
    步骤S45:对相关机组的调度空间进行调整,调整完毕后返回步骤S43;
    步骤S46:判断调度空间内所有时段是否求解完毕,若求解完毕进入步骤S47,否则返回步骤S42;
    步骤S47:输出各机组出力曲线、运行总成本、储能运行情况和弃新能源的信息,流程结束。
PCT/CN2021/100825 2020-11-10 2021-06-18 一种广义源储系统调度的集中控制方法 WO2022100091A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011243276.4A CN112104007B (zh) 2020-11-10 2020-11-10 一种广义源储系统调度的集中控制方法
CN202011243276.4 2020-11-10

Publications (1)

Publication Number Publication Date
WO2022100091A1 true WO2022100091A1 (zh) 2022-05-19

Family

ID=73785858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100825 WO2022100091A1 (zh) 2020-11-10 2021-06-18 一种广义源储系统调度的集中控制方法

Country Status (2)

Country Link
CN (1) CN112104007B (zh)
WO (1) WO2022100091A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114938011A (zh) * 2022-07-07 2022-08-23 中国长江三峡集团有限公司 一种考虑储能优化配置的风光火储系统联合运行方法
CN115001001A (zh) * 2022-07-21 2022-09-02 南方电网科学研究院有限责任公司 一种新型电力系统源荷储的主从博弈优化方法
CN115036914A (zh) * 2022-06-17 2022-09-09 武汉大学 考虑灵活性与新能源消纳的电网储能双层优化方法及系统
CN115577864A (zh) * 2022-12-07 2023-01-06 国网浙江省电力有限公司金华供电公司 基于多模型组合运算的配网运行优化调度方法
CN115640894A (zh) * 2022-10-21 2023-01-24 山东大学 一种基于双时间尺度的综合能源系统优化调度方法
CN116742724A (zh) * 2023-08-16 2023-09-12 杭州太阁未名科技有限公司 主动配电网优化调度方法、装置、计算机设备及存储介质
CN116760025A (zh) * 2023-06-25 2023-09-15 南京国电南自电网自动化有限公司 电力系统的风险调度优化方法和系统
CN116823000A (zh) * 2023-08-31 2023-09-29 华能澜沧江水电股份有限公司 水电补偿调峰分析评价方法及其装置
CN117154736A (zh) * 2023-09-01 2023-12-01 华能罗源发电有限责任公司 一种混合储能系统参与火电机组深度调峰优化方法及系统
CN117277444A (zh) * 2023-11-17 2023-12-22 中国电力科学研究院有限公司 一种新能源基地电源容量优化配置方法及装置
CN117293795A (zh) * 2023-09-08 2023-12-26 杭州戈虎达科技有限公司 一种面向灵活爬坡服务的电力系统资源调度方法
CN117422227A (zh) * 2023-10-10 2024-01-19 国网山东省电力公司潍坊供电公司 考虑源网荷储耦合特性的输配电网双侧储能协同规划方法
CN115036914B (zh) * 2022-06-17 2024-04-30 国家电网公司华中分部 考虑灵活性与新能源消纳的电网储能双层优化方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112104007B (zh) * 2020-11-10 2021-02-09 中国能源建设集团湖南省电力设计院有限公司 一种广义源储系统调度的集中控制方法
CN114492085B (zh) * 2022-04-01 2022-07-01 中国能源建设集团湖南省电力设计院有限公司 关于负荷、电源联合概率分布的区域电力电量平衡方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105678415A (zh) * 2016-01-05 2016-06-15 湖南大学 一种分布式电源配电网的净负荷预测方法
US9880230B1 (en) * 2011-07-25 2018-01-30 Clean Power Research, L.L.C. System and method for inferring operational specifications of a photovoltaic power generation system using net load with the aid of a digital computer
CN111146785A (zh) * 2019-12-17 2020-05-12 华北电力大学 面向多源优化调度计算的基于改进有效集快速求解方法
CN112104007A (zh) * 2020-11-10 2020-12-18 中国能源建设集团湖南省电力设计院有限公司 一种广义源储系统调度的集中控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617591B (zh) * 2015-01-28 2017-01-25 西安交通大学 基于多场景新能源发电模拟的日运行方式安排和调峰方法
CN109474013A (zh) * 2018-12-12 2019-03-15 天津大学 含高渗透分布式光伏的增量配电网日前优化调度方法
CN110739711A (zh) * 2019-10-31 2020-01-31 山东大学 考虑风电并网系统负调峰能力的储能设备优化控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9880230B1 (en) * 2011-07-25 2018-01-30 Clean Power Research, L.L.C. System and method for inferring operational specifications of a photovoltaic power generation system using net load with the aid of a digital computer
CN105678415A (zh) * 2016-01-05 2016-06-15 湖南大学 一种分布式电源配电网的净负荷预测方法
CN111146785A (zh) * 2019-12-17 2020-05-12 华北电力大学 面向多源优化调度计算的基于改进有效集快速求解方法
CN112104007A (zh) * 2020-11-10 2020-12-18 中国能源建设集团湖南省电力设计院有限公司 一种广义源储系统调度的集中控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU YE: "Application of Battery Energy Storage Technology in Peak Regulation Optimization of Wind Power System", DIANLI KEXUE YU GONGCHENG -ELECTRIC POWER SCIENCE AND ENGINEERING, HUABEI DIANLI DAXUE, CN, vol. 36, no. 4, 30 April 2020 (2020-04-30), CN , pages 17 - 24, XP055929850, ISSN: 1672-0792, DOI: 10.3969/j.ISSN.1672-0792.2020.04.003 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115036914A (zh) * 2022-06-17 2022-09-09 武汉大学 考虑灵活性与新能源消纳的电网储能双层优化方法及系统
CN115036914B (zh) * 2022-06-17 2024-04-30 国家电网公司华中分部 考虑灵活性与新能源消纳的电网储能双层优化方法及系统
CN114938011A (zh) * 2022-07-07 2022-08-23 中国长江三峡集团有限公司 一种考虑储能优化配置的风光火储系统联合运行方法
CN115001001A (zh) * 2022-07-21 2022-09-02 南方电网科学研究院有限责任公司 一种新型电力系统源荷储的主从博弈优化方法
CN115001001B (zh) * 2022-07-21 2023-03-07 南方电网科学研究院有限责任公司 一种新型电力系统源荷储的主从博弈优化方法
CN115640894B (zh) * 2022-10-21 2024-03-26 山东大学 一种基于双时间尺度的综合能源系统优化调度方法
CN115640894A (zh) * 2022-10-21 2023-01-24 山东大学 一种基于双时间尺度的综合能源系统优化调度方法
CN115577864A (zh) * 2022-12-07 2023-01-06 国网浙江省电力有限公司金华供电公司 基于多模型组合运算的配网运行优化调度方法
CN116760025A (zh) * 2023-06-25 2023-09-15 南京国电南自电网自动化有限公司 电力系统的风险调度优化方法和系统
CN116742724A (zh) * 2023-08-16 2023-09-12 杭州太阁未名科技有限公司 主动配电网优化调度方法、装置、计算机设备及存储介质
CN116742724B (zh) * 2023-08-16 2023-11-03 杭州太阁未名科技有限公司 主动配电网优化调度方法、装置、计算机设备及存储介质
CN116823000A (zh) * 2023-08-31 2023-09-29 华能澜沧江水电股份有限公司 水电补偿调峰分析评价方法及其装置
CN116823000B (zh) * 2023-08-31 2024-01-19 华能澜沧江水电股份有限公司 水电补偿调峰分析评价方法及其装置
CN117154736A (zh) * 2023-09-01 2023-12-01 华能罗源发电有限责任公司 一种混合储能系统参与火电机组深度调峰优化方法及系统
CN117293795A (zh) * 2023-09-08 2023-12-26 杭州戈虎达科技有限公司 一种面向灵活爬坡服务的电力系统资源调度方法
CN117422227A (zh) * 2023-10-10 2024-01-19 国网山东省电力公司潍坊供电公司 考虑源网荷储耦合特性的输配电网双侧储能协同规划方法
CN117277444B (zh) * 2023-11-17 2024-03-19 中国电力科学研究院有限公司 一种新能源基地电源容量优化配置方法及装置
CN117277444A (zh) * 2023-11-17 2023-12-22 中国电力科学研究院有限公司 一种新能源基地电源容量优化配置方法及装置

Also Published As

Publication number Publication date
CN112104007A (zh) 2020-12-18
CN112104007B (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
WO2022100091A1 (zh) 一种广义源储系统调度的集中控制方法
Sun et al. An optimal combined operation scheme for pumped storage and hybrid wind-photovoltaic complementary power generation system
CN108123492B (zh) 一种考虑火电电蓄热联合调峰的日前发电计划优化方法
CN103151803A (zh) 一种含风电系统机组及备用配置的优化方法
CN104951899A (zh) 含大规模可再生能源的配电公司多时间尺度优化调度方法
CN112990523B (zh) 区域综合能源系统分层优化运行方法
CN109993345B (zh) 一种面向园区的孤岛运行多能互补系统动态经济调度方法
CN106385048A (zh) 一种风光蓄一体化调度策略
CN112865174A (zh) 基于双层模型预测控制的微能网多时间尺度优化控制方法
CN104239960A (zh) 考虑抽水蓄能机组的发电计划优化方法
CN116562554A (zh) 一种考虑灵活性供需平衡的长短期储能联合规划方法
CN116805192A (zh) 考虑最优弃能率的综合能源系统双层规划优化方法及应用
CN114465226A (zh) 一种电力系统多级备用获取联合优化模型的建立方法
CN109861289B (zh) 一种基于含储能单元的电力系统可用传输容量的控制方法
Ma et al. Two-stage optimal dispatching based on wind-photovoltaic-pumped storage-thermal power combined power generation system
CN112736978A (zh) 一种多源互补电源并网优化系统
Liao et al. Optimal Capacity Allocation for Wind-Solar Station Considering Power Response of Pumped Storage
Yang et al. Multi-time scale collaborative scheduling strategy of distributed energy systems for energy Internet
CN116316740B (zh) 一种考虑新能源影响的储能代替火电容量效率计算方法
Li et al. An Economic Dispatch Model of the Electricity-Heat Integrated Energy System Considering the Reserve Benefits of the Heat Storage
CN113255141B (zh) 储能电站投资容量和安装位置计算方法
Hu et al. Short-term Optimization of Multi-source System with High Proportion of Wind Power and Photovoltaic
Wang et al. Comparisons of Different Dispatches to Promote the Consumption of Renewable Energy
Yang et al. Flexibility Enhancement and Optimal Dispatch for Renewable-Energy Power System Based on Dynamic Thermal Rating of Transmission Line
Cui et al. A multi-sequence method for monthly unit combination optimization using flexible resources

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21890622

Country of ref document: EP

Kind code of ref document: A1